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Why Ray Tracing?

Why Ray Tracing?

Output-sensitive Interactive on clusters of

algorithm PCs [Wald et al. 2001]
Sublinear in depth and supercomputers
complexity [Parker et al. 1999 ]

Selective sampling

Frameless rendering
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Power Plant
[Wald et al. 2001]

Graphics Pipeline

Global illumination
Good shadows!
Doom 3 will be using
shadow volumes
Expensive!
Shadow maps are hard to
use and prone to artifacts

Efficient ray tracing
based shadows could
be the next killer
feature for GPUs

Doom 3 [id Software]

Beyond Moore’s Law
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NVIDIA Historicals

Season  Product Yr rate MF/s Yr rate
2H97 Riva 128 - 100 -
1H98 Riva ZX 1.0 100 1.0
2H98 Riva TNT 1.0 180 3.2
1H99 Riva TNT2 1.0 333 3.4
2H99 GeForce 3.5 480 2.1
1HOO GeForce2 GTS 2.8 666 1.9
2H00 GeForce2 Ultra 1.5 2.3
1HO1 GeForce3 1.7 10.2
1HO02 GeForce4 1.6 1.5
Courtesy of Kurt Akeley 1.8 2.4

Yearly growth well above Moore’s Law (1.5)
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Traditional Pipeline Programmable Fragment Pipeline

Hypothetical DirectX 9 / OpenGL 2.0 class GPU
General, orthogonal instruction set
Floating-point data types Fragment
Resources

Large number of registers

Textures
Fragment
Program

Long program length

Multiple outputs
Output

Unlimited texture lookups

Registers

Multiple levels of dependent texture lookup

Data dependent loops and branches (OGL2)




Contributions Assumptions

Map complete ray tracer onto GPU Static scenes
Ray tracing generally thought to be incompatible Triangle primitives only

b e eraditional graghies pipsline Uniform grid acceleration structure
Abstract programmable fragment processor
as a stream processor

Map ray tracing to streaming computation

Show that streaming GPU-based ray tracer is
competitive with CPU-based ray tracer

Stream Programming Model

Programmable fragment processor is

essentially a stream processor securd

|

Kernels and streams globals —{ kernel
Stream is a set of data records l

Kernels operate on records globals —{ kernel

Streams connect kernels together l

Kernels can read global memory ‘r’gctgﬁé

stream

Streaming Ray Tracer (Simplified) Eye Ray Generator
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float4 Intersect( float3 ro, float3 rd,

int listpos, float4 h ) {
float tri_id = texture( listpos, trilist );
float3 vO0 = texture( tri_id, v0 );
float3 v1 = texture( tri_id, v1);
float3 v2 = texture( tri_id, v2);
float3 edge1 = v1 - v0;
float3 edge2 = v2 - v0;
float3 pvec = Cross( rd, edge2 );
float det = Dot( edge1, pvec );
float inv_det = 1/det;
float3 tvec = ro — v0;
float u = Dot( tvec, pvec ) * inv_det;
float3 qvec = Cross( tvec, edge1 );
float v = Dot( rd, qvec ) * inv_det;
float t = Dot( edge2, qvec ) * inv_det;
/I determine if valid hit by checking
/lu,v>0andutv <1
Il set hit data into h based on valid hit
return float4( {t,u,v,id} );

}

Scene in Texture Memory
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Ray Tracing on a GPU

Uniform Grid vox0 vox1 vox2 vox3 vox4 vox5 voxmM

3D Luminance |0

4 D[ 11 ]38 .. [564]

Texture

Triangle List vox0

VOx2

Store scene data in texture memory
Dependent texturing is key

Multipass rendering for flow control
Branching would eliminate this need

Texture As Memory

1D Luminance | 0 [ 3 > 1 [ 3] 7 [21 J216] ..

Texture

tri0| tri1
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Triangles v0| Xyz | Xyz |

Xyz | Xyz | XyzZ | Xyz | | Xyz |

3x 1D RGB

Textures Vi Loz xve |
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Currently limited in size - 128 MB

About 3M triangles @ 36 bytes per triangle
Uniform grid

Maps naturally to 3D textures

Requires 4 levels of dependent texture lookups
1D textures limited in length

Emulate larger address space with 2D textures
Want integer addressing - not floating point

Efficient access without interpolation

Integer arithmetic




Streaming Flow Control

Multiple Rendering Passes

Application
and Geometry
Stages
J' Rasterization
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Multiple Rendering Passes Streaming Ray Tracer
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Multipass Optimization Scene Statistics

Reduce the number of passes

Choose to traverse or intersect based on work to be
done for each type of pass

Connection Machine ray tracer [Delany 1988] Va4 2511 e (0N
Intersect once 20% of active rays need intersecting 252 051 22107 £7:90

; 0.44 1.00 0.96 0.97
Make each pass less expensive T s T TR
Most passes involve only a few rays

: v - average number of voxels a ray pierces
Early fragment kill based on fragment mask t - average triangles a ray intersects

Saves compute and bandwidth s - average number of shading evaluations per ray
P - number of rendering passes

R* (Cr + v*Cv + t*Ct + s*Cs) + R*P*Cmask

Performance Estimates Demo Analysis

Pentium Il 800 MHz CPU implementation Prototype Performance (ATI R300)
20M intersections/s [Wald et al. 2001] 500K - 1.4M raycast/s

Simulated performance 94M intersections/s
2G instructions/s and 8GB/s bandwidth Only three weeks of coding effort

Instruction limited ATI Radeon 8500 GPU (R200)

56M intersections/s 114M intersections/s [Carr et al. 2002]

Nearly bandwidth limited Fixed point operations

222M intersections/s

X . e Only ray-triangle intersection kernel
Streaming ray tracing is compute limited!




Summary

Programmable GPU is a stream processor
Ray tracing can be a streaming computation

Complete ray tracer can map onto the GPU

Ray tracing generally thought to be incompatible
with the traditional graphics pipeline

Streaming GPU-based ray tracer is
competitive with CPU-based ray tracer

Future Work

Architectural Results

Acceleration Structure
Multi-level grids or k-d trees
Dynamic acceleration structure
Building acceleration structure on GPU
Requires scatter (i.e. dependent texture write)
Photon mapping
Ask me again in January...

Acknowledgements

Fragment mask proposed for efficient multipass
Stream buffer eliminates this need

Stream data should not go through standard

texture cache

Triangles cache well for primary rays, secondary
less so

Branching architecture

More cache coherence than the multipass architecture for
scene data

Reduces memory bandwidth for stream data

But has its own costs...

Final Thoughts
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Ray tracing maps into current GPU
architecture
Does not require fundamentally different hardware

Hybrid algorithms possible
What else can the GPU do?
Given you can do ray tracing, you can do anything

Fluid flow, molecular dynamics, etc.

GPU performance increase will continue to
outpace CPU performance increase

Questions?




