Arbitrarily Complex Shading On
DirectX 9 Graphics Hardware

L

000600

Eric Chan

Stanford University

http://graphics.stanford.edu/projects/shading/

Motivation

Outline

Research project began in 1999

Problem:

= Graphics hardware tough to program because of
low-level, non-portable interfaces

Solution:

= Shading languages give users high-level access to
programmable features

RTSL Language Features

Overview of Stanford shading system
= Language features

m Compiler architecture
Recent work
= DirectX 9 back ends

= General multipass support

Comparison to other shading languages

Project Goals

Many features inspired by RenderMan:
m C-like syntax
= Data types and operators for graphics

= Surface and light shaders

Model:

= Single programmable pipeline with multiple
computation frequencies

. Implement real-time shading language (RTSL)
. Support a variety of hardware
. Generate efficient code

. Investigate future hardware features

Multiple Computation Frequencies

)| 2 D

Constant Per Vertex

Per Primitive Group

Evaluated less often
More complex math Simpler math

Floating point Fixed point

Per Fragment

Evaluated more often

=

Shading Language Example

surface shader float4
anisotropic_ball (texref anisotex, texref star)

{
// generate texture coordinates
perlight float4 uv = { center(dot(B, E)),
center (dot(B, L)),
0, 11};

// compute reflection coefficient
perlight floatd4 fd = max(dot(N, L), 0);
perlight floatd4 fr = fd * texture(anisotex, uv);

// compute amount of reflected light
float4 lightcolor = 0.2 * Ca + integrate(Cl * fr);

// modulate reflected light color

float4 uv_base = { center(Pobj[2]), center(Pobj[0]),
0, 11};

return lightcolor * texture(star, uv_base);

Computation Frequency Analysis

surface shader float4
anisotropic ball (texref anisotex, texref star)

{
// generate texture coordinates
perlight float4 uv = { center(dot(B, E)),
center (dot (B, L)),
0, 11};

// compute reflection coefficient
perlight float4 fd = max(dot(N, L), 0);
perlight float4 fr = fd * texture(anisotex, uv);

// compute amount of reflected light
float4 lightcolor = 0.2 * Ca + integrate(Cl * fr);

// modulate reflected light color

float4 uv_base = { center(Pobj[2]), center(Pobj[0]),
0, 11};

return lightcolor * texture(star, uv_base);

System Overview

Surface and Light Shaders

surface shader float4
anisotropic ball (texref anisotex, texref star)

{
// generate texture coordinates
perlight floatd4 uv = { center(dot(B, E)),
center (dot(B, L)),
0, 11};

// compute reflection coefficient
perlight float4 fd = max(dot(N, L), 0);
perlight float4 fr = fd * texture(anisotex, uv);

// compute amount of reflected light
float4 lightcolor = 0.2 * Ca + integrate(Cl * fr);

// modulate reflected light color

float4 uv_base = { center(Pobj[2]), center(Pobj[0]),
0, 11};

return lightcolor * texture(star, uv_base);

System Overview

Shading language
abstraction:
Surface and light

I Compiler Front End I shaders

l

I Compiler Back End I

I

]
[

ik

I Compiler Front End I

I Compiler Back End I

]

e

System Overview

|7__| Q Compiler front end:

- 1. Combines
I Compiler Front End I surface and light
shaders

Maps shaders
to intermediate
abstraction

I Compiler Back End I

T 1
[

System Overview System Overview

o 4

I Compiler Front End I I Compiler Front End I

1 1 Programmable l l
pipeline abstraction:
Pipeline programs Compiler back end:

I Compiler Bac I Compiler Bac I 1. Modular design
1 l 1 1 1 2. Maps pipeline
programs to

S pan ! ==

System Overview Single Compiler Front End

Simplified analysis:
No data-dependent loops or

I Compiler Front End I conditionals

All functions inlined

All shading computations reduced to
one directed acyclic graph (DAG)

I Compiler Back End I

Hardware-specific
shader object code

Retargetable Compiler Back End Back End Modules

Two goals: Host processor:
® Provide support for many hardware platforms B C code with external compiler
H Virtualize hardware resources ® Internal x86 assembler
Hardware:

B Multipass OpenGL with extensions
B NVIDIA vertex programs
H NVIDIA register combiners
B ATI vertex and fragment shaders
m Stanford Imagine processor
B DirectX 9 GPUs ...

Summary

Programmable Hardware
= Very capable, but hard to use

= Need a shading language interface

Stanford shading system
Shading language designed for hardware
Programmable pipeline abstraction
Retargetable compiler back end

Runs in real-time on today’s hardware

Coming Soon: DirectX 9

Outline

Increased fragment programmability:
= Similar to current vertex programs
= More complex operators

= Floating-point support

Already supported in our shading system:
= Updated language exposes new hardware features
= New back ends target DX9 hardware

Fragment Compiler Overview

Overview of Stanford shading system
= Language features

m Compiler architecture
Recent work
= DirectX 9 back ends

= General multipass support

Comparison to other shading languages

New Back Ends

Source code

I bowling pin, based on RenderMan bowling pin
surface shader floatv
bowling_pin (texref pinbase, texref bruns, texref marks, floatv uv)

Il generate texture coordinates

floatv uv_wrap = { uv[0], 10 * Pobj[1], 0,1 };

floatv uv_label = { 10 * Pobj[0], 10 * Pobj[1], 0,1 };

Il texture transformation matrices

matrix t_base = invert(translate(0, -7.5, 0) * scale(0.667, 15, 1));
matrix t_bruns = invert(translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));
matrix t_marks = invert(translate(2.0, 7.5, 0) * scale(4, -15, 1));
Il per-vertex scalar used to select front half of pin

float front = select(Pobj[2] >= 0, 1, 0);

I lookup texture colors

floatv Base = texture(pinbase, t_base * uv_wrap);

floatv Bruns = front * texture(bruns, t_bruns * uv_label);
floatv Marks = texture(marks, t_marks * uv_wrap);

Il compute lighting

floatv Cd = lightmodel_diffuse({ 0.4, 0.4, 0.4,1},{ 0.5, 0.5, 0.5,
floatv Cs = lightmodel_specular({ 0.35, 0.35, 0.35,1}, {0, 0, 0,
Il compute surface color

return (Bruns over Base) * (Marks * Cd) + Cs;

OpenGL extensions:
= NV_fragment_program
= ATI_fragment_program

Similar APIs:
= Assembly-language text interface
= Instruction sets

= Hardware resource limits

Use traditional compiler techniques!

Fragment Compiler Overview (2)

Intermediate
Representation

Fragment Compiler Overview (3)

Fragment Compiler Overview (4)

Instruction DAG
(hardware ops)

Fragment Compiler Overview (5)

Pass partitioning
(using RDS)

Images

Code generation

Procedural Textures

Produced using:
= OpenGL + NV_fragment_program
= NVIDIA “Buzz” emulation driver

Shaders consist entirely of fragment computations

Procedural Anti-Aliasing

Use new screen-space derivative operators

Aliased (45 ops) Anti-aliased (74 ops)

Procedural Noise + Solid Textures

m Perlin’s original noise implementation

= Lots of computation and texture lookups (48 ops)

Wood Surface

Wood Surface

What About Really Big Shaders?

Originally a RenderMan shader by Larry Gritz

See RenderMan Repository online

Uses noise function 3 times

207 ops

Wood Surface

==

Shading system abstraction:
= Conceptually, one rendering pass

= Internally splits shaders into passes if needed

Why multipass?

Easy to write large shaders using high-level
languages

Large computations are important, even if too slow
to run in real-time on today’s hardware

Hardware more programmable, but still has
resource limits

%A

Resource Constraints Example

Registers

Vertex Interpolants

o[~ [w]

Instructions

FETCH tex, coord;
DP3 bump, N, tex;

MUL out, t, bump;

}

Textures

m

Virtualization Using Multipass Pass Split Algorithm

Basic idea: Goals:

Split shaders into multiple passes; each pass m Support arbitrarily large shaders

satisfies all resource constraints. = Efficiently target programmable hardware

Intermediate results saved to texture memory and
restored in later passes.

Requires floating-point! Support:

= Hardware with different resource constraints

Problem: = Hardware with different performance behavior

= There are many ways to split a shader. Which one
renders the fastest? HWWS 2002 paper [Chan et al.]

Recursive Dominator Split (RDS) Multipass Partitioning Problem

1. Algorithm overview Definitions:
2. Implementation = Each way of splitting a shader is a partition
3. Demo ®m A cost model evaluates the cost of partitions

m A partition is valid if each pass satisfies all
constraints

Task:

= Given a DAG and a cost model, find a valid partition
with the lowest cost

RDS Algorithm Overview Demo

Basic strategy to find best partition: Shader:

1. Greedy bottom-up merging for = RenderMan bowling pin

fewer passes = 1 point light source

. Search over multiply-referenced

nodes for save vs. recompute = 4 animated projected texture lights

Hardware + Software:
= ATI Radeon 9700 (R300)
= OpenGL + ATI_fragment_program

See paper for details

RDS Remarks

Outline

Pros:
= Supports arbitrarily large shaders
= Works on different architectures

= Usually within 5% of optimal (measured by cost)

Cons:
= Doesn’t support branching

= Doesn’t support multiple outputs

Comparison To Other Languages

Overview of Stanford shading system
= Language features

m Compiler architecture
Recent work
= DirectX 9 back ends

= General multipass support

Comparison to other shading languages

RTSL to Cg

Compared to Cg / 3D Labs’ OpenGL 2.0 proposal:
. Surface and light shaders

. Single pipeline program split by computation
frequency

. Hides multipass

RTSL provides higher-level abstraction than Cg

RTSL to Cg

23

RTSL compller

QQ

Cg compiler

RTSL to Cg

= Surface shader
Light shaders

RTSL compller

QQ

Cg compller

23

RTSL compller

= Cg vertex program
! |_T_| = Cg fragment program

Cg compnler

RTSL to Cg (OpenGL)

RTSL to Cg (DirectX)

73

RTSL compller

QQ

Cg compller I

= GL vertex program
| | = GL fragment program

Summary

23

RTSL compller

QQ

Cg compller I

l DirectX vertex shader
V DirectX pixel shader

Final Thoughts

Current system:
= DirectX 9 fragment programmability
= Arbitrarily complex shaders via multipass

= Compiles to lower-level languages such as Cg

Acknowledgements

Industry will improve code generators

Co-existence of different types of shading languages
m Higher-level, domain-specific (e.g. RTSL)

= Lower-level, general (e.g. Cg or 3D Labs’ OpenGL
2.0 proposal)

Map wild algorithms to the GPU:

= Ray tracing

= Physical simulations (fluid flow, etc.)
= Cryptography

Acknowledgements (Demos)

Stanford Shading Group & Collaborators

= Kekoa Proudfoot, Bill Mark, Pat Hanrahan, Pradeep Sen,
Ren Ng, Svetoslav Tzvetkov, John Owens, lan Buck, Philipp
Slusallek, David Ebert, Marc Levoy

Sponsors
= ATI, NVIDIA, Sony, Sun
" DARPA, DOE

Hardware, drivers, and bug fixes
" Matt Papakipos, Mark Kilgard, Nick Triantos, Pat Brown

= James Percy, Bob Drebin, Evan Hart, Steve Morein,
Andrew Gruber, Jason Mitchell

Textbook Strike
Demo code: Pradeep Sen
Original scene: Tom Porter

Animation data: Anselmo Lastra, Lawrence Kestelfoot,
Fredrik Fatemi

2. Animated Fish
B Demo code: Ren Ng

B Animation and models: Xiaoyuan Tu, Homan Igehy,
Gordon Stoll

3. Volume Rendering
B Demo code: Ren Ng

B Mouse data: G. A. Johnson, G.P.Cofer, S.L. Gewalt, L.W.
Hedlund at Duke Center for In Vivo Microscopy

Questions?

= ericchan@graphics.stanford.edu

= http://graphics.stanford.edu/projects/shading/

Compiler Experiences

Vertex back ends:
® Similar APIs
u Clean design

B Traditional compiler techniques

Fragment back ends (up until now):
H Very different APIs
B Hardware not orthogonal
® Compiler more complex

| Still, compilation quality very good

Fragment Compiler Overview

Programmable Pipeline Abstraction

shader
parameters

Primitive ertex
APP Group .
. Processing
Processing

unlimited unlimited unlimited
instructions instructions instructions

= Unified framework for all computation frequencies
= Virtualization of hardware resources

m Conceptually only one rendering pass

Fragment Compiler Overview

Uses Iburg
Builds DAG of
hardwe_xre-specific
I Pass Partitioning I operations

I Code Generation

bt

HEE

I Instruction Selection I

I Instruction Selection I

I Pass Partitioning I

Lo e

Code Generation

b

HEE

Fragment Compiler Overview

I Instruction Selection I

l 1. Splits DAG into
I Pass Partitioning I multiple passes
l 1 l 2. Uses RDS algorithm

I Code Generation

71 1

Fragment Compiler Overview

Instruction Selection

Pass Partitioning
Code Generation 2. Allocate resources

1. Emit assembly

3. Optimizations

olHeln

Page 11

