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Contrast reduction

* Match limited contrast of the medium
* Preserve details

High dynamic range
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Low contrast

Real world

Gamma compression
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e Colors are washed-out

Input Gamma

Contributions

» Contrast reduction for

» Edge-preserving filter
HDR images
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A typical photo
* Sun is overexposed

* Foreground is underexposed

Gamma compression on intensity

* Colors are OK,
but details (intensity high-frequency) are blurred

Intensity ‘ © Gamma on intensity
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Chiu et al. 1993

* Reduce contrast of low-frequencies
» Keep high frequencies

Low-freq. I Reduce low frequency

Our approach

* Do not blur across edges

* Non-linear filtering

Large-scale Output

Detail

Color

Edge-preserving filtering & LCIS

* [Tumblin & Turk 1999]

* Multiscale decomposition using LCIS
(anisotropic diffusion)

Details Output
(at multiple scales)
Compressed

The halo nightmare

* For strong edges
* Because they contain high frequency

Low-freq. I Reduce low frequency

High-freq.
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Multiscale decomposition

* Multiscale retinex [Jobson et al. 1997]

Low-freq. l E !Midfl‘rcq.

Compressed Compressed Compr

 Perceptual filters [Pattanaik et al. 1998]

Layer decomposition

 [Tumblin et al. 1999]
* For 3D scenes
* Reduce only illumination layer

Illumination layer Reflectance layer
Compressed




Comparison with our approach

Plan

* We use only 2 scales
 Can be seen as illumination and reflectance
« Different edge-preserving filter from LCIS

Large-scale Detail Output

Compressed

Start with Gaussian filtering

» Review of bilateral filtering [Tomasi and Manduchi 1998]
* Theoretical framework

Acceleration

Handling uncertainty

Use for contrast reduction

Start with Gaussian filtering

* Here, input is a step function + noise

output —_;

Start with Gaussian filtering

 Spatial Gaussian f

output —

Gaussian filter as weighted average

* Output is blurred

output = —

* Weight of & depends on distance to x

J= 2 [

output = —_;




The problem of edges

» Here, 1(¢) “pollutes” our estimate J(x)
* It is too different

J(x) = >

Bilateral filtering

[Tomasi and Manduchi 1998]

 Spatial Gaussian f
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Normalization factor

[Tomasi and Manduchi 1998]
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Principle of Bilateral filtering

[Tomasi and Manduchi 1998]

 Penalty g on the intensity difference
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Bilateral filtering

[Tomasi and Manduchi 1998]

 Spatial Gaussian f

. Gaussian g on the intensity difference
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Bilateral filtering is non-linear

[Tomasi and Manduchi 1998]

» The weights are different for each output pixel
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Plan Theoretical framework

. » Framework of robust statistics

o Theoretical framework — Output = estimator at each pixel
A lerati — Less influence to outliers (because of g)
cceleration ) . ) ] o .
* Unification with anisotropic diffusion
Mostly equivalent

Use for contrast reduction — Some differences

Handling uncertainty

* Details and other insights in paper

Spatial support Spatial support

* Anisotropic diffusion cannot diffuse across edges

L
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Support of anisotropic diffusion

Spatial support Acceleration

* Anisotropic diffusion cannot diffuse across edges * Non-linear because of g
* Bilateral filtering can
 Larger support => more reliable estimator
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Support of anisotropic diffusion Support of bilateral




Acceleration Acceleration

¢ Linear for a given value of I(x) * Linear for a given value of I(x)
* Convolution of gl by Gaussian f * Convolution of gl by Gaussian f
 Valid for all x with same value I(x)
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Acceleration Acceleration

* Discretize the set of possible I(x) * Piecewise-linearization
o Perform linear Gaussian blur (FFT) x10 for a 80pixel kernel on 576*768 image

* Linear interpolation in between Subsampling
— x30 for a 4x subsampling
1

J(x) = Tx) Z f(x,6) g(I(&)—1(x)) 1(&) — Superlinear because of cache

* 2 seconds for 2MPixel image
(for he complete tone mapping) i,

N
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* k(x) treated similarly

Handling uncertainty Contrast reduction

* Sometimes, not enough “similar” pixels

» Happens for specular highlights I '

+ Can be detected using normalization k(x)

Contrast
» Simple fix (average with output of neighbors) too high!
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Contrast reduction
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Contrast reduction
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Live demo Conclusions

* Xx GHz Pentium Whatever PC » Edge-preserving filter
* Framework of robust statistics
Acceleration (x300)
Handling uncertainty

Contrast reduction
Can handle challenging photography issues
Richer sensor + post-processing
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Informal comparison Informal comparison
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Gradient domain Bilateral Photographic Gradient domain Bilateral Photographic
[Fattal et al.] [Durand et al.] [Reinhard et al.] [Fattal et al.] [Durand et al.] [Reinhard et al.]




Real world dynamic range

e ~10°to 106 cd/m?
100,000 in a scene

e Often1 :

10

Real world |

|
High dynamic range

High-dynamic-range (HDR) images

* CG Images -ﬁ !

* Multiple exposure photo [Debevec & Malik 1997]

* HDR sensors

Informal comparison

Recover
response

curve

Picture dynamic range

» Typically 1:50
— Black ﬁ is ~ 50x darker than white .

e Max 1:500

Picture

Low contrast

Edge-preserving filtering

HDR value
for each pixel

Gradient-space
[Fattal et al.]

Bilateral
[Durand et al.]

Photographic
[Reinhard et al.]

* Blur, but not across edges

Input Gaussian blur Edge-preserving

* Anisotropic diffusion [Perona & Malik 90]
— Blurring as heat flow
— LCIS [Tumblin & Turk]

* Bilateral filtering [Tomasi & Manduci, 98]

Informal comparison
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Gradient-space Bilateral Photographic
[Fattal et al.] [Durand et al.] [Reinhard et al.]




