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Motivation
• Sampling a continuous surface into discrete points

– Rendering as triangles or points
– FEM/BEM analysis for physics based computation
– Collision detection

• What criteria to satisfy?
– Inter-sample distance
– Deviation from the actual surface

• How to choose the best ‘N’ samples ?
• Relationship  between the best ‘N’ and the best 

‘N+1’ samples?

Example
Problem1: Discretise 'AB' into 5 points?

Problem 2: Discretise 'AB' into 6 points?
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B

Example

Best 5 samples Best 6 samples
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Common Samples

Different Samples

Application of Spline Models

• CAD/CAM , Entertainment Industry
• Medical Visualization
• Examples

– Submarines
– Animation Characters
– Human body especially the heart and brain

Splines
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Garden Model ( 38,646 patches)
Interacting with Spline Surfaces

• Interactive Spline Rendering:
– Need to update image 20-30 times per second
– Bound on the number of primitives that can be rendered per 

second

• Interactive Collision Detection:
– Need to compute collisions 1000 times per second
– Bounded CPU/GPU time
– Upper bound on the number of collision tests per second

Interacting with Spline Surfaces
• Interactive Spline Rendering:

– Need to update image 20-30 times per second
– Bound on the number of primitives that can be rendered per 

second

• Interactive Collision Detection:
– Need to compute collisions 1000 times per second
– Bounded CPU/GPU time
– Upper bound on the number of collision tests per second

Upper Bound on the number of primitives that 
can be handled per frame

Issues
1. Given a threshold (in terms of number of 

primitives), how to distribute it amongst various 
parts of the model?

2. What criteria need to be satisfied?
– Plausible image (Minimize artifacts)
– Accurate image (or bounded error, quantification if possible)
– Bounded Computation Time

Problem Statement
Given a set of surface patches {Fi}, and total number 

of primitives (C), allocate Ci to each patch 
ensuring fairness.

Fairness: Minimize the projected screen-space error 
of the whole model.

Questions:
1. How to compute Ci to minimize the deviation of 

samples from surface?
2. For rendering applications, how to render these 

primitives?

Rendering Splines
• Ray tracing

– J. Kajiya ['82], T. Nishita ['90], J. Whitted ['79]
• Pixel level surface subdivision

– E.Catmull ['74], M. Shantz ['88]
• Scan-line based

– J. Blinn ['78], J. Lane ['80], J. Whitted ['78]
• Polygonal Approximations

– Abi-Ezzi ['91], Filip ['86], S. Kumar ['96, '97, '01]
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Polygonal Approximations

• Produce accurate color and position only at 
the vertices of the polygons (triangles)

• Computationally intensive to figure out  
tessellation parameters

• Maintain expensive data-structures with 
substantial per-frame update costs

• May lead to a large number of small screen-
space triangles

Point-Based Rendering
• Introduced by Levoy and Whitted ['85]
• Explored further by Dally ['98],  Rusinkiewicz

['00], Pfister ['00], Stamminger ['01]
• Decompose surface into nominally curved 

`elements` which follow the surface more closely, 
Szeliski ['92], Witkin ['94], Kalaiah ['01]

• Shaded well using algorithms by Zwicker ['01], 
Kaliah ['02], Adamson ['03]

Point-Based Rendering
• No need to maintain topological information
• Lower update costs as compared to triangle-based 

rendering for zoomed-out views
• Less beneficial for zoomed-in views

Attributes of each primitive
(for Point-Based Rendering)

• Position (x,y,z).
• Normal (Nx, Ny, Nz).
• Color.
• Size / Shape ? 

Spheres as primitives

Every point on the surface inside at least one sphere.

Spheres on the patch 
in Object Space

Image
Plane

Projection of Spheres  
with no holes

Rendering Spheres

1. Compute the maximum deviation (d) of the 
projected surface from projection of the center (C).

2. Draw a square splat of size 2d centered at C.
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Our approach

1. Pre-Sampling:
– Progressively compute ordered list of samples 

on the domain of each patch.
– Each sample associated with a sphere centered 

on its corresponding point in 3D.
– The radius of the sphere decreases as more 

points are added.

Our approach

2. View-dependent Point Selection:
– Compute the screen-space error for every patch.
– Compute the scaling factor for every patch.
– Compute the corresponding object-space error.
– Search for this value in the sorted list of error values.
– Render the corresponding samples with a certain 

point-size.

Pre-Computation

Sampling the Domain Space

• Start with the minimal sample set (e.g. the four 
corners) in the domain.

• Generate the 2D Delaunay triangulation.

Pre-Sampling

Pre-Sampling

Domain Space

1 2

3 4

• Start with the minimal sample set in the domain.
• Generate the 2D Delaunay triangulation.

• Compute center and radius of the circumscribing 
spheres for each triangle (in 3D).

Pre-Sampling



5

Pre-Sampling

Point B

Point A

Circumcenter of the triangle

1 2

3 4

• Start with the minimal sample set in the domain.
• Generate the 2D Delaunay triangulation.
• Compute sphere parameters.

• While the sphere with ‘maximum radius’ has 
radius greater than a user specified parameter:
– Append (center, radius) to the list of computed 

samples.
– Update the delaunay triangulation by incrementally 

adding center and updating the center and radius of 
the affected triangles.

Pre-Sampling

Pre-Sampling

Point B

Point A

Circumcenter of the triangle

1 2

3 4

Pre-Sampling
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Domain Space

1 2

3 4

Pre-Sampling

5

Circumcenter of the triangle

1 2

3 4
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C

Pre-Sampling

5

Domain Space

1 2

3 4

6
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Pre-Sampling Properties

• Maximum deviation of a surface patch from the 
approximating spheres equals the radius of the 
sphere with the largest radius.

• Spheres drawn at the sampled points ensure a 
hole-free tiling of the surface patch.

What is stored ?

• Ordered set of (u,v) pairs 
– by decreasing deviation

• Deviation in object space 
– i.e., deviation after the sample is added    

• 3-d Vertex
– optional

Rendering Time 
Algorithm

1. Scaling Factor for a patch
Scaling Factor for a vector at point P is the
Minimum ratio of the length of the vector 
to its projected length on the image plane.

Image  Plane
Eye

Q′

P′
P

Q Ratio = |''|
||

QP
PQ

1. Scaling Factor for a patch

• Pre-processing
– Partition space
– For each patch, use the partition containing it
– If too many partitions for a patch, subdivide patch 

• Run-time (for each frame)
– Compute the scaling factor for each partition 
– Scaling factor a patch is that of its partition

2. Budget Allocation per patch

Question:  Given a screen-space error (α), how 
to compute the number of points required for 
a given patch (F)?

Solution: 
1. Compute the scaling-factor (γ).
2. Compute the object-space error = ∆=(α * γ).
3. Find the index j, such that ∆Fj-1 ≥ ∆ > ∆Fj
4. Return (j).
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Example

P1 P2 P3 P4 P5 P6 P7 P8UV Values

Deviation 26 24 21 19 14 13 6 3

Example

P1 P2 P3 P4 P5 P6 P7 P8UV Values

Deviation 26 24 21 19 14 13 6 3

Let ∆ = 20

Example

P1 P2 P3 P4 P5 P6 P7 P8UV Values

Deviation 26 24 21 19 14 13 6 3

Let ∆ = 20

Example

P1 P2 P3 P4UV Values

Deviation 26 24 21 19

4 samples are chosen such that deviation is less 
than ∆ (20)

2. Budget Allocation per patch
Assign a rendering size (d) of 1 initially for every point on 

each patch.
For every frame:
1. Compute the total points required (C' = ΣCi).
2. If C' < C, then done.
3. Increment d by 1.
4. Go back to Step 1.

The above algorithm takes linear time to compute the right 
rendering size (and hence screen-space error).

2. Budget Allocation per patch 
(improved)

For every frame:
1.  Assign the rendering size from the previous frame 

to every patch
2.  Compute the total points required (C' = ΣCi)
3.  If C' < C, then for every patch:

a. Decrease its rendering size by 1
b. Recompute C'
c. If C' > C return
d. Else go back to Step 3
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2. Budget Allocation per patch 
(improved)

For every frame:
1.  Assign the rendering size from the previous frame to every patch
2.  Compute the total points required (C' = ΣCi)
3.  If C' < C, then for every patch:

a. Decrease its rendering size by 1
b. Recompute C'
c. If C' > C return
d. Else go back to Step 3

4.  If C' > C, then for every patch: 
a. Increment its rendering size by 1
b. Recompute C'
c. If C' < C return
d. Else go back to Step 4

2. Budget Allocation per patch 
(improved)

For every frame:
1.  Assign the rendering size from the previous frame to every patch
2.  Compute the total points required (C' = ΣCi)
3.  If C' < C, then for every patch:

a. Decrease its rendering size by 1
b. Recompute C'
c. If C' > C return

4.  If C' > C, then for every patch: 
a. Increment its rendering size by 1

b. Recompute C'
c. If C' < C return

The above is a 2n-time bounded algorithm exploiting 
the temporal coherence of the eye points.

3. Rendering Algorithm

For every patch:
1. Project the Ci on the screen using the computed 

rendering size (d).
2. In OpenGL: 

glPointSize(d);
glColor3f(…);
glNormalPointer(…);
glVertexPointer(…);
glDrawArrays(GL_POINTS, 0, Ci);

Example

Eye Point (E)

Patch A Patch B

Budget: 30 primitives

Example

Eye Point (E)

18 Samples 12 Samples

Patch A Patch B

Rendering Size: 1 pixel
Example

Eye Point (E')

18 Samples 12 Samples

Patch A Patch B

Rendering Size: 1 pixel

Holes
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Example

Eye Point (E)

14 Samples 16 Samples

Patch A Patch B

Rendering Size: 2 pixels

Results

Model Patches Pre-comp. 
Samples

Pre-proc. 
(mts).

Teapot                32       129,273            09
Goblet 72 123,396            15

Pencil               570    1,051,624            70
Dragon          5,354    1,473,961            96
Garden        38,646    1,231,200            82

Pre-Sampling Performance

Results

Model Patches Points per                                   
Frame

Time in 
Software

Teapot                32         90,000         0.3% 31 
Goblet 72 100,000         0.5%              34

Pencil               570 70,000         2.4% 23
Dragon          5,354         50,000       11.9% 20
Garden        38,646         50,000       19.1% 7

Run-time Performance

Frame 
Rate

Video

Conclusions

• View-dependent algorithm for distributing 
points across patches

• Provides guaranteed primitive budget
• Applicable to class of parametric surfaces
• Towards real-time spline surface rendering
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The End.

Splines

• Non-Uniform Rational B-Spline (NURBS)
• Bezier patch (rational)

Degree m x n
Domain space (u, v) ε [0,1] x [0,1]
For 0 ≤ i ≤ m, 0 ≤ j ≤ n,

Control points : pij

Weights:  wij

m       n 

Σ Σ wijpij B
m

i(u) B
n

j (v) 
i=0    j=0

F(u,v) =  

m       n 

Σ Σ wij B
m

i(u) B
n

j (v) 
i=0    j=0

where
Bernstein function B

n
i (t) =    t i (1- t)n-i









i
n

Knapsack Formulation
• Cost/Benefit Formulation ( Funkhouser [`93])

– Maximize Σ (Benefit)
s.t. Σ (Cost) < Frame RenderingTime

• Granulartiy of our problem is much finer. 
– Knapsack too slow

Visual Artifacts

Aliasing effects across the 
boundary of a patch 

Reduction in artifacts by averaging normals across 
patch boundaries

Results
[10,000 points]
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Results
[20,000 points]

Results
[30,000 points]

Results
[40,000 points]

Results
[50,000 points]

Results
[60,000 points]

Results
[70,000 points]
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Results
[80,000 points]

Results
[90,000 points]

Results
[100,000 points]


