Budget Sampling of
Parametric Surfacq Patches

Y

NE) Chhugvani and Subodhrkumar
Johns Hopkins University

Example
Problem1: Discretise 'AB' into 5 points?

Problem 2: Discretise 'AB' into 6 points?

A

Application of Spline Models

* CAD/CAM , Entertainment Industry
* Medical Visualization
» Examples

— Submarines

— Animation Characters

— Human body especially the heart and brain

Motivation

Sampling a continuous surface into discrete points
— Rendering as triangles or points

— FEM/BEM analysis for physics based computation
— Collision detection

What criteria to satisfy?

— Inter-sample distance

— Deviation from the actual surface
How to choose the best ‘N’ samples ?

Relationship between the best ‘N’ and the best
‘N+1’ samples?

Example

@ Common Samples

O/O Different Samples

5
Best 5 samples Best 6 samples

Splines

Parametric domsin

Interacting with Spline Surfaces
Garden Model (38,646 patches 4 , ,
(’ P) * Interactive Spline Rendering:
— Need to update image 20-30 times per second
— Bound on the number of primitives that can be rendered per
second

* Interactive Collision Detection:

— Need to compute collisions 1000 times per second

— Bounded CPU/GPU time

— Upper bound on the number of collision tests per second

Interacting with Spline Surfaces
Issues

* Interactive Spline Rendering: . Given a threshold (in terms of number of
Need to update image 20-30 times per second primitives) oy (@ ahsinlbie amongst T
b

— Bound on the number of primitives that can be rendered per
parts of the model?

second
* Interactive Collision Detection:

Need to compute collisions 1000 times per second . What criteria need to be satisfied?
— Bounded CPU/GPU time

- — Plausible image (Minimize artifacts)
Upper bound on the number of collision tests per second

— Accurate image (or bounded error, quantification if possible)
— Bounded Computation Time

Upper Bound on the number of primitives that
can be handled per frame

Problem Statement Rendering Splines

Given a set of surface patches {F;}, and total number Ray tracing
of primitives (C), allocate C, to each patch — J. Kajiya ['82], T. Nishita ['90], J. Whitted ['79]
ensuring fairness. Pixel level surface subdivision

Fairness: Minimize the projected screen-space error — E.Catmull ['74], M. Shantz ['88]
of the whole model.

Questions:
1. How to compute C;to minimize the deviation of
samples from surface?

2. For rendering applications, how to render these
primitives?

Scan-line based

— J. Blinn ['78], J. Lane ['80], J. Whitted ['78]
Polygonal Approximations

— Abi-Ezzi ['91], Filip ['86], S. Kumar ['96, '97, '01]

Polygonal Approximations

Produce accurate color and position only at
the vertices of the polygons (triangles)

Computationally intensive to figure out
tessellation parameters

Maintain expensive data-structures with
substantial per-frame update costs

May lead to a large number of small screen-
space triangles

Point-Based Rendering

» No need to maintain topological information

» Lower update costs as compared to triangle-based
rendering for zoomed-out views

» Less beneficial for zoomed-in views

Spheres as primitives

Image
Plane

Spheres on the patch Projection of Spheres
in Object Space with no holes

Point-Based Rendering

Introduced by Levoy and Whitted ['85]

Explored further by Dally ['98], Rusinkiewicz
['00], Pfister ['00], Stamminger ['01]

Decompose surface into nominally curved
“elements” which follow the surface more closely,
Szeliski ['92], Witkin ['94], Kalaiah ['01]

Shaded well using algorithms by Zwicker ['01],
Kaliah ['02], Adamson ['03]

Attributes of each primitive
(for Point-Based Rendering)

* Position (x,y,z).

* Normal (Nx, Ny, Nz).
* Color.

+ Size / Shape ?

Rendering Spheres

. Compute the maximum deviation (d) of the
projected surface from projection of the center (C).

2. Draw a square splat of size 2d centered at C.

Every point on the surface inside at least one sphere.

Our approach

1. Pre-Sampling:
— Progressively compute ordered list of samples
on the domain of each patch.

— Each sample associated with a sphere centered
on its corresponding point in 3D.

— The radius of the sphere decreases as more
points are added.

Pre-Computation

Sampling the Domain Space

Pre-Sampling
e

o
2

Domain Space

Our approach

2. View-dependent Point Selection:
— Compute the screen-space error for every patch.
— Compute the scaling factor for every patch.
— Compute the corresponding object-space error.
— Search for this value in the sorted list of error values.

— Render the corresponding samples with a certain
point-size.

Pre-Sampling
+ Start with the minimal sample set (e.g. the four
corners) in the domain.

 Generate the 2D Delaunay triangulation.

Pre-Sampling
« Start with the minimal sample set in the domain.
* Generate the 2D Delaunay triangulation.
» Compute center and radius of the circumscribing
spheres for each triangle (in 3D).

Pre-Sampling Pre-Sampling
O » Start with the minimal sample set in the domain.
2 * Generate the 2D Delaunay triangulation.
» Compute sphere parameters.
» While the sphere with ‘maximum radius’ has
radius greater than a user specified parameter:

. — Append (center, radius) to the list of computed
Point B samples.

S — Update the delaunay triangulation by incrementally
3 adding center and updating the center and radius of
)) the affected triangles.
@ Circumcenter of the triangle

Pre-Sampling
e

o
2 2

(@]
Point A

3

@ Circumcenter of the triangle Domain Space

Pre-Sampling Pre-Sampling
e

o

2

(@
3

@ Circumcenter of the triangle Domain Space

Pre-Sampling Properties What is stored ?

* Maximum deviation of a surface patch from the ¢ Ordered set of (u,v) pairs
approximating spheres equals the radius of the — by decreasing deviation

sphere with the largest radius. « Deviation in object space

 Spheres drawn at the sampled points ensure a

— i.e., deviation after the sample is added
hole-free tiling of the surface patch.

e 3-d Vertex

— optional

1. Scaling Factor for a patch

Scaling Factor for a vector at point P is the

Minimum ratio of the length of the vector

. . to its projected length on the image plane.
Rendering Time

Algorithm

1. Scaling Factor for a patch 2. Budget Allocation per patch

* Pre-processing Question: Given a screen-space error (o)), how
~ Partition space to compute the number of points required for
a given patch (F)?

— For each patch, use the partition containing it :
Solution:

— If too many partitions for a patch, subdivide patch)
1. Compute the scaling-factor ().

2. Compute the object-space error = A=(a * y).
3. Find the index j, such that AFJ-_l >A>AF ;
4. Return (j).

* Run-time (for each frame)
— Compute the scaling factor for each partition
— Scaling factor a patch is that of its partition

Example

UV Values

Deviation

UV Values 2

Deviation 24 |21

Let A=20

2. Budget Allocation per patch
Assign a rendering size (d) of 1 initially for every point on
each patch.
For every frame:
1. Compute the total points required (C' = 2C;).
2. IfC'<C, then done.
3. Incrementd by 1.
4. Go back to Step 1.

The above algorithm takes linear time to compute the right
rendering size (and hence screen-space error).

Example

UV Values P2 b

Deviation 24 | 21

Let A=20

UV Values P1| P2 |P3 |P4

Deviation | 26 | 24 |21 | 19

4 samples are chosen such that deviation is less
than A (20)

2. Budget Allocation per patch
(improved)
For every frame:

1. Assign the rendering size from the previous frame
to every patch

2. Compute the total points required (C' = 2C))
3. If C' <C, then for every patch:

a. Decrease its rendering size by 1

b. Recompute C'

c. If C'> C return

d. Else go back to Step 3

2. Budget Allocation per patch
(improved)

For every frame:
1. Assign the rendering size from the previous frame to every patch
2. Compute the total points required (C' = £C;)
fC' < C, then for every patch
a. Decrease its rendering size by 1
b. Recompute C'
¢. IfC'> C return

d. Else go back to Step 3

4. If C'> C, then for every patch:
a. Increment its rendering size by 1
b. Recompute C'
c. If C' < C return
d. Else go back to Step 4

3. Rendering Algorithm

For every patch:
1. Project the C, on the screen using the computed
rendering size (d).
2. In OpenGL:
glPointSize(d);
glColor3f(...);
gINormalPointer(...);
glVertexPointer(...);
glDrawArrays(GL_POINTS, 0, C));

Example

Rendering Size: 1 pixel

18 Samples i 12 Samples

p/ Patch A Patch B

Eye Point (E)

2. Budget Allocation per patch
(improved)

1. Assign the rendering size from the previous frame to every patch

For every frame:

2. Compute tl
4, I =,
a. De
b. Recompute C'
c. If C'> C return
4. If C'> C, then for every patch
a. Increment its rendering size by 1
b. Recompute C'
c. If C' < C return

[The above is a 2n-time bounded algorithm exploiting
the temporal coherence of the eye points.

Example

Budget: 30 primitives

p/ Patch A Patch B

Eye Point (E)

Example

Rendering Size: 1 pixel

18 Samples _— 12 Samples

Patch A Patch B

Eye Point (E')

Example Results

Rendering Size: 2 pixels Pre-comp. |Pre-proc.
Patch
Model aichies Samples (mts)

14 Samples 16 Samples Tea -
pot 129, 773
SE)

G | 151
Patch A Patch B

EyeIEonT(E) Pre-Sampling Performance

Budget Sampling of
Parametric Surface Patches

Jatin Chhugani and Subodh Kumar
Johns Hopkins University

Run-time Performance

Conclusions Acknowledgements

View-dependent algorithm for distributing Shankar Krishnan
points across patches Jonathan Cohen

Provides guaranteed primitive budget Budirijanto Purnomo

Applicable to class of parametric surfaces Lifeng Wang
UBC Modeling group

Alpha 1 Modeling system

Towards real-time spline surface rendering

National Science Foundation
Link Foundation

The End.

2 X wyp;B (u) B;(v)
i=0 j=0

> X w,-,-Bm,-(u) Bn,-(v)

i=0 j=0

where
n i n-i
Bernstein function B ; (7) :\\,.} ' (1-0"

Visual Artifacts

Aliasing effects across the
boundary of a patch

Reduction in artifacts by averaging normals across
patch boundaries

» >

Splines

» Non-Uniform Rational B-Spline (NURBS)
 Bezier patch (rational)
Degree m x n
Domain space (u, v) € [0,1] x [0,1]
For0<i<m,0<j<n,
Control points : p;,
Weights: w;

Knapsack Formulation

Cost/Benefit Formulation (Funkhouser [*93])

— Maximize X (Benefit)
s.t. 2 (Cost) < Frame RenderingTime

Granulartiy of our problem is much finer.

— Knapsack too slow

Results
[10,000 points]

Results
[20,000 points]

RGN
[40,000 points]

Results
[60,000 points]

Results
[30,000 points]

Results
[50,000 points]

Results
[70,000 points]

Results
[80,000 points]

RGN
[100,000 points]

Results
[90,000 points]

