An example of our algorithm

1.2 million
triangles

Thousands

Ll
SIGGRAPH
D

Soft Things

Robust Treatment of Collisions, Contact
and Friction for Cloth Animation

Robert Bridson (presenting),
Ronald Fedkiw and John Anderson

First problem: sheer size

of contacts
per timestep
~1 day of
computation
on a laptop

Second problem: low tolerance

Every node is on the surface, surface
folds easily

° 10,000+ collisions per time step easily
possible when cloth folds over onto itself

* Too expensive to resolve in time order

One solution: repulsion forces

Cloth is very thin —
once it interpenetrates, it pops out
the other side
* In most interesting folding, effect is too severe
to try to untangle after the fact

Need to stop all interpenetration

Put a repelling force-field around cloth

* e.g. Terzopoulos et al, Moore & Wilhelms, Carignan et al, Lafleur et al,
Baraff & Witkin

WS

* Good for automatically handling contact

* If set correctly, models cloth thickness and
compressibility (e.g. the fuzz on a towel)

°* When resolved, smooth and accurate

Problems with repulsion forces

Not robust

* Can miss multiple or fast collisions
° Once on wrong side, pushes the wrong way

Partial fix: increase size and strength
* Makes cloth “float”

° Numerical difficulties

Another solution:
geometric collisions

Consider trajectories over timestep,

find all collisions, apply impulses
* e.g. Provot 97

° If rounding error properly handled, never
misses a collision

P a
< b‘ 3 7|’30\d aﬂna\
ao\d) bfinal

Problems with geometric
collisions

Difficult to resolve multiple collisions
simultaneously

* Fixing one may cause others...
* Expensive to iterate too long

Triangles resist sliding over each other

* Catastrophic error: “chainmail” friction inconsistent
with physics

ANV~

How can do we do better?

Time stepping

Combine the two approaches!

* First apply repulsion forces — quickly and
accurately handles almost everything

°* Check new trajectories geometrically,
eliminate all remaining intersections

Well-conditioned and bullet-proof,
almost as cheap as repulsions alone

Advance x and v (internal cloth dynamics)
o (xXV") o (x™H vt
Get average v over step
° Vm‘/:= (xn-l —x“)fAt
Adjust v*** for repulsions/friction
Adjust v**” to resolve all geometric collisions
Get new x from modified v***
° X"H =x"+ At Vn*‘/’z
Advance modified v (internal cloth dynamics)

. le [Vm‘/:+ YiAt a(x“”)le)

Internal cloth dynamics

Could be anything! (Use existing code)
°* One implicit step, many Runge-Kutta steps,
masses and springs, finite elements, ...
We use masses and springs, Provot 95

° Additional impulses limit excess strain rate:
helps keep cloth together after collisions

Limiting strain

force

Like Provot ’95,
apply impulses to
10% limit strain

/ Implicit integration
(Gauss-Seidel) of
biphasic springs

strain

Repulsion forces

Limiting strain

force

Like Provot ’95,
apply impulses to
100 limit strain

/ Implicit integration

y (Gauss-Seidel) of
strain O . N
biphasic springs
Zero compression
Causes buckling

See next talk...

Resolving geometric
collisions

Check for triangle/point, edge/edge at
old positions
Limit repulsion to a fraction of cloth
thickness — eliminate “kicks”
Normal force gives Coulombic friction
* If vy is tangential velocity before friction,
Avy is normal repulsion impulse, then
vyitietion = max (| vg| - 1 Avy, 0) vy / | vy

Use Provot ’97:
* Apply inelastic collision impulses
» Check for additional collisions

* After 3 rounds of impulses, solidify inter-
colliding patches into rigid “impact zones”

To prevent cloth creeping through
with round-off error, enforce
minimum separation

Subdivision

Collision-aware subdivision

Sharp folds barely resolved in
simulation

* Unacceptable for rendering

Can subdivide mesh in each frame
* We use Loop

Convex-hull property helps, but...

self-intersections and object-
intersections may be introduced

Modify subdivision to avoid collisions

° Start with refined mesh (linear rule)
* Move to smooth subdivision positions

* Check “motion” for collisions, scale down “velocities”

= >

Results

Minutes per frame on a laptop,
15k-40k simulation nodes, subdivided
twice

| '.!__Eu

Igor Neverov, Neil Molino, Joey Teran,
Henrik Wann Jensen
— rendering examples

Sebastian Marino, Cliff Plumer, Andy
Hendrickson, and Lucasfilm
- Yoda

