
1

Image Editing Work

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

Image Editing Work

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping

Image Editing Work

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping
Beier & Neely ’92 Field Morphing 

Image Editing Work

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping
Beier & Neely ’92 Field Morphing
Lee, et. al ’94 Thin-plate Splines 

Image Editing Work

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping
Beier & Neely ’92 Field Morphing 
Lee, et. al ’94 Thin-plate Splines

• Region-of-Interest Methods
Image-based methods could be 
applied to regions-of-interest



2

Image Editing Work

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping
Beier & Neely ’92 Field Morphing 
Lee, et. al ’94 Thin-plate Splines

• Region-of-Interest Methods
Image-based methods could be 
applied to regions-of-interest

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping
Beier & Neely ’92 Field Morphing 
Lee, et. al ’94 Thin-plate Splines

• Region-of-Interest Methods
Image-based methods could be 
applied to regions-of-interest
Elder & Goldberg ’98, ’01

Image Editing Work

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping
Beier & Neely ’92 Field Morphing 
Lee, et. al ’94 Thin-plate Splines

• Region-of-Interest Methods
Image-based methods could be 
applied to regions-of-interest

• Pixel-based Methods
Adobe Photoshop, GIMP, SuperGoo

• Image-based Methods
Wolberg ’90-’00 Image Warping
Beier & Neely ’92 Field Morphing 
Lee, et. al ’94 Thin-plate Splines

• Region-of-Interest Methods
Image-based methods could be 
applied to regions-of-interest
Elder & Goldberg ’98, ’01

Texture Synthesis Work

• Efros & Leung ’99 
Non-parametric Sampling

• Wei & Levoy 2000 Faster with TSVQ
• Harrison 2000 Resynthesizer plug-in
• Praun, et al. 2000 Lapped Textures
• Liang, et al. ‘01 Real-Time –

Patch-Based Sampling
• Efros & Freeman ‘01 

Image Quilting

Where does Object-Based 
Image Editing fit in?

Image-based Methods

Pixel-based Methods

Where does Object-Based 
Image Editing fit in?

Object-Based 
Image Editing

Image Warping, Morphing, Spline warping

SuperGoo, clone tool, nudge tool, etc.

Video



3

What we’re going to cover:

1. Object selection & representation
2. Object editing operations
3. Rendering
4. Background filling and

texture painting
5. Applications  

Object Selection

1. Segment image into catchment basins (TRAPs)
(Tobogganed Regions of Accumulated Plateaus) 
using a Toboggan-based watershed algorithm.

2. Manually “tag” TRAPs to select object

Selected 
Object

TRAPs

Object Representation

Selected

5 TRAPs

Object

Fit Triangular Mesh to selected Object
- for efficient OpenGL Rendering

Object Representation

Selected

5 TRAPs

Object

Fit Triangular Mesh to selected Object
- for efficient OpenGL Rendering

Object Representation

1. Recursive Divide & Conquer 
Polygonalization of Object Boundary

Object Representation

2. Insert Nodes (corners and basepoints)



4

Object Representation

3. Final Triangulation
– using Delaunay algorithm

Object Editing Operations

1. Object selection & representation
2. Object editing operations 
3. Rendering
4. Background filling and

texture painting
5. Applications  

Object Editing Operations

2. Object editing operations 
a. Direct Editing
b. Indirect Editing

Object Editing Operations

2. Object editing operations 
a. Direct Editing
b. Indirect Editing

Stretch

1. After the object has been selected 

ObjectObject

Stretch

1. After the object has been selected 

2. And vertices (x,y) identified

ObjectObject

(x,y)



5

Stretch

1. After the object has been selected 

2. And vertices (x,y) identified

(x,y)

ObjectObject

3. An anchor/pivot point is specified

- x   +x- x   +x

Stretch

1. After the object has been selected 

2. And vertices (x,y) identified

3. An anchor/pivot point is specified

4. And the user clicks on or near the object to 
stretch it with respect to the anchor point.

Stretch

Object vertices (x,y), are stretched







 ∆
+=

xb
xxx 1' 






 ∆
+=

yb
yyy 1'

x

Reference Lines

Stretch

x







 ∆
+=

xb
xxx 1' 






 ∆
+=

yb
yyy 1'

Reference Lines show uniform stretch

Object vertices (x,y), are stretched to (x’,y’ ),

where    (∆x, ∆y) captures cursor movement
bx, by are object dimensions

x'

We now introduce an attenuation function, A[i]







 ∆
+=

xb
xxx 1' 






 ∆
+=

yb
yyy 1'






 ∆
+=

x

l

b
xiAxx ][1' 






 ∆
+=

y

t

b
yiAyy ][1'

Simple Linear Stretch

i

A[i]

x x'

With the same result … for constant A[i]

But if we vary A[i]







 ∆
+=

x

l

b
xiAxx ][1' 






 ∆
+=

y

t

b
yiAyy ][1'

Nonlinear Stretch

i

A[i]

x'

We get nonlinear stretch



6

But if we vary A[i]

Less Movement More Movement

x'







 ∆
+=

x

l

b
xiAxx ][1' 






 ∆
+=

y

t

b
yiAyy ][1'

Nonlinear Stretch

i

A[i]

Less Stretch

x'

But if we vary A[i]

Less Movement More Movement







 ∆
+=

x

l

b
xiAxx ][1' 






 ∆
+=

y

t

b
yiAyy ][1'

Nonlinear Stretch

i

A[i]

x'

More Stretch

And if we vary A[i] even more 

Less Movement More Movement

x'

Extreme Nonlinear Stretch







 ∆
+=

x

l

b
xiAxx ][1' 






 ∆
+=

y

t

b
yiAyy ][1'

Nonlinear Stretch

i

A[i]

x'

Simple rotation matrix,

( ) ( ) ( )
( ) ( ) 








•






 −
=

y
x

yx
θθ
θθ

cossin
sincos

','

with attenuated θ

( ) ( ) ( )
( ) ( ) 








•






 −
=

y
x

iAiA
iAiA

yx
][cos][sin
][sin][cos

','
θθ
θθ

i

A[i]

Rotate

Rotate Rotational Bend

Simple rotation matrix,

( ) ( ) ( )
( ) ( ) 








•






 −
=

y
x

yx
θθ
θθ

cossin
sincos

','

with attenuated θ

( ) ( ) ( )
( ) ( ) 








•






 −
=

y
x

iAiA
iAiA

yx
][cos][sin
][sin][cos

','
θθ
θθ

i

A[i]

Bend-Stretching

• Calculate the bend based on stretch values

( ) ( ) ( )
( ) ( ) 








•







 −
=







 −
+=

'
'

][cos][sin
][sin][cos

'',''

][1'

y
x

iAiA
iAiA

yx

b
vviAxx

rr

rr

x

on
l

θθ
θθ

yy ='
x

on

b
vv −

User Actions

Computation



7

Indirect Editing

2. Object editing operations 
a. Direct Editing
b. Indirect Editing

Curve Deformers - Defaults

Length

Thickness

Rotation

Cursor Point

Anchor Point

Length Flattening

Length
~ flat

Thickness

Rotation

Cursor Point

Anchor Point

Bend-Stretching

Length
Leveling

Thickness

Rotation
Level-off

Cursor Point

Anchor Point

Indirect Editing - Interactive Rendering

1. Object selection & representation
2. Object editing operations 
3. Rendering
4. Background filling and

texture painting
5. Applications 



8

Antialiasing using OpenGL

Variables:
• Layer Height
• Layer Width
• Layer Height w

h

Antialiasing using OpenGL

Variables:
• Layer Height
• Layer Width
• Layer Height

• Number of Layers
• Layer Width

Object
Object
Boundary

Background Filling

1. Object selection & representation
2. Object editing operations
3. Rendering
4. Background filling and

texture painting
5. Applications  

Background Filling

2 Methods

1. Scale Down 
Filling (2a-3a)

2. Gridded (2b-3b)

Sampling

1. Automatic

2. User Selects

Texture Preservation

• When an object stretches, if its texture is high in 
detail, the texture becomes overly smoothed, 
looking unnatural.

• To fix this, we keep object TRAP sizes constant, 
warping only their basepoint positions.

Applications

1. Object selection & representation
2. Object editing operations 
3. Rendering
4. Background filling and

texture painting
5. Applications



9

Video

Contributions & Conclusions

1. New object selection tool
2.  Trap-based triangulation
3.  Automatic background filling
4.  Attenuation functions A[i]
5.  Curve deformers
6.  OpenGL antialiasing
7.  Texture painting
8.  Texture preservation
9.  Image editing at the object level

Future Work

1.  Structured background filling
2.  Intelligent selection tools

(Intelligent Scissors, Paint)
3.  Predefined/Advanced/Compounded 

Attenuation functions
4. Subpixel edge model for

decontamination of object fringe
5. Use multiple anchor points, 

Edit multiple objects simultaneously


