Shader Driven Compilation of
Rendering Assets

Paul Lalonde
Eric Schenk
Electronic Arts (Canada) Inc.

Target Hardware

» Sony PS2, Microsoft Xbox, Nintendo GC,
Microsoft DX8 PC
» Common Characteristics:
— CPU and GPU connected by narrow bus
— GPU is programmable
— Texture combining is a post-GPU step

(our system does not address pixel to vertex shader
feedback)

* Avoid read/compute/write/submit-to-GPU
— Avoid touching data twice :

TR TR LET

Shader Compilers

Might produce cross-platform shaders
Address specification and construction of
efficient shaders

Do not address the layout of rendering
data

— No automatic system to connect model data
to shaders

Do not address offline data transforms

Pl N
ELACTEAMIC aRTI0

Motivation
We want high level API: models more than
vertices
We would like a cross-platform system

We also want low-level features that are
*not* cross platform

High performance requires out-of-API
knowledge

Less programmer involvement in shader
selection :

Display Lists and Scene Graphs

* OpenGL and DirectX display lists can be
efficient, but must be constructed by a
program
— More efficient because they save many

function calls for subsequent submissions.
Iris Performer forces direct-mode
geometry submission in exchange for
hardware state change reduction.

LLRESTESHIE ARTY

Let's Compile Art

Encode out-of-API hardware performance
issues in the Compiler

— Cache sizes

— Cost of state changes

— Memory bandwidth

Be aware of user constructs, such as
models

Perform offline transforms

Generate code to hook model data to
shaders

S

4™

i—_
ALEETESHIC alTE




Properties of Game Art

Fixed topology

Come in atomic bundles: Models
— Multiple shaders per model

Game Al controls many attributes
— Skeleton pose

— Morph weighting

— Shader variables

— |
ELEETESATE L0TE

The Render Method

Extend a shader to include:

— Input specifications

— Offline transformations

Make it re-usable with different art

Use the Render Method both in runtime
and in the Compiler

Unfortunately platform specific

TR TR LET

Render Method — Variables

» Transforms input data to shader data

Rendermethod gouraud {

variables {
extern volatile Matrix Xf = View::Xf;
Coord3Colour coords[nVerts]
= Pack3 (Coordinates, Colours);
export modifiable State
GeometryName: :state;
noupload RenderBuffer output[nVerts];

£

Pl N
ELACTEAMIC aRTI0

Mapping Art to Shaders

» Three kinds of shader inputs

— Source art that is opaque
+ Coordinates, normals, colours

— Source art modified by the user at runtime
» Some coordinates, colours
+ Often default parameters (lighting, ...)
« State information (shading modes, textures)

— Runtime values used for control
» Tranformation matrices, matrix palettes

How do we link art to shaders?

Render Method — Inputs

« Lists data elements required from the
source art

* Inputs are platform independent
Rendermethod gouraud {

inputs {
Coordinate4 Coordinates;
ColourARGB Colour;
Char GeometryName;
int nVerts;

LLRESTESHIE ARTY

Render Method — Computations

+ Computations are macro expanded to
make shaders

Rendermethod gouraud {

Computations {
XCProject (nVerts, coords, Xf, output);
XGKick (GeometryName: :state) ;
XGKick (output) ;
}
}

F— "
ALEETESHIC alTE




Art assets

and render = Compllatlon
methods —
Process

Packets made of
fragments of art
asset using a
single render
method

Byte code,

hardware specific

data structures,
and shaders o

Runtime Runtime

. Frame
evaluation T
uffer

Packet Compiler

* For each packet stream

— Reorder to minimize state changes
* Model draw is atomic

* Per packet
— Execute data transforms
— Generate platform specific data structures
— Generate platform specific byte code

TR TR LET

Global Optimizations

» Optimizations encode much platform
specific out-of-AP| knowledge
— Remove redundant state settings
— Remove redundant instructions
— Remove redundant data transfers
— Merge DMA chains
 After Optimization, Emit.
— We generate ELF files to facilitate linkage

Pl N
ELACTEAMIC aRTI0

Compiler Front End

We compile from an art package agnostic
intermediate form

FE breaks models into per-render method
classes

Vertices may be reordered for cache
optimization (tri-strips, meshes, etc)
Classes are broken to fit hardware and
rendermethod constraints (eg, skinning
palettes), into streams of packets

Code Generation

» Generate a byte-code program to render
each packet

— Byte code used to exploit ICache coherence
— Program attaches data elements to shader

— Instructions relate to accumulating hardware
data structures and setting state

Results

» Easy to port
— 3 Man-months to a new platform
— Games port in 1-2 man-months

* Render Methods have been used for many
custom features

)
ALEETESHIC alTE




Results I

Millions of Polygons per sec/Mllllons of Vertices per sec
Figures date from November 2001

Video Not Available

Future Directions

Runtime/Just in time compilation
Ease of use for dynamic topology

Incremental compilation for rapid art
iteration
Cross-platform Render Methods




