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The ProblemThe Problem

Scalable graphics solutions are rare and Scalable graphics solutions are rare and 
expensiveexpensive

Commodity technology is getting fasterCommodity technology is getting faster

But it tends not to scaleBut it tends not to scale

Cluster graphics solutions have been Cluster graphics solutions have been 
inflexibleinflexible
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Why Clusters?Why Clusters?

Commodity partsCommodity parts
• Complete graphics pipeline on a single chip

• Extremely fast product cycle

• More feature innovation

FlexibilityFlexibility
• Configurable building blocks

CostCost
• Driven by consumer demand

• Economies of scale
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Stream ProcessingStream Processing
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Streams:
• Ordered sequences of records
• Potentially infinite

Stream Transformations:
• Process only the head element
• Finite local storage
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Why Stream Processing?Why Stream Processing?

Elegant mechanism for dealing with huge dataElegant mechanism for dealing with huge data
• Explicitly expose and exploit parallelism

• Hide latency

State of the art in many fields:State of the art in many fields:
• Databases [Terry92, Babu01]

• Telephony [Cortes00]

• Online Algorithms [Borodin98,O’Callaghan02]

• Sensor Fusion [Madden01]

• Media Processing [Halfhill00,Khailany01]

• Computer Architecture [Rixner98]

• High Performance Graphics [Owens00, Purcell02, NVIDIA, ATI] 
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WireGL ShortcomingsWireGL Shortcomings

SortSort--firstfirst
• Can be difficult to load-balance

• Screen-space parallelism limited

• Heavily dependent on spatial locality

Resource utilizationResource utilization
• Geometry must move over network every frame

• Server’s graphics hardware remains underutilized

We need something more flexibleWe need something more flexible
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Chromium: General ApproachChromium: General Approach

Replace system’s OpenGL driverReplace system’s OpenGL driver
• Industry standard API

• Support existing unmodified applications

Manipulate streams of API commandsManipulate streams of API commands
• Alter/inject/discard commands and parameters

• Route commands over a network

• Render commands using graphics hardware
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Graphics Stream ProcessingGraphics Stream Processing

Treat OpenGL calls as a stream of commandsTreat OpenGL calls as a stream of commands

Form a DAG of stream transformation nodesForm a DAG of stream transformation nodes
• Nodes are computers in a cluster

• Edges are OpenGL API communication

Each node has a Each node has a serializationserialization stage and a stage and a 
transformationtransformation stagestage
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Stream SerializationStream Serialization

•• Convert multiple streams into a single streamConvert multiple streams into a single stream
•• ContextContext--switch between streams [Buck00]switch between streams [Buck00]
•• Constrain ordering using Parallel OpenGL Constrain ordering using Parallel OpenGL 

extensions [Igehy98]extensions [Igehy98]
•• Two kinds of serializers:Two kinds of serializers:

• Network server:

• Application:

• Unmodified serial application
• Custom parallel application

S
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Stream TransformationStream Transformation

•• Serialized stream is dispatched to “Stream Serialized stream is dispatched to “Stream 
Processing Units” (SPUs)Processing Units” (SPUs)

•• Each SPU is a shared libraryEach SPU is a shared library
• Exports the OpenGL interface

•• Each node loads a Each node loads a chainchain of SPUs at run timeof SPUs at run time

•• Common usage: intercept a few OpenGL calls, Common usage: intercept a few OpenGL calls, 
pass all others to downstream SPUpass all others to downstream SPU
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Example: WireGL RebornExample: WireGL Reborn
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Example: Sort-LastExample: Sort-Last

Application runs directly on graphics hardwareApplication runs directly on graphics hardware
Same application can use sortSame application can use sort--last or sortlast or sort--firstfirst
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Sort-Last Binary SwapSort-Last Binary Swap
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Binary Swap ResultsBinary Swap Results

One node

Two nodes

Four nodes
Eight nodes Sixteen nodes
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Example: UI ReintegrationExample: UI Reintegration
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CATIA Driving IBM’s T221CATIA Driving IBM’s T221

Jet engine nacelle model courtesy Goodrich Aerostructures
Chromium is the only practical way to drive the T221 with an existing application
Demonstrated at Supercomputing 2001
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•• Buffer a complete frameBuffer a complete frame
•• Play the frame back twicePlay the frame back twice
•• Wrinkles:Wrinkles:

• Vertex array pointers may not be valid at playback

• State queries (e.g. glGet) must be handled 
immediately

Example: Hidden-Line DrawingExample: Hidden-Line Drawing

Application

StateQuery VertexArray HiddenLine Render
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A Hidden-line Style SPUA Hidden-line Style SPU
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A Hidden-line Style SPUA Hidden-line Style SPU
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DemoDemo
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Is “HiddenLine” Really a SPU?Is “HiddenLine” Really a SPU?

•• Technically, no!Technically, no!
•• Requires potentially unbounded resourcesRequires potentially unbounded resources
•• Alternate design:Alternate design:
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Future DirectionsFuture Directions

Taxonomy of nonTaxonomy of non--invasive techniquesinvasive techniques
• Classify SPUs and algorithms 

• Identify tradeoffs in design

EndEnd--toto--end visualization system for 4D dataend visualization system for 4D data
• Data management and load balancing

• Volume compression

Remote/Ubiquitous VisualizationRemote/Ubiquitous Visualization
• Scalable graphics as a shared resource

• Transparent remote interaction with (parallel) apps
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Summary/PredictionsSummary/Predictions

Manipulation of graphics streams is a Manipulation of graphics streams is a 
powerful abstraction for cluster graphicspowerful abstraction for cluster graphics
• Achieves both input and output scalability

Providing Providing mechanismsmechanisms instead of instead of algorithms algorithms 
allows greater flexibilityallows greater flexibility
• Data management algorithms can be built into a 

parallel application or embedded in a SPU

Flexible remote graphics will lead to a Flexible remote graphics will lead to a 
revolution in ubiquitous computingrevolution in ubiquitous computing
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Try It YourselfTry It Yourself

•• Chromium is openChromium is open--sourcesource
•• Available from Available from chromium.sourceforge.netchromium.sourceforge.net
•• Runs on:Runs on:

• Windows
• Linux (tested on Intel and Playstation2)
• IRIX
• AIX
• Solaris
• HPUX
• Tru64
• Mac OS X (soon)
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SPU InheritanceSPU Inheritance

The Readback and Render SPUs are relatedThe Readback and Render SPUs are related
• Readback renders everything except SwapBuffers

Readback Readback inheritsinherits from the Render SPUfrom the Render SPU
• Override parent’s implementation of SwapBuffers

• All OpenGL calls considered “virtual”
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Readback’s SwapBuffersReadback’s SwapBuffers

Easily extended to include depth composite Easily extended to include depth composite 
All other functions inherited from Render SPUAll other functions inherited from Render SPU

void RB_SwapBuffers(void)
{

self.ReadPixels( 0, 0, w, h, ... );
child.Clear( GL_COLOR_BUFFER_BIT );
child.BarrierExec( READBACK_BARRIER );
child.RasterPos2i( tileX, tileY );  
child.DrawPixels( w, h, ... );
child.BarrierExec( READBACK_BARRIER );
child.SwapBuffers( );

}


