
1

Chromium: A Stream Processing
Framework for Interactive

Rendering on Clusters

Chromium: A Stream Processing Chromium: A Stream Processing
Framework for Interactive Framework for Interactive

Rendering on ClustersRendering on Clusters

Greg Humphreys, Mike Houston, Ren Ng
Stanford University

Sean Ahern, Randall Frank
Lawrence Livermore National Laboratories

Peter Kirchner, James T. Klosowski
IBM T.J. Watson Research 2

The ProblemThe Problem

Scalable graphics solutions are rare and Scalable graphics solutions are rare and
expensiveexpensive

Commodity technology is getting fasterCommodity technology is getting faster

But it tends not to scaleBut it tends not to scale

Cluster graphics solutions have been Cluster graphics solutions have been
inflexibleinflexible

3

Why Clusters?Why Clusters?

Commodity partsCommodity parts
• Complete graphics pipeline on a single chip

• Extremely fast product cycle

• More feature innovation

FlexibilityFlexibility
• Configurable building blocks

CostCost
• Driven by consumer demand

• Economies of scale

4

Stream ProcessingStream Processing

Stream
Source Transform 1

Transform 1

Transform 2
...

...

Streams:
• Ordered sequences of records
• Potentially infinite

Stream Transformations:
• Process only the head element
• Finite local storage

Stream
Source

Stream
Output

5

Why Stream Processing?Why Stream Processing?

Elegant mechanism for dealing with huge dataElegant mechanism for dealing with huge data
• Explicitly expose and exploit parallelism

• Hide latency

State of the art in many fields:State of the art in many fields:
• Databases [Terry92, Babu01]

• Telephony [Cortes00]

• Online Algorithms [Borodin98,O’Callaghan02]

• Sensor Fusion [Madden01]

• Media Processing [Halfhill00,Khailany01]

• Computer Architecture [Rixner98]

• High Performance Graphics [Owens00, Purcell02, NVIDIA, ATI]
6

WireGLWireGL

Server

Parallel
OpenGL

Parallel
OpenGL

App

App

App

...

Server

Server

Server

...
Display

[Humphreys01]

2

7

WireGL ShortcomingsWireGL Shortcomings

SortSort--firstfirst
• Can be difficult to load-balance

• Screen-space parallelism limited

• Heavily dependent on spatial locality

Resource utilizationResource utilization
• Geometry must move over network every frame

• Server’s graphics hardware remains underutilized

We need something more flexibleWe need something more flexible

S

A
A

A

...

S
S

S

...

8

Chromium: General ApproachChromium: General Approach

Replace system’s OpenGL driverReplace system’s OpenGL driver
• Industry standard API

• Support existing unmodified applications

Manipulate streams of API commandsManipulate streams of API commands
• Alter/inject/discard commands and parameters

• Route commands over a network

• Render commands using graphics hardware

9

Graphics Stream ProcessingGraphics Stream Processing

Treat OpenGL calls as a stream of commandsTreat OpenGL calls as a stream of commands

Form a DAG of stream transformation nodesForm a DAG of stream transformation nodes
• Nodes are computers in a cluster

• Edges are OpenGL API communication

Each node has a Each node has a serializationserialization stage and a stage and a
transformationtransformation stagestage

10

Stream SerializationStream Serialization

•• Convert multiple streams into a single streamConvert multiple streams into a single stream
•• ContextContext--switch between streams [Buck00]switch between streams [Buck00]
•• Constrain ordering using Parallel OpenGL Constrain ordering using Parallel OpenGL

extensions [Igehy98]extensions [Igehy98]
•• Two kinds of serializers:Two kinds of serializers:

• Network server:

• Application:

• Unmodified serial application
• Custom parallel application

S

A
OpenGL

11

Stream TransformationStream Transformation

•• Serialized stream is dispatched to “Stream Serialized stream is dispatched to “Stream
Processing Units” (SPUs)Processing Units” (SPUs)

•• Each SPU is a shared libraryEach SPU is a shared library
• Exports the OpenGL interface

•• Each node loads a Each node loads a chainchain of SPUs at run timeof SPUs at run time

•• Common usage: intercept a few OpenGL calls, Common usage: intercept a few OpenGL calls,
pass all others to downstream SPUpass all others to downstream SPU

12

Example: WireGL RebornExample: WireGL Reborn

App

App

App

...
Tilesort

Tilesort

Tilesort

...

Server

Server

Server

Readback

Readback

Readback

Send

Send

Send

Server

Render

3

13

Example: Sort-LastExample: Sort-Last

Application runs directly on graphics hardwareApplication runs directly on graphics hardware
Same application can use sortSame application can use sort--last or sortlast or sort--firstfirst

...

Application

Application

Application

Readback

Readback

Readback

Send

Send

Send

Server

Render

14

Sort-Last Binary SwapSort-Last Binary Swap

Application Application

Application Application

Readback Readback

Readback Readback

BSwap BSwap

BSwap BSwap

Send Send

Send Send

Server

Render
[Ma94]

15

Binary Swap ResultsBinary Swap Results

One node

Two nodes

Four nodes
Eight nodes Sixteen nodes

16

Example: UI ReintegrationExample: UI Reintegration

App

Tilesort ...

Server

Server

Server

IBM
T221

Display
(3840x2400)

IBM
Scalable
Graphics
Engine

Chromium Protocol
UDP/Gigabit Ethernet
Digital Video Cables

Integrate

Integrate

Integrate

17

CATIA Driving IBM’s T221CATIA Driving IBM’s T221

Jet engine nacelle model courtesy Goodrich Aerostructures
Chromium is the only practical way to drive the T221 with an existing application
Demonstrated at Supercomputing 2001

3840

24
00

18

•• Buffer a complete frameBuffer a complete frame
•• Play the frame back twicePlay the frame back twice
•• Wrinkles:Wrinkles:

• Vertex array pointers may not be valid at playback

• State queries (e.g. glGet) must be handled
immediately

Example: Hidden-Line DrawingExample: Hidden-Line Drawing

Application

StateQuery VertexArray HiddenLine Render

4

19

A Hidden-line Style SPUA Hidden-line Style SPU

20

A Hidden-line Style SPUA Hidden-line Style SPU

21

DemoDemo
Quake III

Render

Quake III

StateQuery VertexArray HiddenLine Render

Server
HiddenLine Render

Quake III
SendStateQuery

22

Is “HiddenLine” Really a SPU?Is “HiddenLine” Really a SPU?

•• Technically, no!Technically, no!
•• Requires potentially unbounded resourcesRequires potentially unbounded resources
•• Alternate design:Alternate design:

Application

SQ VA HiddenLine

Server

Server

Readback Send

Readback Send

Server

Render

Lines

Polygons

Depth
Composite

23

Future DirectionsFuture Directions

Taxonomy of nonTaxonomy of non--invasive techniquesinvasive techniques
• Classify SPUs and algorithms

• Identify tradeoffs in design

EndEnd--toto--end visualization system for 4D dataend visualization system for 4D data
• Data management and load balancing

• Volume compression

Remote/Ubiquitous VisualizationRemote/Ubiquitous Visualization
• Scalable graphics as a shared resource

• Transparent remote interaction with (parallel) apps

24

Summary/PredictionsSummary/Predictions

Manipulation of graphics streams is a Manipulation of graphics streams is a
powerful abstraction for cluster graphicspowerful abstraction for cluster graphics
• Achieves both input and output scalability

Providing Providing mechanismsmechanisms instead of instead of algorithms algorithms
allows greater flexibilityallows greater flexibility
• Data management algorithms can be built into a

parallel application or embedded in a SPU

Flexible remote graphics will lead to a Flexible remote graphics will lead to a
revolution in ubiquitous computingrevolution in ubiquitous computing

5

25

AcknowledgementsAcknowledgements

•• Pat Pat HanrahanHanrahan
•• Brian Paul and Alan Brian Paul and Alan HourihaneHourihane
•• Ian Buck and Matthew EldridgeIan Buck and Matthew Eldridge
•• Chris Chris NiederauerNiederauer
•• All the Chromium usersAll the Chromium users
•• DOE VIEWS grant #B504665DOE VIEWS grant #B504665

26

Try It YourselfTry It Yourself

•• Chromium is openChromium is open--sourcesource
•• Available from Available from chromium.sourceforge.netchromium.sourceforge.net
•• Runs on:Runs on:

• Windows
• Linux (tested on Intel and Playstation2)
• IRIX
• AIX
• Solaris
• HPUX
• Tru64
• Mac OS X (soon)

27

SPU InheritanceSPU Inheritance

The Readback and Render SPUs are relatedThe Readback and Render SPUs are related
• Readback renders everything except SwapBuffers

Readback Readback inheritsinherits from the Render SPUfrom the Render SPU
• Override parent’s implementation of SwapBuffers

• All OpenGL calls considered “virtual”

28

Readback’s SwapBuffersReadback’s SwapBuffers

Easily extended to include depth composite Easily extended to include depth composite
All other functions inherited from Render SPUAll other functions inherited from Render SPU

void RB_SwapBuffers(void)
{

self.ReadPixels(0, 0, w, h, ...);
child.Clear(GL_COLOR_BUFFER_BIT);
child.BarrierExec(READBACK_BARRIER);
child.RasterPos2i(tileX, tileY);
child.DrawPixels(w, h, ...);
child.BarrierExec(READBACK_BARRIER);
child.SwapBuffers();

}

