
1

Budget Sampling of
Parametric Surface Patches

Jatin Chhugani and Subodh Kumar
Johns Hopkins University

Motivation
• Sampling a continuous surface into discrete points

– Rendering as triangles or points
– FEM/BEM analysis for physics based computation
– Collision detection

• What criteria to satisfy?
– Inter-sample distance
– Deviation from the actual surface

• How to choose the best ‘N’ samples ?
• Relationship between the best ‘N’ and the best

‘N+1’ samples?

Example
Problem1: Discretise 'AB' into 5 points?

Problem 2: Discretise 'AB' into 6 points?

A

B

Example

Best 5 samples Best 6 samples

P1

Q4

Q3
Q2

Q1

Q5

Q6

P2

P3

P4

P5

Common Samples

Different Samples

Application of Spline Models

• CAD/CAM , Entertainment Industry
• Medical Visualization
• Examples

– Submarines
– Animation Characters
– Human body especially the heart and brain

Splines

2

Garden Model (38,646 patches)
Interacting with Spline Surfaces

• Interactive Spline Rendering:
– Need to update image 20-30 times per second
– Bound on the number of primitives that can be rendered per

second

• Interactive Collision Detection:
– Need to compute collisions 1000 times per second
– Bounded CPU/GPU time
– Upper bound on the number of collision tests per second

Interacting with Spline Surfaces
• Interactive Spline Rendering:

– Need to update image 20-30 times per second
– Bound on the number of primitives that can be rendered per

second

• Interactive Collision Detection:
– Need to compute collisions 1000 times per second
– Bounded CPU/GPU time
– Upper bound on the number of collision tests per second

Upper Bound on the number of primitives that
can be handled per frame

Issues
1. Given a threshold (in terms of number of

primitives), how to distribute it amongst various
parts of the model?

2. What criteria need to be satisfied?
– Plausible image (Minimize artifacts)
– Accurate image (or bounded error, quantification if possible)
– Bounded Computation Time

Problem Statement
Given a set of surface patches {Fi}, and total number

of primitives (C), allocate Ci to each patch
ensuring fairness.

Fairness: Minimize the projected screen-space error
of the whole model.

Questions:
1. How to compute Ci to minimize the deviation of

samples from surface?
2. For rendering applications, how to render these

primitives?

Rendering Splines
• Ray tracing

– J. Kajiya ['82], T. Nishita ['90], J. Whitted ['79]
• Pixel level surface subdivision

– E.Catmull ['74], M. Shantz ['88]
• Scan-line based

– J. Blinn ['78], J. Lane ['80], J. Whitted ['78]
• Polygonal Approximations

– Abi-Ezzi ['91], Filip ['86], S. Kumar ['96, '97, '01]

3

Polygonal Approximations

• Produce accurate color and position only at
the vertices of the polygons (triangles)

• Computationally intensive to figure out
tessellation parameters

• Maintain expensive data-structures with
substantial per-frame update costs

• May lead to a large number of small screen-
space triangles

Point-Based Rendering
• Introduced by Levoy and Whitted ['85]
• Explored further by Dally ['98], Rusinkiewicz

['00], Pfister ['00], Stamminger ['01]
• Decompose surface into nominally curved

`elements` which follow the surface more closely,
Szeliski ['92], Witkin ['94], Kalaiah ['01]

• Shaded well using algorithms by Zwicker ['01],
Kaliah ['02], Adamson ['03]

Point-Based Rendering
• No need to maintain topological information
• Lower update costs as compared to triangle-based

rendering for zoomed-out views
• Less beneficial for zoomed-in views

Attributes of each primitive
(for Point-Based Rendering)

• Position (x,y,z).
• Normal (Nx, Ny, Nz).
• Color.
• Size / Shape ?

Spheres as primitives

Every point on the surface inside at least one sphere.

Spheres on the patch
in Object Space

Image
Plane

Projection of Spheres
with no holes

Rendering Spheres

1. Compute the maximum deviation (d) of the
projected surface from projection of the center (C).

2. Draw a square splat of size 2d centered at C.

4

Our approach

1. Pre-Sampling:
– Progressively compute ordered list of samples

on the domain of each patch.
– Each sample associated with a sphere centered

on its corresponding point in 3D.
– The radius of the sphere decreases as more

points are added.

Our approach

2. View-dependent Point Selection:
– Compute the screen-space error for every patch.
– Compute the scaling factor for every patch.
– Compute the corresponding object-space error.
– Search for this value in the sorted list of error values.
– Render the corresponding samples with a certain

point-size.

Pre-Computation

Sampling the Domain Space

• Start with the minimal sample set (e.g. the four
corners) in the domain.

• Generate the 2D Delaunay triangulation.

Pre-Sampling

Pre-Sampling

Domain Space

1 2

3 4

• Start with the minimal sample set in the domain.
• Generate the 2D Delaunay triangulation.

• Compute center and radius of the circumscribing
spheres for each triangle (in 3D).

Pre-Sampling

5

Pre-Sampling

Point B

Point A

Circumcenter of the triangle

1 2

3 4

• Start with the minimal sample set in the domain.
• Generate the 2D Delaunay triangulation.
• Compute sphere parameters.

• While the sphere with ‘maximum radius’ has
radius greater than a user specified parameter:
– Append (center, radius) to the list of computed

samples.
– Update the delaunay triangulation by incrementally

adding center and updating the center and radius of
the affected triangles.

Pre-Sampling

Pre-Sampling

Point B

Point A

Circumcenter of the triangle

1 2

3 4

Pre-Sampling

5

Domain Space

1 2

3 4

Pre-Sampling

5

Circumcenter of the triangle

1 2

3 4

B

A

D

C

Pre-Sampling

5

Domain Space

1 2

3 4

6

6

Pre-Sampling Properties

• Maximum deviation of a surface patch from the
approximating spheres equals the radius of the
sphere with the largest radius.

• Spheres drawn at the sampled points ensure a
hole-free tiling of the surface patch.

What is stored ?

• Ordered set of (u,v) pairs
– by decreasing deviation

• Deviation in object space
– i.e., deviation after the sample is added

• 3-d Vertex
– optional

Rendering Time
Algorithm

1. Scaling Factor for a patch
Scaling Factor for a vector at point P is the
Minimum ratio of the length of the vector
to its projected length on the image plane.

Image Plane
Eye

Q′

P′
P

Q Ratio = |''|
||

QP
PQ

1. Scaling Factor for a patch

• Pre-processing
– Partition space
– For each patch, use the partition containing it
– If too many partitions for a patch, subdivide patch

• Run-time (for each frame)
– Compute the scaling factor for each partition
– Scaling factor a patch is that of its partition

2. Budget Allocation per patch

Question: Given a screen-space error (α), how
to compute the number of points required for
a given patch (F)?

Solution:
1. Compute the scaling-factor (γ).
2. Compute the object-space error = ∆=(α * γ).
3. Find the index j, such that ∆Fj-1 ≥ ∆ > ∆Fj
4. Return (j).

7

Example

P1 P2 P3 P4 P5 P6 P7 P8UV Values

Deviation 26 24 21 19 14 13 6 3

Example

P1 P2 P3 P4 P5 P6 P7 P8UV Values

Deviation 26 24 21 19 14 13 6 3

Let ∆ = 20

Example

P1 P2 P3 P4 P5 P6 P7 P8UV Values

Deviation 26 24 21 19 14 13 6 3

Let ∆ = 20

Example

P1 P2 P3 P4UV Values

Deviation 26 24 21 19

4 samples are chosen such that deviation is less
than ∆ (20)

2. Budget Allocation per patch
Assign a rendering size (d) of 1 initially for every point on

each patch.
For every frame:
1. Compute the total points required (C' = ΣCi).
2. If C' < C, then done.
3. Increment d by 1.
4. Go back to Step 1.

The above algorithm takes linear time to compute the right
rendering size (and hence screen-space error).

2. Budget Allocation per patch
(improved)

For every frame:
1. Assign the rendering size from the previous frame

to every patch
2. Compute the total points required (C' = ΣCi)
3. If C' < C, then for every patch:

a. Decrease its rendering size by 1
b. Recompute C'
c. If C' > C return
d. Else go back to Step 3

8

2. Budget Allocation per patch
(improved)

For every frame:
1. Assign the rendering size from the previous frame to every patch
2. Compute the total points required (C' = ΣCi)
3. If C' < C, then for every patch:

a. Decrease its rendering size by 1
b. Recompute C'
c. If C' > C return
d. Else go back to Step 3

4. If C' > C, then for every patch:
a. Increment its rendering size by 1
b. Recompute C'
c. If C' < C return
d. Else go back to Step 4

2. Budget Allocation per patch
(improved)

For every frame:
1. Assign the rendering size from the previous frame to every patch
2. Compute the total points required (C' = ΣCi)
3. If C' < C, then for every patch:

a. Decrease its rendering size by 1
b. Recompute C'
c. If C' > C return

4. If C' > C, then for every patch:
a. Increment its rendering size by 1

b. Recompute C'
c. If C' < C return

The above is a 2n-time bounded algorithm exploiting
the temporal coherence of the eye points.

3. Rendering Algorithm

For every patch:
1. Project the Ci on the screen using the computed

rendering size (d).
2. In OpenGL:

glPointSize(d);
glColor3f(…);
glNormalPointer(…);
glVertexPointer(…);
glDrawArrays(GL_POINTS, 0, Ci);

Example

Eye Point (E)

Patch A Patch B

Budget: 30 primitives

Example

Eye Point (E)

18 Samples 12 Samples

Patch A Patch B

Rendering Size: 1 pixel
Example

Eye Point (E')

18 Samples 12 Samples

Patch A Patch B

Rendering Size: 1 pixel

Holes

9

Example

Eye Point (E)

14 Samples 16 Samples

Patch A Patch B

Rendering Size: 2 pixels

Results

Model Patches Pre-comp.
Samples

Pre-proc.
(mts).

Teapot 32 129,273 09
Goblet 72 123,396 15

Pencil 570 1,051,624 70
Dragon 5,354 1,473,961 96
Garden 38,646 1,231,200 82

Pre-Sampling Performance

Results

Model Patches Points per
Frame

Time in
Software

Teapot 32 90,000 0.3% 31
Goblet 72 100,000 0.5% 34

Pencil 570 70,000 2.4% 23
Dragon 5,354 50,000 11.9% 20
Garden 38,646 50,000 19.1% 7

Run-time Performance

Frame
Rate

Video

Conclusions

• View-dependent algorithm for distributing
points across patches

• Provides guaranteed primitive budget
• Applicable to class of parametric surfaces
• Towards real-time spline surface rendering

Acknowledgements

• Shankar Krishnan
• Jonathan Cohen
• Budirijanto Purnomo
• Lifeng Wang
• UBC Modeling group
• Alpha 1 Modeling system
• National Science Foundation
• Link Foundation

10

The End.

Splines

• Non-Uniform Rational B-Spline (NURBS)
• Bezier patch (rational)

Degree m x n
Domain space (u, v) ε [0,1] x [0,1]
For 0 ≤ i ≤ m, 0 ≤ j ≤ n,

Control points : pij

Weights: wij

m n

Σ Σ wijpij B
m

i(u) B
n

j (v)
i=0 j=0

F(u,v) =

m n

Σ Σ wij B
m

i(u) B
n

j (v)
i=0 j=0

where
Bernstein function B

n
i (t) = t i (1- t)n-i









i
n

Knapsack Formulation
• Cost/Benefit Formulation (Funkhouser [`93])

– Maximize Σ (Benefit)
s.t. Σ (Cost) < Frame RenderingTime

• Granulartiy of our problem is much finer.
– Knapsack too slow

Visual Artifacts

Aliasing effects across the
boundary of a patch

Reduction in artifacts by averaging normals across
patch boundaries

Results
[10,000 points]

11

Results
[20,000 points]

Results
[30,000 points]

Results
[40,000 points]

Results
[50,000 points]

Results
[60,000 points]

Results
[70,000 points]

12

Results
[80,000 points]

Results
[90,000 points]

Results
[100,000 points]

