

MONTEREY, CALIFORNIA

THESIS

MULTI-AGENT SIMULATIONS (MAS) FOR ASSESSING

MASSIVE SENSOR COVERAGE AND DEPLOYMENT

by

Sean Hynes

September 2003

 Thesis Advisor: Neil C. Rowe
 Second Reader: Curtis Blais
 Second Reader: Don Brutzman

This thesis done in cooperation with the MOVES Institute.
Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Sensor Coverage and Deployment
6. AUTHOR Sean Hynes

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT

The thesis presents the design, development, and implementation of a multi-agent simulation that models coverage and
deployment of mobile and non-mobile sensors performing collaborative target detection missions. The focus is on sensor
networks with enough sensors that humans cannot individually manage each sensor. Experiments investigate novel search,
coverage, and deployment algorithms, and compare them to known methods. The experiments show algorithms productive for
area coverage are not useful for detecting unauthorized traversals and vice versa. Obstacles, sensor mechanisms, mission
parameters, and deployment schemes are analyzed for their effect on coverage quality. This work facilitates further research in
sensor coverage and deployment strategies using sensor agents.

15. NUMBER OF
PAGES

77

14. SUBJECT TERMS

Sensor Network, Coverage, Deployment, Exposure, Java, Artificial Intelligence, Agent,

Simulation 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

This thesis done in cooperation with the MOVES Institute.
Approved for public release; distribution is unlimited.

MULTI-AGENT SIMULATIONS (MAS) FOR ASSESSING MASSIVE SENSOR
COVERAGE AND DEPLOYMENT

Sean E. Hynes

Captain, United States Marine Corps
B.S., University of Florida, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Author: Sean Hynes

Approved by: Neil C. Rowe

Thesis Advisor

Curtis Blais
Second Reader

Don Brutzman
Second Reader

Peter J. Denning
Chair, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The thesis presents the design, development, and implementation of a multi-agent

simulation that models coverage and deployment of mobile and non-mobile sensors

performing collaborative target-detection missions. The focus is on sensor networks with

enough sensors that humans cannot individually manage each sensor. Experiments

investigate novel search, coverage, and deployment algorithms, and compare them to

known methods. The experiments show algorithms productive for area coverage are not

useful for detecting unauthorized traversals and vice versa. Obstacles, sensor

mechanisms, mission parameters, and deployment schemes are analyzed for their effect

on coverage quality. This work facilitates further research in sensor coverage and

deployment strategies using sensor agents.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM SPACE ...1
B. OBJECTIVE ..2
C. THESIS ORGANIZATION..3

II. APPLICATION AREA ...5
A. SENSOR NETWORKS...5
B. COVERAGE ..8
C. DEPLOYMENT...10

III. RELATED WORK ..11
A. SENSOR NETWORKS...11
B. THE MATHEMATICS OF COVERAGE ..11
C. SENSOR DEPLOYMENT..12

1. Random...12
2. Non-Random ..13
3. Autonomous..15

D. MOTION PLANNING, EXPLORATION, AND MAP BUILDING16

IV. SIMULATION DESCRIPTION...19
A. PROGRAM DESCRIPTION..19
B. PROGRAM DETAILS..20

1. Views ..21
2. Sensor Controller ..23
3. Grid Controller ...24
4. The Network and Graph Controllers..26
5. Sensor Model ...26
6. Traversal Detection Model for Barrier Coverage..................................27
7. Sensor Vehicle Model ...28
8. Implemented Neural Network Model ...29
9. Autonomous Sensor Deployment...34

V. RESULTS ...43
A. RUNNING THE SIMULATION..43
B. EXPERIMENTS ..43

1. Random Deployment for Traversal Detection43
a. Probability Density Function of Coverage for a Set

Number of Sensors..43
b. Confidence Level for Variable Number of Sensors...............45
c. Cost to Achieve Coverage ...46

2. Deployment Algorithm Performance Comparison.........................50

VI. FUTURE WORK...53
A. FUTURE WORK...53

 vii

B. CONCLUSIONS ..54

APPENDIX A – APPLICATION DISTRIBUTION AND SOURCE CODE ACCESS..55

LIST OF REFERENCES..57

INITIAL DISTRIBUTION LIST ...63

 viii

LIST OF FIGURES

Figure 1. Area vs. Barrier Coverage..10
Figure 2. Two-dimensional view without overlying grid, full application.19
Figure 3. Layered software architecture following Model-View-Controller (MVC)

design pattern. ..21
Figure 4. Two-dimensional view of example sensor network, with overlying grid.22
Figure 5. Three-dimensional view of example sensor network.23
Figure 6. Two-dimensional view of deployed sensor vehicles without obstacles.24
Figure 7. Coordinate system..28
Figure 8. Visualization of sensor vehicle. ...29
Figure 9. Basic neuron design for a neural network..30
Figure 10. Neural network...31
Figure 11. Genetic encoding of neural networks. ...32
Figure 12. Fitness progression for evolving neural network...34
Figure 13. Visualization of sensor vehicle for vector force deployment.36
Figure 14. Force panel...37
Figure 15. Autonomous deployment for area coverage without obstacles.39
Figure 16. Autonomous deployment for area coverage with obstacles.40
Figure 17. Autonomous deployment for barrier coverage with obstacles.41
Figure 18. Probability density function for the distribution of traversal detection

coverage measured for deployments of 2, 10, 15, and 20 sensors...................44
Figure 19. Probability density function for 19 sensors. ..45
Figure 20. Probability that coverage is above 80% for varying number of sensors..........46
Figure 21. Cost of achieving 80% coverage as a function of the number of sensors

with Cd = 0 and Cs = 1. ...47
Figure 22. Cost of achieving 80% coverage as a function of the number of sensors

with Cd = 5 and Cs = 1. ...48
Figure 23. Cost of achieving 80% coverage as a function of the number of sensors

with Cd = 10 and Cs = 1. ...48
Figure 24. Cost of achieving 80% coverage as a function of the number of sensors

with Cd = 100 and Cs = 1. ...49
Figure 25. Deployment algorithm comparison, not occluded. ..51
Figure 26. Deployment algorithm comparison, occluded. ..52
Figure 27. Deployment algorithm time comparison. ..52

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Professor Neil Rowe. Your expert

tutelage, mentoring, and guidance during my education and research have been

monumental. Thanks to Don Brutzman, Curt Blais, and Jeff Weekley for their

contributions and support, and for what they accomplish for our government every day.

I have been fortunate to have a great group of friends from the SAVAGE Project,

the Army Game Program, and the XMSF Working Group. Claude Hutton and James

Neushul have shared this journey and provided crucial support. Thanks go to Doug

Horner for introducing me to Sensor Networks.

The entire faculty and staff at Naval Postgraduate School (NPS) perform an

incredible service for our nation. Their knowledge and expertise combined with their

dedication are invaluable. The faculty at NPS, including Professor Otani, Professor

Riehle, Professor Bradley, Professor Buss, JD Fulp, John Gibson, John Hiles, and

Commander Joe Sullivan, just to name a few, are among the best in the nation. Jean

Brennan and Commander Lapacik from the CS Department, thank you.

I cannot express in words my gratitude to LtCol Dan Barber USMC (Ret.), one of

the finest Marines I have ever met. LtCol Barber, Rear Admiral Ellison, and Captain

Petho – Thank you for your leadership and for putting your trusting in me.

Finally, I would like to dedicate this work to my family: my father who has

shown courage and strength during his ongoing battle with cancer; my mother, nine

siblings, and their families; and my wife Vanessa and son Sean for their strength, loving

support, and patience, without which this research could not have been completed.

Thank you.

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

I. INTRODUCTION

A. PROBLEM SPACE
We are on the brink of a revolution in robotics and other micro-electro-

mechanical systems (MEMS) that has the potential to change much including warfare.

Recent advances in wireless communications and digital electronics have enabled

development of low-cost low-power multifunctional sensor nodes that are small in size

and communicate over untethered short distances [AKY02]. Likewise, recent advances

in robotics and distributed computing enable teams of robots numbering in the hundreds

to collaboratively perform complex problem solving behavior [HOW02a] [SIN01]. Soon

the numbers will be in the thousands, far beyond what is individually manageable by

human users. As sensor and robotic technologies continue to advance, modeling and

simulation of deployment is becoming increasingly important to conduct low-cost

experiments with different configurations, settings, and applications of the technology.

Today, transmitting a bit of data over 10-100 meters by radio frequencies (RF)

takes approximately 100 nano-Joules (nJ) of power. Transmitting a kilometer takes 10 to

100 micro-Joules (mJ). Soon, optical communication systems will transmit 10 meters

with an energy cost of 10 pico-Joules (pJ) per bit, more than 10,000 times lower than

existing radio technology. Computationally, it currently takes around 1nJ per instruction

on power-optimized microprocessors, whereas it will soon take around 1pJ per

instruction. Batteries provide around 1 joule per cubic millimeter. Solar cells provide

approximately 100 microwatt per cubic millimeter (mm3) in full sunlight. The energy

cost will be a few nano-Joules for sampling a sensor, performing some relatively simple

processing, listening for incoming messages, and transmitting a simple outgoing

message. Putting all this together, a one cubic millimeter battery will provide enough

power to sense and communicate once a second for 10 years, and enough energy to

transmit 50 billion bits of information [PIS03].

The military is investing heavily in this technology, and it is easy to envision how

small sensing devices will aid future warriors. In the future age of network centric

warfare, thousands to millions of sensors will pervade the battle space. From chemical

agent detection to target acquisition and biological monitoring, disparate sensors will

1

work collaboratively to provide situational awareness and early warnings of imminent

danger. Projects such as the Smart Sensor Web (SSW) project funded by the Defense

Modeling and Simulation Office are aggressively exploring current bounds of this

technology, as well as future uses [DMS03].

Current battlefields are far behind this vision of pervasive sensor networks.

Ground sensors are usually emplaced by humans who are exposed to danger in the

process. These ground sensors weigh tens to hundreds of pounds, and have limited

sensing lives, limited communications distance, and limited maneuverability.

Nevertheless new technology is arriving. For example, one of the premier sensor

vehicles produced today is quite impressive. Called “Packbot” because it is designed to

fit in a pack, Tactical Mobile Robot (TMR) prototype weighs 40 pounds and costs over

$45,000. It can right itself and is waterproof to 3 meters depth. It can climb stairs and

survive a 3-meter drop onto concrete. It can reasonably be assumed that in 5-10 years

vehicles like Packbot will weigh less than ten pounds, run ten times longer, and cost less

than $1,000. Still this is a big step from such prototypes to extensive employment,

including integration with soldiers wearing tiny computers interfaced to battlefield

sensors and rear echelon commands.

As sensors and robots continue to get smaller, faster, and more power efficient, it

is important to advance the software and algorithms that will take advantage of them.

Modeling and Simulation (M&S) is the most cost-effective way to do so, provided we

ensure an accurate mapping to and from the real world. One aspect of sensor networks

that is difficult to scientifically advance without modeling and simulation is how to

deploy sensors efficiently for optimal coverage. It is not feasible to test every

conceivable sensor configuration in billions of physical experiments to empirically learn

which sensors should be purchased and how they should be employed: There are too

many factors to consider. This thesis addresses this problem at the application level for

sensor networks.

B. OBJECTIVE
This thesis explores coverage and deployment issues for mobile and non-mobile

sensors. A multi-agent simulation (MAS) for an expeditionary sensor networks is

2

designed and implemented. Novel search, coverage, and deployment algorithms are

implemented, tested, and compared to known methods in order to provide insight to

future acquisition decision makers. The goal is to formulate principles for good sensor

placement under a wide range of constraints.

C. THESIS ORGANIZATION
This thesis consists of six chapters and two appendices. Chapter II discusses

important concepts related to sensor networks and autonomous vehicles. Chapter III

describes previous work related to this thesis. Chapter IV explains the sensor simulation

built. Chapter V reports the results of the simulation. Chapter VI discusses future work

and formulates conclusions. Appendix A provides instructions for obtaining the

application and source code.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

II. APPLICATION AREA

Consider an infantry company consolidating after a protracted battle against a

determined enemy. Suppose they are a part of the main force ordered to establish a

defensive position on a recently assaulted objective and prepare to defend it against a

counterattack. The company commander surveys the terrain, possibly urban, and orders

his platoons to their defensive positions. If this were being conducted today, he would

also set up observation posts and launch external patrols to help provide early warning

against enemy infiltrations and attacks. A future commander might use a wearable

computer to request thousands of dust-size non-mobile sensors be deployed to cover the

area forward of his position. The platoon commanders could also release small man-

portable autonomous vehicles to deploy more sensors to cover any gaps in coverage.

Once the sensors have been deployed, this company might then use wearable computers

to monitor the sensor net and visualize targets that may be detected. The wearable

computers themselves become part of the sensor network; transparent to this company,

the sensor network will also be sending information higher up the command hierarchy.

The sensors could physically deploy, set up ad hoc network communications, manage

data, respond to failures, manage power consumption, and much more.

Many such examples exist. Today, the US could use sensor fields to help identify

insurgents crossing the Syrian border into Iraq. Battlefield surveillance is just one of

many scenarios imaginable for sensor networks. Sensors will also be used for monitoring

friendly forces, equipment, and ammunition; reconnaissance of opposing forces and

terrain; targeting; battle-damage assessment; and nuclear, biological, and chemical

(NBC) attack detection and reconnaissance [AKY02]. With thousands of sensors

deployed across the battlefield, human manual positioning and controlling of the sensors

can be surpassed. The sensors, and the sensor networks they comprise, will need to be

autonomous in every way.

A. SENSOR NETWORKS

A sensor is a device that implements the physical sensing of environmental

phenomena. Sensors typically consist of five components: sensing hardware, memory,

5

battery, embedded processor, and receiver/transmitter [TIL02]. If current trends

continue, sensor networks will pervade the battlefield. They include large unmanned

flying vehicles high in the sky equipped with hundreds of sensors and providing a high

bandwidth communication backbone; medium sized-tanks autonomously searching for

lost combatants; small embedded sensors attached to warriors for health monitoring;

sensors attached to neurologically guided mice; and tiny artificial "dust motes" light

enough to float in the air sensing for chemicals. Millions of sensors will cooperate to

form robust fault-tolerant configurable communication networks, collect data, position

themselves for good coverage, and answer queries about their locations. Sensor networks

-- also referred to as sensor grids, expeditionary sensor grids, sensor fields, expeditionary

pervasive sensing, and sensor meshes -- will be expeditionary in that they will be readily

deployable, and ubiquitous.

Akyildiz [AKY02] describes important concepts of sensor networks, including a

review of the architecture, algorithms, and protocols for communicating in them. That

survey makes distinctions between sensor networks and traditional sensors, and between

sensor networks and ad hoc networks. Traditional sensors are described as being larger

than sensors in a sensor network, and requiring careful, manual positioning and

communications topology engineering. The distinction between sensor networks and

traditional sensors has more to do with the technical limitations than choice of design, so

this thesis does not make that distinction. This thesis assumes that any cohesive group of

sensors will be networked together through wireless communications. The differences

between sensor networks and other wireless ad hoc networks [PER00] are:

� The number of nodes in a sensor network is high.

� Sensor nodes are densely deployed.

� Sensor nodes are prone to failures.

� The topology of a sensor network changes frequently.

� Sensor nodes mainly use broadcast communications, whereas most ad hoc

networks use point-to-point communications.

� Sensor nodes are limited in power, computational capacities, and memory.

� Sensor nodes may not have a global identification (ID) because of the large

amount of overhead and large number of sensors.

6

So sensor network deployment and coverage algorithms must account for sensor

failure and rapidly changing communication topologies, and they must be based on

minimizing power consumption. Minimizing power consumption means minimizing

communications; for mobile sensors, it also includes minimizing movement.

Sensors can monitor a wide variety of conditions: temperature, pressure,

humidity, soil makeup, vehicular movement, noise levels, lighting conditions, the

presence or absence of certain kinds of objects or substances, mechanical stress levels on

attached objects, and others [EST99]. Their mechanism may be seismic, magnetic,

thermal, visual, infrared, acoustic, or radar [AKY02]. These mechanisms can be grouped

into three categories based on how they sense: by a direct line to target (such as visual

sensors), proximity to target (such as seismic sensors), and propagated like a wave to the

target, possibly bending (such as acoustic sensors).

Virtually every challenge encountered with software occurs in sensor-network

design. Akilidiz details several sensor-network design factors, including fault tolerance,

scalability, production costs, operating environment, sensor network topology, hardware

constraints, transmission media, and power consumption. While these factors are

important considerations in this thesis, only fault tolerance and scalability are addressed

directly. Akyildiz gives details on communication protocols and the network stack of

wireless sensor networks, but does not go beyond the scope of tiny immobile sensors.

That reference mentions various deployment methods (dropping from a plane, delivering

in an artillery shell, rocket, or missile, etc.), but does not discuss sensor deployment

issues in detail. Sensor deployment strategies, coverage, and mobile robotics are not

discussed at all.

Although he did not use the term "sensor networks" to refer to the robotic sensors,

Gage [GAG92] [GAG93] [GAG92a] [DIC02] was one of the earliest researchers building

mobile sensor systems and has provided many useful ideas. His approach was “to design

and implement vehicle behaviors that both (a) can support real-world missions and (b)

are realizable with current levels of sensor and processing technology, even in the object-

and obstacle- rich environment of ground-based applications, where useful missions

generally require high-bandwidth visual perception-based vehicle navigation, guidance,

and control beyond the capabilities of current sensor and processing tools” [GAG92]. He

7

envisioned mobile sensor networks of many small and inexpensive vehicles conducting

military missions such as minesweeping, mine deployment, surveillance, sentry duty,

communications relaying, and combat search-and-rescue (CSAR).

Gage’s concept of a mobile sensor network is a large number of identical

elements, each possessing [GAG92]:

� some mobility;

� some sensor capability that allows each element to measure, at least crudely,

its position with respect to at least its neighbors;

� some mission-capable sensor;

� optionally, some communications capability; and

� some processing capability that directs the mobility effectors to maintain a

specified positional relationship to its neighbors, as measured by its sensors,

to accomplish the desired mission objectives.

This thesis will address both non-mobile and mobile sensors and will build on the

abovementioned work.

B. COVERAGE

Gage [GAG92a] described three useful coverage behaviors: sweep coverage, area

coverage, and barrier coverage. The application created for this thesis is capable of

implementing all three.

The objective of sweep coverage is to move a number of elements across a

coverage area while maximizing the number of detections per time and minimizing the

number of missed detections per area. Examples include minesweeping and Combat

Search and Rescue (CSAR). [CHO01] discusses coverage path planning for sweep

coverage, focusing on coverage path-planning algorithms for mobile robots in a plane,

though the algorithms could be extended to three dimensions. It surveys both heuristic

and optimal algorithms. Gage showed randomized search strategies accomplish sweep

coverage scenarios well. Randomized searches can be performed by cheaper robots since

they do not require localization equipment, robust communications, or advanced

computational requirements. Although random search does not guarantee complete

coverage [CHO01], it is suitable for tactical scenarios where the target is moving.
8

Additionally, optimal sweep coverage algorithms are not guaranteed to detect even non-

mobile targets when the sensors are imperfect. Thus this thesis uses randomized search

where sweep coverage is needed. Lastly, sweep coverage can be accomplished with a

moving barrier (see barrier coverage below).

The objective of area coverage [HOW02] is to achieve a static arrangement of

sensors that maximizes the detection of targets appearing within the coverage area.

Examples include detecting chemical agent attacks and providing early warning of forest

fires. Area coverage is also referred to as blanket coverage, field coverage [GAG92], and

grid coverage (although this has special meaning) [DHI02].

The objective of barrier coverage is to achieve a static arrangement of elements

that minimizes the probability of undetected penetration from one region to another.

Barrier-coverage experiments in this thesis are modeled to detect Unauthorized Traversal

(UT) problem described in [CLO02]. This problem considers a target traversing a sensor

field using some path, and the target is detected if it is recognized at some point on its

path. This problem assumes an intelligent target that will then plan to find the path with

the worst sensor coverage (with lowest probability of detecting a target that traverses it).

In practice a target will not know where the least covered path will be so its probability of

detection will be higher than anticipated.

To understand the difference between area and barrier coverage, consider Figure

1. The arrowed line passing through the sensor field indicates a possible target traversal

path. When the sensors are deployed for area coverage (left) they cover more area but

are likely to miss a traversing target. When the sensors are deployed for barrier coverage

(right) they are certain to detect a traversing target but would have less chance of

detecting an area target that may appear anywhere within the sensor field. This is a

simplified example in which it is easy to visualize where to place sensors for good

coverage, but realistic examples are much more difficult.

9

Area Coverage Deployment

(More Area Covered)

Barrier Coverage Deployment

(More Likely Traversal Detection)

Figure 1. Area vs. Barrier Coverage.

C. DEPLOYMENT

Sensors may be deployed either manually or autonomously. When deployed

manually they either are dispersed to random locations, such as when air-dropped or shot

from artillery, or they are placed at specific locations by robots or humans (often in

danger). When deployed autonomously, mobile sensors move themselves to sensing

locations from an initial arrangement that is easy to realize in a convenient deployment

scheme. Possible initial arrangements include (a) from a single source point (e.g., air

drop in a canister or off the back of a moving delivery vehicle), (b) in a linear pattern of

appropriate density (e.g., sequential deployment from a moving platform), or (c) in a

random initial pattern either dense or sparse (e.g., air burst dispersal).

10

III. RELATED WORK

A. SENSOR NETWORKS
Sensor networks are being researched and modeled by academic groups,

government groups, and commercial organizations. Most work in wireless sensor

networks is not directly related to coverage and deployment of sensors, as it focuses on

sensor design, efficient sensor communication, sensor data fusion, and localization

[AKY02] [DHI02a]. A significant amount of research has also been conducted for

mobile sensors in the field of robotics; however, most of this work has focused on issues

such as obstacle avoidance, motion planning, steering, terrain maneuvering, and other

individual vehicle designs. There has been a surge of interest lately in multiple robot

teams working together to accomplish some task or perform some behavior, but usually

for less open-ended environments than in the missions encountered by the military.

B. THE MATHEMATICS OF COVERAGE
At the individual sensor level, coverage can be modeled in two ways. One is to

consider a circular area around the sensor such that everything within the radius is

covered, and everything outside the radius is not covered . The radius is chosen so that

things to be detected are detected above a threshold. Unfortunately, the threshold is

usually arbitrary [STO96].

This thesis models sensor detection probabilistically. Although any of the

probabilistic sensor detection models found in the literature could be inserted into the

application created for this thesis, the sensor detection model used is from [CLO02].

Considering a target at location u, emitting signal energy K, the portion of that energy

that is sensed by a sensor Si at location si is given by
k

i
i

su
KuS
−

=)(
, where k is a

constant. Thus, the energy signal emitted by a target decays with distance [DHI02a].

Often k=2 to model dispersion in space as with chemicals or sounds deriving from a point

source (since the area of a sphere is proportional to the square of its radius). With noise

11

Ni present at the sensor the equation becomes
ik

i
iii N

su
KNuSuE +
−

=+=)()(

where Ei is the energy measured by Si caused by a target at location u plus the noise at the

sensor.

[CLO02] also gives a model for fusing the data collected by multiple sensors.

Sensors can arrive at a consensus either by totaling all measurements and comparing the

sum to a threshold (value fusion) or by totaling local decisions and comparing the sum to

a threshold (decision fusion); which is best varies with the situation [CLO01]. This thesis

uses value fusion, for which the probability of consensus target detection can be written

as:













−
−≥=












≥+

−
= ∑∑∑

===

n

i
k

i

n

i
ii

n

i
k

i
v su

KNprobN
su

KprobuD
111

)(ηη
,

where η is the value fusion threshold. This thesis assumes noise has a Gaussian

distribution with a mean of zero and a standard deviation of one.

C. SENSOR DEPLOYMENT

1. Random

When deploying sensors randomly, a question is how many sensors should be

deployed in an area to ensure a desired detection level is reached. If deploying sensors

incrementally, how many should be deployed each step to minimize cost? When the

mission is sweep coverage, randomized search techniques have long been recognized as a

cheaper than more thorough searches [CHO01].

With the above formulas one can determine the likelihood of detecting a target at

any point in the sensor field. In [CLO02], a two-dimensional grid is laid over the sensor

field. Value fusion is used to find the detection likelihood at each point on the grid, and

this information is used to measure random deployments for barrier coverage. Their

measure is termed "exposure" and refers to the detection probability of the path through

the grid with the lowest likelihood of detection. The authors develop equations to model

overall costs associated with cost for deployment, the number of sensors for each

12

deployment, the cost for sensors, and the exposure distribution found through simulation.

This thesis uses their exposure measure for barrier coverage deployments.

2. Non-Random
Directed sensor deployment algorithms are useful for smaller sensor fields when

it is safe for humans to manually place non-mobile sensors or it is possible for mobile

sensors to communicate between each other, situate themselves, and maintain internal

maps of the area to be covered. A wide range of research has addressed it.

[DHI02] presents simple placement algorithms intended to be fault-tolerant such

as putting each subsequent sensor at the least covered point on the grid. Their research

shows that directed placement algorithms can significantly reduce the number of sensors

needed compared to random placement. Their measure of goodness for deployment of

sensors is the minimum detection level of every grid point, so their deployment

algorithms address area-coverage missions. They do not address barrier coverage

deployments.

[DHI02a] presents a resource-bounded optimization framework for sensor

resource management under sufficient coverage of the sensor field. Much of their work

is similar to ours from a sensor-modeling standpoint. They represent the sensor field as a

grid of points, and model the sensors probabilistically with imprecise detections. They

even include obstacles. Their approach is to evaluate the minimum number of sensor

nodes required to cover the field. They also experiment with simple ways to transmit or

report a minimum amount of sensed data and allow preferential coverage of grid points.

[CHA01] [CHA02] present a coding theory framework for target location in

distributed sensor networks. They provide coding-theoretic bounds on the number of

sensors needed, and methods for determining their placement in the sensor field using

integer linear programming. Although their deployments are strictly for area coverage,

they have formulated methods for locating a target based on the location of the sensors

that detected the target. This does require a densely packed sensor field, and therefore

many more sensors than necessary for detection only. Their approach does not appear

scalable due to its computational complexity.

13

Potential fields have been used to guide robots in a myriad of tasks. [VAU94],

for example, uses a potential-field model of flocking behavior to aid the design of flock-

control methods. Their work showed a mobile robot that gathers a flock of ducks and

maneuvers them to a specified goal. This approach could be used to guide sensors to

even-coverage locations.

A problem related to coverage and sensor deployment is that of tracking targets

using a network of communicating robots and/or non-mobile sensors. A region based

approach to multi-target tracking [JUN02] controls robot deployment at two levels. “A

coarse deployment controller distributes robots across regions using a topological map

and density estimates, and a target-following controller attempts to maximize the number

of tracked targets within a region.” What is similar between this work and ours is a

comparison of performance and the degree of occlusion in the environment. Also, they

reveal that an optimal ratio of robots to stationary sensors may exist for a given

environment with certain occlusion characteristics.

In [GUP03], self-organizing algorithms for area coverage are analyzed for their

effect on reduced energy consumption. The authors present techniques to reduce

communications which are different from our quality of coverage metric. Their work

deals with selecting sensors that are already placed, whereas our problem deals with the

optimal placement of sensors.

The Art Gallery Problem (AGP) studied by numerous researchers considers the

placement of cameras in an art gallery such that every key point in the room is visible via

at least one camera [BER00] [MAR96]. Some versions find the minimum number of

cameras necessary. This problem is similar to complete area coverage with line-of-sight

sensors, except that not all sensors are in the visual spectrum. The rooms are usually

considered short enough that the cameras’ visual quality does not degrade with distance,

unlike our probabilistic sensors that have ranges. The art gallery problem has been

shown solvable in 2D, but not necessarily in 3D.

Immunology-derived methods for distributed robotics are shown to be a robust

control and coordination method in [SIN01]. [MEG00] addresses the problem of finding

paths of lowest and highest coverage, which is similar to our metric for barrier coverage

deployments. This work uses Voronoi (nearest-point) diagrams to demonstrate a

provably optimal polynomial-time algorithm for coverage. Other than the use of Voronoi

to break the environment into discrete segments, their approach for measuring coverage

14

is similar to that used for barrier coverage in this thesis. They only do random

deployments, and do not take into account the effects of obstacles, environmental

conditions, and noise.

 [HSI03] focuses on area coverage. The objective is to fill a region with robots

modeled as primitive finite automata, having only local communication and sensors.

This work is similar to the other dispersal papers, but reduces jitter and infinite loops.

Their robots follow the leader out of a door and fill an area.

The related paper [HES99] proposes a greedy policy to control a swarm of

autonomous agents in the pursuit of one or several evaders. Their algorithm is greedy in

that the pursuers are directed to locations that maximize the probability of finding an

evader at that particular time instant. Under their assumptions, their algorithm guarantees

that an evader is found in finite time. The sensor robots combine exploration (or map-

learning) and pursuit in a single problem. While this work does improve upon previous

research where deterministic pursuit-evasion games on finite graphs have been studied, it

is limited to problems where the evader’s motion is random and the evader is assumed to

exist. If an evader enters the sensor field after the pursuit algorithm has begun, it may

still evade the pursuers. Continuously running the pursuit algorithm would result in

continuous movement of the sensor vehicles which are power-limited. This type of

approach is somewhat useful for barrier coverage and sweep coverage, but not very

useful for area coverage. There have been similar approaches to this type of pursuit and

evasion problem, such as [LAV97] and [PAR98], but none of them are particularly

applicable to our work.

3. Autonomous

Autonomous deployment algorithms are useful when communications are limited,

the number of sensor vehicles is large, and/or the sensor vehicles do not maintain an

internal representation of the area to be covered.

[HOW01] [HOW02] [HOW02a] [HOW02b] describe a number of useful

deployment algorithms for robot teams and sensor networks. This work is significant

because it has been applied to real robots and appears to be the only published work that

demonstrates autonomous sensor deployment. Most of their work centers on

incrementally deploying mobile robots into unknown environments, with each robot
15

making use of information gathered by the previous robots. These deployment schemes

are global, limited to the area coverage problem, not very scaleable, detection is assumed

to be perfect, and the robots are limited to line-of-sight contact with each other. In

[HOW02], however, Howard and colleagues presented a distributed and scalable solution

to area coverage using potential fields. This approach was the first of its kind and was

repeated as part of this thesis.

A "virtual force" algorithm is proposed for sensor deployment in [ZOU03].

Sensors are deployed randomly, and then virtual forces direct the sensors to more

optimum locations. For a given number of sensors, this attempts to maximize area

coverage by using repulsive and attractive forces between sensors. The effects of

obstacles are not considered, nor are deployment strategies for barrier coverage. A

similar local approach to multi-robot coverage is presented in [BAT02], where the

assumption is the absence of any a priori global information like an internal map or a

Global Positioning System (GPS). This work demonstrated local mutually dispersive

behaviors between sensor vehicles and resulted in area coverage within 5-7% of the

theoretical optimal solution. Obstacles were included in the environment, but barrier

coverage was not.

D. MOTION PLANNING, EXPLORATION, AND MAP BUILDING

 Roadmaps are a global approach to motion planning. They model the

connectivity of free space as a network called the roadmap. If the initial and goal points

do not lie on the roadmaps, short connecting paths are added to join them to the network.

Roadmaps can be visibility graphs or Voronoi diagrams. Visibility graphs connect a set

of predefined nodes that do not intersect objects. Voronoi diagrams connect nodes with

edges farthest from obstacles.

 Cell decomposition is a global approach to motion planning where the

environment is broken down into discrete subsections called cells. An undirected graph

representing adjacency relations between cells is then constructed and searched to find a

path.

16

 Potential field and landmark-based navigation methods are local approaches to

motion planning. With potential fields, the goal generates an attractive force, and

obstacles generate repulsive forces. Paths are found by computing the sum of forces on a

mobile object. These methods are generally efficient but can have problems such as

getting stuck oscillating between equipotentials. Landmark-based navigation is limited to

environments that contain easily recognizable landmarks. In [GOR00] the “artificial

physics” framework from [SPE99] is combined with a global monitoring framework to

help guide sensor agents to form patterns. The purpose of the artificial physics is the

distributed spatial control of large collections of mobile physical agents similar to

potential fields.

Exploration and map building in an unknown environment has been studied for a

long time. [BAT03] considers a single robot exploring in a changing environment

without localization. To ensure complete coverage without using GPS, their robots drop

off markers (and a lot of them) as signposts to aid exploration. But it is not currently

reasonable for battlefield sensor vehicles to drop off thousands of markers as they

explore. This may become feasible in the future using smart micro-markers.

Even if the environment is known, and a path can be planned, robot vehicles may

still encounter difficulties from unforeseen obstacles. Not all static solutions extend to

dynamic environments [KOH00]. Early solutions to dynamic motion planning involved

using potential fields to help guide the robots [KOR91] [BOR96]. The Vector Field

Histogram (VFH) approach [BOR90] [ULR00] improves upon these methods, and where

applicable, its polar histograms and vector fields were used in this thesis. Another

interesting solution [STE95] is called the Focused D* algorithm and is a dynamic

replanning solution to the well-known A* minimum-cost planning algorithm.

Although better known for his multi-agent abstractions such as Boids, Craig

Reynolds’s paper on steering behaviors for autonomous characters provides a good

overview of motion behaviors for simulated vehicles [REY99].

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

IV. SIMULATION DESCRIPTION

A. PROGRAM DESCRIPTION

This work developed a Java application to simulate sensor networks. Its

environment is a three-dimensional world with rectangles, spheres (sensors), and tank-

like vehicles (sensor vehicles). The rectangles represent obstructions encountered by

sensors such as buildings and steep hills. Sensors can be either stationary or mobile.

After initializing all components, the program loops. Each component updates

itself each time through the loop. In addition, the user can deploy the sensors by one of

several algorithms, change the objects that are visible, pause program execution, or put

the mobile sensors into a different mode. Figure 2 shows a representative view of the

program executing. The simulations can be viewed in a number of different ways

including dimensions. Being a Java application, the simulation can run on just about any

computer platform and across the Internet.

Figure 2. Two-dimensional view without overlying grid, full application.

19

B. PROGRAM DETAILS

The system consists of a view layer, a control layer, and a model layer (see Figure

3). The view layer is responsible for input and output to the user. It creates and uses

controllers. The control layer manages entities and environments; its controllers run the

simulations and experiments. Controllers receive commands from the views and from

other controllers. The model layer consists of the individual objects that interact during

the simulation. The configuration enables objects to be redefined, inserted, and replaced

as needed for debugging and development.

20

View

Model

Control

3D View

processEvent

makeNode

moveNode

rotateNode sendControl

sendPacket

scaleNode

colorNode
2D View

processEvent

makeNode

moveNode

rotateNode sendControl

sendPacket

scaleNode

colorNode

Sensors

controller

Sensor
Grid

controller

Network

controller

Graph

controller

Sensor

interface

NonMobileSensor

Tank

SensorTank

Neural Network

Neural Layer

Neuron

Genome

Memory Mapper

Memory Cell

Path Finder

Genetic Algorithm

Directed Grid

Grid Point

Grid Segment

Data Point

Figure 3. Layered software architecture following Model-View-Controller (MVC)

design pattern.

1. Views

Objects in the view layer implement the processes processEvent, makeNode,

moveNode, rotateNode, colorNode, scaleNode, sendPacket, and receivePacket which

manage visible entities in the scene. View objects are the main entry points for the

application. The user starts an application/view object that then creates the controllers

that manage the model. The view objects may accept user input to change parameters
21

and experiment with the simulations. When a view creates a controller, it passes it a

reference to itself so the controller can notify it of changes to the simulation. Views may

also pass controllers references to other controllers.

Figure 4 shows an example two-dimensional view with the overlaid grid. The

simulation environment is shown with sensors (green circles), minimal exposure path

(red circles), grid segments (blue line segments), and grid points (not visible, but existing

at each grid segment intersection). Updated coverage measurements are below. The

significance of the values on the line segments and the minimal exposure path is

explained later. Figure 5 is a perspective view of the three-dimensional representation of

the environment during a minesweeping scenario showing the obstacles (blue rectangles),

mines (yellow spheres), one of the tank’s motion sensors (green spheres), and the sensor

vehicles (blue/red tanks). All underlying program logic works in three dimensions.

 Probability of detection = 87%

Figure 4. Two-dimensional view of example sensor network, with overlying grid.

22

Figure 5. Three-dimensional view of example sensor network.

2. Sensor Controller

The sensor controller snetSensorCntrl controls the movement, placement, and

missions for sensors and other entities. When running in time-step mode, the view runs

an update loop that cycles through the entities in the scene. The sensors read their inputs,

compute their new state, and act based on their current mission. Whenever something

changes, the sensor controller informs the view so it can update the visual scene. In other

modes, the view tells the sensor controller which simulation to run, what to do with the

sensors, and how to receive data from it. The sensor controller also manages the

assignment of new missions to sensors. When the user requests a directed deployment

algorithm, the sensor controller requests a set of points from the grid controller based on

the prescribed algorithm. The sensors are then deployed such as in Figure 6. The red and

orange circles show the least covered path for occluded and non-occluded coverage,

respectively. The blue objects are sensor vehicles, with one of them displaying the extent

of its motion sensors as gray circles.

23

Area Coverage Deployment

(More Area Covered)

Barrier Coverage Deployment

(More Likely Traversal Detection)

Figure 6. Two-dimensional view of deployed sensor vehicles without obstacles.

3. Grid Controller

The grid controller manages the grid that overlays the sensor network, including

the algorithms for sensor placement and coverage measurement. The view and the sensor

controller both use the grid controller. When the grid controller creates the grid, it

determines the size of each grid square by dividing the width of the sensor field by the

granularity, as provided by the user. If a set of sensors does not exist, the grid controller

creates them. Then a directed grid object is created and told to compute coverage based

on the sensors; the controller finds the least exposed path through the sensor field and

tells the view to draw it.

Sensor placement is performed by the snetGridCntrl software object which returns

a set of points for the sensors. For random deployment, it finds random points away from

obstacles and other sensors. For best-first sensor placement, sensors are deployed one at

a time; each sensor is put at the point such that the area around it is the least covered

compared to all the other points. Best-path is similar to best-first except the only points

considered are on the minimum-exposure path from the previous sensor placement.

24

For greedy sensor placement, each successive sensor is placed at the point

evaluated to improve coverage the most at that time. To compute this, for each point on

the grid, a temporary sensor is placed there, the coverage for the entire field is measured,

and the temporary sensor is removed. The grid point that resulted in the best coverage

becomes the next point to place a sensor. Greedy path is similar to greedy except the

only points considered are on the minimum exposure path from the previous sensor

placement.

For genetic-algorithm sensor placement, a population of random sensor

deployments is generated. For example, if 10 sensors are being placed, 100 sets of 10

random deployments are generated. Until sensor-network performance appears to reach

an optimum, the following genetic algorithm is followed.

sort the population by coverage measured

create a new population {

 keep 10 best from the previous generation

 create 90 new sensor deployments as follows {

 choose 2 sensor deployments, favoring high coverage

 create 2 new sensor deployments {

 find a crossover point

 combine 2 chosen by crossing over

 randomly modify sensor positions

 optionally create new random deployment

 } // repeat until 90 new deployments created

}

score each deployment in new generation

sort new population by coverage

} // repeat until near optimal coverage is achieved

Simulated annealing simulates the cooling of molten metal until the crystal

structure is created [MIC00]. Although simulated annealing cannot always find a

globally optimal solution, it has shown success finding solutions to combinatorial-

optimization problems with large search spaces [KIN91] since it is capable of escaping

locally optimal solutions. When the algorithm starts, and the “temperature” is high, the

25

search is close to random. As the temperature cools, it becomes less random, focusing in

on a global optimum. Our implementation of simulated annealing is below.

Tmax = 10;
Tmin = .001;
T = Tmax;

currSensors = a random deployment of sensors
bestCoverage = coverage(currSensors)

while(!haltCondition) {

currCoverage = coverage(currSensors)

termCount = 100;
 while(!terminateCondition) {

 newSensors = a deployment similar to currSensors
 newCoverage = coverage(newSensors)

 if(currCoverage < newCoverage)
 then currSensors = newSensors
 else if random[0,1) < 1/(1+e(newCoverage-currCoverage)/T)
 then currSensors = newSensors

 if(termCount-- <= 0)

then terminateCondition = true

 if(bestCoverage < currCoverage)

then bestCoverage = currCoverage
 }

 T *= 0.93 // other values could be used

 if((T<=Tmin) or (bestCoverage>=1.0)) haltCondition = true
}

4. The Network and Graph Controllers

The network controller works as a rudimentary manager of incoming network

traffic. It receives network packets and informs the view what to do visually. The graph

controller provides methods for displaying data graphically both for the scene and for

creating Scalable Vector Graphic (SVG) files (the World Wide Web Consortium (W3C)

standard for displaying 2D graphics on the Internet using XML).

5. Sensor Model

In most previous research, sensors are modeled as binary (yes or no) sensing

devices. The sensors modeled in this thesis are probabilistic. They represent the

behavior like infrared, seismic, and ultrasonic sensors where the detection probability

decreases with distance from an energy-emitting target. For this work:

26

ik
i

iii N
su

KNuSuE +
−

=+=)()(

where Ei is the energy measured by sensor i, Si is the energy at sensor i caused by

a target at location u, Ni is the noise at sensor i, K is the energy emitted by the target,

||u-si|| is the distance from the target to sensor i, and k is the decay rate exponent (usually

2 to 3.5).

This work uses value fusion for making collaborative determinations by

combining evidence from multiple sensors. For value fusion, this work assumes that

detection probabilities are mutually exclusive and the probability of consensus target

detection is























−
−≥=












≥










+

−
= ∑ ∑∑

= ==

n

i

n

i
k

i
ii

n

i
k

i su
KNprobN

su
KprobuD

1 11
)(ηη

,

where η is the value fusion threshold. The noise is assumed to be additive white

Gaussian noise with a mean of zero and a deviation of one for simplicity. The standard

normal is then used to estimate the probability.

6. Traversal Detection Model for Barrier Coverage

A grid is created to cover the sensor field. A directed graph object called Digrid

represents the points and equal length line segments. The grid is an abstraction used to

measure barrier coverage. Higher-order graphs could be inserted into the application in

the future. Each time the coverage metric is needed, the Digrid computes the probability

for detecting an unauthorized traversal through the sensor field according to the following

algorithm [CLO02].

27

 Generate the grid points and line segments over the sensor field

 For each line segment between adjacent grid points {

 Compute value fusion D(u) for each endpoint, u1 & u2

 Assign line segment a weight equal to log(1-D(u1)) + log(1-D(u2))
 }

 Add a link from virtual start to each grid point on the west
 Add a link from virtual end to each grid point on the east

 Assign a weight of 0 to all the line segments from the start and end points

 Compute the least weight path P from start to end using Dijkstra’s algorithm

 Let w equal the total weight of P

 Return P as the least exposure path with an exposure equal to 10-w

Notice that in addition to finding the “least covered” path, this returns the

minimum probability of detecting a traversing target. This is the barrier coverage metric

in this thesis.

7. Sensor Vehicle Model

Mobile sensors (sensor vehicles) are displayed visually as tank-shaped objects.

The speed and direction of each are computed every clock cycle. The vehicles can rotate

and travel in any direction. All the underlying logic is in three dimensions and uses the

coordinate system shown in Figure 7.

Figure 7. Coordinate system

28

Figure 8 shows the basic sensor vehicle. The green circles and line segments

emanating from the vehicle represent the vehicle’s motion sensors. The vehicles use the

motion sensors to build an internal map of the environment. The mission sensor is for

target detection. In our application, if a motion sensor intersects an object, then the value

returned is between 0 and 1, representing the percentage of max range distance along the

sensor axis where the intersection takes place. The robotic vehicles can have any number

of motion sensors.

Sensor Vehicle

Target/Mine

(green)
Sensor

Feeler Mission
Sensor

Detect
(red)

(blue)

(green)

(yellow)

Figure 8. Visualization of sensor vehicle.

8. Implemented Neural Network Model

The vehicles use input gathered from their sensors to guide their movement. This

can be as simple as turning toward a direction and moving. To support more complex

movement behavior, each vehicle also has a neural network controller [BUC02]. Figure

9 shows one node (neuron) of the neural network. For each node, inputs provide values

between –1 and 1, which are multiplied by weights, added up, and run through an

activation function (sigmoidal in this case). The output from the activation function is

between –1 and 1.

29

Wn
In

∑
0

n
xiwi

I0

I1 W1

W0

.

Inputs Weights Computation Output

Figure 9. Basic neuron design for a neural network.

The basic neurons combine to form a neural network, shown in Figure 10. Inputs

from the environment enter at the input layer, propagate through any number of hidden

layers (made up of neurons like Figure 9), and are output from the output layer. Figure

10 has five inputs, four nodes in one hidden layer, and two nodes in the output layer. In

this thesis, the input nodes receive information from the motion sensors. For example,

each motion sensor provides an input between 0 and 1 to represent proximity to an object

sensed by the motion sensor. Values closer to 0 are nearer to the vehicle. Values closer

to 1 are nearer the end of the motion sensor’s range. The motion sensors provide an input

of –1 when the vehicle collides with an object. The outputs control the left and right

turning forces of the vehicles. So a –1 on the left output and a +1 on the right output

would move the left track in reverse at full speed, the right track forward at full speed,

and cause a left turn of the vehicle. If the outputs both have +1, the vehicle moves

straight forward at full speed.

30

Input Layer

N1 N2 N3 N4

N5 N6

Output Layer

Hidden Layer

Figure 10. Neural network.

A vehicle with the neural-network controller gathers input from the environment

for the input layer. Each input from the environment is an input to each node of the first

hidden layer. Each node of the first hidden layer multiplies each of its inputs by a unique

weight (between –1 and 1), computes an output, and provides that output to each node of

the next layer as an input. This process is repeat for each hidden layer. After the output

layer receives inputs from the last hidden layer, values between –1 and 1 are output from

the neural network and used to controller the vehicles. Each vehicle has its own neural

network controller with unique weights. If all the weights in the neural network are

random, the vehicles’ behavior does not make sense. Some vehicles will spin in circles,

and some will move about sporadically, turning left and right with no reason. With

proper weights throughout the neural network, however, the vehicles can be made to

perform various complex behaviors.

In order for the outputs to generate the behavior desired, the weights throughout

the neural network need to be accurately determined. This is accomplished by mimicking

the evolutionary process of living organisms. When a vehicle is created, the neural

network weights are put in a vector to represent a chromosome. The simulation is run for

31

some time while the vehicles’ neural network controllers control their movement. At the

end of each run, the vehicles are assigned a fitness score that is computed to reflect how

well they performed the desired behavior. For example, if the desired behavior is to

move and detect targets then the score would be higher for those vehicles which detected

more targets than others.

In between runs, new neural networks are “born” from the old using a genetic

algorithm similar to the genetic algorithm described previously, with preference given to

those vehicles with higher fitness. Their score at the end of a run is considered their

fitness within the population of vehicles. The first generation has a low average fitness as

the vehicles spin in circles or wander aimlessly for the duration of the first run. Some

will do better than others.

Each new neural network is the offspring of two neural networks from the

previous generation. If the above neural network architecture was used, then two parents

vectors could be as represented in Figure 11. The incoming weights for each of the six

nodes are included in a vector. During execution of the genetic algorithm, two split

points are randomly selected and the portions of the vectors within the split points are

crossed over. Then a few weights are randomly mutated.

N1
.2 .3 -.1 -.2 .8 .7 -.5 -1 .9 .1 .3 .2 -.3 -.5 .1 .9 -1 -.5 .7 .8 -.2 -.1 .3 .2 .9-1-.5.7

.2 .3 -.1 -.2 .8 .7 -.5 -1 .9 .1 .3 .2 -.3 -.5 .1 .9 -1 -.5 .7 .8 -.2 -.1 .3 .2 .9-1-.5.7

N2 N3 N4 N6 N5

Parent 1
Chromosome

Parent 2
Chromosome

Figure 11. Genetic encoding of neural networks.

The neural network can generate a variety of complex behaviors by selecting the

appropriate fitness function during evolutionary development. Consider an example of

32

sweep coverage for minesweeping. Suppose a square area being patrolled by sensor

vehicles, and mines can randomly appear in the area. The job of the sensor vehicles is to

roam around finding mines. When a mine is found, it is collected and another mine is

randomly generated. Initially the weights on all the neurons are random numbers

between –1 and 1. The sensor agents are started in the center or at random positions,

facing random directions. The two outputs from the neural network control the two

tracks on the tanklike vehicles. The vehicles hunt mines for one generation, a certain

amount of time; sensing their environment, processing their inputs through the neural

network controller, and adjusting the speed of their tracks. Fitness is based on how much

area they cover and how many mines they capture. Each agent has a 20x20 map covering

the entire environment, and they get 1 point for each square they visit on their map. They

get 20 points for each mine they capture. In this example, the vehicles evolve so that the

outputs computed through the neural network cause the vehicles to travel around and

collect mines.

At the end of each generation, the agents are sorted according to fitness score and

“mated” with greater preference given to parents with higher fitness scores. The vehicles

that collected the most mines and covered the most area have the higher fitness scores.

The best few agents are kept unchanged, and new agents are “born” from the old using

the genetic algorithm. This process is repeated generation after generation until a

population exists that can explore a lot of area while looking for mines and avoiding

buildings. A generation typically takes about one minute on our test computer (300Mhz,

64MB random-access memory, with 8MB video random-access memory).

Figure 12 graphs the evolutionary process after 100 generations for best fitness

and average fitness. As can be seen, the minesweeping behavior reaches an optimum

quickly (approximately 10-20 generations). The large variation is because each

generation runs in a different, randomly generated environment. Some environments are

easier to minesweep than others.

33

Figure 12. Fitness progression for evolving neural network.

Minesweeping is one example of evolving neural networks to generate complex

behavior. Differences in behavior can be produced by different fitness scoring during

evolution, not by reprogramming the neural network model [BUC02]. This helps

facilitate future work by making it easier to generate behaviors. Little programming is

necessary, only changing the scoring system. It would also be possible to make fitness

selection available to the user, who could for example click on the agents performing the

desired behavior to favor them in the selection process [LUN01].

9. Autonomous Sensor Deployment

Earlier we described some global algorithms for static sensor placement. For

robotic vehicles to use these algorithms, they must know the environment and locations

of other vehicles. One vehicle determines where the others will go and tells them. This

process reoccurs to adjust to changing conditions and sensor failures. But when the

number of sensors is large, readjustment becomes time-consuming and communication

becomes excessive.

34

The goal of autonomous sensor deployment is to minimize communication and

power and maximize scalability by having the sensor robots’ motion be based on local

knowledge. The idea is that by allowing each robot to make individual local decisions,

good coverage becomes an emergent behavior of the group. This is similar to how ants

perform simple individual behaviors that result in emergent complex behaviors for the

colony. The difficulty of this approach is finding the right local behaviors that result in

the emergent behavior of good coverage for target detection.

The approach in this work uses potentials and vector fields, common tools for

robot motion problems. When the potential force method is used, the forces act upon the

sensor vehicles to guide their movement. [ULR00] identified the limitations of using the

potential field method and presented the Vector Field approach as an improvement using

real robotic vehicles to demonstrate its effectiveness. Vector fields also allow us to

reduce the problem to one dimension. We use motion sensors to gather local data from

the environment and determine motion from this vector. Consider the sensor vehicle in

Figure 13. The circles spaced along the motion sensors represent the sampling points for

“attraction” and “repulsion” forces. Along each direction, the sensor vehicle stores the

sum of the forces in a vector. This vector is then used to make local decisions for motion.

35

Sensor Vehicle

Mission
Sensor

Figure 13. Visualization of sensor vehicle for vector force deployment.

In Figure 13, the sensor vehicle has 8 directions to consider, although we usually

use 24. The vehicle agent chooses one of these directions as the desired direction to turn

towards. Along each direction, it has evenly spaced sensor points (circles in Figure 13).

Each of these sensor points is affected by forces that include repulsive and/or attractive

forces from objects, other sensors, local coverage values, sensor field coverage values,

etc. A cumulative force vector represents the weighted sum of the forces on each mobile

sensor. The forces on sensor points further away from the vehicle are weighted less than

those closer to the vehicle.

Figure 14 shows the force control panel provided by the application that allows

the user to adjust attractive and repulsive force strengths. In practice, these values would

be determined in advance but for simulation purposes, it is convenient to be able to

modify force parameters to view their effect on the model. In the figure, SensorForce

36

controls the force applied directly from the direction of the entity causing the force.

SensorForceX and SensorForceZ allow the user to control the force applied from an

entity in the x and z directions, respectively. This is useful because our research shows

that if both of these forces are positive, good area coverage results. However, if

SensorForceX is negative and SensorForceZ is positive good barrier coverage results.

The effective value of each force is added to the direction vector according to this

equation:
()

k
Force

orceEffectiveF
Distance

= , where Force is the force of the entity the

force is caused by, Distance is the distance from the entity to the sensor point, and k is a

coefficient that controls how quickly the effect of the force decays with distance. A

positive force is repulsive, causing the vehicle to move away.

Figure 14. Force panel.

37

One way to travel is to select the direction with the least amount of cumulative

forces acting upon it and head that way. The vehicle would move this direction to move

away from objects and other sensors. The problem with this is that it causes the vehicles

to oscillate between directions too much. One improvement is to chose a threshold and

only consider directions with force values below the threshold. Instead of picking the

lowest valued direction, pick the direction that is closest to the sensor’s current direction.

Another approach is to add the directions to the left of the sensor’s current direction, add

the directions to the right of the sensor’s current direction, and turn towards the left or the

right depending on which sum is lower. There are many ways to combine the various

approaches.

Figures 15 and 16 show the progression as sensors deploy from an initial starting

position. The first shows a deployment without obstacles present. The second shows

deployment with obstacles. These autonomous deployments were conducted with equal

forces being applied in each direction. This resulted in good area coverage but poor

barrier coverage. Later an autonomous deployment using vector forces is shown with

good barrier coverage (Figure 17).

38

A B

C D

Figure 15. Autonomous deployment for area coverage without obstacles.

The deployment sequence in Figure 16 resulted from obstacles and other sensors

causing repulsive forces in all directions. When the polarity of the force in the x

direction is inverted, the Figure 17 deployment resulted. In this case, sensors repel each

other in the y direction, but attract each other in the x direction, resulting in good spacing

along a line running north and south. This has the effect of forming a gauntlet that

provides good barrier coverage.

39

A B

C D

Figure 16. Autonomous deployment for area coverage with obstacles.

40

Figure 17. Autonomous deployment for barrier coverage with obstacles.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

V. RESULTS

A. RUNNING THE SIMULATION
The simulation can be run as a Java application or a Java applet. Once started, the

objects and the internal component structures are created. Based on the parameters

specified in an XML initialization file, a default scenario starts. Scenarios run to

completion or until the user interrupts with input. Several scenarios can be started by

clicking on an appropriate button, and others can be loaded from XML scenario files. In

most cases, starting a scenario also causes parameters to be loaded from XML files as

well. When a scenario provides active 2D or 3D output, the user has several options for

modifying the view, such as zooming in/out and choosing which objects in the

environment are visible. The program consists of over 50 Java classes and several XML

data files. The source files occupy approximately 700kB and consist of over 30,000 lines

of code.

B. EXPERIMENTS

1. Random Deployment for Traversal Detection

For random deployment, we generate random locations in the terrain and assign

the sensors there.

a. Probability Density Function of Coverage for a Set Number of
Sensors

We estimated the probability of traversal detection as a function of the

number of sensors by repeated experiments. Each time the barrier coverage probability

was calculated and saved. The saved probabilities are used to compute a probability

density function. Figure 18 shows some results for 2, 10, 15, and 20 sensors for occluded

and unoccluded measurements. Occluded measurements take the effects of obstacles into

account, while unoccluded measurements do not.

43

Figure 18. Probability density function for the distribution of traversal detection coverage

measured for deployments of 2, 10, 15, and 20 sensors.

For 2 sensors, the highest density is near zero for unoccluded sensor

detections and even lower for occluded. For 10, 15, and 20 sensors, the peak coverages

get progressively higher, as expected. This also shows that 20 sensors provide ample

coverage for traversal detection.

Now consider Figure 19, which shows the coverage for deployments of 19

sensors. Notice how the density fluctuates around 1.2 percent density between 30 and
44

100 percent coverage, varying no more than 1.0 percent. Later we show the number of

sensors causing an even spread of density values to be the number of sensors that results

in minimum cost when deploying in steps.

Figure 19. Probability density function for 19 sensors.

b. Confidence Level for Variable Number of Sensors

Obtaining the probability of reaching a specified level of coverage, or the

confidence level, is accomplished by randomly deploying sensors repeatedly and

computing the percent of time the deployment achieves the specified level. Figure 20

45

shows a graph of the confidence level reaching 80% coverage for 0 to 60 sensors. The

confidence level increases with the number of sensors deployed.

Figure 20. Probability that coverage is above 80% for varying number of sensors.

c. Cost to Achieve Coverage

When deploying sensors randomly, such as when dropping from aircraft

or launching from artillery, the question is how many to deploy. A simulation can deploy

a set of sensors and measure the coverage. If the desired level of coverage is not reached,

deploy another set until the desired level of coverage is reached. Obviously, if there are

more sensors available than is necessary to completely cover the sensor field, deploying

46

all sensors at once would be wasteful. If there are 1,000 sensors and only 100 are

required, then less than 1,000 should be deployed. We could deploy sensors one at a

time, which would minimize the number of sensors deployed; however, if each

deployment includes a fixed cost, this would be expensive.

To find the optimum number of sensors to deploy at a time we first assign

a cost to deploy a set of sensors (Cd) and a cost to each sensor (Cs). Figures 21 through

24 are graphs of how much it costs to deploy a set of sensors at a time to achieve the

specified coverage.

Figure 21. Cost of achieving 80% coverage as a function of the number of sensors with

Cd = 0 and Cs = 1.

47

Figure 22. Cost of achieving 80% coverage as a function of the number of sensors with

Cd = 5 and Cs = 1.

Figure 23. Cost of achieving 80% coverage as a function of the number of sensors with
Cd = 10 and Cs = 1.

48

Figure 24. Cost of achieving 80% coverage as a function of the number of sensors with
Cd = 100 and Cs = 1.

The first figure shows that if deployment is free then it is most cost-

effective to deploy one sensor at a time until achieving the desired coverage. The last

shows that if deploying costs 100 times as much as each sensor then it is better to deploy

many sensors each step. The other figures show that deploying approximately 23 sensors

each step minimizes cost. Cost is achieved at nearly the same number of sensors for

occluded and unoccluded sensor measurements so finding the minimum for one should

be sufficient in practice.

Note that the local minimums of 23 for cost correspond to Figure 19,

where coverage fluctuates between 30 and 100 percent with 19 sensors. [CLO02]

49

developed an analytical explanation for the correspondence between the local minimum

and the number of sensors with a flat probability density. They used the following

equation to describe the expected cost









−








⋅⋅+= ∑ ∏

= =

))(1()()(}{ .
1

.
1

vFvFiCnCCE ni

S

i
nj

j
sd

i

where n is the number of sensors deployed each step for a total of S steps, and 1-Fn(v) is

the confidence of obtaining coverage of amount v with n sensors. As described in

[CLO02], when the probability density varies widely the weight associated with the first

term of the sum increases rapidly while the weights associated with the higher number of

sensors decrease. The cost increases again after this local minimum as the increase in n

compensates for the decrease in weights.

2. Deployment Algorithm Performance Comparison

Figure 25 compares barrier coverage for each of the placement algorithms in a

400m2 sensor field. Occluded means that objects in the environment block the energy

from target to sensor. Measurements were obtained for area coverage and barrier

coverage, occluded and not occluded, for each of the deployment algorithms described in

the previous chapter.

The graphs in Figure 25 show the coverage differences between algorithms when

obstacles present barriers to traversal but not to sensing. Our analysis shows that the

Greedy algorithm is the worst coverage algorithm; however, our GreedyPath algorithm

performed well. Note Random placement performed fairly well, which is significant

because it will usually be cheap to deploy randomly.

Autonomous deployment performed well for unoccluded (Figure 25) and

occluded (Figure 26) measurements. The sensor vehicles were able to deploy using only

local information and no central planning. For scenarios where many sensors have no

internal map of the environment, limited communication capabilities, and limited power,

this will be essential.

50

Figure 25. Deployment algorithm comparison, not occluded.

When the effect of obstacles is taken into account, the graphs in Figure 26 show

the choice of algorithm can have a significant effect on coverage. Greedy again performs

the worst. The Genetic and Simulated Annealing algorithms perform the best by far,

achieving 100% barrier coverage with far fewer sensors than the other algorithms. Figure

27 gives a time comparison of the algorithms. GreedyPath performed quite well

considering it is also one of the fastest of the algorithms. Random did not perform as

well, but did perform adequately considering it is the fastest. Best1st and Greedy are the

slowest. Genetic and Simulated Annealing are the slowest with few sensors, but with

more sensors find optimal solutions quickly.

51

Figure 26. Deployment algorithm comparison, occluded.

Figure 27. Deployment algorithm time comparison.

52

VI. FUTURE WORK

A. FUTURE WORK

This work developed a simulation environment to enable varied testing of

coverage and deployment issues in a wide variety of sensor networks. Many types of

sensors exist and with different characteristics (mobility, power, sensing ability, etc.).

The energy measured by the sensors varies. Sensors exist that detect sound, light,

movement, vibration, radiation, chemical substances, and so on. The environment may

have varying occlusion characteristics as well as areas where the desire to detect a target

is higher. Different coverage measurement schemes, different data fusion schemes, and

different deployment algorithms will need to be tested. The number of possible

combinations that are testable with the program implemented for this thesis is large.

As for future work, the directed grid used to measure barrier coverage can have

different levels of granularity. With higher granularity, there are more grid squares and

the coverage metric should be more accurate. Future work should examine the effect of

granularity on accuracy and time. [MEG00] describes the use of Voronoi diagrams for

computing coverage similar to our use of directed grids. Future work could compare and

contrast Voronoi diagrams with directed grids.

In [PRO00] the authors present a vigilance model which allows birds to control

the area a flock occupies as well as their vigilance rate. An optimal strategy is found for

the birds under a variety of conditions. Performing the two contradictory tasks presented,

feeding and avoiding becoming food, is analogous to two sensor tasks, sensing

phenomena and conserving energy. Future work could examine the models presented in

[PRO00] and extend the theories to optimize the tradeoff between frequent sensing and

power conservation, for example.

This thesis describes a vector-force algorithm that accomplishes autonomous

deployments for area and barrier coverage. An evolutionary strategy is described for

autonomous sweep coverage. Future work could develop an evolutionary strategy for

autonomous deployment of sensor vehicles. Furthermore, the autonomous barrier

coverage algorithm could be extended to move in a particular direction, thereby

accomplishing sweep coverage.
53

Future enhancements can be made to the size and scope of the environment. For

simplicity, this thesis focused on a limited number of homogenous sensors in a fixed area.

The application supports testing for heterogeneous sensors, as well as different sensing

models. Also, the area to be covered does not need to remain static. Sensors covering

the flank side of a mobile force would need to move with the force and continuously

update their positions.

The size of the environment and the number of entities can be increased in a few

ways. One approach would be to have a larger sensor field aggregate the information of

several smaller sensor fields for coverage and deployment. However, a limiting factor is

that all the sensors run on one machine unlike in the independence of the real world.

Future work could simulate separate computational entities and network communication,

which should enable the size to increase greatly.

B. CONCLUSIONS

This thesis has explored coverage and deployment issues for mobile and non-

mobile sensors. A simulation of a multi-agent expeditionary sensor network was created

to formulate and test search, coverage, and deployment algorithms. In the course of this

research we evaluated cost and performance of deploying multiple homogenous sensors

with a wide variety of constraints. The comparison of several deployment algorithms

showed significant insights, and novel autonomous deployment schemes were presented.

The application and algorithms developed enable future modeling and simulation efforts.

While the components implemented in this thesis do not target any existing

framework, the concepts are applicable to a wide range of sensor coverage and

deployment problems. Many possible scenarios can be built, tested, and compared. This

allows for extensive simulation of varied platforms to guide future acquisition and

minimize cost. The design of the application allows for future extensibility with minimal

modification to existing code. The algorithms described can be implemented in any

programming language or sensor network.

54

APPENDIX A – APPLICATION DISTRIBUTION AND SOURCE
CODE ACCESS

All application source code, examples, and binary distribution are available at the

NPS SAVAGE archive or by request to:

Dr. Neil Rowe: ncrowe@nps.navy.mil.

55

mailto:ncrowe@nps.navy.mil

THIS PAGE INTENTIONALLY LEFT BLANK

56

LIST OF REFERENCES

[AKY02] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., “Wireless

sensor networks: a survey,” Computer Networks, 38, 393-422, 2002.

[AXE84] Axelrod, R., The Evolution of Cooperation, Basic Books, 1984.

[AXE97] Axelrod, R., The Complexity of Cooperation: Agent-Based Models of

Competition and Collaboration, Princeton University Press, 1997.

[BAT02] Batalin, M.A., “Spreading Out: A Local Approach to Multi-Robot

Coverage,” Proceedings of the 6th International Symposium on Distributed
Autonomous Robotics Systems, Fukuoka, JA, 2002.

[BAT03] Batalin, M.A., “Efficient Exploration Without Localization,” Computer

Science Dept., USC, 2003.

[BER00] Berg, M., Kreveld, M., Overmans, M., and Schwarzkopf, O.

Computational Geometry: Algorithms and Applications, Springer-Verlag,
2000.

[BIG98] Bigus, J.P., and Bigus, J., Constructing Intelligent Agents with Java™,

John Wiley & Sons, Inc, 1998.

[BOR90] Borenstein, J., Koren, Y., “Real-Time Obstacle Avoidance for Fast Mobile

Robots in Cluttered Environments,” Proceedings of the 1990 IEEE
International Conference on Robotics and Automation, Cincinnati, OH,
572-577, 1990.

[BOR96] Borenstein, J., Everett, H.R., Feng, L., Wehe, D., “Mobile Robot

Positioning – Sensors and Techniques,” Journal of Robotic Systems,
Special Issue on Mobile Robots, Vol. 14, 231-249, 1996.

[BUC02] Buckland, Mat, AI Techniques for Game Programming, Premier Press,

2002.

[BUG00] Bugajska, M.D., Schultz, A.C., “Co-Evolution of Form and Function in
the Design of Autonomous Agents: Micro Air Vehicle Project,” Navy
Center for Applied Research in Artificial Intelligence, 2000.

[BUL01] Bulusu, N., Heidemann, J., Estrin, D., “Adaptive Beacon Placement,”

UCLA, Los Angeles, CA, 2001.

57

[CHA01] Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E., “Coding Theory
Framework for Target Location in Distributed Sensor Networks,” Dept. of
Computer and Electrical Engineering, Duke University, 2000.

[CHA02] Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E., “Grid coverage for

surveillance and target location in distributed sensor networks,” IEEE
Transactions on Computers, vol. 51, 2002.

[CHO01] Choset, H., “Coverage for robotics – A survey of recent results,” Annals of

Mathematics and Artificial Intelligence, 31, 113-126, 2001.

[CLI96] Cliff, D., Miller, G.F., “Co-evolution of pursuit and evasion II: Simulation

Methods and Results,” From Animals to Animats 4: Proceedings of the
Fourth International Conference on Simulation of Adaptive Behavior
(SAB96), MIT Press Bradford Books, 1996.

 [CLO01] Clouqueur, T., Ramanathan, P., Saluja, K.K., Wang, K., “Value-Fusion

Versus Decision-Fusion for Fault-Tolerance in Collaborative Target
Detection in Sensor Networks,” Fusion 2001 Conference, 2001.

[CLO02] Clouqueur, T., Phipatanasuphorn, V., Ramanathan, P., Saluja, K.K.,

“Sensor Deployment Strategy for Target Detection,” WSNA’02, Atlanta,
GA, 2002.

[DHI02] Dhillon, S.S., Chakrabarty, K., “A Fault-Tolerant Approach to Sensor

Deployment in Distributed Sensor Networks,” Dept. of EE & CE, Duke
University, Durham, NC, 2002.

[DHI02a] Dhillon, S.S., Chakarabarty, K., “Sensor Placement for Grid Coverage

under Imprecise Detections,” Dept. of EE & CE, Duke University,
Durham, NC, 2002.

[DIC02] Dickie, Alistair, Modeling Robot Swarms using Agent-Based Simulation,

Master’s Thesis, Naval Postgraduate School, Monterey, CA, June 2002.

[DMS03] Defense Modeling and Simulation Office (DMSO). “Smart Sensor Web:

Experiment Demos Network Centric Warfare,”
https://www.dmso.mil/public/pao/stories/y_2002/m_04/7-1-8, May, 2003.

[EST99] Estrin, D., Govindan, R., Heidemann, J., Kumar, S., “Next century

challenges: scalable coordination in sensor networks,” ACM
MobiCom’99, 263-270, 1999.

[EST02] Estrin, D., Culler, D., Pister, K., Sukhatme, G., “Connecting the Physical

World with Pervasive Networks,” Pervasive Computing, IEEE, 59-69,
2002.

58

https://www.dmso.mil/public/pao/stories/y_2002/m_04/7-1-8

[GAG92] Gage, D.W. “Command Control for Many-Robot Systems,” Proceedings

of AUVS-92, Huntsville, AL, 22-24 June 1992.

[GAG92a] Gage, D.W. “Sensor Abstractions to Support Many-Robot Systems,”

RDT&E Division, Naval Command Control and Ocean Surveillance
Center, 1992.

[GAG93] Gage, D.W. “Randomized search strategies with imperfect sensors,”

Proceedings of SPIE Mobile Robots VIII, Boston, 9-10 September 1993,
pp 270-279.

[GAG98] Gage, D.W. “Randomized Search Strategies,”

http://www.spawar.navy.mil/robots/research/manyrobo/randomize.html,
June, 2003.

[GOL01] Goldberg, D., Mataric, M.J., “Robust Behavior-Based Control for

Distributed Multi-Robot Collection Taks,” USC, Los Angeles, CA, 2001.

[GOR00] Gordon, D.F., Spears, W.M., Sokolsky, O., Lee, I., “Distributed Spatial

Control, Global Monitoring and Steering of Mobile Agents,” AI Center,
NRL, Wash., DC, 2000.

[GUP03] Gupta, H., Das, W.R., Gu, Q., “Connected Sensor Cover: Self-

Organization of Sensor Networks for Efficient Query Execution,”
Mobihoc’03, Annapolis, MA, 2003.

[HES99] Hespanha, J.P, Kim, H.J., Sastry, S., “Multiple-Agent Probabilistic

Pursuit-Evasion Games,” Proceedings of the 38th Conference on Decision
and Control, 1999.

[HOW01] Howard, A., Mataric, M.J., “Cover Me! A Self-Deployment Algorithm for

Mobile Sensor Networks,” Robotics Research Lab, USC, 2001.

[HOW02] Howard, A., Mataric, M.J., Sukhatme, G.S., “Mobile Sensor Network

Deployment using Potential Fields: A Distributed, Scalable Solution to the
Area Coverage Problem,” Proceedings of the 6th International Symposium
on Distributed Autonomous Robotics Systems (DARS02), Fukuoka, JA,
2002.

[HOW02a] Howard, A., Mataric, M.J., Sukhatme, G.S., “An Incremental Deployment

Algorithm for Mobile Robot Teams,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS2002), EPFL, SW,
2002.

59

http://www.spawar.navy.mil/robots/research/manyrobo/randomize.html

[HOW02b] Howard, A., Mataric, M.J., Sukhatme, G.S., “An Incremental Self-
Deployment Algorithm for Mobile Sensor Networks,” Autonomous
Robots, Special Issue on Intelligent Systems, 2002.

[HSI03] Hsiang, T., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B,

“Algorithms for Rapidly Dispersing Robot Swarms in Unknown
Environments,” Stony Brook University, NY, 2003.

[JUN02] Jung, B., Sukhatme, G.S., “A Region-Based Approach for Cooperative

Multi-Target Tracking in a Structured Environment,” 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2002.

[KOH00] Kohout, B. “Challenges in Real-Time Obstacle Avoidance,”

Veridian/Pacific-Sierra Research, Rosslyn, VA, 2000

[KOR91] Koren, Y., Borenstein, J., “Potential Field Methods and Their Inherent

Limitations for Mobile Robot Navigation,” Proceedings of the IEEE
Conference on Robotics and Automation, 1398-1404, 1991.

[KIN91] Kindl, M.R., Shing, M., Rowe, N.C., “A Stochastic Approach to the

Weighted-Region Problem: Design and Testing of a Path Annealing
Algorithm,” Naval Center for Applied Research in Artificial Intelligence,
1991.

[LAV97] LaValle, S.M., Lin, D., Guibas, L.J., Latombe, J., Motwani, R., “Finding

an Unpredictable Target in a Workspace with Obstacles,” Proceedings of
the 1997 IEEE International Conference on Robotics and
Automation,1997.

[LUN01] Lund, H.H, Pagliarini, L., “Edutainment Robotics: Applying Modern AI

Techniques,” Proceedings of International Conference on Autonomous
Minirobots for Research and Edutainment (AMIRE-2001), 2001.

[MAR96] Marengoni, M., Draper, B., Hanson, A., and Sitaraman, R. “System to

place observers on a polyhedral terrain in polynomial time.” Image and
Visual Computing, 1996.

[MEG00] Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.,

“Coverage Problems in Wireless Ad-hoc Sensor Networks,” CS Dept and
EE Dept, UCLA, 2000.

[MEG01] Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M., “Exposure in

Wireless Ad-Hoc Sensor Networks,” ACM SIGMOBILE, Rome, Italy,
2001.

60

[MIC00] Michalewicz, Z., Fogel, D.B., How to Solve It: Modern Heuristics,
Springer-Verlag Berlin Heidelberg, NY, 2000.

[PAR00] Park, S., Savvides, A., Srivastava, M.B., “SensorSim: A Simulation

Framework for Sensor Networks,” EE Dept., UCLA, 2000.

[PAR98] Parker, L.E., “Cooperative Robotics for Multi-Target Observation,”

Center for Engineering Systems Advanced Research (CESAR), Oak
Ridge, TN, 1998.

[PER00] Perkins, C. Ad Hoc Networks, Addison-Wesley, 2000.

[PIS03] Pister, Kris. “Smart Dust. Autonomous Sensing and Communicating in a

Cubic Millimeter,” http://robotics.eecs.berkeley.edu/~pister//SmartDust/,
August, 2003.

[PRO00] Proctor, C.J., Broom, M., “A Spatial Model of Anti-Predator Vigilance,”

Centre for Statistics and Stochastic Modeling, University of Sussex, 2000.

[REY99] Reynolds, C.W., “Steering Behaviors for Autonomous Characters,” Sony

Computer Entertainment America, Foster City, CA, 1999.

[ROM02] Romer, K., Kasten, O., Mattern, F., “Middleware Challenges for Wireless

Sensor Networks,” Mobile Computing and Communications Review, Vol.
l6, 2, 2002.

[ROU98] Roumeliotis, S.I., Pirjanian, P., Mataric, M.J., “Ant-Inspired Navigation in

Unknown Environments,” Computer Science Dept, USC, 2002.

[RUS95] Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach.

Prentice-Hall, Inc, 1999.

[SIN96] Singh, S., Bertsekas, D. “Reinforcement Learning for Dynamic Channel

Allocation in Cellular Telephone Systems,” NIPS96, Section:
Applications, 1996.

[SIN01] Singh, S.N.P., Thayer, S.M., “Immunology Directed Methods for

Distributed Robotics: A Novel, Immunity-Based Architecture for Robust
Control & Coordination,” Robotics Institute, CMU, 2001.

[SPE99] Spears, W.M., Gordon, D.F., “Using Artificial Physics to Control Agents,”

AI Center, Naval Research Laboratory, Washington, DC, 1999.

[STE95] Stentz, A., “The Focussed D* Algorithm for Real-Time Replanning,”

Robotics Institute, CMU, 1995.

61

http://robotics.eecs.berkeley.edu/~pister//SmartDust/

[STO96] Stork, K.A., Sensors in Object Oriented Discrete Event Simulation,
Master’s Thesis, Naval Postgraduate School, Monterey, CA, September
1996.

[TIL02] Tilak, S., Abu-Ghazaleh, N.B., Heinzelman, W., “A Taxonomy of

Wireless Micro-Sensor Network Models,” Mobile Computing and
Communications Review, Vol. 1, Num. 2, 2002.

[ULR00] Ulrich, I., Borentstein, J., “VFH*: Local Obstacle Avoidance with Look-

Ahead Verification,” 2000 IEEE International Conference on Robotics
and Automation, San Francisco, CA, 2505-2511, 2000.

[VAU94] Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S., “Robot

Control of Animal Flocks,” BioEngineering Division, Silsoe Research
Institute, Silsoe, Bedford, UK, 1995.

[WAT01] Watt, A., Policarpo, F. 3D Games: Real-time Rendering and Software

Technology, Addison-Wesley, 2001.

[WEI99] Weiss, Gerhard. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, 1999.

[ZOU03] Zou, Y., Chakrabarty, K., “Sensor Deployment and Target Localization

Based on Virtual Forces,” Dept. of EE & CE, Duke University, Durham,
NC, 2003.

62

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46

Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC

Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, California

63

	I.INTRODUCTION
	A.PROBLEM SPACE
	B.OBJECTIVE
	C.THESIS ORGANIZATION

	II.APPLICATION AREA
	A.SENSOR NETWORKS
	B.COVERAGE
	C.DEPLOYMENT

	III.RELATED WORK
	A.SENSOR NETWORKS
	B.THE MATHEMATICS OF COVERAGE
	C.SENSOR DEPLOYMENT
	1.Random
	2.Non-Random
	3.Autonomous

	D.MOTION PLANNING, EXPLORATION, AND MAP BUILDING

	IV.SIMULATION DESCRIPTION
	A.PROGRAM DESCRIPTION
	B.PROGRAM DETAILS
	1. Views
	2. Sensor Controller
	3. Grid Controller
	4. The Network and Graph Controllers
	5. Sensor Model
	6. Traversal Detection Model for Barrier Coverage
	7. Sensor Vehicle Model
	8. Implemented Neural Network Model
	9. Autonomous Sensor Deployment

	V.RESULTS
	A.RUNNING THE SIMULATION
	B.EXPERIMENTS
	1.Random Deployment for Traversal Detection
	Probability Density Function of Coverage for a Set Number of Sensors
	b.Confidence Level for Variable Number of Sensors
	c.Cost to Achieve Coverage

	2.Deployment Algorithm Performance Comparison

	VI.FUTURE WORK
	A.FUTURE WORK
	B.CONCLUSIONS

	APPENDIX A – APPLICATION DISTRIBUTION AND SOURCE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

