NAVAL POSTGRADUATE SCHOCL
Monterey, California

THESI S

A RENDERI NG SYSTEM | NDEPENDENT HI GH LEVEL
ARCHI TECTURE | MPLEMENTATI ON FOR NETWORKED
VI RTUAL ENVI RONMVENTS

by
Robert S. List

Sept enber 2002

Thesi s Advi sor: Rudol ph P. Darken
Co- Advi sor: Joseph A Sullivan

This thesis done in cooperation with the MOVES Institute.

Approved for public release; distribution is unlimted.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

REPORT DOCUMENTATI ON PAGE o DB 08 1o

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and conpleting and reviewing the collection of
informati on. Send conments regarding this burden estinmate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis H ghway, Suite
1204, Arlington, VA 22202-4302, and to the O fice of Mnagenent and Budget, Paperwork Reduction
Proj ect (0704-0188) Washi ngton DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
bl ank) Sept enber 2002 Master’s Thesis

4. TITLE AND SUBTI TLE A RENDERI NG SYSTEM | NDEPENDENT HI GH LEVEL | 5. FUNDI NG NUMBERS
ARCHI TECTURE | MPLEMENTATI ON FOR NETWORKED VI RTUAL ENVI RONVENTS

6. AUTHOR (S) Maj Robert S. List

7. PERFORM NG ORGANI ZATI ON NAME('S) AND ADDRESS(ES) 8. PERFORM NG ORGAN ZATI ON
Naval Post graduate School REPORT NUMBER

Mont erey, CA 93943-5000

9. SPONSORI NG / MONI TORI NG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORI NG MONI TORI NG

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the U S. Departnent of Defense or the U S. Governnent.

12a. DI STRI BUTI ON / AVAI LABI LI TY STATEMENT 12b. DI STRI BUTI ON CODE
Approved for public release; distribution is unlimted.

13. ABSTRACT (maxi mum 200 wor ds)

The Hi gh Level Architecture (HLA) is the Departnent of
Def ense standard for networking virtual environments. This
thesis inplenments a nodul ar HLA conponent that can be used
i ndependently fromthe graphics-rendering engi ne used by the
programrer. The nodul ar design of the HLA conponent all ows
programmers of virtual environnments to rapidly network their
exi sting standal one virtual environnents using the DOD standard
net wor ki ng protocol. The HLA conponent is being used to build a
net wor ked virtual environment conpatible with Joint Sem -
Aut omat ed Forces (JSAF). This networked virtual environment will
allow a group of human controlled sinulations to interact with
JSAF controlled entities over comon terrain.

14. SUBJECT TERMB High Level Architecture, HLA, ;i-GEg'U'VBEROF
Net wor ked Virtual Environnents, Joint Sem - Aut omat ed 71

Forces, JSAF

16. PRI CE CODE

17. SECURI TY 18. SECURI TY 19. SECURI TY 20. LI M TATI ON
CLASSI FI CATI ON CLASSI FI CATION OF TH S CLASSI FI CATI ON OF OF ABSTRACT
OF REPORT PAGE ABSTRACT
Uncl assi fi ed Uncl assi fi ed Uncl assi fi ed UL
NSN 7540- 01- 280- 5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THI'S PAGE | NTENTI ONALLY LEFT BLANK

Approved for public release; distribution is unlimted

A RENDERI NG SYSTEM | NDEPENDENT HI GH LEVEL ARCH TECTURE
| MPLEMENTATI ON FOR NETWORKED VI RTUAL ENVI RONVENTS

Robert S. Li st

Maj or, United States Marine Corps
B.S., North Carolina State University, 1992

Submitted in partial fulfillnment of the
requi renents for the degree of

MASTER OF SCI ENCE | N COVPUTER SClI ENCE
fromthe

NAVAL POSTGRADUATE SCHOOL
Sept enber 2002

Aut hor : Robert S. Li st

Approved by: Rudol ph P. Darken
Thesi s Advi sor

Joseph A. Sullivan
Co- Advi sor

Chri stopher S. Eagle
Chai rman, Departnent of Conputer Science

THI'S PAGE | NTENTI ONALLY LEFT BLANK

ABSTRACT

The Hi gh Level Architecture (HLA) is the Departnent of
Def ense standard for networking virtual environnents. This
thesis inplenments a nodular HLA conponent that can be used
i ndependently from the graphics-rendering engine used by
t he programmer. The nodul ar design of the HLA conponent
allows progranmmers of virtual environnents to rapidly
network their existing standalone virtual environnents
using the DOD standard networking protocol. The HLA
conponent is being wused to build a networked virtual
environment conpatible wth Joint Sem -Autonated Forces
(JSAF) . This networked virtual environment wll allow a
group of human controlled sinulations to interact with JSAF

controlled entities over commpn terrain.

THI'S PAGE | NTENTI ONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTT ON . . . e e e e e e 1
A PROBLEM STATEMENT e 1
B. APPROACH o 2
C THESI S ORGANI ZATI ON ot e e 2
H STORY OF NETWORKED VI RTUAL ENVI RONMENT ARCHI TECTURES. . 5
A OVERVI EW. . .. 5
B. SIMIATOR NETWORKING. e e 5
C. DI STRIBUTED | NTERACTIVE SIMULATION. 6
D. HGHLEVEL ARCHI TECTURE i 7
E. OTHER APPROACHES e 8
H GH LEVEL ARCHI TECTURE i 11
A OVERVI EW. . .. 11
B. FEDERATION RULES. e 12
1. Federation Rules: 12

2. Federate Rules: 13

C. INTERFACE SPECIFICATION. 13
1. Federation Managenment 14

2. Decl aration Managenment 14

3. Qbj ect Management 15

4. Ownership Managenment 15

5. Time Management 16

6. Data Distribution Management 16

D. OBJECT MODEL TEMPLATE (OMI) e 17
E. RUN TIME INFRASTRUCTURE e 18
1. RTI EXECUtI Ve e e e e 18

2. Federation Executive............. 18

3. RTI Library i 18

a. RTlanbassador Cass...................... 19

b. FederateAnbassador Cdass................. 19

F. BASIC SEQUENCE OF EVENTS IN A FEDERATION........... 20
I MPLENMENTATE ON . ..o e e e e e 23
A H GH LEVEL ARCHI TECTURE MODULE DESIGN............. 23
1. hnmHLAController Cdass............. 24

2. hnDisplayController Cdass..................... 25

3. hnFederateAnbassador 26

4. hmHLAQhject T asso 26

5. hmHLAQhj eCt 27

6. hnHLAInteractionClass......................... 28

7. hnHandl eValuePair 28

B. HGHLEVEL ARCH TECTURE SERVICES 29
1. Publishing Qbject Attributes.................. 29

Vi i

2. Creating a Local Object 30
3. Create a Rempte Object 32
4. Send a Local Object Attribute Update.......... 33
5. Receive a Renpte (bject Attribute Update...... 35
6. Publish an Interaction........................ 36
7. Send an Interaction............. 37
8. Receive and Interaction....................... 38
C. OBJECT MODEL . ..ot e e 40
D. COVPATI BILITY WTH JO NT SEM - AUTONOMOUS FORCES. .. 42
E. CHANG NG RENDERI NG PLATFORMS oo 42
F. | NTEGRATING THE H GH LEVEL ARCH TECTURE MODULE
| NTO AN EXI STING APPLI CATION.o 43
V. TESTING AND RESULTS e e s e e e 45
A PROTOTYPE SYSTEM. e 45
B. FINAL DESI GN. e 46
VI . CONCLUSIE ON . .t e e e e e e e e e e 49
A GENERAL DI SCUSSI ONot e e e 49
B. CONTRIBUTI ONS e e 49
C. FUTURE WORK e e e e e 50
1. Additional Hi gh Level Architecture Services...50
a. Time Management, 50
b. Ownership Managenent 51
c. Data Distribution Managenent 51
2. Additional Objects and Interactions........... 51
3. Inproved Network Performance.................. 52
LIST OF REFERENCES e e e 53
APPENDI X A. Ct+ SOURCE CODE. e e e 55
INITIAL DI STRIBUTION LI ST ..o e e e 57

Viii

Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure

Fi gure

Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure

NooRrwNE

10.
11.
12.
13.
14.
15.
16.
17.

LI ST OF FI GURES

Federation Managenent. (From ref. 2) 14
Decl arati on Managenent. (From ref. 2) 14
oj ect Managenent. (From ref. 2) 15
Owner shi p Managenent. (From ref. 2) 15
Ti me Managenment. (From ref. 2) 16
Data Distribution Managenent. (From ref. 2) ...16
RTI and Federate Code Responsibilities. (From

=) 20
Federate and Federation |Interplay. (From

ref . 2) 21
Cass Relationship Diagram 24
Publish Qobject Attributes. 30
Create a Local Qbject. 32
Create a Renmote Qbject. 33
Send a Local Qbject Update. 34
Receive a Renote Update. 36
Publish an Interaction. 37
Send an Interaction. 38
Receive an Interaction. 40

THI'S PAGE | NTENTI ONALLY LEFT BLANK

ACKNONLEDGEMENTS

| would like to acknow edge several people for their
hel p and support that enabled nme to conplete this thesis.
First, I would like to thank ny famly for their support
and under st andi ng. I would also like to thank Mal achi
Wir pt s of Sout hwest Resear ch Institute for hi s
contributions to this thesis. Hi s programm ng and nodul e
design influence have nmade this a better thesis. | would
also like to thank ny advisors Dr. Rudy Darken and CDR Joe

Sullivan for their guidance and | eadership.

Xi

THI'S PAGE | NTENTI ONALLY LEFT BLANK

. 1 NTRODUCTI ON

A PROBLEM STATEMENT

The Hi gh Level Architecture (HLA) is the Departnent of
Def ense standard for networking virtual environnents. HLA
allows a large amunt of flexibility and freedom to
progranmers. However, this flexibility makes inplenmenting
HLA applications a conplex undertaking. As yet, no tools
exist to aid progranmmers to rapidly inplenment a networked

virtual environnment using the nost current version of HLA

Additionally, several versions of the HLA Run Tine
Infrastructure (RTlI) are available through the Departnment
of Defense and commercial industry. Wiile all these RTIs
adhere to the HLA specification, applications witten to
one RTI are not 100 percent conpatible with all other RTIs.
This inconpatibility can cause extensive engineering costs
in large-scale simulations, where individual simulations
were devel oped for different RTIs. An open code base is
needed that allows access to the RTI for fast HLA

i ntegration.

This thesis will inplenent an HLA nodule that can be
used to network applications over HLA An existing
application will be able to interface with the HLA nodul e

to rapidly bring the application into an HLA networked
environnment. The HLA nmodule will be built in such a way as
to make the rendering system i ndependent of the HLA nodul e
provided the rendering system is conpatible wth C++.
Since the HLA nodule is independent of the rendering

system programrers will not be limted when devel opi hg new

applications and existing applications will be conpatible
with this HLA nodul e.
B. APPROACH

This thesis wll denonstrate an HLA conpliant
application witten in Ct+ wusing the VEGA APl from
Mul tigen-Paradigm However, it wll be possible to use
ot her C++ based rendering engines wthout changing any of
t he HLA nodul e code.

The Object Mdel Tenplate (OMI) chosen for this
application is the Real-tinme Platform Reference Federation
(bj ect Model (RPR FOM. This OMI was chosen because of its
| arge user base and with the aim to make this application
conpatible with Joint Sem -Automated Forces (JSAF). The
nodul ar design of this project wll allow for easy
transition to anot her FOM
C. THESI S ORGANI ZATI ON

This thesis is organized in the follow ng chapters:

. Chapter |I: | nt roducti on. This chapter states
the problem for this thesis and gives an overview
of the work.

. Chapter 11I: Hi story of Net wor ked Virtual
Envi ronnment Architectures. This chapter gives a
hi story of net wor ked vi rtual envi r onnment

archi tectures

. Chapter I111: High Level Architecture. Thi s
chapter gives an overview of HLA

. Chapter 1V: | mpl enent ati on. This chapter goes
over the details of the application s design.
This chapter discusses the project’s nodular
desi gn and the application HLA object nodel.

. Chapter V: Testing and Results. This chapter
di scusses the results of the project.

Chapter VI: Concl usi ons. This chapter contains
a general discussion of the conclusions drawn
fromthis project along with proposed future work
in this area.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

I'1. H STORY OF NETWORKED VI RTUAL ENVI RONVENT
ARCHI TECTURES

A. OVERVI EW

The history of the developnment of the H gh Level
Architecture (HLA) can be traced back to two earlier
proj ects: Si mul ator Networking (SIMNET) and Distributed
I nteractive Si mul ati on (D'S). Net wor k envi ronnment
architectures began wth the Defense Advanced Research
Project Agency (DARPA) SIMNET project. Later, the DS
project defined a standard network protocol that would
allow different simulation projects to interact over a
net wor k. HLA was devel oped by the Defense Mdeling and
Sinmulation Ofice (DVMSO in conjunction with industry to
create a nore flexible and scal able network architecture as
a replacenent for DI S
B. SI MULATOR NETWORKI NG

The DARPA SI MNET project began in 1983. The foll ow ng
shows the purpose behind devel opi ng SI MNET.

SI MNET was started to denonstrate that networks
of low cost sinmulators could allow team training
to be carried out on a virtual battlefield.
Previously, simulator training was focused on
| earni ng i ndi vi dual skills Wi th st andal one

simulators.1

The SIMNET project developed rapidly during the 1980s.

The original application for SIMNET was a tank gunnery

1 Proctor, Mchael D (Ed.). (no date). Web-based Technical Reference
on Si mul ati on Interoperability (online). Avai | abl e:
<http://ww. engr. ucf. edu/ peopl e/ proctor/ | nteroperability%20Text/ Text %20
Qutline. htn> (29 Aug. 02), Ch. 8.

5

trainer. For the trainer, four crew stations were |inked
together; one station for each crewren in a tank. The
project quickly expanded to include nultiple tanks,
aircraft, fighting vehicles, and command posts. By 1990,
there were approximately 260 different sinmulators in 11
different sites involved in SI MET.

The SIMNET project was delivered to the Arny in 1990
where the Simulation, Training, Instrunmentation Command
(STRICOM) changed the nane to Distributed Interactive
Si mul ati on.

C. DI STRI BUTED | NTERACTI VE SI MULATI ON

For the SIMNET project, all the sinmulators were of a
honmogenous type and were all devel oped by one devel opnent
team |lead by DARPA The need for an architecture to
net wor k het erogeneous sinulator types was recogni zed. The
DIS project created a network protocol standard that
allowed sinulators from different projects to communicate
wi th each other. The DI'S project defined how data was to
be di stri buted bet ween si mul ati ons to make t hem

i nt er oper abl e.

Wrk on developing DI'S standards was acconplished at
sem - annual Wbrkshops on Standards for the Interoperability
of Distributed Sinulations. Groups of i nterested
volunteers net at these workshops in order to discuss,
devel op, and publish DI'S standards. The original standards
for DIS were approved as | EEE Standard 1278 in 1993. These
standards defined the Protocol Data Units (PDU) needed to
support entity attributes and novenent, weapon firing,

detonations, and collision detection.

Distributed Interaction Simulation uses a peer-to-peer
architecture. Each simulation in a DI'S networked virtual
environment is linked to all the other nenber simnulations
of the virtual environnent on a conputer network. Menber
sinmulations of a DIS networked virtual environnent directly
broadcast attribute wupdate and interaction PDUs to all
ot her nenbers.

D. H GH LEVEL ARCH TECTURE

H gh Level Architecture was designed to replace DS
with a nore flexible and scalable network architecture.
HLA was sponsored by DVMSO and developed by Science
Applications International Corporation, Virtual Technol ogy
Cor por ati on, bj ect Sciences Corporation, and Dynam c
Ani mations Systens.2 In 1998 HLA was set as the standard
network sinulation architecture for all new DOD networked
virtual environnment projects. HLA has been criticized
because the protocol was not opened to a standards
organi zation, like DS was, for review while it was being

devel oped.

HLA was devel oped to address the limtations of DI S
The nunber of entities in a DIS systemis |inmted because
DS is built on a peer-to-peer nodel where entity updates
are broadcast to the entire network. As the nunber of
entities increase, the congestion in the network increases
until the network becones saturated. HLA conbats this
problem by using a Run Time Infrastructure (RTI).
Sinmulations send their updates to the RTI, which keeps

track of which other sinulations are interested in those

2 Department of Defense, Defense Mdeling and Simulation Office. (no
date). H gh Level Architecture RTI 1.3-Next Generation Programer’s
Gui de, Version 4, inside cover.

updates and the RTlI then sends the updates to interested
parties over a nulticast connection. Thus, redundant and
extraneous transmissions are filtered out, resulting in
fewer packets sent over the network, which reduces network

congesti on.

Difficulties exist in creating a single protocol that
neets the needs of all sinulation applications. Therefore,
key conponents of sonme sinulations may not be supported by
DS and therefore cannot be represented over the network.
The Hi gh Level Architecture is a nore flexible architecture
because it lets programmers define their own set of entity
attributes and interactions called the Federation bject
Model (FQM) .

DIS also has no provisions for tinme nmanagenent. Each
sinmulation runs in real time and sends its updates over the
net wor k. Since each simulation runs independently,
synchroni zation problens can occur between sinulations
maeking it nearly inpossible for each sinmulation to maintain
a consistent view of the virtual environnent. HLA does
provi de support for tine managenent.

E. OTHER APPROACHES

The conputer entertainment industry has devel oped
other architectures to network virtual envi ronment s.
Conmputer gane conpanies are capable of hosting nassive
mul ti pl ayer ganmes online through the use of DirectX or
simlar technologies. These multiplayer ganes are based on
a client/server architecture where the data for the virtua
world resides on the server. As a player noves into a new
area of the virtual world, the client downloads the world
data from the server. I nteractions between players or

8

other entities are routed through the server to other

pl ayers in the same area.

While this architecture works well for games, it is
not suitable for mlitary training networked sinulations at
this tine. To ensure adequate network performance, there
isalimt to the level of detail in the virtual world that
can be downloaded to a client in a reasonable anmount of
tinme. Wiile gane players are happy with the level of
detail provided in games, the level of detail is not

adequate for mlitary applications.

In HLA applications, each sinulation maintains its own
dat abase of the virtual environment. Changes in the
environment can be distributed anmong the sinulations.
Since each sinmulation mintains its own nodel of the
virtual environment, the level of detail can be nuch
greater provi di ng for a hi gher fidelity vi rtual

envi ronnent .

TH'S PAGE | NTENTI ONALLY LEFT BLANK

10

I11. H GH LEVEL ARCH TECTURE

A. OVERVI EW
The Hi gh Level Architecture was devel oped to establish

a common high-level sinulation architecture
to facilitate the interoperability of al

types of nodels and sinulations anong
t hensel ves and with C41 systenms. The HLA is
designed to pronote standardization in the
M&S community and to facilitate the reuse of

M&S conponents. 3

An HLA application includes a federation conposed of
one to many federates. A federation is group of
simulations that interact in the same virtual environnent.
A federate is a nenber sinmulation of a federation
Federates communicate with each other through the Run Tine
Infrastructure (RTI). Federates register their entities
and subscribe to entities of interest with the RTI. The
RTI controls the data transfer between federates. The RT
is responsible for ensuring data is sent from the
publishing federates to the subscribing federates.

The HLA architecture consists of three conponents. 4
e Federation Rules

o Ensure proper interaction of sinmulations in

a federation

o Describe t he si mul ati on and f ederate

responsi bilities.

3 1bid, p. 1-2.
4 |bid, p. 1-3.
11

e Interface Specification
0o Defines Run-Tine Infrastructure services.

o ldentifies callback functions each federate
nmust provi de.

e (bject Mdel Tenplate (OM)

o Provides a comon nethod for recording

i nformation.
o Establishes the format of key nodel s:
= Federation bject Mdel (FOM
= Simulation Object Mdel (SOM

= Managenment bj ect Mdel (MM
B. FEDERATI ON RULES®
1. Feder ati on Rul es:

1. Federations shall have an HLA FOM docunented in
accordance wth the HLA Object Mdel Tenpl ate OM.

2. In a federation, all representation of objects in
the FOM shall be in the federates, not in the RTI.

3. During a federation execution, all exchange of FOM

data anmong federates shall occur via the RTI.

4. During a federation execution, federates shall
interact with the RTI in accordance with the HLA interface

speci fication.

5. During a federation execution, an attribute of an
i nstance of an object shall be owned by only one federate

at any given tine.

5 |bid, pp. 1-3 and 1-4.
12

2. Feder at e Rul es:

6. Federates shall have an HLA SOM docunented in
accordance with the HLA Cbject Mdel Tenplate (OM).

7. Federates shall be able to update and/or reflect
any attributes of objects in their SOM and send and/or
recei ve SOM object interactions externally, as specified in
t heir SOM

8. Federates shall be able to transfer and/or accept
ownership of an attribute dynamically during a federation
execution, as specified in their SOM

9. Federates shall be able to vary the conditions
under which they provide updates of attributes of objects,
as specified in their SOM

10. Federates shall be able to manage local tinme in a
way that will allow them to coordinate data exchange wth
ot her nenbers of a federation.

C. | NTERFACE SPECI FI CATI ON

The interface specification determ nes how federates
interact wth the federation through the RTI. The

specification consists of six managenent areas.

13

Feder ati on Managenent

Federation Management

e Activity Coordination

- Manages federation execution

- Initializes name space, transportation, ordering defaults, routing spaces, etc.

* Action Synopsis

Creation “Let’s play a game.”
- Joining “T want to play.”
- Saves “Let’s save our state.”
- Sync “Hold it —let’s sync up.”
- Resigning “Now I'm leaving the game.”
- Deleting “Let’s end the game.”

Federati on Managenent. (From ref.

Decl arati on Managenent

Declaration Management

- Data Exchange Coordination
- SFIE'GH}' data lypes a federate will send and recelve.

- Control what data ls required based on external interast.

« Action Synopsis

- Publication “Here's the infermatien I'l ke presenting.’
- Bubscription "Here's what | want to know about.’
- Control "Hey, someocne actually wamis to know about that.”

1.
Figure 1.

2.
Figure 2.

Decl arati on Managenent. (From ref.

14

2)

2)

3. bj ect Managenent
Object Management
« Object Discovery Principles
- Creates, modifies, and deletes object and interaction.
- Manages object identification.
- Facilitates object registration and distribution.
- Coordinates attribute updates among federates.
- Accommodates various transportation and time management schemes.
« Action Synopsis
- Register Object “I've got a new tank.”
- Update Attribute “One of my planes just changed direction.”
- Send Interaction “Flight 501 requesting permission to land.”
- Delete Object “A truck just exited view.”
- Change Transport “The fuel level must be sent reliable.”
- Chanae Order Tvpe “Aircraft position must be sent in order.”
Figure 3. bj ect Managenent. (From ref. 2)
4. Omner shi p Managenent
Ownership Management
* Shared
- Supports transfer of ownership for individual object attributes.
- Offers both “push” and “pull” based transactions.
* Action

- Divest “| cannot simulate this plane's radar signal anymore.”

- Acquire “Thanks, I'll accept responsibility for this tank’s position.”

- Query “Who is managing this truck’s fuel supply?”

Figure 4. Owner ship Managenent. (From ref.

15

2)

5. Ti me Managenent

Time Management

e Coordinate federate logical time advancement
- Establish or associate events with federate time
- Regulate interactions, attribute updates, object reflections or object deletion by

lederate time scheme

- Support causal behavior within a federation
- Support interaction among federates using different timing schemes

e Action Synopsis
- Set Policy “Send me events in increasing logical time sequence.”
- Request Time “What time is it?”
- Bracketing “I"Il provide you 20 minutes prior notice for all changes.”
- Advance Time “Move me to my current time plus 5.0 seconds.”™
- Next Event “Move me up to my next TSO event and deliver it.”
- Flush Queue “Move me up to the LBTS or this limit and deliver my

queued events.”
Figure 5. Ti me Managenment. (From ref. 2)

6. Data Di stribution Managenent

¢ Information Routing

e Action Synopsis

Data Distribution Management

Supports efficient routing of data.
Specifies distribution.
Acknowledges “routing” conditions.

Create region

Modify region

Delete region

Register entity w/region
Control updates

Fi gure 6.

Data Di stribution Managenent.
(From ref. 2)

16

D. OBJECT MODEL TEMPLATE (QM)

The OMI establishes a common framework for object and
interaction nodel docunentation. The standard OMI provides
a conmmon net hod for describing HLA Obj ect Model s.

A FOM is an object nodel common to all federates in a
f ederati on. Wen a federation is created, the RTI reads
the FOM in order to know what objects and interactions to
expect. Al'l federates in a federation nust use the sane
FOM so that the RTI can coordinate and control the data
transfer between federates. |If a federate were able to use
a different FOM then that federate would not be able to
recogni ze the objects and interactions that are passed back
and forth.

The FOM is conposed of two classes: obj ects and
i nteractions. hjects are entities in the federate that
have persistence. Exanples of objects are tanks, aircraft,
and shi ps. Attributes are used to describe an object.
Exanpl es of attributes are world position, orientation, and
vel ocity. | nteractions are non-persistent occurrences such
as collisions, nunition detonations, and weapons fire
notifications. Interactions are made up of paraneters.
Exanpl es of paraneters are detonation |ocation and

detonation result.

An OMI for a specific FOM defines the objects and
interactions for a FOM For each object, the OMI defines
that objects attributes. For each interaction, the OMI
defines its paraneters. Further, the OMI defines the data
type of the paraneters and attributes, cardinality (size of
an array or sequence), units, and accuracy (naxinmm
deviation fromits intended value in the federate).

17

E. RUN TI ME | NFRASTRUCTURE

The RTI used for this thesis is the Defense Modeling
and Simulation Ofice RTlI 1.3-Next Generation Version 6.
This RTI was chosen because it is the RTlI used by JSAF

The RTI Executive (Rti Exec), t he Feder ati on
Executive(FedExec), and the RTlI libraty (libRTI) are the
t hree conponents that make up the RTI

1. RTlI Executive

The RiExec is a process that manages nultiple
Federation Executions in a network. Running the
rtiexec.exe program starts the RtiExec. The RtiExec
listens on an established nmulti-cast port for requests from
federates to create and destroy federations. Wen a
request for a federation creation is received, the RtiExec
spawns a federation execution process to nmanage that
federation. Requests from federates to join or resign a
federation are directed to the appropriate FedExec by the
Rt i Exec.

2. Federation Executive

The FedExec nmanages mul tiple f ederat es in a
federation. The FedExec processes join and resign requests
from federates. The FedExec also controls and coordi nates
the data transfer between federates.

3. RTI Library

The RTI Library provides an interface to HLA services
for the federates. The RTI Library contains two anmbassador
cl asses that enable comunication between the federation
and the federates: The RTlanbassador class and the

Feder at eAnbassador cl ass. The RTI Library also contains
18

supporting classes and types that facilitate data transfer,
see Appendix C of the HLA Programer’s Quide® for
docunent ati on of these classes and types.

a. RTI anbassador C ass

Al'l requests from a federate to the RTI are mmde
by making mnethod calls to the RTlanbassador cl ass.
Federates nust declare an instance of an RTlanbassador in
order to comunicate wth the RTI. Appendi x A of the HLA
Programer’s QGuide’ contains descriptions of the nethods of
t he RTI anbassador cl ass.

b. Federat eAnbassador C ass

The Feder at eAnbassador class is an abstract class
in libRTI that must be inplenmented by each federate. The
i bRTI Feder at eAnbassador identifies «callback functions
that each federate nmust support. The RTlI uses these
cal | back functions to send data to the federates. Appendi x
B of the HLA Programmer’s Quide8 contains descriptions of
t he net hods t hat nmust be support ed by federate

i npl enent ati ons of the Federat eAnbassador cl ass.

6 1bid. Appendix C
7 1bid. Appendix A
8 |bid. Appendix B.

19

RTIl and Federate “Ambassadors”

i
[
Federate Ambassador L_. "Various RTI Objects” HQ

RTIambassador

]

"Ambassador Implementation”

.

Federate C(]de "Various Federate Objects"

Figure 7. RTI and Federate Code Responsibilities.
(From ref. 2)

F. BASI C SEQUENCE OF EVENTS | N A FEDERATI ON

An HLA simulation follows a sequence of events from
federation creation to destruction. A FedExec is created
when a federate nmakes a create federation call to the
Rti Exec wusing an RTIanbassador. During the process of
creation the FedExec reads in the FOM for the federation,
so that the federation will know what kind of objects and
interactions can be expected during the sinulation. After
successful creation of a federation the federate nakes a
call to the FedExec to join the federation. The federate
then publishes object attributes and interactions to the
FedExec that the federate is capable of producing. The
federate then <creates and registers objects wth the
FedExec. The federate also subscribes to object and

interactions types in the FOM that the federate is

20

interested in receiving from other federates in the
federation. As other federates register their objects with
the federation, the FedExec makes object discover calls to
t he Feder at eAnbassador of the federate. As the sinulation
progresses, the federate sends object attribute updates and
interactions to the FedExec so that they can be distributed
to other federates. The FedExec sends object attribute
updates to the federate via the FederateAnbassador. During
the sinulation objects can be destroyed and therefore nust
be deleted from the federate. When the federate shuts
down, it resigns from the FedExec. Finally, the |ast
federate to leave the federation nakes a call to destroy

the federation.

Interplay At-a-Glance

create federation

join

publish object attributes & interactions

create & register objects

suhserihe & disrowver

send. update & reflect

exchange attribute c:rumershnf]

:| begin shutdown

resign

remove federate :

Fi gure 8. Federat e and Federation Interplay.
(From ref. 2)

21

TH'S PAGE | NTENTI ONALLY LEFT BLANK

22

V. | MPLEMENTATI ON

The inplenentation of this thesis was conpleted in
conjunction with Southwest Research Institute. This thesis
was inplemented with a C++ application and the DWVSO RTI
1. 3NG version 6. The application denobnstrates an HLA
i npl enentation that supports the basic HLA services needed
to run an HLA sinulation. Services supported include:
federation creation, join federation, resign federation,
federati on destruction, object and interaction publication,
object and interaction subscription, obj ect creation,
obj ect registration, sending and receiving object attribute
updates, and sending and receiving interactions. These
services will be covered in nore detail bel ow
A H GH LEVEL ARCH TECTURE MODULE DESI GN

The HLA nodul e consists of several classes. Al of
the HLA nodul e classes begin with hmto help identify them
as nenbers of the HLA nodule. The hnDi spl ayController
class controls the function calls to the rendering system
The hmHLAController class controls and coordi nates services
of the HLA The hnFeder at eAnbassador class is the
i npl enentation of the RTlI virtual class FederateAnbassador.

The hnteder at eAnbassador cl ass recei ves conmuni cati ons from

the RTI. The hmHLAObj ectClass class will have one instance
for each type of object that will interact with the RTI and
will contain type wide attributes for that object type.

The hmHLAGhj ect class represents individual objects that
interact wth the RTI. The hmnteractionC ass class
handl es interactions such as collisions and weapons fires.
The hnHandl eVal uePair class is used to pair the RTI handle

23

for an attribute or paraneter with its val ue. HLA obj ects
use lists of hmHandl eVal uePairs to represent their

attri butes.

hmHLAController

hmDisplayController

hmHLAODbjectClass hminteractionClass hmFederateAmbassador (from RTI
—> hmHLAObject hmHandleValuePair
Figure 9. Cl ass Rel ati onshi p Di agram

1. hnmHLAControll er d ass

The hnHLAController class coordinates HLA services.
The class constructor creates a federation in the RTI if a

federation by the sane nane has not already been created.

24

The constructor also joins the federate to the federation
The destructor resigns a federation and destroys a
federation when no other federates are joined to a
f ederati on. The hnHLAController functions coordinate the
transfer of data between the RTI federation and the
federate.

2. hnDisplayControl |l er C ass

The hnDisplayController class is inherited from the
hnmHLAControl l er C ass. The hnDi splayController class
coordinates the transfer of data for the HLA nodul e. The
hnDi spl ayController class is the interface to a |arger
appl i cation. The hnDisplayController class nakes al
function calls to the rendering engine Application
Progranmmer’s Interface (API) for the HLA nodule, VEGA in
this case. Since hnDi splayController is the only class in
the HLA nodul e that nakes calls to the rendering engine, it
is the only class that nust be adjusted when switching to a

di fferent rendering engine.

Only one instance of an hnDi splayController should be
declared in each federate in a federation. As it is
witten now, t he hmDi spl ayControl | er constructor
initializes Vega, which only needs to be done once. Si nce
hmDi spl ayController is inherited from hnHLAController, when
an instance of hmDi spl ayControl | er is declared the
constructor for hmHLAController is also called. The
hmHLAControl | er constructor goes through the steps required
to create and join a federation, which again only needs to

occur once per federate.

Si nce hmDi spl ayControl | er i nherits from
hmHLAControl | er, no instance of an hnmHLAController is

25

declared in the application. The hnDi spl ayController has

access to al | t he HLA service functi ons of t he
hmHLACont rol | er, SO al | HLA service calls in t he
application call the hnDi splayController instance. The

hmDi spl ayControll er class has overloaded functions for the
functions in hnmHLAController that require comunication
with the rendering engine, such as receiving object
attri bute updates fromthe RTI.

3. hnFeder at eAnbassador

The hnfFeder at eAnbassador class is the HLA nodule
i npl ementation of the pure virtual class FederateAnbassador
found in |ibRTI. The hnfFeder at eAnbassador is the neans by
which the RTI federation comunicates with the federate.
This application only supports the object nmanagenent
functions of t he Feder at eAnbassador d ass. The
hnfeder at eAnbassador keeps a pointer to the hnHLAControl |l er
for the federate the hnFederateAnbassador is associated
Wit h. The hmHLAController pointer actually points to an
hmDi spl ayController instance because no instance of an
hmHLAControl ler exists in this application. Since the
hmDi spl ayController class inherits from the hnHLAControl |l er
cl ass, polynorphism allows an hnHLAController pointer to
point to an hnDi spl ayControl |l er instance.

4. hnmHLAOhj ect O ass

The hnmHLAOhj ectC ass class is responsible for managi ng
the different types of objects in the federate. The
hnmHLACDj ect C ass handl es the object type w de services such
as publication and subscription. The hnHLACbj ectd ass wil |l
have one instance for each type of object in the federate.
The class maintains a static list of all of its instances.

26

The hnHLAGhj ectClass class maintains lists of published
attributes, published object types and subscribed object
t ypes. The hnHLAObj ect O ass cl ass keeps a nenber variable
to hold the RTI Objectd assHandle so that each instance
knows the handle the FedExec uses to identify it. The
hmHLAGhj ectClass class also nmamintains a pointer to the
federate’ s RTI anbassador.
5. hnHLAOj ect

The hnHLACDhj ect class is responsible for managing the
i ndi vidual HLA objects in the federate. This class handl es
services such as sending and receiving attribute updates.
The hnHLAGbject class maintains a static list of all
i nstances of the class.

Each hnHLAObj ect mai ntains several nenber variables in
order to carry out its functions. The p_Handle variable is
an RTI ojectHandle, which is what the object is known as
in the FedExec. Each hnHLAGbj ect al so keeps a handle to
its object class, so that it knows what type of object it
is. Anot her inportant nenber variable is a pointer to a
vi sual object. The p Visual bjPtr is a pointer to the
object in the rendering system that represents this HLA
obj ect. This variable is inportant because when an update
is received from the FedExec, the HLA object knows which
renderi ng system object nust be updat ed. This variable is
stored as a void pointer to keep it general so that other
renderi ng engines can be used w thout having to change the
hmHLAGbj ect cl ass. Each object also keeps a pointer to the

RTI anmbassador for the federate.

27

6. hnHLAI nteracti onC ass

The hnHLAInteractionClass class is responsible for
managi ng interaction services. This class processes the
publ i shing, subscribing, sending and receiving for the
different types of interactions supported by the federate.
The hmHLAInteractionClass class maintains a list of its

i nst ances. The hnmHLAInteractionC ass namintains |ists of
publ i shed and subscribed interaction classes. This class
also has a pointer to the federate s RTIanbassador. Each

i nstance keeps an RTI handle for its interaction class.
7. hnHandl eVal uePai r

The hnHandl eVal uePair class matches the RTI handle for
an object or interaction to the value held by that object
or interaction. Lists of hnHandl eValuePairs are used to
process the sending and receiving of object attribute
updates and interactions. Li sts of hnHandl eVal uePairs are
used so that the hmHLAGbj ect and hminteractionC ass cl asses
can process different types of objects and interactions.
This also neans that different FOW can be easily
support ed. As long as the hnHandl eval uePair class can
handle the data types of the FOM the HLA nodule can
process the objects and interactions of any FOM Current
data types supported by the hnHandl eVal uePair class include
string, integer, float, double, a C++ struct consisting of
three floats, and a C++ struct consisting of three doubl es.
Anot her advantage is that only one class for objects and
interactions needs to be witten. The hnHLAObj ect and
hm nteractionCl ass classes can process different types of
obj ects and interactions.

28

B. H GH LEVEL ARCH TECTURE SERVI CES

The basic services of creating, destroying, joining,
and resigning a federation executive are handled in the
hmHLAControl ler class by naking appropriate calls to the
RTI using an RTl anbassador.

The processes for handling object and interaction
services are detail ed bel ow
1. Publishing Object Attributes

When a federate joins a federation execution, it mnust

inform the FedExec of the types of objects the federate

wi |l be producing. It nust also specify the attributes of
those objects for which the federate wll be sending
updat es.

To publish object attributes, first a call is nmade to

the hnDi splayController function PublishGbject (function
inherited from hnmHLAController) that takes string and
vector of strings as its paraneters. The first paraneter
is the name of the object class taken from the FOM The
second paraneter is a list of the nanes of the attributes
bei ng publ i shed. The names of the attributes are also
taken fromthe FOM

The PublishQoject function first searches the instance
list of the hnHLAChjectCl ass for an instance with the sane
cl ass nane. If an instance is not found, then a new
instance is created. Next, a call is nmade to the
hmHLAOhj ect O ass’ s Publish function.

The Publish function takes the input paraneter handle
list and converts it to an AttributeHandl eSet from |i bRTI.
The function then nmakes a call to the RTlIanbassador’s

29

publ i shObjectCl ass function with the class handle and the
AttributeHandl eSet as a parameter and publishes the
attributes in the FedExec. Next, the handle |ist and the
AttributeHandl eSet are added to the |list of published
attri butes. Lastly, the object class is added to the |ist

of published object classes.

The process for subscribing to object types is very
simlar to the publishing process and follows the sane

| ogi cal flow.

call made to
hmDisplayController

hmDisplayController (inherited

from hmHLAController) hmHLAObjectClass

PublishObject(obj_classname,

Publish(handle_list)

handle_list)
+look for obj_classname in +create an RTI::AttributeHandleSet
list of object classes
+call
+if not found create a new RTlambassador::publishObjectClass

hmHLAODbjectClass instance
+add the attributes to the list of
+call Publish published attributes

+add to the list of object types that have
been published

Fi gure 10. Publ i sh Qbject Attributes.

2. Creating a Local bject

When a sinulation creates an object to be displayed in
the sinmulation and wants that object to be shared with the
federation, an HLA object needs to be created and

regi stered with the FedExec.

30

Before an hnHLAOobject local to the federate can be

created, the attributes it wll be sharing nust be
published with the FedExec. To create a |ocal hnHLAObj ect,
a call is nmade to the hnDisplayController function
Creat eLocal Object (inherited from hnHLAController). The
Creat eLocal Object function takes two input paraneters: a
string and a void pointer. The first paraneter is the

obj ect class nane taken fromthe FOM The second paraneter
is a pointer to the rendering system object cast to a void
poi nter. The CreatelLocal Object function declares a new
hmHLAGbj ect and passes the class nanme string, a pointer to
the RTIanbassador, and a pointer to the visual object to
the hnHLAChj ect constructor. When the CreatelLocal Object
function conpletes, it returns a handle to the newy
created object.

The hmHLAOh] ect construct or cal | ed from
CreateLocal Object initializes the object with the input
par anet ers. The constructor then registers the new object
W th t he FedExec by calling t he RTI anbassador’s
regi sterCbj ectl nstance function. Regi stering the object
informs the FedExec of the object, so that the FedExec can
process the object’s updates.

31

call to hmDisplayController

hmDisplayController (inherited .
from hmHLAController) hmHLAObject
CreateLocalObject(obj_class, hmHLAODbject(obj_class,
(void*) visObj) rtiAmb, visObj)
note: at least one attribute of the +initialize the object
object must have been published]))
prior to calling this function. +register the object with the
RTI, RTlambassador::
+declare a new hmHLAObject registerObjectinstance
+return the handle for the object
Fi gure 11. Create a Local Object.

3. Create a Renpte bject

When the FedExec discovers a new instance of an object
class that the federate has subscribed to, the FedExec
calls t he federate’s Feder at eAnbassador function
di scover Obj ect | nst ance. The di scover Obj ect | nst ance
function takes three paraneters: a handle for the object,
a handle for the object’s class, and a character string
representing a FedExec desi gnated nane for the object.

First, the hnfFeder at eAnbassador inplenmentation of
di scover Obj ectl nstance checks the object class handle
against the list of subscribed object classes to ensure
that the object is of a type that the federate is
interested in. If the object <class is not in the
subscribed class list, then an error nessage is displayed
and the function termnates. |If the object class is in the

list of subscri bed obj ect cl asses, t hen t he

32

Cr eat eRenpt e(bj ect function of hmDi spl ayControl | er
(inherited fromhmHLAController) is called.

The Creat eRenot e(bj ect function declares a new
hmHLACbj ect and passes the object handle, object class
handle, and a pointer to the RTlanbassador to the
constructor. The CreateRenpteCbject then creates a new
renderi ng system object that matches the object class, so
the new object can be displayed in the sinulation. The
function then <calls the SetVisualj function of the
hmHLAGbj ect class with a void pointer to the new visual
object as a paraneter. The SetVisual Qbj function sets the
vi sual object for the hmHLAOhj ect i nstance.

RTI calls

hmFederateAmbassador hmDisplayController
(inherited from hmHLAController)

discoverObjectinstance(

theObject, theObjectClass, CreateRemoteObject(theObject,

theObjectName) theObjectClass)
+check to make sure this is an +create a new hmHLAObject
object of a subscribed class (objHan, objCHan, rtiAmb)
+call CreateRemoteObject +create a new display object
+set the visual object of the
hmHLAODbject
Fi gure 12. Create a Renote bject.

4. Send a Local Object Attribute Update

When an application decides to send an update to an
object’s attributes to the FedkExec, the application builds
a list of hnHandl evaluePairs for the attributes to be
updat ed. The hnHandl eVal uePairs contain the FOM attribute

33

name and the new value for that attribute. The application

t hen calls t he SendObj ect function of t he
hmDi spl ayController class (inherited from hnmHLAController).
The Sendbject function takes tw paraneters: t he

hmHLAGbj ect’s handle and the list of hnHandl evVal uePairs.
The SendObject function finds the hnHLAGbject in the Iist
of hmHLACbj ect instances and then calls that hmHLAOH] ect

i nstance’s Send function.

The hnmHLACbj ect function Send has just one paraneter:

the list of hnHandl evVal uePai rs. First, the function
converts t he | i st of hnmHandl evVal uePairs to an RTI
At tri but eHandl eVal uePai r Set . The function then calls the

RTI anbassador function updateAttributeValues to send the
updates to the FedExec. The updateAttributeVal ues function
takes three paraneters: the object handl e, t he
At tri but eHandl eVal uePai r Set, and a character string tag.

call to hmDisplayController

hmDisplayController (inherited .
from hmHLAController) hmHLAObject
SendObject(objHandle, .
handleValueList) Send(handleValueList)
+find this object in the instance +create an
list RTI::AttributeHandleValuePairSet
from the handleValueList
+call Send
+call RTlambassador::
updateAttributeValues
Fi gure 13. Send a Local bject Update.

34

5. Receive a Renpte (bject Attribute Update

Wen the FedExec receives an attribute wupdate for
object type that a federate has subscribed to, the FedExec
makes a <call to the federate’'s FederateAnbassador to
reflect the attribute updates. The function called is
reflectAttributevalues, which takes three paraneters in
this inplenentation. Those paraneters are the handle to
the object being updated, the AttributeHandl eVal uePair Set
for the attributes being updated, and a character string
tag.

The hntFeder at eAnbassador i npl ement ati on of
reflectAttri butevValues first finds the object being updated
in the list of hnmHLACDhj ect i nstances. The function then

calls that instance’'s Recei ve functi on.

The hmHLAObj ect Receive function has two paraneters:
the AttributeHandl eVal uePai r Set and a pointer to a
hmHLAControl ler (an hnDi splayController instance in this

case). The hmHLAObj ect Receive function then converts the

At tri but eHandl eVal uePai r Set i nto a i st of
hnmHand| eVal uePai r s. The Receive function then calls the
hmDi spl ayControl | er function Recei ve(bj Update_cb

(overl oaded function from hnHLAControl |l er).

The Recei ve(bj Update function takes two paraneters: a
pointer to the hmHLAObj ect being updated and the I|ist of

hrmHandl eVal uePai r s. The function det er m nes t he
hmHLAGhj ect Cl ass of the hnmHLACbject, so that the function
can properly wupdate the rendering system object. The

function then applies the appropriate updates.

35

RTI calls

hmDisplayController

. (overloaded function from
hmFederateAmbassador hmHLAODbject hmHLAController)

ReceiveObjUpdate_cb(objPtr,
handleValueList)

reflectAttributeValues(
theObject, attributes, tag)

Receive(attributes, hlaCntrl) ———=>

fﬁnd the object in the instance +convert the +determine the object class
list RTI::AttributeHandleValuePairSet

) to a vector of +update the visual object
+call Receive hmHandleValuePairs

+call ReceiveObjUpdate_cb

Fi gure 14. Recei ve a Renote Update.

6. Publ i sh an I nteraction

A federate nust inform its FedExec what kinds of
interactions the federate is capable of producing before it
can start sending interactions to the FedExec. The
federate infornms the FedExec by publishing the types of

interactions it can produce.

To publish a type of interaction, the application
calls t he Publ i shl nteraction function of t he
hnDi spl ayControl l er class (inherited from hnHLAController).
This function has just one paraneter: a string that is the
interaction class name taken from the FOM The
Publishinteraction function first checks to see if a
hmHLAI nt eractionC ass instance exists with the class nane
input as a paraneter to the function. If no such instance
exi sts, the function declares a new hnmHLAI nteractionC ass
i nstance. The function t hen calls t he

hmHLAI nt eracti onC ass i nstance’s Publish function

The hnmHLAI nteractionC ass Publish function calls the

RTI anbassador function publishlnteractionCass to publish
36

the interaction class with the FedExec. The function then
adds the hnmHLAI nteractionC ass instance to the list of

publ i shed interaction cl asses.

call to hmDisplayController

hmDisplayController (inherited

from hmHLAController) hmHLAInteractionClass

Publishinteraction(

interactionClassname) Publish()
+check to see if an instance of +call RTlambassador::
the interaction exists publishinteractionClass(

classHandle)
+if no, create a

hminteractionClass instance +add this interaction class to the
map of published interaction
+call Publish classes
Fi gure 15. Publ i sh an Interaction.

7. Send an Interaction

The framework exists in this inplenentation to send
interactions, but currently no interactions are inplenented

in the test application.

When an interaction is generated by an application,
the Sendlnteraction function of the hnDi splayController
class is called (inherited from hmHLAController). The
paranmeters of this function are a string representing the
FOM nane for the interaction <class and a [list of
Handl eVal uePai rs cont ai ni ng t he par anet ers for t he
i nteraction. First, the function checks to see that this

interaction class has been published. If the interaction

37

class has been published, then the function calls the

hmHLAI nt er acti onC ass functi on Send.

The hnHLAI nteractionC ass function Send takes the

hmHandl eVal uePair |ist as a paraneter and then converts the

list to an RTI ParaneterHandl eVal uePair Set . The Send
function t hen calls t he RTI anbassador function
sendl nteracti on. The sendlnteraction function has the
foll ow ng paraneters: a handle to the interaction class,

t he ParaneterHandl eVal uePairSet, and a character string

t ag.

The process for subscribing to interaction classes is
very simlar to publishing interaction classes.

call to hmDisplayController

hmDisplayController (inherited

from hmHLAController) hmHLAInteractionClass

SendInteraction(iClassName,

Send(handleValueList)

handleValueList)
+check to see that this is a +convert the handleValueList to an
published interaction class RTI::ParameterHandleValuePairSet
+call Send +call
RTlambassador::sendInteraction(
classHandle, phvps, tag)
Fi gure 16. Send an Interaction.

8. Recei ve and I nteraction

The framework exists in this inplenmentation to receive
interactions, but currently no interactions are inplenented

in the test application.

38

When the FedExec receives an interaction of a type
that the federate has subscribed to, the FedExec mnmkes a
cal to t he federate’s Feder at eAnbassador function
recei vel nteracti on. The receivelnteraction function has
the follow ng paraneters: the handle to the interaction
cl ass, an RTI Par amet er Handl eVal uePai r Set of t he

interaction’s paraneters, and a character string tag.

This application s hnfFederat eArbassador inplenentation
of receivelnteraction first finds the hnHLAI nteracti onC ass
instance from the hnmHLAInteractionC ass instance list that
corresponds to the received interaction. The function then
calls t he hrmHLAI nt er acti onCl ass i nstance’ s Recei ve

functi on.

The hnHLAInteractionC ass Receive function has two
par anet er s: t he Par anet er Handl eVal uePair Set and a pointer
to an hnHLAController (an hnDi splayController instance in
this case). The Receive function takes the input
Par amet er Handl eVal uePai r Set and converts it to a list of
hnmHandl eVal uePai rs. The function t hen calls t he
Recei velnteraction_cb function of the hnDi splayController
cl ass (overl oaded function of hmHLAController).

The Receivelnteraction_cb function takes the follow ng
par anet er s: a pointer to the hnHLAInteractiond ass
instance and the list of hmHandl eVal uePai r s. The
Recei vel nteraction_cb function processes the interaction

dependi ng on what type of interaction is received.

39

RTI calls

hmDisplayController
(overloaded function from
hmHLAController)

hmFederateAmbassador hmHLAInteractionClass

receivelnteraction(Receivelnteraction_cb(

thelnteraction, theParameters, Recewﬁlggiz?;?rr;ﬂeters, interactionClass,
tag) handleValueList)

+find the hmHLAInteractionClass +convert the

instance RTI::ParameterHandleValuePairSet

to a handleValueList

+call Receive
+call Receivelnteraction_cb

Figure 17. Recei ve an Interaction.

C. OBJECT MODEL

The Federation bject Mdel chosen was the Real -tinme
Platform Reference Federation Object Model (RPR FQOV)
Version 1. The RPR FOM was developed by the Simulation
Interoperability Standards Organi zati on, I nc. (SI SO .
Details of this object nodel can be found in the GQuidance,
Rationale, and Interoperability Modalities for the Real-
time Platform Reference Federation Object Mdel (GRIM RPR
FOM . ° This FOM was chosen for its wide usage and its
conpatibility wth Joint Sem -Autononmous Forces (JSAF).
The FedExec reads the RPR FOMfromthe rpr-1.0.fed file.

The RPR FOM was designed to provide Distributed
Interactive Sinmulation (DIS) attribute and interaction
functionality for an HLA object environnent. The RPR FOM
was designed to help transition DS applications to HLA
The RPR FOM was also designed to provide a general

framework to enhance interoperability.

9 Reilly, Sean and Briggs, Keith. (1999). Guidance, Rationale, and
Interoperability Mdalities for the Real-tinme Platform Reference
Federati on bject Mddel (RPR-FOM), Version 1.0, SISO inc.

40

bjects and interactions are muintained iin a
structured hierarchy in the RPR FOM The RPR FOM obj ect
class structure is a four-tier hierarchy. bj ects inherit
the attributes of the objects in higher tiers of which the
object is a child. For exanple, an aircraft wll have
attributes unique to an aircraft as well as the attributes

of a platform physical entity, and a base entity.

This thesis supports three object classes in the test
appl i cation. The supported <classes are Aircraft,
Amphi bi ousVehi cl e, and G oundVehicl e. All three classes
inherit from the Platform class, which in term inherits
from the PhysicalEntity class. The Physical Entity class
inherits from the BaseEntity class. For the test
application, two attributes were supported for these object
cl asses: WorldLocation and Orientation. WrldLocation and
Oientation are both attributes of BaseEntity, so the three
obj ect cl asses i nherited t hese attri butes. The
Worl dLocation attribute describes an object’s location in
the sinmulation by giving x, y, and z coordinates in neters.
Worl dLocation is represented as a C++ struct of three
doubl es. The Orientation attribute describes the object’s
orientation in space. The object’s orientation is
described by three angles: Psi or heading, Theta or pitch
and Phi or roll. The units for the three angles are in
radi ans. The Oientation attribute is represented as a

struct of three floats.

Interactions in the RPR FOM are structured in a three-
tier hierarchy. Collision of the Entitylnteraction famly

and MunitionDetonation and WaponFire of the Warfare famly

41

woul d be the npbst commonly used interactions. However, no
interactions are fully supported in the test application.
D. COVPATI BI LI TY WTH JO NT SEM - AUTONOMOUS FORCES

This thesis was designed to be conpatible with JSAF.
The main reason the RPR FOM was chosen as the FOM for this
thesis is because JSAF supports it. Additionally, the RTI
used in this thesis is the same as the one used by JSAF.
However, this thesis did not test conpatibility with JSAF
in the test application.
E. CHANG NG RENDERI NG PLATFORMS

The HLA nodule was designed so that only the
hmDi spl ayControl |l er class needs to be changed when changi ng
rendering platfornmns. In the test application, t he
hmDi spl ayController class is the only class that nakes
calls to the VEGA APl and the hnDi splayController does not
makes calls directly to the RTI.

Several hnDi splayController functions would need to be
changed to support a new rendering platform The
hmDi spl ayControll er constructor would need to be changed to
initialize the new rendering system and its variables. The
two call back functions for receiving attribute updates and
interactions would need to be changed to process the
updat es for t he new rendering platform The
Creat eDi spl ayQbj ect function would need to be changed, so
that the new object created is an object from the new
rendering system Lastly, the real tinme loop in the Run
function would need to be changed so that |ocal object
updates are generated fromthe new rendering system

42

F. | NTEGRATI NG THE H GH LEVEL ARCH TECTURE MODULE | NTO AN
EXI STI NG APPLI CATI ON

The hnDi splayController <class is the interface to
integrate an existing standalone application into an HLA
supported networked virtual environnent. The Run function
of the hnDisplayController currently contains the runtine
loop for the test application. An existing application
could adjust the Run function to execute the application’s
runtinme | oop and nmake appropriate calls to t he

application’s classes.

Another option available would be to use the
application existing runtime loop and nake appropriate

calls to the hnDisplayController class to comrunicate wth

the RTI. In the second option, the hnDisplayController
class will need to be able to nmake calls to the rendering
engine APl in order to manipulate the rendering engine
obj ect s.

For a large application with nmany supporting classes,
using the application’s existing run tinme |oop would be
preferred. In this <case, nmaking adjustnents to the
hmDi spl ayController class would be sinpler than adapting
the hnDisplayController Run function and possibly making
changes to multiple supporting cl asses.

43

TH'S PAGE | NTENTI ONALLY LEFT BLANK

44

V. TESTING AND RESULTS

A PROTOTYPE SYSTEM

The initial prototype was a sinple application to
establish a working Hi gh Level Architecture (HLA)
appl i cation. The initial prototype supported only one
object type and VEGA code was integrated throughout the
application. No interaction support was included in the
prototype. A sinple Federation bject Mdel (FOV) was used
in the prototype

For the prototype, a federate application was run on
each of two machines with the Run Tinme Infrastructure (RTI)
executive running on a third machi ne. Each federate had
one entity that was shared over the network. Each federate
used the sane terrain nodel. The RTI software was | oaded
on all three machines, so that the RTI libraries would be
available locally on each federate machine. The initial
prototype successfully linked the two federates. Bot h
entities could be seen on each federate application.

Both computers used to test the initial prototype had
dual one GHz Intel Pentium Il processors and a GeForce 3
graphics card. Each federate achieved a frame rate of
approximately 30 frames per second when running the HLA

appl i cation.

For a conparison wth an application run in a
st andal one node, the LynX active preview tool was used to
preview the initialization file for the VEGA application.
The preview tool showed an average frane rate of around 75

frames per second.

45

B. FI NAL DESI GN

From the prototype, further work was done to add
support for additional object types and to isolate the
rendering engine specific code. Al so, the framework for
supporting interactions was added. Wrk was al so conpl eted
to change FOWws to the Real-tine Platform Reference
Federation (bject Mdel (RPR FOV. This further work | ead
to the developnment of the final inplenentation design for
this thesis.

The final design of the HLA nodule was tested using a
sinple application. Again, two conputers were used to run
one federate each. However, the RTlI executive for this
test was in another building on canpus on the sanme network.
One federate had an aircraft object while the other
federate had an anphi bi ous vehicle object. A federation
was successfully created and joined by the federates. Each
federate published and registered their |ocal objects and
subscribed to the object types each was interested in.
Each federate successfully discovered the others object and
correctly displayed the correct object type wthin the
si mul ati on. Position and orientation information were
passed between the federates once per frane. Each federate
successfully wupdated their renote object’s position and
orientation. At the termnation of the sinulation, each
federate correctly resigned from the federation and the

federati on was destroyed.

To test the federation sinmulation, one federate
application was run on a conputer with dual 500 MHz Inte
Pentium 111 processors and an Intense3D WIdcat 4000
graphics card with 16 MB of video RAM The other federate

46

was run on a |aptop conputer with a one GHz Intel Pentium
1l processor and an NVIDI A GeForce2 Go graphics card with
32MB vi deo RAM Frame rates averaged around 20 franes per

second on bot h nmachi nes.

For a conparison wth an application run in a
st andal one node, the LynX active preview tool was used to
preview the initialization file for the VEGA application.
The preview tool showed an average frane rate of around 80

frames per second.

47

TH'S PAGE | NTENTI ONALLY LEFT BLANK

48

VI . CONCLUSI ON

A GENERAL DI SCUSS| ON

The intent of this thesis was to create a Hi gh Level
Architecture (HLA) Modul e t hat woul d all ow other
programmers to quickly develop an HLA conpliant sinulation.
To do this, the HLA nodule had to be as general as possible
to allow programmers t he flexibility to devel op
applications in whatever progranm ng environnent nost
suited their needs. This requirement nmeant that the core
of the nodule had to be independent of the system used to
render the sinulation. Addi tionally, support for multiple
obj ect nodels was desirable, so attribute and interaction
handling had to be generalized within the HLA nodul e.

The HhDi spl ayControl | er cl ass S interface to
rendering system and FOM The hnDi spl ayController class
makes necessary calls to the rendering system that relate
to HLA services. The hnDi splayController class coordinates

data flow in the HLA nodule; however, it makes no direct
calls to the RITI. Handling of FOM data types are
generalized wthin the HLA nodule by wusing lists of

hmHandl eVal uePai rs for processing.
B. CONTRI BUTI ONS

The contribution made by this thesis is a franework on
whi ch to build HLA conpl i ant net wor ked vi rtual
envi ronnent s. This thesis provides support for the basic
services required for any HLA application and a structure
on which to add support for nore HLA services, objects and
i nteractions. Federation HLA Services supported include
federation creation, join, resign, and destruction. QObject

49

services i ncl ude publ i shi ng, subscri bi ng, creating,
regi stering, di scoveri ng, and updating. I nteraction
services include publishing, subscribing, sending, and
receiving.

C. FUTURE WORK

Several areas are available for further study in
relation to this thesis. These areas include adding
addi tional HLA services, support for nore object types and
attributes and interactions, and increasing application
per f or mance.

1. Additional Hi gh Level Architecture Services

For this thesis a mninmm nunber of HLA services was
provi ded. More service areas exist that could be
supported. Ti ne Managenent, Ownershi p Managenent, and Data
Di stribution Managenment were not supported at all in this
i npl enent ati on. Federati on managenent services such as
federate synchroni zati on and saving and restoring federates
coul d al so be support ed.

a. Tinme Managenent

Ti me Managenent is an inportant service provided
for in HLA Time Managenent allows federates to remain
consistent with each ensuring all federates maintain the
sane world picture. Wth Tinme Managenent, tinme is advanced
in a coordinated fashion. (bj ect updates and interactions
will have a tinestanp in their packets; so that the
receiving federates know exactly when an event has
occurr ed. A time regulating federate is responsible for
the progression of tinme in a constrained federate. By
default, HLA applications are not time regulating or tine

const rai ni ng.

50

b. Ownershi p Managenent

A federate owns an object when that federate is
able to send attribute updates for that object. Only one
federate can own an object at any one tine. Owner shi p
Managenment provides nethods for transferring ownership
bet ween feder at es.

c. Data D stribution Managenent

In a large sinmulation with mny entities a
federate may not care about updates for an entity a |large
di stance away. Processing updates for an entity outside of
a federate’'s sensor range would be extraneous and
i nefficient. Data Distribution Managenent allows for the
creation of regions. Wth Data Distribution Managenent, a
federate will only receive attribute updat es and
interactions that occur within the federate’ s region.

2. Additional Objects and Interactions

Only a mninal nunber of object types and no
interactions were supported for this inplenentation. o
the object types supported only object position and
orientation were supported. The Real-tine Platform
Ref erence Federation OCbject Mdel (RPR FOM has defined
many nore object types, attributes and interactions.
Addi ti onal object types that could be supported include sea
vehi cl es, space vehicles, and nulti-environnent vehicles.
Attributes such as both Ilinear and angular velocity and
acceleration would need to be supported for a federation
using dead reckoning for exanple. Interactions such as
collisions, weapon fires, and nunition detonations should

be supported at a mininmumin nost sinulations.

51

3. I nproved Network Perfornance

Currently, the test application for this thesis sends
and receives object attribute updates at franme boundari es.
This causes an excess anmount of network traffic and is not
scal able past nore than just a few entities. A nore
intelligent nmethod for sending updates is needed. Updat es
should only be sent when there is a change in attributes of
an object. A dead reckoning algorithm should be
i npl enented so that federates can continue to nove objects
along a projected path until a new update is received. A
heart beat update packet could be sent every five seconds
for objects with no changes in that tinme span so that
federates new that the object still exists in the
sinmulation as is done in Distributed Interaction Sinulation
appl i cations.

52

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

LI ST OF REFERENCES

Al luisi, E. A (Jun. 1991). The Devel opnent of

Technol ogy for Collective Training: SIMET, a Case
Hi story. Human Factors, Training Theory, Methods, and
Technol ogy, Vol une: 33, |ssue: 3, 343-362.

Ceranowi cz, A (no date). STOW the Quest for a Joint
Synthetic Battl espace. In Proctor, Mchael D (Ed.).
Web- based Techni cal Reference on Sinulation
Interoperability (Ch. 8). (online). Avail able:

<htt p: // www. engr. ucf . edu/ peopl e/ proctor/ | nt eroperabil
t yo%20Text/ Text %20Qut | i ne. ht n> (29 Aug. 02).

Cosby, L. N (1995). SIM\ET: an Insider’s
Perspective. In Clarke, T. L. (Ed.). SPIE Proceedi ngs
Vol . CR58, Distributed Interactive Sinulation Systens
for Sinmulation and Training in the Aerospace

Envi ronnment (pp. 59-72).

Davis, P.K (Aug. 1995). Distributed Interactive
Simulation in the Evolution of DOD Warfare Mddel i ng
and Simul ation. Proceedings of the | EEE , Vol une: 83
| ssue: 8, 1138 -1155.

Depart ment of Defense, Defense Mdeling and Sinul ation
Ofice. (no date). Hi gh Level Architecture RTI 1. 3-
Next GCeneration Programrer’s Quide, Version 5.

Departnment of Defense. (1998). High Level Architecture
I nterface Specification Version 1.3, Draft 11

Depart ment of Defense. (1998). Hi gh Level Architecture
bj ect Model Tenpl ate Specification Version 1. 3.

Depart ment of Defense. (1998). Hi gh Level Architecture
Rul es Version 1. 3.

Loper, M L. (1995). Introduction to Distributed
Interactive Simulation. In Carke, T. L. (Ed.). SPIE
Proceedi ngs Vol. CR58, Distributed Interactive

Simul ation Systens for Sinulation and Training in the
Aer ospace Environnent (pp. 3-16).

53

[10]

[11]

[12]

[13]

Mller, D.C. & Thorpe J.A (Aug 1995). SIM\ET: the
Advent of Simul ator Networking. Proceedi ngs of the
| EEE, Vol une: 83 Issue: 8, (pp. 1114 -1123)

Ping, lvan C. K (2000). HLA Performance Measurenent,
Conmput er Sci ence Departnent, Naval Postgraduate
School, Mar 2000.

Reilly, Sean and Briggs, Keith. (1999). Quidance,
Rationale, and Interoperability Mdalities for the
Real -time Platform Reference Federation bject Model
(RPR-FOM), Version 1.0, SISO inc.

Sandeep Si nghal & M chael Zyda. 1999. Net wor ked
Virtual Environments - Design and |nplenentation,
Readi ng, Massachusetts: Addi son-Wesl ey.

54

APPENDI X A. C++ SOURCE CODE

The source code for this inplenentation will soon be

avai l able at http://1ibgf.sourceforge. net.

55

TH'S PAGE | NTENTI ONALLY LEFT BLANK

56

| NI TI AL DI STRI BUTI ON LI ST

Def ense Technical Informati on Center
Ft. Belvoir, Virginia

Dudl ey Knox Library
Naval Postgraduate School
Monterey, California

Marine Corps Representative
Naval Post graduate School
Monterey, California

Director, Training and Education, MCCDC, Code CA46
Quantico, Virginia

Director, WMarine Corps Research Center, MCCDC, Code
C40RC
Quantico, Virginia

Marine Corps Tactical Systens Support Activity (Attn

OQperations Oficer)
Canp Pendl eton, California

57

