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Introduction

Introduction

Kwan-Liu Ma
University of California, Davis

There is a growing interest in Non-Photorealistic Rendering (NPR) methods because of its expressive
power for illustrating shapes and spatial relationships as well as for generating artistic drawings and
paintings. How we choose to portray a data set can have a significant effect on how accurately and
efficiently we communicate with the viewers the information we seek to reveal. In many cases, NPR
has been shown to be more effective than photorealistic rendering in communicating subtle information
about physical structures or phenomena. We shall see a growing use of NPR for scientific visualization
and illustrations as realtime NPR becomes available. Recent advances in painterly rendering have
demonstrated that certain artistic styles can be mimicked. The ability to automatically generate arts
and illustrations for more effectively communicating with scenes, ideas, or actions would allow content
creators for education, films or video games to attain a new level of creativity.

We thus believe a large SIGGRAPH audience will benefit from a course on non-photorealistic
approach for scientific visualization and artistic rendering. Courses on NPR related topics have been
offered before, two in SIGGRAPH ’99 and one in SIGGRAPH 2001. This course is unique since it
addresses some of the most relevant aspects of the theoretical basis, software algorithms, hardware-
assisted techniques, and applications for NPR. We have designed four concise lectures to motivate
the audience, inform them with the state-of-the-art techniques and their applications, and offer them
pointers for further research.

In the first lecture, Victoria Interrante will give an overview of the use of NPR rendering techniques
in scientific visualization, followed by a presentation of the design, implementation and evaluation of
several specific NPR methods drawn from her recent research. She will use hand-drawn examples from
scientific application areas, such as medical line drawings and archaeological illustrations, as well as
some examples from art/illustration to show when and how non-photorealistic representations can be
effective in illustrating shapes and structures. She will present mathematical methods for calculating
preferred stroke directions over a polygonally-defined mesh, and techniques for synthesizing a high-
resolution oriented texture over a surface mesh. She will also discuss results from two controlled
observer experiments intended to investigate the effects of surface texture characteristics on 3D shape
perception.

In the second lecture, Aaron Hertzmann will describestroke-based NPRmethods. This area incor-
porates a wide variety of methods for pen-and-ink, painterly, and visualization renderings of images,
3D and video, and can be quite challenging to the beginner. In order to help make sense of things, he
will present a unified framework for stroke-based NPR and draw attention to the common principles
of the area. In particular, stroke-based rendering describes methods where discrete strokes are placed

Recent Advances in NPR for Art and Visualization 1-1
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in order to match some predetermined constraints, such as matching a predetermined image color or
intensity. The specific algorithms used depend directly on the form of these constraints.

In the third lecture, Aaron Hertzmann will describe recent advances inexample-based NPR, where
NPR algorithms are designed based on hand-made examples. For example, a painting image filter
might be created based on a scanned painting made by a famous artist. This approach is far easier
than explicit methods (such as stroke-based rendering), since it is very difficult to write a function that
describes the technique of a famous artist; however, only some aspects of a style may be captured.
He will survey several recent methods developed in this area, and describe the method of ”Image
Analogies” in detail.

Finally, Eric Lum will present a suite ofhardware-accelerated NPRtechniques, making extensive
use of the advanced features of commodity graphics cards, for interactive visualization of volume
data. In addition to the typical view and rendering parameters, each NPR technique adds its own set of
parameters that must be specified. Often the user does not know what type of rendering style is desired,
only through experimentation can parameters be found suited for their particular application. He will
show howinteractive NPRfacilitate this parameter specification process, and how different rendering
styles and NPR techniques may be freely mixed with interactive control. Both the benefit and cost of
including each NPR technique will be discussed. He will also describe how to use a cluster of PCs
to render large-scale volume while maintaining high interactivity and image quality for large-format
display.

For the specific approaches covered in the lectures, examples and previous successes, as well
as some of their limitations, are discussed. Where techniques are unavailable, or not yet proven,
opportunities and promising research directions are offered. In this course notes, each chapter begins
with a summary of the corresponding lecture. We also provide comprehensive bibliographies, as well
as including a collection of technical reports and previously published papers relevant to the subjects
discussed in this course. We hope you find this course notes helpful.

Kwan-Liu Ma
April 05, 2002

1-2 SIGGRAPH 2002
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NPR Techniques for Scientific Visualization

Victoria Interrante
University of Minnesota

1 Introduction

Visualization research is concerned with the design, implementation and evaluation of novel

methods for effectively communicating information through images.  For example: How do we
determine how to portray a complicated set of data so that its essential information can be easily and
accurately perceived and understood?  How can we measure the success of our efforts?  Where
should we look for insight into the science behind the art of effective visual representation?

For many years, photorealism was the gold standard, and the goal in visualization was to achieve
renderings of scientific data that were as nearly indistinguishable as possible from a photograph.
However in recent years, there has been an upsurge of interest in using non-photorealistic rendering
(NPR) techniques in scientific visualization.  What does NPR offer to visualization applications?
What are some of the important research issues in developing NPR techniques for data visualization?
What are the recent advances in this area?  My presentation in this half-day course will attempt to

survey these topics, beginning with a discussion of the motivation for using NPR in scientific
visualization and continuing through an overview of recent research in the development and
assessment of NPR techniques for visualization applications.

2 Motivation and Background

Historical examples of the use of ‘non-photorealistic rendering’ techniques in scientific visualization
can be found in the hand-drawn illustrations from scores of textbooks across multiple fields in the
sciences [Loe64][Law71][Zwe61][Rid38].  The universal goal in such illustrations was to clarify the
subject by emphasizing its most important or significant features, while de-emphasizing extraneous
details [Hod89].  Although a photographic depiction has the potential to capture the exact
appearance of an object as we actually see it, with subtle and complex details of coloration and
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texture fully represented with perfect accuracy (at least for one exemplar), a drawing offers the
possibility to clarify structural or conceptual information that may be difficult to perceive even in a
very good photograph [Add86][RS56][HM86][FH78][Por81].  Drawings are also useful for
portraying information that does not have a physical correlate, or which cannot be captured or
represented photographically [Con83].  Finally, by virtue of their inexact and suggestive (as opposed

to explicit) character, some kinds of drawings have the potential to embody a certain amount of
ambiguity, allowing flexibility in the interpretation of the object or information portrayed
[SPRSF94][SSRL96][Las00].  Recently developed computational methods for applying non-
photorealistic rendering techniques to the visualization of scientific data [ER00][GGSC98]
[GSGSR99][Hea01][IFP95][IG98][KML99][TC00] seek to satisfy similar objectives.

3 Case Studies from my Research

In the attached papers (see appendix) I describe recent results from my own research in the design,
implementation and evaluation of non photorealistic rendering techniques for the visualization of 3D
surface shape and multivariate data.
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Non-Photorealistic Rendering
in Scientific Visualization

Victoria Interrante

University of Minnesota

OutlineOutline

• Motivation and Objectives
- What does non-photorealistic representation offer?

• Overview of Recent Work in the Field

•  Examples/Applications from My Own Work
- Artistic enhancements for conveying 3D shape

- Texture synthesis for multivariate visualization

Why Non-Photorealistic Rendering?Why Non-Photorealistic Rendering?

• Let’s look at some applications …

• Drawing vs. photo



• A photographic depiction captures the exact
appearance of the object as we actually see it

• Subtle, complex details of coloration and texture
are fully represented, with great accuracy

• A drawing offers the possibility to clarify
structural or conceptual information that may
be difficult to perceive in even a very good
photo.

Visualizing AnatomyVisualizing Anatomy

Photo vs. DrawingPhoto vs. Drawing

• Hand-drawn illustrations are routinely used  to
emphasize important features that are difficult
to capture in a photograph, while minimizing
secondary detail

• Drawings are also useful to portray information
that cannot be captured or represented
photographically, such as hidden surfaces

• But are drawings always preferable to photos?

Controlled Experiments in
Picture Perception
Controlled Experiments in
Picture Perception

• Are drawings better than photographs for
communicating information effectively?

Speed of imitation of finger
position, in seconds (mean):

• 0.039  photo
• 0.044  shaded drawing
• 0.070  line drawing
• 0.046  cartoon

T. A. Ryan and Carol B. Schwartz, "Speed of Perception as a Function of Mode of Representation",
American Journal of Psychology, 69, pp. 60-69, 1956.

Speed of naming open switch,
in seconds (mean)

• 0.690  photo
• 0.719 shaded drawing
• 1.169 line drawing
• 0.288 cartoon



Their Conclusion:Their Conclusion:

• Superiority of performance (photograph vs.
drawing) varies with the application

• Response times were consistently longest
for the basic line drawing images

D. Fussel and A. Haaland. "Communicating
with Pictures in Nepal: results of practical study
used in visual education", Educational
Broadcasting International, 11(1): 25-31, 1978.

Results of a study with 400+ adult
subjects testing identification rate
under different display conditions:
• 59% - black+white photo
•  67% - photo with background removed
•  72% - line drawing w/ detail + shading
•  62% - line drawing wo/ shading, little detail
•  61% - silhouette
•  49% - stylized depiction

”The so-called 'simple' stylized
drawings are evidently not simple
in anything but appearance,
making greater demands on the
person trying to interpret them".

Pictorial CommunicationPictorial Communication

K. Hirsch and D. A. McConathy, "Picture Preferences of Thoracic
Surgeons", Journal of BioCommunications, Winter 1986, pp. 26-30.

• Surgeons rated the ‘schematic’ representation
least preferable; the ‘semi-schematic’ and
‘realistic’ representations were preferred in
equivalent numbers.

Study of Picture PreferencesStudy of Picture Preferences



 Why use Artistic Enhancement? Why use Artistic Enhancement?

• To clarify the pictorial representation:

- Emphasize important information

- Minimize visual salience of secondary detail

- Hierarchically guide the attentional focus

- Convey the ambiguity of uncertain information

From Photograph to DrawingFrom Photograph to Drawing

• There are some easily definable rules

• There is a lot of room for artistic license

• Obtaining an ideal translation is exceptionally
more complicated than would appear at first glance

Why use Non-Photorealistic
Representation?
Why use Non-Photorealistic
Representation?

• To allow greater differentiation in the salience of
the visual representation

- Emphasize critical features

- Minimize the visual salience of secondary details

- Hierarchically guide the attentional focus



Other Advantages in Non-
Photorealistic Representation
Other Advantages in Non-
Photorealistic Representation

• Allows greater differentiation in the specificity of
the visual representation

- To convey information at an early stage of definition
• to facilitate designer’s working with ideas

• to allow clients to envision multiple possibilities in a design

- To convey uncertain information
• to explicitly represent the level of confidence in the data

Other Advantages in Non-
Photorealistic Representation
Other Advantages in Non-
Photorealistic Representation

• Allows the expression of multiple styles

- potentially increasing the ‘dynamic range’ of
information that can be communicated

- establishing a ‘mood’ that can influence the
subjective context within which the information is
perceived and interpreted

Scott McCloud.  Understanding Comics: the invisible art. Harper Perennial, 1994.

• specific ➙ universal  (one person .. everyone)

• complex -> simple  (progressive reduction of detail)

• realistic -> iconic  (requiring more translation)

Introducing AmbiguityIntroducing Ambiguity



Visual Representation in
Architectural Design
Visual Representation in
Architectural Design

• Different requirements for different phases of
the process, from abstract to concrete
- Schematic Design

- Preliminary design

- Design development

- Contract documents

- Shop drawings

Paul Laseau, Architectural Representation Handbook, McGraw-Hill, 2000.

From Art to Scientific VisualizationFrom Art to Scientific Visualization

• Illustrations interpret physical reality; distill
the essential components of the scene

• We seek algorithms that can make explicit
some of the intuition that  artists rely upon
to create an effective visual representation

My Fundamental PhilosophyMy Fundamental Philosophy

There is a science behind the art of
effective data representation



• Design/Conceptualization
- Defining an appropriate representational approach

• Implementation
- Developing new algorithms for image generation

• Evaluation
- Objectively determining which techniques are

more effective when and why

Creating images that facilitate the
understanding of a set of data
Creating images that facilitate the
understanding of a set of data

• Design
- inspiration from practices in art, illustration
- insight from research in visual perception

• Implementation
- computer graphics, computer vision, mathematics

• Evaluation
- quantitative assessment of impact on task performance

Creating images that facilitate the
understanding of a set of data
Creating images that facilitate the
understanding of a set of data

Gaps evoke the impression given by inter-ocularly unpaired regions

Clarifying Depth Discontinuities:
insights from psychology and art
Clarifying Depth Discontinuities:Clarifying Depth Discontinuities:
insights from psychology and artinsights from psychology and art

Ken Nakayama and Shinsuke Shimojo (1990)
“Da Vinci Stereopsis: Depth and Subjective Contours
from Unpaired Image Points”, Vision Research.



Clarifying Depth Discontinuities
with Visibility-Impeding Halos
Clarifying Depth DiscontinuitiesClarifying Depth Discontinuities
with Visibility-Impeding Haloswith Visibility-Impeding Halos

Victoria Interrante and Chester Grosch (1998).  “Visualizing 3D Flow”,
IEEE Computer Graphics and Applications, 18(4): 49-53.

Conveying the 3D Shape and
Depth of Transparent Surfaces
Conveying the 3D Shape and
Depth of Transparent Surfaces

Radiation Therapy
Treatment Planning

Portraying Overlapping SurfacesPortraying Overlapping Surfaces

• Transparency offers the best potential solution

• But photorealistic representation isn’t sufficient



Why are transparent surfaces
difficult to adequately perceive?
Why are transparent surfaces
difficult to adequately perceive?

•  Weak occlusion cues

•  Minimal shape-from-diffuse shading

•  Unreliable depth information from
    specular highlights

•  Refraction emphasizes silhouettes, but
distorts underlying objects

Highlights: Shape but not DepthHighlights: Shape but not Depth

A. Blake and H. Bülthoff (1991) “Shape from Specularities”, Phil. Trans. Royal Soc. of London, B, 331: 237-252.

In a stereo view, specular highlights will not lie on a 
curved surface but will appear to float either above or below it

• Silhouettes
- separate figure from ground

• Contour lines
- emphasize discontinuities

� in depth (viewpoint dependent)

� in curvature (viewpoint independent)

• Other Essential Lines
- Express the underlying form

- Delineate meaningful features

- Can be difficult to capture algorithmically

Creating a Feature Line DrawingCreating a Feature Line Drawing



Highlighting Silhouette Edges in
Stereo is Problematic
Highlighting Silhouette Edges in
Stereo is Problematic

• Specular highlights tend to cling to ridges

• Valleys tend to remain in shadow

• We perceive objects as subdividing into
parts along their valley lines

Viewpoint- Independent
Feature Lines: ridges and valleys

Donald D. Hoffman and Whitman A. Richards.  “Parts of Recognition”, Cognition, vol. 18, pp. 65-96, 1984.

• Our eye fills in missing segments along
curves of minimum energy

• This process is more robust for contour
deletions between vertices than for
deletions across them

Salient Features of the ContourSalient Features of the Contour

Irving Biederman (1985) “Human Image Understanding: Recent Research and a Theory”,
 Human and Machine Vision, Azriel Rosenfeld, ed., Academic Press, pp. 13-57.



Can Marking the Ridges and Valleys
Help?:   a “kitchen experiment”

• The locus of points where the principal
curvature assumes an extreme value along a line
of curvature

Ridge and Valley Lines: definition

Hilbert and Cohn-Vossen (1952)
Geometry and the Imagination

• Begin with an orthogonal
frame (e1, e2, e3), where
e3 = n, and e1 and e2
span the tangent plane

• Rotate the frame
so that e1′ points in the
direction of greatest normal
curvature, and e2′ points in the
direction in which the surface is flattest.

Computing the Principal Directions

u
v

e1

e2

e3

[Koenderink 1990]
Solid Shape



• When e1 and e2 coincide with the principal directions,
there is no sideways “twist” in the surface normal direction
as you move in these directions; terms        and       are zero.

    which describes how the surface normal changes as you
move very slightly away from the origin of the frame
across the surface in the e1 and e2 directions;

• The frame rotation can be obtained by diagonalizing the
second fundamental form matrix: ω̃1
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Computing the Principal Directions

Victoria Interrante, Henry Fuchs and Stephen Pizer (1995)
“Enhancing Transparent Skin Surfaces with Ridge and Valley Lines”, IEEE Visualization’95.

Using Ridge and Valley Lines to
Emphasize Intrinsic Shape Features
Using Ridge and Valley Lines to
Emphasize Intrinsic Shape Features

Using Locally Important Edges to
Capture the Structure of Faceted Objects
Using Locally Important Edges to
Capture the Structure of Faceted Objects

Kwan-Liu Ma and Victoria Interrante (1997)
“Extracting Feature Lines from 3D Unstructured Grids”, IEEE Visualization’97.



Conveying the 3D Shape of Arbitrary
Smoothly Curving Surfaces
Conveying the 3D Shape of Arbitrary
Smoothly Curving Surfaces

Adding texture could help, but what texture will show shape best?

Transparency Representation in
an Opaque Medium
Transparency Representation in
an Opaque Medium

Giuseppe Croff,Veiled Nun, 1869.

Lumbosacral and Sacro-iliac fusion .
Russell Drake, medical illustrator,
Mayo Foundation, 1932.

• Russell Drake’s “single line system of shading”

- the flow of the shape is conveyed through the
directions of the carefully drawn strokes

- multiple overlapping surfaces are displayed with
clarity

• But not all artists use line in this way.

Artistic InspirationArtistic Inspiration

Paul Richer, Artistic Anatomy.  Translated
and edited by Robert Beverly Hale, Watson-
Guptill Publications, 1971.



Line Direction MattersLine Direction Matters



Line Direction MattersLine Direction Matters

• Long, curved strokes following the flow
of the principal directions over a surface

• A single, solid texture, defined once for
all isosurfaces in a smooth 3D distribution

A Principal Direction TextureA Principal Direction Texture



A series of transparent level surfaces in a 3D dose distribution from a 5-beam treatment 
plan for prostate cancer, each shown in relation to the physician-defined target region.  
A series of transparent level surfaces in a 3D dose distribution from a 5-beam treatment A series of transparent level surfaces in a 3D dose distribution from a 5-beam treatment 
plan for prostate cancer, each shown in relation to the physician-defined target region.  plan for prostate cancer, each shown in relation to the physician-defined target region.  

Line Integral Convolution (a review)Line Integral Convolution (a review)

• Introduced by Cabral and Leedom [93]
- A new method for conveying directional information

through patterns of correlation in a texture

• Extended by Stalling and Hege [95]
- define long, accurate streamlines using an adaptive 4th

order Runge-Kutta integration method

- resample the streamlines via a C1 continuous cubic spline
interpolation, to obtain equally spaced points

- compute weighted sums of the input texture values over
a fixed number of points along the streamlines

Begin with a sparse set of
evenly-distributed points
Begin with a sparse set of
evenly-distributed points

Advect the empty space along
with the full to help finesse the
problem of aesthetic streamline
placement

Advect the empty space along
with the full to help finesse the
problem of aesthetic streamline
placement

Defining the LIC Stroke TextureDefining the LIC Stroke Texture



Conveying the 3D Shape of Arbitrary
Smoothly Curving Iso-Surfaces
Conveying the 3D Shape of Arbitrary
Smoothly Curving Iso-Surfaces

Victoria Interrante (1997)  “I llustrating Surface Shape in Volume Data via
Principal Direction-Driven 3D Line Integral Convolution”, SIGGRAPH 97.

Conveying the 3D Shape of Arbitrary
Smoothly Curving Iso-Surfaces
Conveying the 3D Shape of Arbitrary
Smoothly Curving Iso-Surfaces

Victoria Interrante (1997)  “I llustrating Surface Shape in Volume Data via
Principal Direction-Driven 3D Line Integral Convolution”, SIGGRAPH 97.

Shape from TextureShape from Texture

• Showing shape with a line-like texture
seems to contradict the shape-from-texture
research which asserts that shape
perception is impeded by texture pattern
anisotropy



How Does Texture Orientation
Affect Surface Shape Perception?
How Does Texture Orientation
Affect Surface Shape Perception?

• Can anisotropy in the principal directions help?

• Does anisotropy in non-principal directions
hurt?

• Do these effects hold for shaded displacement
texture?

• To what extent are these effects mitigated by
stereo viewing?

Compared Four Direction TypesCompared Four Direction Types

• Principal direction  (pdir)

• Uniform direction (udir) = (-ny, nx, 0)
- zero geodesic curvature

• Random direction (rdir) : rotate udir about n
by a random angle θ ∈ [-π/2 .. π/2]

- effectively isotropic

• Sinusoidally varying direction (sdir): rotate
udir in the tangent plane by a coherently
varying angle θ =10π(x+y+z/n)





Experiment DetailsExperiment Details

• 4 different texture patterns:  pdir, sdir, udir, rdir

• 6 different surface stimuli

• 49 probes per image, same points for each texture
- users were asked to reconstruct the surface

• 2 different viewing conditions:  flat, stereo

• 5 subjects (naïve to purpose of experiment)
- Split into two groups; each saw half of the data

- Four sessions, 6 surfaces each, randomized
presentation order, 2 sessions of flat images
followed by 2 sessions with stereo images



Mean alignment error (3D angle),  flat viewing condition

pdir rdirsdir udir



Mean alignment error (3D angle),  stereo viewing condition

pdir rdirsdir udir

Experiment’s ConclusionsExperiment’s Conclusions

• Texture pattern orientation has a statistically
significant effect on surface shape perception

• Shape perception is poorer in the presence of
anisotropic textures that have nonzero geodesic
curvature

• Shape perception seems equivalently good from
the anisotropic texture that is aligned with the
first principal direction as it is from the
isotropic texture

Displacement TextureDisplacement Texture

• What is the impact of texture orientation if
the texture is defined as a pattern of relief
rather than as a pattern of intensity
variations?

• Shape-from-texture perception could work
differently with relief patterns than with
patterns of coloration



Displacement TextureDisplacement Texture

• What is the impact of texture orientation if the
texture is defined as a pattern of relief rather than
as a pattern of intensity variations?

• Does shape-from-texture work differently with
relief patterns than for patterns of coloration?

• Preliminary results suggest that performance
follows a similar pattern

ConclusionsConclusions

• Texture pattern orientation affects surface
shape perception

• Shape perception is poorer in the presence of
anisotropic textures that are unaligned with the
principal directions

• Shape perception is as good with an anisotropic
texture that is aligned with the first principal
direction as it is with an isotropic texture



• How to compute accurate estimates of principal
directions at the vertices in a polygonally-defined
model?

• How to obtain a smooth vector field of principal
directions that permits tracing long, smooth strokes
that flow gracefully across umbilics and between
regions of opposing directional dominance?

• How to apply oriented, image-based textures so that
they follow the principal directions?

More Challenges

Estimating Principal Directions on
Arbitrary Meshes
Estimating Principal Directions on
Arbitrary Meshes

Exact Solution Normal Curvature Method Adjacent-Normal Cubic Method

J. Goldfeather, V. Interrante (2001)  “Understanding Errors in Approximating Principal Direction Vectors”.

Error AnalysisError Analysis

• All solutions follow these steps:
- Find a least squares fit to Ux = b’ at p

� For example: κ’yi = 2[(p-qi)•N’p]/[(p-qi)•(p-qi)]

produces a system of equations yi
TWyi = κ’yi

where yi is the unit projection of pqi on the tangent plane

- Use the least squares solution x’ to define the 2x2
Weingarten matrix W’ at p

- The eigenvectors of W’ indicate the principal directions



Sources of ErrorSources of Error

• Small errors in estimates of normal curvatures can
produce huge errors in the estimates of the principal
directions

• The problem is a combination of both the magnitude of
the errors in b’ and the direction in which they are made,
which is influenced by the local geometry of the mesh

• The adjacent-normal cubic method does a better job of
controlling the magnitude of the errors because it uses
third-order approximations rather than second-order

• Use principal
direction strokes to
create interactively
manipulable
computer generated
pen-and-ink style
representations of
arbitrary,
polygonally-defined
objects

Brain image by Steve Haker

Possible NPR Applications

Principal Direction
Texture Mapping
Principal Direction
Texture Mapping

• Synthesize an arbitrary, image-based texture
pattern over an arbitrary polygonal surface so
that the dominant orientation of the texture
follows the first or second principal direction
over the surface



Gabriele Gorla, Victoria Interrante and Guillermo Sapiro
 (2001),  “Growing Fitted Textures over Surfaces”.

• Define a mapping
• Partition the surface into

nearly equally-sized, nearly
planar patches

• Synthesize the texture
• Generate the required texture

from a given sample,
maintaining continuity
across boundaries

  [Efros and Leung 99]

Fitted Textures

Surface PartitioningSurface Partitioning

Before and after optimization; blue indicates amount of nonplanarity

Surface PartitioningSurface Partitioning

• Pick a random triangle T and assign it to a new patch P

• Add all triangles C connected to T that satisfy:

– normal(C)•normal(T) > N_threshold

– distance(C,T) < D_threshold

• Repeat until surface is completely covered

• Optimize with "triangle stealing"



Texture SynthesisTexture Synthesis

• Two-pass version of
Efros and Leung’s
Markov Random Field
texture synthesis method
• Exhaustive small

neighbourhood matching
• Saves the best matches

for further processing
• Selective processing at

the most promising
locations using the entire
neighbourhood

Flattening

Synthesis

Putting it all together

… Unoriented Texture Doesn’t Work Well



Orienting the TextureOrienting the Texture

• User should not have to select the directions manually

• The texture direction should follow the surface
curvature in a natural way

• The final result should be pleasant

• Change the target of the search                                       on
a per-pixel basis to follow the                         expected
specified direction

• Textures are pre-rotated                                                    to
improve performance

Textures following a
constant “up” direction
Textures following a
constant “up” direction

Texture follows a constant “up” direction



Texture follows the first principal direction

Texture follows the second principal direction

Indexing into an Array of Textures



Texture Design for Shape
Representation - Experimental Investigations
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Stroke-Based Rendering

Stroke-Based Rendering

Aaron Hertzmann
University of Washington

1 Introduction

This chapter describes stroke-based rendering (SBR), an automatic approach to creating non-photorealistic
imagery by placing discrete elements called strokes, such as paint strokes or stipples. Many stroke-
based rendering algorithms and styles have been proposed, including styles of painting, pen-and-ink
drawing, tile mosaics, stippling, streamline visualization, tensor field visualization and jigsaw image
mosaics. This tutorial attemps to make sense of the disparate work in this area by creating a unified
view of SBR algorithms, which helps us to identify the common elements, as well as the unique ideas
of each. Moreover, presenting ideas in this fashion suggests possibilities for future research.

We can introduce SBR algorithms with a painterly rendering [Her98, Her02]:

Source photo Painted version Final rendering

This figure shows an SBR algorithm in action: starting from a photograph, a collection of brush
strokes are placed to match the photograph, and then rendered to appear as if created with oil paint.

Although the details vary, all SBR algorithms create images by placing strokes according to some
goals. The most common goal is that we want the painting to “look like” some other image — in
this case, we want to place colored brush strokes to look like the picture of the mountain. Another
important goal is to limit the number of strokes in some way. Otherwise, the algorithm can just use
many tiny brushstrokes, producing a very good match to the source image without much abstraction.

Finally, once the strokes have been placed, they can be rendered in some other form. Note that
we did not add texture until after the brush strokes are placed; we compared the source photo to

Recent Advances in NPR for Art and Visualization 3-1
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some intermediate image with a simplified stroke model. This is both for efficiency and for aesthetic
reasons, to be discussed later. The main point is that the final rendering may be different from the way
we expressed our goals about the image.

Here is another example of a automatic vector-field visualization [TB96]: Here, streamlines are

Vector field Final rendering Blurred rendering

used to effectively convey the motion of a vector field. In order to clearly illustrate the vector field,
the placements should be placed evenly — the middle rendering was created with the goal that the
blurry version should be as close to a constant grey value as possible. For comparison, the image on
the left shows stroke placements on a regular grid without adjustment. Again, we can see that this
streamline visualization algorithm is an SBR algorithm: it places strokes (streamlines) according to
specified goals (to follow the vector field and to match a target tone in the blurred image).

It is usually not possible to exactly meet all of the goals; hence, it is useful to have a way of trading-
off the goals, and quantifying their importance. We can do this by formalizing an SBR problem as
an objective function minimization problem. An objective function is a mathematical formula that
explains “how good” our rendering is; SBR algorithms can be seen as attempting to minimize objective
functions. For example, it isn’t possible to place the streamlines in the above visualization to achieve
a purely constant tone in the gray image. Hence, instead, we can use as an objective function the
deviation of the blurred image from a constant image.

So far, we have described two different SBR problem statements, one for painterly rendering and
one for visualization, but said nothing of how to design algorithms for these problems. There are
two main approaches to designing SBR algorithms: greedy algorithms, in which strokes are greedily
placed to match the target goals, and optimization algorithms, where the algorithm iteratively places
and then adjusts stroke positions to minimize the objective function. A greedy algorithm produced the
above painterly rendering, and an optimization algorithm produced the streamline visualization.

Haeberli introduced both a semi-automatic greedy algorithm and an automatical optimization al-
gorithm in a seminal paper [Hae90]. Digital paint systems had previously automated some of the
stroke renderings [Smi01], but did not automate any stroke placement choices. Wireframe renderings
had previously been common in computer graphics (preceding photorealistic rendering), and Yessios
[Yes79] described a system for drafting with strokes based on architectural drafting styles.

Although this tutorial focuses on the technical details of SBR algorithms, it is important to remem-
ber that they are useless without human control. Every aspect of the system (including the choice of
stroke models, the setting of weight parameters, and the selection of input imagery) requires aesthetic
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decisions which can only be made by an artist working towards some goal. Ideally, a human artist
using the system should have total control over the decisions being made. For example, a user should
be able to specify spatially-varying styles, so that different rendering styles are used in different parts
of the image, or to specify positions of individual strokes. However, one of the great advances in art in
the age of digital machines is the ability to create complex systems of procedural art, where the artist
does not directly create the final work, but rather creates rules according to which the final decisions
are made1. Hence, an artist may design the energy function, but not necessary edit every individual
image produced by the algorithm. In one possible scenario, the artwork may “occur” at a time after
the artist’s involvement. The main goal of SBR algorithms is to provide procedural tools that auto-
mate parts of the image creation process, not to replace the artist (which would be both a futile and an
undesirable goal).

In this tutorial, I survey some of the various SBR styles and algorithms that have been created, and
discuss the advantages and disadvantages of each. I will first describe the framework in somewhat more
rigorous detail, including the use of objective functions to define specific problems. I will then describe
specific SBR applications, grouped by algorithm in order to emphasize how, from a computational
point of view, styles that look superficially different are often just variations on a theme. Pointers to
related research (including extensions to animation) are given in Section 7.

2 Stroke-Based Rendering: Stating the Problem

In this section, I outline a general view of stroke-based rendering algorithms in terms of energy min-
imization. I begin with some preliminary definitions and examples, followed by the basic problem
statement as well as a statistical view of the problem, and conclude with a discussion of the advan-
tages and disadvantages of this approach. SBR algorithms will be surveyed in the remaining sections
of this chapter.

We begin with a few definitions. First, we need to define what our strokes can look like.

Definition: A stroke is a data structure that can be rendered in the image plane.
A stroke model is a parametric description of strokes, so that different parameter
settings produce different stroke positions and appearances.

For example, one form of stippling uses a very simple stroke model:

(x,y)

R

Stippling stroke model Individual strokes (stipples)

As illustrated above, a stipple is a stroke that can be described with two parameters: the (x,y)
position of the stipple in an image, and the radius R of the stipple. (As we shall see in Section 3.1,

1Technically speaking, procedural art does not require modern technology (e.g. see [Aar97, Mur98]).
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other definitions of a stipple are possible.)
We create images by combining strokes:

Definition: An image structure is a data structure containing

• A canvas, defined by a background color or texture,

• An ordered list of strokes, definined by their parameter settings.

An image structure contains the necessary data to create a rendering. To create an image, the list of
strokes is rendered by alpha-compositing over the background. The background is usually just a solid
color or a predefined texture image. Examples of images composed of paint strokes and streamlines
were shown in Section 1. For example, a PostScript file containing line art can be thought of as an
image structure, since it contains a list of stroke definitions; the data in the file can be rendered on the
screen or on a printer.

Finally, we need a quantitative way of evaluating how good a rendering is:

Definition: An SBR energy function is a function E : I → R, where I is the set
of possible image structures, and R is the set of real numbers.

Intuitively, we can think of the energy function as scoring “how good” the painting or drawing
is. An energy function E(I) takes an image structure as input and outputs a number indicating the
“quality” of the image — generally, the goal of an SBR algorithm is to produce an image with the
smallest possible energy. The energy function is sometimes also called an “objective function,” “cost
function,” or “error function.” The term “energy” comes from analogous uses in physics, such as
searching for the minimum energy configuration of a set of particles.

SBR algorithms are normally defined in terms of some input data, usually an input image. In most
algorithms described in this survey, the energy function measures how closely the rendering matches
some input image. Additionally, the energy function encodes tradeoffs. For example, a painterly ren-
dering algorithm takes an input image and produces an image structure containing color paint strokes
that matches the source image. However, one could get a perfect match to the source image by placing
thousands of tiny brush strokes, which would not look too different from the source image. We can
create a more interesting painting by adding an “abstraction” term to the energy function, by assigning
higher energies to paintings that use less strokes. For example, the energy function could be

E(I) = Ematch(I)+wabsEabs(I)

Ematch(I) = ∑
(x,y)∈I

‖I(x,y)−S(x,y)‖2

Eabs(I) = the number of strokes in I

where wabs is a scalar weight parameter, and Ematch(I) is the sum-of-squared differences between the
source image and the rendering. This energy function has one parameter wabs. We can control the
level of abstraction in the painting style by adjusting the value of this parameter: setting wabs to be
small specifies that we want a very realistic style (reproducing the original image as close as possible);
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setting wabs to be large specifies a very abstract style (capturing the image with very few strokes). (Of
course, this is only one possible notion of abstraction.) This suggests the following definition of style:

Definition: An SBR style is a stroke model and energy function (including pa-
rameter settings) over image structures.

In other words, an algorithm creates an image in a specific style by minimizing the corresponding
energy function. Note that this is a broadly-inclusive notion of style — in this view, changing the
parameters to a gallery effect in an imaging tool constitutes changing the style (although not by very
much). The goal of this framework is to provide a structure within which many styles can be created
and applied.

3 Optimization algorithms

In this section, I describe optimization algorithms for SBR problems. Two kinds of optimization
algorithms have been applied to SBR. The first kind, which I will call Voronoi algorithms, exploits
special properties of the SBR problem to perform efficient global update steps. The second kind, which
I will call trial-and-error algorithms, assumes no special structure and perform heuristically-chosen
tests to try to reduce the energy. In general, the Voronoi algorithms are very effective and fast, but
cannot be applied to all problems. The trial-and-error algorithms are very general-purpose, but at the
cost of substantial computation times. (It so happens that both of the approaches have also been called
“relaxation algorithms.”)

3.1 Voronoi algorithms

Voronoi algorithms are useful for SBR problems where the final image will be composed of many
identical non-overlapping strokes, and where only the density of the strokes is constrained. The central
idea is to use efficient techniques from computational geometry to place evenly-spaced strokes into
an image. Moreoever, these techniques can be made very fast using graphics hardware. However,
these algorithms do not directly optimize with respect to an image-based metric (e.g. thatthe rendering
should match target tones) since the energy function is defined in terms of stroke densities.

3.1.1 LLOYD’S METHOD

How can we create a set of evenly-spaced points within an image? We will use an iterative optimization
procedure, which requires defining an appropriate energy function. Let p = (x,y) be a pixel locations
in an image, and let Ci be special point locations called “centroids;” the strokes will eventually be
placed at these locations. Let Li

p ∈ {0,1} be a binary labeling of pixels: if Li
p = 1, then the pixel p has

been “assigned” to centroid i. Every pixel is assigned to exactly one centroid: ∑p Li
p = 1. The goal is
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(a) (b)

Figure 1: (a) Voronoi diagram of a set of points Ci. The image is partitioned into a set of regions,
one region for each point. Each region is designed so that it contains all pixels that are closest to the
corresponding point Ci. (b) By applying Lloyd’s method, the points are adjusted so that they lie at the
centroid of their region of the Voronoi diagram. The resulting point set is evenly spaced and can be
used to specify regular stroke placements. Images from [Sec02], used by permission.

to choose both a set of centroids and a labeling that minimizes the energy function2.

E(I) = ∑
p∈I

Li
p‖p−Ci‖

2 (1)

= ∑
p∈I

Li
p((px−Cx)

2 +(px−Cy)
2) (2)

where the centroids and labeling are implicitly members of I. In short, we want every pixel to be close
to its assigned centroid. If we knew the set of centroids Ci in advance, then computing the optimal
labeling would be easy — we just assign every pixel to the nearest centroid. The resulting labeling is
known as a Voronoi diagram (Figure 1(a)) — it partitions the plane according to which centroids Ci

are nearest to each point.
From looking at Figure 1(a), it should be clear that picking some randomly-chosen point set and

then computing the Voronoi diagram does not give a very good arrangement of centroids. In fact, we
can improve upon this set of centroids simply by adjusting the point centers to best fit this partition
— in other words, by holding fixed the labeling and optimizing the energy function with respect to

the centroids. The new optimal centroids are given by Ci =
∑p Li

pp

∑p Li
p

. This is just the mean of the pixel

locations that are assigned to Ci; this formula is easily obtained by setting ∂E(I)
∂Ci

= 0 and solving for
Ci. We can iterate these two steps. This, in fact, is known as Lloyd’s method:

2NPR researchers have typically presented the continuous version of this energy, e.g.
∫

‖p−Ci‖
2dp where Ci is the

nearest centroid to p, where p ∈ R2 is a real-valued point in the plane rather than a discrete pixel location. I prefer the
discrete version, because it more closely reflects the problem actually being solved. One benefit is that we can prove
convergence of the discrete version of the algorithm, whereas convergence has not been proven for the continuous version.
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function LLOYDSMETHOD(n, I):
initialize the centroids Ci by randomly sampling n points uniformly in the image I
while the algorithm has not converged

reestimate the labeling by Li
p←

{

1 i = argmini ‖p−Ci‖
2

0 otherwise

reestimate the centroids by Ci←
∑p Li

pp

∑p Li
p

return the centroids Ci

Figure 1(b) shows the same point after applying Lloyd’s method. The algorithm is said to converge
when the energy does not change between steps. The algorithm is guaranteed to reduce the energy at
every step before convergence, because each step minimizes the energy with respect to some param-
eters. It is guaranteed to converge, because the energy decreases at every step before convergence,
and because there is a finite number of possible labelings L. Lloyd’s method was discovered sepa-
rately by the signal-processing community (where it is known as “vector quantization” [GG92]) and
the machine learning community (where it is known as “k-means clustering” [Bis95]).

Running this optimization in software over an entire image can be quite slow. However, it has
recently been shown that graphics hardware can be used to make the process very fast [WND97,
HCK+99]. The basic idea is to accelerate the labeling step by using Z-buffer hardware — by rendering
a cone at each centroid location, one can show that computing the nearest centroid is equivalent to
determining which cone is visible in each pixel. The centroids are updated by a single pass over the
image. See [HCK+99] for details.

3.1.2 VARIATIONS ON LLOYD’S METHOD FOR SBR

Now that we have a procedure for regular placement of points, it is straightforward to design SBR
algorithms on top of it. Perhaps the simplest SBR problem to describe is stippling: placement of many
small dots to match some target grayscale image. Deussen et al. [DHvOS00] presented the first such
method, using stipples to approximate gray tones in a target image (Figure 2). In their method, the
image is manually segmented into distinct regions, and stipples are placed evenly within each region,
by applying Lloyd’s method to each region separately. The centroids are initialized using a half-toning
algorithm. Once the centroid locations are chosen, they are replaced with stipples. The sizes of a
stipple is proportional to the gray level of the image underneath it.

Secord [Sec02] presents an alternate stippling style and algorihtm, by varying the dot spacing
instead of the dot size (Figure 2). The idea is to define a spatially-varying density function ρ(p) that
determines how dense the stippling should be in different parts of the image. This density function is
directly derived from the tones of the target image T (p), i.e. ρ(p) = 1−T (p)/m where m is the max
gray level in T . The new energy function is

E(I) = ∑
p∈I

Li
pρ(p)‖p−Ci‖

2 (3)

= ∑
p∈I

Li
pρ(p)((px−Cix)

2 +(px−Ciy)
2) (4)
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(a) (b) (c) (d)

Figure 2: Stippling algorithms. In stippling, many small points are placed to match a gray tone image.
Results from [DHvOS00] are shown in (b), and from [Sec02] in (d). In order to match the target
gray tones, Deussen et al.’s algorithm varies stipple size (keeping stipple density constant), whereas
Secord’s algorithm varies stipple density (keeping stipple size constant). The eye in the grasshopper
image was manually segmented from the rest of the image. Images used by permission.

Following the same steps as before directly leads to a slightly different version of Lloyd’s method: the

labeling step is the same, but the centroids are now reestimated as Ci←
∑p Li

pρ(p)p

∑p Li
pρ(p)

. This summation can

be accelerated by precomputing sums of ρ(p). This method gives somewhat sharper image boundaries,
since the stipple placement is directly affected by the intensity of the source image. Secord also uses
a simpler initialization procedure based on rejection sampling [Mac98]. Specifically, the algorithm
samples point locations from a uniform distribution, includes the sampled points in the initialization
with probability proportional to ρ(p).

Lloyd’s method can also be used to create tile mosaics from color source images. A simple ap-
proach is to create a Voronoi diagram of an image, and then color each region of the image by the color
from the underlying source image [HCK+99]. However, this produces a mosaic with very irregular
tile shapes.

Hausner [Hau01] describes two enhancements to this method (Figure 3). First, square tile shapes
can be generated by replacing the L2 norm with the L1 norm (‖v‖1 = |vx|+ |vy|). Second, an orientation
field φ(p) can be specified for the image to create tilings with consistent orientations (Figure 3(a)). The
orientation of each tile is constrained to match the vector field: φi = φ(Ci) The new energy function is
now

E(I) = ∑
p∈I

Li
p‖Rφ(Ci)(p−Ci)‖

2
1 (5)

where Rφ(Ci) is a rotation matrix with orientation φ(Ci). We can create a new optimization procedure
as follows:

3-8 SIGGRAPH 2002



Stroke-Based Rendering

(a) (b) (c) (d) (e)

Figure 3: Tile mosaic results from [Hau01]. (a) Perspective view of the vector field used for the yin-
yang example. The vector field was generated from the height field shown. (b) Initial Voronoi diagram
of randomly-placed points. (c) Final tiling. Edges shown in white are excluded from the optimization.
(d) Rendered tiling, using colors from a source image. (e) Tiling of a Lybian Sibyl image. Images used
by permission.

function TILEMOSAIC(n, I):
initialize the centroids Ci by randomly sampling n points uniformly in the image I
while the algorithm has not converged

reestimate the labeling by Li
p←

{

1 i = argmini ‖Rφ(Ci)(p−Ci)‖
2
1

0 otherwise

reestimate the centroids by Ci←
∑p Li

pp

∑p Li
p

return the centroids Ci

Note that this algorithm is no longer optimal, since the centroid update step is not guaranteed to
improve the energy function. Furthermore, the algorithm does not take color information into account,
until after the tile positions have been chosen. Nonetheless, the algorithm tends to achieve good results
in practice.

Tiling can be applied to manually-segmented regions, as before. Edges can be enhanced by re-
moving them from the energy function. Specifically, points p that lie on image edges are not included
in the labeling or centroid computation steps; this discourages Voronoi regions from straddling edges.
Tile sizes and shapes can be modified by adjusting the energy function in various ways; the resulting
problem is amenable to hardware acceleration [Hau01]. Examples are shown in Figure 3.

3.2 Trial-and-Error algorithms

It is difficult to extend Voronoi methods to take color information into account, and to handle prob-
lems where strokes may overlap. So far, the only optimization method applicable to these problems
are trial-and-error methods. Trial-and-error methods can be applied to any SBR problem. The idea
is simple: we propose a change to the image structure. If the proposed change reduces the energy,
then the change is incorporated; otherwise, it is discarded. The algorithm then repeats. If the proposal
mechanism is well-designed, then the algorithm should eventually converge to a low-energy result.
However, there are no guarantees that this will happen, and, even if it does, the computation time
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could be substantial.3 Here is pseudocode for a trial-and-error algorithm:

function TRIALANDERROR(I):
I← empty image structure
while not done

C← SUGGEST() // Suggest change
if (E(C(I)) < E(I)) // Does the change help?

I←C(I) // If so, adopt it
return I

Termination conditions are up to the user. For example, the optimization can run for a fixed amount
of time, until the user is satisfied with the results, or when only a small portion of the proposals are
accepted.

Of critical importance is the design of a good proposal mechanism. Purely random proposal mech-
anisms can waste substantial time making little progress, whereas hand-tuned mechanisms can quickly
get much better results. Trial-and-error algorithms are actually quite closely-related to greedy algo-
rithms, since they both use hand-designed proposals. The main differences are that the trial-and-error
includes checks to make sure that the proposal actually improves the image, and that the procedure
can iteratively improve previous strokes. Hence, using trial-and-error frees you from the difficult task
of designing a mechanism that always makes good strokes.

Haeberli [Hae90] introduced the first trial-and-error algorithm for non-photorealistic rendering;
results are shown in Figure 4. In each case, a fixed number of strokes are randomly perturbed, and the
perturbations are kept only if the sum-of-squares difference to the source image is reduced.

3.2.1 STREAMLINE VISUALIZATION BY TRIAL-AND-ERROR

More recently, Turk and Banks [TB96] demonstrated a trial-and-error algorithm for vector field visu-
alization of streamlines.4 As described in the introduction, the problem is to illustrate a vector field
with streamlines for clear visualization of the vector field. However, a straightforward approach to the
problem — simply tracing streamlines from some predetermined starting points — creates irregular
streamline spacing that distract from the flow of the vector field. Hence, we need some way of evaulat-
ing the quality of the streamline visualization, and then optimizing for that quality measure. Turk and
Banks proposed blurring the streamline rendering, and comparing the result to a predefined constant
value t. The corresponding energy function is simply

E(I) = ∑
p∈I

((G∗ I)(p)− t)2 (6)

3A closely related technique, called Markov Chain Monte Carlo (MCMC) [Mac98] can give asymptotic quality guar-
antees. Thus far, MCMC has not been applied to problems in SBR.

4Building on the work of Turk and Banks, Jobard and Lefer later described a greedy streamline placement algorithm
that is much faster than the trial-and-error method [JL97]. I describe the former method here for completeness, and because
it may become useful in future problems.
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(a) (b)

Figure 4: Images computed using trial-and-error algorithms [Hae90]. (a) Overlapping rectangular
strokes. (b) Voronoi diagram of a set of point centers. For this version of the problem, faster methods
were later developed (Section 3.1). Images used by permission.

where (G∗ I)(p) denotes the blurred version of the streamline image. (A similar energy function was
used earlier by Salisbury et al. [SABS94].) Note that we could also penalize the deviations of the
streamline from the vector field, since our goal is to produce streamlines that exactly follow the vector
field. Fortunately, the trial-and-error algorithm is able to enforce this constraint at every step, and thus
it is not necessary to include it in the energy function.

In order to apply a trial-and-error algorithm to this problem, we must define the proposal mecha-
nism. While a purely random proposal mechanism may decrease the energy in the long run, it will be
far too long to be practical. Hence, Turk and Banks defined many proposal heuristics designed to de-
crease the energy as much as possible with each step. The first proposals are all streamline placements,
in order to quickly fill the image with streamlines. Placing a streamline entails picking a starting point,
and then tracing along the vector field some predefined distance. Then, each proposal is one of several
possibilities, including adding, deleting, lengthing, and shortening strokes. Each proposal is guaran-
teed to force the resulting strokes to follow the vector field, and proposals are more likely in image
locations that have high energy (i.e. irregular tones). See [TB96] for details.

3.2.2 PAINTERLY RENDERING BY TRIAL-AND-ERROR

I have built a trial-and-error painterly rendering algorithm [Her01]. At a high level, the goal is to seek
concise paintings that match a source image closely and cover the image with paint, but use as few
strokes as possible. Each brush stroke is defined by a brush radius and a list of control points (Section
5.1). The energy function is

E(I) = Eapp(I)+Enstr(I)+Ecov(I)

Eapp(I) = ∑
(p)∈I

wapp(p)‖I(p)−S(p)‖

Enstr(I) = wnstr · (number of strokes in I)
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(a) (b)

(c) (d)

Figure 5: Spatially-varying style, from [Her01]. (a) Source image. (b) Interactively-painted weight
image (wapp). The weight image allows the user to specify where emphasis will be assigned. (c)
Resulting painting with the given weights. More detail appears near faces and hands. (d) Another
choice of weights; detail is concentrated on the rightmost figures.

Ecov(I) = wcov · (number of empty pixels in I)

This energy is a linear combination of three terms. The first term, Eapp, measures the pixelwise
differences between the painting and a source image S. The number of strokes term Enstr is used to
penalize the number of strokes. The coverage term Ecov is used to force the canvas to be filled with
paint, if desired, by setting wcov to be very large. The weights w are user-defined values. The color
distance ‖ · ‖ represents Euclidean distance in RGB space. The weights wapp(p) are defined by a
weight image that allows the user to specify spatially-varying weights.

The first two terms of the energy function quantify the trade-off between two competing desires:
the desire to closely match the appearance of the source image, and the desire to use as little paint
as possible, i.e. to be economical. By adjusting the relative proportion of wapp and wnstr, a user can
specify the relative importance of these two desires, and thus produce different painting styles.

By default, the value of wapp(p) is initialized by a binary edge image, computed with a Sobel
filter. This gives extra emphasis to the edges, although a constant weight often gives decent results as
well. If we allow the weight to vary over the canvas, then we get an effect that is like having different
energy functions in different parts of the image (Figure 5). The weight image wapp(p) allows us to
specify how much detail is required in each region of the image, and can be generated automatically,
or hand-painted by a user. This gives the user high-level control without requiring the user to make
every low-level choice.

The trial-and-error algorithm is similar in spirit to Turk and Banks’. However, the problem is much
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harder to optimize, because the strokes have many more attributes, there is no predefined vector field,
and strokes can overlap. Consequently, the trial-and-error algorithm can take many hours to run, and is
not currently very practical. However, the algorithm does give very economical results, an substantial
high-level control to a user. See [Her01] for further details of the algorithm.

4 Greedy algorithms

The most common stroke-based rendering algorithms are greedy: strokes are added to the image struc-
ture in a single pass, and strokes are never modified once they have been created. Greedy algorithms
make use of heuristics and carefully-designed placement steps. This means that they can quickly pro-
duce high-quality results, but at the cost of flexbility. Greedy algorithms are rarely defined in terms of
an energy function, although one is sometimes implicit. In some situations, devising an appropriate
energy function may be difficult, but a useful algorithm can be developed without one.

Since strokes are placed once and never modified after, there are really two central questions that
define a greedy algorithm:

• Where do we place strokes?

• What shapes will each stroke have?

Each greedy algorithm operates simply by repeatedly placing strokes, making these choices each time.

4.1 Single-point strokes

Haeberli [Hae90] describes a simple, semi-automatic painting algorithm (Figure 6. The user provides
a source image. The user sees a rendering of the painting, which is initially blank. Using a mouse or
tablet, the user clicks and drags within the painting area. A single brush stroke is placed at the location
of each mouse click. The system automatically chooses the color by extracting it from the color of the
source image at that point, and orients the stroke in the direction of the gradient of the image. Hence,
the user decides where the strokes go, and the algorithm decides what they look like. The user may set
other parameters (such as stroke sizes) by adjusting settings or via pressure on a tablet interface. This
system provides a fun and easy way to make abstract and attractive versions without requiring the user
to possess any drawing skills.5

4.1.1 SINGLE-LAYER PAINTERLY RENDERING

Subsequently, a number of commercial software packages (such as Adobe Photoshop, Xaos Paint-
Tools, and Microsoft Impressionist) incorporated fully-automatic versions of Haeberli’s algorithm; a
complete description of such an algorithm by Litwinowicz, along with several enhancements [Lit97].

Litwinowicz’s basic algorithm takes a source image and orientation field as input, and generates
a painting with a set of oriented, short brush strokes. The brush strokes are placed on a grid in the

5Haeberli’s system is online at ftp://ftp.sgi.com/sgi/graphics/grafica/impression/index.html.
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Figure 6: Interactive painterly rendering system, from [Hae90]. The user clicks on different image
locations, and strokes are generated at these locations; the color and gradients of the strokes are taken
from a source image. Images used by permission.

image plane, with randomly perturbed positions. Each stroke takes its color from the source image at
its location, and its orientation from the orientation field. The strokes are drawn in random order, in
order to remove the regularities that would appear otherwise. The orientation field specifies the desired
orientation of the strokes and is generated from the source image in a preprocessing step. A simple
way to generate this orientation field is to set the orientation φ(p) at pixel p to the the normal to the
gradient of the image — this gives the direction in which the image is “most constant.” However, in
constant regions of the image, the gradient will not be well-defined. The orientations in these regions
can be filled in using a smoothing algorithm, such as thin-plate spline interpolation. Additionally,
strokes may be clipped to image edges to improve the edges of the result. See [Lit97] for details.

Similar short-stroke algorithms have been applied to a number of problems in scientific visualiza-
tion of tensor-field data [Hea01, Lai01].

4.1.2 MULTIPLE-LAYER PAINTERLY RENDERING

I have developed an extension to these algorithms that can create brush strokes with multiple sizes.
We can motivate the algorithm by observing that an artist often will begin a painting as a rough sketch,
and go back later over the painting with a smaller brush to add detail. While much of the motivation
for this technique does not apply to computer algorithms6, it also yields desirable visual effects. In this
image processing algorithm, fine brush strokes are used only where necessary to refine the painting,
and rest of the painting is left coarse. User-controlled emphasis can also be used to define where fine
strokes are used. The algorithm is similar to a pyramid algorithm [BA83], in that we start with a coarse
approximation to the source image, and add progressive refinements with smaller brushes. In a sense,
this algorithm can be viewed as greedily optimizing an energy function that penalizes the difference

6For example, one motivation is to establish the composition before committing to fine details, so that the artist may
experiment and adjust the composition.
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between the painting and the source image, and penalizes the number of strokes.
The algorithm takes as input a source image and a list of brush sizes. The brush sizes are expressed

as radii R1...Rn. The algorithm then proceeds by painting a series of layers, one for each radius,
from largest to smallest. Generally, it is most useful to use powers of two: Ri = R12i−1, with some
user-determined value for R1. The initial canvas is a constant color image.

A reference image is first created for each layer by blurring the source image. The reference image
represents the image we want to approximate by painting with the current brush size. The idea is to
use each brush to capture only details which are at least as large as the brush size. We use a layer
subroutine to paint a layer with brush Ri, based on the reference image. This procedure locates areas
of the image that differ from the reference image and covers them with new brush strokes. Areas that
match the source image color to within a threshold (T ) are left unchanged. The threshold parameter
can be increased to produce rougher paintings, or decreased to produce paintings that closely match
the source image.

Blurring may be performed by one of several methods. We normally blur by convolution with
a Gaussian kernel of standard deviation fσRi, where fσ is some constant factor. Non-linear diffu-
sion [PM90] may be used instead of a Gaussian blur to produce slightly better results near edges,
although the improvement is rarely worth the extra computation time. When speed is essential, we use
a summed-area table [Cro84].

This entire procedure is repeated for each brush stroke size. A pseudocode summary of the painting
algorithm follows.

function PAINT(Is, // source image
Ip, // canvas
R1...Rn) // brush sizes

Create a summed-area table A from Is if necessary
refresh← true
foreach brush size Ri, from largest to smallest, do

Compute a blurred reference image IRi with blur size fσRi

from A or by convolution
grid← Ri

Clear depth buffer
foreach position p on a grid with spacing grid

M← the region [px−grid/2...px +grid/2;py−grid/2...py +grid/2]
areaError← ∑p∈M ‖Ip(p)− IRi(p)‖
if refresh or areaError > T then

p← argmaxp∈M ‖Ip(p)− IRi(p)‖
PAINTSTROKE(p, Ip,Ri, IRi)

refresh← false

Each layer is painted using a simple loop over the image canvas. The idea is very similar to
Litwinowicz’s algorithm. However, we can no longer place samples simply on a jittered grid, since
this approach may miss sharp details such as lines and points that pass between grid points. Instead, the
algorithm searches each grid point’s neighborhood to find the nearby point with the greatest error, and
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paint at this location. All strokes for the layer are planned at once before rendering. Then the strokes
are rendered in random order to prevent an undesirable appearance of regularity in the brush strokes.
In practice, we can avoid the overhead of storing and randomizing a large list of brush strokes by using
a Z-buffer. Each stroke is rendered with a random Z value as soon as it is created. The Z-buffer is
cleared before each layer. Note that this may produce different results with significant transparency,
when transparent objects are not rendered in back-to-front order. The layers of a painting are illustrated
in Figure 7.
‖ · ‖, when applied to a color vector, denotes Euclidean distance in RGB space. I also experimented

with CIE LUV, a perceptually-based metric [FvDFH90]. Surprisingly, we found it to give slightly
worse results — it is not clear why.

PAINTSTROKE in the above code listing is a generic procedure that places a stroke on the canvas
beginning at p1, given a reference image and a brush radius. Following [Hae90], Figure 8(a) shows an
image illustrated using a PAINTSTROKE procedure which simply places a circle of the given radius at
p, using the color of the source image at location p. Following [Lit97], Figure 8(b) shows an image
illustrated with short brush strokes, aligned to the normals of image gradients. Note the regular stroke
appearance. In the next section, we will present an algorithm for placing long, curved brush strokes,
closer to what one would find in a typical painting.

This technique focuses attention on areas of the image containing the most detail (high-frequency
information) by placing many small brush strokes in these regions. Areas with little detail are painted
only with very large brush strokes. Thus, strokes are appropriate to the level of detail in the source
image.

This choice of emphasis assumes that detail areas contain the most “important” visual information.
Other choices of emphasis are also possible — for example, emphasizing foreground elements or
human figures. The choice of emphasis can be provided by a human user, as output from a 3D renderer,
or from a computational image interpretation.

4.2 Long, curved strokes

4.2.1 PAINTERLY RENDERING WITH LONG, CURVED STROKES

This method can be extended to use long, continuous curves instead of short strokes. In my system, I
limit brush strokes to constant color (Section 5.1), and use image gradients to guide stroke placement.
The idea is that the strokes will represent isocontours of the image with roughly constant color. Our
method is to place control points for the curve by following the normal of the gradient direction.
When the color of the stroke is further from the target color in the reference image than the painting,
the stroke ends at that control point.

A more detailed explanation of the algorithm follows. The spline placement algorithm begins at a
given point in the image p0, with a given a brush radius R. The stroke is represented as a list of control
points, a color, and a brush radius. Points are represented as floating point values in image coordinates.
The control point p0 is added to the spline, and the color of the reference image at p0 is used as the
color of the spline.

We then need to compute the next point along the curve. The gradient direction θ0 at this point
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Reference images Layers

Figure 7: Painting with three brushes. The left column shows the reference images; the source image
is shown in the lower left. The right column shows the painting after the first layer (brush radius 8),
the second layer (radius 4), and the final painting (radius 2). Note that brush strokes from earlier layers
are still visible in the final painting. (The curved stroke placement is described in the next section).
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(a) (b)

Figure 8: Applying the multiscale algorithm to other types of brush strokes. Each of these paintings
was created with brush strokes of radius 8, 4, and 2. (a) Brush strokes are circles, following [Hae90].
(b) Brush strokes are short, anti-aliased lines placed normal to image gradients, following [Lit97]. The
line length is 4 times the brush radius.

(a) (b)

Figure 9: Using non-linear diffusion to create reference images. (a) Reference image for coarsest level
of the pyramid. (Compare to Figure 7(e)). (b) The output image is less noisy, but hard edges are
maintained.
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(a) (b) (c)

Figure 10: Painting a brush stroke [Her98]. (a) A brush stroke begins at a control point p0 and
continues in direction D0, normal to the gradient direction G0. (b) From the second point p1, there
are two normal directions to choose from: θ1 + π/2 and θ1−π/2. We choose D1, in order to reduce
the stroke curvature. (c) This procedure is repeated to draw the rest of the stroke. The stroke will
be rendered as a cubic B-spline, with the pi as control points. The distance between control points is
equal to the brush radius.

is computed from the Sobel-filtered luminance7 of the reference image. The next point p1 is placed
in the direction θ0 + π/2 at a distance R from p0 (Figure 10). Note that we could have also used the
direction θ0−π/2; this choice is arbitrary. We use the brush radius R as the distance between control
points because R represents the level of detail we will capture with this brush size; in practice, we find
that this size works best. This means that very large brushes create broad sketches of the image, to be
later refined with smaller brushes.

The remaining control points are computed by repeating this process of moving along the image
and placing control points. For a point pi, we compute a gradient direction θi at that point. There are
actually two possible candidates directions for the next direction: θi +π/2 and θi−π/2. We choose the
next direction that leads to the lesser stroke curvature: we pick the direction vi so that the angle between
vi and vi−1 is less than or equal to π/2 (Figure 10), where vi can be (Rcos(θi±π/2),Rsin(θi±π/2)).
The stroke is terminated when (a) the predetermined maximum stroke length is reached, or (b) the
color of the stroke differs from the color under the last control point more than it differs from the
current painting at that point. We find that a step size of R works best for capturing the right level of
detail for the brush stroke.

We can also exaggerate or reduce the brush stroke curvature by filtering the stroke directions. The
filter is controlled by a single predetermined filter constant, fc. Given the previous stroke direction
v′i−1 = (∆xi−1

′,∆yi−1
′), and a current stroke direction vi = (∆xi,∆yi), the filtered stroke direction is

v′i = fcvi +(1− fc)v′i−1.

The entire stroke placement procedure is as follows:

7The luminance of a pixel is computed as Y (r,g,b) = 0.30∗ r +0.59∗g+0.11∗b [FvDFH90].
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function PAINTSTROKE(p0, R, IR, Ip)
// Arguments: start point p0, stroke radius (R),
// reference image (IR), painting so far (Ip)
color← IR(p0)
K← a new stroke with radius R and color color
add point p0 to K
for i = 1 to maxStrokeLength do

// compute image derivatives
g← (255∗ ∂YR

∂x (pi−1),255∗ ∂YR
∂y (pi−1))

// detect vanishing gradient
if Ri‖g‖ ≥ 1 // is gradient times length at least a pixel?

// rotate gradient by 90 degrees
vi← (−gy,gx)

// if necessary, reverse direction
if i > 1 and vi •vi−1 < 0 then

vi←−vi

// filter the stroke direction
vi← fcvi +(1− fc)vi−1

else
if i > 1

// continue in previous stroke direction
vi← vi−1

else
return K

pi← pi−1 +Rivi/‖vi‖
if i > minStrokeLength and ‖IR(pi)− Ip(pi)‖< ‖IR(pi)− color‖ then

return K
add pi to K

end for
return K

YR(p) is the luminance channel of IR, scaled from 0 to 1.

A slight speedup may be gained by performing all computations in luminance space, and then
restoring the color information, as described in [HJO+01]. The results are very nearly as good as full
color processing.
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Figure 11: Gray tones generated with a prioritized stroke texture [SABS94]. The strokes in the texture
are rendered in a specific order which allows different tones to be generated from a single texture.
The right image was generated from a source photo using prioritized stroke textures. Images used by
permission.

4.2.2 PEN-AND-INK AND OTHER CURVE TRACING ALGORITHMS

Unfortunately, I ran out of time while writing and this section is brief. Hopefully it will be greatly
expanded in a later version of this tutorial. For now, here is a annotated summary of pen-and-ink and
other curve tracing algorithms:

• Interactive pen-and-ink illustration: [SABS94] introduce an interactive tool for placing pen-
and-ink strokes. The user specifies desired tone for a region, and strokes are automatically
placed to match these tones. Strokes are stored as prioritized stroke textures (Figure 11),
which allow the system to render complex hatching patterns. [SALS96] describe an extension
that incorporates edge information into the hatching, and [SWHS97] describe a system the allow
the user to specify varying orientations for the illustration as well.

• Streamline visualization: Jobard and Lefer [JL97] describe a greedy streamline placement
algorithm for vector field visualization. Just as with the Voronoi algorithms for stippling, the
idea is to penalize stroke density rather than a blurred version of the streamline image.

• Pen-and-ink illustration of 3D surfaces: Similar principles can be applied to illustrating sur-
faces. Typically, the target tones come from a rendering of the surface and the target stroke
orientations come from orientation fields defined on the surface. The resulting algorithm is a
variation on previous SBR techniques, but with many adjustments as dictated by the pen-and-
ink style and the 3D model. [WS94] describe a system for applying prioritized stroke textures to
rendering 3D surfaces with texture, and to allowing a user to specify emphasis for different parts
of the image; this method is generalized to surfaces with manually-defined orientation fields in
[WS96] (Figure 12). In these methods, the hatching attempts to match the orientation, rendered
tone, and texture of the image. In [HZ00], we first generate the tone and orientation field for a
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Figure 12: Pen-and-ink illustrations of 3D models, from [WS94] and [WS96], respectively. The left
house shows the effect of a user-defined emphasis function; detail is only drawn where specified by
the user. The right image shows pen-and-ink illustration of a parametric surface. Images used by
permission.

3D model, and extend the method of [JL97] to hatch the surface (Figure 13). A related hatching
algorithm is described by [GIHL00].

• Graftals: [KMN+99] describe a greedy placement algorithm for stroke placement. The key idea
of their technique is to use small illustrations as strokes; for example, a tuft of grass is placed as
a unit. This method can render models with an appropriate sense of cartoonish texture.

• Loose-and-sketchy rendering: Curtis [Cur98] describes a loose technique for placing pen-
strokes to match a black-and-white silhouette rendering. The method can create stiff or loose-
and-sketchy rendering styles.

4.3 Globally-greedy

Gooch et al. [GCS02] describes a painterly rendering algorithm that combines elements of optimiza-
tion and greedy procedures. The algorithm is not defined with respect to a specific energy function, but
the overall stroke placement is computed by a global image processing procedure. Individual strokes
are then created for their specific regions.
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Figure 13: Pen-and-ink illustration of a smooth surface, from [HZ00]. The target orientation field and
tones are generated automatically to illustrate the surface.

5 Stroke models

In this section, I describe the curved paint stroke model that I have used. Other stroke models (includ-
ing stipples, tiles, single-point strokes, and pen strokes) will hopefully appear in a later version of this
document. More sophisticated curved stroke models are also possible (e.g. [HLW93, Fra98, NM00]).

5.1 Long, curved strokes with triangle strips

In our system, a basic brush stroke is defined by a curve, a brush thickness R, a stroke color C. The
stroke is rendered by placing the stroke color at every image point that is within R pixels of the curve.
The curve is an endpoint-interpolating cubic B-spline defined by a set of control points. A dense set
of curve points can be computed by recursive subdivision.

Our basic technique for scan-converting a brush stroke is to tessellate the stroke into a triangle

Recent Advances in NPR for Art and Visualization 3-23



Aaron Hertzmann

strip:

Given a moderately dense list of control points pi and a brush thickness R we can tesselate the stroke
by the following steps:

1. Compute curve tangents at each control point. An adequate approximation to the tangent for an
interior stroke point pi is given by vi = vi+1−vi−1. The first and last tangents are v0 = p1−p0

and vn−1 = pn−1−pn−2.

2. Compute curve normal directions as n = (nxi,nyi) = (vyi,−vxi)/‖vi‖

3. Compute points on the boundary of the stroke as points offset by a distance R along the curve
normal direction. The offsets for a control point are ai = pi +Rni and bi = pi−Rni.

4. Tesselate the stroke as shown above.

5. If desired, add circular “caps” as triangle fans.

This algorithm can also be used with varying brush thicknesses, by specifying a profile curve
for the thickness. We do this by assigning a thickness for each control point, and subdividing the
thicknesses at the same time as subdiving the control point positions.

This method fails when the stroke has high curvature relative to brush thickness and control point
spacing. Such situations can be handled, for example, by repeated subdivision near high curvature
points. Generally, we have not found these errors to be of much concern, although they may be
problematic for high-quality renderings.

6 Limitations of the energy-minimization approach

At present, it seems unlikely that every desirable SBR style can be formulated in the energy function
formulation that I presented in Section 2. There are a number of ways this can be manifested:

• It is difficult to capture “loose and sketchiness” or randomness in an energy function. Moreover,
painting and drawing are not deterministic procedures; an artist may produce different images
each time. One way to express randomness would be to replace the energy function with the
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probability density over renderings. A standard trick for converting an energy to a probability
density is to exponentiate and then normalize: p(I) = e−E(I)/Z for some unknown normalization
constant Z. Painting is then a process of sampling from this density; the density would usually
be conditioned on the input data.

• Several of the greedy approaches described above (such as prioritized stroke textures [SABS94])
and in the next section are difficult to express in terms of energy functions.

• It is sometimes easier to design a direct procedure for a rendering style than to design an en-
ergy function, especially since designing styles is a creative process. Often, we design a new
algorithm or styles without really understanding what “why they work.” Ideally, one would de-
velop additional insight after the fact that allows one to convert the direct procedure to an energy
function.

Finally, it bears repeating that direct procedures are much faster than optimization procedures.
However, knowing the energy function can often give insight into how the direct procedure works and
how to improve it.

7 Related topics

In this section I survey some work related to SBR, but not directly within the scope of this tutorial:

• Animation. Several authors have described extensions to the methods for creating animations
from input video or 3D animation [Dan99, HP00, Her01, Lit97, MMK+00, Mei96].

• Image Mosiacs. Image mosaics, such as “PhotoMosaics” [SH97, FR98] and jigsaw image
mosaics [KP02] may also be viewed as SBR problems. A library of images is collected, and
the stroke model consists of a reference to one of the images, as well as the image rotation,
translation, and optional deformation.

• Example-based strokes. A few authors have developed preliminary research in synthesizing
SBR imagery by example. Freeman et at. [FTP99] describe a technique for creating new strokes
in the style of example strokes. Chen et al. [CXS+01] describe a portraiture system that uses
a style learned from examples. Jodoin et al. [JEGPO02] have developed a method for learning
hatching styles from examples.

• Thresholding methods. Several authors have developed methods for stroke-based rendering
where the stroke placements and the stroke tones are decoupled [DOM+01, Fre01, Ost99]. These
methods allow greater flexibility by allowing the user to choose stroke placements independent
of tones.

• Rendering from silhouettes. A number of authors have described SBR algorithms that gen-
erate strokes from silhouettes [Cur98, HZ00, MKT+97, NM00]. This process is conceptually
straightforward, once one has a procedure for extracting smooth silhouettes and for rendering
strokes.
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• Dithering. The process of placing evenly-spaced stipples is closely related to the problem of
halftoning [FvDFH90], which remains an active research area [Ost01]. One can also exploit this
observation for painterly rendering [SY00].

• Hardware-Accelerated Rendering: Several authors have described SBR systems where strokes
are precomputed for texture-maps, and these texture maps are blended in real-time hardware
rendering [Fre01, FMS01, KLK+00, PHWF01]. Although these systems, lose the desirable
property of rendering strokes in image-space instead of on texture maps, they nonetheless give
high-quality, temporally coherent results at very high frame rates.

• Texture. A number of methods have been developed to simulate the appearance of realis-
tic media, by approximate simulation [CPE92, CAS+97, Sma90], and/or procedural synthesis
[Fra98, GCS02, Her02, Str86].

8 Summary

• Stroke-based rendering is a class of NPR problems where discrete strokes are placed in an im-
age to match some input imagery or other data. Stroke-based rendering encompasses many
non-photorealistic rendering problems, including painting, drawing, pen-and-ink, tensor field
visualization, and stippling.

• Optimization algorithms explicitly search for an stroke-based rendering I that minimizes some
energy function E(I). Voronoi algorithms efficiently optimize stroke densities. Trial-and-error
algorithms optimize general energy functions, but can be very inefficient.

• Greedy algorithms place strokes in a single pass. At each step, the algorithm picks a possible
stroke location, decides whether to place a stroke, decides the stroke’s shape and continues.
Many existing greedy algorithms do not have a known explicit energy function formulation.
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1 Introduction

This tutorial surveys the state-of-the-art techniques for interactive non-photorealistic rendering with
an emphasis on applications to volume visualization. This first section begins by giving a general
motivation behind the need for interactivity in NPR and discusses some of the general approaches
toward achieving high-speed rendering. The second section surveys methods that have been developed
for interactive non-photorealistic rendering of polygonal surfaces, the area where the vast majority of
the research in the field has been devoted. The third section describes an approach for how non-
photorealistic rendering can be applied to interactive volume visualization, while the fourth section
concludes this tutorial.

1.1 Motivation

Interactivity is often associated with spatial exploration, where parameters such as position, zoom
and light direction can be varied over time. The resulting animations controlled by the user allow
further insight to be gained in the subject being viewed. Much of the interest in non-photorealistic
rendering relates to its use in enhancing spatial structures and clarifying shape. Thus, combining
interactive methods with NPR is a natural progression since the combination of the two can be even
more effective for illustrating shape.

Non-photorealistic rendering techniques typically have some set of rendering parameters associ-
ated with them that vary the style of the resulting images. The required tuning of these parameters does
not make these algorithms less desirable, but rather are essential for giving the user the tools necessary
for creating the types of images they desire. In the case of scientific visualization, there is rarely any
single set of ”correct” rendering parameters as seen in the two images shown in Figure 1. Rendering
parameters should be selected that add emphasis and clarity to the aspects of the visualization the user
is interested in.

Often, the user of non-photorealistic rendering software is not an artist. They might, for example,
be a scientist who would like to generate an image that illustrates a particular structure they are study-
ing. The user might not know which non-photorealistic rendering techniques are appropriate, or might
not even have a clear vision of how they would like the resulting visualization to look. If, however, the

Recent Advances in NPR for Art and Visualization 4-1



Eric B. Lum and Kwan-Liu Ma

Figure 1: Two non-photorealistic volume renderings of a mouse data set with different sets of rendering
parameters. Interactive rendering allows users to select rendering parameters appropriate for their
application

tuning of rendering parameters is interactive, the user can quickly explore the parameter space to find
an appropriate set of values.

This selection of parameters is an iterative process, where the user changes a parameter, views the
result, and then changes parameters further. If the users can see the results of changes in sub-second
times they will be much more effective selecting appropriate parameters for their task. Thus, changes
in view and object position are only one aspect of interactive rendering. It is equally important to give
the user the interactivity necessary to explore the rendering parameter space.

Unfortunately, many factors make interactive non-photorealistic rendering difficult. First, the ad-
dition of non-photorealistic rendering techniques typically adds to the amount of calculation required
in the rendering process. As a simple example, silhouette edge rendering requires the additional calcu-
lations associated with silhouette extraction. Furthermore, the standard technique of rendering data at
lower resolution or rendering to a lower resolution window to achieve interactivity is often not suited
to the needs of the user when selecting non-photorealistic rendering parameters. Non-photorealistic
rendering can be used effectively to clarify fine structures. In order to specify rendering parameters
optimized for viewing these structures, objects must be rendered at a high enough resolution for them
to be visible.

1.2 Achieving Interactivity

A number of techniques have been developed to facilitate interactive non-photorealistic rendering.
Several of these approaches are software based and use data structures that allow for the efficient
extraction of features to be illustrated non-photorealistically. To achieve interactivity there has been a
trend toward the use of consumer PC graphics cards, many of which have capabilities exceeding those
found in high end workstations just a few of years ago. With each product iteration these cards have
improved performance, increased memory capacity, and new features supported in hardware. More
recent interactive non-photorealistic rendering algorithms load data (geometry and textures) into video
memory and then perform rendering calculations on the graphics card to exploit the high performance
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memory and processor found on the card, and avoid the I/O costs of sending large amounts of data
from main memory across the graphics bus to the graphics card for every frame. Current consumer
graphics cards have up to 128 megabytes of memory and support programmable vertex operations as
well as the customizable combining of textures.

Another method to achieve interactivity is the use of clusters of commodity PCs for relatively low
cost high performance rendering of large amounts of data [LM02] [LMC02]. In particular, by using
the aggregated CPU performance, memory capacity, and I/O of a PC cluster with consumer graphics
cards, scalable algorithms exist to render large problems at higher frame rates. The use of a PC cluster
can still present a number challenges related to how to deal with the relatively slow communication
between nodes and how to efficiently distributing the rendering task such that the processing load is
well balanced among nodes.

2 Non-Photorealistic Surface Rendering

Most of the research in interactive non-photorealistic rendering has been focussed on the display
of polygonal surfaces. These include methods for silhouette edge extraction and rendering, non-
photorealistic illumination, and the illustration of surfaces with textured hatching or brush strokes.

2.1 Silhouette Edge Rendering

Silhouettes edges have been utilized for the illustration of surfaces [SABS94, IFP95] since dark lines
drawn around an object can be effective in showing an objects structure. These lines can also be used
to help indicate an object’s spatial relationship with other objects that consist of similar material since
dark edges drawn around overlapping objects can provide depth cues with respect to their surfaces.

A number of interactive software techniques have been developed for silhouette edge extraction
and rendering. Markosian et al. [MKT+97] describe an interactive probabilistic approach for silhouette
extraction using a variation of Appel’s hidden-line algorithm. Gooch et al. [GSG+99] present a method
which uses an edge structure based on the direction of the neighboring face normals. In a preprocessing
step, edges are stored as a hierarchy of arcs on a Gauss map that can be used to extract silhouettes in
logarithmic time in the number of edges for smooth models. Since this approach is software based,
it also gives them flexibility in changing line styles. An example of an image rendered using their
technique is shown in Figure 2. Elber [Elb99] describes a method for line art rendering that uses line
art strokes that are generated in a preprocessing step and placed in a data structure for quick extraction
during rendering based on view and light source direction. Strokes are used for both hatching and
silhouette rendering and are grouped based on surface normal direction. Buchanan and Sousa [BS00]
as well as Lake et al. [LMHB00] present software methods for interactive silhouette extraction by
setting flags for each edge based on the front/back face properties of the neighboring faces. Hertzmann
and Zorin [HZ00] present an approach that uses the concept of dual surfaces for interactive silhouette
detection. Their deterministic method works for both orthographic and perspective projection and
avoids complete traversal of all edges of the mesh. Tests they conducted suggest performance to be
roughly linear to the number of silhouette triangles.
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Figure 2: Result from Gooch et al. [GSG+99] showing interactively rendered technical illustration
with non-photorealistic silhouette edges and shading. Their approach uses a Gauss map to efficiently
extract silhouette edges that are rendered in varying line styles.

Several methods have also been developed that utilize graphics hardware for silhouette edge ren-
dering. Gooch et al. [GSG+99] describe how environment mapping can be used for single pass hard-
ware accelerated silhouette edge rendering. This is accomplished by using an environment map that is
dark in regions perpendicular to the view direction. They note that the resulting silhouettes are artisti-
cally interesting but can be inappropriate for technical illustration since line thickness is nonuniform.
Raskar and Cohen [RC99] render silhouette edges in hardware using multi-pass rendering. They draw
all polygons once with z-buffer on, and then draw all back-facing in a second pass as either wireframe
with z-buffer equality or as filled polygons that have been moved toward the camera in the second
pass. In following work, Raskar [Ras01] presents a method for the rendering of ridges, valleys and
silhouettes edges by rendering extra polygons for each edge that are generated on the graphics card
using programmable vertex operations.

Northrup and Markosian [NM00] describe a screen/object space hybrid approach for silhouette
rendering where silhouette edges are detected in object space, but viability and adjacency is determined
in screen space. This allows for the linking of silhouette edge segments into smooth curves that are
rendered in various styles interactively controlled by the user. An example that demonstrates the
artistic silhouette edges produced by their technique is shown in Figure 3.

4-4 SIGGRAPH 2002



Interactive NPR

Figure 3: Result from Northrup and Markosian [NM00] that demonstrates their artistic silhouette edge
rendering. Their hybrid object/screen space method links silhouette edges into curves that are rendered
in various styles.

2.2 Non-Photorealistic Illumination

Lighting can be extremely effective in conveying the shape and structure of an object. Artists often
illustrate lighting through not only the varying of pigment value (intensity) but also through the vari-
ation of color temperature [Mac99]. Directly illuminated objects are represented with warmer colors
which include yellow, orange and red. Gooch et al. [GGSC98] use cool to warm shading for the il-
lumination of surfaces. They present a shading model which allows extreme changes in color value
to be reserved for outlines and highlights and describe how an approximation of their model can be
implemented using graphics hardware that supports Phong shading. Sloan et al. [SMGG01] present
methods that allow users to interactively specify their own non-photorealistic shading models. Their
system provides real-time feedback which gives users the ability to explore a wide range of artistic
styles.

Lum and Ma [LM01] describe an inverted non-photorealistic illumination model that renders illu-
minated objects by building up layers of simulated pigment based on the surface darkness. By adding
paint to a simulated white canvas where objects are dark, they achieve color coherence similar to that
which would appear from the mixing of a limited palette of paints. However, their implementation
uses ray-tracing and is therefore not fully interactive at higher screen resolutions.

2.3 Non-Photorealistic Texture

Textured surfaces in the form of either brush strokes or hatching strokes can help to clarify shape and
indicate material properties. Klein et al. [KLK+00] describe what they call ”art maps”, which consist
of multi-resolution mipmapped textures with constant sized brush strokes. This permits rendering in
hardware with brush stroke textures that do not vary in size regardless of a polygon’s projected size in
screen space.
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Figure 4: Result from Praun et al. [PHWF01] showing Venus model rendered using tonal art
maps(TAM). Notice that hatch strokes do not change in size as the size of the model in projected
screen space is reduced.

Praun et al. [PHWF01] extend this technique with mipmapped textures they call ”tonal art maps”
(TAM) which contain pre-rendered hatched textures of varying density(tone) and resolution. In order
to preserve tone coherence between tone levels, lighter levels contain subsets of darker leveled tones.
By utilizing the R,G,B color channels of each texture, they are able to perform real-time hatching with
six grayscale tone levels using a single rendering pass with two texture units. Hatching direction is
oriented along the principal curvature directions of a surface such that stroke directions follow the
shape of an object using principal curvature directions as illustrated in Figure 4. Since the lighter tone
levels are subsets or darker levels, and the TAMs are applied in object space, the resulting animation
exhibits frame-to-frame coherence and avoids the ”shower-door” effect. In further work by Webb
et al. [WPFH02], two methods for finer control of tone using newer features found on consumer PC
graphics hardware are presented. The first technique utilizes volumetric textures, where tone density is
varied over the third dimension. The second method uses pixel shaders to provide a per-pixel lighting
texture thresholding for reduced aliasing. Examples of images rendered using each of these techniques
are shown in Figure 5. In some ways similar to TAMs, Lake et al. [LMHB00] describe pencil sketch
shading using multiple textures of varying pencil stroke density. The textures can be applied in screen
space for a hand-drawn appearance as seen in Figure 6 or the textures can have fixed object space
coordinates for better frame-to-frame coherence.

Majumder and Gopi [MG02] present a technique for using graphics hardware accelerated charcoal
rendering. They introduce what they call the ”contrast enhancement operator” (CEO) which modifies
lighting contrast to account for the limited dynamic range found in charcoal drawings. Charcoal is
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Figure 5: Results from Webb et al. [WPFH02] that show tonal art maps with fine tone control. Left
image shows bunny model rendered using their volumetric texture technique, while the right image of
a rocker arm uses their pixel shader method.

Figure 6: Result from Lake et al. [LMHB00] showing shading with pencil textures of varying density.
These textures can be applied projected screen space for a more hand-drawn appearance or can be
attached in object space for smooth animation.
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Figure 7: Result from Majumder and Gopi [MG02] shows a pig model rendered in a charcoal style
using texture hardware. They use a ”contrast enhancement operator”(CEO) which modifies lighting
contrast to account for the limited dynamic range found in charcoal drawings.

represented using grain textures of varying densities and can be displayed at real-time rendering rates
using a consumer PC graphics card. Their method also allows the user to interactively vary parameters
that influence rendering style, including grain density, paper coarseness and the amount of smudging.
An example of an image generated using their technique is shown in Figure 7.

Several authors have described particle-based approaches for interactive storke-based rendering.
Kowalski et al. [KMN+99] describe a method for rendering fur, grass, and trees using procedural
stroke-based textures. They use graphics hardware to render reference color and ID images. The color
image is used to guide the placement of strokes in screen space while the ID image maps pixels to
object space to keep track of stroke positions in 3-D space for frame-to-frame coherence. Kaplan et
al. [KGC00] use interactive particle systems to render polygonal models in a number of styles. The
user is able to control how the particles are rendered and can also change their density and position
to mimic a number of hand drawn effects as shown in Figure 8. Like the oriented strokes introduced
by Meier [Mei96], the particles exist in 3D object space thus preserving frame-to-frame coherence.
Cornish et al. [CRL01] use view-dependent particle systems for stroke-based rendering. By using
multi-resolution data structure, they are able to control particle density for efficient interactive render-
ing.

Mohr and Gleicher [MG01] describe the replacement of the OpenGL runtime graphics library with
a NPR version that extracts scene information for non-invasive interactive rendering with alternate
styles. Frudenberg et al. [FM01] present a pen-and-ink style game engine that permits interactive
walk-throughs with frame-coherent hatch textures.
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Figure 8: Results from Kaplan et al. [KGC00] shows different artistic styles rendered using their
particle approach. The particles exist in 3D object space thus preserving frame-to-frame coherence.

Figure 9: Left: Using gradient based feature enhancement the skin surface is made visible. Right: The
skin and flesh are rendered in a more photorealistic style, while the bones are rendered with hue varied
shading and silhouettes edges.
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3 Non-Photorealistic Volume Rendering

Direct volume rendering is a technique for the display of data that samples a 3D space [Lev90]. It
has wide application in science and engineering including the study of data sets from medical MRI
and CT scans, weather simulation, structure analysis, air flow surrounding an aircraft, and many other
investigations. Volume data sets often consist of regularly spaced scalar samples, called voxels (volume
elements), which are mapped to color and opacity values using a lookup table referred to as transfer
function. Rendering consists of the display of the accumulation of the semi-transparent material in the
volume. By varying the transfer function, the user is able to assign colors to different structures in the
volume based on scalar value, and can visualize structures of interest by making them more opaque
than surrounding material.

Strictly speaking, traditional volume rendering is not necessarily a form of photorealistic render-
ing, since it often involves the visualization of values like temperature, pressure, or density that are
not directly visible in reality. Never the less, by applying artistically inspired NPR methods to vol-
ume rendering, creating more effective visualizations is possible. Treavett and Chen [TC00] present
a technique for pen-and-ink style volume rendering. Ebert and Rheingans [ER00] describe a soft-
ware approach for non-photorealistic volume rendering using techniques that include silhouette edge
rendering, cool to warm shading, and depth-cued color variation. Treavett et al. [TCSJ01] describe
a software method for non-photorealistic rendering of volumes in painterly and pen-and-ink styles,
as well as what they call ”artistic modelling”. This technique involves manipulation of the volume
data itself, including the distortion of the volume to give a warped appearance or the addition of solid
stroke textures to give the effect of rough carving. In our work [LM02] we show how texture hard-
ware on a consumer PC graphics cards can be used for interactive volume rendering with a number
of non-photorealistic techniques. We also describe how large volumes can be interactively rendered
non-photorealistically using a cluster of graphics card equipped PCs.

3.1 Volume Rendering With Graphics Hardware

Direct volume rendering can be accomplished by drawing a set of view-aligned polygon slices that
sample a 3-D texture containing the volumetric data [VGH96]. By using pixel textures, which allow a
texel value to store coordinates into a second texture, scalar and lighting information can be encoded
into a single static texel, with transfer function and shading changes occurring through the variation of
a single texture [MHS99]. Kniss et al. [KKH01], describe how multi-dimensional transfer functions
can be interactively specified and rendered with traditional lighting by using multi-textured/multi-pass
rendering. Engel et al. [EKE01] use a technique they call pre-integated volume rendering, which also
uses multi-textured/multi-pass techniques for improved rendering accuracy using fewer polygon slices.

Paletted textures store indices into a color palette that samples the RGBA color space. Through
the manipulation of the palette over time, the textures can be varied based on transfer function or the
viewing parameters without changing the data stored in the textures themselves. It is important to
use a representation that avoids any manipulation of data that is stored for every voxel since volu-
metric data sets tend to be large, and traversing the entire volume in software can severely hamper
interactivity. Unlike pixel textures which are filtered prior to their texel lookup, paletted texture are
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Figure 10: Rendering using two passes each with 4 texture units.

filtered after color lookup in RGBA space, permitting non-linear palette mappings to be used with
linear interpolation in hardware.

Multi-texturing allows several textures to be combined on a single polygon during the rendering
process [WNDS99]. By utilizing several separate volumetric textures that store scalar data value, gra-
dient magnitude, and gradient direction, and combining them with properly adjusted color palettes,
several different non-photorealistic rendering techniques can be rendered in hardware. The Nvidia
Geforce3 has four texture units, which means a total of four textures can be blended onto a single
polygon. For some effects, additional rendering passes can be added, which consist of blending addi-
tional textured polygons on top of the previously rendered polygons in the frame buffer.

An example of how the textures can be allocated in these passes is shown in Figure 10. In this
example each of the four texture units is assigned a different texture. The first texture consists of
the original scalar values stored in a paletted 3-D texture. The second stores the normalized gradient
direction of each voxel. One method for encoding these directions is to use 8-bit paletted textures, with
each direction quantized to one of 240 vectors obtained from the faces of a subdivided combination of
a dodecahedron and icosahedron [VGH96]. The gradient direction information is useful for lighting
and silhouette edge rendering. A third texture contains gradient magnitudes which can be used for
enhancing surfaces. The fourth contains a 1-D texture for manipulating color and opacity based on the
spatial properties of voxels. The actual number of texture units needed as well as the required number
of rendering passes depend on the number of NPR techniques to be applied as will be discussed in the
following sections.

3.2 Hue Varied Shading

The cool to warm shading described by Gooch et al. [GGSC98] can be implemented by modulating
each voxel color with a lighting texture that manipulates color temperature. As described in the previ-
ous section, a paletted normal direction texture can be used, with each texel containing an index into a
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Figure 11: Left: Vessel with abrupt color temperature varied shading. Right: smooth shading.

sampling of a normalized vector space. The palette for this texture is created by first calculating the dot
product between each possible normal direction and the light direction. Once the dot product is calcu-
lated, the color temperature variation for that product is looked up in a shading colormap specified by
the user.

The manipulation of the saturation of the colors used in the shading colormap can control the
degree temperature variations in shading are visible. By making the colors more saturated, the effects
of this type of shading becomes more subtle permitting more of an objects original color (as specified
in the transfer function) to be seen. Furthermore, by changing color value across the shading colormap
more traditional lighting with variation in color intensity can be produced.

In addition by making the transition between cool and warm colors relatively short, it is possible
to produce the abrupt lighting transitions seen in the image of blood vessels shown in the left image
of Figure 11. This can be contrasted with the relatively smooth lighting found in the right image of
Figure 11.

3.3 Silhouette Edge Illustration

Silhouette edge rendering can be particularly useful in volume rendering applications since transfer
functions are often set such that objects are semi-transparent, sometimes making spatial relationship
difficult to determine. Silhouette rendering can be accomplished by using the paletted gradient direc-
tion texture with the color palette adjusted such that voxels with gradient perpendicular to the view
direction are modulated to black. Alternately this could also be done using a gradient direction texture
with per pixel environment mapping similar to the technique described by Gooch et al. [GSG+99].

The image on the top of Figure 12 shows fine blood vessels that are enhanced by rendering silhou-
ette edges. Notice that the spatial relationships between the overlapping vessels near the top of the left
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Figure 12: The silhouettes shown on the left image help clarify the spatial relationship between vessels.

image are clearer than those found in the right image without silhouette edge rendering in Figure 12.

3.4 Surface Enhancement

Much of the appeal of direct volume rendering, versus other volume visualization techniques like
isosurface rendering, is its usefulness in visualizing continuous regions of semi-transparent material.
However, enhancing surfaces can still be effective in clarifying some structures in a volume. Gradients
have been used for surfaces enhancement in direct volume rendering applications [Lev90]. Since
the transition between features in a volume tend to have the highest gradient magnitude, increasing
the opacity in these regions can help to clarify surfaces. The skin surface shown on the left side of
Figure 9 is made visible through gradient enhancement, with the underlying material still visible.

Surface enhancement can be implemented by assigning one texture unit a gradient magnitude
texture, and allowing the user to specifying a gradient opacity map that modulates the rendered voxel
based on gradient. Silhouette edges and specular highlights are typically associated with surfaces,
and can be inappropriate for constant valued, semi-transparent regions in a volume. By rendering
silhouette edges in a second rendering pass, a separate gradient enhancing functions for the specular
and silhouette rendering, resulting in silhouette edges and specular highlights that are only rendered in
regions of high gradient.

3.5 Color Based on Position

Color can be manipulated based on distance to improve depth perception [FvFH96]. Aerial perspective
has been used by painters to convey depth through the variation of color hue and value based on depth.
Typically warmer hues are used for the foreground and become cooler in the background. In addition,
color values tend to become lighter and less intense with distance [Kun99].

This can be implemented in hardware using a 1-D texture that modulates the color of the rendered
volume along some direction. The depth cues provided by the variation in color are evident in the left
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Figure 13: The depth cues provided by the variation in color temperature clarify spatial relationships
between vessels. Left: Depth based color manipulation Right: Without depth based color manipulation
.

image of Figure 13 where the warmer colored foreground vessels appear closer. This can be contrasted
with the right image of Figure 13 where the spatial relationship between vessels is less clear.

Through non-linear fading of the alpha channel along the view direction, closer material can be
made more transparent making underlying features more visible, with foreground material still slightly
visible to provide context for the features of interest as shown in the right image in Figure 1. Figure 9
on the other hand shows a fading of opacity based on vertical position.

3.6 Multiple Rendering Parameters

Non-photorealistic rendering can be used to add emphasis to specific aspects of a data set. One way this
can be accomplished is to use multiple rendering styles for different objects in a volume. For example
non-photorealistic and more traditional rendering methods can be combined, making the different
materials more distinguishable, or rendering styles can be varied to emphasize or deemphasize the
different types of features in a volume. One result of using multiple sets of rendering parameters is
that the parameter space is multiplied in complexity, making interactivity all the more important.

Hauser et al. describe how multiple rendering techniques can be combined when visualizing a sin-
gle volume to better illustrate different types of objects in a volumes [HMBG00]. A similar capability
can be accomplished by permitting the user to specify multiple transfer functions, each with its own set
of non-photorealistic rendering parameters. Each transfer function can be set to render a different type
of object in the volume, with rendering requiring an extra set of rendering passes for each additional
transfer function.

The right image in Figure 1 shows the use of this technique, where the internals of the Microsoft
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Figure 14: Non-photorealistic and photorealistic rendering styles are mixed in this image of coral.

mouse have been rendered in a non-photorealistic style, while the external plastic parts are rendered
more photorealistically. The right image in Figure 9 show bones rendered non-photorealistically using
cool to warm shading and silhouettes. The skin on the other hand is rendered in a more photorealistic
style, with a fade that allows the several of the bones to be unobstructed by the flesh and skin. In Fig-
ure 14 a piece of coral is shown using non-photorealistic and photorealistic rendering parameters. The
smooth transition between parameters sets is accomplished using position-based opacity modulation.

3.7 A Complete Example

To summarize the process, we use a CT scan of a Microsoft mouse to illustrate the effect of each
non-photorealistic rendering technique. As shown in Figure 15(a), when the data set is rendered using
only the transfer function without lighting or NPR enhancements it is very difficult to acquire intuition
about the spatial structure of each object, particularly with respect to depth.

With addition of cool to warm shading, shown in Figure 15(b), it becomes easier to determine
the surface orientations as seen in Figure 15(c). The addition of warmth and coolness to the volumes
does not yield distinctly warm or cool colors, but rather results in a variation in relative temperature
to indicate shape information. Notice however, that there is little variation in color intensity across
each volume making it still difficult to gain depth clues as to the spatial interactions of the rendered
structures. With the addition of the silhouettes edges seen in Figure 15(d) the individual structures
become much clearer as seen in Figure 15(e). For example, the separation between the two capacitors
near the center of the mouse is much more distinct that when only cool to warm shading is used. Next,
Figure 15(f) displays depth color cues for the volume, and Figure 15(g) shows the result after the
volume is modulated by these cues. This has the subtle effect of adding warmth to the nearer portion
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of the mouse. Finally in Figure 15(h) we see the result when a second set of rendering parameters is
used to render the outer shell of the mouse with a more photorealistic rendering style. Using depth
based variation in opacity the closer portions of the mouse are more transparent allowing the inside to
be seen.

3.8 Parallel Rendering and Performance

One significant limitation of volume rendering using consumer PC graphics hardware is the limited
amount of video memory. For example, the Nvidia Geforce3 has between 64 and 128 megabytes of
video memory that is shared between the frame buffer and texture memory. It is very desirable to fit
the volume being rendered entirely in texture memory to avoid having to swap data into the graphics
card from main memory over the relatively slow graphics bus. By subdividing the volume spatially
and distributing it across a cluster of PCs equipped with graphics cards it is possible to fit significantly
larger volumes into the aggregated video memory of the entire cluster. In addition to the larger amounts
of texture memory provided by a PC cluster, performance improvements also result from the combined
fill-rate of multiple graphics cards.

In our implementation we describe in [LM02] we subdivide and distribute the volume to different
nodes of a cluster using k-d tree subdivision. During rendering, for each frame, every node on the
cluster renders its subvolume and composites the resulting subimage using binary-swap [MPKH94]
with the final image being sent to the host for display. We used a PC cluster with nine computers, each
with an AMD Athlon 1.3 Ghz processor, one gigabyte of PC133 SDRAM and a Geforce3 with 64 megs
of video memory. Eight of the computers use 100-Base-T fast Ethernet. The ninth host computer, used
for final display and user interface control, has a gigabit Ethernet connection to the cluster’s switch.
With this low cost cluster were able to render to a 512�512 window, a 512�512�512 volume at
about 2.0 frame per second using two rendering passes. If four rendering passes are used to render the
volume using two sets of rendering parameters, the frame rates drops to about 1.2 frame per second.
Our experimentation showed this framerate is sufficiently high to make possible interactive exploration
of rendering parameter space, in particular the variation of transfer function, viewing direction and
non-photorealistic rendering parameters. This permits the tuning of parameters for the creation of
meaningful images that illustrates specific structures in a volumetric data set.

There are some limitations to this approach for interactive non-photorealistic volume rendering.
First, rendering rates are still not fast enough for the real-time generation of smooth animation. Higher
performance can be achieved by rendering fewer axis aligned polygons, or by using fewer NPR tech-
niques requiring fewer texture units and rendering passes. But the time required for reading the frame
buffer from each node and the communication time for compositing the resulting sub-images soon
becomes a bottleneck.

The use of graphics hardware also limits the size of the volume each node can render by the com-
bined texture memory of the cluster. For example, rendering a 1024�1024�1024 volume with eight
PCs would require each node to render a 512�512�512 volume which would not fit in texture mem-
ory and would make necessary the relatively slow transfer of large amounts of data across the graphics
bus for every frame. Despite these limitations, the use of graphics hardware allows for rendering
performance that exceeds any software approaches.
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(a) Volume without lighting (b) Cool to warm shading contribution

(c) Volume with cool to warm shading (d) Silhouette contribution

(e) Volume with silhouette (f) Depth color cue contribution

(g) Volume with depth color cue (h) Final volume visualization

Figure 15: A complete example of combined techniques using the mouse data set.
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4 Conclusion

In recent years, non-photorealistic rendering has received increasing amounts of attention for both art
and scientific applications. Non-photorealistic rendering combined with interactivity, can enable spa-
tial exploration by the user so they can gain further insights into the an objects structure by viewing it
multiple angles. Exploration of rendering parameter space, on the other hand, allows for the control
of how non-photorealistic rendering techniques are applied and can be used to produce illustrations
more appropriate for the users task. Consequently, we foresee increasing use of non-photorealistic
rendering in scientific data visualization. With the continued advancement of graphics hardware capa-
bilities, there will be ample room for the development of new interactive non-photorealistic rendering
techniques that utilize even more rendering styles.
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Final Remarks

This course provided a concise introduction to non-photorealistic rendering: generation of artistic im-
agery and perceptually effective scientific visualization. We began with a survey of both historical and
contemporary examples of the use of NPR, followed by an explanation of fundamental algorithms.
We have also presented a few approaches at the forefront of NPR research including example-based
rendering methods for automatic generation of artistic imagery and hardware-accelerated parallel tech-
niques for achieving interactive high-resolution rendering.

Although we could not cover all the topics in detail with 3.5 hours, we believe we have addressed
the most relevant issues and trends of applying non-photorealistic rendering to scientific applications
and art, and provided pointers to future research. In Friday’s Painting and Non-Photorealistic Graphics
session you will also learn about some exciting new research results.

A collection of sixteen papers is attached to the end of the course notes which sample the state-
of-the-art NPR techniques relevant to the individual lecture topics presented here. In addition, the
comprehensive bibliographies provided in each chapter should be a good starting point for searching
further information about recent development of related technologies. For those who are just entering
this exciting research area, you may want to check out Gooch & Gooch’s book “Non-Photorealistic
Rendering” and the two NPAR proceedings first.

Thank you for your attendance and enjoy the rest of the conference. Please feel free to contact me
for further information.

Kwan-Liu Ma
ma@cs.ucdavis.edu
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ABSTRACT  
While many factors contribute to shape perception, psychological 
research indicates that the direction of lines on the surface may 
have an important influence.  This is especially the case when 
other techniques (shading, silhouetting) do not present sufficient 
shape information.  The psychology literature suggests that lines 
in the principal directions of curvature may communicate surface 
shape better than lines in other directions.  Moreover, principal 
directions have the quality of geometric invariance so line 
directions are based on the surface geometry and are viewpoint 
and light source independent, and the lines do not move above 
over the surface during animation unless desired.   In this work 
we describe principal direction line drawings which show the 
flow of curvature over the surface.  The technique is presented for 
arbitrary surfaces represented by either 3D volume data or a 
polygonal surface mesh.  The latter format is common in the field 
of computer graphics yet thus far has not been widely used for 
principal direction estimation.  The methods offered in this paper 
can be used alone or in conjunction with other NPR techniques to 
improve artistic 3D renderings of arbitrary surfaces. 

Keywords: non-photorealistic rendering, principal direction line 
drawings, line direction, line drawings, geometrically invariant 
line drawings.  

1  INTRODUCTION 
Amongst the varied goals of artistic Non-Photorealistic Rendering 
(NPR) is the pursuit of perceptually efficient images.  A 
perceptually efficient visual representation emphasizes important 
features and minimizes extraneous detail and is essential for 
making comprehensible artistic images.  Computer-generated line 

drawings are a particularly effective form of NPR since lines’ 
features (length, width, intensity, density, quality, direction, etc.) 
can be combined to create shaded, textured, and expressive 
images which capture the essence of the form of an object.  In the 
field of computer-generated line drawing, 3D representations of 
curved surfaces generally focus on the silhouette edges, 
disregarding large amounts of interior curvature information.  
These depictions often rely on either previous knowledge of the 
surface or the use of motion (movement of the surface, viewpoint, 
or light source).  In this work we explore a 3D line drawing 
technique which is independent of the surface’s orientation, the 
viewpoint, or the light source.  In particular, we examine line 
direction and use this paper to raise the question: Does line 
direction matter?  

We argue that line direction does matter, and suggest the use of 
the principal directions of curvature for directing lines to improve 
the depiction of surface shape in artistic line drawings.  The 
advantages of principal directions (see Appendix A for a 
mathematical definition) are that they are geometrically-invariant, 
highlight the most direct path on a surface between two points, 
indicate the directions of the curvature extrema at any point, and 
have been suggested by psychologists as the preferred 
interpretation for making surface shape judgments.   

The importance of geometric invariance should not be 
underestimated.  Geometrically-invariant cues are based on 
properties of the surface geometry and are by definition viewpoint 
and light source independent.  While shading and silhouetting 
provide substantial shape information, valuable curvature 
information can be lost in shadows or the interior of the surface.  
Furthermore, viewpoint dependent lines may move around in a 
distracting manner during motion or animation.  Geometric 
invariance does not imply that lines must be rigidly “pasted” onto 
the surface during animation.  If line movement is desired, the 
geometrically-invariant vector field can help guide more fluid 
movement over the surface.  Combining geometrically-invariant 
cues with shading or silhouetting can be especially powerful.  
Geometrically-invariant line attributes such as color and density 
can be manipulated with respect to viewpoint or light source [7].   

Despite the promise for principal directions, their full potential in 
NPR has yet to be realized.  The reasons perhaps may be related 
to the difficulties in estimating an accurate, smoothly continuous 
vector field of principal directions.  The problem is most 
challenging for polygonal surface meshes, a particularly common 
data format for arbitrary 3D surfaces.  Additionally, principal 
direction line drawings must address the complex issues of 
creating uniformly distributed, non-intersecting, long smooth 
lines which gracefully traverse umbilics, planar regions, and 
transitions of directional dominance.  Here we examine both 3D 

 

 

 

Nissan Cambridge Basic Research, 4 Cambridge Center, Cambridge, 
MA 02139, girshick@cbr.com 

*University of Minnesota, Computer Science Department, Minneapolis, 
MN 55455, interran@cs.umn.edu 

**Yale University, Department of Computer Science, New Haven, CT 
06520, haker@cs.yale.edu 

***LambSoft, Minneapolis, MN 55405, tlemoine@lamb.com 



volume datasets and polygonal surface meshes, and suggest some 
techniques for line tracing. 

The main contribution of this work is to show that for a 3D line 
drawing, line direction can matter and principal direction line 
drawings can be used to better convey surface shape.  In the next 
section we motivate the importance of line direction with 
psychological evidence.  We follow with related work in 
computer-generated 3D line drawing.  In section four, we provide 
a brief overview of principal direction estimation techniques.  
Section five shows the effects of line direction and section six 
presents techniques for principal direction line drawings.  In the 
final section we draw some conclusions and discuss areas of 
future work. 

2  PSYCHOLOGICAL EVIDENCE FOR 
THE IMPORTANCE OF LINE DIRECTION 
The psychology literature gives us a sense of how the human 
visual system perceives images and is an essential reference for 
making perceptually efficient renderings.  Early research asserted 
that humans can use surface markings, or texture, to perceive 
surface orientation.  Gibson [8] was amongst the first to 
emphasize the significance of texture cues for shape and depth 
perception.  He was able to show convincingly that observers 
could reliably interpret the slant of the planar surface by the cues 
provided by the projection distortion of the texture patterns. 

Of relevance to this work is the open question of whether 
anisotropic (directed) textures are as suitable for conveying shape 
information as isotropic (undirected) textures.  Interrante [12] was 
unable to show an effect of texture type in shape perception under 
conditions of stereo and motion for various plausible isotropic 
and anisotropic textures for transparent surfaces, including grids 
and principal direction textures.  Yet Cumming et al. [3] found an 
indicative effect of texture type for stereoscopic shape perception 
between a plausible and unlikely texture.  While shape-from-
texture research often makes assumptions of isotropy or 
homogeneity, Knill [16] hypothesized that there are different 
modes to visually perceive isotropic and anisotropic textures. 

While the question of effects of isotropic versus anisotropic 
texture still remains open, it is evident that when anisotropic 
surface markings are dependent on surface geometry, surface 
depth and orientation perception is improved.  Knill [16] found 
that in an anisotropic texture processing mode, the curvature of 
geodesic surface markings determines perception of local surface 
orientation.  The experiments of Johnston et al. [14] showed that 
stereoscopic depth perception of curved surfaces with texture 
which provided a good indication of surface geometry was 
superior to random dot textures.  Stevens [24] was among the first 
to suggest that humans can make surface shape judgments by 
assuming that surface contours (lines on the surface) are aligned 
with the principal directions of curvature. In later work Stevens 
and Brookes [23] demonstrated that principal direction surface 
contours are also good indications of relative surface slant.  More 
recently, Mamassian and Landy [17] found that surface shape 
judgments are biased by the assumption that surface contours are 
aligned with the principal directions.   From the above literature, 
it is reasonable to believe that surface shape and depth perception 
may be generally aided by textures, and also by anisotropic 
textures based on surface geometry, particularly lines aligned 
with the principal directions 

3  RELATED WORK 
Computer-generated 3D line drawings borrow from centuries of 
artists’ techniques and have recently received significant attention 
in the NPR community.  Winkenbach and Salesin used stroke 
textures to create depth and shape in line drawings of parametric 
surfaces [26]. Markosian et al. emphasized the silhouette edges 
for viewpoint-dependent images of arbitrary 3D surfaces [18]. 
Curtis used 3D models to generate loose and artistic  sketches and 
animations [4]. Elber rendered geometrically-invariant line 
drawings and textures of parametric and implicit surfaces [6].         

Principal directions have been suggested [11,26] and approached 
[2,6] in line drawings.   In [26,6], lines were traced along the 
parametric lines of parametric surfaces, which sometimes 
coincided with the principal directions. Saito and Takahashi [20] 
rendered line drawings lines of parametric surfaces along 
geodesic lines.  Interrante et al. [11] used 3D principal direction 
textures to illustrate surface shape in volume data.  However, 
none of these works addressed the challenge of estimating the 
principal directions from arbitrary surfaces (particularly 
polygonal surface mesh formats) nor that of tracing long strokes 
in one direction (rather than cross-hatching) through umbilics, 
planar regions, and areas of changing directional dominance. This 
work is based upon a preliminary sketch by Girshick and 
Interrante [9]. 

4  PRINCIPAL DIRECTION ESTIMATION 
For data of any format, the first step towards a principal direction 
line drawing is to estimate the principal direction vector field, 
comprised of the principal directions at a set of points on the 
surface.  There are a variety of methods for  estimating principal 
directions, each with its various strengths and weaknesses, 
however a full discussion of the computational details is not in the 
scope of this paper.  Do Carmo outlines analytic calculations of 
principal directions for parametric surfaces in [5].  For iso-
intensity surfaces in 3D volume data, Monga et al. used the 
Hessian of the 3D data to compute the principal directions [19].  
Interrante et al. used a similar technique based on Gaussian- 

 
Figure 1 Polygonal surface mesh of arbitrary 3D “blob”.



 

  
Figure 2  Random vector field of object in figure 1. Figure 3 Uniform (vertical) vector field of object in figure 1. 

  
Figure 4  First principal direction vector field of object in figure 1. Figure 5 Second principal direction vector field of object in figure 1. 

     

6a Shaded surface mesh 6b Random vector field 6c Uniform vector field 6d First principal direction 
vector field 

6e Second principle direction 
vector field 

Figure 6 Close-ups of the same region of the object in figure 1.  



weighted finite-differencing [12].  We used this approach for
the volume datasets in this paper.

As of yet there is no reliable standard technique for locally
estimating principal directions from a polygonal surface
mesh. Samson and Mallet [21] fit cubic patches to the local
neighborhood around a vertex, using the vertexÕs normal and
neighboring normals, and then compute the partial
derivatives to obtain principal directions.  Hamann [10]
employs a similar approach except uses quadratic patches and
relies solely on deviation from a vertexÕs tangent plane
without using neighboring vertex normals.  Joshi et al.
provide good examples of this approach in [15]. Chen and
Schmitt [1]  and Taubin [25] avoid explicitly describing
surface patches but instead construct a quadratic form at each
vertex.  In [25] the quadratic form represents an orthonormal
basis whose eigenvectors are the principal directions.  The
principal curvatures are the directional curvatures in the
principal directions.  For the polygonal surface meshes in
this work, we use variations of both HamannÕs and TaubinÕs
methods, with similar results.  The accuracy of both is highly
dependent on the sample distribution of the local surface
geometry and is an area of current work.  

5  EFFECTS OF LINE DIRECTION
The significance of line direction for a line drawing i s
perhaps best illustrated visually with the underlying vector
field.  As will be explained in the next section, a line drawing
can be rendered by tracing strokes which follow the flow of a
vector field [22].  Figures 1Ð5 show various vector fields on
the same arbitrary ÒblobÓ dataset, shown as a polygonal
surface mesh in figure 1.  A 3D volume dataset would produce
similar results.  The vector field is illustrated by projecting
the field direction at each vertex of the underlying mesh onto
the tangent plane at that point.  The random vector field in
figure 2 and the uniform vector field in figure 3 convey surface
shape only through texture compression, which provides
hints of the silhouette edges, but not through the use of line
direction.  When the silhouette edges are not visible, as in
the close-ups in figures 6b and 6c, the surface shape is largely
ambiguous.

Figures 4 and 5 show first and second principal direction
vector field respectively.  Compared to figures 2 and 3, these
vector fields appear to better convey local surface orientation,
including ridges and valleys, subtle surface undulations,
changes in curvature, and interior silhouette edges.  Figure 6
shows the close-ups of the vector fields in the absence of
silhouette edges.  When comparing the four close-ups in
figures 6b through 6e,

Figure 7 First principal direction vector field of a brain represented by a polygonal surface mesh. Data source: Ron Kikinis, Harvard
Medical School.



 

 

Figure 8 First principal direction vector field of a bunny represented by a polygonal surface mesh. Data source: Stanford University 
Computer Graphics Lab. 

 

it seems to be easier to judge the surface shape from principal 
direction vector fields than the random and uniform vector 
fields.  Figures 7 and 8 provide more examples of first principal 
direction vector fields on more complex surfaces.  One can 
predict the difficulty in perceiving the surface shape if these 
figure used random or uniform vector fields. 

6  PRINCIPAL DIRECTION LINE 
DRAWINGS 
Principal direction line drawings illustrate the flow through the 
principal direction vector fields described in the previous 
section.   In this section we describe the details for both 3D 
volume data and polygonal surface meshes.  For 3D volume 

data, the vector field is a 3D volume and the strokes are traced 
through the volume.  For polygonal surface data, the vector field 
lies on the explicitly defined surface mesh and the strokes must 
be drawn on the surface.   

6.1 Principal Direction Line Drawings of 3D 
Volume Datasets 
Figures 9 and 10 show different styles of principal direction line 
drawings of the same human pelvis CT volume dataset.  Both 
figures underwent the same preprocessing stage.  Initially a first 
principal direction volume vector field is generated using the 
technique described in section four.  Then a sparse set of strokes 



 

 
Figure 9 Principal direction line drawing (with shading and without hidden line removal) of a bone/soft tissue boundary  

iso-intensity surface in a CT 3D volume dataset of a human pelvis. 
 

 
Figure 10 Principal direction line drawing with silhouette edges and hidden line removal of the volume dataset in figure 8. 

 
is traced through the vector field, each stroke originating from a 
point near the surface which is not too close to neighboring 
starting points, such that the set has the approximate distribution 
of a Poisson disk. 

In figure 9, the strokes represent individual streamlines [22] 
through the vector field.  The lines are shaded according to the 
surface normal direction indicated by the gray level gradient in 
the volume data, but  hidden line removal has not been done.  
The result is especially powerful during animation, when the 
geometrically-invariant lines “stick” to the surface. 

In figure 10 we attempted to create a freer sketch of the volume 
data set, using hidden line removal, including silhouettes and 

selecting only a subset of possible strokes.  Because it is 
viewpoint-dependent, by definition it is not geometrically-
invariant.  However the lines are still directed in the principal 
directions and defined based on the geometry of the surface, so 
the static 2D image should provide the same visual cues to the 
surface shape, at least near the silhouette edges.  The subset of 
lines to render was selected with a preference towards placing 
lines in areas of higher curvature lines and near silhouette edges.  
Line length is proportional to the magnitude of the first principal 
curvature at the start point.  



6.2 Principal Direction Line Drawings of
Polygonal Surface Meshes
The main steps in creating a principal direction line drawing
from a polygonal surface mesh are estimating a smoothly
continuous principal direction vector field and tracing
evenly spaced strokes which follow the flow of the vector
field.  The steps are described separately below, but for
efficiency they can be done simultaneously.

6.2.1 Creating a continuous principal direction vector
field

At any point on a 3D surface, each of the orthogonal first and
second principal directions have a positive and negative
direction.  Thus there are four possible directions for the
vector field at each point.  Ideally we would always choose
the first principal direction (either positive or negative).
However, in regions close to umbilics and planes, where
curvature is almost similar in all directions, the first and
second principal directions may suddenly switch places
causing a flip of up to 90 degrees, resulting in a sudden
disruption of flow.  Figure 11a demonstrates this for a simple
vase mesh.  The first principal direction field is continuous
except around the girth of the vase where it is almost
spherical and the curvature is slightly greater vertically than
horizontally.  In this case, a continuous principal direction
line drawing minimizes distracting details and is more
aesthetically pleasing than a first principal direction line
drawing.  The continuous vector field is created by first
choosing an arbitrary reference vector.  In the example of
figure 11, the choice of reference vector can lead to only two
possible outcomes, but in a more complex dataset it might be
advantageous to choose a meaningful starting reference
vector.  Next, for each vertex, the direction which is closest to
the reference vector is chosen.  The reference vector is updated
to reflect the choice.  Figures 11b and 11c show the two
possible continuous principal direction vector fields for this
dataset.  The principal direction line drawing corresponding

to 11b is shown in 11d.  This approach for creating
continuous vector field works well for surface regions with
well-defined principal directions.  However, at true umbilics,
where normal curvature is the same in all directions, and on
planes, where normal curvature is zero in all directions, the
principal directions are undefined.  For these regions, we
interpolate between neighboring well-defined regions of the
vector field.  Even still, for a complex surface such shown in
figures 1 and 8, regions may occur where it is necessary to
make an abrupt switch in line direction.  A possible
technique for gracefully transitioning between line
directions is to minimally employ cross-hatching using both
the first and second principal direction fields combined.
However we do not advocate the general use of crosshairs
such as in figure 12, as the inelegant crosses can become
distracting and muddle the flow of curvature.

6.2.2  Tracing strokes through the vector field on a
polygonal surface

The objective of this step is to obtain an approximately
uniformly-distributed set of non-intersecting long curved
lines, which lie on the surface. The streamline tracing
technique of Jobard and Lefer [13] is extended from 2D images
to 3D surfaces to generate evenly-spaced non-intersecting
lines.  The curvature of each line is achieved by continually
redirecting it as it traverses the changing vector field.

Each stroke is composed of a set of control points.  The
criterion for each valid control point is that it lies at a
minimum distance threshold from all existing strokes.  The
first stroke starting point is random, and the remaining stroke
starting points are chosen to be as close as possible to
existing points without breaking the minimum distance
threshold.  

The direction of the stroke is updated at frequent distance
intervals as well as when a stroke crosses a polygon
boundary.  The strokeÕs direction at any given point on a
polygon is

11a  First principal direction
vector field.

11b  Continuous vector field of
greatest overall curvature.

11c  Continuous vector field of
less overall curvature.

11d Continuous principal direction
line drawing for 11b.  Shading and
slight randomness added to  strokes

for artistic effect.
Figure 11  Various principal direction vector fields and principal direction line drawing of a simple vase.



 

 
Figure 12  First and second principal direction vector field of the object 

in figure 1. 

determined by trilinearly interpolating the principal directions of 
the polygon’s vertices.  Strokes are terminated if they approach 
the minimum distance threshold.  This process is shown in 
figure 13.  To avoid the cost of calculating an implicit surface, 
each segment of a stroke is projected onto the polygonal surface 
mesh.  Provided a sufficiently fine mesh, this approximation is 
worth the savings in computation.   

Regions of opposing force occur when neighboring principal 
directions point in opposing directions.  These vector field 
discontinuities crop up near umbilics and planar.  The current 
approach is to terminate strokes when this happens.   

The result of this technique is shown in figure 14, with some 
randomness added for wiggly lines.  A more artistic image 
might be achieved by varying the line density according to the 
light source, and adding silhouette lines.  

 
Figure 13 Stroke tracing through a principal direction vector field on a 

polygonal surface mesh. (image for illustrative purposes only). 

 
Figure 14 Principal direction line drawing of pears, represented by 

triangular surface meshes.  Hidden line removal was used, and slight 
random noise was added to the stroke tracing process. 

6.2.3  Rendering 

The rendering of the line drawing is straightforward.  A stroke is 
a set of control points which can be rendered as either a simple 
polyline or spline.  Our approximations were fine enough to use 
anti-aliased polylines with no perceivable difference over 
splines.     

7  CONCLUSIONS AND FUTURE WORK 
The most troublesome areas in obtaining a continuous principal 
direction line drawing are those where the principal directions 
are undefined and in regions of opposing force.  In the first case, 
the current interpolation technique works well if the unknown 
regions are small and bordered by more well-defined principal 
directions, but fails for larger areas and is a topic of future work.  
In the latter case, we would like to eventually gracefully merge 
strokes from neighboring regions of opposing principal 
directions, possibly with subtle cross-hatching, instead of 
terminating them.   

This work outlined the approach for both 3D volume datasets 
and polygonal surface.  Principal direction line drawings for 
parametric surfaces can follow a similar approach.  For 
polygonal surface meshes, we found the existing principal 
direction estimation techniques to be insufficiently accurate for 
asymmetric local mesh geometries.  We are currently working 
on their improvement which is of great relevance to principal 
direction line drawings. 

Our exploration of principal direction line drawing techniques 
has indicated to us that simply showing line direction is not 
necessarily sufficient for an aesthetically pleasing rendering.  
Adding silhouette lines (as shown in figure 15), shading, density 
variations, and longer lines all improve the quality of the image, 
and are areas of future work. 

This work poses the important question of whether line direction 
matters for creating a perceptually efficient line drawing.  We 
have provided compelling psychological evidence and visual 
examples to believe that line direction affects surface shape 
perception.  In particular, the principal directions of curvature 
appear to be more effective than non-principal directions at 
conveying surface shape.  Principal direction lines on a surface 
have the advantage that they show the path of greatest curvature 
and are geometrically-invariant, so they appear the same from 



 

 
Figure 15  First principal direction vector field and silhouette lines of a horse dataset, courtesy of Cyberware, Inc.    

 

all viewpoints and do not shift during animation.  Principal 
direction line drawings are well-suited for showing the subtle 
undulations of an arbitrary, smoothly curved surface in 3D, 
especially when silhouette edges are not visible.  They can be 
used alone or in conjunction with other graphics techniques such 
as shading and drawing silhouette edges.  One intention of this 
work is to serve as a reminder that perceptually efficient images 
are an important part of artistic NPR.  We also wish to inspire 
more perceptual studies of the effectiveness of principal 
direction line drawings. 
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9  APPENDIX A: DEFINITION OF 
PRINCIPAL DIRECTIONS OF 
CURVATURE 
The normal curvature at p in a given direction T will be referred 
to as the directional curvature κp(T).  The first principal 

direction, T1, is the direction of the maximum magnitude of 
normal curvature, called the first principal curvature (κp

1).  The 
second principal direction, T2, is orthogonal to the first, and is 
the direction of the other curvature extreme, called the second 
principal curvature (κp

2).  For elliptic surface patches (with 
positive Gaussian curvature) the second principal direction is 
the direction which the surface is most nearly flat.  For 
hyperbolic, (saddle-shaped) patches (with negative Gaussian 
curvature), the second principal direction is the direction of the 
lesser of the two extrema.  The two principal directions T1 and 
T2  are orthogonal and lie in the tangent plane at the point p, 
creating an orthonormal basis with the normal vector N at p.  
Figure 14 shows an example of the orthonormal basis on a 
hyperbolic surface patch.  The product of the two principal 
curvatures equals the Gaussian curvature, K=κp

1 • κp
2. 



 

 

 
Figure 16 Orthonormal basis formed by normal and two principal 

directions and curvature strips in the principal directions at a point on a 
hyperbolic patch.   
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Understanding Errors in Approximating Principal Direction Vectors

By Jack Goldfeather and Victoria Interrante

Introduction

Suppose we are given only a surface mesh of vertices and polygons approximating some unknown smooth

surface. There have been many methods proposed for approximating principal directions of the underlying

surface [1,2,4,8,12,13]. In this paper we will examine a few of the known methods, showing how well they

can work in some cases and how miserably they can fail in others. In particular we will show how very

tiny normal curvature approximation errors can be magni�ed into large errors in the estimated principal

directions. We also introduce a new method that we believe performs signi�cantly better under certain

conditions than many other proposed methods. In section I, we briey describe the motivation for this work

and its signi�cance to applications in computer graphics. In section II, we outline the basic mathematics

behind computing principal directions, stating the necessary formulas for the Weingarten curvature matrix

and for its use in computing normal curvature in a given direction. In section III we describe in detail three

methods each of which approximates the Weingarten curvature matrix at a vertex of the mesh. In section

IV we apply each method to a test surface using a number of di�erent mesh schemes and then examine the

direction errors. In section V we develop some mathematical relationships between surface approximation

errors and errors in principal directions and illustrate how similar-appearing approximation errors can lead

to vastly di�erent principal direction errors. In particular, we illustrate that while the chance for large

errors increases near umbilical points, they can still occur at points on the surface where there is signi�cant

di�erence between the two principal curvatures. We conclude by summarizing the conditions under which

principal direction estimation errors are most likely to occur, suggesting some steps that can be taken to

improve the situation, and outlining promising directions for future work in this area.
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I. Motivation

There are many applications for which it is useful to be able to calculate accurate estimates of the

principal directions at points on a given surface. Principal direction vector �elds have been widely used

in shape analysis and surface interrogation in computer-aided manufacturing and design [7,11]. In these

applications the surfaces are analytically de�ned, so the principal directions can be solved for directly and

there are few problems with errors in the estimations. Principal direction vector �elds have also been

successfully used in conjunction with volumetrically-de�ned data to enhance the visual representation of

surface shape for applications in molecular [3] and medical [10] visualization. In these applications the

principal directions can be obtained by diagonalizing the Second Fundamental Form, whose entries can be

fairly well approximated using �rst and second directional derivatives of the sampled 3D distribution.

Recently, there has been increasing interest expressed in the possibility of using principal direction

vector �elds over polygonal meshes for such purposes as guiding the direction of hatching strokes in pen-

and-ink style renderings [5,9] or adaptively guiding the orientation of synthesized anisotropic texture patterns

for enhanced surface shape representation [6]. However such e�orts have been complicated by the lack of

a robust and reliably accurate method for estimating the principal directions at points on an underlying

smooth surface that is represented solely by a polygonal mesh. Although a number of methods for principal

direction estimation have been previously published [13,8,2,4,1,12], inevitably what we have found in practice

is that the computed vector �eld appears "noisy", requiring smoothing that can result in many of the vectors

falling out of alignment with the true principal directions and complicating our e�orts to generate surface

markings that closely follow the form.

In the research described in this paper we sought to gain insight into the sources of errors in principal

direction estimation on surfaces de�ned by point samples organized in a polygonal mesh, in order to determine

what the worst potential pitfalls are and how they might be overcome. Our goal was to enable an approach

in which instead of accepting large principal direction estimation errors and then working to hide them, we

could strive to obtain more accurate initial principal direction estimates while agging the points at which

the probability of obtaining erroneous estimates is high.
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II. A Quick Review of Surface Curvature

Let p be a point on a smooth surface S, let Np be the unit normal to S at p, and suppose X(u; v) is

a local parametrization of S in a neighborhood of p. Then using Xu(p), Xv(p), Np as a local coordinate

system, we can compute principal curvatures and principal directions as follows: Let �1 and �2 (�1 � �2)

be the eigenvalues, and p1, p2 the associated unit eigenvectors of the Weingarten curvature matrix

W =

0
@

eG� fF
EG� F 2

fE � eF
EG� F 2

fG� gF
EG� F 2

gE � fF
EG� F 2

1
A

where

e = Np �Xuu(p) E = Xu(p) �Xu(p)

f = Np �Xuv(p) F = Xu(p) �Xv(p)

g = Np �Xvv(p) G = Xv(p) �Xv(p)

Note that in the special case that Xu and Xv are orthogonal unit vectors, this becomes the symmetric

matrix

W =

�
e f
f g

�
:

If u is a unit vector in the tangent plane to S at p, then

�u = uTWu

is the normal curvature of the surface in the direction of u.

It follows that �1 and �2 are the maximum and minimum normal curvatures of the surface at p, and

p1 =

�
p11
p12

�
and p2 =

�
p21
p22

�
are the principal curvature vectors expressed in local coordinates. That is,

v1 = p11Xu + p12Xv

v2 = p21Xu + p22Xv

are the principal direction vectors in R3.

An important observation is that at points where �1 = �2, the notion of principal direction is not

de�ned, since all vectors are eigenvectors. Such a point is called an umbilical point on the surface.
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III. Three Principal Direction Approximation Methods

The �rst step in computing principal directions on a surface mesh is to compute at each vertex p a

vector N 0

p that approximates the true unit surface normal Np at p. Most methods compute a \normalized

average" - i.e. a set of vectors is summed and the resulting vector is normalized to length 1. As several

di�erent surface normal approximation methods have been proposed, we decided to take a closer look at

three:

1. The normalized average of the surrounding triangle unit normals.

2. The normalized average of the surrounding triangle unit normals, each weighted by the angle of the

triangle at p.

3. The normalized average of the adjacent edges, each weighted by the sum of the cotangents of the angles

opposite the edge in the two triangles sharing the edge [2]. This weighting only makes sense if each pair

of triangles is acute, so another method must be used at vertices where a triangle is not acute.

We experimented with each of these schemes on a complicated surface, using a variety of local meshes and

a large number of random points on the surface. Figure 1 shows our �ndings.

In all cases, the vertices that we used lay in the analytically-de�ned surface. Under these conditions, all

of the normal approximation methods worked very well. The average error in the approximated normal over

all mesh types was 0.90 degrees for the unweighted method, 0.97 degrees for the angle-weighted method, and

1.04 degrees for the edgelength-weighted method. The median error over all mesh types was 0.41 degrees

for the unweighted method, 0.50 degrees for the angle-weighted method, and 0.54 degrees for the edgelength

weighted method.

Although the normal vector approximation errors can appear from Figure 1 to be super�cially slightly

smaller for the angle-weighted method in the cases of the global meshes and for the unweighted method in

the cases of the local meshes, these di�erences are not signi�cant either practically or statistically. Of course,

using an incorrect surface normal will introduce error into a principal direction calculation. However, as we

will show, even if the exact surface normal is used, there are other sources of signi�cant potential error in

principal direction estimation. For this reason, we decided to use exact surface normals in the subsequent

steps of our investigation.

4



Figure 1. An experimental comparison of three normal vector approximation methods.

Upper left: Median errors, per method and mesh type. Upper right: Error histogram, un-

weighted averaging method. Lower left: Error histogram, angle- weighted averaging method.

Lower right: Error histogram, edge length- weighted averaging method.

The next step in estimating the principal directions is to choose a pair of orthonormal vectors x1 and

x2 in the plane tangent to N 0

p to form a local orthonormal coordinate system L = fx1; x2; N
0

pg in R3. All

subsequent calculations are done with respect to this local coordinate system. We examined three principal

direction estimation methods, outlined below, each of which approximates the Weingarten curvature matrix

expressed in this local coordinate system.
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III.a The Normal Curvature Approximation Method

Suppose W is the unknown Weingarten matrix with respect to local coordinates L at vertex p. Suppose

there are n vertices adjacent to p and let qi denote the i
th adjacent vertex. We denote by yi the unit vector

obtained by projecting the vector �pqi (expressed in local coordinates L) onto the plane tangent to N 0

p and

normalizing the result. Then using the result from section I, the normal curvature in the direction yi is given

by �yi = yTi Wyi. An approximation to this normal curvature is given by:

�0yi = 2
(p� qi) �N

0

p

(p� qi) � (p� qi)

which is the curvature of the unique osculating circle passing through p and qi with normal N 0

p at p [2]. This

produces a system of equations:

(1) yTi Wyi = �0yi i = 1; 2; : : : ; n

that we wish to solve for W . In [2], these equations are weighted in the same manner as the weighting in the

third normal approximation method mentioned at the beginning of this section, but it is not clear that this

improves the result much. The fact is that the osculating circle only produces a second-order approximation

to the true normal curvature and second-order approximations can introduce signi�cant error in many cases.

The �rst step in solving for W is to reorganize (1) as follows. Let yi = (ui; vi) and

W =

�
A B
B C

�
:

Then

yTi Wyi = (ui vi )

�
A B
B C

��
ui
vi

�
= ( u2i 2uivi v2i )

0
@A
B
C

1
A :

If we let U be the n� 3 matrix with rows (u2i 2uivi v2i ), x = (A B C )T , and d be the n-vector

whose ith entry is �0yi the entire system can be written as the matrix equation

(2) Ux = d:

If d was the vector of true normal curvatures, this linear system would have an exact solution (assuming

the adjacent vertices do not have some degenerate pattern, like all lying on the same line.) In practice, the
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best we can hope to �nd is a least squares �t, i.e., a vector x that minimizes jjUx� djj. There are standard

numerical methods for �nding this least squares solution. The resulting matrix

W 0 =

�
A0 B0

B0 C 0

�

is used to approximate the principal directions. It is worth noting that the matrix U depends only on the

projection of the adjacent vertices onto the local tangent plane, i.e. it is �xed by the choice of the mesh

on the surface. The vector d depends on measurements we make at these adjacent vertices - i.e. it varies

according to the amount of error we make. As we will see in a later section, it is possible to separate the

mesh from the measurements so that we can understand how measurement error interacts with the local

mesh geometry.

III.b The Quadratic Surface Approximation Method

In this method we try to best-�t a quadratic surface to the adjacent vertices. We begin by transforming

each adjacent vertex qi to local coordinates (xi; yi; zi). In these local coordinates, p becomes (0; 0; 0), N 0

p lies

along the positive z-axis, and the quadratic surface looks like

z = f(x; y) =
A

2
x2 +Bxy +

C

2
y2:

It is easy to show that the Weingarten matrix for such a surface is

W =

�
A B
B C

�
:

As in the Normal Curvature method, we plug in the adjacent vertices to get a system of equations

( 1
2x

2
i xiyi

1
2y

2
i )x = zi i = 1; : : : ; n:

As before, we can �nd a least-squares �t to this system. It order to be able to compare the result to the

normal curvature method, we scale the ith equation by
2

k2i
, where ki =

p
x2i + y2i . Then (xi; yi) = ki(ui; vi)

so that

( 1
2x

2
i xiyi

1
2y

2
i ) =

k2i
2
(u2i 2uivi v2i ) :
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Then we can write each scaled equation in the system as:

(u2i 2uivi v2i )x = di

where di =
2
k2
i

zi. There is a nice geometric interpreatation of di. Consider the parabola with equation

y = di
2 x

2. Plugging in x = ki we get

y =
di
2
k2i = zi

so that this parabola passes through the origin and the point (ki; zi). Since ki =
p
x2i + y2i , we can think of

this parabola in three dimensions as passing through the local coordinate origin and the point (xi; yi; zi).

The one variable, planar formula for computing curvature is :

� =
jy00j

(1 + y02)3=2
:

Using this formula for the parabola, at (0,0) we get � = jdij. In other words, di is the normal curvature of a

parabola passing through (xi; yi; zi) and the origin. We can now see that the Quadratic Surface method is

identical to the Normal Curvature method, except that curvature approximations are done using parabolas

rather than circles. This suggests that these two methods will produce similar results, with one performing

slightly better than the other depending on whether circles or parabolas better approximate the surface

locally in some direction.

III.c The Adjacent-Normal Cubic Approximation Method

In both of the proceeding methods, we did not use all of the information available to us. Namely, we

did not use the known (approximated) normal vectors at adjacent vertices qi. We can use this information

to create a third-order approximation method that we believe has not yet appeared in the literature. As we

will see in the next section, this method seems to perform signi�cantly better than the �rst two in many

cases.

As in the Quadratic method we try to �t a surface to the adjacent vertex data. Let

f(x; y) =
A

2
x2 +Bxy +

C

2
y2 +Dx3 +Ex2y + Fxy2 +Gy3:
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The Weingarten matrix for this surface is still W =

�
A B
B C

�
, because in the local coordinate system the

curvature only depends on the second degree terms. However, using the third degree terms in the least-

squares �t will produce values for (A;B;C) di�erent from the ones we get in the quadratic method. The

normal to this surface is given by:

N(x; y) = (fx(x; y); fy(x; y);�1)

= (Ax +By + 3Dx2 + 2Exy + Fy2; Bx+ Cy +Ex2 + 2Fxy + 3Gy2;�1):

Let (ai; bi; ci) denote the normal at the data point (xi; yi; zi) (both normal and point must be transformed to

the local coordinates), and let x = (A B C D E F G )
T
. Rewrite the normal as (�

ai
ci
;�

bi
ci
;�1).

Then for each point, we have an equation

( 1
2x

2
i xiyi

1
2y

2
i x3i x2i yi xiy

2
i y3i )x = zi

and for each normal we have two equations:

(xi yi 0 3x2i 2xiyi y2i 0 )x = �
ai
ci

( 0 xi yi 0 x2i 2xiyi 3y2i )x = �
bi
ci
:

As in the preceding method, we scale these equations by the same scale factor 2
k2
i

, to obtain a system

Ux = d

where U is a 3n� 7 matrix and d is a 3n-vector. Again, we �nd a least-squares �t, but use only A, B, and

C from the result. Note that n has to be at least 3 for there to be at least as many equations as unknowns.
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III.d Higher Order Methods

The preceding method can be extended to higher orders:

f4(x; y) =
A

2
x2 +Bxy +

C

2
y2 +

n=3X
n=0

Dnx
3�nyn +

n=4X
n=0

Enx
4�nyn

f5(x; y) =
A

2
x2 +Bxy +

C

2
y2 +

n=3X
n=0

Dnx
3�nyn +

n=4X
n=0

Enx
4�nyn +

n=5X
n=0

Fnx
5�nyn

and so on. However, in order that there be at least as many equations as unknowns, the maximum de-

gree of the approximation that we can compute is limited by the number of adjacent vertices in the

mesh. For example, if we use 6 adjacent vertices, then there will be 18 equations. The highest or-

der method that we can use is then degree 5, since such an approximation will have the 18 unknowns

(A;B;C;D0; : : : ; D3; E0; : : : ; E4; F0; : : : ; F5):

As we will see in what follows, higher order methods seem to make small errors smaller, but can also

make large errors larger.

IV. Testing the Methods

We have noted that principal direction approximation methods are often tested using very simple models,

such as surfaces of revolution triangulated using a regular pattern. Most methods seem to work well in these

circumstances. However we have found that these previously proposed methods can fail for more complex

surfaces with irregular mesh patterns. By fail we mean that the approximated principal directions can be

wildly o� from the true ones, even at non-umbilical points. We sought to gain deeper insight into the source

of these errors, in order to better determine how it might be possible to attempt to overcome them.

We set out to design a test surface that had signi�cant areas where the curvature was \interesting", and

we devised a number of di�erent ways to create local triangular meshes on this surface.
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Our surface, S(u; v), is de�ned by:

f(u) = �2u4 + 2u2 + u=6 + 0:3

g(u) =

8<
:
:9 + u+ f(�:9); �:9� f(�:9) � u � �:9;
f(u); �:9 � u � 1;
1� u� f(1); 1 � u � 1 + f(1);

h(u) =

8<
:
�:9; �:9� f(�:9) � u � �:9;
u; �:9 � u � 1;
1; 1 � u � 1 + f(1);

x(u; v) = g(u) cos(v)

y(u; v) = g(u) sin(v)

z(u; v) = h(u) + 0:2 sin(2x(u; v)) + 0:15 cos(3x(u; v)y(u; v))

S(u; v) = (x(u; v); y(u; v); z(u; v)) :9� f(�:9) � u � 1 + f(1); 0 � v � 2�:

Figure 2. Test Surface

We selected 575 points on this surface, none of which were umbilical points. Table 1 shows the distri-

bution of principal curvature di�erences for these points.

TABLE 1. Principal Curvature Di�erences on Test Surface

�1 � �2 Points with �1 � �2 in indicated range

0-0.1 17
0.1-0.2 47
0.2-0.3 37
0.3-0.4 29
0.4-0.5 30
> 0.5 415
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In devising mesh schemes, we had a number of hypotheses we wished to test:

1. Does regularity of the mesh improve accuracy and randomness reduce it?

2. Does enforcing equidistance to adjacent vertices improve accuracy?

3. Does enforcing equiangularity between adjacent vertices improve accuracy?

4. Does choosing adjacent vertices along the true principal directions matter?

With these in mind, we used two approaches to creating meshes.

IV.a Global Parameter Space Triangulations

First we created a Global Regular triangulation of parameter space. Figure 3a shows a 4 by 4 global

regular triangulation. The actual triangulation we used was 50 by 50. Then we created a Global Random

triangulation by randomly moving the interior points. Figure 3b shows a 4 by 4 global random triangulation.

Figure 3. Left: Global Regular Triangulation, Right: Global Random Triangulation.

IV.b Local Tangent Space Projections

Next we created six local meshing patterns, which we de�ned independently around each of 575 indi-

vidual vertices from the global random mesh. We used these patterns to investigate the hypotheses listed in

the preceding section. We began by de�ning the six planar mesh patterns shown in Figure 4. These patterns

were formed by using various rotations of a single radial edge about a given centerpoint.
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In all cases six edges were used, with the �rst edge de�ned to be aligned with the analytically-determined

�rst principal direction. In Local Mesh 1, the angle of rotation between all of the edges was de�ned to be

equal (60�). In Local Mesh 2, the angles between the edges were de�ned in a regular pattern with 3-way

symmetry, alternating 30� with 90�. Local Meshes 3-6 were generated by choosing the �ve successive angles

of rotation randomly in [1� .. 90�].

Figure 4. Six Local Mesh patterns.

Figure 5. Surface mesh obtained from local mesh in tangent plane.
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For each of these patterns and at each of the points on the surface created by the Global Random

triangulation we then determined the points on the surface that projected onto the pattern in the tangent

plane at that point (Figure 5). Finally, we rotated the patterns in the tangent plane 5 times (72 degrees

each time). The initial orientation of each local mesh was con�gured to have one edge lying along a principal

direction. Subsequent rotations moved this edge away from the principal direction. We did this in order

to see if having mesh edges coincidentally aligned with or counter-balanced against the principal directions

a�ected the accuracy of the approximation.

Figure 6 shows the estimated principal directions computed using each of the three methods in the

case where the data is represented by the Global Regular mesh. All of the methods performed very well

under these conditions. Figure 7 shows the estimated principal directions computed using the same three

methods at the vertices of the Global Random mesh. Note the increase in the prevalence of large angle

errors, especially with the two second order methods; estimated directions more than 10� out of alignment

with the true principal directions are highlighted in red.

More results for our surface are summarized in Figures 8-9 and Tables 2-5 in the appendix. Figure 8

shows the median angle error, in degrees, for each of our methods, using each of our meshes for 575 points on

the surface, across all rotations. The size and prevalence of errors varied according to the mesh type, with

the smallest errors occurring in the local equi-angle case and the greatest errors occurring in the cases of

the global and local random meshes and the local 30�-90� pattern. Performance was best, overall, when the

Cubic method was used, and was not as good in the cases of the Quadratic and Normal Curvature methods.

The performance in the cases of these two second order methods was very similar.

Figure 9 provides a more detailed look at the data, showing the percent of the mesh points having angle

errors below certain thresholds, for each method. Figure 7a shows, for example, that for the Cubic method

performance was fairly consistent across all mesh types, with approximately 22-27% of the mesh points having

angle errors above 1�, and with that number rapidly dropping to below 5% for errors above 10�-15�. Figure

7b shows that performace was more varied by mesh type in the case of the Normal Curvature method, with

between 24% to over 40% of the mesh points having angle errors above 1�, and with that number dropping

below 5% at thresholds between 7�-22�, depending on mesh type.
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Figure 6. Approximated principal directions, Global Regular Mesh. Directions marked in

red have errors above 10�. Surface coloration highlights areas in which the di�erence between

the two principal curvatures becomes small (near-umbilic points). Upper left: Exact direc-

tions. Upper right: Approximated directions, Quadratic Method. Lower left: Approximated

directions, Normal Curvature Method. Lower right: Approximated directions, Cubic Method.
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Figure 7. Approximated principal directions, Global Random Mesh. Directions marked in

red have errors above 10�. Surface coloration highlights areas in which the di�erence between

the two principal curvatures becomes small (near-umbilic points). Upper left: Exact direc-

tions. Upper right: Approximated directions, Quadratic Method. Lower left: Approximated

directions, Normal Curvature Method. Lower right: approximated directions, Cubic Method.
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Figure 8. Median error in the approximated principal directions, per mesh type and method.

Figure 9. Prevalence of errors in the approximated principal directions, by magnitude.

Table 2, given in the appendix, provides numeric data listing the number of points at which the degree

error fell into each indicated range. For example, the �rst entry in the table says that out of 575 vertices

tested using the Global Regular mesh, 498 had a principal direction error of less than 3�, 56 had an error

between 3�-6�, and 21 had an error of more than 6�. The rotations only make sense for the six Local Mesh

schemes. We found no apparent advantage for the principal-direction aligned rotations (see, for example,

the equiangular case).
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Table 3 shows that the results are virtually identical when the constraint of equal edge length on the

surface (as opposed to on the local parameterization in the tangent plane) is enforced. At each vertex we

recomputed the local mesh to have edges of length equal to the average of the 6 local edges from Table 2.

In Table 4 we enforced a global equal length constraint. The average edge length in Table 2 is 0.08. Table

4 shows the result for all edges constrained to be of lengths 0.05 and 0.1. We show only the Rotation 1

column, as the other columns are similar.

Table 5 separates out those points with a principal curvature di�erence of less than 0.2. Each entry of

the form n(m) is read as n points with curvature di�erence greater than 0.2 and m points with curvature

di�erence less than 0.2, so for example, the �rst entry 464(34) 33(23) 18(3) says that of the 21 points where

there was an error of more than 6 degrees, only 3 of them were even close to being umbilical points. Table 5 is

perhaps the most revealing. It reveals that large principal direction errors can occur away from umbilical

points.

The results suggest several conclusions:

1. The degree � 3 methods nearly consistently outperform both of the degree 2 methods.

2. The regular meshes tend to produce better results than the random ones.

3. The equiangular mesh (Local Mesh 1) produces good results for all three methods.

4. Aligning edges with principal directions does not seem to matter.

5. Enforcing equality of adjacent edge length does not seem to matter, but the shorter all of the edges are

the better.

6. Large errors can occur away from umbilical points.

V. A Uni�ed Approach to Error Analysis

The previous section illuminates how well or badly the three methods that we examined can work. We

saw that some mesh schemes seem to produce fewer large errors than others, but that in nearly every case

there are non-umbilical points where the error is large. In this section we will develop the mathematics

necessary to understand why this is so.
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From a mathematical point of view, all three of the methods outlined in Section III have the same two

steps:

(1) Find a least-squares �t to a linear system

Ux = d

where U is computed from the mesh geometry and d is computed from measurements at the adjacent

vertices in the surface mesh.

(2) Use the �rst three entries,

0
@A0

B0

C 0

1
A, in the least-squares solution x to form a symmetric matrix

W 0 =

�
A0 B0

B0 C 0

�

and then �nd the eigenvalues and eigenvectors of W 0.

We seek to understand how the local mesh geometry and the measurement error interact to create error in

principal direction.

We begin with a standard result from linear algebra:

Theorem 1. A least squares solution to Ux = d is the exact solution to UTUx = UT d:

In our situation, U is known exactly and is computed from the projection of the adjacent vertices onto

the local tangent plane, but d is known only approximately. If we let dT denote the (unknown) vector that

d approximates and xT the exact solution to UTUxT = UT dT , then

UTU(x� xT ) = UT (d� dT ):

Then e = x � xT =

0
@ eA
eB
eC

1
A is what creates the error in our approximation to the Weingarten matrix.

More precisely,

W 0 =

�
A0 B0

B0 C 0

�
=

�
A B
B C

�
+

�
eA eB
eB eC

�
:

We will see in what follows that it is not so much the magnitude of e that creates principal direction errors,

but rather the relationships between these errors that really determines the magnitude of the approximation

errors.

The �rst step in our analysis is to show that direction errors are independent of the choice of local

coordinates. It might seem that since the entries in the matrix U depend on the choice of local coordinates
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in the tangent plane, the entries in the matrixW 0 will also depend on the local coordinates and this, in turn,

will a�ect errors in direction. However, we can prove the following theorem:

Theorem 2. Suppose L and L0 are two di�erent orthonormal coordinate systems in the tangent

plane and U and U 0 are the coe�cient matrices found in any of our approximation methods using

L and L0, respectively. Then the approximated Weingarten matrices have the same eigenvalues and

eigenvectors.

Proof: We prove the theorem for the Normal Curvature method, as the other methods have a

similar proof. If (u; v) and (u0; v0) are the coordinates of a point in L and L0, respectively, then

�
u0

v0

�
=

�
cos � sin �
� sin � cos �

��
u
v

�
= R

�
u
v

�
:

Using this, it is not hard to show that U 0 = US where

S =

0
@ cos2 � 2 cos � sin � sin2 �
� sin � cos � cos2 � � sin2 � sin � cos �

sin2 � �2 sin � cos � cos2 �

1
A :

Let UTUx = UT d and U 0TU 0x0 = U 0T d. Replacing U 0 by US in the second equation produces

STUTUSx0 = STUT d:

Since S is invertible, we get UTUSx0 = UT d. That is, x = Sx0. Now if x = (A;B;C) and

x0 = (A0; B0; C 0), it is not hard to show that

�
A B
B C

�
= R�1

�
A B
B C

�
R:

That is, the approximate Weingarten matrices are orthogonally similar, so they have the same

eigenvalues and eigenvectors. This completes the proof.

Theorem 2 tells us that our direction errors will not depend on how we chose the local coordinates. As

a consequence of this theorem, it su�ces to choose the true principal directions as our local coordinates.

This will simplify some of our later calculations. In particular, with respect to these local coordinates,

W =

�
�1 0
0 �2

�
where �1 and �2 are the principal curvatures. Suppose W 0 is our approximated matrix

with respect to these local coordinates. We express W 0 in two ways:
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(1) Since W 0 approximates W ,

W 0 =

�
�1 + eA eB
eB �2 + eC

�
:

(2) Since W 0 is a symmetric 2 by 2 matrix, it can be orthogonally diagonalized. That is, it can be written

W 0 =

�
cos � � sin �
sin � cos �

��
�1 0
0 �2

��
cos � sin �
� sin � cos �

�

where �1 and �2 are the eigenvalues of W 0 and

�
cos �
sin �

�
and

�
� sin �
cos �

�
are orthonormal eigenvectors.

Note also that since we have chosen the true eigenvectors as our local coordinate system, � is precisely

the angle error between the true directions and the approximated ones. We can �nd � by equating these

two ways of writing W 0. First, multiply out the three matrices in (2) to obtain:

W 0 =

�
�1 cos

2 � + �2 sin
2 � �1 sin � cos � � �2 sin � cos �

�1 sin � cos � � �2 sin � cos � �1 sin
2 � + �2 cos

2 �

�
:

Equating corresponding entries in the two ways to express W 0, we obtain three equations:

(1) �1 cos
2 � + �2 sin

2 � = �1 + eA;

(2) �1 sin
2 � + �2 cos

2 � = �2 + eC ;

(3) �1 sin � cos � � �2 sin � cos � = eB :

Subtracting equation (2) from equation (1), and multiplying equation (3) by 2, we obtain, respectively:

(4) (�1 � �2) cos(2�) = eA � eC + �1 � �2;

(5) (�1 � �2) sin(2�) = 2eB :

Finally, dividing equation (5) by equation (4) we get the result:

(6) tan(2�) =
2eB

eA � eC + �1 � �2
:

We summarize this in the following theorem:
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Principal Error Theorem

Suppose W 0 =W +E where

W =

�
�1 0
0 �2

�
E =

�
eA eB
eB eC

�

Then the angle � between the �rst eigenvectors of W and W 0 satis�es

tan(2�) =
2eB

eA � eC + �1 � �2
:

Since tan is an increasing function, angle errors will be large when

2eB
eA � eC + �1 � �2

is large.

Many simulations have convinced us that the size of the numerator in this expression is the most

signi�cant culprit in producing angle errors. Let's examine more carefully how it is computed.

From our earlier work in this section, the total error vector e = (eA; eB ; eC ; : : :) is the solution to

UTUe = UT �d

where U is computed from the local mesh projected onto the local tangent plane, and �d = d � dT is the

vector of errors we made because we did not compute the exact normal curvatures, (or the surface is not

exactly quadratic or cubic, depending which method we are using). Hence

e = (UTU)�1UT �d:

If we let Y = (UTU)�1UT , and let Yi denote the i
(th) row of Y , then

eB = Y2 � �d = jjY2jjjj�djj cos �dY2 :

where �dY2 is the angle between Y2 and �d. Y2 is �xed by the choice of local mesh, so we see that eB can vary

widely depending on �dY2 . In the worst case (�dY2 = 0), eB = jjY2jjjj�djj and in the best case (�dY2 = �
2 ),

even if �d has large magnitude, eB = 0.
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We illustrate with an example how volatile the situation can be. Suppose we are using Local Mesh 3 at

a point where the di�erence between the principal curvatures is 0.5, that is, away from an umbilical point.

This mesh's local uv coordinates are:

0
BBBBB@

u1 v1
u2 v2
u3 v3
u4 v4
u5 v5
u6 v6

1
CCCCCA

=

0
BBBBB@

1 0
0:0334296 0:999441
�0:0698233 0:997559
�0:999741 0:0227421
�0:0945938 �0:995516
0:360022 �0:932944

1
CCCCCA

and

Y = (UTU)�1UT

=

0
@ 0:504502 0:00796006 �0:0165789 0:498407 0:0275063 �0:0217962

0:128266 0:427104 �0:0347749 0:0265751 0:697892 �1:24506
�0:00117602 0:321524 0:263133 �0:0136473 0:352888 0:0772777

1
A :

First we choose an error vector in the same direction as the second row of Y :

�d1 = ( 0:0256532 0:0854208 �0:00695498 0:00531501 0:139578 �0:249012)

To do this, we scaled down the second row to produce errors of a magnitude consistent with using a

circle to approximate normal curvatures along 6 adjacent vertices. Using �d1 produces the error vector:

e1 = Y �d1 = ( 0:0256532 0:447604 0:0555445) :

We then apply the Principal Error Theorem:

tan(2�) =
2eB

eA � eC + �1 � �2
=

2(0:447604)

0:0256532� 0:0555445+ 0:5
= 1:904:

producing an error of � = 31:1471 degrees.

Now we choose an error vector whose entries are close to those in �d1, but which is perpendicular to

the second row of Y :

�d2 = ( 0:02 0:28 0:1 �0:05 0:1 0:150304)

In this case, e2 = Y �d2 = (�0:0147848 0 0:163903) which produces an error of 0 degrees!
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Figure 10 shows the correlation between the magnitude of the error and the each of the components in

(6) for two of the methods examined, at 575 points on our test surface and using six di�erent rotations of

each local mesh at each point.

Note that the size of the numerator, 2eB, depends upon jjY2jj, which is determined by the mesh, jjdjj,

which reects the magnitude of the errors we have made in approximating the normal curvatures, and �dY2 ,

the angle between Y2 and �d. Note also that the error vectors for the degree 3 method have 18 components,

not 6, so although the magnitude of Y2 in these cases is signi�cantly smaller, the magnitude of an 18

component �d is likely to be greater. The size of the denominator in (6) depends both upon eA � eC and

upon the di�erence between the two principal curvatures, �1 � �2. By de�nition, �1 > �2. The magnitude

of eA� eC in turn depends upon jjY1�Y3jj, jjdjj, and the angle between Y1�Y3 and �d. When both �1��2

and eA � eC are small, larger errors become more likely.

However, it seems that it is the size of the numerator that has the most signi�cant e�ect. In the case

of the cubic method, the sizes of the errors in the estimates of the normal curvatures seems to be the factor

most signi�cantly inuencing the size of the error in the principal direction estimates; in the case of the

normal curvature method, the direction in which the errors were made seems for some meshes to be nearly

as signi�cant.

Figure 10. Correlation of the various components of equation (6) with error.
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Table 6 in the appendix shows the median values of each of the components of (6) by mesh type and

method. From this table it can be seen that the median errors appear to be smallest when the median angle

between �d and Y2 is closest to 90�, indicating the advantage of situations in which a higher proportion of

errors can cancel out.

V. Conclusions

We have shown that approximating principal directions on a surface mesh can be a tricky business.

Although it is important to minimize the error in approximating various quantities such as normal curvature,

an unfortunate pattern of small errors can produce large angle errors. Using a non-trivial test surface, we

have shown that principal direction approximation methods are particularly prone to error when working

with irregularly sampled data, and that these errors appear to be more severe for second order methods than

for higher order methods that take advantage of more of the known information about the surface.

There are many important directions for future work in this area. A major practical concern that we

did not touch upon at all in our work is the problem of surface smoothing. In many cases, approximate

meshes are obtained from a sampling process that is prone to a certain amount of intrinsic error. How might

we best recover the mesh that describes the continuous smooth surface that is approximated by a collection

of noisy samples? If we have only a mesh that is highly irregular as well as noisy, how could we improve

our chances of obtaining a smooth principal direction vector �eld and avoiding the introduction of large

principal direction estimation errors? Would resampling to obtain a mesh in which the edge distribution is

more equiangular help? Finally, it might be interesting to see how well the �ndings we have made hold up

under further testing with a wider variety of mesh types and surface shapes.
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TABLE 2. Degree Errors for 575 Points on Test Surface

Mesh Type Rotation 1 Rotation 2 Rotation 3 Rotation 4 Rotation 5
Degree Error 0-3 3-6 >6 0-3 3-6 >6 0-3 3-6 >6 0-3 3-6 >6 0-3 3-6 >6

Normal Curvature Method

Global Regular 498 56 21
Global Random 374 84 117
Local Mesh 1 514 28 33 521 18 36 529 22 24 531 20 24 515 26 34
Local Mesh 2 327 101 147 412 65 98 351 112 112 321 88 166 321 82 172
Local Mesh 3 252 128 195 309 174 92 379 96 100 506 25 44 346 118 111
Local Mesh 4 316 124 135 433 75 67 437 66 72 473 44 58 309 91 175
Local Mesh 5 324 153 98 440 76 59 525 19 31 501 44 30 391 109 75
Local Mesh 6 466 58 51 490 46 39 487 39 49 373 78 124 401 92 82

Quadratic Approximation

Global Regular 501 54 20
Global Random 372 87 116
Local Mesh 1 512 30 33 517 21 37 529 22 24 531 20 24 511 30 34
Local Mesh 2 322 104 149 412 65 98 347 114 114 320 87 168 320 79 176
Local Mesh 3 243 134 198 306 178 91 380 93 102 506 25 44 355 115 105
Local Mesh 4 316 130 129 433 73 69 434 69 72 471 45 59 306 89 180
Local Mesh 5 320 157 98 440 74 61 525 18 32 501 44 30 396 101 78
Local Mesh 6 458 64 53 488 48 39 484 43 48 367 79 129 406 90 79

Cubic Approximation

Global Regular 514 24 37
Global Random 505 22 48
Local Mesh 1 500 25 50 500 28 47 505 33 37 501 34 40 492 33 50
Local Mesh 2 507 26 42 503 27 45 503 34 38 512 26 37 509 30 36
Local Mesh 3 522 22 31 497 32 46 483 39 53 490 35 50 481 42 52
Local Mesh 4 504 27 44 506 26 43 490 37 48 507 25 43 503 33 39
Local Mesh 5 519 24 32 494 33 48 482 43 50 499 33 43 485 36 54
Local Mesh 6 491 35 49 492 34 49 502 30 43 514 27 34 504 29 42

Degree 4 Approximation

Global Regular 511 25 39
Global Random 495 20 60
Local Mesh 1 525 12 38 525 11 39 530 6 39 525 10 40 519 12 44
Local Mesh 2 483 28 64 513 8 54 508 13 54 480 24 71 471 36 68
Local Mesh 3 513 13 49 529 11 35 450 43 82 450 35 90 516 16 43
Local Mesh 4 500 17 58 527 15 33 524 8 43 505 17 53 493 22 60
Local Mesh 5 507 25 43 500 21 54 433 32 110 428 36 111 450 35 90
Local Mesh 6 501 24 50 519 7 49 499 20 56 511 18 46 496 15 64

Degree 5 Approximation

Global Regular 523 4 48
Global Random 518 3 54
Local Mesh 1 527 6 42 525 8 42 530 7 38 530 5 40 519 12 44
Local Mesh 2 529 7 39 529 5 41 531 7 37 537 2 36 533 4 38
Local Mesh 3 521 12 42 536 2 37 536 3 36 537 5 33 528 7 40
Local Mesh 4 528 10 37 538 7 30 529 6 40 533 3 39 518 11 46
Local Mesh 5 523 11 41 532 3 40 538 2 35 536 5 34 522 8 45
Local Mesh 6 533 3 39 526 6 43 524 8 43 529 4 42 524 7 44
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TABLE 3. Degree Errors for 575 Points on Test Surface | Local Equal Edge Length Enforced

Mesh Type Rotation 1 Rotation 2 Rotation 3 Rotation 4 Rotation 5
Degree Error 0-3 3-6 >6 0-3 3-6 >6 0-3 3-6 >6 0-3 3-6 >6 0-3 3-6 >6

Normal Curvature Method
Global Regular 498 56 21
Global Random 376 89 110
Local Mesh 1 518 25 32 518 26 31 533 18 24 533 18 24 525 20 30
Local Mesh 2 321 103 151 417 55 103 350 112 113 321 86 168 330 74 171
Local Mesh 3 243 135 197 308 181 86 383 90 102 502 35 38 362 94 119
Local Mesh 4 318 117 140 432 68 75 439 70 66 472 48 55 315 89 171
Local Mesh 5 324 163 88 442 73 60 522 26 27 495 44 36 378 119 78
Local Mesh 6 469 52 54 498 39 38 491 38 46 363 92 120 402 85 88

Degree 2 Approximation

Global Regular 501 54 20
Global Random 374 88 113
Local Mesh 1 518 25 32 518 25 32 532 19 24 532 19 24 520 24 31
Local Mesh 2 317 106 152 418 54 103 347 115 113 320 86 169 328 75 172
Local Mesh 3 240 135 200 302 187 86 381 92 102 501 36 38 362 96 117
Local Mesh 4 320 121 134 432 68 75 438 69 68 471 47 57 315 86 174
Local Mesh 5 320 163 92 442 71 62 522 26 27 495 44 36 382 111 82
Local Mesh 6 458 61 56 495 41 39 488 39 48 359 91 125 402 88 85

Degree 3 Approximation

Global Regular 514 24 37
Global Random 491 30 54
Local Mesh 1 501 32 42 498 33 44 506 32 37 502 34 39 501 33 41
Local Mesh 2 503 35 37 508 32 35 501 30 44 509 33 33 510 32 33
Local Mesh 3 517 28 30 496 38 41 485 43 47 489 35 51 484 45 46
Local Mesh 4 500 35 40 506 35 34 496 38 41 507 34 34 506 30 39
Local Mesh 5 513 33 29 496 41 38 485 42 48 492 36 47 485 45 45
Local Mesh 6 492 36 47 491 39 45 498 34 43 513 30 32 504 32 39

Degree 4 Approximation

Global Regular 511 25 39
Global Random 479 24 72
Local Mesh 1 505 14 56 494 23 58 500 19 56 496 22 57 493 22 60
Local Mesh 2 485 32 58 514 23 38 506 18 51 479 30 66 469 41 65
Local Mesh 3 524 9 42 526 16 33 454 41 80 444 39 92 514 18 43
Local Mesh 4 512 15 48 530 16 29 533 10 32 509 18 48 495 25 55
Local Mesh 5 519 18 38 503 20 52 435 34 106 421 33 121 454 39 82
Local Mesh 6 508 19 48 525 7 43 501 18 56 526 13 36 496 30 49

Degree 5 Approximation

Global Regular 523 4 48
Global Random 505 9 61
Local Mesh 1 530 14 31 520 13 42 533 7 35 532 2 41 525 14 36
Local Mesh 2 533 2 40 543 4 28 534 10 31 537 1 37 540 3 32
Local Mesh 3 530 10 35 537 5 33 540 3 32 540 3 32 532 5 38
Local Mesh 4 535 5 35 544 9 22 531 11 33 539 9 27 521 12 42
Local Mesh 5 528 12 35 536 5 34 539 1 35 539 2 34 531 5 39
Local Mesh 6 534 4 37 528 8 39 525 11 39 533 3 39 529 4 42
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TABLE 4. Degree Errors for 575 Points on Test Surface | Global Equal Length Edges

Length = 0.05 Length = 0.10
Degree Error 0-3 3-6 >6 0-3 3-6 >6

Normal Curvature Method

Local Mesh 1 569 5 1 489 29 57
Local Mesh 2 397 111 67 267 105 203
Local Mesh 3 345 98 132 145 177 253
Local Mesh 4 408 119 48 246 124 205
Local Mesh 5 457 92 26 197 223 155
Local Mesh 6 538 24 13 418 71 86

Degree 2 Approximation

Local Mesh 1 569 5 1 486 32 57
Local Mesh 2 396 112 67 266 103 206
Local Mesh 3 347 96 132 138 186 251
Local Mesh 4 407 120 48 250 122 203
Local Mesh 5 456 93 26 184 230 161
Local Mesh 6 538 24 13 404 84 87

Degree 3 Approximation

Local Mesh 1 570 0 5 473 34 68
Local Mesh 2 571 0 4 475 35 65
Local Mesh 3 571 1 3 497 27 51
Local Mesh 4 571 0 4 470 40 65
Local Mesh 5 571 1 3 488 32 55
Local Mesh 6 568 1 6 462 40 73

Degree 4 Approximation

Local Mesh 1 574 0 1 463 27 85
Local Mesh 2 574 0 1 438 47 90
Local Mesh 3 575 0 0 499 21 55
Local Mesh 4 574 0 1 470 28 77
Local Mesh 5 574 0 1 497 27 51
Local Mesh 6 572 0 3 484 29 62

Degree 5 Approximation

Local Mesh 1 574 0 1 509 10 56
Local Mesh 2 574 0 1 515 6 54
Local Mesh 3 574 0 1 519 7 49
Local Mesh 4 574 0 1 518 6 51
Local Mesh 5 574 0 1 513 10 52
Local Mesh 6 572 0 3 514 4 57
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TABLE 5. Degree Errors for 575 Points Separated by Principal Curvature Di�erence of 0.2 on Test Surface

Mesh Type Rotation 1
Degree Error 0-3 3-6 >6

Normal Curvature Method

Global Regular 464(34) 33(23) 18(3)
Global Random 337(37) 71(13) 103(14)
Local Mesh 1 460(54) 25(3) 26(7)
Local Mesh 2 317(10) 64(37) 130(17)
Local Mesh 3 232(20) 116(12) 163(32)
Local Mesh 4 297(19) 98(26) 116(19)
Local Mesh 5 300(24) 130(23) 81(17)
Local Mesh 6 425(41) 46(12) 40(11)

Degree 2 Approximation

Global Regular 466(35) 32(22) 17(3)
Global Random 335(37) 74(13) 102(14)
Local Mesh 1 458(54) 27(3) 26(7)
Local Mesh 2 312(10) 67(37) 132(17)
Local Mesh 3 223(20) 122(12) 166(32)
Local Mesh 4 297(19) 104(26) 110(19)
Local Mesh 5 296(24) 135(22) 80(18)
Local Mesh 6 417(41) 52(12) 42(11)

Degree 3 Approximation

Global Regular 458(56) 24(0) 33(4)
Global Random 448(57) 19(3) 44(4)
Local Mesh 1 445(55) 23(2) 43(7)
Local Mesh 2 453(54) 22(4) 36(6)
Local Mesh 3 467(55) 18(4) 26(5)
Local Mesh 4 450(54) 23(4) 38(6)
Local Mesh 5 464(55) 20(4) 27(5)
Local Mesh 6 436(55) 35(0) 40(9)

Degree 4 Approximation

Global Regular 454(57) 24(1) 37(2)
Global Random 437(58) 18(2) 56(4)
Local Mesh 1 467(58) 10(2) 34(4)
Local Mesh 2 426(57) 27(1) 58(6)
Local Mesh 3 455(58) 12(1) 44(5)
Local Mesh 4 441(59) 16(1) 54(4)
Local Mesh 5 451(56) 21(4) 39(4)
Local Mesh 6 447(54) 20(4) 44(6)

Degree 5 Approximation

Global Regular 463(60) 4(0) 48(0)
Global Random 457(61) 3(0) 51(3)
Local Mesh 1 467(60) 6(0) 38(4)
Local Mesh 2 470(59) 7(0) 34(5)
Local Mesh 3 461(60) 11(1) 39(3)
Local Mesh 4 468(60) 10(0) 33(4)
Local Mesh 5 462(61) 11(0) 38(3)
Local Mesh 6 473(60) 3(0) 35(4)
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TABLE 6. Components of the Principal Direction Errors - Median Values

Normal Curvature Method

Error Num. Denom. jjY2jj jjY1Y3jj jjdjj �dY2 �dY1Y3

Global Regular 0.5816 0.0242 1.5943 0.8866 1.0961 0.2871 85.7942 85.9385
Global Random 1.6724 0.0826 1.5751 0.7080 1.2248 0.3196 76.7223 74.3489
Local Equi-angle 0.1918 0.0167 1.7288 0.5774 1.1547 0.3040 87.6794 86.1888
Local 30-90 1.8221 0.0837 1.6099 0.5773 1.1547 0.3138 71.1061 69.5400
Local Random 1 1.9897 0.0948 1.6284 1.2098 1.9767 0.2728 76.3860 78.1628
Local Random 2 1.5147 0.0737 1.6646 0.6342 1.2462 0.3057 75.1857 68.6009
Local Random 3 1.4092 0.0798 1.7039 1.0117 1.6519 0.2725 80.3466 81.3653
Local Random 4 0.9644 0.0460 1.6908 0.5838 1.2010 0.3124 80.7168 76.7227

Cubic Method

Error Num. Denom. jjY2jj jjY1Y3jj jjdjj �dY2 �dY1Y3

Global Regular 0.1647 0.0127 1.8344 0.0153 0.0303 2.5361 75.7809 63.8826
Global Random 0.1990 0.0152 1.7970 0.0160 0.0304 2.8937 77.9822 70.3364
Local Equi-angle 0.0906 0.0087 1.7875 0.0149 0.0298 2.8991 84.8990 66.5182
Local 30-90 0.1131 0.0102 1.7881 0.0157 0.0315 2.8181 83.1192 70.1950
Local Random 1 0.1311 0.0133 1.8100 0.0153 0.0306 2.6616 80.1992 67.0239
Local Random 2 0.1340 0.0120 1.7754 0.0156 0.0312 2.7878 81.2036 68.9842
Local Random 3 0.1328 0.0133 1.8103 0.0153 0.0305 2.6916 80.2445 66.7793
Local Random 4 0.1267 0.0115 1.7982 0.0155 0.0310 2.8677 82.4222 68.9718
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Abstract
Considerable evidence suggests that a viewer’s perception of the 3D shape of a polygonally-defined
object can be significantly affected (either masked or enhanced) by the presence of a surface texture
pattern.  However investigations into the specific mechanisms of texture’s effect on shape perception are
still ongoing and the question of how to design and apply a texture pattern to a surface in order to best
facilitate shape perception remains open.  Recently, we have suggested that for anisotropic texture
patterns, the accuracy of shape judgments may be significantly affected by the orientation of the surface
texture pattern anisotropy with respect to the principal directions of curvature over the surface.  However
it has been difficult, until this time, to conduct controlled studies specifically investigating the effect of
texture orientation on shape perception because there has been no simple and reliable method for
texturing an arbitrary doubly curved surface with a specified input pattern such that the dominant
orientation of the pattern everywhere follows a pre-defined directional vector field over the surface, while
seams and projective distortion of the pattern are avoided.  In this paper, we present a straightforward and
highly efficient method for achieving such a texture and describe how it can potentially be used to
enhance shape representation.  Specifically, we describe a novel, efficient, automatic algorithm for
seamlessly synthesizing, from a sample 2D pattern, a high resolution fitted surface texture in which the
dominant orientation of the pattern locally follows a specified vector field over the surface at a per-pixel
level, and in which seams, projective distortion, and repetition artifacts in the texture pattern are nearly
completely avoided.  We demonstrate the robustness of our method with a variety of texture swatches
applied to standard graphics datasets, and we explain how our method can be used to facilitate research in
the perception of shape from texture.

CR categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism — Texture.
Keywords: Texture synthesis, texture mapping, shape perception, shape representation.

1. Introduction
Adding texture to the surface of a polygonal model can not only profoundly enhance its visual richness,
but can also significantly affect our perception of the object’s geometry.  Certain textures have been
shown to impede accurate shape perception, for example by masking faceting artifacts [11].  Others may
have the potential to enhance shape perception by emphasizing the lines of curvature of the form [19].  In
computer graphics and visualization, where we have the ability to model a textured object in any way that
we desire – to both define the texture pattern and define how it is applied over the surface – we have the
potential to use texture in highly controlled ways to influence shape perception.  Unfortunately, the
existing theories on shape perception from texture do not provide sufficient guidance to answer the
question of how to best design and apply a texture to a surface in order to facilitate the accurate
understanding of its shape.

Researchers in perceptual psychology have been investigating the effects of various texture pattern
characteristics on surface shape perception for many years through controlled observer experiments [6,
22, 24, 26, 36].  Unfortunately the scope of these studies has been limited by the capabilities of available
rendering and texture-mapping utilities and algorithms.  In particular it has not been possible, in general,
to map an arbitrary pattern onto an arbitrary doubly curved surface so that the orientation of the pattern
everywhere follows a specific predefined vector field at a per-pixel level, while minimizing any distortion
of the underlying pattern and avoiding the introduction of pattern discontinuities.  Hence most of the
studies conducted to date have either not considered the effect of the orientation of the texture pattern
with respect to the surface curvature [6, 36], or have been limited to highly restricted synthetic texture
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patterns, such as isolated pairs of line segments [26], or have been limited to highly restricted surface
geometries, such as the case of singly-curved surfaces [22, 24].  As a result, our ability to gain deeper
insight into the specific impact of texture pattern orientation on surface shape perception, and to use this
insight to inform theories of shape perception from texture, has been limited.  In particular, it is not yet
clear to what extent the introduction of texture pattern anisotropy per se interferes with surface shape
perception [6], or to what extent it is sufficient for unimpeded shape perception to ensure only that the
texture pattern does not turn in the surface (i.e. that it does not contain significant geodesic curvature)
[22].

In computer graphics and visualization, many feel that the importance to shape perception of the
particular alignment over the surface of an anisotropic texture pattern remains open to debate.  However
we have come to believe, based on informal observations of numerous surfaces under numerous texture
conditions, that one’s ability to make accurate judgments about the shape of an underlying surface can be
significantly influenced both by the characteristics of the texture pattern itself and the way in which the
pattern is laid down over the surface.  Clearly, in order to objectively assess the impact of texture
orientation on surface shape perception, it is necessary to conduct further controlled, quantitative
experiments.  In a recent study using line integral convolution based texture [20], we found indications
that observers’ shape judgments of a doubly-curved surface are more accurate in the presence of a purely
anisotropic texture that follows the first principal directions of curvature over the surface (a special
instance of a pattern with zero geodesic curvature) than in the presence of either a purely anisotropic
texture that exhibits zero geodesic curvature but does not follow one of the principal directions, or a
pattern that contains significant non-zero geodesic curvature (figure 1) [20].  However we found no
indications that shape perception is significantly better in the presence of a purely anisotropic principal
direction oriented texture pattern than it is in the control case of the purely isotropic texture pattern.

Figure 1: Sample close-up images in an experiment examining the effect on shape perception of

differently oriented anisotropic texture patterns synthesized via line integral convolution.  Left: a uniformly

oriented texture with zero geodesic curvature, Center: a texture with non-zero geodesic curvature; Right:

a texture with nearly zero geodesic curvature that follows the first principal direction over the surface.

The underlying surface shape is identical in all three cases.

In order to further investigate the key question of how we might best both define and apply a texture
pattern to facilitate surface shape perception, we will have to conduct additional studies using a wider
variety of surface texture patterns.  This requires an algorithm for texturing an arbitrary doubly curved
surface with an arbitrary 2D pattern such that the dominant direction of the pattern follows a specified
vector field over the surface at a per-pixel level.  In this paper we describe such an algorithm that we
developed for this purpose.  Our algorithm is very straightforward, easy to implement, and highly
efficient, and has the potential to be useful for a wide variety of graphics applications that require the
aesthetic mapping of a given texture pattern to a given surface, independent of the desire to effectively
portray the surface shape.
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Given a 2D texture pattern and a polygonal surface model, the historical challenge has been to
determine how to apply the pattern to the surface in a manner that minimizies the visual impact of seams
and projective distortion while orienting the pattern so that it flows over the shape in a desirable way.

Many different approaches to this basic problem are possible and, concurrently with our work, many
similar approaches have been developed.  The key distinguishing features of the method that we describe
in this paper stem from the fact that it was specifically developed for the purposes of shape representation,
in which curvature information is carried by a high resolution texture pattern.  Our method has the
advantages of being highly efficient for large quantities of texture, very straightforward to implement, and
producing high quality results across a wide variety of texture types and models. For the purposes of
shape-from-texture investigations, our fitted texture approach is superior to our previous 3D line integral
convolution approach [20] because the resulting textured objects can be easily displayed at interactive
frame rates using a conventional renderer on a standard PC with texture mapping hardware.

Our technique consists of the following main steps:
-  Partition the polygons of the model into contiguous patches, as nearly planar (to prevent

distortion) and as nearly similarly sized (to simplify texture map handling) as reasonably possible.
- Compute a vector field over the object, or read a pre-defined field from a file.
-  Synthesize the texture pattern over each patch, maintaining pattern continuity across the

boundaries with neighboring patches, using an efficient, orientation-adaptive variation of the non-
parametric sampling method proposed by Efros and Leung [9].

An example of the results of our algorithm is presented in figure 2.

2. Previous Work
A variety of methods have been previously proposed for texturing polygonal models with patterns that are
as free as possible of seams and distortion artifacts.

One method is solid texturing [29, 30, 42], in which the texture pattern is defined over a 3D volume.
Particularly good results have been achieved with this method for water, as well as for objects made of
wood and stone.  However, there are significant challenges in synthesizing 3D textures modeled after
sampled materials [17, 8], and current methods for creating custom-fitted 3D textures whose features
follow a surface’s shape [19] are severely limited in scope and applicability.

Methods for applying 2D image-based texture to arbitrary polygonal models for the most part must
balance the inherent trade-off between seams and distortion (one cannot in general apply a 2D image to a
non-developable surface without incurring one or the other), employing piecewise flattening in the case of
arbitrary parametric [3] or polygonally-defined [25] models, or using careful surface parameterization
[23], or pre-distortion of the texture [1, 41] to achieve desired results in other particular cases.  Conformal
mapping [15] offers a global solution that preserves angles, but not lengths or areas.

Closer to our objectives, Neyret and Cani [28] proposed an excellent technique for achieving
seamless and virtually distortion-free mapping of 2D isotropic texture patterns on arbitrary objects via
custom-defined triangular texture tiles that are continuous with one another across various of their
boundaries.  Unfortunately an extension of this method to anisotropic texture patterns is not obvious.
Praun et al. [33] subsequently proposed “lapped textures”, which provides capabilities that are the most
similar to those towards which our method aspires, although the approach that we take is very different.
The lapped texture method repeatedly pastes copies of a sample texture swatch onto overlapping patches
across a surface after some subtle warping and reorientation to align the pattern with a user-defined vector
field.  This method produces very good results when used with texture patterns that contain enough high
frequency detail and natural irregularity in feature element sizes and relative positions.  This is needed to
perceptually mask artifacts due to the partial overlap or misalignment of feature elements across patch
boundaries.  As currently formulated, the lapped texture approach is not particularly well-suited for
rigidly structured patterns, such as a checkerboard, or textures such as netting, which are characterized by
the global continuity of specific elongated elements.  It is also less well-suited for use with vector fields
that contain significant high frequency variation.  In addition, the lapped texturing process as described in
[33] involves considerable amounts of user interaction.
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Figure 2:  An example of a synthesized surface texture produced by our method.  No manual intervention

of any kind was employed.  This texture was grown from an original 92x92 swatch [5], pre-rotated to 63

orientations each cropped to 64x64 pixels, to cover 291 surface patches at 128x128 resolution following a

vector field locally defined by the projection of (0,1,0) onto the tangent plane at each point.  The entire

process required approximately 12 minutes.
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The method that we describe in this paper provides capabilities beyond those offered by these
previous methods.  It achieves nearly seamless and distortion-free texturing of arbitrary polygonally-
defined models with a texture pattern derived from a provided sample.  Most importantly, the method is
suitable for use with anisotropic patterns.  It generally preserves larger scale texture pattern continuity
across patch boundaries, does not require manual user intervention, and allows the orientation of the
applied pattern to locally follow a specified vector field on a per-pixel basis.

Our method falls into the category of methods that achieve texture pattern continuity without
distortion by in effect synthesizing the texture “in place” over the surface of the object.  Previous methods
in this category include direct painting [16], and reaction-diffusion texture synthesis [37, 41], which yield
excellent results for hand-crafted textures and textures modeled after organic processes.  Our goal was to
achieve similarly good results with automatically synthesized textures that are perceptually equivalent to
a given sample swatch.

Our work is perhaps most fundamentally motivated by the impressive advances in texture synthesis
methods [17, 7, 32, 44, 9, 39] which have made it possible to create, for an increasingly wide range of
patterns, unlimited quantities of a texture that is perceptually equivalent to a small provided sample.

Leveraging research in human texture perception, Heeger and Bergen [17] developed a highly
successful method for synthesizing textures that capture the essential perceptual properties of a variety of
homogeneous stochastic sample patterns.  Their method works by iteratively modifying a random noise
image so that its intensity histogram matches the histogram of the sample texture across each of the
subbands in a steerable pyramid representation of each image.  De Bonet [7] developed a related method
based on interchanging elements in the Laplacian pyramid representation of a self-tiling pattern where
possible, while preserving the joint-occurrence relationships of features across multiple resolutions.  This
method yields impressive results for an even wider variety of patterns, though some difficulties remain in
preserving larger scale globally significant structure.  Several other highly sophisticated texture
analysis/synthesis approaches have been subsequently developed [9, 32, 44].  Of these, we chose to
follow the texture synthesis approach proposed by Efros and Leung [9] because of its combination of
simplicity and quality of output.  In this method, a new texture pattern is grown, pixel-by-pixel, by
sampling into a provided template pattern and choosing randomly from among the pixels whose
neighborhoods are close matches to the yet partially-defined neighborhood of the pixel to be filled in, in
the pattern being synthesized.

Subsequent to the appearance of the original Efros and Leung paper, and concurrently with the
development of our method, a number of new advancements in 2D and 3D texture synthesis have been
achieved.  Wei and Levoy [39] proposed a method that addressed one of the most serious concerns with
the method of [9] which was speed.  Their method used tree-structured vector quantization to improve, by
several orders of magnitude, the speed of the search for the pixel with the best matching neighborhood, at
the cost of some loss of quality in the resulting synthesized patterns.  Ashikmin [2] proposed a method,
based on the cutting and pasting of larger areas than a single pixel from the sample texture, that achieved
improved results for highly structured textures such as flowers and leaves.  Efros and Freeman [10]
proposed a new method, called ‘texture quilting’, that produces even more consistently excellent results
across a broad spectrum of texture patterns by specifically maintaining both continuity and coherence
across broader local regions of the pattern.  Most similar to the objectives of our work, Wei and Levoy
[40], Turk [38], and Ying et al. [43] all proposed methods for synthesizing a sample 2D texture pattern
over an arbitrary mesh in 3D, with the objective of resolving the classical texture mapping problem: to
avoid seams and to minimize pattern distortion.  The results produced by our method are very similar in
many respects to the results produced by these concurrently developed methods, with some subtle
differences that will be discussed in a later section.  The distinguishing characteristic of our method is that
it is optimized for the synthesis of large quantities of high resolution texture in which the direction of the
texture pattern follows a specified vector field, such as the direction of greatest normal curvature, over the
surface at a per pixel level, in order to be useful for applications in which one is specifically concerned
with the use of texture for facilitating shape representation.

In the remainder of this paper we describe the method that we have developed and the details of its
implementation, talk about some of the issues that arise in automatically determining a good way to orient
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a texture pattern over a surface, show representative results, and conclude with a discussion of the current
limitations of our implementation and directions for future work.

3. Proposed Method
Our proposed method is basically a two step process.  First the surface is partitioned into small, almost
flat patches.  Then, the texture is grown over the planar projection of each individual patch taking into
consideration the proper boundary conditions to maintain the continuity of the texture pattern across
seams at the patch boundaries.  During the synthesis of an anisotropic pattern, the texture is locally
constrained into alignment with a specified vector field over the surface.  For simplicity, we store the
resulting synthesized texture as a collection of separate small images for each patch, although other
approaches are certainly possible.

3.1 Partitioning
The goal of the first stage is to partition the mesh into a minimum number of approximately planar
patches (collections of triangles).  Obviously these are conflicting goals for any closed surface and a
suitable tradeoff must be found.  To keep our implementation as simple as possible, we restrict patches to
be of approximately the same size.  Maintaining relatively consistent patch sizes simplifies texture
memory management by allowing us to allocate and synthesize texture maps of a consistent fixed
resolution for each patch.  Please note that mesh partitioning is a task that is common to many computer
graphics algorithms and many approaches have been previously described [cf. 34, 27].  In this section we
describe for the sake of completeness the details of the particular approach that we used.

Two input parameters define the maximum patch size (which influences the scale at which the texture
appears over the surface) and the maximum projective distortion that the user is willing to tolerate.  The
initial partitioning is done with a greedy algorithm, after which an optimization step is performed to
reduce the average projection error.

The process for the initial partitioning can be summarized by the following pseudo code:
while (unassigned_triangles > 0) {

pick an arbitrary unassigned triangle T;
assign T to a new group G;
add to group G all connected triangles C that satisfy:

- Normal(C) • Normal(T) > min_cosine_displacement;
- distance from the center of C to the farthest vertex of T is less than max_dist ;}

The image on the left side of figure 3 shows a representative result after the first stage in the splitting.
The green triangles are the reference triangles that define the plane onto which the patch will ultimately
be flattened.  It is easy to notice that some of the patches obtained at this point are very small and/or
contain triangles that are relatively far from being aligned with the reference plane.  A refinement pass is
used to reduce both the number of patches and the number of triangles that are oriented at a sharp angle to
the plane into which they will ultimately be projected.  Two simple experimental rules are iteratively
applied until no significant improvement is observed:

- remove a patch if it is very small, and its triangles can be added to a neighboring
patch without violating the distance constraint;

- reassign a triangle T from patch P1 to a neighboring patch P2 if T borders P2 and is
more closely aligned with the reference plane of that patch than with its own.

The image on the right side of figure 3 shows the results after iterative refinement.  The simple refinement
procedure that we use is not guaranteed to converge to the theoretically optimal result but we have found
that the results are consistently good and quite sufficient for our purposes.  Since both the splitting and
optimization stages are of linear complexity and account, on average, for between 1 and 4% of the total
computational time we did not feel the need to improve their speed.  The greedy splitting step took about
2 seconds, and the refinement about 10 seconds for the 70,000 triangle data set shown.  In the rare event
that acceptable results are not achieved in this phase, the splitting process can be repeated using a tighter
limit on the acceptable normal error (which will result in more, smaller patches). Increasing the
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hich also define the reference plane for each patch.  T

riangles w
hose norm

al directions differ by less than 18 degrees from
 the

direction of the norm
al to the reference plane, corresponding to a 5%

 error in the linear projection, are colored red.  T
riangles up to 25 degrees

out of alignm
ent w

ith the reference plane for their patch, corresponding to a 10%
 error in the projection, are colored blue.  T

riangles rotated m
ore

than 25 degrees from
 the reference plane (>

10%
 error) are colored cyan.



– 8 –

number of patches does not cause an increase in the computational expense in the subsequent texture
synthesis step since the synthesis cost is only dependent on the total number of pixel synthesized.  More
significant is the issue that with very small patches comes an increased risk that the texture synthesis
process will run into difficulties and “grow garbage”, either due to the paucity of available contextual
information along the shortened boundary, or to the near proximity of mutually incompatible pre-defined
boundary conditions.

3.2 Parameterization
After the model has been partitioned into contiguous patches, the triangles comprising each patch are
projected onto their common reference plane, and the texture coordinates are defined at each vertex
according the coordinates of the projected vertices in the reference plane coordinate system.  One major
advantage of such a simple parameterization is that there is no need to store the texture coordinates with
the output model as they can be easily recomputed at runtime.  Adjacent triangles from the neighboring
patches, which provide the boundary conditions for maintaining the continuity of the texture pattern
during synthesis, are then rotated about their shared edges into the reference plane.  We use rotation for
these triangles rather than projection to minimize the projective distortion of the texture that we will need
to refer to for reference purposes.  However, it is necessary to check for the very infrequently encountered
cases where it is not possible to rotate each of the adjacent triangles of a particular patch into the
projection plane without causing some of these triangles to overlap.  This entire process is illustrated in
figure 4.

Figure 4:  A diagrammatic illustration of the flattening process.  The normal of the grey-shaded triangle

defines the plane into which the remaining triangles in the patch are projected.  The union of these

triangles defines the area across which the texture will be synthesized.  Neighboring triangles from the

adjacent patches are rotated (to minimize projective distortion) into the plane so that any texture already

present in these triangles can provide boundary conditions for the texture synthesis, in order to enable the

achievement of a seamless final result.

3.3 Synthesis
At this point, we have created a 2D image for each patch containing:

-  an area, defined by the projection of the triangles of the patch onto the reference plane, which
contains the pixels to be filled by the synthesized texture; and

-  an area, defined by the rotation into the reference plane of the neighboring triangles from the
adjacent patches, that will hold any previously synthesized texture and provide the boundary
conditions necessary to avoid seams due to discontinuities between texture element features in
adjacent patches.

It is important to note that the partitioning process described in the immediately previous sections is
completely independent from the synthesis algorithm.  Any constrained synthesis method that can fill
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arbitrary regions with arbitrary boundary conditions could potentially be used, although none of the
existing algorithms we reviewed appeared to provide both the image quality and the speed required for
this project.  The work of Efros and Leung [9] came closest to meeting our needs and thus we elected to
follow their general approach, which has been shown to produce good results for a wide range of texture
patterns that can be modeled by Markov random fields (i.e. textures whose characteristics are fairly
consistent under translation over the image and in which the value at any given point can be fully
characterized by the values at its closely neighboring points over a limited range).

In order to make tractable the problem of efficiently synthesizing enough texture to cover a standard
model of arbitrary topology at a reasonable resolution, the first objective of our proposed method is to
achieve results that are of the same caliber as those demonstrated by Efros and Leung but that require
significantly less time, while also preserving the flexible applicability of their approach.  To do this, we
use a new two-pass search strategy.  The first pass, which is exhaustive, is done using a very small
unweighted neighborhood (usually between 1/3 to 1/2 of the diameter of the full size neighborhood).  The
n best matches, where n is a user-definable parameter, are saved in a list to be processed by the second
pass.  This two pass approach presumes strong locality in the input textures (which holds true for many
natural texture patterns) and has the effect of rapidly eliminating most of the uninteresting part of the
search space.  The size of this preselect list ultimately determines the overall speed of the synthesis
algorithm.  We found that some textures produced excellent results with preselect lists of as few elements
as the number contained in one scanline of the original image; these  we considered easy to synthesize.
Others required 4 or even 8 times more elements in the preselect list, and these we considered hard to
synthesize.  Instances of easy and hard textures are shown in figure 2 and figure 9 respectively.  In the
second pass, each of the pixels in the preselect list is tested against the full size weighted neighborhood
and the error metrics are updated.  Among the best 10 or 10% of matches (whichever is greater) a random
pixel is chosen and used in the synthesized image.  Figure 5 shows a sample result of this synthesis
algorithm in the 2D case.  The speed of our method does not match the speed of Wei and Levoy’s tree-
structured vector quantization [39] for the synthesis of rectangular swatches of texture, but unlike their
method it does not require the use of a fixed size causal neighborhood, and the results it produces are of
consistently high quality.  The proposed method is still fast enough to make feasible our goal of growing
a fitted surface texture via the Markov random field sampling approach.  Figure 6 illustrates the complete
texture synthesis process.  The image on the upper left represents the state of the model after the synthesis
of the first two patches.  The image in the upper center identifies the triangles comprising the third patch,
with the triangle that defines the plane of the patch rendered in green, and the rest of the triangles
rendered in red.  The image on the upper right shows the results after the patch is filled with the
synthesized texture.  The image on the lower left shows the projection of the patch onto the plane.  The
image in the left center of the lower row shows the texture boundary conditions supplied by the
neighboring triangles to this patch.  The next two images in the lower row show what the patch looks like
midway through and at the end of the texture synthesis step.

3.3.1 Isotropic Textures

As basically formulated, the approach we have just described can be used to cover the surface of a model
with an isotropic texture pattern in an orientation-insensitive way.  In other words, if we assume that our
sample texture pattern is perfectly rotationally symmetric, we can directly use this approach, in its most
basic form, to seamlessly synthesize the texture pattern across all of the patches in the model without any
special considerations apart from the boundary conditions.  However, as we quickly found, there are very
few acquired textures that can be used with good results without regard to orientation.  Even patterns
which we initially believed to be isotropic based on inspection of the 2D sample image revealed
unexpected orientation dependencies due to the subtle structuring that stems from the illumination
process.  Figure 7 illustrates this problem.  Notice how the wool texture appears flat when applied without
regard to orientation.  This is due to the disruption of the pattern of shading.
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Figure 5:  Left: An example of the results of our two-pass texture synthesis method using pattern D06

from the Brodatz album [5].  The speed of the synthesis approach varies from pattern to pattern

depending on the sizes of the match-defining neighborhoods and the length of the preselect list.  In this

case we used a first pass neighborhood of 5x5, a maximum preselect list length of 64, and a second pass

neighborhood of 12x12 to synthesize the 256x256 patch on the right from the 64x64 pixel sample on the

left in about 73s.  Right: an example using D01.

  

Figure 6:  A step-by-step illustration of the basic process of our method.  Upper row: the identification of

the patch to be synthesized, and the synthesis result.  Lower row (from left to right): the planar projection

of the patch; the boundary conditions provided by the neighboring textured triangles rotated into the plane

of the patch; midway through the texture synthesis process (synthesis is proceeding from left to right); the

complete synthesized patch.
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Figure 7:  A texture (‘wool.bw’, from SGI) that originally appeared to be isotropic, reveals its anisotropic

nature (due to the effects of shading) when synthesized over the Stanford bunny dataset via an approach

in which the texture orientation is allowed to vary arbitrarily between each patch.

3.3.2 Directional Textures

In the vast majority of cases, it is necessary to control the orientation of the texture over the surface.  For
greatest flexibility, we allow a directional texture to follow any specified direction field.  In the next
section some examples will be discussed.  We note that in the lapped textures method, Praun et al. [33]
also align textures on a per patch basis, slightly distorting the parameterization to achieve good local
continuity within the patch with the underlying directional specification.  In the case of sparse
triangulation, they reduce undersampling of the vector field by locally subdividing the mesh.

In our presented method the synthesis algorithm has been enhanced to allow per-pixel texture re-
orientation.  We pre-rotate the original texture into a quantized number of orientations, and during
synthesis perform the search for best-matching neighborhoods in the pre-rotated image that is most
closely aligned to the direction locally specified by the vector field.  Figure 8 shows a sample of one

Figure 8:  A quadrant of pre-rotated brick texture samples.
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quadrant of pre-rotated brick texture.  If the number of pre-rotated images is sufficiently high, the
synthesized texture will follow the vector field smoothly.  For the examples in this paper, we used
between 64 to 128 different rotations of the input texture.  Although it is of course possible to specify the
use of any arbitrary number of pre-rotated images, we did not notice an appreciable increase in the quality
of the results when finer quantizations were used.

Searching for matches in pre-rotated texture images allows considerably faster synthesis than would
be possible if we had to perform the rotation on-the-fly for each pixel of the texture during synthesis.
While it is relatively fast, with modern 3D hardware, to compute any arbitrary rotation of the original
image, in most implementations there is a very high cost associated with reading the results from the
frame buffer.

3.3.2.1 Constant Direction Fields

We originally began this work with the intent to explore the possibility of applying textures along the
principal directions of curvature.  Despite the latent potential in that approach, it is not without its
difficulties, which we will discuss in greater detail in the following section.  We quickly discovered that
aesthetic results could be also achieved for a wide range of models using other, much simpler, vector field
definitions.  Notably, the field of “up” directions, locally projected onto the tangent plane at each point,
appears to yield particularly nice results for many textures and datasets, as shown in figures 9 and 10.  It
is worth mentioning in the context of these two images that we worked hard to challenge our texture
synthesis method, testing its performance on difficult texture patterns such as the crocodile skin, which
contains potentially problematic sets of features spanning a wide range of spatial frequencies (from 3–21
pixels in diameter), and the square glass blocks pattern, which is a highly structured checkerboard-style
design in which irregularities in the size, shape and/or positioning of any of the elements have the
potential to stand out especially prominently.

Figure 9:  The crocodile skin texture (D10) synthesized over the triceratops model following the direction

field (0,1,0) locally projected onto the tangent plane.
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Figure 10:  Glass block texture applied to a simple model with a constant directional field.  Note the

general preservation of continuity in the texture pattern and the relative consistency of the bricks’ shapes

and sizes, despite scattered artifacts.  The direction field is locally given by the projection of the central

axis of the object onto the tangent plane of each patch.  Some of the patches in this model were

resynthesized in a postprocess.

3.3.2.2 Principal Direction Fields

Although the constant direction field produces aesthetic results in many instances, there are also many
cases for which it is not well suited.  Specifically, it tends to fail for models that do not have a single well-
defined intrinsic orientation, and it can not successfully emphasize local shape features.  Of greatest
intrinsic interest to our ongoing research is the possibility of applying an oriented texture pattern to the
surface of an object such that it will be everywhere aligned with the principal directions of curvature.

Recent results in biological vision research support the idea that the principal directions play an
important role in surface shape understanding, and we are interested in probing these ideas further
through controlled studies of the effects of texture pattern orientation on observers’ perception of the 3D
shapes of complicated underlying models.  Mammassian and Landy [26] have shown that observers’
interpretations of line drawings of simple patches are consistent with an inherent bias, among other
things, towards interpreting lines on objects as being oriented in the principal directions, supporting an
observation made by Stevens [35] nearly 20 years ago.  Li and Zaidi [24] examined observers’ ability to
estimate the relative curvatures of developable surfaces textured with various implicitly or explicitly
plaid-like patterns, and concluded that shape perception depends critically upon the observation of
changes in oriented energy along lines corresponding to the principal directions.  However these ideas
remain to be examined in the context of more complicated, arbitrary surfaces, where the first and second
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F
igure 11:  A

n illustration of the effect that the orientation of a directed pattern over a curved surface can have on our perception of the

surface’s 3D
 shape.  O

n the left, the bricks are oriented in the direction of greatest signed norm
al curvature; in the m

iddle they are oriented in

the direction of least signed norm
al curvature, and on the right they are oriented in the sam

e constant “up” direction used for the m
odels in

figures 9-10.  B
elow

 the entire surface is show
n, w

ith the silhouette cues to shape available for reference.
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principal directions can switch places numerous times.  A significant challenge in this effort is to obtain
accurate computations of the principal direction vector fields.

We recently worked with Dr. Jack Goldfeather to develop robust methods for computing smooth,
accurate principal direction vector fields across arbitrary polygonally-defined objects [13].  A
complementary approach developed by Bertalmio et al. [4] has the potential to facilitate the anisotropic
smoothing of these fields.  Our present results in applying an anisotropic texture over the surface of an
object such that its dominant orientation is everywhere aligned with the first and second principal
directions are shown in figure 11, and contrasted there with the results obtained using a constant “up”
direction.  Although it is clearly not possible to prove the benefit of a principal direction oriented texture
for shape representation through one or even a handful of representative examples, with the existence of a
method for synthesizing a variety of principal direction textures over arbitrary curving forms it becomes
feasible to rigorously investigate the impact of various texture orientation strategies on the accuracy of
shape perception judgments through controlled observer experiments.  We are currently in the midst of
carrying out a set of such studies and expect to report the results shortly [21].

4. Implementation
Our system is fully automatic, and does not require user interaction during either the splitting or texture
synthesis process.  The system has several parameters which can be adjusted by the user to increase the
likelihood of obtaining optimal results with different kinds of textures or models.  Within the splitting
stage, these parameters include: an upper bound on the size of any single patch during splitting (which
ultimately affects the scale of the texture on the model) and an upper bound on the angle that the normal
of any member triangle can make with the reference direction for a patch (which affects the size and total
number of patches).  Within the texture synthesis stage, the user may first choose among several possible
texture orientation options: to have the texture follow the direction of greatest or least signed or unsigned
normal curvature, to follow the projection onto the local tangent plane of a constant specified direction, or
to follow no specific direction (in which case the pattern is assumed to be invariant under rotation).  With
regard to texture synthesis, the user may also control: the sizes of the neighborhoods used in the each pass
of the texture synthesis (larger neighborhoods generally increase the computational expense of the
synthesis but are sometimes necessary in to preserve features across a range of different scales); the
number of first-round preselected locations to be tested for a match on the second pass; and the weighting
scheme used over the neighborhood during the matching process.

In most cases, it is sufficient to define the direction of texture synthesis across a patch according to
the distribution pattern of previously textured pixels in the boundary region, under the assumption that
starting from the side containing the greatest number of previously filled pixels will provide the most
stable seed for the synthesis.  Unfortunately, this is not always true (see the section on errors below).
Certain strongly directional patterns seem to yield better results when the synthesis is performed
following the direction of the vector field controlling the texture orientation.  This approach was used also
by Turk [38].  For quickly varying direction fields, starting the synthesis from an area of the patch in
which the direction field is most calm seems to improve the quality of the result.

We use one of two different methods to determine the direction in which the synthesis proceeds from
patch to patch.  The simple method, which seems to works well on fairly uniform vector fields, is to begin
with a randomly chosen patch and proceed to any blank connected patch, filling in any holes at the end.
For principal direction vector fields better results can be achieved choosing the blank connected patch in
which the difference between the two principal curvatures is greatest.  This favors working first in areas
over which the principal directions are clearly defined, providing a stable seed for the synthesis of the
other patches.

The most computationally expensive part of the algorithm is the texture synthesis, which accounts for
96-99% of the running time.  Partitioning and optimizing the patches takes only about 1-3 seconds for
simple meshes such as the Venus and triceratops, up to 10-12 seconds for larger meshes such as the
70,000 triangle bunny.
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The complexity of the synthesis algorithm is linear with respect to the number of pixels and
practically independent from the number of polygons in the input mesh.  Growing the weave texture on
the Venus model in figure 2 took slightly less than 12 min.  The goblet/glass block combination required
about 20 minutes.  These timings refer to a C++ implementation compiled with gcc1 running on a
standard linux (2.2.16) 933MHz Pentium III PC with a 32Mb GeForce 2 GTS.  Table 1 provides a
detailed comparison of the speeds of our method and other similar concurrently developed methods.
Notice that although some of the other methods report faster execution times, they all involve the
synthesis of significantly smaller amounts of texture.  The relative efficiency of our method becomes
clear when one normalizes for texture quantity.

Our method Wei & Levoy
[ 4 0 ]

Turk [ 3 8 ] Ying et al. [ 4 3 ]

Published time for  
texture synthesis,     
from a 64x64 sample

10m 82s (TSVQ)
695s (exaustive)

23m 10m (multires.)
3m (coherent)

Texels per vertices
synthesized

1,000,000 25,000 256,000 400,000

Machine P3-933MHz P2-450MHz R12K-360MHz unknown
Estimated machine speed
normalization factor

1 2 2.1 unknown

Estimated normalized
texture synthesis rate

1600 pixels/s 600 vertices/s
(TSVQ)

70 vertices/s
(exaustive)

380 vertices/s unknown

Table 1:  A comparison of the speed of our method vs. similar concurrently developed methods.

4.1 Limitations
A major limitation of our method is its inability to capture low frequency texture features across several
patches.  Since our objective in developing this algorithm was to achieve a method for facilitating shape
perception, we assumed that the scale of our desired texture pattern would be substantially finer than the
scale of the shape features in our model.  Thus our method is not as generic as the methods described in
[40], [38] and [43].  However for high resolution textures our method provides substantial speedups over
these algorithms.

As described in [8] and [10] all synthesis algorithms based on the “one-pixel-at-a-time” approach are
susceptible to “catastrophic failure”, in which the algorithm falls into the wrong part of the search space
and “grows garbage”.  Our algorithm is no exception and will occasionally fail and produce undesirable
results across all or part of a patch.  Depending on the texture, we find that 0-3% of the patches typically
contain some synthesis errors.  Unfortunately, areas as small as 5x5 pixels (in a 128x128 pixel patch) are
easily noticed.  The difficulties in automatically detecting such small areas complicate efforts to
implement a mechanism for automatic correction.  Our current implementation allows the user to
interactively select and re-synthesize individual unaesthetic patches after the main automatic synthesis
process has finished.  Figs 9-11 in this paper show models in which parts of the texture were
resynthesized across one or more patches.  Figs 2, 5 and 7 show results that were obtained without any
such postprocessing

Another limitation that bears mentioning is that we found that the large amounts of texture generated
by the synthesis caused problems for certain machine architectures, specifically those that had hard built-
in limitations on the amount of texture memory that could be used.  When a high level of detail is desired,
without any possibility for pattern repetition, the total amount of texture required to cover the mesh can
easily exceed the total size of the texture memory.  All of the machines that did not allow the storage of

                                                  
1 optimization flags -O2 -funroll-loops -fstrict-aliasing -march=i686
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textures in main memory failed to display the more complex models (e.g. the crocodile skinned
triceratops).  Using a texture atlas similar to the one described in [33] might help reduce the texture
memory usage, but would incur the cost of incorrect mipmapping and having to store texture coordinates.
In our current implementation each patch is stored as a single texture, producing a texture memory waste
of up to 25% to 50% depending on the model.  However thanks to the OpenGL texture compression
extensions, all of the models presented in this paper can maintain interactive frame rates on our standard
PC, even in cases where the amount of uncompressed texture exceeds 100Mb.

The method that we have proposed is currently designed to be applied to static models, and we have
not thought about how to extend it to the case of deforming animated objects.  Modifications to make the
texture synthesis process deterministic are an obvious first step toward satisfying this requirement, but it
is not immediately clear how one could guarantee that independently synthesized patterns will not differ
profoundly from frame to frame as the mesh defining the object is globally deformed.

To achieve good results with the shape-following textures, the direction field must be band-limited:
for any given texture there is a maximum spatial frequency that can be followed in the synthesis process
and still produce correct results.  Nevertheless we found that the method did a good job at singular points
on the brick-textured lava lamp object, as can be seen in figure 11.  Figures 12a and 12b provide further
examples of the behaviour of our method near singularities.

Figure 12: Left: A zoomed-in view of the singular point in the “up” directional field on the Venus model

shown in figure 2.  Right: A singular point on a sphere.

5. Applications And Future Work
There are many promising applications for this system and many directions for future work.  One of the
most interesting of these is multi-texturing.  On a per-pixel basis it is possible to change not only the
direction of the synthesized texture but even the texture itself according to any arbitrary function.  Figures
13 and 14 are made using the illumination equation and two and four different textures respectively, each
one with 63 rotations.  These  models, like all of the others in this paper, can be displayed at interactive
frames rates on our standard PC.

The multi-texturing methods described in this paper have the potential to be useful for important
applications in scientific visualization, for example in encoding a scalar distribution using texture type
variations across an arbitrary domain in 2D or 3D.  Other direction fields, such as gradient descent, hold
promise for different applications, such as non-photorealistic rendering of terrain models (esp. in the case
when it is desired to see through the surface).  The methods that we have proposed can also be used for
the visualization of scientifically computed vector fields over surfaces.  An intriguing possible use for an
extension of this work is in defining texture mixtures.
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Figure 13:  A demonstration of multi-texturing, in which the search for matches is performed within an

array of different texture types.  The texture type index can be defined by any function.  In this example,

we used the illumination function.  In a real application one would want to use something more

meaningful, such as soil type over a topographical terrain model.
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Figure 14:  Multiple textures containing lines of different widths applied to an automatically-defined

smooth vector field approximating the first principal direction over the Stanford bunny.  Indexing along the

dimension of varying stroke density was done as a function of the illumination.
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6. Conclusions
In this paper we describe a novel surface texturing algorithm with a number of useful applications.  Our
described method for automatically synthesizing a desired texture pattern in a controlled orientation over
the surface of an arbitrary object not only has potential applications in computer graphics, where it
provides a simple and efficient solution to the classic problem of fitting a planar pattern to a non-
developable surface in a way that minimizes both discontinuity and distortion.  More importantly, it also
has important potential applications in visualization, where it provides a means for texturing an arbitrary
doubly curved surface with an arbitrary anisotropic pattern such that the orientation of the pattern follows
a specified directional field over the surface at a per pixel level.  With this capability it becomes possible
to more thoroughly and directly investigate the effects on shape perception of a broader range of texture
characteristics including orientation, and to come closer to answering the question of how best to design
and apply a texture that can facilitate the accurate and intuitive perception of a surface’s 3D shape.

Figure 15:  A final demonstration of the effect of texture orientation on shape perception — pen-and-ink

style texture synthesized on an unfamiliar surface following the second principal direction (left) vs. a

constant ‘up’ direction (right).
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Paint By Numbers: Abstract Image Representations 
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ABSTRACT 

Computer graphics research has concentrated on 
creating photo-realistic images of synthetic objects. These 
images communicate surface shading and curvature, as 
well as the depth relationships of objects in a scene. These 
renderings are traditionally represented by a rectangular 
array of pixels that tile the image plane. 

As an alternative to photo-realism, it is possible to 
create abstract images using an ordered collection of brush 
strokes. These abstract images filter and refine visual 
information before it is presented to the viewer. By con- 
trolling the color, shape, size, and orientation of individual 
brush strokes, impressionistic paintings of computer gen- 
erated or photographic images can easily be created. 
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Introduction 
This paper is not about radiosity, anti-aliasing, or 

motion blur. Its not about making pictures more realistic. It 
is about creating interesting abstract representations of 
natural and synthetic scenes. 

Graphic designers are experts at visual communica- 
tion. In their work, graphic designers use photographic 
images when they are appropriate, but often chose to use 
more abstract images such as drawings or paintings. In 
many cases the designer must balance realism and effec- 
tiveness. Sometimes a realistic photographic image may be 
less effective than a stylized image. 

In a panel discussion at Siggraph 1988 [Phillips 88] 
on the design of effective images Margret Hagen described 
the goal of the visual artist: 

"The goal of effective representational image 
making, whether you paint in oil or in numbers, 
is to select and manipulate visual information 
in order to direct the viewer's attention and 
determine the viewer's perception." 

Impressionist painters use brush strokes to control 
light to simulate objects without modelling object detail 
explicitly. Only a few brush strokes are needed to represent 
a standing figure, a person's face at a distance, or a tree. 
By carefully selecting tile location, color, size and direction 
of brush strokes, they control visual information to com- 
municate abstract images to the viewer. 

A Simple Painting Technique 
Our goal is to take a synthetic or natural scene, and 

convert it into abstract impressionistic image. We want to 
make it easy for a user to interactively select and manipu- 
late visual information to explore many different represen- 
tations of a single source image. To do this we will point 
sample the source image at some set of brush stroke loca- 
tions, and draw a synthetic brush stroke with the appropri- 
ate color. 

A simple interactive program allows the user to 
operate on a source image. The basic interactive technique 
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Figure 1. Creating a painting. 

is to follow the cursor across the canvas, point sample the 
color of a stored image at the location of the cursor, and 
then paint a brush stroke of that color. Figure 1. shows a 
painting being created. The image that drives the painting 
is shown as an inset. The final painting is on the right. 
Using this process a user can easily explore different 
abstract representations of  the source image. 

In the work described here, a painting is an ordered 
list of  brush strokes. Each stroke of the brush is described 
by a collection of attributes as shown in Figure 2. 

Location - Position of the brush stroke. 

Color - The RGB and Alpha color of the stroke. 

Size - How big the stroke is. 

Direction - Angle of  the stroke in the painting. 

Shape - The look of the brush stroke. 

Figure 2. Brush stroke attributes 

We will use the location, color, size, direction, and 
shape of brush strokes to communicate visual information 
to the viewer. The kinds of  information we want to com- 
municate are surface color, surface curvature, center of  
focus, and location of edges. 

The program follows the position of the cursor across 
the canvas and point samples the source image to obtain a 
color. If a mouse button is down, an image of a brush 
stroke is drawn at a particular size and direction. In this 
way, visual information is selectively transferred from the 
source image to the canvas. By changing the size, direc- 
tion and shape of brush strokes, many different representa- 
tions of  a single photographic image may easily be created. 

One limitation in conventional paint programs is the 
time needed to pick a new color to paint with. [Lewis 84] 
described this as the "put-that-color-there" procedure that 
most paint programs use. Since the overhead in chosing a 
new color is high, it is very difficult to create a painting 
with a large number of different colors. The simple tech- 
nique described escapes this problem by continuously sam- 
pling the color of  the input image as painting proceeds. 

Brush stroke locations are created in a stochastic dis- 
tribution in the neighborhood of the cursor. This generates 
a scattering of brush stokes instead of a line of  strokes 
when the cursor is moved in a straight line. This is an 
example of a simple interactive particle system [Reeves 
851. 

The size of  brush strokes can be controlled in two 
ways. One technique uses the average speed of the cursor 
to control the brush size. If  the user is painting quickly, 
the brush strokes will be made larger. When the user slows 
down, the brush size gets smaller. This makes it easy to 
first create a rough representation of the image with large 
bush strokes before adding finer detail with smaller brush 
strokes. Another technique allows the user to control the 
size of  brush strokes using up and down arrow keys. 

The orientation of brush strokes is controlled in 
several ways. One technique orients brush strokes with 
respect to the direction that the user moves the cursor. This 
is the tracking brush described in [Smith 79]. An alterna- 
tive is to use a gesture of  the mouse to set the current direc- 

tion for brush strokes, To do this the user clicks down with 
the middle mouse button, moves in the direction brush 
strokes should flow, and releases the button. Other input 
devices could be used to interactively change the brush 
stoke size and orientation, as described in [Smith 79]. 

The shape of brush stokes can significantly influence 
the character of  the final painting. The geometry of brush 
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Figure 3. Several brush shapes. 

strokes can be selected using a pop-up menu. The user can 
select among circles, rectangles, lines or scatterings of 
points and polygons for brush strokes, or they draw their 
own stroke if they want. In this implementation, all brush 
strokes are drawn using geometry instead of bitmaps - this 
makes scaling and rotating the brush very efficient on our 
hardware. Figure 3 shows several possible brush stroke 
shapes. 

Three paintings of the same image are shown in Fig- 
ure 4. The original image is shown inset. Diagonal brush 
strokes were used to create the painting on the left. In 
these paintings the amount of detail across the painting was 
modulated to direct the viewer. Noise was added to the ori- 
ginal image to create a distribution of paint colors. 

One interesting brush stroke geometry is a cone. 
When a group of cones are z-buffered onto the canvas, they 
create domains of color that share the image plane. The 
result is a pattern of color that has a cellular characteristic. 
These domains of  color are Dirichlet domains [Preparata 
85] derived from the location of the brush strokes. A paint- 

ing made with z-buffered cones is shown in the center of 
Figure 4. By lingering with the cursor more detail can be 
exposed on any part of  the canvas. A pointillist represen- 
tation is shown on the right of Figure 4. 

A description of the painting can be saved by 
interacting with a menu. A complete painting is an ordered 
set of brush stokes. A binary file format is used to store a 
stroke by stoke description of the painting. Figure 5 shows 
what a textual representation of a painting looks like. 

painting with 9298 strokes 

position RGBA color siz dir brush 

0.447 0.541 241 128 173 255 attr: 30 89 5 

0.444 0.531 220 57 ~ 35 255 attr: 30 89 5 

0.441 0.524 172 29 1 255 attr: 30 89 5 

0.444 0.553 230 100 75 255 attr: 30 89 5 

0.447 0.526 220 112 162 255 attr: 30 93 5 

0.456 0.554 245 189 137 255 attr: 30 93 5 

0.503 0.522 245 183 237 255 attr: 31 107 5 

0.479 0.545 228 141 92 255 attr: 31 101 5 

0.498 0.517 246 181 230 255 attr: 31 103 5 

Figure 5. A !extual representation of a painting 

Operations on Paintings 

After a painting is saved, we can transform it using 
several paint processing programs. A painting renderer 
transforms a description of a painting into an RGB image. 
This can be used to create an extremely high resolution 
image of a painting. 

A set of unary operators modify a single painting. 
All the brush strokes in a stored painting can be scaled up 
or down. Paintings can be altered by adding noise to brush 
stroke locations, color, size or direction. If wanted, each 

Figure 4. Three paintings of one image. 209 
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brush stroke can be rotated by adding a constant to its 
direction. The order of  brush strokes in a Painting can be 
sorted by color, direction, position, or size. 

Binary painting operators use two paintings as input. 
It is easy to interpolate between or extrapolate beyond two 
paintings that have the same number of brush strokes. 
Paintings may be animated in this way. The brush strokes 
in two paintings can also be concatenated to overlay one 
painting on top of another. 

Another tool lets us use an RGB image to modify the 
color, size, or direction of brush strokes in a stored paint- 
ing. 

The tools described above can be used to automati- 
cally roto-scope live action. To do this, we generate a rec- 
tangular array of brush locations, then add noise to their 
positions. Finally, RGB colors are assigned to each brush 
stroke in the painting by sampling one frame of live action. 

Advanced Painting Techniques 
Interesting effects can be created by using arbitrary 

images to control the brush direction across the canvas. 
Figure 6. shows a painting that was created by using a 
second image to control the brush direction. This painting 
consists of 9298 brush strokes. 

When sampling a natural image, we start with only 
RGB information. Sometimes when painting, we might 

want to make brush strokes become aligned automatically 
with edges in the image. This can be done by generating 
an image that contains information about direction of the 
luminance gradient in the image [Kass 87]. Figure 7. 
shows a painting that was created using this technique. 
First the original image was converted to black and white 
and low pass filtered. Then the direction of the gradient of 
this image was used to control the brush stroke direction 
while painting. Notice how the brush strokes outline the 
shape of the head and flow along the collar of the shirt. 

Another interesting technique is to blend the brush 
strokes onto the canvas. In Figure 8, a scanned in image of 
a real brush stroke is used. This brush stroke image was 
texture mapped onto the canvas to create the final painting. 

Spice for images: Video-Sodium Glu tamate  

Before painting a synthetic or natural image it may 
be good to use a little spice (VSG) to accentuate the 
features we consider most important. These enhancements 
can be applied globally or locally to draw attention to par- 
ticular parts of the painting. 

When traditional artists make illustrations or paint- 
ings, many techniques are used. Often important edges in 
the scene are exaggerated. Where a dark area meets a light 
area the dark area is drawn slightly darker, and the light 
area is drawn slightly lighter. Some artists call this tech- 

210 Figure 6. Using a second image to control brush stroke direction. 
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Figure 7. Using the gradient direction to control brush strokes. 

Figure 8. A texture mapped brush stroke. 211 
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nique "pushing" an edge. This technique can be used to 
make depth relationships between objects in the scene 
more explicit where they overlap [Porter 88]. 

To simulate "pushing edges" we can high pass filter 
the original image. High frequencies are enhanced by 
using unsharp masking. This is done as a two step process. 
First the original image is blurred by convolution. Next we 
create an enhanced image by extrapolating from the blurry 
image out beyond the original image. 

To do this we define a linear interpolation operation 
on these two images such that a parameter of  1.0 gives us 
the blurred image and 0.0 gives the original image. To 
create an image with pushed edges, we make the parameter 
negative. As a result of  this fiat fields in the original image 
will remain unchanged, but edges are accentuated. 

This process has two important variables; how blurry 
the image is made in the first step, and how much we extra- 
polate in the second step. Convolving with a 3 by 3 kernel, 
and making the parameter -0.5 will accentuate very high 
frequency detail and change the shading only very near 
edges. To make the shading change within 10 pixels of 
edges, a kernel with a width of  more than 20 should be 
used. Some interesting effects can be created when the 
kernel is made very large - approaching 20% of the image 
diameter. 

An artist may chose to enhance the richness of  some 
colors in a scene. Sometimes the color is uniformly 
saturated throughout the scene, or only particular parts of  
the image are enhanced in this way. 

If we want to increase the saturation of the image 
first we create a luminance image using a formula like this: 

lum = 0.3*r + 0.59"g + O.ll*b. 

Next, we extrapolate from the luminance image out beyond 
the original image. Achromatic parts of  the image will 
remain unchanged, but all the colored parts of  the image 
will be even more colorful, while preserving the same 
luminance. It is important that the original image be prop- 
erly color balanced before this is done, otherwise improper 

colors for skin tones will become obvious. 

When painting solid colored areas, artists may use a 
wide range of colors to communicate the color of  a surface. 
This helps the viewer see a range of component colors in a 
surface that may be a single, fiat color. 

To add detail to regions of flat color, noise may be 
added to the image. When this is done, the final painting 
will have brush stokes with an interesting distribution of 
colors. This can make the final painting much more lively 
and interesting. 

Most books on painting recommend sticking to a 
fairly limited palette of colors so as to achieve an overall 
212 

harmony of color across the painting. The palettes used by 
the impressionists usually contained fewer than 12 colors 
[Callen 82]. These raw colors were mixed to create addi- 
tional intermediate colors. Many beautiful paintings use 
remarkably few colors. With a restricted set of  colors some 
brush strokes in the sky will closely match the color of  
brush strokes used to represent water. Restricting the 
number of  different colors in a painting has the effect of  
unifying the painted image as a whole. 

By quantifying colors in the source image, we can 
reduce the number of  different colors in a scene without 
restricting the color gamut. If  a sufficient amount of  noise 
was added as discussed above, then no contouring will be 
visible. 

Artists often cover the entire canvas with a wash of 
color before painting the image. The color of this back- 
ground image can affect how the colors are perceived by 
the viewer if it is left exposed in some areas of  the final 
painting. It has been noted by Michel-Eugene Chevreul 
[Smith 87] that having some proximity to gray makes all 
primary colors gain in brilliance and purity. Allowing the 
background wash color to be exposed throughout an image 
gives it a kind of unity and integrity. 

Colors are sometimes used to provide depth cues. 
Colors in the range green (grass), cyan, and blue (sky) 
recede, while yellow, orange, red and magenta move to the 
foreground. 

We can use many of  the techniques above to enhance 
digital images before painting begins. 

Sampling Geometry using Ray-Painting 
These painting techniques can be used to create 

painted representations of  synthetic 3D scenes as well. 
When sampling geometry, we have direct access to the 
color of  each surface, its normal, and its depth. We can use 
the surface normal to control the direction of the brush 

strokes. This provides the viewer with valuable informa- 
tion about the orientation of surfaces. Figure 9. shows a 
raytraced scene, and a painting that uses surface normals to 
control the direction of brush strokes. To make these illus- 
trations, the user interface of  the paint program was 
attached to a raytracer, letting the user reveal the geometry 
by sampling it in real-time. Notice how the brush strokes 
appear to wrap around the sphere, the cone and the 
cylinder. 

Approximating Images by Relaxation 
An iterative relaxation technique may be used to 

create interesting paintings with remarkably brush strokes. 
The left side of  Figure 10 shows a painting of 100 rec- 
tangular brush strokes that approximates an image of  a 
seated man. The right side of  Figure 10 shows a painting 
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Figure 9. Sampling geometry using raytracing. 

Figure 10. Using relaxation to create paintings automatically. 213 
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of 100 Dirichlet domains. These two paintings were 
created by stochastically perturbing the attributes of the 
brush strokes, while minimizing the root mean squared 
difference between the original image and the painted 
representation. This process ran for several hours before 
these images were saved. 

Conclusions 

We present several techniques for creating static and 
animated abstract images of photographed and synthetic 
scenes. 

In this work, the goal is not to make photo-realistic 
images, but rather effective, interesting images that com- 
municate. By interactively processing an image we can 
select and manipulate visual information to eliminate dis- 
tracting detail, provide cues about surface orientation, and 
influence the viewer's perception of the subject. 

It is natural that we want to continue to explore new 
painting techniques. A logical extension of this work 
would incorporate the texture synthesis work of [Lewis 84] 
and the brush modelling work of [Strassman 86]. 
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Abstract
We present a new set of algorithms for line-art rendering of smooth
surfaces. We introduce an efficient, deterministic algorithm for
finding silhouettes based on geometric duality, and an algorithm
for segmenting the silhouette curves into smooth parts with con-
stant visibility. These methods can be used to find all silhouettes in
real time in software. We present an automatic method for generat-
ing hatch marks in order to convey surface shape. We demonstrate
these algorithms with a drawing style inspired byA Topological
Picturebookby G. Francis.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-

ture/Image Generation–Display algorithms.

Additional Keywords: Non-photorealistic rendering, silhouettes, pen-and-ink illus-

tration, hatching, direction fields.

1 Introduction
Line art is one of the most common illustration styles. Line drawing
styles can be found in many contexts, such as cartoons, technical il-
lustration, architectural design and medical atlases. These drawings
often communicate information more efficiently and precisely than
photographs. Line art is easy to reproduce, compresses well and, if
represented in vector form, is resolution-independent.

Many different styles of line art exist; the unifying feature of
these styles is that the images are constructed from uniformly col-
ored lines. The simplest is the style of silhouette drawing, which
consists only of silhouettes and images of sharp creases and object
boundaries. This style is often sufficient in engineering and archi-
tectural contexts, where most shapes are constructed out of simple
geometric components, such as boxes, spheres and cylinders. This
style of rendering captures only geometry and completely ignores
texture, lighting and shadows. On the other end of the spectrum
is the pen-and-ink illustration style. In pen-and-ink illustrations,
variable-density hatching and complex hatch patterns convey infor-
mation about shape, texture and lighting. While silhouette drawing
is sufficient to convey information about simple objects, it is of-
ten insufficient for depicting objects that are complex or free-form.
From many points of view, a smooth object may have no visible
silhouette lines, aside from the outer silhouette (Figure 8), and all
the information inside the silhouette is lost. In these cases, can be
added to indicate the shape of the surface.

The primary goal of our work was to develop rendering
techniques for automatic generation of line-art illustrations of
piecewise-smooth free-form surfaces. When using conventional
photorealistic rendering techniques (e.g. Z-buffer or ray tracing)

Figure 1: Illustrations of the Cupid mesh.

one can typically replace a smooth surface with a polygonal approx-
imation, and thus reduce the problem to that of rendering polygo-
nal meshes. This no longer true when our goal is to generate line
drawings. Some differential quantities associated with the smooth
surface must be recovered in order to generate visually pleasing
hatch directions and topologically correct silhouette lines. Some
of the problems that occur when a smooth surface is replaced by
its polygonal approximation are discussed in greater detail in Sec-
tion 4.

In this paper we address two general problems: computing sil-
houette curves of smooth surfaces, and generating smooth direction
fields on surfaces that are suitable for hatching. The algorithms
that we have developed can be used to implement a number of
non-photorealistic rendering techniques. Our main focus is on a
particular rendering style, which aims to communicate all essential
information about the shape of the surface with a limited amount of
hatching.
Contributions. Algorithms. To support rendering of smooth sur-
faces, we have developed a number of novel algorithms including:

• An efficient, deterministic algorithm for detecting silhouettes;
(Section 4.3). In addition to non-photorealistic applications, this
method can be used to accelerate computation of shadow volumes.
• An algorithm for cusp detection and segmentation of silhouette
curves into smooth parts with constant visibility (Section 4.2).
• An algorithm for computing smooth direction fields on surfaces,
suitable for use in hatching (Section 5). These fields have a wide
range of uses, ranging from high-quality pen-and-ink rendering to
interactive illustration and hatching.

An important feature of our approach is that any polygonal mesh
can serve as input; the smooth surface that we render is inferred
from the mesh. We do not assume an explicitly specified parame-



terization, which make our approach more general than previously
developed techniques.
Rendering style.We have developed a new non-photorealistic ren-
dering style based on the techniques of Francis [15], and influenced
by the cartoons of Thomas Nast [34] and others.

The rules for drawing in this style are described in Section 6.

2 Previous Work
The methods used in nonphotorealistic rendering can be separated
into two groups: image-space and object-space. The image-based
approach is general and simple; however, it is not particularly suit-
able for generating concise line drawings of untextured smooth sur-
faces. Image-based techniques are presented in [5, 30, 7, 18, 6, 28];
these algorithms exploit graphics hardware to produce image preci-
sion silhouette images. Our technique is an object space method; it
directly uses the 3D representation of objects, rather than their im-
ages. Winkenbach and Salesin [36] describe a method for produc-
ing appealing pen-and-ink renderings of smooth surfaces. Paramet-
ric lines on NURBS patches were used to determine the hatch direc-
tions and silhouette lines were computed using polyhedral approx-
imation to the surface. Their main technical focus is on using the
hatch density to render complex texture and lighting effects. Their
system relied on a surface parameterization to produce hatch di-
rections; however, such a parameterization does not exist for many
types of surfaces, and can often be a poor indicator of shape when
it does exist. Elber [12, 13] and Interrante [21] used principal cur-
vature directions for hatching. Curvatures generally provide good
hatch directions, but cannot be reliably or uniquely computed at
many points on a surface. Our system makes use of the principle
curvature directions, and uses an optimization technique to “fill in”
the hatching field where it is poorly-defined. Deussen et al. [9] use
intersections of the surfaces with planes; while being quite flexible,
this approach requires segmentation of the surface into parts, where
different groups of planes are used; the plane orientations computed
using skeletons relate only indirectly to the local surface properties.

Our work also draws on techniques developed for vector field vi-
sualization [8, 22]. It should be noted that relatively little work has
been done on generating fields on surfaces as opposed to visualiza-
tion of existing fields. Elber [12, 13] discuses the relative merits
of some commonly-used hatching fields (principle curvature direc-
tions, field of tangents to the isoparametric lines, the gradient field
of the brightness).

Silhouette detection is an important component of many non-
photorealistic rendering systems. Markosian et al. [25] presented
a randomized algorithm for locating silhouettes; this system is fast
but does not guarantee that all silhouettes will be found. Gooch et
al. [18] and Benichou and Elber [3] proposed the use of a Gauss
map to efficiently locate all object silhouettes under orthographic
projection. In this paper, we present a new method for silhouette
detection that is fast, deterministic, and applicable to both ortho-
graphic and perspective projection.

Our method for computing the silhouette lines of free-form sur-
faces is closely related to the work of [14, 17] in computing silhou-
ettes for NURBS surfaces.

3 Overview
In this section we present a general overview of our algorithms.
Surface representation.The input data for our system is a polyg-
onal mesh that approximates a smooth surface. Polygonal meshes
remain the most common and flexible form for approximating sur-
faces. However, information about differential quantities (normals,
curvatures, etc.) associated with the original surface is lost. We
need a way to estimate these quantities and compute, if necessary,
finer approximations to the original smooth surface. This can be

Figure 2: Klein bottle. Lighting and hatch directions are chosen to
convey surface shape. Undercuts and Mach bands near the hole and
the self-intersection enhance contrast.

done if we choose a method that allows us to construct a smooth
surface from an approximating arbitrary polygonal mesh, and easily
compute the associated differential quantities (normals, curvatures,
etc.).

We use piecewise-smooth subdivision, similar to the algorithms
presented in [20], with an important modification (Appendix A) to
make the curvature well-defined and nonzero at extraordinary ver-
tices. However, other ways of defining smooth surfaces based on
polygonal meshes can be used, provided that all the necessary quan-
tities can be computed.
Algorithms. Our rendering technique has three main stages: com-
putation of a direction field on the surface, computation of the sil-
houette lines and generation of hatch lines.
Hatch direction field.This stage defines a view-independent field
on the surface that can be used later to generate hatches. Rather than
defining two separate directional fields, we define a singlecross
field (Section 5) for hatches and cross-hatches. The main steps of
our algorithm are: smooth the surface if necessary; compute an
initial approximation to the field in areas of the surface where it is
well defined, initialize the directions arbitrarily elsewhere; optimize
the directions in places where the cross field was not well defined.
Silhouette curve computation.We compute the curves in several
steps (Section 4): compute boundary, self-intersection and crease
curves, as well as boundaries of flat areas; compute silhouette
curves as zero-crossings of the dot product of the normal with the
view direction; find cusps, determine visibility, and segment the sil-
houette curves into smooth pieces.
Hatch generation.Our hatch generation algorithms follow some
of the rules described by Francis [15] (Section 6). The surface is
divided into four levels of brightness with corresponding levels of
hatching: highlights and Mach bands (no hatching), midtones (sin-
gle hatching), shadowed regions (cross-hatching), and undercuts
(dense cross-hatching). Line thickness varies within each region
according to the lighting. Undercuts and Mach bands are used to
increase contrast where objects overlap. Lights are placed at the
view position or to the side of the object. The hatching algorithm
covers all hatch regions with cross-hatches, then removes hatches
from the single hatch regions as necessary.

4 Computing Silhouette Drawings
In this section we describe algorithms for generating the simplest
line drawings of smooth surfaces, which we call silhouette draw-
ings. A silhouette drawing includes only the images of the most
visually important curves on the surface: boundaries, creases, sil-
houette lines and self-intersection lines. Finding intersections of



smooth surfaces is a complex problem, which we do not address in
the paper. We find self-intersections of a mesh approximating the
surface and assume that self-intersection lines of the mesh approx-
imate the self-intersection curves of the surface sufficiently well.
Boundary curves and creases are explicitly represented in the sur-
face; thus, we focus our attention on the problem of computing the
silhouette lines. We will refer to the creases, boundaries and self-
intersection curves asfeature curves.

Before proceeding, we recall several definitions1. First, we de-
fine more precisely what we mean by a piecewise-smooth surface.
A piecewise-smooth surface can be thought of as a finite union of
a number of smooth surfaces with boundaries. A smooth embed-
ded surface is a subsetM of R3 such that for any pointp of this
subset there is a neighborhoodU(p) = Ballε(p) ∩ M and aC1-
continuous nondegenerate one-to-one mapF(u, v) from a domain
D in R2 onto U(p). The domainD can be taken to be an open
disk for interior points, and a half-disk (including the diameter, but
excluding the circular boundary) for smooth boundary points. It
follows from the definition that the normalFu ×Fv is defined and
is nonzero everywhere on the surface. The direction ofFu × Fv

at any point of the surface is independent, up to a sign, of the local
parameterizationF and is denotedn(p).

Thesilhouette setfor the smooth surface is the set of pointsp of
the surface such that(n(p) · (p − c)) = 0, wherec is the view-
point. The silhouette is in general a union of flat areas on the sur-
face, curves and points. We isolate flat areas and consider them
separately. Isolated silhouette points are unstable, and are not rele-
vant for our purposes. For a surface that does not contain flat areas
and isC2, the silhouette for a general position of the viewpoint
can be shown to consist ofC1 non-intersecting curves (silhouette
curves).

An important role in our constructions is played by thecurvature
of the surface. More specifically, we are interested in principal cur-
vatures and principal curvature directions. The two principal curva-
tures at a pointp are maximal and minimal curvatures of the curves
obtained by intersecting the surface with a plane passing throughp
and containing the normal to the surface. The principal curvature
directions are the tangents to the curves for which the maximum
and minimum are obtained; these directions are always orthogonal
and lie in the tangent plane to the surface. The formulas expressing
these quantities in terms of the derivatives ofF are standard and
can be found, for example, in [4]. The most important property of
the principal curvatures that we use can be formulated as follows:if
a surface has principal curvaturesκ1 andκ2, and the unit vectors
along principal directions and the normal are used to define an or-
thonormal coordinate system(r, s, t), with r ands parameterizing
the tangent plane then locally the surface is the graph of a function
over the tangent plane

t = κ1r
2 + κ2s

2 + o(r2 + s2) (1)

It follows that principal curvatures and principal curvature direc-
tions locally define the best approximating quadratic surface.

4.1 Silhouettes of Meshes and Smooth Surfaces

The simplest approach to computing the silhouette curves would
be to replace the smooth surface with its triangulation and find the
silhouette edges of the triangular mesh. However, there are sig-
nificant differences between the silhouettes of smooth surfaces and
their approximating polygonal meshes (Figure 4). For polygonal
meshes, complex cusps (Figure 3), where several silhouette chains
meet, are stable, that is, do not disappear when the viewpoint is
perturbed. Singularities of projections of polyhedra were studied

1We do not state rigorous mathematical definitions in complete detail; an
interested reader can find them in most standard differential geometry texts.

in considerable detail (see a recent paper [2] for pointers); a simple
classification in the two-dimensional case, which does not appear to
be explicitly described elsewhere, can be found in [1]. For smooth
surfaces, the only type of stable singularity is a simple cusp, as it
was shown in the classic paper by Whitney [35]. As a consequence,
silhouette curves on smooth surfaces are either closed loops, or start
and end on feature lines, while on polygonal surfaces they may in-
tersect, and their topology is more complex. Moreover, we observe

complex polygonal 
cusp

simple smooth
cusp

Figure 3: Left: Complex cusps are stable on polygonal meshes.
Right: Only simple cusps are stable on smooth surfaces.

thatno matter how fine the triangulation is, the topology of the sil-
houette of a polygonal approximation to the surface is likely to be
significantly different from that of the smooth surface itself. This
does not present a problem for fixed-resolution images: if the dis-
tance between the projected silhouette of the mesh and the projected
silhouette of the smooth surface is less than a pixel, the topological
details cannot be distinguished. However, if we do want to generate
resolution-independent images capturing the essential features of
the silhouette of the smooth surface correctly, or apply line styles to
the silhouette curves, the polygonal approximation cannot be used.
(Figure 4). Similar observations were made in [5].

To preserve the essential topological properties of silhouettes, we
compute the silhouette curves using an approach similar to the one
used in [14, 17] for spline surfaces. Recall that the silhouette set of
a surface is the zero set of the functiong(p) = (n(p) · (p − c))
defined on the surface. The idea is to compute an approximation to
this function and find its zero set. For each vertexp of the polyg-
onal approximation, we compute the true surface normal andg(p)
at the vertex. Then the approximation to the functiong(p) is de-
fined by linear interpolation of the values of the function. As the
resulting function is piecewise-linear, the zero set will consist of
line segments inside each triangle of the polygonal approximation.
Moreover, we can easily enforce the general position assumption by
picking arbitrarily the sign of the functiong(p) at vertices where it
happens to be exactly zero. As a result, the line segments of the
zero set connect points in the interior of the edges of the mesh,
and form either closed loops or non-intersecting chains connecting
points on the feature lines (Figure 4), similar in structure to the ac-
tual silhouette curves. We may miss narrow areas on the surface
where the sign is different from surrounding areas. It is easy to see,
however, that the silhouette curves we obtain by our method will
have the same topology as the silhouette curves of some surface
obtained by a small perturbation of the original. This means that
we are guaranteed to have a plausible image of a surface, but it may
not accurately reflect features of size on the order of the size of a
triangle of the approximating mesh in some cases. The silhouette
algorithm is described in greater detail in [19].

4.2 Cusp Detection

While the silhouette curves on the surface do not have singularities
in a general position, the projected silhouette curves in the image
plane do; there is a single stable singularity type, aside from termi-
nating points at feature lines: a simple cusp (Figure 3). The most
straightforward way to detect these singularities is to examine the
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Figure 4: (a) Silhouette edges of a polygonal approximation pro-
duce jagged silhouette curves. (b) Our method produces smooth
silhouette curves by inferring information about the smooth surface
from the polygonal mesh. (c) The same curves shown from another
viewpoint and overlayed. (d) A complex cusp occurs in the polyg-
onal approximation when the surface is nearly parallel to the view
direction. This does not occur in the smooth silhouette curve. (e)
Smooth line drawing of the “smiling torus.” The red box shows the
location of the curves in (a)-(c).

tangents of the silhouette curves; cusps are the points where the tan-
gent is parallel to the view direction. However, this approach is not
numerically reliable, especially if the silhouette curves are approx-
imated by polylines. We propose a new, numerically more robust
way to find the cusps, using the following geometric observations.

Consider a silhouette pointp with principal curvature directions
w1 and w2 and principal curvaturesκ1 and κ2. Let c be the
viewpoint; sincep is the silhouette point, the viewing direction
v = c − p is in the tangent plane. Let[c1, c2, 0] be the compo-
nents ofc with respect to the coordinates(r, s, t) associated with
the principal curvature directions, computed byc1 = (v · w1) and
c2 = (v·w2). As we have observed,p is a cusp when the tangent to
the silhouette atp is parallel to the viewing directionv. The tangent
to the silhouette can easily be expressed in terms of curvature. Ap-
proximation (1) yields the following approximation to the normals
in a small neighborhood nearp: n(r, s) = [−2κ1r,−2κ2s, 1].
The equation of the 2nd order approximation to the silhouette curve
is an implicit quadratic equation,g(r, s) = (n(r, s) · v(r, s)) = 0,
wherev(r, s) is the viewing directionc − p(r, s) = [c1 − r, c2 −
s,−κ1r

2 − κ2s
2]. We calculate the vector perpendicular to the

silhouette atp as∇g(0, 0) = [−2κ1c1,−2κ2c2]. The resulting
condition for the viewing direction to be parallel to the silhouette
tangent (or, equivalently, perpendicular to∇g(0, 0)) to the view-
ing direction isκ1c

2
1 + κ2c

2
2 = 0. Therefore, we can define a

parameterization-independent scalar function on the surface which
we call thecusp function:

C(p) = κ1 (v · w1)
2 + κ2 (v · w2)

2

where all quantities are evaluated at pointp. This function has the
following important property:cusps are contained in the intersec-
tion set of the two families of curves: one obtained as the zero set
of the functiong(p), the other as the zero set of the cusp function
C(p) (Figure 5). The zero set ofC(p) can be approximated in
the same way as the zero set ofg(p); each triangle of the polygo-
nal mesh may contain a single line segment approximating the zero
set ofC(p) and another approximating the zero set ofg(p). This
allows us to compute approximate cusp locations robustly, without
introducing many spurious cusps, and at the same time using rela-
tively coarse polygonal approximations to the smooth surface.

Figure 5: Left: Cusps are found as intersections of zero sets of
two functions defined on the surface, the dot product of the normal
with the viewing direction and the cusp function. The silhouette
curve is shown in blue, the cusp zero set in red.Right: The same
curves; view from a viewpoint different from the one that was used
to compute the curves.

4.3 Fast Silhouette Detection

In the previous section, we have presented an algorithm for con-
structing approximations to the silhouette curves which, when im-
plemented in the simplest way, requires complete traversal of the
mesh. Such a traversal is unnecessary; typically, only a small per-
centage of mesh faces contain silhouettes [25, 23]. For polygo-
nal meshes, a number of fast techniques were developed that allow
one to avoid complete traversal. A stochastic algorithm was pro-
posed in [25]. A deterministic algorithm based on the Gauss map
was proposed in [3, 18], but is restricted to orthographic projection.
We present a new deterministic algorithm for accelerated location
of silhouettes, which works for both orthographic and perspective
projection. This algorithm is equally suitable for finding silhouettes
defined as zero sets, and for finding silhouette edges of polygonal
meshes.

Our algorithm is based on the concept ofdual surfaces.The
points of the dual surfaceM ′ are the images of the tangent planes
to a surfaceM under a duality map, which maps each plane
Ax + By + Cz + D = 0 to the homogeneous point[A, B, C, D].
More explicitly, M ′ can be obtained by mapping each point of
M to a homogeneous pointN = [n1, n2, n3,−(p · n)], where
n = [n1, n2, n3, 0] is the unit normal atp. Note that the inverse
is also true: each plane in the dual space corresponds to a point in
the primal space. LetC = [c1, c2, c3, c4] be our viewpoint in the
homogeneous form. Then the silhouette of the surface consists of
all pointsp for which C is in the tangent plane at that point. For
perspective projection, this means that(C ·N) = (c−p) ·n = 0.
For orthographic projection, the homogeneous formula is the same:
(C ·N) = (c ·n) = 0, wherec is interpreted as the view direction.
Our algorithm is based on the following observation:the image of
the silhouette set of the surface with respect to the viewpointC un-
der the duality map is the intersection of the plane(C · x) = 0,
with the dual surface.This fact allows us to reduce the problem of
finding the silhouette to the problem of intersecting a plane with a
surface (Figure 7), for which many space-partition-based accelera-
tion techniques are available. However, an additional complication
is introduced by the fact that some points of the dual surface may be
at infinity. This does not allow us to consider only the finite part of
the projective space, which can be identified withR3. However we
can identify the whole 3D projective space with points of the unit
hypersphereS3, or, equivalently, of the boundary of a hypercube,
in four-dimensional space. As four-dimensional space is somewhat
difficult to visualize, we show the idea of the algorithm on a 2D
example in Figure 6. In the 2D case, the problem is to compute all
silhouette pointson a curve, that is, the points for which the tangent
line contains the viewpoint.

While the geometric background is somewhat abstract, the actual
algorithm is quite simple. The input to the algorithm is a polygonal
mesh, with normals specified at vertices, if we are computing sil-
houettes using zero-crossings. The normals are not necessary if we
are locating the silhouette edges of the polygonal mesh. There are
two parts to the algorithm: initialization of the spatial partition and
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Figure 6: Left: Using a dual curve to find silhouette points. The
figure shows a curve in the planez = 1 and its dual on a sphere.
The blue arrow is the vectorc from the origin in 3D to the viewpoint
in the plane, the blue circle is the intersection of the plane passing
through the origin perpendicular toc with the unit sphere. The red
points are a silhouette point and its dual. The silhouette point can be
found by intersecting the blue circle with the dual curve and retriev-
ing corresponding point on the original curve.Right: Reducing the
intersection problem to planar subproblems. The upper hemisphere
containing the dual curve is projected on the surface of cube and at
most 5 (in this case 3) planar curve-line intersection problems are
solved on the faces.

Figure 7: Silhouette lines under the duality map correspond to the
intersection curve of a plane with the dual surface.Top: Torus
shown from camera and side views.Bottom:The eight 3D faces of
the hypercube, seven of which contain portions of the dual surface.
The viewpoint dual is shown as a blue plane. Silhouettes occur at
the intersection of the dual plane with the dual surface.

intersection of the dual surface with the plane corresponding to the
viewpoint. The second part is fairly standard, so we focus on the
first part.
Step 1: For each vertexp with normaln, we compute the dual
positionN = [n1, n2, n3,−(p · n)]. The dual positions define
the dual mesh which has different vertex positions but the same
connectivity.
Step 2: Normalize each dual positionN using l∞-norm, that is,
divide bymax(|N1|, |N2|, |N3|, |N4|). After division, at least one
of the componentsNi, i = 1..4, becomes 1 or -1. The resulting
four-dimensional point is on the surface of the unit hypercube. The
three-dimensional face of the cube on which the vertex is located is
determined by the index and sign of the maximal component.
Step 3: Each triangle of the dual mesh is assigned to a list for every
three-dimensional face in which it has a vertex.
Step 4: An octtree is constructed for each three-dimensional face,
and the triangles assigned to this face are placed into the octtree.

The second step of the algorithm, which is repeated for each
frame, uses the octtree to find the silhouette edges for a given cam-
era position by intersecting the dual plane with the dual surface.

We have implemented an interactive silhouette viewer based on
the dual space method. In our tests, silhouette tests were performed

on twice as many triangles as there were actual triangles contain-
ing silhouettes, suggesting that performance is roughly linear in
the number of silhouette triangles. This represents a substantial
speedup over traversing the entire mesh. Silhouette edge detec-
tion and visibility calculations on the three-times subdivided Venus
model (∼90,000 triangles) can be performed at approximately 17
frames per second on a 225 MHz SGI Octane, without using graph-
ics hardware, which is similar to the performance of the nondeter-
ministic algorithm of [25].

4.4 Visibility

Before computing visibility, we separate the silhouette curves into
segments. Visibility is determined for each segment. The follow-
ing points are used to separate segments: cusps, silhouette-feature
joints, and inverse images of silhouette-feature and silhouette-
silhouette intersections in image space. Visibility can change only
at these points, thus each segment is either completely visible or
invisible.

Determining visibility is fundamentally difficult for smooth sur-
faces, because it cannot be inferred precisely from visibility of the
approximating mesh. Our algorithm can only guarantee that the
correct visibility will be produced if the mesh is sufficiently fine, us-
ing a theoretically-estimated required degree of refinement. How-
ever, the estimate is too conservative and difficult to compute to
be practical; in our implementation, we refine the mesh to a fixed
subdivision level.

Our visibility algorithm is based on the following observation: at
any area on the surface, the rate of change of the normal is bounded
by the maximal directional curvature. For a sufficiently fine triangu-
lation, one can guarantee that for any triangle for which(n·(p−c))
changes sign, there is a silhouette edge of the polygonal approxi-
mation adjacent to a vertex of the triangle. We use the visibility
of these edges to compute visibility of the silhouette curves. The
visibility of the silhouette edges can be determined using known
techniques (e.g. [25]).

For each curve we find visibility of all nearby silhouette edges
(which is not necessarily consistent) and use the visibility of the
majority of the edges to determine visibility of the chain. It is pos-
sible to show that this method will produce correct visibility for
sufficiently fine meshes in the following sense: there is a smooth
surface for which the precise projection has the same topology as
the one computed by our method.

In practice, we have found that the algorithm performs well even
without extra refinement near the silhouettes, provided that the orig-
inal mesh is sufficiently close to the surface. An efficient algorithm
with better-defined properties would be useful.

5 Direction Fields on Surfaces
Fields on surfaces. To generate hatches, we need to choose sev-
eral direction fields on visible parts of the surface. The direction
fields are different from the more commonly used vector fields: un-
like a vector field, a direction field does not have a magnitude and
does not distinguish between the two possible orientations.

The fields can either be defined directly in the image plane as
in [31], or defined on the surface and then projected. The advan-
tage of the former method is that the field needs to be defined and
continuous only in each separate area of the image. However, it is
somewhat more difficult to use the information about the shape of
the objects when constructing the field, and the field must be re-
computed for each image. We choose to generate the field on the
surface first.

A number of different fields on surfaces have been used to define
hatching directions. The most commonly-used field is probably the
field of isoparametric lines; this method has obvious limitations,
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Figure 8: Direction fields on the Venus. (a) Silhouettes alone do not convey the interior shape of the surface. (b) Raw principle curvature
directions produce an overly-complex hatching pattern. (c) Smooth cross field produced by optimization. Reliable principal curvature
directions are left unchanged. Optimization is initialized by the principal curvatures. (d) Hatching with the smooth cross field. (e) Very
smooth cross field produced by optimizing all directions. (f) Hatching from the very smooth field.

as the parameterization may be very far from isometric, and is not
appropriate for surfaces lacking a good natural parameterization,
such as subdivision surfaces and implicit surfaces. The successes
and failures of this approach provide valuable clues for construction
of fields for hatching.

The most natural geometric candidate is the pair of principal cur-
vature direction fields [13, 21]. corresponding to the minimal and
maximal curvatures2. We will refer to the integral lines of these
fields ascurvature lines. These fields do not depend on param-
eterization, capture important geometric features, and are consis-
tent with the most common two-directional hatching pattern. How-
ever, they suffer from a number of disadvantages. All umbilical
points (points with coinciding principal curvatures) are singular-
ities, which means that the fields are not defined anywhere on a
sphere and have arbitrarily complex structure on surfaces obtained
by small perturbations of a sphere. On flat areas (when both cur-
vatures are very small) the fields are likely to result in a far more
complex pattern than the one that would be used by a human.

Other candidates include isophotes (lines of constant brightness)
and the gradient field of the distance to silhouette or feature lines
[25, 12]. Both are suitable for hatching in a narrow band near
silhouettes or feature lines, but typically do not adequately cap-
ture shape further from silhouettes, nor are they suitable for cross-
hatching.

Our approach is based on several observations about successes
and failures of existing methods, as well as hatching techniques
used by artists.

• Cylindric surfaces.Surface geometry is rendered best by princi-
pal curvature directions on cylindrical surfaces, that is, surfaces for
which one of the principal curvatures is zero (all points of the sur-
face are parabolic). This fact is quite remarkable: psychophysical
studies confirm that even a few parallel curves can create a strong
impression of a cylindrical surface with curves interpreted as prin-
cipal curvature lines [32, 24]. Another important observation is that
for cylinders the principal curvature lines are also geodesics, which
is not necessarily true in general. Hatching following the principal
curvature directions fails when the ratio of principal curvatures is
close to one.
Deussen et al. [9] uses intersections of the surface with planes to
obtain hatch directions; the resulting curves are likely to be locally
close to geodesics on slowly varying surfaces.
• Isometric parameterizations.Isoparameteric lines work well as
curvature directions when a parameterization exists and is close

2It is possible to show that for a surface in general position, these fields
are always globally defined, excluding a set of isolated singularities.

to isometric, i.e. minimizes the metric distortion as described in,
for example, [10, 27]. In this case, parametric lines are close to
geodesics. Isoparametric lines were used by [36, 11].
• Artistic examples.We observe that artists tend to use relatively
straight hatch lines, even when the surface has wrinkles. Smaller
details are conveyed by varying the density and the number of hatch
directions (Figure 9).

Figure 9: Almost all hatches in this cartoon by Thomas Nast curve
only slightly, while capturing the overall shape of the surface. Note
that the hatches often appear to follow a cylinder approximating the
surface. Small details of the geometry are rendered using variations
in hatch density.

These observations lead to the following simple requirements for
hatching fields:in areas where the surface is close to parabolic, the
field should be close to principal curvature directions; on the whole
surface, the integral curves of the field should be close to geodesic.
In addition, if the surface has small details, the field should be gen-
erated using a smoothed version of the surface.

Cross fields. While it is usually possible to generate two global
direction fields for the two main hatch directions, we have ob-
served that this is undesirable in general. There are two reasons
for this: first, if we would like to illustrate nonorientable surfaces,
such fields may not exist. Second, and more importantly, there are
natural cross-hatching patterns that cannot be decomposed into two
smooth fields even locally (Figure 10). Thus, we considercross
fields, that is, maps defined on the surface, assigning an unordered
pair of perpendicular directions to each point.

Constructing Hatching Fields. Our algorithm is based on the
considerations above and proceeds in steps.



Figure 10: A cross-hatching pattern produced by our system on
a smooth corner. This pattern cannot be decomposed into two
orthogonal smooth fields near the corner singularity. The ana-
lytic expression for a similar field in the plane isv1(r, θ) =
[cos(θ/4), sin(θ/4)]; v2(r, θ) = [− sin(θ/4), cos(θ/4)]. This
field is continuous and smooth only if we do not distinguish be-
tweenv1 andv2.

Step 1. Optionally, create a smoothed copy of the original mesh.
The copy is used to compute the field. The amount of smoothing
is chosen by the user, with regard to the smoothness of the original
mesh, and the scale of geometric detail the user wishes to capture
in the image. For example, no smoothing might be necessary for a
close-up view of a small part of a surface, while substantial smooth-
ing may be necessary to produce good images from a general view;
in practice we seldom found this to be necessary.
Step 2.Identify areas of the surface which are sufficiently close to
parabolic, that is, the ratio of minimal to maximal curvature is high,
and at least one curvature is large enough to be computed reliably.
Additionally, we mark as unreliable any vertex for which the aver-
age cross field energy of its incident edges exceeds a threshold, in
order to allow optimization of vertices that begin singular.
Step 3. Initialize the field over the whole surface by computing
principal curvature directions. If there are no quasi-parabolic areas,
user input is required to initialize the field.
Step 4.Fix the field in quasi-parabolic areas and optimize the field
on the rest of the vertices, which were marked as unreliable. This
step is of primary importance and we describe it in greater detail.

Our optimization procedure is based on the observation that we
would like the integral lines of our field to be close to geodesics.
We use a similar, but not identical, requirement that the field is as
close to constant as possible. Minimizing the angles between the
world-space directions at adjacent vertices of the mesh is possible,
but requires constrained optimization to keep the directions in the
tangent planes. We use a different idea, based on establishing a
correspondence between the tangent planes at different points of the
surface, which, in some sense, corresponds to the minimal possible
motion of the tangent plane as we move from one point to another.
Then we only need to minimize the change of the field with respect
to the corresponding directions in the tangent planes.

i- ij

vivj

geodesic

j- ji

Figure 11: Moving vectors along geodesics.

Given two sufficiently close pointsp1 andp2 on a smooth sur-
face, a natural way to map the tangent plane atp1 to the tan-
gent plane atp2 is to transport vectors along the geodesics (Fig-
ure 11); for sufficiently close points there is a unique geodesicγ(t),
t = 0..1, connecting these points. This is done by mapping a unit

vectoru1 in the tangent plane atp1 to a unit vectoru2 in the tan-
gent plane atp2, such that the angle betweenu1 and the tangent to
the geodesicγ′(0) is the same as the angle betweenu2 andγ′(1).
In discrete case, for adjacent vertices of the approximating meshvi

andvj , we approximate the tangents to the geodesic by the projec-
tions of the edge(vi,vj) into the tangent planes at the vertices. Let
the directions of these projections betij andtji. Then a rigid trans-
formationTij between the tangent planes is uniquely defined if we
require thattij maps totji and that the transformation preserves
orientation. Then for any pair of tangent unit vectorswi andwj at
vi andvj respectively, we can use‖Tijwi − wj‖ to measure the
difference between directions. One can show that the value of this
expression is the same as‖Tjiwj −wi‖. To measure the difference
between the values of the cross field at two points, we choose a unit
tangent vector for each point. The vectors are chosen along the di-
rections of the cross field. There are four possible choices at each
point. We choose a pair of unit vectors for which the difference is
minimal.

We now explicitly specify the energy functional. The cross
field is described by a single angleθi for each vertexvi, which
is the angle between a fixed tangent directionti, and one of
the directions of the cross field; we do not impose any limita-
tions on the value ofθi, and there are infinitely many choices
for θi differing by nπ/2 that result in the same cross field.
Let ϕij be the direction of the projection of the edge(vi,vj)
into the tangent plane atvi. Using this choice of coordi-
nates, one can show that the quantity‖Tijwi − wj‖ is equal to
mink

√
2 − 2 cos ((θi − ϕij) − (θj − ϕji) + kπ/2). Minimiza-

tion of this quantity is equivalent to minimization ofE(i, j) =
mink (− cos ((θi − ϕij) − (θj − ϕji) + kπ/2)), which is not dif-
ferentiable. We observe, however, thatE0(i, j) = −8E(i, j)4 +
8E(i, j)2 − 1 is just− cos 4 ((θi − ϕij) − (θj − ϕji)), and is a
monotonic function ofE(i, j) on [

√
2/2..1], the range of possi-

ble values ofE(i, j). Thus, instead of minimizingE(i, j), we can
minimizeE0(i, j). We arrive at the following simple energy:

Efield = −
∑

all edges(vi,vj)

cos 4 ((θi − ϕij) − (θj − ϕji))

which does not require any constraints on the variablesθi. Note
that the valuesϕij are constant. Due to the simple form of the
functional, it can be minimized quite quickly. We use a variant of
the BFGS conjugate gradient algorithm described in [37] to per-
form minimization. For irregularly-sampled meshes, the energy
may also be weighted in inverse proportion to edge length. We have
not found this to be necessary for the meshes used in this paper.
The result of the optimization depends on the threshold chosen to
determine which vertices are considered unreliable; in the extreme
cases, all vertices are marked as unreliable and the whole field is op-
timized, or all vertices are marked as reliable and the field remains
unoptimized. Figure 8 shows the results for several thresholds.

6 Rendering Style

6.1 Style Rules

Our rendering style is based to some extent on the rules described
by G. Francis inA Topological picturebook[15], which are in turn
based on Nikoläıdes’ rules for drawing drapes [26]. We have also
used our own observations of various illustrations in similar styles.
We begin our style description by defining undercuts and folds. A
visible projected silhouette curve separates two areas of the image:
one containing the image of the part of the surface on which the
curve is located, the other empty or containing the image of a dif-
ferent part of the surface. We call the former area afold. If the



(a) (b) (c)

Figure 12: Hatching rules shown on drapes. (a) There are 3 main
discrete hatch densities: highlights, midtones, and shadows, corre-
sponding to 0, 1, and 2 directions of hatches. (b) Undercuts. (c)
“Mach bands.” Undercuts and Mach bands increase contrast where
surfaces overlap.

latter area contains the image of a part of the surface, we call it an
undercut.

We use the following rules, illustrated in Figure 12.

• The surface is separated into four levels of hatching: high-
lights and Mach bands (no hatching), midtones (single hatching),
shadowed regions (cross-hatching), and undercuts (dense cross-
hatching). Inside each area, the hatch density stays approximately
uniform. The choice of the number of hatch directions used at a
particular area of the surface is guided by the lighting and the fol-
lowing rules:
• If there is an undercut, on the other side of the silhouette from a
fold, a thin area along the silhouette on the fold side is not hatched
(“Mach band effect”).
• Undercuts are densely hatched.
• Hatches are approximately straight; a hatch is terminated if its
length exceeds a maximum, or if its direction deviates from the
original by more than a fixed angle.
• Optionally, hatch thickness within each density level can be made
inversely proportional to lighting; the resulting effect is rather sub-
tle, and is visible only when the hatches are relatively thick.

6.2 Hatch Placement

The hatching procedure has several user-tunable parameters: basic
hatch density specified in image space; the hatch density for under-
cuts; the threshold for highlights (the areas which receive no hatch-
ing); the threshold that separates single hatch regions from cross
hatch regions; the maximum hatch length; the maximum deviation
of hatches from the initial direction in world space. Varying these
parameters has a considerable effect both on the appearance of the
images and on the time required by the algorithm. Threshold values
are usually chosen to divide the object more or less evenly between
different hatching levels.

Once we have a hatching field, we can illustrate the surface by
placing hatches along the field. We first define three intensity re-
gions over the surface: no hatching (highlights and Mach bands),
single hatching (midtones), and cross hatching (shadowed regions).
Furthermore, some highlight and hatch regions may be marked as
undercut regions. The hatching algorithm is as follows:

1. Identify Mach bands and undercuts.
2. Cover the single and cross hatch regions with cross hatches, and
add extra hatches to undercut regions.
3. Remove cross-hatches in the single hatch regions, leaving only
one direction of hatches.

6.3 Identifying Mach Bands and Undercuts

In order to identify Mach bands and undercuts, we step along each
silhouette and boundary curve. A ray test near each curve point is
used to determine if the fold overlaps another surface. Undercuts
and Mach bands are indicated in a 2D grid, by marking every grid

cell within a small distance of the fold on the near side of the surface
as a Mach band, and by marking grid cells on the far side of the
surface within a larger distance as undercuts. (This is the same 2D
grid as used for hatching in the next section.)

6.4 Cross-hatching

We begin by creating evenly-spaced cross-hatches on a surface. We
adapt Jobard and Lefers’ method for creating evenly-spaced stream-
lines of a 2D vector field [22]. The hatching algorithm allows us to
place evenly-spaced hatches on the surface in a single pass over the
surface.

Our algorithm takes two parameters: a desired hatch separation
distancedsep , and a test factordtest . The separation distance in-
dicates the desired image-space hatch density; a smaller separation
distance is used for undercuts. The algorithm creates a queue of
surface curves, initially containing the critical curves (silhouettes,
boundaries, creases, and self-intersections). While the queue is not
empty, we remove the front curve from the queue and seed new
hatches along it at points evenly-spaced in the image. Seeding cre-
ates a new hatch on the surface by tracing the directions of the
cross-hatching field. Since the cross field is invariant to 90 degree
rotations, at each step the hatch follows the one of four possible
directions which has the smallest angle with the previous direction.
Hatches are seeded perpendicular to all curves. Hatches are also
seeded parallel to other hatches, at a distancedsep from the curve.
A hatch continues along the surface until it terminates in a critical
curve, until the world-space hatch direction deviates from the ini-
tial hatch direction by more than a constant, or until it comes near a
parallel hatch. This latter condition occurs when the endpoint of the
hatchp1 is near a pointp2 on another hatch, such that the following
conditions are met:

• ||p1 − p2|| < dtestdsep , measured in image space.
• A straight line drawn between the two points in image space does
not intersect the projection of any visible critical curves. In other
words, hatches do not “interfere” when they are not nearby on the
surface.
• The world space tangents of the two hatch curves are parallel, i.e.
the angle between them is less than 45 degrees, after projection to
the tangent plane atp1.

The search for nearby hatches is performed by placing all
hatches in a 2D grid with grid spacing equal todsep . This ensures
that at most nine grid cells must be searched to detect if there are
hatches nearby the one being traced.

6.5 Hatch Reduction

Once we have cross-hatched all hatch regions, we remove hatches
from the single hatch regions until they contain no cross-hatches.
By removing hatches instead of directly placing single a hatch di-
rection, we avoid the difficulty inherent in producing a consistent
vector field on the surface. Our algorithm implicitly segments the
visible single-hatch regions into locally-consistent single hatching
fields. This allows us to take advantage of the known view direction
and the limited extent of these regions.

The reduction algorithm examines every hatch on the surface and
deletes any hatch that is perpendicular to another hatch. In particu-
lar, a hatch is deleted if it contains a pointp1 nearby a pointp2 on
another hatch such that:

• p1 andp2 lie within the single hatch region.
• ||p1 − p2|| < 2dsep , measured in image space.
• A straight line drawn between the two points in image space does
not intersect any visible critical curve.
• The world space tangents of the two hatch curves are perpendic-
ular, i.e. the angle between them is greater than 45 degrees after
projection to the tangent plane atp1.



Deleting a hatch entails clipping it to the cross-hatch region; the
part of the hatch that lies within the cross-hatch region is left un-
touched.

The order in which hatches are traversed is important; a naı̈ve
traversal order will usually leave the single hatch region uneven
and inconsistent. We perform a breadth-first traversal to prevent
this. A queue is initialized with a hatch curve. While the queue
is not empty, the front curve is removed from the queue. If it is
perpendicular to another curve in the single hatch region, then the
curve is deleted, and all parallel neighbors of the hatch that have
not been visited are added to the queue. When the queue is empty,
a hatch that has not yet been visited is added to the queue, if any
remain. The tests for perpendicular is as described above; the angle
condition is reversed for the parallel test.

7 Results and Conclusions
Most of the illustrations in this paper were created using our system.
Figures 1, 8 demonstrate the results for relatively fine meshes that
define surfaces with complex geometry. Figures 2 and 13 show
the results of using our system to illustrate several mathematical
surfaces.

The time required to create an illustration varies greatly; while
silhouette drawings can be computed interactively, and the field op-
timization takes very little time, hatching is still time-consuming,
and can take from seconds to minutes, depending on hatch density
and complexity of the model. Also, for each model the parame-
ters of the algorithms (thresholds for hatching, position of the light
sources, hatch density) have to be carefully chosen;

Future work. As we have already mentioned, improvements
should be made to the silhouette visibility algorithm. Performance
was not our goal for the hatching algorithm. It is clear that sub-
stantial speedups are possible. While the quality of fields generated
by our algorithms is quite good, it would be desirable to reduce the
number of parameters that may be tuned.

A more fundamental problem is the lack of control over the the
number, type and placement of singularities of the generated field.
As most surfaces of interest have low genus, the number of singu-
larities can be very small for most surfaces.3 However, the user
currently has little control over their placement and additional sup-
port must be provided. Furthermore, the hatch reduction algorithm
could be made more robust to irregular cross-hatching patterns, and
the hatching could be improved reduce hatching artifacts, perhaps
by employing the optimization technique of Turk and Banks [33].

3The relation between the numbers of singularities of different types is
determined by the analogs of Euler formula; such formulas are known for
vector and tensor fields; obtaining classification of singularities and a for-
mula of this type for the cross fields described in the paper is an interesting
mathematical problem.

(a) (b)

(c) (d)

Figure 13: Several surfaces generated using G. Francis’ generaliza-
tion of Apéry’s Romboy homotopy [16]. (a) Boy surface; (b) “Ida”;
(c) Roman surface; (d) Etruscan Venus.
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A C2-surfaces based on subdivision
Commonly used subdivision surfaces, such as variants of Loop sub-
division, produce either surfaces with curvatures that do not con-
verge or have zero curvature at extraordinary vertices. There are
fundamental reasons for this [29]. This property is rather undesir-
able, if we would like to compute silhouette curves, as it means
either flat points or singular behavior near extraordinary points. We
have developed a surface representation based on subdivision that
produces surfaces that are everywhereC2, do not have zero cur-
vature at extraordinary vertices, and agree arbitrarily well with the
limit surfaces produced by subdivision. This representation is de-
scribed elsewhere [38]. However, for our purposes it is sufficient to
have a way to compute curvatures for the surface associated with a
mesh, and it is not necessary to have a complete surface evaluation
algorithm.

The curvature computation that we propose is based on ideas
from subdivision and is compatible with the curvature computations
for subdivision surfaces in the regular case.

Consider a vertexv of the initial mesh of valencek. We
will regard a part of the smooth surface corresponding to the 1-
neighborhood ofv as parameterized over a regulark-gon in the
plane. Introduce the polar coordinates(r, ϕ) in the plane, with
u = r cos ϕ andv = r sin ϕ. then the second-order approxima-
tion to the surface can be written as

a0 +(a11 sin ϕ+a12 cos ϕ)r+(a20 +a21 sin 2ϕ+a22 cos 2ϕ)r2

A simple calculation shows that the least squares fit tok + 1
points of the 1-neighborhoodp0 . . . pk assumed to be values at
(sin(2πi/k), cos(2πi/k)), i = 0..k. with p0 in the center, leads to

a0 = p0; a20 = −p0 +
1

k

∑
i

pi
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2πi
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2
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pi cos
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k

a21 =
2

k

∑
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pi sin
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k
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pi cos
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k

Note that the formulas fora11 anda21 coincide with the stan-
dard formulas for the tangents to the Loop subdivision surface, and
a20, a21, a22, with appropriate variable changes, produce second
derivatives in the regular case. To make our calculations compati-
ble with the Loop surface, we replacea0 = p0 with a0 = plimit

0 ,
the limit position of the control pointp0. As a result, we obtain a
set of simple rules for computing the coefficients of an approximat-
ing quadratic surface, which, after appropriate change of variables
can be used to compute curvatures and is compatible with the Loop
subdivision rules. In [38], we show that one can construct aC2 sur-
face which has precisely these curvatures at the vertices. A similar
construction works for the boundary case. We should note that for
valencesk = 3, 4, the coefficients of the quadric are not indepen-
dent, and thus not all possible local behaviors can be approximated
well.

Given known partial derivativesFu,Fv,Fuu,Fuv,Fvv of the
local parameterization of the surface, the principal curvature direc-
tions and magnitudes can be computed as eigenvalues and eigen-
vectors of the following matrix:

(
E F
F G

)(
L M
M N

)
(2)

whereE = (Fu · Fu), F = (Fv · Fu), G = (Fv · Fv), L =
(Fuu · n), M = (Fuv · n), N = (Fvv · n).
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Figure 1 An image analogy. Our problem is to compute a new “analogous” image B′ that relates to B in “the same way” as A′ relates to A. Here, A, A′, and B
are inputs to our algorithm, and B′ is the output. The full-size images are shown in Figures 10 and 11.

Abstract

This paper describes a new framework for processing images by
example, called “image analogies.” The framework involves two
stages: a design phase, in which a pair of images, with one im-
age purported to be a “filtered” version of the other, is presented
as “training data”; and an application phase, in which the learned
filter is applied to some new target image in order to create an “anal-
ogous” filtered result. Image analogies are based on a simple multi-
scale autoregression, inspired primarily by recent results in texture
synthesis. By choosing different types of source image pairs as in-
put, the framework supports a wide variety of “image filter” effects,
including traditional image filters, such as blurring or embossing;
improved texture synthesis, in which some textures are synthesized
with higher quality than by previous approaches; super-resolution,
in which a higher-resolution image is inferred from a low-resolution
source; texture transfer, in which images are “texturized” with some
arbitrary source texture; artistic filters, in which various drawing
and painting styles are synthesized based on scanned real-world
examples; and texture-by-numbers, in which realistic scenes, com-
posed of a variety of textures, are created using a simple painting
interface.

CR Categories: I.2.6 [Artificial Intelligence]: Learning– Analo-
gies; I.3.3 [Computer Graphics]: Picture/Image Generation– Dis-
play algorithms; I.4.10 [Image Processing and Computer Vision]:
Image Representation– Statistical; J.5 [Computer Applications]:
Arts and Humanities– Fine arts

Additional Keywords: example-based rendering, texture synthe-
sis, non-photorealistic rendering, Markov random fields, autore-
gression, texture-by-numbers, texture transfer

Please see http://grail.cs.washington.edu/projects/image-analogies/ for
additional information and results.

1 Introduction

a·nal·o·gy n. A systematic comparison between structures
that uses properties of and relations between objects of
a source structure to infer properties of and relations be-
tween objects of a target structure. [14]

A native talent for perceiving analogies is . . . the leading
fact in genius of every order.

—William James, 1890 [28]

Analogy is a basic reasoning process, one that we as humans em-
ploy quite commonly, and often unconsciously, to solve problems,
provide explanations, and make predictions [44]. In this paper, we
explore the use of analogy as a means for creating complex image
filters (Figure 1). In particular, we attempt to solve the following
problem:

Problem (“IMAGE ANALOGIES”): Given a pair of images
A and A′ (the unfiltered and filtered source images, respec-
tively), along with some additional unfiltered target image
B, synthesize a new filtered target image B′ such that

A : A′ :: B : B′

In other words, we want to find an “analogous” image B′ that re-
lates to B in “the same way” as A′ relates to A. In general, this
is a very difficult problem to solve; in this paper, we describe an
approach that works well in many cases.

An advantage of image analogies is that they provide a very natural
means of specifying image transformations. Rather than selecting
from among myriad different filters and their settings, a user can
simply supply an appropriate exemplar (along with a correspond-
ing unfiltered source image) and say, in effect: “Make it look like
this.” Ideally, image analogies should make it possible to learn very
complex and non-linear image filters—for instance, filters that can
convert a photograph into various types of artistic renderings hav-
ing the appearance of oil, watercolor, or pen-and-ink, by analogy
with actual (real-life) renderings in these styles. In addition, these
various types of filters would not need to be invented individually or
programmed explicitly; ideally, the same general mechanism could
be used instead to provide this very broad variety of effects.

While image analogies are clearly a desirable goal, it is not so clear
how they might be achieved.



For one thing, a crucial aspect of the image analogies problem state-
ment is the definition of similarity used to measure not only the re-
lationship between each unfiltered image and its respective filtered
version, but also the relationship between the source pair and the
target pair when taken as a whole. This issue is tricky, in that we
want to use some metric that is able to preserve recognizable fea-
tures of the original image filter from A to A′, while at the same
time is broad enough to be applied to some completely different
target image B. Moreover, it is not obvious what features of a train-
ing pair constitute the “style” of the filter: in principle, an infinite
number of different transformations could be inferred from a pair
of images. In this paper, we use a similarity metric that is based on
an approximation to a Markov random field model, using raw pixel
values and, optionally, steerable filter responses [45]. To measure
relationships between the source and target image pair, we sample
joint statistics of small neighborhoods within the images, as discus-
sion in Section 3.

In addition, we would like the synthesis of the filtered target image
B′ to proceed at a reasonable rate. Thus, we will need a way to
index and efficiently search over the various images A, A′, and B,
using the similarity metric, to choose the appropriate parts of the
transform A→ A′ in synthesizing B → B′. We use an autoregres-
sion algorithm, based primarily on recent work in texture synthesis
by Wei and Levoy [49] and Ashikhmin [2]. Indeed, our approach
can be thought of as a combination of these two approaches, along
with a generalization to the situation of corresponding pairs of im-
ages, rather than single textures.

Finally, in order to allow statistics from an image A to be applied
to an image B with completely different colors, we sometimes op-
erate in a preprocessed luminance space, as described in detail in
Sections 3.3 and 3.4.

In actual usage, we envision image analogies involving two stages.
In the design (or training) phase, a designer (possibly an expert)
creates a filter by selecting the training images A and A′ (for exam-
ple, from scanned imagery), annotating the images if desired, and
(directly or indirectly) selecting parameters that control how vari-
ous types of image features will be weighted in the image analogy.
The filter can then be stored away in a library. Later, in the appli-
cation phase, a user (possibly someone with no expertise at all in
creating image filters) applies the filter to some target image B.

Obviously, we cannot expect our image analogies framework to do
a perfect job in learning and simulating all possible image filters,
especially from just a single training pair. Moreover, many of the
filters that we would like our framework to be able to learn are, in
fact, extremely difficult even for humans to master. Nevertheless, we
have found our image analogies framework to work rather surpris-
ingly well in a variety of situations, as demonstrated in Section 4.
These include:

• traditional image filters, such as blurring or “embossing” (Sec-
tion 4.1);

• improved texture synthesis, in which some textures are synthe-
sized with higher quality than previous approaches (Section 4.2);

• super-resolution, in which a higher-resolution image is inferred
from a low-resolution source (Section 4.3);

• texture transfer, in which images are “texturized” with some ar-
bitrary source texture (Section 4.4);

• artistic filters, in which various drawing and painting styles, in-
cluding oil, watercolor, and line art rendering, are synthesized
based on either digitally filtered or scanned real-world examples
(Section 4.5); and

• texture-by-numbers, in which realistic scenes, composed of a va-
riety of textures, are created using a simple “painting” interface
(Section 4.6).

In all of these cases, producing the various different effects is pri-
marily just a matter of supplying different types of source image
pairs as input. For example, a blur filter is “learned” by supplying
an image and its blur as the (A, A′) pair. Similarly, an oil-painting
style is learned by supplying an image and its oil-painted equiva-
lent as the input pair. Ordinary texture synthesis can be viewed as
a special case of image analogies in which the unfiltered images A
and B are null (i.e., considered to match trivially everywhere), and
the analysis/synthesis is performed just on A′ and B′. Alternatively,
texture-by-numbers is achieved by using a realistic image, such as
a landscape, as A′ and supplying a simplified, hand-segmented ver-
sion of the landscape as A—for instance, where one solid color in A
corresponds to “sky texture” in A′, another to “grass texture,” and
so on. These same colors can then be painted onto B to generate a
new realistic landscape B′ with similar textures.

Finally, we also describe a real-time, interactive version of our al-
gorithm, which can be used to provide image analogies underneath
the footprint of a digital painting tool (Section 5). While texture-
by-numbers is a natural application for this tool, it can be used with
any type of image analogy.

While successful in many ways, image analogies do not work in
every case since they attempt to model only low-level statistics of
the image pairs. Thus, higher-level features such as broad, coher-
ent brush strokes are not always captured or transferred very ef-
fectively. Section 6 discusses the limitations of our approach and
suggests areas of future research.

2 Related work

Image analogies build upon a great deal of previous work in several
disparate areas, including machine learning, texture synthesis, non-
photorealistic rendering, and image-based rendering. As far as we
know, some of the applications supported by image analogies are
completely new, such as the ability to learn “artistic filters” from
digitized imagery of real artistic renderings. Others, such as super-
resolution and texture transfer, have previously been addressed by
other works, in some form or another. Although the algorithms we
describe compare favorably—and improve upon—much of this pre-
vious work, it is the generality and convenience of the image analo-
gies framework that we believe makes it so interesting and useful.
Here, we survey some of the most closely related work.

Generalizing from a set of known examples, as we attempt to do
in this paper, is a central problem in machine learning. Analog-
ical reasoning is central to problem solving, learning, and creativ-
ity [19, 31, 33]. For this reason, a goal from the early days of
artificial intelligence has been to build systems able to reason by
analogy; early works include Evan’s ANALOGY program [15] and
Winston’s seminal work on finding and exploiting parallels in sim-
ple theories [52]. In this paper, we propose a novel statistical ap-
proach for finding analogies between images, from the perspective
of modeling transformations that are not just shifts, scales, and ro-
tations but rather mappings of one sort of object or relation into
another.

Recently, a number of applications of machine learning to prob-
lems in computer graphics have been published, including Video
Rewrite [7], Voice Puppetry [5], Video Textures [43], and Style Ma-
chines [6]. Our paper continues in the two-word-title tradition of
these earlier works. In research that is perhaps most closely related
to our own, Freeman et al. [17] use Markov random fields (MRFs)
for scene learning, in which they attempt to learn the transforma-
tion from some captured image to the scene interpretation, such as
extracting high-resolution data from low-resolution data (“super-
resolution”) or inferring optical flow from image pairs. Our method
differs from previous MRF modeling techniques in that we do not
require an iterative algorithm in order to apply the model. More im-
portantly, our work introduces a variety of new applications of these
methods for computer graphics.



In the last few years, a great deal of work has been published in both
the computer graphics and computer vision communities on the
problem of texture synthesis: the creation of images that match the
texture appearance of a given digitized sample. Heeger and Bergen
[23] introduced this problem to the computer graphics community
in 1995. More recently, De Bonet [4] and Efros and Leung [11]
showed that a nearest-neighbor search can perform high-quality
texture synthesis in a single pass, using multiscale and single-scale
neighborhoods, respectively. (This search may be viewed as an ap-
proximation to sampling from an MRF, an approach used by Zhu
et al. [54] and Portilla and Simoncelli [40].) Wei and Levoy [49]
unify these approaches, using neighborhoods consisting of pixels
both at the same scale and at coarser scales. Vector quantization
[20] or other clustering may be used to summarize and accelerate
the nearest-neighbors computation [17, 34, 35, 39, 49].

In unpublished work, Eilhauer et al. [13] demonstrate a method for
synthesizing texture to match a given image, work that we extend
in this paper under the name “texture transfer.” In these same pro-
ceedings, Efros and Freeman [12] describe improved methods for
texture synthesis and show how these methods can also be used
for texture transfer. Our texture transfer method also bears some
resemblance to Veryovka and Buchanan’s methods for halftoning
one image with the texture of another [47] and for using multiple
textures to illustrate 3D meshes [46].

In recently published work, Ashikhmin [2] describes a texture syn-
thesis method that works by greedily extending existing patches
whenever possible, rather than by searching the entire example tex-
ture. The algorithm is very fast and produces results that often look
much better than the output from previous synthesis methods. How-
ever, the greedy search seems to have difficulty restarting effec-
tively when a patch being copied ends (e.g., runs off the end of the
image). In our tests, this problem produces abrupt discontinuities
between the texture patches. As mentioned earlier, our work builds
upon this algorithm, combining it with Wei and Levoy’s approach
and generalizing this combination to image analogies. Ashikhmin
also allows a user to draw a color image as a target for texture
synthesis, in a manner that has some resemblance to our “texture-
by-numbers” application. However, as discussed in detail in Sec-
tion 4.6, image analogies are able to address a number of drawbacks
in Ashikhmin’s approach by virtue of using a pair of images, rather
than a single image, to control the synthesis procedure.

One important application of image analogies that we explore in
this paper is the automatic synthesis of various artistic styles from
examples. In the past few years, there has been a great deal of work
in creating artistic styles by computer [10, 21, 24, 26, 32, 36, 41,
42, 50, 51], a field that has come to be known as non-photorealistic
rendering (NPR). One drawback of most of these previous works,
however, is that the methods have had to be specifically tailored to
a specific rendering style (or space of styles); image analogies, by
contrast, although they may not be able to create any single style as
well, can be used for a very broad range of effects.

In this paper, we aim to broaden the range of NPR techniques by
exploring what could be thought of as example-based rendering
(EBR), in which scanned-in artistic imagery is reused for NPR syn-
thesis. The earliest examples of this sort of approach were tools
like the “clone brush” in Adobe Photoshop, or the “image hose”
in Corel (originally, Fractal Design) Painter. Recently, a number of
EBR approaches to NPR have been proposed in a variety of re-
search systems [8, 27, 30, 53]. Perhaps most similar in spirit to our
own approach (albeit in somewhat different domains) are a method
for creating pen strokes from examples [18] and a method for esti-
mating parameters of a 3D line-drawing illustration system from an
example rendering made within the same system [22].

3 Image analogies

Here, we describe a set of data structures and algorithms to support
image analogies.

3.1 Definitions and data structures

As input, our algorithm takes a set of three images, the unfiltered
source image A, the filtered source image A′, and the unfiltered
target image B. It produces the filtered target image B′ as output.

Our approach assumes that the two source images are registered;
that is, the colors at and around any given pixel p in A correspond
to the colors at and around that same pixel p in A′, through the
image filter that we are trying to learn. Thus, we will use the same
index p to specify both a pixel in A and its corresponding pixel in
A′. We will use a different index q to specify a pixel in the target
pair B and B′.

For the purposes of this exposition, we will assume that the various
images contain not just an RGB color, but additional channels of
information as well, such as luminance and various filter responses.
Together, all of these channels (including RGB) comprise the fea-
ture vector for each pixel p. We use A(p) (or A′(p)) to denote the
complete feature vector of A (or A′) at pixel p and, similarly, B(q)
(or B′(q)) to specify the feature vector at pixel q. Note that the
features used for the A and B images need not be the same as for
the A′ and B′ images. The particular features we use are described
in more detail in Section 3.3 below (however, experimenting with
alternate or additional features is certainly a rich area for future re-
search). As we shall see, these features will be used to guide the
matching process, in order to help select the most suitable pixels
from A′ to use in the synthesis of B′.

Finally, our algorithm will need to keep track of the position p of
the source pixel that was copied to pixel q of the target. Thus, we
will store an additional data structure s(·) (for “source”), which is
indexed by q, and has the property s(q) = p.

In summary, our algorithm maintains the following data structures,
of which the RGB channels of A(p), A′(p), and B(q) are inputs,
the RGB channels of B′(q) is the output, and the other channels
of A, A′, B, and B′, as well as s(q), are intermediate computed
results in the synthesis process:

A(p): array p ∈ SourcePoint of Feature
A′(p): array p ∈ SourcePoint of Feature′

B(q): array q ∈ TargetPoint of Feature
B′(q): array q ∈ TargetPoint of Feature′

s(q): array q ∈ TargetPoint of SourcePoint

where SourcePoint and TargetPoint are 2D pixel locations in the
source and target pairs, respectively.

We will actually use a multiscale representation of all five of these
quantities in our algorithm. Thus, we will typically index each of
these arrays by their multiscale level � using subscripts. For exam-
ple, if A� represents the source image A at a given resolution, then
A�−1 represents a corresponding lower-resolution image at the next
coarser level, with half as many pixels in each dimension. We will
use L to denote the maximum level, i.e., the level for the highest-
resolution versions of the images.

3.2 The algorithm

Given this notation, the image analogies algorithm is easy to de-
scribe. First, in an initialization phase, multiscale (Gaussian pyra-
mid) representations of A, A′, and B is constructed, along with
their feature vectors and some additional indices used for speed-
ing the matching process (e.g., an approximate-nearest-neighbor
search (ANN), as described below). The synthesis then proceeds
from coarsest resolution to finest, computing a multiscale represen-
tation of B′, one level at a time. At each level �, statistics pertaining



to each pixel q in the target pair are compared against statistics for
every pixel p in the source pair, and the “best” match is found. The
feature vector B′

�(q) is then set to the feature vector A′
�(p) for the

closest-matching pixel p, and the pixel that matched best is recorded
in s�(q).

The algorithm can be described more precisely in pseudocode as
follows:

function CREATEIMAGEANALOGY(A, A′, B):
Compute Gaussian pyramids for A, A′, and B
Compute features for A, A′, and B
Initialize the search structures (e.g., for ANN)
for each level �, from coarsest to finest, do:

for each pixel q ∈ B′
�, in scan-line order, do:

p ← BESTMATCH(A, A′, B, B′, s, �, q)
B′

�(q) ← A′
�(p)

s�(q) ← p
return B′

L

The heart of the image analogies algorithm is the BESTMATCH
subroutine. This routine takes as input the three complete images
A, A′ and B, along with the partially synthesized B′, the source
information s, the level �, and the pixel q being synthesized in B′.
It finds the pixel p in the source pair that best matches the pixel
being synthesized, using two different approaches: an approximate
search, which attempts to efficiently find the closest-matching pixel
according to the feature vectors of p, q, and their neighborhoods;
and a coherence search, based on Ashikhmin’s approach [2], which
attempts to preserve coherence with the neighboring synthesized
pixels. In general, the latter approach will usually not return a pixel
that matches as closely with respect to the feature vectors; however,
since the L2-norm is an imperfect measure of perceptual similarity,
coherent pixels will often look better than the best match under L2.
We therefore rescale the approximate-search distance according to
a coherence parameter κ, in order to make it artificially larger when
comparing the two choices. Thus, the larger the value of κ, the more
coherence is favored over accuracy in the synthesized image. In or-
der to keep the coherence term consistent at different scales, we at-
tenuate it by a factor of 2�−L since pixel locations at coarser scales
are spaced further apart than at finer scales. (In a sense, 2�−Lκ rep-
resents an estimate of the scale of “textons” [29] at level �.) We
typically use 2 ≤ κ ≤ 25 for color non-photorealistic filters, κ = 1
for line art filters, and 0.5 ≤ κ ≤ 5 for texture synthesis.

Here is a more precise statement of this algorithm:

function BESTMATCH(A, A′, B, B′, s, �, q):
papp ← BESTAPPROXIMATEMATCH(A, A′, B, B′, �, q)
pcoh ← BESTCOHERENCEMATCH(A, A′, B, B′, s, �, q)
dapp ← ‖F�(papp)− F�(q)‖2
dcoh ← ‖F�(pcoh)− F�(q)‖2
if dcoh ≤ dapp(1 + 2�−Lκ) then

return pcoh

else
return papp

Here, we use F�(p) to denote the concatenation of all the feature
vectors within some neighborhood N(p) of both source images A
and A′ at both the current resolution level � and at the coarser res-
olution level � − 1. We have used 5 × 5 neighborhoods in the fine
level and 3× 3 neighborhoods in the coarse level (Figure 2). Simi-
larly, we use F�(q) to denote the same concatenation for the target
images B and B′, although in the case of the filtered target im-
age B′ the neighborhood at the finest resolution includes only the
portion of the image that has already been synthesized. (Note that
F (·) is overloaded in our notation; the index p or q will be used
to determine whether a particular F (·) is a source or target neigh-
borhood feature vector.) In each case, the norm ‖F�(p)− F�(q)‖2
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Figure 2 Neighborhood matching. In order to synthesize the pixel value at q
in the filtered image B′

�, we consider the set of pixels in B′
�, B�, B′

�−1, and
B�−1 around q in the four images. We search for the pixel p in the A images
that give the closest match. The synthesis proceeds in scan-line ordering in
B′

�.

is computed as a weighted distance over the feature vectors F (p)
and F (q), using a Gaussian kernel, so that differences in the fea-
ture vectors of pixels further from p and q have a smaller weight
relative to the differences at p and q. We also normalize the vectors
so that each scale of the pyramid has equal weight. Note that some
special processing is required at boundaries, as well as at the lowest
resolution of the pyramid, since the neighborhoods are a little bit
different in these areas. We perform brute-force searches with only
the partial neighborhoods in these cases.

For the BESTAPPROXIMATEMATCH procedure, we have tried us-
ing both approximate-nearest-neighbor search (ANN) [1] and tree-
structured vector quantization (TSVQ) [20], using the same norm
over the feature vectors. In our experience, ANN generally provides
more accurate results for the same computation time, although it is
also more memory intensive. We used ANN for all of the examples
shown in this paper. Principal components analysis (PCA) can be
used to reduce the dimensionality of feature vectors leading to a
substantial speed-up in the search. We generally keep 99% of the
variance, which can lead to a reduction in dimensionality of about
an order of magnitude. However, using PCA can degrade the quality
of the results on some simple cases; it is most useful in cases with
large feature vector sizes (e.g., when steerable filters are used).

The BESTCOHERENCEMATCH procedure simply returns s(r�) +
(q − r�), where

r� = arg min
r∈N(q)

‖F�(s(r) + (q − r))− F�(q)‖2

and N(q) is the neighborhood of already synthesized pixels adja-
cent to q in B′

�. This formula essentially returns the best pixel that
is coherent with some already-synthesized portion of B′

� adjacent
to q, which is the key insight of Ashikhmin’s method.

3.3 Features

Feature selection and representation is a large open problem and an
active area of research in machine learning. For now, we have exper-
imented with several different components for the feature vectors.
Using the RGB channels themselves is the most obvious choice
(and the first thing we tried). However, for some filters, we found
that our source pairs did not contain enough data to match the target
pair well using RGB color. This is due to the well-known “curse of



dimensionality:” the neighborhood space for RGB images is much
larger than for grayscale images, and thus a single image pair pro-
vides a correspondingly sparser sampling of the space for RGB
than for grayscale. Consequently, the neighborhood histogram of A
may still be poorly matched to B, whereas this is less of a problem
for grayscale images.

An alternative, which we have used to generate many of the re-
sults shown in this paper, is to compute and store the luminance
at each pixel and use it in place of RGB in the distance metric.
Luminance can be computed in a number of ways; we use the Y
channel from the YIQ color space [16], where the I and Q chan-
nels are “color difference” components. This approach is motivated
by vision science: we are much more sensitive to changes in the lu-
minance channel than to changes in color difference channels [48].
After processing in luminance space, we can recover the color sim-
ply by copying the I and Q channels of the input B image into the
synthesized B′ image, followed by a conversion back to RGB. An
added benefit of this approach is the speedup inherent in performing
the matching and synthesis with one third as many color channels.
The downside, however, is that color dependencies in the analogy
filter are lost. In this paper, we worked in luminance space for the
blur filter, super-resolution, and artistic filter examples.

Another way to improve the perceptual results of matching is to
compute multiple scales of oriented derivative filters [4, 23, 54].
To this end, we can compute a steerable pyramid [45] for the lu-
minance of A and B and concatenate the filter responses to the
feature vectors for these images. The distance metric then becomes
a weighted combination of similarity in luminance, as well as sim-
ilarity in orientation among regions of the unfiltered images. We
used third-derivative steerable filters comprised of four filter ker-
nels for synthesizing the line art examples (Figure 8); for our other
experiments, we found them to make little or no difference.

3.4 Luminance remapping

Converting images to luminance can still give poor overlap be-
tween image neighborhood histograms; for example, a light A will
be of little use when processing a dark B. As a preconditioning
step, we would like to discover a luminance transformation that
brings the histograms into correspondence. One standard approach
is histogram matching [9]; however, we find that it uses non-smooth
mappings with undesirable side-effects.

Our approach, instead, is to apply a linear map that matches the
means and variances of the luminance distributions. More con-
cretely, if Y (p) is the luminance of a pixel in image A, then we
remap it as

Y (p) ← σB

σA
(Y (p)− µA) + µB

where µA and µB are the mean luminances, and σA and σB are the
standard deviations of the luminances, both taken with respect to lu-
minance distributions in A and B, respectively. We apply the same
linear transform to A′, in order to keep the training pair consistent.
In this paper, luminance remapping is only used for the color artistic
filters (Section 4.5).

This same approach can be extended to matching color distribu-
tions in a fairly straightforward way [25]. It is not used in this paper
because we found synthesis in luminance to give better results.

4 Applications

By supplying different types of images as input, the image analo-
gies framework can be used for learning filters for many differ-
ent types of applications. We describe here the applications that
we have experimented with so far. Timings for these tests are
discussed in the next section. Additional results can be found at
http://grail.cs.washington.edu/projects/image-analogies/.

4.1 Traditional image filters

As a simple test, we tried learning some traditional image-
processing filters, including a “blur” filter (Figure 3) and an “em-
boss” filter from Adobe Photoshop (Figure 4). While the image-
analogies framework gives adequate results, it is nowhere near as
efficient as applying the filter directly. Still, these experiments ver-
ify that the image analogies framework works for some basic filters.

4.2 Improved texture synthesis

Texture synthesis is a trivial case of image analogies, where the
elements of the A and B images are zero-dimensional or con-
stant. The algorithm we have described, when used in this way
for texture synthesis, combines the advantages of the weighted
L2 norm and Ashikhmin’s search algorithm, although without the
speed of Ashikhmin’s algorithm. For example, the synthesized tex-
tures shown in Figure 5 have a similar high quality to those of
Ashikhmin’s algorithm, without the edge discontinuities.

4.3 Super-resolution

Image analogies can be used to effectively “hallucinate” more de-
tail in low-resolution images, given some low- and high-resolution
pairs (used as A and A′) for small portions of the images. (The
image analogies framework we have described is easily extended
to handle more than a single source image pair, which is what we
have done for these examples.) Figure 6 demonstrates this appli-
cation, using images of a set of maple trees and of a Dobag rug,
respectively. An interesting area for future work is to choose the
training pairs automatically for image compression, similar to frac-
tal image compression [3].

4.4 Texture transfer

In texture transfer, we filter an image B so that it has the texture of
a given example texture A′ (Figure 7). Texture transfer is achieved
by using the same texture for both A and A′. We can trade off the
appearance between that of the unfiltered image B and that of the
texture A by introducing a weight w into the distance metric that
emphasizes similarity of the (A, B) pair over that of the (A′, B′)
pair. Increasing w causes the input image to be reproduced more
faithfully, whereas decreasing w ties the image more closely to the
texture. When w = 0, texture transfer reduces to ordinary texture
synthesis. For somewhat better results, we also modify the neigh-
borhood matching by using single-scale 1×1 neighborhoods in the
A and B images. Thus, F�(p) contains the value of the pixel p in
A� (or B�), as well as the usual neighborhoods around p in A′

� and
A′

�−1 (or B′
� and B′

�−1).

This application of image analogies may be somewhat counterintu-
itive, since an intuitive interpretation of an “analogy” in which A is
the same as A′ is as the identity filter. However, texture transfer is
actually another valid interpretation [25]. Image analogies synthe-
size images drawn from the statistical distribution of neighborhoods
in A′—in texture transfer, this is done while trying to match the B
image as closely as possible.

4.5 Artistic filters

Although the problem is in general very difficult, we have had some
success in using image analogies to transfer various artistic styles
from one image to another, as shown in Figures 8–13 and 15.

For many example images, we do not have a source photograph
available; hence, a substitute must be created. We generally view
the A′ image as providing texture (e.g., pen strokes or paint tex-
ture) to an untextured image. To create A from A′, we apply an
anisotropic diffusion [37] or similar filter to A′ (we used the “Smart
Blur” filter from Adobe Photoshop), in order to maintain sharp con-
tours but eliminate texture. For line art filters, we blur the image
before applying anisotropic diffusion.



For the color artistic filters in this paper, we performed synthesis in
luminance space, using the preprocessing described in Sections 3.3
and 3.4. (In general, we find that matching with color gives richer
and more appealing results, but can often fail quite dramatically.)

For line art filters, using steerable filter responses in feature vectors
leads to significant improvement. We suspect that this is because
line art depends significantly on gradient directions in the input im-
ages. We use steerable filter responses only for matching in A and
B (but not in A′/B′).

We have also had some success when A is a known photograph and
A′ is a painting or drawing made by hand from the photograph.
(Unfortunately, these results are not shown here, for copyright rea-
sons.) In these cases, some care must be taken to carefully reg-
ister the photograph to the painting since our algorithm currently
assumes that the images are in approximate pointwise correspon-
dence. For our training pairs of this type, we first aligned the images
by manually estimating a global translation, rotation, and scale. We
then warped the example source image with a custom image warp-
ing program designed for local image adjustments [25].

The scale of the training images determines the fineness of the fea-
tures in the B′ image and may be chosen by the filter designer, or
left as a parameter to the user applying the filter.

4.6 Texture-by-numbers

Texture-by-numbers allows new imagery to be synthesized by ap-
plying the statistics of a labeled example image to a new labeling
image B. For example, given a labeling of the component textures
of a realistic image, a new realistic one may be painted just by paint-
ing the arrangement of the component textures (Figure 14). An ex-
ample of this kind of synthesis, performed in real-time as part of a
“painting” interface, is demonstrated in the accompanying video.

A major advantage of texture-by-numbers is that it allows us to
synthesize from images for which ordinary texture synthesis would
produce poor results. Consider the photograph of an oxbow shown
in Figure 14. Although the image has textural regions, attempting
to create a new version of the river via ordinary texture synthesis
would produce very poor results, as the synthesis process would
mix unrelated textures. In statistical terms, the problem is that the
texture distribution is not stationary. On the other hand, specifying a
corresponding A image makes the A′ image into a useful texture, in
the sense that the conditional density of the A′ image is stationary
(now conditioned on A). Given a new B image, we can generate a
new scene to match it. Note that, in addition to filling in textures
in a sensible manner, the boundaries between texture regions also
match the examples, since they are synthesized from examples in A
with similar boundary shapes.

A more sophisticated example is shown in Figure 16. Treating the
scenery as a single texture produces poor results because the syn-
thesis mixes foreground texture with background texture. In other
words, the texture is stationary horizontally but not vertically. In
this case, we provide a gradient in the red channel of the A im-
age, which constrains the synthesis so that near elements will not
be mixed with far elements.

Texture-by-numbers requires an appropriate choice of the A image
in order to factor out non-stationary components of A′. In our expe-
rience, the synthesis is somewhat forgiving, degrading gracefully as
the assumptions become less appropriate. In principle, the A image
can be of arbitrary dimension and content. For example, it could in-
clude additional information about normals, depths, or orientations
[42] of the A′ image to improve the texture-by-numbers process.

This application bears some resemblance to the user-guided tex-
turing described by Ashikhmin [2]; however, it fixes several of
the problems with that method. In Ashikhmin’s method, multi-
ple passes are usually required for a good match. In addition,
Ashikhmin’s greedy search may create poor matches when a very

large example texture is used, since the synthesis cannot “restart”
until it finishes copying a patch. More significantly, the colors in
the target must be distinct: the algorithm would have difficulty, for
example, distinguishing between green trees and green grass. In ad-
dition, our algorithm also allows for extra channels of information
(such as depth, normals, etc.) to be used to control the synthesis.

5 Interactive editing

For many applications, the ability to directly manipulate an im-
age via a user interface is crucial. In the accompanying video, we
demonstrate an application in which a user can “paint” a landscape
by coarsely specifying locations for the trees, sky, etc. The main dif-
ficulty is that a single change to a B image could theoretically affect
the rest of the image, and the full synthesis algorithm is currently
too slow to run at interactive rates. However, we can exploit the fact
that, in practice, user painting operations only affect a small area of
the image at a time, and, under the locality assumption, these oper-
ations will have exponentially-decaying influence on distant image
pixels. Hence, we can maintain an acceptable image by updating
only the modified pixels and their neighbors.

The user interface presents a painting interface for placing RGB
values into the B or B′ images. The B image is initialized with
some default value (e.g., a blank image or a predefined image), and
a corresponding B′ image is synthesized from the initial B′. The
initial B′ may also be precomputed.

The key to making interactive painting efficient in this context is to
provide an immediate update of B′ using a coherence search (Sec-
tion 3.2) as the user paints, and to refine B′ with the full search (ap-
proximate plus coherence search) progressively, only as processing
cycles allow. Our implementation has two threads, an event han-
dler and a synthesis thread. When the user paints into the B im-
age, the event handler queues the painting locations at all scales
for updating. The synthesis thread performs a coherence search on
the changed pixels in scan-line order, though it uses the full search
with causal neighborhoods for every tenth pixel. Pixels that have not
been updated are marked as pixels to be ignored when comparing
neighborhood distances during coherence search. These pixels are
placed in another queue, and, whenever the first queue is empty, the
update thread performs full search with non-causal neighborhoods
on the contents of the second queue.

6 Discussion and future work

In this paper, we have described a framework for image processing
by example, which generalizes texture synthesis for the case of two
corresponding image pairs. We have shown how the framework de-
scribed is applicable to a wide variety of image texturing problems,
including image filtering, texture synthesis, super-resolution, tex-
ture transfer, artistic filters, and texture-by-numbers. As the frame-
work is very general, we suspect that it (or some related framework,
based on the same kinds of analogic reasoning) may eventually be
applicable to a much broader domain of problems, perhaps extend-
ing well outside of image processing—or even image synthesis—to
encompass such disparate varieties of data as motion capture, music
synthesis, and so on. Thus, we are intrigued by the many possibili-
ties for future research!

There is still much work to be done, both in improving the methods
that we have presented, and in investigating other approaches. Here
is a partial list of some of the directions we would like to pursue:

Speeding it up. The performance of our algorithm is logarithmic
with respect to the size (in pixels) of the training pair (due to using
heuristic search techniques), and linear with respect to the size of
the target. Although we have made use of several techniques to en-
hance performance (e.g., PCA, ANN), our algorithm is still rather
slow, taking anywhere from on the order of tens of seconds to do
simple texture synthesis, to a few minutes for the texture transfer



examples, to a few hours for the artistic renderings on a 1GHz PC
processor. One reason for this fairly poor performance is that our
implementation has never been hand-tuned, since we have been
interested more in ease of prototyping than in speed. We expect
that optimizing the implementation would give about a factor of 5
speed-up. In addition, we would like to explore better regression
and search techniques that could speed up the algorithm even more.

Estimating other types of image statistics. Capturing the style of a
filter from an example is a fundamentally difficult problem because
the solution is not unique and often depends on prior knowledge
that may be difficult to implement. Our approach attempts to cap-
ture low-level statistical features of the filter. Unfortunately, many
artistic styles involve larger-scale features that our approach does
not capture so well. More specialized image analogies methods
could be tailored to specific applications. For example, it would
be interesting to try to learn NPR filters by estimating statistics
of stroke shapes and positions; however, this likely entails diffi-
cult combinatorial optimization problems, as well as the problem
of acquiring training data.

Better features and similarity metrics. None of the neighborhood
distance metrics that we use provide perfect measures of percep-
tual similarity, since each one fails in a variety of situations. Our
algorithm, which attempts to combine the best attributes of the L2

metric with those of Ashikhmin’s algorithm, still produces some
undesirable artifacts. Finding a better matching function and/or bet-
ter features is an important open area of research for image analysis
and synthesis applications.

Better color processing. In order to achieve good results for small
training sets, we have sacrificed the full use of color information
by using luminance space for some filters. There are many possible
ways to improve color processing. A simple improvement would
be to generate the I and Q channels of B′ by fitting a linear trans-
formation from the I and Q channels of A to A′ (similar to our
luminance matching step), and then applying this transform to the
I and Q channels of B. Another approach would be to improve
preprocessing to enable synthesis in full color, such as by allowing
different linear transformations for different image patches, or by
fitting a smooth, non-linear histogram matching function.

Learning image correspondence and registration. Another limita-
tion of our technique is that it assumes a pointwise correspondence
between the training images, which requires careful registration of
the example images. It would be more desirable to learn the filter,
while simultaneously learning the correspondence between pixels,
and even automatically apply a learned distortion during synthesis.

Combining with automatic texture segmentation. Our work gen-
eralizes recent results in texture synthesis. Whereas texture synthe-
sis algorithms can only resynthesize images from stationary statis-
tics, our methods can resynthesize non-stationary statistics based on
some user guidance. One possible extension of this work would be
to synthesize from non-stationary images in a completely automatic
fashion, perhaps using a texture segmentation as an input [35].

Extensions to 3D models and animation. An important extension
is to processing images of 3D models, where additional channels of
information (e.g., depths, normals, and silhouettes) can be used to
improve the filter reproduction. Likewise, there are natural exten-
sions of these ideas to creating video and animation.

Extensions to other domains. We are interested in applying the im-
age analogy algorithm to a number of other filter learning problems,
such as scratch removal, alpha estimation, motion synthesis, musi-
cal synthesis, and so on. Moreover, it should be possible to gener-
alize the framework we have described to make use of analogies
between data in completely different domains. As a whimsical ex-
ample, A might be an image and A′ an interpretive dance based on
the image; a new image B could then be used to synthesize a new
interpretive dance B′. Several problems would need to be solved to

Unfiltered source (A) Filtered source (A′)

Unfiltered target (B) Filtered target (B′)
Figure 3 Toy example: Learning a blur filter. The A and A′ images com-
prise the training data. Images were converted to luminance, and then the filter
learned from A and A′ was applied to B to get B′. (Shore image courtesy
John Shaw [38].)

Filtered source (A′) Filtered target (B′)
Figure 4 Toy example: Learning an emboss filter. The A and B images are
the same as in Figure 3.

make this possible. For example, the framework we have described
requires a a one-to-one correspondence between data in the train-
ing pair, and no such obvious correspondence would exist in this
case. Still, we are encouraged by our early results, and look for-
ward to improving these methods and exploring new applications
of analogic reasoning in computer graphics.
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Input Wei-Levoy

Ashikhmin Ours

Input Wei-Levoy

Ashikhmin Ours
Figure 5 Improved texture synthesis. The textures synthesized with Wei and Levoy’s algorithm [49] give blurry results because the L2 norm is a poor measure of
perceptual similarity. Ashikhmin’s algorithm [2] gives high-quality coherent patches, but creates horizontal edges when patches reach the end of the source image,
such as in the upper right corner of the flower texture. Additionally, Ashikhmin’s algorithm does not capture appearance at multiple scales, such as the regular
pattern of the weave. Our algorithm combines the advantages of these two previous methods. We used κ = 5 for both textures in this figure. (The input textures
were obtained from the MIT VisTex web page, Copyright c© 1995 MIT. All rights reserved).

Training pairs (A, A′) Training pairs (A, A′)

Unfiltered target (B) Filtered target (B′) Unfiltered target (B) Filtered target (B′)

Figure 6 Super-resolution. For each example, the training pairs (above) contain low- and high-resolution versions of a portion of an image. This training data is
used to specify a “super-resolution” filter that is applied to a blurred version of the full image (below, left) to recover an approximation to the higher-resolution
original (below, right). (Maple trees image courtesy Philip Greenspun, http://philip.greenspun.com).



Figure 7 Texture transfer. A photograph (shown in Figure 8) is processed to have the weave and rug textures shown on the left. In each case, the texture is used for
both A and A′. The center and right result images show the effect of trading off fidelity to the source image versus fidelity to the texture. (The weave texture was
obtained from the MIT VisTex web page, Copyright c© 1995 MIT. All rights reserved).

Unfiltered Target (B) Unfiltered Target (B)

Unfiltered source (A) Filtered source (A′) Results (B′) Results (B′)

Unfiltered source (A) Filtered source (A′) Results (B′) Results (B′)

Figure 8 Line art illustrations by example. Two illustration styles, defined by the hand-drawn A′ images, are applied to the two B images shown (at reduced size)
in the upper left. Each A image was created by applying a blur and an anisotropic diffusion to the corresponding A′. The resulting four B′ images are shown on
the right. The upper A′ image is from Gustave Doré’s illustrations for Don Quixote; the lower A′ is from an engraving by Francesco Bartolozzi, a Renaissance
artist.



Figure 9 Unfiltered target images (B) for the NPR filters and texture transfer. (Leftmost image courtesy John Shaw [38].)

Unfiltered examples (A) Filtered examples (A′)
Figure 10 Training pairs for the color NPR filters used in this paper. The upper A′ image is a detail of Starry Night above the Rhône by Vincent Van Gogh; the
“unfiltered” source image was generated by processing the painting with Photoshop’s “Smart Blur” filter. The lower image pair is a photograph and a watercolor
created from it with a semi-automatic digital filter [10].

Figure 11 Boat paintings by example. The left image is painted in a style learned from a Van Gogh painting (Figure 10, top row); the right image is in the style of
a watercolor filter (Figure 10, bottom row).



Figure 12 Paintings by example. The left images are painted in a style learned from a Van Gogh painting (Figure 10, top row); the right images are in the style of
a watercolor filter (Figure 10, bottom row).



Unfiltered source (A) Filtered source (A′) Filtered (B′, κ = 5)
Figure 13 Paintings by example, varying the coherence parameter κ. The filtered target image (A′) is a detail of Still Life with Melon and Peaches by Edouard
Manet. Additional images are shown on the facing page in Figure 15. The source image is shown in Figure 9.

Unfiltered source (A) Filtered source (A′)

Unfiltered (B) Filtered (B′)

Figure 14 Texture-by-numbers. The unfiltered source image (A) was painted by hand to annotate A′. The unfiltered target image (B) was created in a paint
program and refined with our interactive editor; the result is shown in B′. (Oxbow image courtesy John Shaw [38].)



Filtered (B′, κ = 10) Filtered (B′, κ = 15)
Figure 15 Paintings by example, varying the coherence parameter κ. The training is from a painting by Manet. Additional images are shown on the facing page in
Figure 13. The source image is shown in Figure 9.

Unfiltered source (A) Filtered source (A′)

Unfiltered (B) Filtered (B′)

Figure 16 Rerouting the Potomac. Ordinary texture synthesis cannot reproduce the terrain in the photograph because it is not stationary: far elements are different
from near elements. The use of the gradient channel in A and B distinguishes near from far, allowing the photograph to be used for texture-by-numbers.
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[43] Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video Textures.
Proceedings of SIGGRAPH 2000, pages 489–498, July 2000.

[44] K. Schunn and K. Dunbar. Priming, Analogy and Awareness in complex reason-
ing. Memory and Cognition, 24:271–284, 1996.

[45] Eero P. Simoncelli and William T. Freeman. The Steerable Pyramid: A Flexible
Architecture for Multi-Scale Derivative Computation. Proc. 2nd Int’l Conf on
Image Processing, October 1995.

[46] Oleg Veryovka and John W. Buchanan. Comprehensive Halftoning of 3D Scenes.
Computer Graphics Forum, 18(3):13–22, September 1999.

[47] Oleg Veryovka and John W. Buchanan. Halftoning With Image-Based Dither
Screens. Graphics Interface ’99, pages 167–174, June 1999.

[48] B. Wandell. Foundations of Vision. Sinauer Associates Inc., 1995.

[49] Li-Yi Wei and Marc Levoy. Fast Texture Synthesis Using Tree-Structured Vector
Quantization. Proceedings of SIGGRAPH 2000, pages 479–488, July 2000.

[50] Georges Winkenbach and David H. Salesin. Computer–Generated Pen–And–Ink
Illustration. In Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), pages 91–100, July 1994.

[51] Georges Winkenbach and David H. Salesin. Rendering Parametric Surfaces in
Pen and Ink. In SIGGRAPH 96 Conference Proceedings, pages 469–476, August
1996.

[52] P.H. Winston. Learning and Reasoning by Analogy. Communications of the
ACM, (23) 12, December 1980.

[53] Daniel N. Wood, Adam Finkelstein, John F. Hughes, Craig E. Thayer, and
David H. Salesin. Multiperspective panoramas for cel animation. Proceedings
of SIGGRAPH 97, pages 243–250, August 1997.

[54] Song Chun Zhu, Ying Nian Wu, and David Mumford. Filters, Random fields,
And Maximum Entropy: Towards a Unified Theory for Texture Modeling. Inter-
national Journal of Computer Vision, 12(2):1–20, March/April 1998.



Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware 
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Abstract: We present a new approach for computing generalized 
2D and 3D Voronoi diagrams using interpolation-based polygon 
rasterization hardware. We compute a discrete Voronoi diagram 
by rendering a three dimensional distance mesh for each Voronoi 
site. The polygonal mesh is a bounded-error approximation of a 
(possibly) non-linear function of the distance between a site and a 
2D planar grid of sample points. For each sample point, we 
compute the closest site and the distance to that site using polygon 
scan-conversion and the Z-buffer depth comparison. We construct 
distance meshes for points, line segments, polygons, polyhedra, 
curves, and curved surfaces in 2D and 3D. We generalize to 
weighted and farthest-site Voronoi diagrams, and present efficient 
techniques for computing the Voronoi boundaries, Voronoi 
neighbors, and the Delaunay triangulation of points. We also show 
how to adaptively refine the solution through a simple windowing 
operation. The algorithm has been implemented on SGI 
workstations and PCs using OpenGL, and applied to complex 
datasets. We demonstrate the application of our algorithm to fast 
motion planning in static and dynamic environments, selection in 
complex user-interfaces, and creation of dynamic mosaic effects. 

CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling; I.3.3 [Computer Graphics]: 
Picture/Image Generation. 

Additional Key Words: Voronoi diagrams, graphics hardware, 
polygon rasterization, interpolation, motion planning, proximity 
query, medial axis, OpenGL, framebuffer techniques. 

1 INTRODUCTION 

Given a set of primitives, called Voronoi sites, a Voronoi diagram 
partitions space into regions, where each region consists of all 
points that are closer to one site than to any other. Voronoi 
diagrams have been used in a number of applications including 
visualization of medical datasets, proximity queries, spatial data 
manipulation, shape analysis, computer animation, robot motion 
planning, modeling spatial structures and processes, pattern 
recognition, and locational optimization. The concept of Voronoi 
diagrams has been around for at least four centuries, and since the 
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over Plate: Discrete approximation of the generalized Voronoi
iagram of four points, a line, a triangle, and one cubic Bézier curve
omputed interactively on a PC. 
970s, algorithms for computing Voronoi diagrams of geometric 
rimitives have been developed in computational geometry and 
elated areas. 

ood theoretical and practical algorithms are known for 
omputing ordinary Voronoi diagrams of points in any dimension. 
rdinary Voronoi diagrams can be generalized in many different 
ays by using different distance functions and site shapes. A 

ommon generalization is to compute the diagram for higher-order 
ites, such as lines and curves. This greatly increases the 
omplexity since the boundaries of the diagram are composed of 
igh-degree algebraic curves and surfaces, and their intersections; 
he boundaries of an ordinary point Voronoi diagram are linear. 
o practically efficient and numerically robust algorithms are 
nown for constructing a topologically consistent, continuous 
epresentation of generalized Voronoi diagrams. 

iven the practical complexity of computing an exact generalized 
oronoi diagram, many authors have proposed approximate 

lgorithms. Interesting approaches include computing the Voronoi 
iagram of a point-sampling of the sites, adaptively subdividing 
pace to locate the Voronoi boundary, and point-sampling the 
pace to form a volumetric representation of the diagram. In 
ractice, these previous algorithms take considerable time and 
emory on large numbers of input sites, or are restricted in 

enerality. 

ain Contributions: In this paper, we present an approach that 
omputes discrete approximations of generalized Voronoi 
iagrams to an arbitrary resolution using polygon rasterization 
ardware. Our contributions include: 

. Efficient methods to approximate the distance function, with 
bounded error, for points, lines, polygons, polyhedra, curves, 
and curved surfaces using a polygonal mesh that is linearly 
interpolated by graphics hardware. 

. Efficient algorithms to find Voronoi boundaries and neighbors, 
and to construct Delaunay triangulations. 



3. Techniques to construct weighted and farthest-site generalized 
Voronoi diagrams in 2D and 3D. 

4. Demonstration of the effectiveness of our approach to the 
following applications: 

• Fast motion planning in static and dynamic environments 
• Selection in complex user-interfaces 
• Generation of dynamic mosaics 

The resulting techniques have been effectively implemented on 
PCs and high-end SGI workstations using the OpenGL graphics 
library. A 2D example computed in real-time is shown in the 
cover plate. Our techniques improve upon the state of the art in 
following ways: 

• Generality: We make no assumption with respect to input 
primitives. We only need to mesh the distance function of a site 
over a grid of point samples. 

• Efficiency: We show that our approach is quite fast. Its speed 
arises from using coarse polygonal approximations of the 
distance functions while still maintaining a specified error 
bound, using polygon rasterization hardware to reconstruct the 
distance values, and using the Z-buffer depth comparison to 
perform distance comparisons. We demonstrate the 2D 
approach on models composed of nearly 100K triangles in a 
real-time motion planning application through a complex 
dynamic scene. We derive efficient meshing strategies for 
polygonal models in 3D, and show the results of a prototype 
implementation that demonstrates its potential. 

• Tight Bounds on Accuracy: Although our approach produces 
a discretized Voronoi diagram, all sources of error are 
enumerated and techniques are given to produce output within 
any specified tolerance. 

• Ease of Implementation: The approach can be easily 
implemented on current graphics systems. The special cases are 
limited and the problem reduces to simply meshing a distance 
function for any new site. 

2 RELATED WORK 

The concept of Voronoi diagrams has been around for at least four 
centuries. In his treatment of cosmic fragmentation in Le Monde 
de Mr. Descartes, ou Le Traite de la Lumière, published in 1644, 
Descartes uses Voronoi-like diagrams to show the disposition of 
matter in the solar system and its environment. The first 
presentations of this concept appeared in the work of [Diric50] 
and [Voron08]. Algorithms for computing Voronoi diagrams have 
been appearing since the 1970s. See the surveys by [Auren91] and 
[Okabe92] on various algorithms, applications, and 
generalizations of Voronoi diagrams. 

2.1 Voronoi Diagrams of Points 

Among the algorithms known for computing Voronoi diagrams of 
points in 2D, 3D, and higher dimensions are the divide-and-
conquer algorithm proposed by [Shamo75] and Fortune’s 
sweepline algorithm [Fortu86]. Numerically robust algorithms for 
constructing topologically consistent Voronoi diagrams have been 
proposed by [Inaga92, Sugih94]. A number of implementations in 
exact and floating-point arithmetic are also available. 

2.2 Generalized Voronoi Diagrams 

Algorithms have been proposed for constructing Voronoi 
diagrams of higher order sites. Two broad approaches based on 
incremental and divide-and-conquer techniques have been 
summarized in [Okabe92]. The set of algorithms includes divide-
and-conquer algorithms for polygons [Lee82, Held97], an 
incremental algorithm for polyhedra [Milen93b], and 3D tracing 
for polyhedral models [Milen93, Sherb95, Culve99]. Curved sites 
and CSG objects are handled in [Chian92, Dutta93, Hoffm94]. In 
all these cases, the computation of generalized Voronoi diagrams 
involves representing and manipulating high-degree algebraic 
curves and surfaces and their intersections. As a result, no efficient 
and numerically robust algorithms are known for computing them. 

2.3 Approximate Voronoi Diagrams 

Many authors compute approximations of generalized Voronoi 
diagrams based on the Voronoi diagram of a point-sampling of the 
sites [e.g. Sheeh95]. However, deriving any error bounds on the 
output of such an approach is difficult, and the overall complexity 
is not well understood. 

[Vleug95] and [Vleug96] have presented an approach that 
adaptively subdivides space into regular cells and computes the 
Voronoi diagram up to a given precision. [Laven92] uses an octree 
representation of objects and performs spatial decomposition to 
compute the approximation. [Teich97] computes a polygonal 
approximation of Voronoi diagrams by subdividing the space into 
tetrahedral cells. All these algorithms take considerable time and 
memory for large models composed of tens of thousands of 
triangles, and cannot easily be extended to directly handle 
dynamic environments. 

The idea of using polygon rasterizing hardware and rendering of 
cones to construct 2D Voronoi diagrams of points is suggested in 
[Haebe90] and in the OpenGL 1.1 Programming Guide [Woo97]. 

2.4 Graphics Hardware 

Polygon rasterization graphics hardware has been used for a 
number of geometric computations, such as visualization of 
constructive solid geometry models [Rossi86, Goldf89] and 
interactive inspection of solids, including cross-sections and 
interferences [Rossi92]. Algorithms for real-time motion planning 
using raster graphics hardware have been proposed by [Lengy90]. 

3 OVERVIEW 

In this section, we present the basic concepts important to our 
approach. We give a formal definition of generalized Voronoi 
diagrams and present a simple brute-force strategy for computing 
a discrete approximation. We then show how we may greatly 
accelerate this using graphics hardware. 

3.1 Generalized Voronoi Diagrams 

The set of input sites is denoted as A1, A2, …, Ak. For any point p 
in the space, dist(p, Ai) denotes the distance from the point p to the 
site Ai. The dominance region of Ai over Aj is defined by 

Dom(Ai, Aj) = { p | dist(p, Ai) ≤  dist(p, Aj) } 

For a site Ai, the Voronoi region for Ai is defined by 

V(Ai) = ∩j≠iDom(Ai, Aj) 



The partition of space into V(A1), V(A2), …, V(Ak) is called the 
generalized Voronoi diagram. The (ordinary) Voronoi diagram 
corresponds to the case when each Ai is an individual point. The 
boundaries of the regions V(Ai) are called Voronoi boundaries. For 
primitives such as points, lines, polygons, and splines, the Voronoi 
boundaries are portions of algebraic curves or surfaces. 

3.2 Discrete Voronoi Diagrams 

Perhaps the simplest way to compute a discrete Voronoi diagram 
is to uniformly point-sample the space containing Voronoi sites. 
For each sample point, we find the closest site and its distance. 
Associating each point in space with its closest sample point 
induces a uniform subdivision into rectangular cells. For any 
point, we know the distance to the closest site to within the 
maximum distance between a point in space and a sample point, 
i.e. half the diagonal length of a cell.  

A simple brute-force approach to find the closest sites is to iterate 
through all sample points, computing distances to all sites and 
recording the closest site and distance. The algorithm can be 
rearranged to iterate through the sites: for each site, compute 
distances to all sample points and update the current closest site 
and distance. The second arrangement is amenable to an 
implementation in graphics hardware. 

3.3 Polygon Rasterization Hardware 

Our approach makes use of standard Z-buffered raster graphics 
hardware for rendering polygons. The frame buffer stores the 
attributes (intensity or shade) of each pixel in the image space; the 
Z-buffer, or depth buffer, stores the z-coordinate, or depth, of 
every visible pixel. Given only the vertices of a triangle, the 
rasterization hardware uses linear interpolation to compute depth 

values across the triangle’s surface. All raster samples covered by 
a triangle have an interpolated z-value. 

3.4 Our Approach 

A key concept for our approach is that of the distance function for 
a site, which gives, for any point, the distance to that site. The 
main idea of our approach is to render a polygonal mesh 
approximation to each site's distance function. Each site is 
assigned a unique color ID, and the corresponding distance mesh 
is rendered in that color using a parallel projection. We make use 
of two components of the graphics hardware: linear interpolation 
across polygons and the Z-buffer depth comparison operation. 
When rendering a polygonal distance mesh, the polygon 
rasterization reconstructs all distances across the mesh. The Z-
buffer depth test compares the new depth value to the previously 
stored value. If the new value is less, the Z-buffer records the new 
distance, and the color buffer records the site’s ID. In this way, 
each pixel in the frame buffer will have a color corresponding to 
the site to which it is closest, and the depth-buffer will have the 
distance to that site. In order to maintain an accurate Voronoi 
diagram, we bound the error of the mesh to be smaller than the 
distance between two sample points. 

Our approach is inspired by an interesting sidenote in the OpenGL 
1.1 Programming Guide [Woo97]. In the Section “Now That You 
Know” on “Dirichlet Domains”, the authors briefly discuss a 
simple method to construct discretized 2D Voronoi diagrams for 
points using OpenGL graphics hardware. The authors mention the 
use of cones for Voronoi diagrams of points in 2D, but warn that 
the technique “might require thousands of polygons.” We show 
that we can render cones using fewer than 100 triangles for a 
1K×1K resolution grid and achieve the same level of accuracy. In 
addition, we generalize this approach to higher-order sites in both 
two and three dimensions. 

4 THE DISTANCE FUNCTIONS 

For both 2D and 3D, our discrete Voronoi diagram computation 
has been reduced to finding a 3D polygonal mesh approximation 
to the distance function of a Voronoi site over a planar 2D 
rectangular grid of point samples. The error in the approximation 
must be bounded so that by rendering this mesh using graphics 
hardware, we can efficiently and accurately compute the distances 
between the site and all of the point samples. 

In this section, we describe the distance functions associated with 
various sites, and provide efficient methods for meshing these 
functions within a specified error tolerance. 

4.1 2D Voronoi Diagrams 

Denote the distance from a site A to each pixel location (x,y) by 
dist(A,(x,y)). The distance function of A is given by 
d(x,y)=dist(A,(x,y)). Meshing this function corresponds to 
approximating the graph of d(x,y) with a polygonal model. 

The three basic types of 2D sites are points, lines, and polygons. 
Their corresponding distance functions are shown in the table. In 
this section, we present algorithms for computing distance meshes 
for each of them. 

 

 

 
Figure 1: Image of the sampled distance functions for two point
sites. Uniform point sampling induces a rectangular cell subdivision
of space. 

 
Figure 2: The two distance images are composited through a
distance comparison operation. The current closest site and the
distance to each site is updated based on the lesser distance value.
The resulting Voronoi diagram is composed of a distance image
(left) and an closest-site ID image (right). 



2D site Shape of Distance Function Figure 
Point Right circular cone 3a 
Line segment “Tent” 3b 
Polygon Cones and tents 5 

Table 1: Shape of Distance Functions for 2D Sites  
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Figure 3: The distance meshes used for a point (left) and a line 
segment (right). The XY-plane containing the site is shown above 
each mesh. 

4.1.1 Points in 2D 

The distance function for a point in the plane is a right circular 
cone. We approximate cones as a triangle fan proceeding radially 
outward from the apex (Figures 3a and 4-left). A point's Voronoi 
region can potentially extend to any portion of the region of 
interest, and thus the radius at the cone's base must be of size M√2 
if the scene is contained in an M×M square.The mesh’s radial lines 
lie on the cone. The maximum error in distance occurs at the cone 
base between adjacent vertices. Because the cone is right circular, 
the error in approximating the circular base as viewed from above 
is equal to the error in distance. 

α
R

α /2

ε

R-ε

R

Figure 4: A single triangle of the meshed point distance function 
cone. α is the angle we wish to maximize, R is the radius of the 
cone (max dist between site and sample pt), and ε is the max error. 

From this formulation (see Figure 4), we compute the maximum 
angle as: 

R
R εα −=)2cos(   !  






 −= −

R
R εα 1cos2  

For example, for a maximum distance error of no more than one 
pixel's width, a cone mesh for a 512×512 grid will require only 60 
triangles. A 1024×1024 grid will require 85 triangles. 

4.1.2 Line Segments in 2D 

The distance function for a line segment is composed of three 
parts: one for the segment itself and one for each endpoint. The 
endpoints are treated the same way as points. The distance 
function for the line segment (excluding the endpoints) is just a 
“tent” (Figure 3b); its distance mesh is composed of two 
quadrilaterals. These represent the distance function exactly, so 
there is no error in the distance mesh representation. The only 
error for the line segment is in the cone mesh for the endpoint 
distance functions, as described in the previous section. 

4.1.3 Polygons and Per-feature Voronoi Diagrams 

It is often useful to consider sites as a collection of features, rather 
than as a single entity. For example, a line segment would be 
considered as three features: the two endpoints and the linear edge 

between them. By rendering the distance meshes for different 
features in different colors, we obtain a discrete approximation of 
a per-feature Voronoi diagram. Such diagrams are useful in 
several contexts: for example, the computation of a medial axis of 
a polygon. A picture of a per-feature Voronoi diagram for a 
polygon is given in Figure 5-left. 

 
Figure 5: The per-feature Voronoi diagram of a quadrilateral (left). 
The corresponding distance mesh (right). 

Polygons are rendered as a series of linear segments connected at 
the vertices. Each edge and vertex is a feature. For the vertices, 
rendering a triangle fan connecting two adjacent edges, rather than 
a full point distance mesh cone, saves on the total number of 
triangles computed and ensures that the distance meshes for 
adjacent features join smoothly. See Figure 5-right for an 
illustration. 

4.2 3D Voronoi Diagrams 

Our algorithm computes a 3D discrete Voronoi diagram slice-by-
slice. Each slice is parallel to the (x,y)-plane and is computed 
independently. 

Consider the slice z=z0. To construct the intersection of the 
Voronoi diagram with this slice, consider the distance function for 
a site A, restricted to the slice. Denote the restricted distance 
function by dist(x,y)=dist(A,(x,y,z0)). In this section, we describe 
dist(x,y) for polygon, line segment, and point sites. As in the 2D 
case, computing the discrete Voronoi diagram is a matter of 
meshing the distance function d=dist(x,y) for each site and 
rendering these meshes. 

The distance meshes we give for the 3D problem are for a per-
feature Voronoi diagram. Thus, a detached triangle site is treated 
as seven features: a polygon, three line segments, and three points. 
As in 2D per-feature diagrams, some features have a restricted 
region of influence.  

3D site Shape of distance function Figure 
Polygon Plane 6 
Line segment Elliptical cone 7 
Point 1 sheet of a hyperboloid of 2 sheets 8 

Table 2: Shape of Distance Functions for 3D Sites 

4.2.1 Polygons in 3D 

The influence of this site in 3D is confined to the region formed by 
sweeping the polygon orthogonally through space, since points 
outside this region are considered to be closer to an edge or vertex 
of the polygon. In the slice, this region is a polygon, and dist(x,y) 
is linear within this region, as illustrated in Figure 6. The distance 
to the site is computed at the vertices of the region, and a distance 
mesh composed of a single polygon is rendered. No meshing error 



is incurred. If the polygon intersects the slice, the intersection is 
computed and the polygon is decomposed into two sub-polygons. 
Each sub-polygon is treated as above. 
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Figure 6: A polygonal site and its region of influence in a slice (left). 
The corresponding linear distance function (right). 

4.2.2 Line Segments in 3D 

The graph of the distance function for a line segment site is an 
elliptical cone (Figure 7). The apex of the cone lies at the 
intersection of the segment's line with the slice, and the cone’s 
eccentricity is determined by the relative angle of the line and the 
slice. The 3D region of influence of a line segment lies between 
two parallel planes through the endpoints, since a point outside 
these planes is closer to one of the endpoints than to the segment.  
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Figure 7: A line-segment site and its region of influence in a slice 
(left). The corresponding conical distance function (right). 

4.2.3 Points in 3D 

The distance function for a point site is shown in Figure 8. Its 
graph is one sheet of a hyperboloid of revolution of two sheets. If 
the point lies in the slice, the distance function is a cone rather 
than a hyperboloid. The region of influence for a single point is 
the entire slice. 
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Figure 8: A point site and its region of influence in a slice (left). The 
corresponding hyperbolic distance function (right). 

4.2.4 Meshes for Line Segments and Points in 3D 

The construction of bounded-error meshes for the line-segment 
and point distance functions is detailed in [Hoff99]. The method 
attempts to minimize the complexity of the mesh by committing 
the maximum allowable error ε in each mesh cell. The structure of 
the mesh depends only on the resolution of the Voronoi diagram, 
defined by the ratio of the diameter M of the model to the 
maximum meshing error ε. The mesh structure is precomputed; 
during the Voronoi diagram construction, the mesh is constructed 

using table-lookup. Examples of the meshes produced by this 
method are shown in Figure 9. 
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Figure 9: A bounded-error distance mesh for the line-segment site 
(left) and the point site (right).  

4.3 Generalization to Curved Sites 

The exact distance function for a curved site can be rather 
complicated, and for splines or algebraic curves is a high-degree 
algebraic function. We simplify this by creating a linear 
tessellation of the curved site, and then meshing the distance 
function of this approximation. We can use algorithms such as in 
[Filip87] and [Kumar96] to obtain bounded-error tessellations. 

Figure 10 shows the mesh for a Bézier curve. Since the mesh for a 
linear segment is exact, the distance error for any of the linear 
segments is just the error in the deviation of the line from the 
original curve. The endpoints of the curve must be treated as 
points, just as for the line segment. The distance mesh for the 
“joints” between linear segments is a portion of the radial mesh of 
triangles. An overall maximum error bound of ε can be obtained 
for the entire curve by: 

• tessellating the curve into linear segments with maximum error 
bound of ε; 

• rendering the distance mesh for the linear segments; and 

• treating the endpoints and joints as points, and rendering each 
point distance mesh with maximum error bound of ε. 

This approach generalizes to 3D surfaces, which can be tesselated 
into a polygonal mesh. The error is bounded in a similar way. 

 
Figure 10: The Voronoi diagram of a Bézier curve and 5 points 
(left). The distance mesh for the Bézier curve that has been 
tessellated into 16 segments (right). 

4.4 Weighted and Farthest-site Diagrams 

In a weighted Voronoi diagram, the distance functions are 
additively or multiplicatively weighted [Okabe92]. Translation of 
a distance mesh along the distance axis accounts for additive 



weights. Linear scaling along the distance axis accounts for 
multiplicative weights. In 2D, this is equivalent to changing the 
angle of the cone or tent. Scaling the distance mesh also scales the 
meshing error. 

In a farthest-site Voronoi diagram, the farthest site from each 
point is found. Unlike in the nearest-site diagram, the distance 
function monotonically decreases as we move away from the site. 
We obtain the proper distance relationships by negating the 
distance functions. In practice, however, we need only reverse the 
depth-test (less-than to greater-than) and change the depth 
initialization from ∞ to 0. 

5 BOUNDARIES AND NEIGHBORS 

A continuous Voronoi diagram representation usually specifies the 
Voronoi boundaries that separate the set of Voronoi regions. In 
our discrete representation, we must search for the boundaries 
using approaches similar to iso-surface extraction and root-finding 
techniques [Bloom97]. However, instead of trying to bracket zero-
crossings between sample points where iso-surface functions 
evaluate to values of opposite sign, we simply find the boundaries 
in the space between pixel samples of different color. Using the 
same approaches, we can either point-sample the boundary or 
compute an approximate mesh representation. In order to increase 
the precision, we must either use a higher overall resolution or 
adaptively refine. 

One approach is to examine each pair of adjacent cells in 2D or 
3D. If the colors are different, the location between the samples is 
marked as a point on the Voronoi boundary. The operation is very 
simple and can be accelerated through image operations in 
graphics hardware. 

Another approach is based on a continuation method that starts at 
a point known to be on the boundary and walks along the 
boundary until all boundary points have been found [Bloom97]. 
Since we only compare locations near known boundaries, it is 
output sensitive. The correctness of the continuation method 
depends on whether the Voronoi boundaries are connected. The 
boundaries of a generalized Voronoi diagram of a collection of 
convex sites are always connected, so the method is correct for 
inputs consisting of point, line-segment, or convex polygonal 
sites. The method may fail in the presence of curves, curved 
surfaces, or concave sites where the generalized Voronoi diagram 
may have isolated components. 

In this approach, at least one boundary point must be known as a 
“seed” value. Assuming convex sites, some Voronoi boundary 
passes through the edge of the bounded region in which we are 
computing the diagram, so the method begins by examining every 
window border pixel. When all Voronoi boundaries are connected 
only one seed point is needed since all others can be reached from 
that first point. Starting from a seed point, we recursively check all 

neighbors that are a different color from the current pixel's. All 
visited pixels are marked and avoided in the recursion. 

This algorithm also finds the Voronoi neighbors–pairs of sites that 
share a Voronoi boundary. This concept is useful in a wide variety 
of applications, including computing the dual of the ordinary 
Voronoi diagram–the Delaunay triangulation. The boundary 
finding algorithms find pairs of adjacent pixels with different 
colors. The sites corresponding to those two colors are reported to 
be Voronoi neighbors. Connecting Voronoi neighbors with line 
segments constructs the Delaunay triangulation. 
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Figure 11: Standard nearest-site Voronoi regions (left). Farthest 
regions for the same sites (middle). Weighted regions (right).
Weights: line, 2; dark point, 1; light point, 0.5. 
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igure 12: Voronoi diagram of set of 2D points (Left). Boundaries
ound with continuation-based approach (middle). Delaunay
riangulation by connecting neighboring sites (right). 
 SOURCES OF ERROR 

n this section we analyze all sources of error in our approach, and 
iscuss how to reduce this error. We consider two broad 
ategories: error in distance approximation and combinatorial 
rror.  

.1 Distance Error 

istance error is the error in the distance computed from a pixel to 
 site. There are three sources of distance error: 

 Meshing error, from approximating the true distance function 
by the distance mesh. We discussed how to bound this error in 
Section 4. 

 Tessellation error, from tessellating a curved site into a number 
of linear sites. The tessellation algorithms presented in [Filip87, 
Kumar96] give tight bounds. Tessellation error is reduced by 
using a finer approximation to the site. 

 Hardware precision error, from the use of fixed-precision 
arithmetic (integer or floating-point) during rasterization. 
Hardware precision error cannot be removed without resorting 
to multiple-precision arithmetic, but hardware error is usually 
negligible compared to meshing error. 

hese errors are additive–i.e. the error from one source is not 
agnified by the other sources. The total distance error is at most 

he sum of the errors from these three sources. 

.2 Combinatorial Error 

ombinatorial error refers to qualitative error as opposed to 
uantitative. For example, a pixel is assigned the wrong color, or 
he algorithm reports an incorrect pair of Voronoi neighbors. 
here are three sources that contribute to combinatorial error: 

 Distance error, as described in the previous section. With 
significant distance error, depth comparison at a pixel may 
make a farther site appear closer, causing the pixel to be 
colored incorrectly.  



• Resolution error, a result of discrete sampling. If this sampling 
is too coarse, we may miss some Voronoi regions or find 
spurious neighbors. Handling resolution error is described 
below. 

• Z-buffer precision error, the limitations of the number of bits of 
precision provided by the Z-buffer. Current graphics systems 
have 24 bits or 32 bits of precision for each pixel in the Z-
buffer, which is more than the 23 bits provided in standard 
floating-point. If the distances between two pixels cannot be 
determined within that precision, the Z-buffer cannot 
accurately choose the correct color. This effect is small when 
compared to the other two, but can be significant at very high 
resolutions with very little distance error. A higher-precision Z-
buffer can be simulated in software at a significant loss in 
efficiency. 

Adaptive resolution allows us to “zoom in” on a region of interest, 
reducing potential resolution error. This involves identifying a 
window of interest and applying the appropriate linear 
transformation for zooming into that region. Figure 13 shows an 
example. Note that when zooming in, sites outside of the viewing 
region can still have Voronoi regions inside the region. Thus, the 
“maximum distance to a site” must be adjusted appropriately when 
computing the distance error bounds. 

right color. Assume that there is no Z-buffer precision error, and 
that we can bound the maximum distance error by ε, as described 
earlier. For a pixel P colored with the ID of site A and with a 
computed depth buffer value of D, we know that: 

D - ε ≤ dist(P,A) ≤ D + ε 

Furthermore, we know that for any other site B, 

D - ε ≤ dist(P,B) 

From this information, we easily determine that 

dist(P,A) ≤ dist(P,B) + 2ε 

where dist(X,Y) means the distance from the center of pixel X to 
site Y. That is, if a pixel is colored with the ID of A, then site A is 
no more than 2ε farther from the pixel center than any other site. 
The same bound holds in 3D. 

7 APPLICATIONS 

There are many applications that benefit from fast computation of 
a discrete Voronoi diagram, an approximation to the distance 
function, or both. We describe three that we have implemented. 

7.1 Motion Planning 

Motion planning is a fundamental problem in robotics and 
computational geometry, with applications to the animation of 
digital actors, maintainability studies in virtual prototyping, and 
robot-assisted medical surgery. The classic Piano Mover’s 
problem involves finding a collision-free path for a robot moving 
from one location (and orientation) to another in an environment 
filled with obstacles. Numerous approaches to this problem have 
been proposed, some of which are based on generalized Voronoi 
diagrams [Latom91]. The underlying idea is to treat the obstacles 
as sites. The Voronoi boundaries then provide paths of maximal 
Figure 13: Adaptive resolution allows us to zoom in on features that
could otherwise be missed. 
Resolution error can cause a number of combinatorial problems, 
such as missing the entire Voronoi region of a site. One such 
example is shown in Figure 14 (left two images). When no cell has 
the color of a particular site, we can separately render the site 
itself, computing the pixels covering that site. By zooming around 
those pixels, we will find pixels in the Voronoi region of that site. 
The same technique can be applied to cells in 3D. Another 
problem arising from resolution error is incorrectly finding 
Voronoi neighbors (shown in Figure 14 – right two images). This 
problem (when due solely to resolution error) can be alleviated by 
adaptively zooming in on all boundary pixels.  

6.3 Error Bounds  

Distance error occasionally causes a pixel to be colored 
incorrectly. However, in a certain sense, the pixel is “almost” the 

clearance between the obstacles. Due to the practical complexity 
of computing generalized Voronoi diagrams, the applications of 
such planners have been limited to environments composed of a 
few simple obstacles. 

Our discrete Voronoi computation algorithm can be applied to 
motion planning in both static and dynamic environments. The 
Voronoi algorithm computes the approximate distance to the 
nearest obstacle. The basic approach we implemented is based on 
the potential field method, which repels a robot away from the 
obstacles and towards the goal using a carefully designed artificial 
potential function. Other Voronoi diagram or distance-based 
approaches are also possible. The details of our motion planning 
algorithm are provided in [Hoff99]. 

We demonstrate our planner’s effectiveness in a complex 
environment: the interior of a house, composed of over 100,000 
triangles. We use the x- and y-components of the polygons to give 
the 2D input primitives for our algorithm. The robot has three 
degrees of freedom: x- and y-translation along the ground and 
rotation about the z-axis. Color plate 2 and the video show a 
sequence of piano motions automatically generated by our motion 
planner in a static environment. Color plate 2 also shows an image 
of the distance function for the house. We also apply our planner 
to environments with moving obstacles. Our video demonstrates 
the movement of a music stand through a house filled with 
moving furniture. The entire potential field and the motion 
planning sequence are computed in real time.  

 
Figure 14: Problems caused by resolution error. An entire region in
the center will be missed since it does not hit any pixel centers (left
two images). The left and right regions, which should meet, become
disconnected after rasterization (right two images). 



7.2 Selection in Complex User Interfaces 

Complex 2D user interfaces sometimes require quick 
determination of the object nearest to the cursor. The Voronoi 
diagram of the interface can be used as a nearest-object lookup 
table indexed by sample points. Given the cursor position, it is 
simple to find the nearest sample point, and thus the nearest 
object. In some interfaces it may be desirable to know the distance 
to the selected object as well. We used this technique in our 2D 
implementation to allow the user to interactively move sites with 
the mouse. 

7.3 Mosaics 

We can use our approach for generating Voronoi diagrams to 
create an interesting artistic effect called mosaicing. A mosaic is a 
tiled image, where each tile has a single color. The Voronoi 
diagram of a point set can be used as a tiling [Haebe90]. Each 
Voronoi tile is colored with a color taken locally from the image. 
In our implementation, each tile is colored by the image pixel 
closest to the point site (see color plate 1). Our algorithm can 
perform this operation very quickly, allowing dynamic mosaics in 
which the mosaic tiling, the source image, or both may change in 
real time. 

By randomly distributing point sites across an image, we obtain an 
effect similar to many mosaic filter effects seen in image editing 
programs. By clustering point sites around areas of higher detail, 
we obtain a classic tiling seen in many real-life mosaics where 
smaller tiles are used in areas of greater detail. 

8 IMPLEMENTATION 

For the 2D case, we implemented a complete interactive system 
incorporating all of the features and applications described here. 
Example output is shown throughout the paper. The video 
demonstrates interactive computation of more complex diagrams. 
In 3D, we show results from a prototype system that uses a 
simpler distance meshing strategy (see color plate 3 and the video 
for example output). 

We implemented the 2D and 3D systems in C++ using the 
OpenGL graphics library and the GLUT toolkit. Any graphics API 
specification that uses a standard Z-buffered interpolation-based 
raster graphics system is sufficient to support the Voronoi diagram 
computation. Motion planning and the basic operations  of 
boundary and neighbor finding require reading back of the color 
and depth buffers. Our system runs, without source modification, 
on both an MS-Windows-based PC and a high-end SGI Onyx2 
with InfiniteReality Graphics. Surprisingly, the performance on a 

400 Mhz Intel Pentium II PC with an Intergraph Intense 3D Pro 
3410-T graphics accelerator was comparable to the SGI 
performance. In fact, in boundary finding, neighbor finding, and 
particle motion planning applications, the performance exceeded 
the high-end SGI. This was mainly due to intense buffer readback 
requirements. Each distance mesh must cover every pixel, so 
performance is bounded by the graphics hardware’s pixel fill-rate. 
For large numbers of input sites, therefore, the SGI outperforms 
the PC. 

When the distance-error tolerance is relaxed, the amount of 
geometry rendered for each site can be reduced, slightly 
improving performance.  However, the biggest gains are achieved 
by reducing the number of pixels filled. In many practical cases, 
we can increase the performance significantly by bounding the site 
distance functions to a maximum distance. This allows reduction 
of the size of the distance meshes drawn so that only a portion of 
the screen is covered for each site. We exploit this observation to 
obtain interactive rates in the 1,000-point example shown in color 
plate 1, in the 10,000-point example shown in the video, and in the 
general case for the computation of the potential field used in the 
motion-planner. For closed higher-order primitives, such as 
polygons, we can further increase performance by restricting the 
distance function to only the inside or outside regions. This is 
useful in computing potential fields and medial axes. 

9 CONCLUSIONS AND FUTURE WORK 

We have presented a method for rapid computation of generalized 
discrete Voronoi diagrams in two and three dimensions using 
graphics hardware. We have presented techniques for creating a 
mesh of the distance function for each site with bounded error, and 
described how this distance mesh allows us to compute the 
Voronoi diagram rapidly. We have analyzed various sources of 
error, as well as how to bound or reduce those errors. Finally, we 
have demonstrated a few applications using our approach. 

In the future, we would like to extend this work in the following 
ways: generalizations of distance functions and site geometry, 
further applications, other distance meshing strategies, and more 
acceleration techniques for the 3D Voronoi volume computation. 
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In our ongoing quest to convey more information more
clearly in a single image, harnessing the full potential

of texture for data representation remains an elusive
goal. Others have begun excellent work in this area,1-3

and my efforts are inspired by their example. The grail
that I seek is a partially ordered multidimensional
palette of richly detailed and varying texture patterns
that can be used—in conjunction with lightness and
hue—to represent multivariate information. The goal
is to facilitate the flexible visual appreciation of the cor-
relations of various quantities across the different
dimensions. The approach that I outline here departs a
bit from the norm, but is motivated by a desire to pro-
ceed more directly from my vision of what I want to
achieve, unrestrained by the limitations of the tools I
have on hand. In the following discussion, I motivate
the adoption of rich, natural textures—resembling those
from photographic images4—as elemental primitives
and sketch some of the approaches that we can take to
enhance our understanding of how to effectively har-
ness their properties. My intent here is not to present
results, but to expound on the issues and conclude with
the questions to which we’re still seeking answers.

Why natural textures?
The intricate variety and subtle richness of detail of tex-

ture patterns found in nature support possibilities for data
representation far more vast and comprehensive than we
could ordinarily hope to achieve from standard primi-
tives. Even if we must ultimately rely on synthesized tex-
tures for data visualization, by looking to nature for
inspiration we have the potential to expand our vision of
what to strive for in such a synthesis. The graphic design
community has long held that perfectly regular synthet-
ic textures on a flat plane, in particular the infamous
hatching patterns that Edward Tufte refers to as “chart
junk,”5 are discomforting to the eye and annoying to look
at. Natural textures are not only more aesthetic, but they
also put less extraneous stress on the visual system, leav-
ing our eyes freer to observe and attend to the most intrin-
sically important texture-pattern characteristics.

Understanding human texture
perception

To create a perceptually meaningful multidimen-
sional texture space that can be indexed in the same fash-

ion as a color space, we must begin by knowing what
we’re looking for. We need to proceed from a rigorous
and experimentally supported understanding of how
human observers perceive and interpret texture pat-
terns, under the conditions in which we intend for these
patterns to ultimately be viewed. This grounding pro-
vides a structure for guiding our search through the
complex space of possibilities and formalizes the intu-
ition that a good designer calls upon to create a visual-
ization that works.

A number of researchers6 have conducted studies to
try to elucidate the most significant perceptual dimen-
sions of texture. The results of these experiments will
aid us, though some important questions remain. It’s
beyond the scope of this article to summarize previous
findings further than to say that most of the studies used
unaltered images from the Brodatz album, subjects were
generally asked to cluster the textures into groups, and
there appears to be general agreement that a small num-
ber (about three) of characteristic dimensions seem suf-
ficient to describe most of the structure underlying this
classification. The interpretation of the dimensions
varies from study to study, but most often includes
aspects of the following:

■ periodic (consisting of repeated discrete elements)
<-> nonperiodic

■ strongly directional <-> rotationally invariant
■ coarse <-> fine (spatial frequency of the dominant

detail)
■ regular (deterministic) <-> random
■ high contrast <-> low contrast
■ homogeneous (spatially invariant) <-> heterogeneous

Clearly, there is some overlap in these categorizations.
Also, it’s not evident that we can hope to determine an
orthogonal basis that encompasses all members of the
texture pattern set. However, the apparent low percep-
tual dimensionality of the space and the strong agree-
ment between the studies bodes well for our application.

Open questions in visual texture
perception

Identifying the features according to which people tend
to classify texture patterns gives us important insight into
how to structure a perceptually meaningful texture space.
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But some important issues have been implicitly over-
looked in the studies conducted so far. Foremost are the
uncontrolled-for influences of higher level processes.

Payne et al.7 observed, in studies similar to those ref-
erenced above, that material property categories
appeared to have a strong influence on a fair number of
their observers’ clustering decisions. They also noted
that their subjects often commented that they felt they
were using different criteria to find matches for differ-
ent texture images. Knowing that people tend to make
judgments based on different criteria in different cases,
but not knowing who is considering what when or why,
weakens the general applicability of experimental
results based on these traditional methodologies. I
believe that it might be useful to attempt to control for,
or at least quantify the impact of, some of these effects
by considering alternative paradigms for objectively
measuring texture patterns’ perceptual similarity.

The question of whether to control for rotation, scale,
luminance, and contrast variance among texture sam-
ples when seeking insight into the perceptual groupings
of texture images is a second important issue that stud-
ies using the Brodatz album have frequently overlooked.
How do we want to consider apparent texture pattern
differences that aren’t clearly intrinsic to the pictured
material but that could conceivably be attributed to
external factors such as viewpoint or lighting?8

On the one hand, Ware and Knight3 have said that
orientation, size, and contrast are the primary order-
able dimensions of texture. But samples of a texture
that are differently oriented, scaled, and lit still intrin-
sically appear to be the same thing and thus remain
good candidates for similarity grouping. As pre-atten-
tive features of individual elements, size, contrast, and
orientation differences are undisputedly important in
facilitating “pop-out”. At the same time, our visual sys-
tem is remarkably adept at maintaining perceptual con-
stancy across changes in illumination or viewpoint.
Many computational methods for classifying texture
adopt a rotationally invariant texture recognition
approach for this reason. A strong argument exists for
equalizing characteristics such as scale, luminance, and
contrast before classifying or quantifying texture-pat-
tern differences for the purposes of visualizing multi-
ple distributions across a 2D image. Doing so would let
us retain the ability to introduce variations in these fea-
ture dimensions universally across all the other texture
dimensions and use them to encode additional values.
To this end, it might be illuminating to try to separate-
ly examine the relative effects of rotation, scale, and
contrast differences versus other texture-characteriz-
ing differences. Our considerations will also differ in
the case of visualizing distributions across surfaces
through a 3D domain.

The question of how best to factor out the variations
in contrast and luminance—when we choose to do so—
must also be carefully considered. Although it’s rela-
tively straightforward to equalize the intensity
histograms of sample texture images before processing
them for similarity, it’s not clear that histogram equal-
ization adequately preserves the meaningful qualities
of the texture patterns.

Quantifying the perceptual similarity of
texture patterns

In addition to determining which textures tend to
cluster, it’s important for creating a perceptually linear
texture space to quantify the perceptual distances
between individual texture patterns. It’s also necessary
to estimate the magnitude of the perceived distance
due to the differences along each of the feature 
dimensions.

One possible approach is to estimate the magnitude
of the change required to enable a “just noticeable dif-
ference” between images along individually selected
texture dimensions such as scale, contrast, orientation,
regularity, and so on using psychophysical methods.

Another possibility, which may be more appropriate
for judging the kinds of differences that cannot be eas-
ily brought down to threshold levels, is to measure the
pre-attentive discriminability or salience of differences
in features of individual texture patterns randomly
embedded in homogeneous and heterogeneous fields
of distracters, as illustrated in Figure 1. The objective in
this case then is to determine how large of a difference
is required to allow the effortless identification of the
“odd man out” in brief, masked stimulus presentations.
Studies using individual element arrays have found that
salience (or the tendency to “pop-out”) tends to increase
when the targets are characterized by redundant,
unique properties such as luminance and hue or color
and orientation.9 Similarly, the salience of the target
tends to decrease as the heterogeneity of the distracter
elements increases, even when the heterogeneity occurs
along a different perceptual dimension.

It may additionally be of interest to determine how
many different texture types people can simultaneous-
ly discriminate, using a methodology similar to what
Healey employed for studying color.10

The long and rich history of research on texture clas-
sification algorithms in the image processing commu-
nity also offers valuable resources for constructing a
texture palette. Although the extent and variety of the
possible computational approaches for classifying tex-
ture patterns is somewhat overwhelming, most of the
successful methods work by extracting a finite set of fea-
tures from the texture patterns (via transforms similar
to those shown in Figure 2) and then calculating vari-
ous statistics across these feature sets. Rubner and
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Tomasi8 proposed quantifying texture similarity by
using the Earth Mover’s Distance as a metric for the
goodness of fit between histograms of these features. A
key issue for us is ensuring that the computer vision
results and the human observer criteria agree.

Creating a texture palette
One approach to creating a texture palette (Figure 3)

is to begin with a collection of well-chosen input images.
You can then objectively determine where they lie in the
best-fitting multidimensional texture feature space that
they span and appropriately fill in the remaining open
space with intermediate textures that lie at equal per-
ceptual distances along each of the dimensions.

Some of the difficulties in creating a texture palette are
that the texture space may not be orthogonal, there may be

interaction among certain dimensions
(such as contrast and spatial frequen-
cy), and some texture type mixtures
may not be meaningful. However, my
intuition is that the closer we can get
to aesthetically filling out the space
with real acquired images, the easier
it will be to patch the holes.

Texture synthesis methods such
as those that Portilla and
Simoncelli11 and Zhu et al.12 have
proposed may hold the greatest
potential for creating a set of sample
textures that fill out a multidimen-
sional palette. Working from these
frameworks, we may have the pos-
sibility to deterministically create
natural-looking intermediate tex-
tures that interpolate the character-
istic properties of their neighboring
swatches in texture space or that

Visualization Viewpoints

8 November/December 2000

2 (a) Statistics of texture pattern features, such as those evident in this set of power spectra images, form the basis
for many computational texture characterization methods. (b) It’s easy when looking at the original images to form
an intuitive understanding of the types of information carried by the various features of the Fourier coefficients.

(a)
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3 A small
potential tex-
ture palette.
Scale increases
along the hori-
zontal axis,
regularity
increases along
the vertical axis,
and intensity
increases along
the left-to-right
descending
diagonal.

4 A set of four
agricultural
maps,14 repre-
senting distribu-
tions of four
different vari-
ables across the
US counties.



conform to a prespecified set of desired criteria.
However, these methods currently invoke too many fea-
tures (roughly 800 plus) and are not quite mature
enough to guarantee the realism that we seek.

Efros and Leung13 suggest a very different synthesis
method for seamlessly generating highly realistic sam-
ples of “more of the same” textures from a given sample.
The success of this method is subject to the assumption
of stationarity and a reasonable estimate of the extent of
the lowest spatial frequency detail that must be pre-
served. However the feasibility of extending this
approach to texture interpolation has yet to be shown.

Another issue we face is how to properly deal with the
lighting consistency problems that
will inevitably arise when we try to
combine acquired textures that
exhibit relief. It may be necessary to
solve for the surface relief, allowing
the material intensity texture to be
handled separately. In the 2D case,
the most important consideration is
simply to maintain consistency.
Additionally, it’s desirable to avoid
orienting textures so that to preserve
convexity, observers must envision
the light as coming from below.

Feasibility issues
Some of the questions that we

need to address are

■ What does a reasonable parti-
tioning of a natural texture space
look like?

■ Would it be feasible to try to
choose exemplars at the endpoints
of each perceptually relevant tex-
ture dimension, characterize them
statistically, then interpolate to
obtain intermediate textures that
fill out the space?

■ To what extent do we need to
guarantee that different textures
will meld continuously into each
other at the transitions between
level set regions?

■ How can we most effectively com-
bine color with texture to convey
yet more information in a mean-
ingful way?

Clearly, texture has the greatest
potential to be effective as a tool for
visual data representation when it
conveys local values of an underlying
function across homogeneous cells of sufficient size to
allow the characteristic detail of the resident texture to
be discriminated.

The philosophy behind my attempt to more effective-
ly harness the potential of texture for multivariate data
visualization is that we should begin from a vision of what
we want to achieve and work from there to figure out how

to accomplish the desired results. To more freely explore
the possibilities before becoming bogged down in imple-
mentation issues, I mocked up several tests by hand using
Adobe Photoshop and scanned images from the Brodatz
texture album4 to represent multivariate agricultural
data14 at the county level (Figures 4 through 7).

In Figure 7, texture scale represents one of three
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ranges of the average value of the agricultural products
produced in each county (with the largest scale corre-
sponding to the lowest value, evoking the metaphor of
inhospitable terrain). The texture type represents the
direction of change in the amount of land in farms (with
rocks representing areas with an overall loss of farm-
land and weaves representing areas with an overall
increase in the amount of land used for farming). Color
labels the percentage of the total land area in each coun-
ty used for farming (with the green tones indicating the
higher percentages and the brown tones representing
the lower percentages of land occupied by farms).

Representing uncertainty
Both color and texture admit intriguing possibilities

for representing uncertainty in data measurements.
Texture regularity has particularly good potential as an
intuitive marker for certainty, with texture pattern irreg-
ularities increasing in prominence where measurement
reliability is lower. Color regularity has somewhat weak-
er potential as a marker for measurement certainty, as
textures that contain more balanced or restricted dis-
tributions of hues may appear less distinct or vibrant
(implying decreased noteworthiness) than textures in
which the hues vary more widely across the spectrum.
Figures 8 and 9 provide examples of these two different
configuration series. It remains to be seen how easily
irregularity of the kind shown in Figure 9 can be incor-
porated into a computational texture synthesis defini-
tion for such patterns.

Conclusions
Despite the excellent progress made in recent years,1-3

I believe that there remains great untapped potential
for the effective use of texture in multivariate visual-
ization. I have proposed that we might take important
steps towards realizing more of this potential by
attempting to harness the power of rich natural textures.
I envision that a successful approach will begin from a

fundamental understanding of visual texture percep-
tion and progress toward an understanding of how to
synthesize a multidimensional palette of detailed tex-
ture samples whose variations evoke an intrinsic appre-
ciation of the local and global relationships between
multiple quantities across a 2D domain. ■
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Correction
In the September/October issue, the Visualization Viewpoints

article “Visualizing Visualizations: User Interfaces for Managing and
Exploring Scientific Visualization Data” by Kwan-Liu Ma incorrectly
implied that Fritz Hasler (NASA Goddard) alone worked on the
Distributed Image Spreadsheet (p. 17). In fact, the work was done
by both Hasler and Kannappan Palaniappan (University of Missouri-
Columbia).
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Abstract

We present an algorithm for rendering subdivision surface models
of complex scenes in a variety of artistic styles using an interac-
tively editable particle system. The algorithm is suitable for mod-
eling artistic techniques explicitly by the user, or automatically by
the system. Our approach can simulate a large number of artistic
effects due to the fact that almost any type of mark made on paper
or canvas can be imitated. Any of our artistic effects is customiz-
able by the user through a particle editing interface. The algorithm
maintains complete frame-to-frame coherence, a characteristic re-
quired for good animation, and runs at interactive rates on current
computer graphics workstations.

CR Categories: I.3.0 [Computer Graphics]: General; I.3.6 [Com-
puter Graphics]: Methodology and Techniques.

Keywords: interaction, illustration, non-photorealistic rendering,
silhouettes, lighting models.

1 Introduction

Both humans and computer programs can take an input image,
scene or geometric representation and produce an output image.
Computers excel at producing photorealistic images that are diffi-
cult for humans to reproduce by hand. On the other hand, artists
have developed systems for expressive abstraction to represent
complex systems of texture, geometry, tone, and lighting using a
few simple pen and ink or paint strokes. This allows artists to con-
centrate on conveying an idea or feeling instead of being forced to
focus on the details that a photorealistic representation entails.

Artists use different abstractions in different circumstances.
They represent scenes of staggering visual complexity such as
grass, trees, fur or scales using expressive strokes that are indicative
of the texture but do not describe it in complete detail. To achieve
additional effects, such as dramatic lighting on a smooth surface,
an artist may use a cross hatching technique to indicate the rela-
tive light on the object at any point. While these methods are only
stylized approximations of the actual texture, object geometry, and
lighting, they can be more expressive than photorealistic methods.

By expressive, we mean “effectively conveying the meaning or
feeling”. A motivating question behind our work is : “How do hu-

(a) (b)

Figure 1: (a) An painterly rendering of the Venus de Milo. (b)
Venus de Milo with a fur texture applied.

man artists portray the fundamental meaning or feeling of a scene?”
A goal has been to find ways in which non-artists can use comput-
ers to generate expressive images or scenes. Evidence can be found
in the psychophysical research literature to support the idea that the
very simplicity of hand-crafted media serves as a means of interac-
tion between the artwork and the viewer [8]. When an artist leaves a
scene incomplete, some of the marks on the medium act as “clues”
for the viewer. The viewer can use these simple ideas or clues to
reconstruct or complete the image by inference [14]. This type of
transaction between art and viewer allows the viewer to fill in de-
tails for himself and, hence, become more involved in the image.
The more detailed the image becomes, the less able the viewer is
to “fill in the blanks.” When little is left to the imagination, there
are fewer possibilities for meaning or feeling to be assigned to a
piece of art by the viewer. The simple nature of art allows a greater
personification of art on an individual level. Stroke based rendering
may enable us to use a computer to emulate handmade art.

Goals of this research were an algorithm and related system
framework that supports artistic rendering with complete frame-to-
frame coherence at interactive rates, to allow a user to completely
control particle placement, size, shape and orientation on a per
object basis, to generate a variety of artistic effects of significant
complexity, and to provide a framework though which other artistic
techniques can be rendered with ease. The program renders scenes
in a variety of artistic styles based on user defined parameters such
as shading models or texture and strokes styles.

Our technique associates particles with the geometry of subdi-
vision surface models. Particles are used to represent hand drawn



Figure 2: A blue fur/leaf geograftal has been placed on a green
regular quadrilateral surface. The white dot illustrates the point at
which the geograftal is located on the surface.

strokes or suggestive geometric features not present in the original
model. These particles can then be interactivly edited by a user
to create artistic effects. The geometry associated with the particles
are rendered at interactive speeds on top of the underlying geometry
based on information derived from the associated surface’s position
in screen space.

2 Related Work

Particle systems in general have been used extensively in photoreal-
istic scenes to render complex textures and objects on top of simple
geometric structures. Reeves [9] used particle systems to create
trees and other complex objects. Fleischeret al. [2] used particle
systems to render biologically based cellular textures. Meier [7]
showed that particle based brush strokes could be used to produce
painterly renderings. Her work is a precursor to our technique,
since she introduced the method of using particles to locate fea-
ture defining strokes in order to maintain complete frame-to-frame
coherence.

Smith introduced the idea of graftals as parallel graph grammar
languages that were used with a particle system to create complex
tree models [12]. An inspiration for this research, Kowalskiet
al. [4] used graftals to render complex textures such as fur and fo-
liage on top of simple models. Their graftal textures demonstrated
how different hand drawn effects could be generated by a computer.
They also introduced the idea of a graftal texture as an aggregate
of individual graftals with a fixed location on the visible part of a
model.

The wordgraftal has grown from Smith’s original definition to
describe a structure that creates surfaces via an implicit model and
produces data upon request. We further generalize the definition of
graftals to include procedural geometric entities. In this way we can
precompute as much information as possible about the graftal, in-
cluding the normal, position, and color, while waiting until runtime
to calculate view or lighting dependent qualities such as size, ori-
entation, or highlight placement and color. For clarity, in the rest of
this paper we will refer to graftals which use our augmented defini-
tion asgeograftals. Figure 2 illustrates the concept of a geograftal
being applied to a surface.

Our research combines and extends the work of both Meier and
Kowalski et al. By using geograftal objects, viewpoint invariance
is maintained for purposes of animation. Moreover, since each ge-
ograftal is statically placed on a model’s surface, the creator of a
scene can edit the attributes of any geograftal to obtain full control
over the look and feel of the hand drawn effects that are produced by
our system. We show how this system can be used to automatically
create other hand drawn effects such as pointillism, colored pencil,
oil paintings, impressionist paintings and pen and ink drawings.

Winkenbach and Salesin [16] showed how pen and ink drawings
could be created for parametric surfaces. Our system can create
simulated pen and ink drawings that are similar to their results for

Figure 3: Geograftals are painted onto a ellipsoid model: First two
geograftals representing eyes are placed. Then geograftal dots are
used to paint facial features on the model. Next, an area of the
model is randomly annotated with geograftal a “hair” texture, and
finally the model and its associated geograftal textures are rotated.
Character likeness courtesy of Comedy Central.

general polyhedral meshes. Salisburyet al. [10] demonstrated how
impressive pen and ink drawings could be rendered when the user
chose the principal directions for strokes to be rendered. Elber [1]
showed that line art for freeform surfaces could be displayed inter-
actively. This paper develops methods that use the principal curva-
tures of the polyhedral mesh to decide stroke directions automati-
cally, which can produce effects similar to both algorithms. Tone
is defined as the relative amount of light at a surface seen by the
viewer. Pen and ink renderings have the property of changing tonal
values when the same strokes are drawn for a model seen at dif-
ferent scales. Inspired by the method of Salisburyet al. [11] for
creating scale independent tone for pen and ink drawings, we use
scaling functions on our geograftals to recreate the effect of scale
independent image tone for pen and ink drawings.

3 Geograftal Implementation

Section 3.1 describes the system implementation. Section 3.2
presents geograftal generation. In Section 3.3 we discuss draw-
ing geograftals, and the effect of stored attributes and scaling func-
tions on how the geograftals are drawn on the screen. Finally, in
Section 3.4, we introduce multilayer editing of geograftals in an
interactive environment to allow simple creation of more complex
effects.

3.1 Software Framework

The system renders a mesh of connected quadrilateral sufaces using
OpenGL. Each model within a scene is stored as a list of constituent
quadrilateral surfaces which define the mesh. Individual geograftal
objects are stored with each surface. Attributes such as location,
width, height, type and color are stored with each geograftal object.



(a) (b)

Figure 4: (a) An imitation of Dr. Seuss’s truffula trees. (b) A mul-
tilayer geograftal texture.

Figure 5: Geograftals are drawn as triangle strips in OpenGL. The
basis vectors for this geograftal are simply unit vectors on theX
andY axes.

The type value denotes both the shape of the geograftal and stroke
effects such as pen, pencil, or paint brush.

The research we present uses geometry-based procedural objects
rather than the graftal texture approach used previously by others.
We associate individual geograftal objects with a surface object that
represents the geometry of the model. Each geograftal determines
at run time how it is to be drawn on the screen. Geograftals also
have associated scaling functions to control their size and shape.

3.2 Generating Geograftals

There are two goals when generating geograftal objects. One is to
achieve the simulation of random placement over the surface of the
object to imitate the hand drawn quality we desire. The other is
to have complete control over the placement of specific geograftals
for special cases. We can achieve precision placement by allowing
the user to select the point on the surface to place the geograftal.
We achieve a random placement on a surface by parameterizing the
surface quadrilateral and then choosing randomU andV values.
These two cases are illustrated by Figure 3. Geograftal normals are
calculated as a linear combination of the normals at the four corner
points. The type, width and height attributes are specified by the
user.

We produce effects similar to those in Kowalskiet al. by choos-
ing random geograftals, based on a user defined density, for all
of the surfaces to be textured. The system also allows the user
to add more geograftals interactively to create the appearance of
non-uniform or denser texture coverage of the surface. Due to the
initial random placement of particles, the appearance of a random
texture is created. Since geograftals are associated with the surface
rather than a texture, we can apply more than one distinct type of
geograftal to a surface with this method, resulting in the appear-
ance of multiple textures on the model. An example of geograftal
textures is given in Figure 4(a).

3.3 Drawing Geograftals

Each geograftal is displayed as an OpenGL triangle strip and each
geograftal silhouette as a OpenGL line strip. A triangle strip for a

Figure 6: Leaf geograftals on this sphere are shown at even intervals
along theX axis. Towards the interior, the geograftals disappear
completely.

Figure 7: As objects move away from the viewer some of the ge-
ograftals shrink in size while a randomly selected few grow in size.

fur/leaf geograftal is shown in Figure 5. Points that make up these
strips are described as a linear combination of two basis vectors.
Rather than forming an orthonormal basis with the view vector, we
use the geograftal normal and the cross product of the geograftal
normal with the view vector as basis vectors. The length of the basis
vectors is specified by user defined width and height values. This
has the effect of creating realistic foreshortening on the geograftals
while maintaining a consistent orientation via the view vector.

The hand drawn effect that we are trying to attain has the prop-
erty of being most evident near silhouette edges. Therefore, ge-
ograftal objects are drawn as flush to the screen and as large as
possible when the geograftal’s normal nears perpendicular with the
view vector. The property of foreshortening is desirable because it
maximizes the screen space of geograftal objects near silhouettes
and interior cusps.

Frame-to-frame coherence is maintained by drawing all of the
geograftals for every frame. While it isn’t necessary to render back-
facing surfaces, all of the geograftals must be drawn since they may
poke out from behind the object. In any case, they are more likely
to be visible after the surface with which they are associated dis-
appears or before the surface appears. If only geograftals located
on front facing surfaces are drawn, jarring “popping” effects occur
when a geograftal’s associated surface switches between front or
back facing. Popping occurs when a geograftal suddenly appears
or disappears. The same disturbing popping occurs if geograftals
are no longer drawn in the interior of an object. In order to create
the illusion that geograftals gradually appear and disappear, we use
scaling functions that affect the size of a geograftal based on the
geograftal’s position and orientation in relation to the view vector.
Because all geograftals are drawn during every frame and because
we now change the attributes of the geograftals to create the desired
effects, popping no longer occurs. We define the general scaling
function:

FG = 1� jGeograftal Normal� View Vectorj (1)

whereFG is the scaling factor. This scaling function produces a
value between 0 and 1, where 0 means the geograftal normal is di-
rectly opposite the view vector and 1 means that the geograftal’s
normal is perpendicular to the view vector. Then, the basis vectors
that define each geograftal are multiplied byFG. This has the effect



of changing the geograftal’s size and shape continuously over the
surface of the object. The popping effect is eliminated while main-
taining the style of drawing only geograftals near silhouettes. This
creates large geograftals near silhouettes and tiny geograftals in the
interior.

Unfortunately, the black edge lines of the small geograftals still
disrupt the effect of displaying information only near silhouette
edges. We solve this problem by creating additional scaling func-
tions. The first scales the geograftal edge width, making the edges
drawn near silhouettes more prominent and those drawn in the in-
terior less visible. This is an effect that artists strive for, making the
outline of an object bold to create a cohesive effect for the whole
object while giving less importance to individual details [6]. The
second scaling function changes the color of the geograftal edges
to match the color of the object. This creates the illusion that the
geograftal has disappeared near the interior but smoothly appears
as it approaches an area where it needs to be drawn. We have found
that constrainingFG between0 and0:7 works well. This enforces
color scaling only in the interior of the object and draws geograftal
silhouettes near model silhouettes in black. An example of how
geograftals scale their width, height and line color is shown in Fig-
ure 6.

When an object is at a greater distance from the viewer,
many artists draw a smaller number of disproportionately large
strokes [13]. To avoid removing and adding geograftals as they pass
a distance threshold, we apply scaling functions to the geograftals
with distance. We can define a smooth scaling factor for distance:

FD = Actual Distance=Maximum Distance (2)

whereActual Distanceis the actual geograftal distance from the
viewer andMaximum Distanceis the maximum distance from the
viewer possible in the viewing frustum. Each geograftal is assigned
a random scaling function of a predetermined type that allows for
some of them to grow smaller and some to grow larger with dis-
tance. To minimize the geograftal’s features with distance, we mul-
tiply their feature values byFD. To make geograftal features larger
with distance, their feature values are multiplied by1 + (1� FD).
These are just two of the many scaling functions we have tested that
yield pleasing results.

Scaling byFD has the desired effect as shown in Figure 7. We
found, however, that leaving the size and number of the geograftals
the same while using a scaling function to decrease the width of
the silhouette edges with distance may have a more pleasing ef-
fect. This interactively simulates the effect of line weight depth
cueing. Line weight depth cueing establishes the distance from the
viewer to the model based on the boldness of the silhouette. Artists
use this method to portray three dimensions in a two-dimensional
medium [6].

Quite different effects are created when non-linear functions are
used to scale the geograftals. We have experimented with these
types of scaling functions but none seem to be as visually pleasing
as the linear examples we have presented.

3.4 Editing Geograftals

Because we specify geograftals as individual objects and geograftal
textures as the sum of geograftals placed on the surfaces of the mod-
els, we are able to edit the geograftal’s attributes individually or all
at once and save the results. To edit an individual geograftal, the
user chooses which geograftal to affect and then changes that ge-
ograftal’s parameters. The edits update interactively, so the changes
can be seen as they are made. This allows individual geograftals to
be “sculpted” on an object as in Figure 3. With this method, dis-
tinguishing features can be designed. Since the attributes of every
object are fully modifiable, this gives the user the ability to precisely
model an entire scene.

Global edits are also possible with our system. By changing
global attribute values, we can change the attributes of all of the
geograftals or just a subset of them. Since we may want to build
a geograftal texture with more than a single type of geograftal, we
allow for multilayer editing. Each geograftal texture applied to a
model is represented as a layer. A layer is a set of geograftals com-
posed of a single geograftal type which are associated as a group.
By selecting a layer on a multilayer texture, we can apply changes
just to the geograftals that belong to that specific texture layer. This
allows us to composite multiple texture layers on a single model,
achieving intricate multilayer textures as shown in Figure 4(b).

4 Shading

Artists often use lighting effects to provide more information about
the shape of an object. Geograftals can be used to convey the same
shape information that is conveyed by traditional lighting and shad-
ing as described in Section 5.4. It is convenient to calculate and
save lighting information to scale and color geograftals rather than
use an automated lighting system, such as the one provided by
OpenGL. The particular lighting we present is occlusion free and
simulates shadows with sources of negative light. We calculate the
light values for every point on the mesh and then apply smooth
shading to the surfaces to obtain the appearance of a lit object. The
value of the light at a surface point is only sensitive to the direction
of the normal at that point relative to the light source. This describes
the shape of the object uniformly over the surface without regard to
shadows. We use the following non-standard equation to describe
the light at any point:

C = Oc +�(LcN � LD) (3)

whereOc is object color,Lc is light color,N is the point normal,
LD is the light direction andC is the resultant color. This is a
simple additive light shader that maintains the color of the object.

After clamping the value to a valid color range, we apply smooth
shading to the surfaces using the light values for the points to ob-
tain a smoothly lit model. We can obtain interactive rates for this
calculation in complex scenes as reported in Table 1. Geograftals
are shaded by taking their color value from the nearest point on the
surface. See Figures 10(a) and 12 for examples of these shading
techniques.

5 Line Drawing

A number of line drawing effects can be created by using ge-
ograftals to represent strokes on a surface. In Section 5.1 we de-
scribe a method of calculating silhouettes and internal cusps. Next,
in Section 5.2 an algorithm for interactive line art is presented.
Finally, in Section 5.5 this algorithm is extended to include other
painting techniques.

5.1 Interactive silhouette and cusp calculation

Silhouettes are lines that describe the shape of the object near out-
side edges along the polyhedral mesh. Here they are defined be an
edge which joins both a front and a back facing surface. We define
a cusp as an edge that joins any surfaces whose normals have an
angle of greater than 90 degrees between them.

Cusps can be identified in a preprocess, since they are view-
independent. The cusp edges can be put in a list and displayed
quickly as a set of GLLINES.

Silhouettes, however, are defined only in relation to the view vec-
tor. One of the goals of this work is to provide scene invariance.
Markosianet al. [5] showed how to calculate silhouettes quickly,



Figure 8: Venus model shaded with randomly placed geograftal
strokes.

Model Points Polygons 0 g/p 1 g/p 100 g/p
Sphere 98 96 66 65.1 33

3 Spheres 294 288 66 61 16.5
Refined Sphere 386 384 65.8 58.1 13.2
Venus De Milo 4257 4254 62 11.9 1.44

Table 1: Model information and timings, in frames per second, on a
195Mhz MIPS R10K SGI Indigo 2 with an Extreme graphics card,
for the number of geograftals per polygon. 100 g/p is presented as
a pathological case.

but did not guarantee that every silhouette edge would be found.
Goochet al. [3] showed how silhouettes could be rendered using
environment maps. The shape of such silhouettes is intriguing but
does not provide predictable effects. For our purposes, a brute
force search of all front-facing polygons proved fast enough. As
an example, we were able to achieve 62 frames per second using a
model with 4257 surfaces, displaying both surfaces and silhouettes
as shown in Table 1. After calculating the silhouettes for the new
viewpoint, they are put in a list and can be displayed quickly in the
same fashion as the cusps. Silhouettes calculated by this method are
demonstrated in Figure 9(a). The method presented by Kowalskiet
al. obtained a hand drawn look by perturbing the silhouette edges.
It is clear that this method is viable here since points in the edge
list can be perturbed to obtain this effect, but this may not be prac-
tical for preserving scene invariance since random perturbations of
silhouettes edges would lead to inconsistent renderings of a scene.

Artists often draw silhouettes with varying widths to indicate the
lighting, curvature, or distance from the viewer of the object [13].
We emulate these effects by changing silhouette line widths with
a scaling function associated with the light on the surface along
silhouette edges.

Sw =
�
1�

�
RGBTotal=RGBMax

��
MSW (4)

Here, Sw is the silhouette width,RGBTotal is the sum of
the RGB color values at the corner points of the surface,
RGBMax is the maximum RGB color values for those points
andMSW is the maximum silhouette width. The inner term,
1 �

�
RGBTotal=RGBMax

�
indicates the relative amount of light

on an edge. We next multiply this by the largest pixel width value
for the given edge line to obtain the actual line width for a silhouette
edgeSw. This results in a silhouette width that changes smoothly
with the lighting on an object as in Figure 9(b).

5.2 Automatic Line Shading

Artists often use loose and sketchy cross-hatching techniques to il-
lustrate lighting effects on an object with black and white pen and
ink strokes [13] as in Figure 8. We use graftals as stroke objects
to define a texture that responds to light rather than view position.
Stroke computation methods, then interactive display methods are
presented.

5.3 Determining Stroke Attributes

We would like strokes to appear to be randomly placed lines on
the surface of the object. Represented as geograftals, strokes are
randomly placed on the surface using the method described in Sec-
tion 3.2. The geograftal position is used to locate the first point that
defines the stroke line. There are several strategies which may be
employed to find the second point that defines the stroke line seg-
ment. To give the effect of random crosshatching, we choose a ran-
dom unit vector on the surface plane. Then this vector is multiplied
by the stroke length and the result is added to the original position
yielding a second point which defines the end of the stroke. We
define the length of the stroke to equal the average of the lengths of
theu; v basis vectors for the local surface quadrilateral. This length
is convenient because it prevents the stroke from protruding past
adjacent surfaces and affecting the perceived light of surfaces that
are not immediate neighbors. This constrains the stroke to provide
information about local light only. Perceived light on the model
is blurred when strokes from a large number of non-local surfaces
overlap.

Winkenbachet al.[16] previously showed that allowing a user to
choose vector directions in which to draw strokes for a two dimen-
sional scene yields pleasing results. (While this may be effective in
an image-based rendering approach, we found it impractical to have
the user specify directions in our system, since after rotation and
translation, the vectors may not describe relevant strokes because
the objects they were associated with may be in a different screen
position.) It is noticeable that users of image-based approaches of-
ten choose vectors that seem to closely correspond to the principal
curvatures of the surface. We automatically generate this effect by
deriving an estimate of the two principal curvatures at each point in
the polyhedral mesh as presented by Taubin [15]. These principal
curvatures can be used to calculate the second point to represent
the stroke. This method is similar in spirit to a method presented by
Elber [1] and yields strokes which appear consistent with model’s
curvature. The principal curvature vectors for the Venus de Milo
mesh are shown in Figure 9(a). The line art result of such strokes is
shown in Figure 9(b).

Since strokes are represented in this system as single lines, they
may overlap the edge of the mesh surface with which they are as-
sociated. Indeed, it is desirable for them to do so. If strokes were
drawn entirely within each polygon, the viewer would have a clear
sense of the mesh structure since no strokes would cross any edges.
However, strokes rendered in this manner hang off the edges of
silhouettes, leading to a loose and sketchy feel, which is often a
natural side effect of hand drawn art.



(a)

(b)

Figure 9: (a) shows the principal curvatures of the mesh at each
surface point. (b) shows the model shaded with curvature oriented
geograftal strokes.

5.4 Stroke Shading Model

The stroke shading algorithm requires a potentially large number of
geograftals for each surface. Calculating these strokes at run-time
might be too costly to achieve interactive rates. In order to achieve
interactive rates, we need to precompute a list of the strokes that
might be needed to render tone for each object. Tone (as defined
in Section 2) on a surface is represented by the number of strokes
drawn on each surface quadrilateral.

We define an array ofN stroke geograftals for each surface.
When objects are initialized, we precompute N strokes and enter
them in this array. We use the lighting values that we calculated
in Section 4 to determine the number of strokes to draw to define
relative tones.

T =
�
1�

�
RGBTotal=RGBMax

��
N (5)

Here, T is the number of strokes to draw to define the tone,
RGBTotal is the sum of the RGB color values at the corner
points of the surface,RGBMax is the maximum RGB color val-
ues for those points that make up the surface. The inner term
RGBTotal=RGBMax defines a smooth scaleS, between 0 and 1
that represents the relative amount of light at a surface.T is an in-
dex into the array of the strokes. When we display the strokes, we
use this index to determine how many strokes to draw. We draw
each stroke whose array index is less than our index boundT . This
calculation is quick to update since we never change the strokes.

This algorithm maintains interframe coherence because the same
strokes are drawn under identical lighting conditions. Since only
the lighting model affects the stroke index, viewpoint changes have
no effect on the strokes drawn. When the strokes are drawn there
is a recurrence of the popping effect. We have found that for suffi-
ciently largeN (100 seems to work well in practice), this effect is
minimal since the popping occurs as a part of a smooth transition
between line drawn tones within a larger texture.

Salisbury pointed out that the tone of a line drawing is changed
when the drawing is scaled [11]. We use a scaling function that
increases the stroke index as distance from the viewer increases.
This effectively compensates for the relative tone of an object as its
distance from the viewer is changed. Our simulations have shown
that the results of the scaling function depends on factors such as
the surface area of the polygons in the system, and the size of the
viewing frustum relative to the stroke widths and the objects. We
achieve our best results using scaling functions that are tailored by
the user to the specific object and viewing volume. An example of
this is shown in Figure 10(f). Since a precise solution to the tone
matching problem may require significant run time computation for
every viewpoint change, and because we attempt to maintain inter-
active rates, it is currently beyond the scope of this work.

5.5 Colored Line Art

A variety of colored pencil or oil painting effects are achieved by
coloring the stroke lines. Since there is no inherent light or color in
the black strokes applied in the previous section, the strokes were
sufficient to imply the concept of light. When the strokes are col-
ored, they no longer imply lighting. They seem to reveal holes in
the model because lighting is now shown by the color of the strokes
rather than by stroke placement. We present two solutions to this
problem. The first solution is to shade the underlying surfaces. This
is analogous to a painter laying down an underpainting to establish
tone before applying detail. In this case, the strokes are used con-
ceptually as with the geograftal objects described in Section 3. The
strokes are a “hint” of a texture that allow the user to complete the
rest of the texture by inference. The second solution is to increase
the coverage of the strokes on each surface in an equal way. Here
we allow the user to set the line index into the stroke array for every
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Figure 10: The line art strokes that imply lighting in picture (b)
imply holes in the sphere in (c). To correct this we either draw
enough strokes to obtain an adequate surface coverage as in (d), or
shade the surfaces on which the strokes lie as in (e). In (f), the tone
of (b) has been maintained under translation by applying a scaling
function.

surface to a value that is large enough to obtain a sufficient surface
coverage. We can simulate different painting effects by changing
global attributes such as brush type, size and orientation. Using
this technique we produce effects similar to Meier’s painterly ren-
dering [7]. These techniques are illustrated in Figure 10. Other
artistic techniques produced with this system such as impressionist
and pointillist are shown in Figure 11.

6 A Graftal Painting System

A geograftal system can be used to paint strokes onto the surface
of an object. After choosing a brush shape and size, it is possi-
ble to paint on the object by choosing the position for the brush
stroke to be applied. We seed a geograftal object of the appropriate
brush type and attributes at that position and apply a stroke. Unlike
painting systems based on standard texture mapping, geograftals
sidestep the problems of surface distortion and parametric overlap-
ping because only the position of the geograftal is tied to the object.
Because of this, geograftal features such as size and shape are not

vulnerable to distortion or cropping where the shape of the model
is irregular or where the parametric bounds of the texture map lie.
Moreover, the strokes of the geograftal paint system are fully ed-
itable. An example of this is shown in Figure 3 where the mouth
and chin of the character have been painted on by a user.

7 Future Work and Conclusion

We have presented a new technique for rendering artistic effects
within a coherent framework. We have shown a stable modeling
approach that encompasses and extends the artistic effects previ-
ously obtainable by various non-photorealistic rendering methods.
Our system provides an automated method for rendering complex
scenes with expressive artistic techniques from simple models. We
have proposed a method that maintains interframe coherence by in-
troducing the idea of geometric graftal objects to represent graftal
textures and have shown that such a system can generalize to many
other artistic effects. Moreover, the user of our system has com-
plete control over each geograftal object and we provide multilayer
editing techniques. The system renders at rates from 2 to 60 frames
per second on a low end workstation, depending on the complexity
of the scene and the effects desired. Our test scenes had meshes
containing between 512 to 16,000 polygons.

Extending the range of styles currently available for geograftal
rendering is one of the immediate goals of future work. It would
also be valuable to formalize notions of view dependent object be-
havior in ways that allow for easy geograftal design by users. Since
each model is represented as a subdivision surface mesh, it might be
easy to achieve higher frame rates by using lower resolution meshes
for rendering objects at a distance. It might also be useful to exam-
ine other intrinsic properties of the subdivision mesh to generate
line strokes. Our silhouettes currently only vary line width based
on lighting. Other types of data such as curvature might be useful
metrics for silhouette line width variation. Furthermore, our system
currently only handles straight line strokes. Strokes represented by
user defined curves or bitmaps would be a valuable addition.

References
[1] Gershon Elber. Interactive line art rendering of freeform surfaces.Computer

Graphics Forum, 18(3):1–12, September 1999. ISSN 1067-7055.

[2] Kurt Fleischer, David Laidlaw, Bena Currin, and Alan Barr. Cellular texture
generation.Proceedings of SIGGRAPH 95, pages 239–248, August 1995. ISBN
0-201-84776-0. Held in Los Angeles, California.

[3] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and Rich Riesen-
feld. Interactive technical illustration.1999 ACM Symposium on Interactive 3D
Graphics, pages 31–38, April 1999. ISBN 1-58113-082-1.

[4] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bourdev, Ronen
Barzel, Loring S. Holden, and John Hughes. Art-based rendering of fur, grass,
and trees.Proceedings of SIGGRAPH 99, pages 433–438, August 1999. ISBN
0-20148-560-5. Held in Los Angeles, California.

[5] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev,
Daniel Goldstein, and John F. Hughes. Real-time nonphotorealistic rendering.
Proceedings of SIGGRAPH 97, pages 415–420, August 1997. ISBN 0-89791-
896-7. Held in Los Angeles, California.

[6] Judy Martin. Technical Illustration: Materials, Methods, and Techniques, vol-
ume 1. Macdonald and Co. Publishers, 1989.

[7] Barbara J. Meier. Painterly rendering for animation.Proceedings of SIGGRAPH
96, pages 477–484, August 1996. ISBN 0-201-94800-1. Held in New Orleans,
Louisiana.

[8] V.S. Ramachandran and William Hirstein. The science of art a neurological
theory of aesthetic experience.Journal of Consciousness Studies, 6(6-7):15–51,
1999.

[9] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms
for shading and rendering structured particle systems.Computer Graphics (Pro-
ceedings of SIGGRAPH 85), 19(3):313–322, July 1985. Held in San Francisco,
California.



Figure 11: By interactively varying input parameters, we achieve
different painterly effects. Examples shown here are, from top to
bottom, oriented impressionist, pointillist, and on the bottom two
pictures, random impressionist with different input parameters.

[10] Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin.
Orientable textures for image-based pen-and-ink illustration.Proceedings of
SIGGRAPH 97, pages 401–406, August 1997. ISBN 0-89791-896-7. Held in
Los Angeles, California.

[11] Mike Salisbury, Corin Anderson, Dani Lischinski, and David H. Salesin. Scale-
dependent reproduction of pen-and-ink illustrations.Proceedings of SIGGRAPH
96, pages 461–468, August 1996. ISBN 0-201-94800-1. Held in New Orleans,
Louisiana.

[12] Alvy Ray Smith. Plants, fractals and formal languages.Computer Graphics
(Proceedings of SIGGRAPH 84), 18(3):1–10, July 1984. Held in Minneapolis,
Minnesota.

[13] Alvy Ray Smith, Michael Wright, and James Horton.An Introduction to Art
Techniques. DK Publishing Inc., 1995.

[14] Robert L. Solso. Cognition and the Visual Arts. MIT Press/Bradford Books
Series in Cognitive Psychology, 1999.

[15] Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhedral
approximation.ICCV95, pages 902–907, 1995.

[16] Georges Winkenbach and David H. Salesin. Rendering parametric surfaces in
pen and ink.Proceedings of SIGGRAPH 96, pages 469–476, August 1996. ISBN
0-201-94800-1. Held in New Orleans, Louisiana.

Figure 12: Bunnies with varied graftal fur textures applied. Model
courtesy of Stanford University.



To appear in the SIGGRAPH 99 conference proceedings

Art-Based Rendering of Fur, Grass, and Trees

Michael A. Kowalski�∗ Lee Markosian� J.D. Northrup� Lubomir Bourdev†

Ronen Barzel‡ Loring S. Holden� John F. Hughes�

�Department of Computer Science †Advanced Technology Group ‡Pixar
Brown University Adobe Systems

{mak,lem,jdn,lsh,jfh}@cs.brown.edu lbourdev@adobe.com ronen@pixar.com

Abstract

Artists and illustrators can evoke the complexity of fur or vege-
tation with relatively few well-placed strokes. We present an al-
gorithm that uses strokes to render 3D computer graphics scenes
in a stylized manner suggesting the complexity of the scene with-
out representing it explicitly. The basic algorithm is customizable
to produce a range of effects including fur, grass and trees, as we
demonstrate in this paper and accompanying video. The algorithm
is implemented within a broader framework that supports proce-
dural stroke-based textures on polyhedral models. It renders mod-
erately complex scenes at multiple frames per second on current
graphics workstations, and provides some interframe coherence.

CR Categories and Subject Descriptors:I.3.3: Computer Graph-
ics: Picture/Image Generation; line and curve generation; bitmap
and frambuffer operations; I.3.5 Computer Graphics: Computa-
tional Geometry and Object Modeling: curve, surface, solid, and
object representations; I.3.7: Three-Dimensional Graphics and Re-
alism: Color, shading, shadowing, and texture.Additional Key
Words: Non-photorealistic rendering, graftals, procedural textures.

1 Introduction

Any art student can rapidly draw a teddy bear or a grassy field.
But for computer graphics, fur and grass are complex and time-
consuming. Even so, the artist’s few-stroke rendering may have
greater persuasive or evocative power than the usual computer-
graphics rendering.

How does the artist effectively communicate the teddy bear or
grass? By rapidly creating an impression of free-form shape – diffi-
cult to do with conventional 3D modeling systems – and then draw-
ing a few well-chosen strokes. This paper describes some of our
efforts to expand the expressive power of 3D graphics by adopting
techniques for depicting complexity from the centuries-old disci-
plines of art and illustration.

Three goals in our work on art-based graphics are to give the de-
signer of a scene control over the style of rendering; to ease the

�Currently at ATR Media Integration & Communications Research Lab-
oratories, Kyoto, 619-0288, Japan.

burden of modeling complex scenes by treating the rendering strat-
egy as an aspect of modeling; and to provide interframe coherence
for the kinds of stylized renderings we’ve developed. Other goals,
less directly related to the work in this paper, include the develop-
ment of systems for rapidly creating free-form shapes [9], and the
control of scene composition.

Our approach to creating complex expressive renderings is to target
the kinds of images made by artists and illustrators and reproduce
the effects and techniques we observe in those images. Much 2D art
and illustration is created by making strokes on a flat surface (paper,
canvas), so we have based our work on what we call “stroke-based
textures.” We started from the drawings of Theodore Geisel (“Dr.
Seuss”) [4, 5], in part because they are such an extreme departure
from the domain of conventional computer graphics.

Figure 1 A furry creature, after Dr. Seuss. The fur is generated in a
view-dependentway by a proceduralstroke-based texture that places
it near silhouettes, varying the style of the tufts according to how
much the underlying surface faces the viewer.
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Figure 2 A more complex scene, again based on the style of Dr. Seuss. The grass, bushes, and truffula treetops are implemented with graftal
textures that use the same basic algorithm to place graftals with a variety of shapes and drawing rules. The truffula tree trunks are drawn by
stroke textures (not graftal textures) assigned to ribbon-like surfaces that always face the viewer. The treetops use the same type of graftal as
seen in the previous figure, but with a different orientation rule: they always circulate clockwise around the treetop, no matter what the point of
view. This cannot be modeled with any fixed geometry, of course.

There are two main research challenges: the development of algo-
rithms and a software framework in which procedural stroke-based
textures can be rendered, and the development of a user interface
(within the context of a free-form modeling system) that allows a
designer to assign and customize such procedural textures. In this
paper, we describe our approach to the first of these challenges.

We have developed a system to generate and render stroke-based
textures that mimic the styles of two artists, and a framework for
generalizing this to other techniques. The system renders the im-
ages shown in this paper at several frames per second on a Sun
Sparc Ultra 2 model 2/300 with Creator 3D graphics, and even
faster on a high-end PC. Our main contributions are the system ar-
chitecture, the (partial) temporal coherence of the texture elements,
and the particular methods used to mimic Dr. Seuss’s and Geoffrey
Hayes’s [7] styles.

2 Prior Work

Using art as a motivation for computer graphics techniques is not
new, and our work builds on the efforts of many others. Funda-
mental to our ideas are the particle systems of Reeves [12, 13],
which he used to create trees, fireworks, and other complex imagery
from relatively simple geometry. Alvy Ray Smith’s later use of par-
ticles, together with recursively defined L-systems that he called
“graftals,” extended this to more biologically accurate tree and plant
models [15]. His “Cartoon Tree” is a direct precursor to the work in
this paper. Graftals have since come to be described more generally:
according to Badler and Glassner [1], “Fractals and graftals create
surfaces via an implicit model that produces data when requested.”
We use the word “graftal” in this much more general sense.

We use a modified version of the “difference image” stroke-placing
algorithm of Salisburyet al. [14] to place procedural texture ele-
ments at specific areas of the surface. Winkenbach and Salesin [17]
described the use of “indication” (showing a texture on part of an
object) in pen-and-ink rendering. And Strothotteet al. [16] exten-
sively discuss the use of artistic styles to evoke particular effects or
perceptions.

At a more mechanical level, Meier’s work on particle-based brush
strokes [11] was a major inspiration in two ways: first, her use of
particles to govern strokes that suggest complexity in her Monet-
like renderings showed that not all complexity need be geometric;
second, the fixed spacing of the particles on the objects, which lim-
ited how closely one could zoom into the scene, inspired us to seek
a similar but hybrid screen/object space technique.

The present work builds on our earlier efforts [10] to produce non-
photorealistic effects at interactive frame rates. One limitation of
our earlier system was that it supported just one “style” at any given
time – applying the style equally to every object in the scene. A
more flexible system would allow the designer of a virtual scene
to assign different nonphotorealistic “textures” to different surfaces
within the scene. The framework we describe in the next section
makes this possible. For instance, the fur texture on the creature in
figure 1 is applied over most of the body but not the face, even in
profile. Our other images show more examples of the selective use
of distinct nonphotorealistic textures applied to objects in a scene
according to what each represents.

2
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Figure 3 The same scene as in figure 2 rendered without graftal
textures or the stroke-based textures on the truffula trunks.

3 Software Framework

Our procedural stroke-based textures are implemented within a gen-
eral system for rendering polyhedral models using OpenGL [2]. In
our system models are divided into one or more surface regions
(calledpatches), to each of which the user can assign one or more
procedural textures (calledtextures) – although just one is active at
a time. The “procedure” that defines a texture needn’t be compli-
cated – many simply draw their patch in some conventional style
(e.g., smooth-shaded or wireframe). One of our textures performs
Floyd-Steinberg dithering [3]. Others perform a variety of hatching
effects.

An important component of the system is the provision ofreference
images. These are off-screen renderings of the scene, subsequently
read from frame-buffer memory to main memory and made avail-
able to the procedural textures. We currently use two kinds of ref-
erence images: acolor reference imageand anID reference image.

To prepare the color reference image, the active texture of each
patch is asked to render into it in some appropriate way, depend-
ing on how the texture will use the image. For example, the graftal
textures described in the next section use the color reference im-
age in a special way to decide where to draw tufts of fur, grass, or
leaves. For the ID reference image, triangles (or edges) are each
rendered with a color that uniquely identifies that triangle or edge.
Lighting and blending are disabled so that the colors are preserved
exactly.

After the ID reference image is prepared, all of its pixels are
checked in one pass: when a pixel contains the ID of a triangle or
edge, that pixel location is stored in a list on the patch that contains
the triangle or edge. Later, the active texture of the patch can access
the list of pixel locations in its main rendering loop. For example,
the dithering texture simply runs the Floyd-Steinberg algorithm on
the pixels of its patch.

The ID reference image can be used to determine the visibility of
a point on a known triangle – the details of how to make this work
robustly, even for triangles whose screen dimensions are less than
a pixel, are beyond the scope of this paper (see [8]). If the triangle
belongs to a patch of a convex surface, a simple test can be used: If
the point (in screen space) is more than one pixel from the bound-
ary of the patch, and also from any visible silhouette curve in the
scene, then it is visible if and only if its triangle is front-facing and
the value in the ID reference image at the point’s screen position
identifies a triangle of the same patch.

4 Graftal Textures

The textures described in this section place fur, leaves, grass or
other geometric elements into the scene procedurally, usually to
achieve a particular aesthetic effect (e.g., indicating fur at silhou-
ettes but tending to omit it in interior surface regions). We’ll call
this class of texturesgraftal textures. They all share the same ba-
sic procedure for placing tufts, leaves, grass, etc., all of which we
call graftals. The key requirements are that graftals be placed with
controlled screen-space density in a manner matching the aesthetic
requirements of the particular textures, but at the same time seem
to “stick” to surfaces in the scene, providing interframe coherence
and a sense of depth through parallax.

4.1 Placing graftals with the difference image algorithm

To meet these requirements, we have adapted the “difference im-
age” algorithm (DIA) used by Salisburyet al. [14] to produce pen-
and-ink-style drawing from grayscale images. Their algorithm con-
trols the density of hatching strokes in order to match the gray tones
of the target image. For each output stroke drawn, a blurred im-
age of the stroke is subtracted from a “difference” image (initially
the input image). The next output stroke is placed by searching in
the difference image for that pixel most (proportionally) in need of
darkening, and initiating a stroke there. The resulting image con-
sists of marks whose density conveys the gray tones of the original.

The DIA meets our first requirement of placing marks (or in our
case, graftals) with a controlled screen-space density. To control
graftal placement according to a particular aesthetic requirement,
each graftal texture simply draws its patch into the color reference
image so that darker tones correspond to regions requiring a denser
distribution of graftals. We call the result thedesire image, and the
value at a pixel in that image measures thedesirethat graftals be
placed there. For example, to render the furry creature in figure 1,
the reference image is drawn darker near silhouettes – easily done
by placing a point light near the camera position. Also, some re-
gions (e.g., the feet) can be explicitly darkened by the designer to
promote a greater density of graftals there.1

To meet the requirement that graftals appear to stick to surfaces
in the scene, we must convert the 2D screen position of a graftal
(assigned to it by the DIA ) to a 3D position on some surface. This is
achieved inO(1) time (per graftal) by using the ID reference image
to find the triangle (and the exact point on the triangle with a ray-
test) corresponding to a given screen position.

This now allows graftals to be distributed over surfaces in the scene
to achieve a desired screen-space density – for a single frame. To
create some interframe coherence, we modify the algorithm:

• In the first frame, graftals are placed according to the DIA.

• In each successive frame, the graftal texture first attempts to place
the graftals from the preceding frame.

• Then, when all the “old” graftals have been considered for place-
ment and accepted or rejected, the graftal texture executes the
DIA to place new graftals into the scene as needed.

An existing graftal may fail to be placed in a frame for two reasons:
(i) the graftal is not visible (it is occluded or off-screen); (ii) there
is insufficient desire in the desire image at the graftal’s screen po-
sition. This can happen if the original desire value at the graftal’s
screen position was small (e.g. the graftal is far from a silhouette).

1To further encourage drawing near silhouettes, we filter the desire im-
age, replacing each desire valued with 2d− d2, whered ranges from 0 (no
desire) to 1 (maximum desire).
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Figure 4 A tree rendered in the style of Geoffrey Hayes [7]. The
leaves are drawn with graftals based on OpenGL triangle fans, rather
than the triangle strip-based type of graftal shown in figure 5. The
interior is shaded with the technical-illustrator shader of Gooch
et al.[6].

It can also happen if the camera has zoomed out and the graftal’s
neighbors, now closer to it in screen space, have already subtracted
the available “desire” in the vicinity. When a graftal fails to be
placed in a frame, it is discarded. Otherwise it updates its attributes
(as described below) and is drawn.

We make a final modification to the DIA: we use a bucket-sort data
structure to find the pixel with the greatest desire. This key step
can be completed inO(1) time rather than theO(log(n)) quad-tree
method of Salisburyet al., wheren is the number of pixels.2 This
lets the algorithm run at interactive speeds on simple scenes.

4.2 Subtracting the blurred image

When a graftal is placed in the scene (either initially or in subse-
quent frames) it subtracts a blurred “image” of itself from the dif-
ference image. For this, graftals are treated as points with a given
(variable) screen size, so the blurred image is just a Gaussian dot.

Pixels in the desire image are encoded with values ranging from
zero (no desire) to one (maximum desire). Each graftal has an as-
sociated “volume” that determines how much total “desire” it sub-
tracts from the desire image. This volume is proportional to the
graftal’s approximate screen space area. Intuitively, a visually large
graftal subtracts a large volume, corresponding to a wide blurred
dot: this eliminates desire in a wide region near the graftal, prevent-
ing others from being placed there.

Graftals can scale their geometry and volume so that they tend to
maintain a desired screen-space size and relative density. For ex-
ample, strictly adhering to the laws of perspective when zooming
away from the model could result in graftals being drawn too small
to be individually discernible. An artist might choose to draw them
larger than they would realistically appear in this case. In any case,
graftals that appear smaller in screen space should scale their vol-
ume accordingly in the DIA , or they will be placed too sparsely.

To perform such compensatory scaling, each graftal must keep track
of its approximate screen space size. It does so by first converting
its object-space lengthL to a screen-space measurements in every
frame (ignoring foreshortening). Then it chooses a scale factorr by
which to multiplyL as follows. As part of its definition, the graftal is
given a desired screen space lengthd and corresponding volumev0

2We thank Ken Lao for suggesting this idea.

(chosen by the user). At one extreme the graftal could taker = d/s,
so that it always appears the same size on the screen regardless of
distance. At the other extreme it could taker = 1, which would be
strictly realistic. In our examples, we have taken a weighted average
between the two extremes:

r = w(d/s) + (1− w),

with weight w = 0. 25. This approach moderates the degree to
which the graftal scales with distance, providing a measure of re-
sistance to change from its ideal size. Finally, the volume in each
frame is calculated asv = v0(rs/d)2 to keep it proportional to the
graftal’s current screen size.

Now let d0 be the value in the desire image at the graftal’s screen
positionx0 (which has been verified as visible). Letv > 0 be the
volume of the graftal. We seek a 2D Gaussian functiong such that

g(0) = d0 and

∞∫

−∞

∞∫

−∞

g(x) dxdy= v.

This is given byg(x) = d0e−�d0jxj2=v. Thus, to subtract the “blurred
image” atx0, we subtractg(x − x0) from each pixel locationx
in the desire image. Of course, outside of some radius values of
g are negligible. If we takem to be the minimum value we can
represent in the 8 bits we use to store desire, then this radius is
(v log(2d0/m)/(πd0))1=2. We only subtractg from pixel locations
within this radius of the graftal’s screen position.

As the graftal subtracts this Gaussian from the desire image, it
records the total desire subtracted. (It can’t subtract more from a
pixel than is stored there.) When all goes well, this quantity should
equal the volumev (ignoring discretization errors and the small por-
tion of the Gaussian outside the maximum radius above). If the total
is less thanv, the graftal may draw itself with a reduced level of de-
tail. If the total is too low (below 0.5 in all our examples), the graftal
reports failure to its texture and is removed from the scene. To avoid
“popping” when graftals appear and disappear, they may initially be
drawn with reduced detail, quickly increasing to full detail over a
short time, and reversing the process when they are removed. This
has its limitations, though, as we discuss below.

(a) (b) (c) (d)

Figure 5 A fur graftal is based on a planar polyline and table of
widths, used to construct a GL triangle strip (a). The graftal can
render itself in three ways: It can draw a set of filled polygons with
strokes along both borders (b) or just one (c); or it can draw just the
spine (d).

4.3 Details of fur graftals

A fur graftal – the kind used for the furry creature in figure 1, and
for the truffula tufts and grassy mounds at the base of the trees in
figure 2 – is not particularly complex. It is based on a flat tapering
shape by a gradually reducing width about a central spine (see fig-
ure 5). The central spine is a planar polyline, and the taper widths
are recorded in an array. For the model in figure 1, just a few taper
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Draw nothing

Draw nothing

 View direction

Draw filled without outline
Draw filled with outline edges

d = 0

Spine only

Figure 6 The dot productd of the view vector and surface normal
determines a graftal’s drawing style. In figure 1 the “Draw filled
without outline” region is empty: we transition directly from “filled
with outline” to “draw nothing.”

widths were assigned; for the truffula tufts there were about seven.
The shape of the central spine was drawn on graph paper and en-
tered by hand.

After being placed with the DIA, each fur graftal determines how
to orient and draw itself by computing the dot productd of the unit
surface normal~n at the graftal’s position with the unit view vector~v
from the camera to its position (see figure 6). For varying values of
d, the tuft may be drawn filled, filled with one edge, filled with both
edges, as a spine only, or not at all. For the fur in figure 1, we draw
just the spine for−0. 75< d < −0. 6. We draw the filled tuft with
both edges for−0. 55 < d < 0. Other schemes are possible, and
we believe that adjusting the thresholds and drawing styles during
“fade-in” and “fade-out” might help smooth these transitions.

Finally, the fur graftals are oriented to face the camera – that is,
to lie in the plane containing the underlying surface normal and
most nearly orthogonal to the view vector. They’re placed so that in
general they bend down. This behavior can be modified (as in the
truffula tufts) so that they point clockwise, or so that they follow
directions that have been “painted” onto the graftal texture’s patch,
as in the feet in figure 1.

5 Results and Future Work

Our system can produce scenes that evoke a remarkable sense of
complexity, in a style that’s new to 3D graphics, and at interac-
tive rates. Figures 2, 4 and 8 show the kinds of results that can be
achieved with graftal textures. In each case the underlying geome-
try was simple to produce, yet the renderings have an expressive-
ness often lacking in computer graphics imagery. With our system,
even the truffula scene can be rendered at several frames per second
on a high-end PC.

The accompanying video3 shows our system in action. It includes
sequences captured in real-time and animation sequences rendered
off-line and played back at significantly higher frame rates. The
problem of poor frame-to-frame coherence stands out most notice-
ably in the latter case. Graftals that persist from frame to frame
maintain geometric coherence (if we simply redistributed graftals
at every frame, the flicker would be overwhelming); unfortunately,
the DIA has no inherent interframe consistency, so it’s easy for a
graftal to be “crowded out” in one frame, replaced in the next, and
so on, causing the flickering artifacts that are so noticeable in the
video.

We have recently begun experimenting with some strategies to ad-

3See the Siggraph 99 Conference Proceedings Video Tape.

dress this problem. One possibility is to make much greater use of
fading and alpha blending when introducing graftals into the scene
and taking them out. The degree to which this approach is usable
depends quite a lot on the specific style being targeted. Fading in a
large yellow truffula tuft outlined in black against a blue sky may
be just as jarring as introducing it suddenly; but fading in semi-
transparent blades of grass rendered with a watercolor-like effect
over green terrain might seem perfectly acceptable.

One problem we have encountered in our early experiments with
fading in tufts of fur like those in figure 1 occurs when all the tufts
along a silhouette are newly introduced, and thus nearly transpar-
ent. The model then appears (briefly) to be missing its fur along that
silhouette. A possible solution that we have not yet implemented is
to maintain a separate population of tufts drawn on back-facing sur-
faces. This requires an auxiliary ID reference image prepared with
front-facing triangles culled. It also requires two separate calls to
our modified DIA each frame – one to place front-facing tufts, an-
other to place back-facing ones. The point is that tufts emerging into
view from behind a silhouette (as the object turns) would already be
drawn and thus would not “pop in.” Each frame might take twice
as long to render – possibly a worthwhile trade-off if the resulting
animations are significantly more watchable.

Another strategy we have experimented with is to usestaticgraftals
(see figure 7). With this approach, graftals are assigned fixed po-
sitions on the surface, rather than being generated each frame as
needed. They still draw in a view-dependent way – those far from
a silhouette, say, may not draw at all. This works quite well as long
as the camera does not zoom out too far: in that case the graftals
are drawn too densely in screen space. We can overcome this by as-
signing graftals several levels of priority – say numbered 0 through
2. Each level is distributed evenly over the surface, with those in a
given level outnumbering those in the next lower level by a factor of
about four. In a given frame, every graftal at level 0 “draws” itself
view-dependently (possibly not at all if far from a silhouette). Each
also subtracts its blurred image from the desire image, as in the
DIA , and measures its success rate. If, collectively, this rate is high
enough, the next level is given the chance to draw, and goes through
the same procedure to decide whether the last level should also have
the chance to draw. This strategy is suitable for localized objects -
– we have tested it on versions of the truffula treetops – but not
for landscapes where the choice of what level graftal to draw must
vary over the surface according to distance from the camera. Our
preliminary results indicate the effectiveness of this strategy. We
demonstrate this in the accompanying videotape. Figure 7 shows a
truffula tree top with static graftals drawn at three levels of detail.

A separate area for future work is to explore a range of new styles.
For example, we have begun to explore rendering fur using two lay-
ers, one light and one dark, on a neutral background (see figure 8).
This is a common technique in traditional drawing that can suggest
more complex lighting effects (such as glossiness) while omitting
unnecessary detail: nothing is drawn in midtone regions, which are
represented by the unaltered background color.
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(a) (b) (c)

Figure 7 A truffula treetop with static graftals organized in a three-level hierarchy. When the camera is close, all three levels are drawn (a). As
the camera zooms out, only two levels are drawn (b), and finally just the base level is drawn (c).

Figure 8 Fur rendered in light and dark layers on a neutral back-
ground. Model courtesy of Stanford University.
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Artistic Silhouettes: A Hybrid Approach
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Abstract

We present a new algorithm for rendering silhouette outlines of 3D
polygonal meshes with stylized strokes. Rather than use silhouette
edges of the model directly as the basis for drawing strokes, we
first process the edges in image space to create long, connected
paths corresponding to visible portions of silhouettes. The result-
ing paths have the precision of object-space edges, but avoid the
unwanted zig-zagging and inconsistent visibility of raw silhouette
edges. Our hybrid screen/object space approach thus allows us to
apply stylizations to strokes that follow the visual silhouettes of an
object. We describe details of our OpenGL-based stylized strokes
that can resemble natural media, but render at interactive rates. We
demonstrate our technique with the accompanying still images and
animations rendered with our technique.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation - Display algorithms

Additional Key Words: Strokes, non-photorealistic rendering

1 Introduction

The outline, or silhouette, of a shape is often one of its most strik-
ing features. Our work attempts to render attractive silhouette out-
lines for 3D geometry in real-time, creating brush-strokes resem-
bling natural media along well-chosen paths around each object.
This breaks down into three distinct phases. First, we must deter-
mine where the silhouette edges are. Because silhouettes are inher-
ently view-dependent, we have to find them every time the scene
or camera changes. Second, we need to choose where we want to
place each stroke. We want to pick paths that will look good and
remain as consistent as possible from one frame to the next. Third,
we draw each stroke in a style defined by the user. This last step
should be flexible enough to enable the user to achieve almost any
artistic goals she may have in mind.

In Section 2, we review several known silhouette detection algo-
rithms to address the first phase. The remainder of this paper fo-
cuses on the second two phases. Section 5 describes our algorithm
for determining stroke paths, and Section 6 explains our artistic
stroke-rendering framework for producing final images.

Figure 1 An example of an ink-wash style rendered with our algorithm.

2 Silhouette Edge Detection

Our system begins with 3D scenes consisting of standard triangle
meshes. We need to analyze the structure of these models to deter-
mine which edges form silhouette outlines. We define asilhouette
edgeto be an edge that connects a front-facing triangle to a back-
facing triangle. Because this condition depends both on the camera
viewpoint and the state of the model, we must compute these sil-
houette edges every frame that the world changes.

The brute-force approach to finding the silhouette edges simply
checks every edge of the mesh, every frame. This may suffice for
high-quality,non-interactive animations which can afford to sacri-
fice speed for guaranteed results, but causes a major bottleneck in
real-time applications like ours.

Several algorithms for rapidly finding the silhouette edges already
exist. For a model withn edges andk silhouette edges, the method
used by Goochet al. [5] performs the detection of all silhouette
edges inO(k logn) by precomputing a spherical hierarchy data
structure, but their algorithm is rather complicated and difficult
to implement. Furthermore, reliance on expensive pre-computation
makes this algorithm inappropriate for use with changing meshes.

We use the randomized algorithm presented by Markosian
et al. [11]. Taking advantage of temporal coherence, this algorithm
uses the silhouettes found in the previous frame as a starting point
for a search of the current frame. For a mesh withn edges, we ran-
domly select a small fraction of edges to test. When a new silhouette
is found, its neighbors are also checked for local continuation of the
silhouette contour, leveraging the spatial coherence of silhouettes.
Further details are supplied in [10]. In our experience, this algo-
rithm has proven efficient, simple to code, and robust enough for
our real-time applications.
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(a) (b)

Figure 2 Current algorithms render the innocent-looking silhouette
of (a) by drawing the complicated mess of overlapping edges shown
in (b).

Figure 3 Small zig-zags called swallowtails often occur along sil-
houette profiles.

3 Problems Rendering Silhouette Edges

The second phase should render the raw silhouette edges found
in the previous step in some pleasing way. One straightforward
approach for implementations using a traditional API such as
OpenGL [1] is to turn onz-buffering and render the edges as line
strips. This is simple and fast, but does not allow stylization along
the silhouettes. When using thez-buffer, anything drawn at the sil-
houette edges will be clipped against the body of the mesh. Ide-
ally, we would disable thez-buffer and somehow draw strokes only
along edges which are already known to be visible.

Furthermore, a few well-placed strokes often express the shape of
a figure much more elegantly than a crowd of shorter marks. With
this in mind, we seek to simplify the silhouette edges extracted from
our models into paths that we can use to draw long, smooth strokes.
Working purely in object space, it’s hard to determine where these
paths overlap, so we end up over-drawing the silhouette, as shown
in Figure 2.

Also, the silhouette edges are connected to each other in ways that
often reflect the small-scale structure of the mesh—not the overall
shape of the object’s outline. Paths created by joining up silhou-
ette edges will contain small but frequent zig-zags that can cause
unwanted artifacts when rendering them as strokes. These zig-zags
occur at intersections called swallowtails where the silhouette tem-
porarily reverses direction to connect two overlapping edges. This
phenomenon is illustrated in Figure 3.

4 Image-Based Solutions

One class of algorithms addresses the problems inherent to work-
ing with silhouette edges by ignoring them altogether. Image-based
silhouette-rendering algorithms avoid explicitly finding the 3D sil-
houette edges and instead opt to use 2D image-processing tech-
niques. Notably, the work of Saito and Takahashi [16] renders the

outlines of 3D objects by applying edge-detection filters to specially
prepared depth and normal maps, and compositing the results with
the rest of the scene. However, such approaches suffer from alias-
ing as the silhouette positions jump from pixel to pixel in the image,
because the silhouette positions are not accurately tied to the under-
lying geometry. Furthermore, these algorithms do not easily allow
the use of stylized strokes. Curtis [4] has introduced a technique for
generating strokes along these pixel outlines, but using only pixel
data sacrifices precision, especially when trying to decide how to
join several intersecting curves. Also, techniques requiring multi-
pass filtering and compositing are often too slow for real-time appli-
cations. Raskar and Cohen [15] present a geometry-based approach
suitable for real-time use which also avoids explicitly finding sil-
houette edges, but their methods do not allow for stylized strokes.

These image-based techniques inherently focus on depicting only
the portions of the silhouettes that contribute to the final 2D image.
Like any good artist, these algorithms never evenconsiderexplic-
itly depicting every single silhouette edge, so they avoid the prob-
lems due to overlap and sub-pixel swallowtails. Furthermore, they
do not needz-buffering because the visibility is already known, al-
lowing systems like Curtis’s to apply stylizations without worrying
about strokes being clipped.

5 A Hybrid Algorithm

Our work combines the benefits of the image-based approach with
the accuracy of a geometry-based approach. As in the latter, we
begin by detecting the silhouette edges of the model, but then we
compute visibility and adjacency using a 2D projection of the sil-
houette edges. This lets us maintain the precision of object coordi-
nates while still working in 2D where that makes most sense. At a
high level, the algorithm proceeds as follows:

1. Find silhouette edges.

2. Determine visible segments of each edge.

3. Apply correction for overlaps in segments.

4. Link segments into smooth paths.

5. Render stylized strokes along these paths.

In what follows, the termedgerefers to a silhouette edge of the
mesh; a single visible portion of an edge (such as found in step 2
above) is called asegment; and a collection of segments that form
a continuous sequence in image space is called apath.

Step 1 above is discussed in Section 2. In the remainder of this
section we describe steps 2 through 4. The final step is described in
Section 6.

5.1 Extracting Visible Segments

Once we have detected the silhouette edges in the current frame,
the next step is to determine which portions of the silhouette edges
are visible. Our method makes use of the “ID reference image” dis-
cussed in a previous paper [9]. Briefly, we create the ID reference
image by first rendering the scene with each silhouette edge and
each mesh triangle drawn in a color that uniquely identifies it, then
reading this image from the framebuffer into memory. Details on
how to use the ID reference image to determine visibility can be
found in [10].

We next iterate over all the pixels in the reference image and build
a list L of edges that contributed at least one pixel. We thus remove
from consideration silhouette edges that make no contribution to
the pixels of the current frame (such as many of the silhouette edges
seen in Figure 2 (b)).
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Figure 4 In (a), segmentsSandS′ are corrected by redefining their
overlappedendpoints to midpoint between them. The angle between
the segments is exaggerated for clarity. An undesired segment is
eliminated in (b).

Next we scan-convert along each edge inL to determine which por-
tions of it show up in the ID reference image, and hence are visi-
ble.1 We record each such visible portion, orsegment. A segment
consists of its two image-space endpoints and a pointer to the asso-
ciated edge. The endpoints need not project exactly onto the edge;
for example, a segment may extend across a pixel even when its
associated edge occupies just a small fraction of the pixel in the
current view.

To determine whether an edgee “shows up” in the ID reference im-
age at a given image space pointx one, we check the ID reference
image atx, and also at nearby points (within two pixels in practice)
along the image-space line perpendicular toe and passing through
x. If eshows up anywhere along this line, we considere to be visible
atx. In addition, we record a list of neighboring edges encountered
along this line for use in the next step of the algorithm.

5.2 Correcting For Overlaps

The segments are intended to be linked together to form long, con-
nected image-space paths that will serve as the basis for stylized
strokes. Before we perform this linking step, we first carry out two
correction steps that promote longer and smoother paths. These are
shown in Figure 4.

We “merge” segments that overlap and are nearly parallel; and we
eliminate a segment if it is adjacent and nearly parallel to another
segment, and the first segment is shorter. In both cases, we consider
two edges nearly parallel if the angle between them is less than 1
degree.

5.3 Linking Segments into Paths

At this point we have a collection of segments that together closely
approximate the visible silhouettes of the scene. The next step is
to link these segments into long chains, or paths, that will form the
basis for the strokes. To do this, we first search near each segment’s
endpoints for potential neighbors. The search is an× n-pixel local
search in the reference image.2 We perform a series of tests to com-
pute the suitability ofeach potential match between segments and
neighborn, outlined in Figure 5.

Whenever we link a pair together, we keep a list of “divorced” seg-
ments, i.e., any segments that the new pair had previously been
linked to. Once we have tried to find neighbors for each edge, we
allow these divorced segments another chance at linking up.

1It can happen that a visible portion of an edge doesnot show up in
the ID reference image. This might happen for example if the edge is too
small to contribute to the rasterization of the image. For our purposes, it is
sufficient to find just those visible portions that appear in the ID reference
image.

2In our system,n = 3.

CHECK-MATCH(s,n)
θ  angle betweens andn
θmax max angle allowed to link
D distance between endpoints ofs andn
Dmax max distance allowed to link

if s is already linked ton
reject n

if θ � θmax

reject n
if endpoints ofs andn don’t overlap
and D � Dmax

and θ � angle ofs’s current neighbor (if any)
and θ � angle ofn’s current neighbor (if any)

link s andn

Figure 5 The CHECK-M ATCH function determines whether seg-
mentss andn are suitable for being linked to each other. We use
θmax = 45� andDmax = 2 pixels.

5.4 Rendering Paths

The final phase of our algorithm renders each newly-created path
using an “artistic stroke.” These strokes are defined in image space,
and the visibility of the silhouettes they represent is already assured,
so we can disable depth testing and safely draw the strokes with
various image-space stylizations. Enabling depth testing would pre-
clude the use of such stylizations, since we cannot reliably assign
depth values to parts of the stroke affected by the stylization. We
now go into more detail about how these strokes are built and dis-
played.

6 Fast Artistic Strokes for 3D Scenes

Ultimately the success of any art-based rendering system depends
on producing appealing images. Thus the final step of our algorithm
takes great care to allow for a wide range of expressive strokes. To
convincingly mimic traditional 2D illustration, our strokes should
appear foremost as marks on a flat drawing surface—not objects
floating in 3D space. From this vantage point, we may choose to
selectively reintroduce hints of depth and distance, which we dis-
cuss below in Section 6.2.3.

On a practical level, this goal necessitatesusing a coordinate system
in which stroke proportions will reflect screen distance, rather than
3D world distance. We use a variant of what the OpenGL reference
manual labels “device coordinates” [1], normalized to preserve the
aspect ratio of the drawing area. In other words, our coordinates
range from -1 to 1 across the smaller screen dimension, and from
−d to d across the larger dimension, whered is the aspect ratio
of the window. Unlike a pure screen-space coordinate system, our
points retain theirz component, allowing us to render strokes using
traditional depth buffering if desired. Thisz-buffered approach is
used to render the strokes outlining the graftals of Kowalskiet al.[9,
12], and the strokes of Cohen, Zeleznik and Hughes’ user-drawn
world [3]. For the algorithm described in this paper, we only place
strokes where we already know they will be visible, so we can draw
withoutz-buffering.

6.1 Creating Basic Strokes

Given a list of vertex/width pairs, we would like to render a stroke
that passes through each vertex, smoothly transitions between the
given widths, and joins corners to create a continuous path. Unfor-
tunately OpenGL does not support lines of varying width and leaves
large gaps between corners of thick line strips. These problems led
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Figure 6 Constructing rib vectors~ri to add width to a four-vertex stroke.

Figure 7 Effect of scaling rib vector to maintain constant path width.

us to create a variable-width line primitive by leveraging OpenGL’s
speed and flexibility at drawing long triangle strips. We proceed
with a method inspired by the work of Hsuet al. [7, 8].

For each path vertexvi and its corresponding pixel widthwi , we
generate a vector “rib”~ri along the angle bisector which allows us
to give breadth to the stroke. This is illustrated in Figure 6. Figure 7
demonstrates the need to scale the length of these ribs to maintain
a desired path width. The scale factor for each rib is computed as

f = | |~ri|
~ri ·~ni

|

where~ni is the normalized vector perpendicular to the the path di-
rection betweenvi andvi+1. Intuitively, this means that the ribs are
scaled wider at sharper corners, and left alone at straight segments.
We limit the amount of scaling to a factor of 2, since otherwise the
miter for a very sharp corner would be too large.

Once we have a suitable set of ribs, we render the stroke as a series
of triangle strips. Point pairs for the strips are generated by offset-
ting each path vertexvi by its corresponding rib vector~ri , and its
opposite−~ri. The end result of this phase is a variable-width line
strip with nicely joined corners. Now we need to liven up the strokes
by adding artistic effects.

6.2 Stylistic Variations

In our system, the designer decides on a combination of styliza-
tion operations to apply to the strokes for a given object. All of the
style options can be freely mixed and matched, allowing for a wide
range of expressiveness. Figure 8 shows how each operation affects
a stroke. Since each stroke must be rebuilt every frame, we have
tried to make sure that these operations add little overhead to the
overall stroke building and rendering burden. We will now describe
three categories of stylizations possible with our system.

6.2.1 Resolution-Dependent Stylizations

For the first type of stylization, we perturb the appearance of the
stroke along its length. To do this, we need to ensure that the screen
distance between adjacent vertices does not exceed some specified
maximum (in practice, 2-3 pixels). Ideally, we would resample the
stroke to have perfectly even segments using an interpolating spline
curve. In practice, we linearly divide each individual path segment,

Figure 8 The cumulative effects of adding stroke operations, from
left to right: raw stroke, antialiasing, taper, flare, wiggle, alpha fade,
and texture-mapping.

adding evenly-spaced vertices to approximate the desired overall
spacing. This leaves the original shape of the path undisturbed, and
keeps this phase quick.

Once we have a sufficiently fine sampling of stroke vertices, we
can perturb their locations and widths to achieve an uneven, hand-
drawn look. Our current system applies offsets created by the user
with the help of a separate tool. This allows our strokes to reflect
the individual character of the user’s lines. These strokes are similar
to the ones described in [11].

Another style adds an alpha fade in which we linearly increase the
transparency along the length of each stroke, creating a simple wa-
tercolor or ink-wash feel, as seen in Figure 1. One other operation
flares the overall width of the stroke from end-to-end to create a
brush-stroke shape. The flare function we use is

f =
√

1− t2 where t =
current vertex index

max vertex index

6.2.2 Other Stylizations

The second category of operations does not require fixed spacing.
These include antialiasing, tapering the ends of each stroke to a
point, and applying texture maps along the length of the stroke. Our
implementations of OpenGL only support one antialiased primitive:
the 1-pixel-wide line. Luckily, we can use this to simulate smoothed
triangle strips by placing an antialiased line-strip around the bound-
ary of the stroke. This adds virtually no overhead, and we can know
that the antialiasing will register correctly because the line-strips
use the exact same coordinates as the body of the stroke.

Tapering the ends of strokes is a bit more complex, but this is an
important effect to simulate. First, we ensure a sufficient distribu-
tion of vertices to achieve a gradual thinning near the ends of each
stroke. We insert vertices along the beginning and ending segments,
linearly interpolated in the manner mentioned above. If we are us-
ing any of the operations from the previous section, we have already
performed an overall interpolation, and may skip this step. Next we
scale the rib size of these taper vertices by a function similar to the

4
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Figure 9 A simple architectural rendering that uses wiggle, flare, and tapering.

flare function given above. The result is a smoothly rounded ending
for each stroke.

A second style of tapering adds verticesbeyondthe endpoints of
the stroke using the direction of the final segment. This creates a
rounded extension to the stroke that can be used to hide seams at
stroke boundaries. This second taper style is used to render all of
the examples in this paper, and addresses the same problem treated
by Goochet al. [6], who used fat dots to hide the problem.

One final effect is to stretch a texture map over the length of the
stroke. Smoothly faded strokes are easy to draw using this method.
We simply apply textures with large regions of transparency (see
Figure 12).

6.2.3 Depth and Distance Cue

Often traditional illustration styles give perspective cues by de-
creasing line weight for distant objects. We mimic this effect by
modifying line widths based on two scaling factors: distance cue
and depth cue.

The first modifies the overall stroke width based on the distance to
an object. As the object recedes, the silhouettes gradually thin; as
the object approaches the camera, the silhouettes widen. When the
silhouette-rendering algorithm is first applied to a mesh, we com-
pute the valueDi , which is the initial ratio of object-space length to
screen-space length at the origin of the mesh. In successive frames,
we compute the current scaling factorDc, and multiply the scaling
factor

fD =

r
Dc

Di

with the width of each stroke used to render that mesh. This is a
non-linear scale in order to soften the effects of the distance cue.

The second pass varies the width of the strokes as the depthwithin
an objectvaries. This provides a simple cue to the foreshortening
of different parts of the mesh, similar to an effect demonstrated
by Gooch [6]. Every frame, we compute the frame-bufferz-value
bounds of each mesh,zmin andzmax. We would like to scale the width
of each stroke vertexv based on its depth,zv, so that the foremost
vertices are scaled by a factor 1 +S, and the rearmost vertices by
1− S. We compute the scalefv for vertexv as

fv = max(0, 1 +S
zmax + zmin− 2zv

zmax− zmin
) where 0� S� 1

and multiply the width ofeach vertex by it. UnlikefD, this fv varies

linearly with depth to enhance the localized, intra-object perspec-
tive hint.

7 Discussion

In the end, the success of any non-photorealistic rendering system
rests on the quality of its final rendered images. We find our view-
dependentstroke framework robust, fast, and very flexible for creat-
ing effective real-time illustrations. Similar uses of tapering artistic
strokes can be found in the pen-and-ink work of Salisbury, Winken-
bach, Salesin and others [17, 18], and previous work here at Brown
University [11, 9, 3].

The results of using our artistic stroke renderer to depict the paths
found by our silhouette-extraction algorithm are shown in Figures 1
and 9 - 12. Figures 11 and 12 can be found in the Color Plates sec-
tion. These examples range from simple outlines to highly stylized
brushwork, giving an idea of the flexibility offered.

Our system is fast enough for interactive use. On a high end Sun
workstation, our frame rate varies from about 2 fps for scenes like
the house in Figure 9 with many silhouettes, to 10 fps for simpler
models like the frog hand or the sandal (Figures 10 and 1). An-
tialiasing our stroke primitives greatly enhances image quality, es-
pecially noticeable in frame-by-frame renderings (see theaccompa-
nying animations for examples). However, animations of the scene
in Figure 12 reveal small, unwanted strokes that sometimes appear
in regions of negative curvature. In these cases, our visibility and
placement algorithms have decided to render edges that we find
unattractive. It is possible that we could create additional tests to
filter out these edges, but this is left as future work.

Another limitation of our algorithm is that it does not make any at-
tempt to remember where it drew silhouettes in previous frames,
much less how it parameterized the stylizations used in those
strokes. This was a conscious decision in order to simplify and
speed our algorithm. We gain some degree of coherence from our
reliance on mesh structure, and provide line styles which hide in-
consistencies between frames. For styles with uniform line char-
acter, such as in Figure 10, we can produce smooth, temporally-
coherent animations, but for animations of styles in which each
stroke is more noticeably varied, such as in Figure 12, lack of inter-
frame coherence is often distracting. For high frame-rates, this ran-
domness becomes much more noticeable, but in some cases it can
become a desirable aesthetic effect [4].
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Figure 10 A frog hand. Stroke width varies as a depth cue.

8 Future Work

We know of related algorithms that have attempted to provide con-
trol over inter-frame coherence, notably the work of Bourdev [2],
and Masuchet al. [13, 14]. One possible direction for future work
would integrate the control afforded by these algorithms with the
aesthetic details of our present work.

One of the advantages of our algorithm is that it works for arbitrary
closed meshes, but often we would like to include detail that has
been previously annotated by a user. We cannot expect an algorithm
to choose the “right” strokes to draw a scene because there is no
way to decide what those strokes would be. For a realistic renderer,
thereis a verifiable standard of what the right answer should look
like: the real world.

However, a non-photorealistic/art-based rendering system should
not impose the standards of the “real world” on our images. Like
traditional artistic media, such a system should allow the user the
possibility of expressing anything she wants, in any way she wants.
It is our hope that the work presented in this paper provides tools
that will help realize this goal, but much work still needs to bedone
before an artist will feel at home using such a system.

9 Acknowledgements

We thank Jun Ohya and Ryohei Nakatsu of ATR Labs for invalu-
able advice and support. This work is supported in part by the NSF
STC for Computer Graphics and Scientific Visualization, Adobe,
Advanced Network and Services, Alias/Wavefront, Department of
Energy, IBM, Intel, Microsoft, National Tele-Immersion Initiative,
Sun Microsystems, and TACO.

References

[1] OpenGL Architecture Review Board.OpenGL Reference Manual,
2nd Edition. Addison-Wesley Developers Press, 1996.

[2] Lubomir D. Bourdev. Rendering Nonphotorealistic Strokes with Tem-
poral and Arc-Length Coherence. Master’s thesis, Brown University,
May 1998.

[3] Jonathan M. Cohen, John F. Hughes, and Robert C. Zeleznik. Harold:
A World Made of Drawings. InProceedings of the First International
Symposium on Non Photorealistic Animation and Rendering (NPAR)
for Art and Entertainment, June 2000. Held in Annecy, France.

[4] Cassidy Curtis. Loose and Sketchy Animation. Siggraph ’98 Techni-
cal Sketch, 1998.

[5] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A Non-
Photorealistic Lighting Model for Automatic Technical Illustration.
Proceedings of SIGGRAPH 98, pages 447–452, July 1998. ISBN 0-
89791-999-8. Held in Orlando, Florida.

[6] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and
Rich Riesenfeld. Interactive Technical Illustration.1999 ACM Sym-
posium on Interactive 3D Graphics, pages 31–38, April 1999. ISBN
1-58113-082-1.

[7] S. C. Hsu, I. H. H. Lee, and H. E. Wiseman. Skeletal Strokes. In
Proceedings of UIST ’93, pages 197–206, November 1993.

[8] Siu Chi Hsu and Irene H. H. Lee. Drawing and Animation Using
Skeletal Strokes.Proceedings of SIGGRAPH 94, pages 109–118, July
1994. ISBN 0-89791-667-0. Held in Orlando, Florida.

[9] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bour-
dev, Ronen Barzel, Loring S. Holden, and John Hughes. Art-Based
Rendering of Fur, Grass, and Trees.Proceedings of SIGGRAPH 99,
pages 433–438, August 1999. ISBN 0-20148-560-5. Held in Los An-
geles, California.

[10] Lee Markosian. Art-based Modeling and Rendering for Computer
Graphics. PhD thesis, Brown University, May 2000.

[11] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D.
Bourdev, Daniel Goldstein, and John F. Hughes. Real-Time Nonpho-
torealistic Rendering.Proceedings of SIGGRAPH 97, pages 415–420,
August 1997. ISBN 0-89791-896-7. Held in Los Angeles, California.

[12] Lee Markosian, Barbara J. Meier, Michael A. Kowalski, Loring S.
Holden, J. D. Northrup, and John F. Hughes. Art-based Rendering
with Continuous Levels of Detail. InProceedings of the First Inter-
national Symposium on Non Photorealistic Animation and Render-
ing (NPAR) for Art and Entertainment, June 2000. Held in Annecy,
France.

[13] Maic Masuch, Stefan Schlechtweg, and Bert Sch¨onwälder. daLi! -
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Figure 11 A simple office scene.

Figure 12 This trumpet demonstrates the use of texture-mapping to create soft strokes.
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Abstract

We present an interactive system for creating pen-and-ink illustra-
tions. The system usesstroke textures—collections of strokes ar-
ranged in different patterns—to generate texture and tone. The user
“paints” with a desired stroke texture to achieve a desired tone, and
the computer draws all of the individual strokes.

The system includes support for using scanned or rendered images
for reference to provide the user with guides for outline and tone.
By following these guides closely, the illustration system can be
used for interactive digital halftoning, in which stroke textures are
applied to convey details that would otherwise be lost in this black-
and-white medium.

By removing the burden of placing individual strokes from the user,
the illustration system makes it possible to create fine stroke work
with a purely mouse-based interface. Thus, this approach holds
promise for bringing high-quality black-and-white illustration to the
world of personal computing and desktop publishing.

CR Categories and Subject Descriptors:I.3.2 [Computer Graph-
ics]: Picture/Image Generation - Display algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques - Interaction tech-
niques; I.4.3 [Image Processing]: Enhancement.

Additional Key Words: Comprehensible rendering, non-photorea-
listic rendering, prioritized stroke textures.

1 Introduction

Pen-and-ink is an extremely limited medium, allowing only individ-
ual monochromatic strokes of the pen. However, despite the limita-
tions of the medium, beautiful pen-and-ink illustrations incorporat-
ing a wealth of textures, tones, and styles can be created by skilled
artists. Indeed, partly because of their simplicity and economy, pen-
and-ink illustrations are widely used in textbooks, repair manuals,
advertising, and many other forms of printed media.

Part of the appeal and utility of pen-and-ink illustrations is that they
can be easily printed alongside text, using the same ink on the same
paper, without any degradation. For the same reasons, pen-and-ink-
style illustrations could also be useful in the domain of desktoppub-
lishing and laser printers—especially if the illustrations were gen-
erated and manipulated directly on a computer.

While the problem of painting full-color images on a computer has
received considerable attention in the computer graphics commu-
nity, the requirements of an interactive pen-and-ink-style illustra-
tion system are different enough to merit special study. Pen-and-ink
illustrations have two major properties that distinguish them from
other art media:

1. Every stroke contributes both tone (darkness) and texture.Since
tone and texture are not independent parameters, the pen artist
must take care to convey both of these qualities simultaneously.

2. Strokes work collectively.In general, no single stroke is of critical
importance; instead, strokes work together to express tone and
texture.

This paper describes an interactive pen-and-ink-style illustration
system. The overall goal of the system is to enable a user to easily
generate effective and attractive illustrations directly on a computer.
In this work, we are not concerned with creating purely computer-
generated images; rather, the computer is utilized as a tool to en-
hance the speed and ease with which a user can create illustrations.

The interactive illustration system allows a variety of texturing in
order to achieve the same range of style and expressive ability that
is possible with a physical pen and ink. We do not want to limit the
user to any specific algorithmic “look.”

The system places a particular emphasis on using continuous-tone
images as a reference for the user, and thus provides a form of “in-
teractive digital halftoning” in which the user can introduce texture
as an integral part of the resulting illustration. In this sense, the vi-
sual artifacts that are necessarily produced in quantizing a greyscale
image can be given an artistic or expressive nature. Also, of practi-
cal significance, photocopying does not degrade pen-and-ink-style
images to the same extent as conventionally-halftoned images.

1.1 Background: Pen-and-inkillustration

We give here a brief description of some of the salient features
and terminology of hand-drawn pen illustration, relevant to the de-
sign of an interactive system. For further discussion and instruc-
tion, interested readers should consult Guptill [6], a comprehen-
sive text on pen and ink illustration. In addition, Simmons [16]
provides instruction on illustrating using a “technical pen,” which
draws strokes of constant width. Both books contain dozens of stun-
ning examples.A discussion of pen-and-ink principles as they relate
to purely computer-generated imagery can be found in Winkenbach
et al. [20].

Because texture in anillustration is the collective result of many pen
strokes, each individual stroke is not critical and need not be drawn
precisely. Indeed, a certain amount of irregularity in each stroke is



desirable to keep the resulting texture from appearing too rigid or
mechanical.

The most commonly used textures include:hatching, formed by
roughly parallel lines;cross-hatching, formed by overlapped hatch-
ing in several directions; andstippling, formed by small dots or very
short lines. Textures can also be wavy, scribbly, or geometric and
can appear hard or soft, mechanical or organic.

The perceived grey level ortonein an illustration depends largely on
how dense the strokes are in a region (just like the dots in a dithered
halftone image). Although grey-level ramps can be achieved by ju-
diciously increasing stroke density, fine-art illustrations typically
emphasize contrast between adjacent regions, and often employ a
very limited number of distinct grey levels.

Shapes in an illustration can be defined byoutline strokes. These
strokes are exceptional in that they may be long and individually
significant. Often the outline is left implicit by a change in tone
or texture. The choice of whether or not to use outlines is largely
an aesthetic one, made by the artist, and used to achieve a particu-
lar effect. For example, explicit outlines are typically used for hard
surfaces, while implied outlines generally convey a softer or more
organic object.

Producing fine-art-quality, hand-drawn pen-and-ink illustrations re-
quires a great deal of creativity and artistic ability. In addition, it
requires a great deal of technical skill and patience. A real pen and
ink have no undo!

1.2 Related work

Most of the published work on “digital painting” is concerned with
the problem of emulating traditional artists’ tools. Only a few of
these works take an approach similar to ours of creating higher-level
interactive tools that can produce the same results as their prede-
cessors: Lewis [10] describes brushes that lay down textured paint;
Haeberli [7] shows how scanned or rendered image information can
be used as a starting point for “painting by numbers;” and Haeberli
and Segal [8] use hardware texture-mapping for painting and also
mention 3D halftoning effects.

Considerable work has also been done for creating black-and-
white illustrations, generally for engineering or graphical design
work. The earliest such system was Sutherland’s “Sketchpad” [18].
Gangnet et al. [5] use planar decomposition to manipulate and clip
geometric objects.Pavlidis [11] provides a method for “cleaning up”
schematic drawings by removing hand-drawn irregularities. Quite
the opposite (and more along the lines of our work), the Premisys
Corporation markets a commercial product, “Squiggle,” [13] that
adds waviness and irregularities to CAD output to augment lines
with extra information and to make the results appear more hand-
drawn. Saito and Takahashi [14] produce automated black-and-
white illustrations of 3D objects.

Our research group is exploring several different aspects of the pen-
and-ink illustration problem. This paper discusses the issues of in-
teractively creating pen-and-ink illustrations, with an emphasis on
using 2D greyscale images as a starting point. A second paper shows
how principles of illustration can be incorporated into an automated
system for rendering 3D models [20]. A third paper examines the
issues involved in representing, editing, and rendering the individ-
ual strokes that are the building blocks of any line illustration sys-
tem [4].

Figure 1:A closeup view of several individual pen strokes, with var-
ious amounts of curve and waviness.

1.3 Overview

The next section discusses the overall design of our system, as well
as its individual capabilities and features. Section 3 presents some
example illustrations and describes our experience with using the
system. Section 4 suggests directions for future research. The pri-
mary data structures and algorithms of our prototype implementa-
tion are outlined in appendix A.

2 The Illustration System

Full-color paint systems often support direct simulations of tradi-
tional artist tools, such as brushes and paint [3, 17]. However, for
our application, there is little purpose in providing the user with a
simulated “ink pen” to draw the pen strokes, for several reasons:

� A mouse-based interface does not support the fine control needed
for detailed stroke work.

� The strokes of an illustration are not of great individual impor-
tance.

� Drawing individual strokes is tedious, and we would like our sys-
tem to reduce much of that tedium.

Thus, rather than focus on the individual strokes, the system tries to
directly support the higher-level cumulative effect that the strokes
can achieve: texture, tone, and shape. The user “paints” using tex-
tures and tones, and the computer draws the individual strokes.

The illustration system cannot completely ignore individual strokes,
however. Outlines are the most notable example of strokes that have
individual significance; in addition, an artist might occasionally
need to touch up fine details of textured work. Therefore, the system
also allows users to draw individual strokes and provides controls
for modifying stroke character through smoothing and through the
substitution of various stroke styles [4].

To further aid users in creating illustrations, the system allows
scanned, rendered, or painted images to be used as a reference for
tone and shape. The system also supports edge extraction from im-
ages, which is useful for outlining. Finally, a range of editing ca-
pabilities is supported so that users are free to experiment or make
mistakes.

The following sections discuss the capabilities and workings of the
system in greater detail.

2.1 Strokes

It is important that the strokes automatically generated by the sys-
tem be irregular. Uneven strokes make an illustration look softer,
more natural, and hand-drawn, whereas regular strokes introduce
mechanical-looking texture. The use of irregular strokes can be
compared to the introduction of randomness in image dithering [19].



Figure 2:Assorted stored stroke textures.

Figure 3:A single texture drawn with several tone values.

We cannot simply draw strokes in completely random directions,
however—the stroke direction is one of the key elements in defin-
ing a texture. Instead, the system perturbs the strokes in a variety of
small ways (see Figure 1): strokes can be drawn with a slight wig-
gle (a wave with slightly randomized frequency and phase); straight
strokes can be given a slight overall curvature; and stroke length and
direction can be jiggled slightly. Section A.3 describes the stroke-
drawing algorithm in greater detail. Currently, strokes in our system
are each of constant width, as per a “technical pen” [16].

2.2 Textures

The user paints by rubbing a “brush” over theillustration; the strokes
that appear in the region under the brush are generated based on
a user-selectedstroke texture(see Figure 2). The system supports
a library of user-definedstoredstroke textures, as well as several
built-in proceduralstroke textures. In this way, a wide variety of il-
lustration styles can be achieved. These two types of stroke textures
are described in more detail below.

Stored stroke textures

A stored texture is simply a collection of strokes. Drawing a texture
at a given darkness is a matter of choosing from the collection a sub-
set that has enough strokes to reach the desired tone. (Some textures
may be inherently too light—they may not have enough strokes to
make dark tones.)

For textures such as stipples and scribbles, the choice of strokes to
draw for a given tonality is not critical. In these cases, the system
simply selects strokes from the texture in a random sequence, gen-
erating candidate strokes and testing the tonal effect of candidate
strokes as described in Section A.3. Candidate strokes that pass the
tests are drawn, and those that fail are discarded (see Figure 3).

For other textures, however, the system supports a predefinedpri-
ority for each stroke, which specifies an order to use in generating
and testing candidate strokes. For example, Figure 4 illustrates a
texture in which only horizontal hatches are drawn for light tones,

Figure 4:A prioritized texture. Only the most significant strokes are
drawn for light tone values; less important strokes are brought in to
darken the texture.

while cross-hatching strokes are used for darker tones. Another ex-
ample would be a texture in which larger scribbles are drawn before
smaller ones.

Creating a good prioritized stroke texture is not always easy—some
design iteration may be required before the strokes and their prior-
ities work well together. Once a texture has been created and per-
fected, however, it can be archived for repeated use. The system lets
the user draw textures interactively and can also support textures
that are computed programmatically or that are taken from edges
extracted from scanned images.

Procedural stroke textures

Many interesting texture effects can be computed procedurally. The
system currently supports three types of procedural texturing: stip-
pling (randomly distributed points or short strokes), parallel hatch-
ing, and curved strokes. The latter two textures can follow along or
against the gradient of a reference image. Since these are the only
textures truly built into the system, they are the basic building blocks
from which user-drawn stored textures are formed.

To draw procedural stroke textures, the system simply generates ap-
propriate candidate strokes under the region of the brush and tests
them, as discussed in detail in Section A.3. More intricate priori-
tized procedural stroke textures, such as “brick,” “wood,” or “shin-
gle” textures, can also be defined [20], although they are not cur-
rently implemented in our interactive system.

2.3 Reference images

A scanned, rendered,or digitally painted continuous-tone image can
be underlaid “beneath” theillustration being drawn, and displayed
faintly. This reference image can be used in several ways (see Fig-
ure 5):



Figure 5:Using a grey scale image for reference. Left to right: Orig-
inal grey scale image; extracted edges; curved hatching across the
gradient.

� As a visual reference for the artist.

� As a tone reference for painting, in which case the texture dark-
ness will match that of the image.

� As a source image from which edges are extracted to use for out-
lining and clipping. The user can select edges corresponding to
versions of the image at various resolutions.

� As a progenitor ofstencils. The user can interactively define sten-
cils by specifying ranges of intensities in the reference image;
strokes are drawn only where the reference image value is within
the specified ranges.

� As a reference for determining stroke and texture orientation.
Textures that follow the reference gradient can be particularly
useful for conveying curved surfaces.

Note that its extensive support for reference images makes the il-
lustration system a particularly effective tool for interactive digital
halftoning. However, it does not provide automatic halftoning—it
is up to the user to choose which stroke textures to apply, where to
apply them, and how dark to make them, based on the user’s intent
and aesthetic sense for the final illustration. One could imagine an
automated system to extract texture from an image, but there is not
always enough information in the image to achieve the desired ef-
fect. For example, the original reference photograph for the goose
in Figure 9 does not show feathers in any great detail; the artist must
choose textures and introduce tone variation to convey the sense of
feathering.

2.4 Detail manipulation

The illustration system supports multiresolution curves [4], allow-
ing users to add or remove detail from strokes and edges. For ex-
ample, an illustration can be initially made using smooth strokes,
which can later be adjusted in subtle or not so subtle ways, using a
variety of wiggly or scribbly detail. Alternatively, detail can be re-
moved from an edge extracted from the tone reference in order to
yield smoother outlines (see Figure 6).

2.5 Clipping

The user can specify outlines, which may or may not be drawn in
the final illustration, but against which strokes (and stroke textures)
are clipped. Outlines can be drawn by hand or can be taken from
edges in reference images.

Just as individual strokes should not be too regular, the clipped ends
of textures should in general be slightly ragged. The system intro-
duces a small amount of random variation by clipping strokes too
soon or allowing them to spill beyond the edge of the clipping region
(see Figure 7).

Figure 6:Manipulating curve detail. Left to right: Teapot edges from
Figure 5, with detail removed;alternate details applied to the curves.

Figure 7:Strokes clipped to an outline. Left: The outline is drawn.
Center: The outline has been removed; notice the hard edge caused
by exact clipping. Right: A small amount of random sloppiness cre-
ates a softer edge.

2.6 Individual strokes

Sometimes individual strokes are important enough to be drawn by
hand; for example, the hairs in Figure 11 were individually created.
The user can draw individual strokes with a mouse or with a tablet.
These strokes can be given waviness and clipped in the same man-
ner as automatically-generated strokes. To overcome the mouse’s
lack of smoothness, unwanted detail can be removed via the mul-
tiresolution curve mechanism, or prestored “artistic” irregularities
can be introduced, as described in Section 2.4.

2.7 Editing collections of strokes

In addition to modifying individual strokes, the user can edit collec-
tions of strokes. Editing operations can be applied to all strokes, to
those generated from a given texture, or to strokes selected interac-
tively.

Perhaps the most interesting editing operation is the “lighten” op-
eration. Rather than simply erasing all strokes under the brush,
“lighten” incrementally removes strokes. Thus, a textured region
that is too dark can be made lighter without destroying the integrity
of the texture, instilling pen-and-ink with qualities of a subtractive
medium. For example, in the lower left-hand drawing of Figure 8,
the mottled effect in the background was created by painting a cross-
hatch texture to a uniform darkness, then slightly lightening in a few
places with touches of the brush.

3 Results

The pen-and-ink illustration system is implemented in C++ and runs
at interactive speed on an SGI Indigo2 workstation, without any ad-
ditional hardware assistance. The system has proven quite success-
ful at assisting users in easily producing a variety ofillustrations.
All figures in this paper were drawn using the illustration system;
only a few minutes were required for the simplest figures, and a few
hours were required for the goose in Figure 9. All figures were out-



Figure 8:A single scene, drawn in a variety of styles. Pitz [12] suggests drawing this scene with varying styles, as an exercise for student
illustrators. The three drawings on top and left are attempts to closely follow examples given in thebook, while the lower right is our own
stylistic expression. The illustrations were created using an image of a simple 3D model as a tone reference.

put in PostScript by our system and printed with the text on a GCC
SelectPress 1200dpi printer.

To test the range and quality of the system, we chose to tackle exer-
cises and mimic drawings from illustration texts. Figures 8, 9 and 10
show some of the results. We must admit that the target pen-and-ink
drawings in the textbooks are generally finer than ours. However,
when we consider that our illustrations were made on a bitmap dis-
play, using only a mouse, by programmers who are not trained il-
lustrators, and in a matter of minutes for the simpler drawings, we
find our results very encouraging.

4 Future work

The illustration system we have built suggests a number of areas for
future research:

� Experimenting with better interaction techniques.The control
panel of our prototype system has a button or slider for nearly ev-
ery low-level operation and parameter in the program and hence
is somewhat cumbersome to use. A better interface would pro-
vide support for commonillustrator techniques, such as haloed
outlines and stippled edges. In addition, we would like to explore
adding much higher-level controls for producingillustrations, in-
cluding commands to “increase contrast” or “focus attention” on
certain regions of the illustration.

� More sophisticated strokes and stroke textures.Our simple pro-
cedural and stored textures do not yet provide all of the subtlety
and variety available to the pen. For example, we would like to
include the ability to vary the thickness along a stroke, which is
supported in other pen-and-ink work [4, 20].

� Resolution-independence.The user should be able to work at a
convenient screen resolution, while the final output should have
strokes drawn with the highest resolution the printer can support.
However, changing resolution in a naive fashion may change the
appearance of strokes and stroke textures in undesirable ways.
We would like to explore methods of storingillustrations not as
collections of strokes, but as higher-level descriptions of tone,
texture, and clipping information that could be used to generate
the image appropriately at any arbitrary resolution.

� Combining with 3D.We would like to interface our interactive
system with an automatic renderer for creating pen-and-ink illus-
trations from 3D models [20] to create an integrated interactive
2D and 3D illustration system.
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A Implementation details

This appendix outlines the implementation of our prototype pen-and-ink il-
lustration system. We will focus on the most significant features: the data
structures allowing quick updating and editing of the illustration, and the
stroke generation and testing algorithms.

Section A.1 describes the data types used in the system. Section A.2 presents
the global data items maintained. The process of generating and using
strokes is discussed in Section A.3.



Figure 10:Close-up of the goose head.

A.1 Data Types

The two basic data structures used by the illustration system are thestroke
and thestroke database.

Stroke

The data type at the heart of the system is theStroke. Each stroke includes
the following fields:

� pixels: An arbitrary-size array of(x,y)pixel coordinate pairs.

� l ength: The size of thepi xel s array.

� wi dth: The width of the stroke, in pixels.

� bbox: The rectangular bounding box of the stroke’s pixels.

� i d: The texture from which the stroke was derived.

� pri ori ty: The ranking of a stroke, if in a prioritized texture.

The entries of thepi xel s array contiguously trace the path of the stroke:
x andy never change by more than�1 from one entry to the next.

The operations supported by theStroke type include: testing to see if a
stroke intersects a given rectangular region, circular region, or other stroke;
decreasingl engthby trimming entries off the ends ofpi xel s; merging two
contiguous strokes into a single stroke; and returning the point in the stroke
that is closest to a given pixel.

A stroke can be manipulated as a multiresolution curve [4]. Each entry in
pi xel s is used as a control point of an interpolating spline, which is subject
to multiresolution analysis and can have its detail edited or replaced. The
resulting curve is scan-converted to recover the contiguouspi xel s entries
required by theStroke type.

Stroke database

A stroke database maintains a collection ofStroke instances, supporting
addition and deletion of strokes, and various queries. It is important that
the database operations and queries be quick enough to allow painting and
editing at interactive speed.

We implement the stroke database using a modified k-D tree (see
Sedgewick [15]). Each node of the tree corresponds to a region of the image;
the children of the node partition that region. The partition is always hori-
zontal or vertical and is chosen so as to distribute as evenly as possible the
strokes of a region between the two children. Each leaf node contains a list of
the strokes that intersect its region. For performance purposes, a limit of 10
strokes per leaf and a minimum size of5� 5 pixels per leaf are maintained
(with the area restriction having precedence).

In the modified k-D tree, a given stroke may be referenced by several leaves
since a stroke can cross partitions of the tree. The structure allows us to
quickly find all strokes that may overlap a specified region by the usual re-
cursion along the limbs of the tree that include the region. Minor extra book-
keeping is required when iterating through the strokes in the leaves to ensure
that a stroke is not visited multiple times.

The queries supportedby a stroke database include: finding all strokes within
a given rectangular or circular region; finding all strokes that overlap a given
stroke; and finding the stroke nearest a given pixel. Each query may spec-
ify criteria such as a particulari d value. These queries allow the system to
perform operations such as deleting a stroke and updating the screen as fol-
lows: first, find the stroke nearest the cursor; next, delete the stroke from the
database and erase it from the screen; finally, find all strokes that overlap the
deleted stroke and redraw them.

A.2 Global data objects

The system maintains several global data objects to support the interactive
illustration processes:

� Main stroke database and image bitmap.The illustration is maintained
in a dual representation: a stroke database maintains the collection of
Stroke instances that make up the illustration; and an image bitmap al-
lows the system to quickly determine if a pixel has been drawn by one or
more strokes. When storing to disk, only the stroke database needs to be
saved; the image bitmap can be recreated by traversing the database and
drawing all the strokes.

� Clip-edge databaseand clip-edgebitmap.To allow fast clippingof drawn
strokes to outline edges, the system maintains a global bitmap into which
all clipping edges are drawn (clipping is discussed in Section A.3). The
clip edges can come from edge detection of the reference image or from
freehand drawing. To allow the user to activate and deactivate edges, the
edges are stored asStroke instances in a stroke database.

� Stored stroke textures.The system loads stored stroke textures on de-
mand from a library on disk. A stored texture is defined as a rectangular
region with toroidal wrap-around, so that the texture can seamlessly tile
the illustration plane. Each texture is maintained in the system as a stroke
database. For a prioritized texture, each stroke has an associated priority
value. The stroke database of a stored stroke texture is queried but is not
modified when the texture is used.

� Reference image.The system stores the reference image in memory, al-
lowing quick pixel-by-pixel tone reference and stenciling. Unlike the im-
age bitmap of the illustration, the reference image is an 8-bit greyscale.
When a reference image is loaded from disk, the detected edges in the im-
age are added to a clip-edge database and bitmap. We use a Canny edge
extractor [2] to detect edges at several image resolutions. This potentially
time-consuming processing is only done the first time a given reference
image is used; the resulting edges are saved on disk along with the image,
so that they can be loaded quickly in the future.

A.3 Drawing strokes

The process to “paint” with strokes is similar for the supported procedural
textures—stippling, straight hatching, and curved hatching—and for stored
stroke textures. The following pseudocode outlines this process:

Pai nt:

for each brush positionP
while S  GenerateCandidateStroke(P )

Cl i pStroke(S)

if TestStrokeTone(S) then
DrawStroke(S)

end if
end while

end for

The steps of this process are described below.

☞ GenerateCandi dateStroke(P ): At each brush position P , the system
may in general try to draw many strokes. Each invocation ofGenerate-

Candi dateStroke returns the next stroke instance from a set of candidates.
The next stroke returned may be generated dynamically based on the success
of the previous strokes. The generation of candidate strokes depends on the
texture:



� Stippling.There is only a single candidate: a stipple dot at a random lo-
cation under the brush (chosen with uniform distribution in the brush’s
polar coordinates). The stipple dot is generated as a length 1 stroke.

� Straight hatching.The system tries a sequence of line segments with de-
creasing length, until a segment is drawn or a minimum length is reached.
The midpoint of each stroke is a random location under the brush, and the
direction and initial length are specified by the user. The direction may be
fixed or aligned relative to the gradient of the reference image. The user
may request a small randomization of the direction and length. The user
may also specify that only full-length strokes be used, in which case if
the initial candidate is not drawn, no further strokes are attempted. Each
candidate stroke is a perturbed line segment, generated by the following
pseudocode:

PerturbedLi neSegment(x1; y1; x2; y 2; a; !; c):

; (x1; y 1) and(x2; y 2) are the endpoints of the line segment.
; a is the magnitude and! the base frequency of waviness.
; c is the magnitude of curviness.
; random() value has uniform distribution on[0; 1].
; gaussi an() value has normal distribution on[�1; 1] .
dx  x2 �x1

dy  y 2 �y 1

s  

p
dx2 + dy 2

�  2�! (1 +
1

4
gaussi an())

  
1

2
� gaussi an()

i  0; j  0; �  2�random()

for �  0 to 1 step 1=max( jdxj ; j dy j )

; perturb line with sine waviness and quarter-wave curve.
b  asin(�)=s +c (cos(

�

2
��

�

4
) �1)

pi xel s[ i]  (x1 +�dx +b dy ; y 1 +�dy +b dx)

; occasionally shift the sine wave frequency.
if j � >

�

2
and gaussi an() >

1

3
then

  
1

2
� gaussi an()

j  0

end if
; update for next pixel.
�  � +� +

i ++; j ++

end for

When needed, intermediate pixels are inserted in order to maintain the
contiguity requirement of theStrokes type.

� Curved hatching.Similar to straight hatching, the system tries strokes
of decreasing length until one is accepted. The user specifies the initial
length and direction relative to the reference image gradient. A curved
stroke is generated by following the image gradient as a vector field
(much as was done by Cabral and Leedom [1]) forward and backward
for the given length.

� Stored Strokes.The system queries the texture’s database for a list of
strokes that lie under the brush, modulotiling of the image plane with
the texture. The strokes of the resulting list are tried in priority order for
prioritized textures, or random order for non-prioritized textures. A pri-
oritized texture may be flagged asstrictly prioritized, in which case if a
candidate stroke fails the tone test, the remaining lower-priority strokes
are not considered. Each candidate stroke is generated by translating the
stored stroke’spi xel s to the proper tile in the image. Our system does not
currently add any randomness to the strokes beyond that which was used
when the texture was originally defined. Tiling artifacts are typically not
objectionable if the illustration feature size is smaller than the tile size,
but could be alleviated through random stroke perturbations.

☞ Cl i pStroke(S): The candidate strokeS is subjected to a series of clipping
operations:

1. To the bounds of the overall image.

2. To the brush.Clip the strokes to the brush for stored stroke textures to
give the user a traditional “textured paint.” This clipping step is not per-
formed for procedural textures; in this case, the candidate strokes are
generated starting under the brush but may extend beyond its bounds.

3. To clip-edges.Trace from the center of the stroke out to each end, exam-
ining the corresponding pixels of the global clip-edge bitmap, stopping
when an edge is met.

4. To a reference-image stencil.Trace from the center of the stroke out to
each end, examining the corresponding pixels of the reference image.
Can stop at black, white, or any of a number of user-defined ranges of
image intensities.

The clipping operations return a “first” and a “last” index into the stroke’s
pi xel s array, but before actually trimming the stroke, these indices are per-
turbed up or down by a small random amount to achieve ragged clipping as
described in Section 2.5. The magnitude of the perturbation is adjustable by
the user. If the stroke is clipped to zero length, it can be trivially rejected at
this point.

☞ TestStrokeTone(S): Two tests are performed to see how strokeS affects
the image. First, the stroke’s pixels in the image buffer are tested: if all the
pixels are already drawn, the stroke has no effect on the image and is trivially
rejected. Next, the effect of the stroke on the image tone is determined: the
stroke is temporarily drawn into the image bitmap and the resulting tone is
computed pixel-by-pixel along its length, by low-pass filtering each pixel’s
neighborhood. Depending on the user’s specification, the desired tone may
be determined from the reference image’s value (via similar low-pass filter-
ing along the stroke), or may simply be a constant value. The stroke fails
if it makes the image tone darker than the desired tone anywhere along its
length.

☞ DrawStroke(S): To draw strokeS , its pixels in the image bitmap are set,
the display is updated, and an instance ofS is added to the main stroke
database. For stored stroke textures, the system checks to see if the new
strokeS overlays an existing instance of the same stroke—such an occur-
rence could happen, for example, if the earlier stroke was clipped to the brush
and the user has now moved the brush slightly. Rather than adding the new
stroke, the previously-drawn stroke is extended to include the new stroke’s
pixels in order to avoid overwhelming the data structures. Note that for a new
instance of a stroke to align with a previous instance, any extra randomness
should be exactly repeatable; the values for the stroke perturbations should
be derived from a pseudorandom function over theillustration plane.

Figure 11:An illustrated portrait. The reference image was aphoto-
graph by Douglas Kirkland [9].



Orientable Textures for Image-Based Pen-and-Ink Illustration
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Abstract

We present an interactive system for creating pen-and-ink-style line
drawings from greyscale images in which the strokes of the ren-
dered illustration follow the features of the original image. The user,
via new interaction techniques for editing a direction field, specifies
an orientation for each region of the image; the computer draws ori-
ented strokes, based on a user-specified set of example strokes, that
achieve the same tone as the image via a new algorithm that com-
pares an adaptively-blurred version of the current illustration to the
target tone image. By aligning the direction field with surface orien-
tations of the objects in the image, the user can create textures that
appear attached to those objects instead of merely conveying their
darkness. The result is a more compelling pen-and-ink illustration
than was previously possible from 2D reference imagery.

CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation — Display algorithms. I.4.3 [Image
Processing] Enhancement — Filtering

Additional Key Words: Controlled-density hatching, direction
field, image-based rendering, non-photorealistic rendering, scale-
dependent rendering, stroke textures.

1 Introduction

Illustrations offer many advantages over photorealism, including
their ability to abstract away detail, clarify shapes, and focus at-
tention. In recent years, a number of systems have been built to
produce illustrations in a pen-and-ink style. These systems can
be classified into two broad categories, depending on their input:
geometry-based systems[1, 2, 7, 12, 16, 17, 18], which take 3D
scene descriptions as input; andimage-based systems[10, 13],
which produce their illustrations directly from greyscale images.
The main advantage of geometry-based systems is that—because
they have full access to the 3D geometry and viewing information—
they can produce illustrations whose strokes not only convey the
tone and texture of the surfaces in the scene, but—by placing
strokes along the natural contours of surfaces—they can also con-
vey the 3D forms of the surfaces. Existing image-based systems, on
the other hand, have no knowledge of the underlying geometry or
viewing transformations behind the images they are rendering, and
until now have been able to convey 3D information only by having
a user draw individual strokes or specify directions for orienting
particular collections of strokes across the image.

University of Washington, Box 352350, Seattle, WA 98195-2350
f salisburj mtwongj salesing@cs.washington.edu
�NSF STC for Computer Graphics and Scientific Visualization,
Brown University Site, PO Box 1910, Providence, RI 02912
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Figure 1 The three components of a layer are from left to right
tone, direction, and a stroke example set. An illustration (far right)
is rendered based upon one or more such layers.

Figure 2 A tree with curved strokes for leaves and straight strokes
for branches and trunk.

In this paper, we introduce the notion of “orientable textures” and
show how they can be used to readily convey 3D information in
an image-based system for pen-and-ink illustration. In our interac-
tive system, a user creates an illustration from a reference image
by specifying three components: a greyscaletarget imagethat de-
fines the desired tone at every point in the illustration, adirection
field that defines the desired orientation of texture at every point,
and astroke example set, or set of strokes, to fill in the tone areas
(see figures 1 and 2). Given these three components and a scale
for the final illustration, the system creates anorientable texture—
generated procedurally—that conveys the tone, texture, and forms
of the surfaces in the scene. An illustration is composed of one or
more such layers of orientable textures, allowing an illustration to
be rendered with several, potentially overlapping, types of strokes.

The ability to generate comparable illustrations with an image-
based system rather than a geometry-based system offers several
advantages. First, using an image-based system greatly reduces the
tasks of geometric modeling and of specifying surface reflectance
properties, allowing much more complicated models (such as furry
creatures and human faces) to be illustrated. Second, an image-
based system provides the flexibility of usingany type of physical
photograph, computer-generated image, or arbitrary scalar, vector,
or tensor field as input, allowing visualization of data that is not nec-
essarily even physical in nature. Finally, image-based systems offer
more direct user control: the ability to much more easily modify
tone, texture, or stroke orientation with an interactive digital-paint-
style interface.

Although this paper is, to our knowledge, the first to use ori-
entable textures for image-based pen-and-ink illustration (in which
the strokes must convey not only orientation, but texture and tone),
the idea of orienting strokes for illustration dates back at least as far



as the seminal papers by Saito and Takahashi [11] and Haeberli [6]
in SIGGRAPH 90. Winkenbach and Salesin [17] and Meier [9] also
make use of oriented strokes for geometry-based illustration.

Supporting orientable textures for image-based pen-and-ink illus-
tration requires solutions to several new subproblems, which we
discuss in this paper. These problems include: creating interactive
techniques that facilitate the specification of the kind of piecewise-
continuous vector fields required for illustration; rendering strokes
and stroke textures according to a vector field in such a way that
they also produce the proper texture and tone; and efficiently esti-
mating tone as new oriented strokes are progressively applied.

The next section describes the user interface for specifying the com-
ponents of an illustration. Section 3 discusses the rendering of illus-
trations with oriented textures. Section 4 presents our results.

2 The interactive system

We provide an editor, similar to a conventional paint program, that
allows the user to interactively alter the tone and direction compo-
nents of a layer.1 The user can view and edit arbitrary portions of a
component at varying levels of zoom, superimpose multiple com-
ponents, and paint directions directly on top of the target image. For
an example of the high-level control afforded by our system, refer
to figure 3.

Editing tone.Our tone editor is similar to existing paint programs.
It supports lightening, darkening, and other image-processing op-
erations, as well as painting. The user can load a reference image
and designate it as a “cloning source.” Selected portions of this ref-
erence may then be painted into a given layer’s tone component.
Tone may also be transferred between layers by painting. A nega-
tive cloning brush allows the user to freely and creatively reverse
tonal relationships in a reference image.

Editing direction. Since we represent a direction field as a grid of
direction values, much like an image of pixels, the direction-field
editor is similar to the tone editor.2

The user “paints” directions on the image with a collection of tools,
a few of which we describe here. The basic tool is thecomb, which
changes the directions of pixels beneath the cursor to match the
direction of motion of the cursor. If a user wishes to smooth out
discontinuities in the direction field, there is ablending toolthat
smooths a region of directions by convolving each point under the
brush with a 3� 3 filter.3 There are also various region-filling tools.
One tool lets the user fill a region with a constant direction. Another
providesinterpolated fill: the user draws two curves, after which the
region between them is filled with directions that are tangents of
linear interpolants of the curves. A third providessource fill, which
orients directions away from a selected point.

The current state of the direction field is shown in two ways: first,
a grid of line segment indicators covers the image and everywhere
points in the direction of the field; second, a color-coded direction
image is superimposed on the tone image

Applying the stroke example set.A strokeis a mark to be placed
on the page. Each stroke isoriented, in the sense that it can be ro-
tated to any angle to follow the direction field where it is placed.
The stroke example setis a collection of strokes, all drawn with
respect to the vertical orientation, that serve as prototypes for the
strokes in the final image. Each such stroke is represented as a cubic

1The stroke example set is created in a separate program and can be
loaded by name.

2We represent directions as values from 0 to 255, with 0 down, 128
up, and values increasing counter-clockwise. The resolution of the direction
grid is the same as that of the tone image.

3We filter directions by first converting them into unit vectors,
then performing a weighted sum of those vectors with the weights
(1, 2, 1; 2, 4, 2; 1, 2, 1), and then converting the resulting vector back into a
direction.

(a)

(b)

(c)

(d)

(e)

Figure 3 The steps in specifying the direction field for a paintbrush
illustration. Shown in inset at various stages during the develop-
ment of the illustration are, on the left, the user interface, and on
the right, the corresponding rendered illustration. By default, the di-
rection field is oriented downward. In (a) we see the effect of an in-
terpolated fill between two lines on either side of the brush bristles.
Panel (b) shows the state of the direction field and illustration af-
ter some irregularities were introduced to the bristles by nine coarse
strokes of the direction comb along the length of the bristles, and
thirty fine strokes at the bristle tips. Panel (c) shows the state of the
brush handle after interpolating fills between four curves drawn to
reflect its surface orientation. In (d), the last section of the direction
field covering the metal ferrule has been defined with three interpo-
lating fills. Panel (e) shows the completed brush illustration.

B-spline with knot sequence (0, 0, 0, 1, 2,: : : ,n� 1,n, n, n), mak-
ing it endpoint-interpolating. Thus a stroke example set for “par-
allel hatching” would contain many nearly vertical line segments,
as shown in the third panel of figure 1, while for the leaves in fig-
ure 2, the strokes are wavy to suggest the edges of masses of foliage.
When a stroke is drawn at a point in the illustration, it is rotated so
that the vertical vector in the stroke texture aligns with the direction
vector at that point; it is further warped so that this relation is true
all along the stroke (see Section 3.1).

The repeated use of strokes from the example set to achieve tone
with a specified orientation is a kind of procedural stroke tex-
ture. Non-procedural stroke textures were used by Salisburyet
al. [13, 14]. In this previous work, the textures tiled the plane, and
the stroke selected for drawing at a point was the one that hap-
pened to pass through that point. By contrast, in this new system the
placement of strokes on the final illustration is independent of their
relative position in the texture. Spacing between strokes is instead
maintained indirectly by the rendering system (see Section 3). Dy-
namic placement of strokes is an important feature, for if we have



Figure 4 Magnifying a low-resolution direction field using (left)
a standard symmetric resampling kernel, and (right) the modified
kernel used by Salisburyet al. [14]. The same sharp tone component
was used for both illustrations.

a direction field that diverges (say, for drawing the water spraying
outwards from a fountain) and a stroke texture of parallel straight-
line strokes that we wish to have follow the diverging field, a sim-
ple plane-tiling will not follow the field, and an embedding of the
stroke texture thatdoesfollow the field will be stretched at the di-
vergent end, necessarily causing the strokes to become more sparse.
By contrast, our new method will insert additional strokes as the
field widens, thus maintaining the density. In trade for this, we lose
the texture-wide coherence that was available in our previous work.

3 Rendering

Once the user has specified the three components of a layer (tone,
direction, and texture) our pen-and-ink renderer combines all of the
components of each layer to generate the pen strokes of the final
illustration. The user need only be concerned with the overall high-
level aspects of the illustration such as tone and stroke direction;
the system does the tedious work of placing all the strokes. Besides
providing easy control over essential elements of an illustration,
this separation of components until rendering allows us to produce
illustrations at any size by first rescaling the components and then
rendering, as described by Salisburyet al. [14]. Figure 4 demon-
strates magnification of the direction field that respects edge dis-
continuities.

The rendering process is driven by a notion of “importance.” We
define theimportanceof a point as the fraction of its intended dark-
ness that has not yet been accumulated at that point. By drawing
in order of importance, we make all areas approach their target
darkness at the same rate. Rendering therefore consists, roughly, of
looking for the location with greatest importance, placing a stroke
there, updating an image that records the importance, and repeating,
until the importance everywhere is below a termination threshold.
Each step of the process has subtleties, which are discussed below.

Matching the illustration to the target.We aim to place strokes
in the illustration so that the tone of the illustration “matches” that
of the tone image. Matching is necessarily approximate, because
the illustration is purely black and white, whereas the tone image
is greyscale. To facilitate this approximate matching, we think of
each stroke as adding darkness to aregionof the illustration. More-
over, since strokes in dark areas will be closely spaced and those in
light areas will be sparse, the size of each region must be inversely
proportional to the darkness. One way of spreading the darkness
of a stroke over a region is to blur the image of the stroke when
considering the effect of its darkness. To measure the progress of
our illustration towards the target image, we therefore compare a
blurred version of the illustration with the tone image, where the
blurring consists of applying averaging filters of variable size across
the illustration, with the size increasing with the target lightness in a
region. The diameter of the blurring filter is the same as the average
inter-stroke distance required to achieve the target lightness.

We record our success at matching the illustration to the tone im-
age by maintaining adifference image, updated after each stroke is
drawn, whose value at each pixel is the difference between the tone
image and a blurred version of the illustration. Theimportance im-
age is derived from the difference image; its value at each point is

Figure 5 Stacked books (after illustration by Frank Lohan [8].)

the current difference divided by the initial value of the difference.4

Drawing strokes in the right place.One of the basic rules of pen-
and-ink illustration is that strokes should be placed evenly: close
together in dark areas, widely spaced in light areas [8]. In the com-
putation of the difference image, the importance-image values at
points within some distance of a stroke are lowered when the stroke
is drawn, with points near the stroke being lowered most; the size
of the region affected is determined by the target tone (see Sec-
tion 3.2). This algorithm tends to maintain stroke separation.

To help determine where to draw the next stroke, i.e., the location
with greatest importance, we maintain a quadtree on the importance
image, updated locally whenever a stroke is drawn.

Deciding when to stop.We do not actually try to drive the impor-
tance image to zero: even our filtered version of the strokes cannot
hope to match the values in the tone image exactly. Instead, we try
to drive the importance image to within a narrow tolerance around
zero.5 When the maximum value in the importance image is below
a termination threshold, the renderer declares the illustration com-
plete and stops drawing strokes.

3.1 Drawing a Stroke

The lowest-level activity is the actual drawing of a stroke, in itself
a complex task. Once the algorithm knows where to place it, the
stroke must be oriented, bent, and drawn. It must also be clipped if
extending it further would make the illustration too dark. We dis-
cuss these processes in turn.

Orienting and bending.To start, the algorithm randomly selects
a prototype stroke from the stroke example set. We would like to
map this stroke into the direction field so that, at every point along
its length, the stroke’s new angle relative to the direction field is
the same as the prototype stroke’s angle with respect to the vertical
direction. Since this mapped stroke is not easy to find, we approxi-
mate it by mapping the control hull of the prototype stroke into the
direction field in an angle-preserving way, as described below. This
process produces a mapped stroke that is close to our ideal stroke
and is easy to compute, although it is thecontrol hull of the stroke
that passes through the target point rather than the stroke itself. The
errors thus introduced are small as long as the control hull fits the
stroke closely and the direction field does not change too fast.

To map the control hull into the direction field, we first pin a ran-
dom control pointPi of the stroke onto the target locationX in the

4If the initial difference is zero (i.e., if the target tone is white), the im-
portance is set to zero.

5The storage values 0 to 255 correspond to importance values of�0. 14
to 1.0. This range is a compromise between providing enough resolution in
the positive values to distinguish differences in importance, and allowing
negative values so that slightly overdarkened areas can be accommodated.



Figure 6 A visualization of four quantities from a symmetric tensor
field. The integral curves of the principle-direction field are shown
by strokes; the density of the strokes in each direction is related to
the magnitude of the principle value associated with that direction.

illustration. To find the location ofPi+1, we need to map the points
along the segmentPiPi+1 to locationsi(s) in the illustration, for
0 � s� 1. To definei , let �i denote the angle between the vector
vi = Pi+1�Pi and the vertical; for eachs, we want the angle between
the tangent0i (s) and the direction field ati(s), calledd(i(s)), to
be �i as well. In addition, we want the arclength ofi(s) between
s = 0 ands = 1 to be the length ofvi . In summary, we want

i(0) = X

angle(0i (s), d(i(s))) = �i

k 0i (s) k = k vi k

We solve this set of differential equations numerically, using Euler
integration, and recordi(1) as the place to mapPi+1. We repeat
this process to place the remaining points of the hull. Because our
strokes have many control points, this approach effectively warps
the stroke so that at every point its angle to the direction field in the
illustration is very similar to its angle to the vertical in the stroke
example set.

Clipping. Pen-and-ink artists have various rules for clipping
strokes. One widely-accepted convention is that strokes do not cross
object boundaries or boundaries between semantically different
portions of objects, such as the edges of hard shadows [15]. We ad-
here to this convention by clipping strokes when they reach places
where the direction field turns rapidly.6 Strokes are also clipped
when continuing to draw them would over-darken some region of
the image. If a stroke is sufficiently short and has been clipped for
this latter reason, it is removed altogether—pen-and-ink artists do
not generally use short strokes to fill in every little bit of a dark
area—and the importance value there is set to “below threshold” so
that no further strokes will be draw into that area.

After the stroke is followed as far as possible in each direction from
the pinned location, it is added to the illustration, and the difference
and importance images are updated.

3.2 Updating the difference image

To quickly update the difference image with each added stroke, we
sacrifice accuracy for efficiency through two approximations that
seem to work well in practice.

The first approximation is that instead of blurring the current il-
lustration after adding each stroke and subtracting the result from
the tone image, we subtract a blurred version of the stroke from

6Some automated assistance in detecting object boundaries would be
valuable. We also intend to let the user draw into an “outline image,” which
would be used for both drawing outlines and truncating hatching strokes.

Figure 7 Hair and face (after untitled photograph by Ralph Gibson [3].)

the difference image. This assumption amounts to presuming that
the blurred version of multiple strokes will be the same as the sum
of blurred versions of the individual strokes, which is fine when
strokes do not overlap; when they do, we lighten the blurred ver-
sion of the stroke as described below.

The second approximation is in our computation of the filtered im-
age of a stroke. Instead of rendering the stroke itself, we render
its control hull as a wide blurry line. The widthw is computed
as 2h=t mm, whereh is the stroke thickness (in mm) andt is the
desired tone value between 0.0 (white) and 1.0 (black), and then
clamped to the range 1–10 mm. We use Gupta-Sproull antialiased
line drawing [4], but we supply the algorithm with a modified
“darkness look-up table,” whose width is as specified above, and
whose height is twice the reciprocal of the width.7 If the strokes
are drawn with even spacingw, a nearly-constant blurred tone of
average valuet results. In our Gupta-Sproull computation, we treat
neither the endpoints nor major-axis-direction changes as excep-
tional cases. In practice, these simplifications seem to have had no
discernible effect.

Overlapping strokes and darkness adjustment.For light areas in
the final illustration, strokes rarely overlap, whereas in dark areas
they will often overlap. If each stroke in a dark region is counted
as contributing as much darkness as a comparable stroke in a
light area, the dark-area strokes will be overcounted: points where
strokes cross will count as having been darkened twice or more. We
therefore compute alightening factor, which is a function of tone
and the stroke example set. These lightening factors are computed
in a preprocessing step: we draw many strokes into a buffer and
record the buffer’s darkness after each stroke. When we finish, we
will know that, for instance, in an area of 50% grey, only 90% of
the pixels drawn end up being visible; the rest overlap with other
black pixels. In that case, when filling a region with a target tone
of 50% grey, we would reduce the darkness of the filtered strokes
to 90% before adding them to the blurred image, assuming that on
average only 90% of their area does not overlap with other strokes
in that region and will therefore actually contribute darkness to the
illustration.

This approximation is not only faster than drawing-then-blurring,
it also allows us to render a new stroke directly into the difference
image without using a separate buffer. The lightening factor de-
scribed above is incorporated into the “darkness look-up table” so
that each stroke is drawn by looking at the underlying target tones.
These tones determine which portion of the darkness look-up table

7For width w, heighth and distance from stroke centerx, the look-up

value is (0.884/h)e�2.3(x=w)2 , which is simply a bump function that tapers to
nearly zero.
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Figure 8 A teapot at three different scales (after illustration by Arthur Guptill [5].)

to use, and the values found there are directly incorporated into the
difference image.

3.3 Output enhancements

The strokes to be drawn are deposited in a PostScript file, along
with an interpreter that converts B-splines into drawable PostScript
Bézier segments. We can also add two “stroke character” enhance-
ments to the B-splines before printing (see the stroke detail inset of
Figure 9).

The first enhancement is to render strokes with variable width.8

Each stroke has three widths associated with it—one at each end
and one in the middle. These widths are adjustable on a per-layer
basis from the editing interface, and impart subtle expressive ef-
fects. Tapering the ends of strokes is ideal for rendering hair, but
inappropriate for rendering hard shadows, for example.

The second enhancement is the addition of small “wiggles” to
strokes more than 5mm long, to simulate a hand-drawn appear-
ance. This effect is achieved by first resampling the control hull
(except for the endpoints, which we copy), placing points with ran-
dom spacing of about 4mm�1mm. We then randomly perturb each
interior control point slightly along the angle bisector of its two ad-
jacent sides, and perturb the two end control points both along and
orthogonal to the control hull segments that they terminate. In the
current system, the perturbations are uniformly distributed between
�0.15mm and 0.15mm.

4 Results

The pen-and-ink illustration system was written in two linked parts:
the user interface was written in C++, and the rendering engine was
written in Modula-3. The interface runs at interactive speed, and the
pen-and-ink renderer takes a few minutes to render the illustrations
presented here (see Table 1).

We have produced several illustrations to test the capabilities of our
system. Figures 5 and 8 are attempts to closely follow examples
of real pen-and-ink drawings from illustration texts. Figure 8 also
shows that our system can rescale illustrations while maintaining
the character of their texture.

8The adjustments that are made are ignored in the computation of
darkness—they are to be thought of as merely embellishments.

Fig Content % Reduction # Strokes Time (sec)
5 Books 58 16722 258
6 Vectors 35 665 25
7 Hair/Face 79 37618 788
8a Teapot small 65 2924 50
8b Teapot 65 8361 77
8c Teapot closeup 65 13617 200
9 Raccoon 62 55893 960

Table 1 Illustration statistics and rendering timings measured on a
Silicon Graphics workstation with a 180MHz R5000 processor.

Figure 6 shows a way of visualizing measured or computed vector
fields using our system. It was created by bypassing the interac-
tive stage of the system and feeding directions and tones directly
into the renderer. Figures 7 and 9 show our ability to render non-
smooth, difficult-to-model surfaces such as hair and fur. Our stroke
lengths are approximately 1–10cm in the original PostScript ren-
dering. This scale is similar to that at which pen-and-ink artists typ-
ically work. These artists often reduce their work for final presen-
tation to achieve a finer, more delicate feel. We have done the same
with our illustrations; the reductions are reported in Table 1.

5 Future work

Our current system suggests two principle areas for future research.

Interactive illustrations.Currently the user interacts with the com-
ponents of the underlying representation of the illustration. It would
be nice for the user to have the option of interacting instead with
the pen-and-ink illustration itself. Modifications to the illustration
would be immediately reflected by corresponding changes in the
tone or direction. While previous interactive systems [13] have al-
lowed the user to directly manipulate the illustration, they do not—
as does our system—allow the user to specify abstract high-level
attributes of the illustration, and thus are not required to make a
large number of changes as the result of a simple user action. With
our system, changing the directions underneath the cursor can eas-
ily require removing and reapplying hundreds of strokes. Much of
the incremental update mechanism needed for such behavior is al-
ready supported by our system, but we currently would require a
considerable increase in rendering speed to make such an interface
responsive enough to be usable.



Figure 9 Raccoon with detail inset showing stroke character.

Coherent textures.Many pen-and-ink drawings make use of tex-
tures such as bricks or shingles or fabrics that require strokes to
appear in locally coherent patterns. Many artists also draw small
groups of parallel hatches together in coherent clusters when fill-
ing in large areas of tone. We would like to support these kinds
of coherent textures in our illustrations. The biggest difficulty is in
dealing with diverging direction fields, since it is not obvious how
to maintain local coherence and scale while following such a field
without tearing the texture at some point.
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Weighted Voronoi Stippling
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Figure 1: Artist’s posable figures with approximately 1000 stipples each

Abstract

The traditional artistic technique ofstippling places small dots of
ink onto paper such that their density give the impression of tone.
The artist tightly controls the relative placement of the stipples on
the paper to produce even tones and avoid artifacts, leading to long
creation times for the drawings.

We present two non-interactive techniques for generating stipple
drawings from grayscale images using weighted centroidal Voronoi
diagrams. An iterative technique acts on input images directly
to produce high-quality stipple drawings and a real-time approach
uses precomputed dot distributions to stipple images quickly.

CR Categories: I.3.3 [Picture/Image Generation]: Display al-
gorithms I.3.4 [Graphics Utilities]: Paint systems I.3.5 [Compu-
tational Geometry and Object Modelling]: Geometric algorithms,
languages and systems

Keywords: Non-photorealistic rendering, stippling, Voronoi dia-
grams

1 Introduction

Stippling as a technique came into existence to give artists con-
trol over the half-toning processes used when printing images in
books was a new and difficult task [Jastrzebski 1985]. The tech-
nique consists of carefully placing many small dots of ink on paper
to approximate different tones. Stipples are placed closer together
to form dark regions and further apart to form lighter regions. The

∗ajsecord@cs.ubc.ca, http://www.cs.ubc.ca/˜ajsecord

stipples must be placed evenly yet randomly so that the human eye
does not see spurious patterns that are not a part of the intended
impression. The stipples may vary in size and occasionally shape
to convey subtle details.

The original advantage of stippling was its ease of reproduction.
The half-toning used to print images in books was of highly vari-
able quality and often drawings were drastically resized to meet
space requirements. While normal drawings suffered from such
treatment stipple drawings retained their attributes more faithfully.
In addition, printing a stippled drawing requires only the ability
to produce dots of a single colour, making it an inexpensive tech-
nique [Wood 1994].

However, stippling has significant artistic merit independent of
its utility. The stipples can represent fine detail and texture with
little cost in complexity. Stippling is particularly good at clearly
representing smooth, rounded objects without sharp edges and so is
often used in medical and archaeological texts.

We wish to generate stipple drawings from images with as lit-
tle user input as possible. The goal is to develop a tool which
can generate high-quality stipple drawings from any source whatso-
ever, which implies that we use images as input and not 3D models.
While this limits the amount of information we have to work with,
it allows us a greater variety of input sources. For example, a user
could start from a scanned pencil sketch, a photograph, the output
of a 3D interactive application, frames of an animation, etc.

One of the features of a good stipple drawing is that the stipples
arewell-spaced, that is, the stipples do not clump together, leave
uneven voids, or form unwanted patterns. The artist achieves this by
carefully placing each stipple onto the page, explaining why stipple
drawings often take weeks to create by hand.

Central to our approach is the use of centroidal Voronoi diagrams
to produce good distributions of points, as explained in Section 2.1.
These distributions can be pre-computed for various different con-
stant tonal values and accessed at run-time to generate stipple draw-
ings rapidly, as covered in Section 4. Alternatively, the input image
can be used directly as a weighting function to create a distribution
of points that approximate its tones. This method produces images
of higher quality but takes more processing time, as explained in
Section 3.
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1.1 Related Work

Our iterative method is a direct descendant of the one described
in Deussen et al. [2000]. Their method generates stipple drawings
by first placing stipples roughly using a dithering algorithm on the
input image and then relaxing them using Lloyd’s algorithm un-
til they are well-spaced. Lloyd’s algorithm was first introduced to
computer graphics by McCool and Fiume in [1992] for the gener-
ation of sampling point sets. Lloyd’s algorithm and the resulting
centroidal Voronoi diagrams are explained in section 2.2. However,
Deussen et al.’s relaxation step does not take into account the un-
derlying image, resulting in a blurring of image boundaries. The
blurring occurs because the relaxation process attempts to space
out closely-packed stipples and compress widely-spaced stipples.
Since their tool was designed for interactive use with an artist, they
solved this problem by having the user confine sets of stipples to
fixed regions, which are aligned to important image boundaries.
Since the stipples are not allowed to cross the region boundaries
during relaxation, the most important edges are preserved. We wish
to find an algorithm that will maintain image boundaries without
human interaction.

Hausner [2001] uses an approach similar to our iterative tech-
nique outlined in Section 3 for aligning the rectangular tiles of a
decorative mosaic. Their approach differs significantly from ours
in that they must align the tiles’ orientation in addition to their po-
sition. However, edges that are to be preserved by the algorithm
must be entered separately by the user. This makes the algorithm
less suitable for a non-interactive application.

2 Voronoi Diagrams

An ordinary Voronoi diagram is formed by a set of points in the
plane called thegeneratorsor generating points. Every point in the
plane is identified with the generator which is closest to it by some
metric. The common choice is to use the EuclideanL2 distance
metric

|x1−x2|=
√

(x1−x2)2 +(y1−y2)2

wherex1 = (x1,y1) and x2 = (x2,y2) are any two points in the
plane. The set of points in the plane identified with a particular gen-
erator form that generator’s Voronoi region, and the set of Voronoi
regions covers the entire plane. Figure 2(a) illustrates a set of gen-
erating points and their associated Voronoi regions.

We implemented the fast 3D graphics hardware-based algorithm
in Hoff [1999] and originally in [Woo et al. 1997] to compute our
Voronoi diagrams. The algorithm draws a set of right cones with
their apexes at each generator. The cones all have the same height
and are viewed from above the apexes with an orthogonal projec-
tion. In addition, each cone is given a unique colour which acts
as the generator’s identity. Since the cones must intersect if there
is more than one generator, the z-buffer determines for each pixel
which cone is closer to the viewer and assigns that pixel the appro-
priate colour value. We can then scan the resulting image and de-
termine which generator is closest to each pixel by using the unique
colours. This technique allows us to compute discrete Voronoi dia-
grams extremely quickly and perform computations on the resulting
regions.

2.1 Centroidal Voronoi Diagrams

A centroidalVoronoi diagram has the interesting property that each
generating point lies exactly on the centroid of its Voronoi region.
The centroid of a region is defined as

Ci =
∫
Axρ(x)dA∫
A ρ(x)dA

(1)

whereA is the region,x is the position andρ(x) is the density func-
tion. For a region of constant densityρ, the centroid can be con-
sidered as the centre of mass. Figure 2(a) has the centroids of each
region marked with small circles.

A centroidal Voronoi diagram is a minimum-energy configura-
tion in the sense that it minimizes

∫
A ρ(x)|Ci −x|2 [Du et al. 1999].

Practically speaking, a centroidal distribution of points is useful be-
cause the points arewell-spacedin a definite sense. Figure 2(b)
shows a centroidal Voronoi diagram.

2.2 Generating Centroidal Voronoi Diagrams

Lloyd’s method [Okabe et al. 1992] is an iterative algorithm to
generate a centroidal Voronoi diagram from any set of generating
points. The algorithm can simply be stated:

Algorithm 1 Lloyd’s method
while generating pointsxi not converged to centroidsdo

Compute the Voronoi diagram ofxi
Compute the centroidsCi using equation (1)
Move each generating pointxi to its centroidCi

end while

Figure 2(a) relaxes under Lloyd’s algorithm to become Figure
2(b). The convergence of Lloyd’s algorithm to a centroidal Voronoi
diagram has been proven for the one-dimensional case. The higher
dimensional cases seem to act similarly in practice, though no proof
is known [Du et al. 1999]. There are several different convergence
criteria which should be equivalent in the limiting case as the algo-
rithm runs forever. The obvious criterion to use would be that the
computed centroids are numerically equal to the generating points.
However, for most applications this criterion is far too stringent and
it would be perhaps better to look at the average distance moved by
all generating points. Since we are interested in generating well-
spaced sets of points, we look at the average change in inter-point
distance, or equivalently, the average change in Voronoi region area.

2.2.1 Efficient Computation of Centroids

Calculating the centroids requires efficiently evaluating the inte-
grals in equation (1). Since the integrals are over arbitrary Voronoi
regions, we convert to iterated integrals and integrate the region row
by row. In this manner we can precompute much of the integral.

The denominator of the centroid is transformed as follows:∫
A

ρ(x)dA =
∫ y2

y1

∫ x2(y)

x1(y)
ρ(x,y)dxdy

=
∫ y2

y1

[P]x2
x1

dy

whereP≡P(x,y)≡
∫ x
0 ρ(s,y)dscan be precomputed from the den-

sity function1. Note that we cannot precompute the entire integral
because we do not know the boundaries of the Voronoi regions be-
forehand.

The numerator of the y-coordinate of the centroid is transformed
similarly: ∫

A
yρ(x,y)dA =

∫ y2

y1

∫ x2(y)

x1(y)
yρ(x,y)dxdy

=
∫ y2

y1

y[P]x2
x1

dy

1Recall that[
∫ x

0 f (s)ds]ba =
∫ b

0 f (s)ds−
∫ a

0 f (s)ds=
∫ b

a f (s)ds
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(a) Voronoi diagram generated by the set of generators (large
dots). Centroids of each Voronoi region are marked by the small
dots.

(b) Centroidal Voronoi diagram

Figure 2: General and centroidal Voronoi diagrams.

The numerator of the x-coordinate of the centroid involves inte-
gration by parts:∫

A
xρ(x,y)dA =

∫ y2

y1

∫ x2(y)

x1(y)
xρ(x,y)dxdy

=
∫ y2

y1

{
[xP]x2

x1
−
∫ x2

x1

Pdx

}
dy

=
∫ y2

y1

[xP−Q]x2
x1

dy

whereQ≡Q(x,y)≡
∫ x
0 P(s,y)dscan also be precomputed from the

density function.
Note that the final expressions require numerical integration only

in the y-direction and otherwise involve expressions only at the re-
gion boundariesx1 andx2. P andQ are precomputed once from the
density function and then evaluated at the horizontal end pointsx1
andx2 as needed. This allows us to compute the integrands only at
region boundaries and not at every pixel. Otherwise we would have
to compute the integrandsxρ andyρ for every span of pixels across
a region and numerically integrated. The above integrand compu-
tation is particularly simple – at worst two look-ups forP andQ,
a multiplication and a subtraction. In addition, if the Voronoi re-
gion is non-convex for numerical reasons, the scan conversion ef-
fectively decomposes the region into convex sub-regions, that is,
single spans of pixels.

2.3 Resolution of Voronoi Calculation

One disadvantage of using a discrete calculation of the Voronoi re-
gions is the calculation of the centroids is affected by the resolution
of the diagram. The relative error of the calculated centroid location
will increase as the number of pixels per Voronoi region decreases.
A related problem is that if the resolution is low enough, two gen-
erating points can effectively overlap and one of the regions will

disappear. The solution, as described in [Hoff III et al. 1999], is
to split the diagram into tiles and compute each tile at the full res-
olution available and then stitch the full diagram back together at
a higher virtual resolution. The virtual resolution can be increased
arbitrarily to meet a lower bound on Voronoi region pixel area.

3 Stippling with Weighted CVDs

The centroidal Voronoi diagrams in Section 2.1 incorporate the idea
of a density functionρ(x,y) which weights the centroid calcula-
tion. Regions with higher values ofρ will pack generating points
closer than regions with lower values. During the iteration of Al-
gorithm 1, the darker regions of the image appear to “attract” more
points. We can use Algorithm 1 directly to generate high-quality
stippling images by treating a grayscale image as a discrete two-
dimensional functionf (x,y) wherex,y∈ [0,1] and 0≤ f (x,y)≤ 1
is the range from a black pixel to a white pixel. Define a density
function ρ(x,y) = 1− f (x,y). We can then stipple a given image
by first distributingn points in the image and using algorithm (1).
Although any distribution of initial points will eventually converge,
it is useful to start with a distribution that approximates the final
form. Deussen et al. [2000] use a dithering algorithm and we use
simple rejection sampling to generate an initial distribution.

3.1 Results

We expect that at the limit of large numbers of very small stipples,
the stipple drawing will approximate the grayscale image. Cen-
troidal Voronoi diagrams produce distributions of points that ap-
proximate a blue noise distribution, that is, a random distribution
with a constraint on the minimum distance between points. Blue
noise distributions are useful because they do not introduce spu-
rious patterns such as lines or grids. They can also approximate
a constant tone because of the minimum distance constraint. Blue
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Figure 3: Close-up of large Peperomia leaves with 20000 stipples
of radius 2×10−3

Figure 4: Small Peperomia plant, lit brightly from the right, with
20000 stipples of radius 1.0×10−3

noise distributions have been used to create very high-quality dither
patterns for colour reduction [Ulichney 1988]. Figure 3 shows a
grey-scale close-up image of some Peperomia leaves with a draw-
ing of 20000 stipples. The fine stippling approximates the tones of
the image very well, including the textures inside the leaves.

Figure 4 shows a different small Peperomia plant, lit from the
side, with 20000 stipples. Although the number of stipples per
square inch is less than in Figure 3, the large number of stipples
still renders a faithful image. In particular, note the hard edges
maintained by the stipple drawing. Figure 5 shows the full Pepero-
mia plant from Figure 3 with 20000 stipples. Observe the coloura-
tion of the centre of the leaf facing the viewer. While the method
of Deussen et al. can easily produce sharp edges through user in-
teraction, producing the gradual change in tone visible on the leaf
would be difficult. The even spacing of points along the edges of
the leaves is the result of the interaction of the centroidal Voronoi
diagram, which attempts to space all points evenly, and the density
functionρ, which restricts points to the essentially one-dimensional
edge.

However, a more interesting test is to apply the method with low
stipple counts. Smaller numbers of stipples mean that we cannot
rely upon the eye to fuse the tiny size and spacing of the dots into a
continuous tone. Figure 6 shows an image of an artist’s mannequin

Figure 5: Large Peperomia plant with 20000 stipples of radius 2×
10−3

Figure 6: Figure with 1000 stipples of radius 5×10−3

and the stippled version with 1000 stipples. Figure 7 shows a climb-
ing shoe in the same format. Note that both the stipple drawings are
quite recognizable, especially in comparison to Figure 8, where the
source images have been reduced in resolution until they contain
approximately 1000 pixels each2.

2This comparison is not quite fair, as the 1000 pixels are forced to be
equally spread across the image whereas the stipples are free to move. The
point is that the stippling maintains edges and silhouettes even at very low
resolutions.

Figure 7: Climbing shoe with 1000 stipples of radius 5×10−3
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Figure 8: Source images of Figures 6 and 7 rendered with approxi-
mately 1000 pixels instead of stipples

Figure 9: Climbing shoe with 5000 stipples of radius 3×10−3

Finally, we note that the most striking drawings come from
neither very-high nor very-low numbers of stipples, but medium
ranges. Figure 9 shows the climbing shoe of Figure 7 rendered with
5000 stipples. This drawing seems to both reproduce the range of
tones from the original and have the “feel” of a real stipple draw-
ing. Figure 10 shows a corn plant rendered with 20000 stipples and
displaying both colouration on the leaves and sharp boundaries on
the edges. We feel that this image begins to live up to the quote
by Hodges in [1989], page 111, in which he attests to the vibrancy
of stippled images: “Like a pointallist painting, the drawing will
appear to vibrate slightly.”

3.2 Parameters and Timings

We computed all the stipple drawings of Section 3 on an Intel Pen-
tium III 1000 MHz machine with 256 Mb of RAM and a NVIDIA
GeForce2 MX graphics accelerator. As discussed in Section 2.3,
we require the Voronoi regions to have an average area of at least
500 pixels, which forces a virtual resolution of up to 3600 by 3600
pixels for the 20000 stipple drawings. Since we precompute the
integralsP andQ from Section 2.2.1 at full virtual resolution, this
requires upwards of 100 Mb of memory. The memory requirement
could be reduced by an order of magnitude by computing the inte-
grals in tiles in the same way that the Voronoi diagrams are com-

Figure 10: Corn plant with 20000 stipples of radius 1.5×10−3

puted, but this did not seem necessary.
The iterations were stopped and the stipple drawing output when

the difference in the standard deviation of the area of the Voronoi
regions was less than 1× 10−4. Because the background of the
input images was not always pure white, stipples were only output
if the input image value at that location was greater than 99% of
pure white.

On the system used, the stipple drawings with up to 5000 stipples
completed in under a minute and the drawings with 40000 stipples
complete in about 20 minutes on an otherwise unloaded machine.
The 1× 10−4 stopping limit was arbitrarily chosen and different
values will lead to different runtimes.

4 Precomputing Stipple Levels

The method presented in Section 3 can produce excellent stipple
drawings given enough time for algorithm (1) to converge. Clearly
a faster algorithm is needed to compute stipple drawings at inter-
active rates. We can accomplish this, albeit at a cost in quality, by
precomputing sets of stipples and stitching them together at run-
time.

4.1 Stipple Levels

We will call the result of stippling an image of constant tonet the
t stipple level, 0≤ t ≤ 1. To generate thet stipple level, we simply
use the method of Section 3 withρ = 1 and N

1−t stipples, whereN

is the number of stipples required in a pure black image3,4. Figure
11 shows nine stipple levels from black to white of a distribution of
1000 stipples, each differing by 125 stipples. Typically we would

3We can actually setρ to any constant value at all, since equation (1) is
insensitive to scalings ofρ.

4The number of stipples required for a pure black image can be com-
puted by considering the optimal hexagonal packing of discs in the plane
and expanding their radii until they completely overlap.
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Figure 11: Nine discrete stipple levels with a maximum stipple
count of 1000, differing by 125 stipples. The radii of the centre
stipple level has been calibrated to represent a 50% gray.

generate a greater number of levels, say 256. We discretise the nor-
mally continuous range of tones achievable into a limited number
of fixed stipple distributions.

4.2 Fast Stipplings

Using the precomputed stipple levels, we can quickly stipple an
image using the following algorithm:

Algorithm 2 Discrete Stippling

for all pixel positions(x,y) ∈ [0,1]× [0,1] do
Map image value at(x,y) to stipple levell
Copy stipples on levell inside(x− 1

2 ,y−
1
2)× (x+ 1

2 ,y+ 1
2)

to output
end for

Algorithm 2 examines the value of each pixel, determines which
stipple level is appropriate, and copies all the stipples that fall inside
the area covered by the pixel to the output. Since the input image is
processed in scan-line order, we sort the stipples in a particular level
into bins that cover a single row of pixels, and then sort the stipples
in each bin from lowx values to high. Given a particular pixel
and a particular level this allows us to quickly find the appropriate
stipples.

Conceptually, we split the image into a number of regions to be
represented by a single stipple level, then stipple each region indi-
vidually and recompose the stippled regions into a final drawing.
The algorithm is quite fast, but is limited by the amount of mem-
ory which must be scanned to produce a stipple drawing. Table 1
shows approximate timings on the system described in Section 3.2
for a simple animation loop. The animation in this case was ren-
dered by OpenGL and read back from its buffers, illustrating the
flexibility of using images as input. While increasing the numbers
of stipples rendered does have a negative effect on the speed, the
greatest factor is the image resolution.

Figure 12 compares the results of the fast algorithm to the high-
quality algorithm. On the left are the fast stipple drawings of a

5000 10000 20000 40000
100×100 350 fps 300 200 150
300×300 150 fps 120 100 80
600×600 60 fps 45 40 35
900×900 20 fps 20 20 18

Table 1: Frames per second at various numbers of stipples and res-
olutions

Figure 12: A black-to-white ramp and a lit sphere stippled with
the fast algorithm of Section 4.2 on the left and the high-quality
algorithm of Section 3 on the right.

black-to-white ramp and a lit sphere and on the right are the high-
quality versions. Note on the left the many voids and overlapping
stipples on the left that introduce spurious detail. They are the result
of two regions of the image being stippled with two different stipple
levels. The stipple levels cannot merge smoothly since they have
different densities of stipples. The result is a pattern that is not as
smooth as it should be.

In addition, what can not be seen from Figure 12 is the tempo-
ral discontinuities that arise when the method is used to stipple an
animation. In areas of the image where the tonal value is changing
quickly, the pixels get stippled by many different stipple levels in a
short time. Even if great care is taken to minimize the differences
between one stipple level and the next, the rate at which the pixels
change cause them to “shimmer.” These problems are minimized
by using greater numbers of smaller stipples in the animation.

5 Conclusions and Future Work

We have extended the work on stippling algorithms by introduc-
ing a scheme based on weighted centroidal Voronoi diagrams. The
presented algorithm has very few user-specified parameters and re-
quires no user interaction. In addition, the input data are grayscale
images which can be produced by a wide variety of sources. Apart
from simply requiring less work to generate a given stipple draw-
ing, this independence allows cheap stippling to be used in a wider
variety of situations than before.

The extension to precomputed stipple levels and thus real-time
performance exacted a heavy cost in terms of visual quality, both
in still images and in terms of inter-frame coherence of animations.
The stipple levels are similar in concept to Praun et al.’s Tonal Art
Maps (TAMs) used to hatch 3D objects in [2001]. It should be
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straight-forward to generate high-quality stippling TAMs and use
their approach to investigate frame-coherent animation. However,
this would require abandoning our general image-based approach
for 3D models.

The tone generated by a set of stipples is problematic and should
be investigated further. All the results in this paper use a rational yet
ad-hoc method to set the constant radii of the stipples in a particular
image. A better understanding of the relationship between stipple
radius, spacing and perhaps colour and the resulting perceived tone
is required.

In addition, several interesting extensions to the current algo-
rithm could be investigated, including varying the size of the stip-
ples in a single drawing, and the use of colour stipples. Partially
transparent blended stipples could be used to alleviate some of the
problems with stippling animations.
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Figure 1: Bunny rendered using color volume texture; globe rendered using threshold textures (modulated per-pixel).

Abstract 

Recent advances in NPR have enabled real-time rendering of 3D 
models shaded with hatching strokes for use in interactive 
applications.  The key challenges in real-time hatching are to 
convey tone by dynamically adjusting stroke density, while 
controlling stroke size and maintaining frame-to-frame coherence.  
In this paper, we introduce two new real-time hatching schemes 
that leverage recent advances in texture mapping hardware.  Both 
schemes provide enhanced control of tone, thereby avoiding 
blending or aliasing artifacts present in previous systems.  The 
first scheme, which relies on volume rendering hardware, admits 
the use of color.  The second scheme, which uses pixel shaders, 
allows per-pixel lighting operations such as texture modulation.  
Both schemes run at interactive rates on inexpensive PC graphics 
cards. 
Keywords: non-photorealistic rendering, line art, multitexturing 
 

1. Introduction 

A variety of non-photorealistic rendering styles use hatching 
strokes to convey tone (through stroke density), suggest material 
(through stroke arrangement), and reveal shape (through stroke 
orientation).  Interactivity presents a number of challenges for 
applications using non-photorealistic rendering: (1) limited run-

time computation, (2) frame-to-frame coherence among strokes, 
(3) control of stroke size and density under dynamic viewing 
conditions.  Two recent algorithms have leveraged advances in 
hardware texturing capabilities to enable the use of hatching 
strokes in interactive applications [Freudenberg 2001; Praun et al. 
2001].  However, to achieve fine tone control, these systems have 
suffered from a tradeoff between temporal aliasing and blending 
artifacts. 

In this paper we present two new real-time hatching schemes that 
extend our previous work on tonal art maps (TAMs) [Praun et al. 
2001]. By providing greater control over the introduction and 
removal of strokes in the image plane, both schemes offer finer 
control over tone. In addition, each new scheme exploits features 
of modern texture mapping hardware to enable stroke-based 
rendering effects that were unavailable with previous methods 
(Figure 1): 
•  The first scheme exploits volume texturing hardware to permit 

finer tone control, as well as use of color hatching strokes. 

•  The second scheme extends the texture thresholding method of 
Freudenberg [2001], by using multiple thresholds to reduce 
aliasing artifacts while permitting per-pixel lighting 
operations. 

The remainder of this paper is organized as follows. Section 2 
offers a brief survey of related work. Section 3 describes in detail 
the implementation of the two new schemes, and offers some 
comparisons. Section 4 describes a new method for creating 
TAMs with color as well as more tonal and character variation 
than in our previous method. Finally, Section 5 presents results 
and Section 6 concludes with areas of future work. 

 



 

2. Related work 

There have been a number of systems that use hatching for NPR. 
 
Off-line hatching.  Several systems address the problem of 
generating high-quality hatching for static scenes in an off-line 
process.  Saito and Takahashi [1990] describe a method for post-
processing the framebuffer to overlay image-space strokes.  
Winkenbach and Salesin [1994], and Salisbury et al. [1997] 
introduce prioritized stroke textures, which map tone values to 
arrangements of strokes, and present impressive examples of 
computer-generated hatching.  Sousa and Buchanan [1999; 1999] 
concentrate on the technical aspects of physically simulating real 
media such as pencil, crayon, blenders, and erasers.  Hertzmann 
and Zorin [2000] create high-quality silhouettes, and describe an 
image-space stroke placement scheme for cross-hatching. 
 
Real-time hatching.  Durand et al. [2001] create hatched images 
from photographs in real-time using hardware acceleration to 
perform anti-aliased thresholding. A few recent systems have 
addressed real-time hatching of 3D models.  Markosian et al. 
[1997] introduce a simple hatching style indicative of a light 
source near the camera, by scattering a few strokes on the surface 
near (and parallel to) silhouettes.  Elber [1999] shows how to 
render line art for parametric surfaces in real time; he renders 
objects by choosing a fixed density of strokes on the surface.  
Lake et al. [2000] describe an interactive hatching system with 
stroke coherence in image space (rather than in object space).  
Freudenberg’s approach [2001] consists of coding a stroke texture 
as a halftone pattern.  To shade a pixel, the “height” of the 
corresponding location in the pattern is compared to the pixel’s 
target tone, using a “soft” threshold function (a clamped linear 
function with high slope, instead of a step function).  This 
approach inspired our own thresholding scheme in Section 3.2, 
which encodes multiple thresholds per texel for anti-aliasing.  
 
Real-time hatching with TAMs.  In previous work [Praun et al. 

2001], we described how prioritized stroke textures could be 
rendered efficiently using texture hardware by precomputing a 
tonal art map (TAM).  The images in a TAM capture hatching at 
various tones and scales.  For visual continuity in an interactive 
system, we used multitexturing to blend the TAM images over 
each triangle.  Due to hardware limitations, our system could 
support TAMs with only 6 different tone textures, and these 
textures were constrained to be grayscale.  In this paper we 
propose two new rendering schemes that are able to utilize TAMs 
with finer resolution in the tone dimension, and one of the 
schemes naturally supports colored hatching. 

3. New rendering schemes 

We now present our two new rendering schemes, and compare 
their benefits and drawbacks. 

3.1 Volume texture scheme 

Recent graphics cards support volume textures, whereby a third 
texture coordinate r is added to the traditional (s,t) to perform 
lookup within a 3D texture space.  Our first rendering scheme 
uses this third dimension r to encode tone.  At load time, TAM 
images are simply stacked up along the tone axis of the texture 
volume. 

On polygons with large tone variation, our previous scheme 
would only do linear blending between the 2D textures 
corresponding to the extreme tone values to be represented, 
producing many gray strokes.  The volume texture method, 
however, more effectively reproduces all the intermediate tones, 
since the 3D texture lookup can access all tone levels of a dense 
TAM.  If the set of TAM images is sufficiently dense, the 
resulting rendering will give the illusion that strokes are added 
independently, rather than added in blended groups as in [Praun et 
al. 2001].  For this versatility however, we pay the price of larger 
texture memory consumption. 

Figure 2. Left: tonal art map (TAM) pyramid. Right: example textures used on Figure 1 bunny (tones and scales indicated at left).



 

Another advantage of volume texturing is the support of color.  
Both our original scheme [Praun et al. 2001] and our texture 
threshold scheme (Section 3.2) maximize the number of reference 
tone images by packing them into the R,G,B,A channels of 2D 
textures.  This packing limits the one-pass version of the schemes 
to grayscale strokes, requiring multi-pass implementations to 
render color. 

Since we are using volume textures in a non-standard way, we 
need to take into account several aspects related to mipmapping.  
For our application, the ideal filtering behavior would treat the 
spatial dimensions separately from the tone dimension, i.e. 
maintain full tonal resolution even as spatial resolution decreases.  
Unfortunately, current hardware does not offer this behavior.  
(Disabling filtering altogether is not acceptable since it leads to 
aliasing.)  There are two effects of letting the mipmapping in the 
tone dimension be influenced by spatial resolution: at coarse 
mipmap levels we lose both tone resolution and tone range. 

The loss of tone resolution is not necessarily detrimental, as 
long as we start with enough resolution at the finest level.  As the 
object takes up less screen space, it is harder to notice tone 
variation, so reducing the tone resolution is quite natural.  In our 
examples, we used a 256×256×64 volume.  The coarsest spatial 
level that we generate in our TAM is 32×32 (as strokes are not 
discernible in coarser levels), corresponding to a resolution of 8 in 
the tone dimension. 

The loss of tone range is caused by the relationship between 
texture coordinates and texture samples: the first and last samples 
in a dimension do not correspond to coordinates 0 and 1 
respectively, but to 1/2ℓ+1 and 1 – 1/2ℓ+1, for a mipmap level of 
resolution 2ℓ.  For coordinates 0 and 1, texturing returns a 50% 
interpolation between the first (and respectively, last) sample and 
the border.  Therefore, the range of tones that we can represent 
without border interpolation is different for each mipmap level.  
Using a texture with border compresses the overall range of tones 
available to us, and forces software rendering in our graphics 
driver.  Instead, we perform a border interpolation correction 
using register combiners.  This interpolation uses 100% border 
contribution for the texture coordinates extremes (0 and 1), rather 
than the default 50%. 

When filling up the volume we need to follow the standard 
mipmapping sampling pattern.  Consider the example where we 
want 64 levels at the finest resolution.  We generate a TAM as 
in [Praun et al. 2001] with 128 columns.  The finest level planes 
are assigned the 256×256 images with tones 1/128, 3/128, 5/128, 
… 127/128.  The next resolution level are assigned the 128×128 
images with tones 2/128=1/64, 3/64, 5/64, …63/64, and so on.  
Thus, each tone level appears in exactly one mipmap level. 

3.2 Texture threshold scheme 

Our second rendering scheme extends the method presented by 
Freudenberg [2001] to produce better anti-aliasing.  His method 
uses a halftoning approach: it stores a texture containing, for each 
texel, the threshold tone at which a screen pixel should change 
from white to black.  To provide some antialiasing, the method 
uses a “soft” threshold function (clamp(1-4(1-(I+T))) for an input 
intensity I and a threshold value T).  This soft threshold function 
works well when the change in tone is achieved by varying the 
width of the stroke.  However, when modulating tone by adding 
or removing strokes, aliasing artifacts become visible, particularly 
with thin or overlapping strokes, and in animations.  In [Praun et 
al. 2001], we experimented with thresholding the framebuffer to 
generate a traditional pen-and-ink style, but encountered similar 
aliasing artifacts. 

When drawing correctly antialiased strokes, most of the stroke 
pixels should be black, but the few pixels at the stroke boundary 
that receive only partial coverage should be drawn in gray.  (Only 
when a subsequent hatching stroke covers these pixels might they 
change to full black.)  To capture this behavior, we propose to 
represent for each texel a piecewise constant function that maps 
input tones into gray values for the texel.  This function therefore 
has several transitions, rather than a single transition as in 
conventional halftoning. (See Figure 3.)  To render a surface, for 
each screen pixel we compare its tone (obtained from Gouraud 
interpolation) with each of the transition X values (obtained from 
texture lookup).  We then take the sum of the heights of all the 
transitions that pass their comparison tests: 1 
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This scheme introduces strokes one by one, much like the 
volumetric method.  In fact, one can view these mapping 
functions as run-length encodings of rows of texels parallel to the 
tone dimension in the volume texture from the previous section.  
The volume texture is rather coherent: a texel keeps its shade for 
large tone intervals, between the events when different strokes 
touch the same texel.  Since one goal of TAM generation is spatial 
uniformity, such events are placed as far apart as possible in the 
tone dimension, leading to large spans of constant values in the 
volume. 

 

 
Figure 3: Transition diagram for a single texel. 
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This function can be implemented on a GeForce3 using register 
combiners.  Simultaneous thresholding of several values can be done by 
multiplying the 8-bit fixed point colors with 256 (by chaining 
scale_by_four()’s); while sum of products can be implemented efficiently 
using dot products.  The double inversion (1- intensity; 1-sum) is needed 
because frame buffers represent “amount of white” while we want to be 
adding “blackness” (corresponding to black strokes on white paper).  
Without the inversions, our highlights (light regions on the models) will 
appear drawn with many overlapping white strokes on a dark canvas, 
rather than as a white canvas with no strokes. 



 

Since the value of I does not influence which xi and ∆yi texture 
locations to address, I can in fact be a more complicated function.  
For instance, we can modulate I per-pixel with a texture, to 
produce effects such as the hatched earth globe shown in Figure 1, 
without affecting the triangulation of the model (as would be 
necessary in a scheme that could only compute I at vertices). 

One problem to consider when representing such transfer 
functions using textures is (tri-)linear interpolation.  If two 
neighboring texels have the same set of xi’s, interpolating the 
corresponding ∆yi’s  yields the correct result.  Unfortunately, this 
doesn’t hold for interpolating xi values.  To reduce artifacts, we 
try to only interpolate between close xi values: we divide the 
intensity interval into several bins (not necessarily of equal 
length), and for each texel only allow a single transition in each 
bin.  Consequently, when different xi’s from adjacent texels are 
blended together, they can differ only by at most the bin width.  In 
our implementation we used 7 bins corresponding to at most 7 
transitions, which we packed in the RGBA channels of 4 textures 
(we reserve 4×4 - 7×2 = 2 channels for the modulate mask and the 
splotch mask for a lapped parameterization [Praun et al. 2000]).   

Since strokes are placed uniformly across the TAM textures, it 
is infrequent that a texel undergoes more than one transition in the 
same bin.  When that happens, we store ∆y to be the sum of the 
transition heights, and randomly pick xi from among those in the 
bin.  Since more strokes are placed at the dark end of a TAM, we 
make the bins smaller at the dark end of the spectrum than at the 
light end.  While this binning scheme tends to work well under the 
assumptions stated, it can lead to banding artifacts when these 
don’t hold.  When the TAM is made of many small, thin strokes, 
the average number of strokes touching a texel increases, and 
therefore, the number of transitions increases as well.  In the limit, 
when trying to represent a continuous mapping function (no 
strokes — just 256 gray levels), forcing a representation using 
only 7 discrete transitions, spaced according to our bin 
distribution, produces models shaded with only 7 levels of gray, 
appearing in 7 bands.  Choosing xi’s at random within each texel’s 
bins helps make the band boundaries more rough than choosing 
the mean or average. 

3.3 Comparison of the two methods 

Both methods presented in this paper offer an improvement over 
our previous scheme [Praun et al. 2001], by allowing finer control 
over tone reproduction.  Since we have many more TAM columns 
(samples in the tone dimension), and since each pixel, rather than 
each vertex, determines the samples to be blended, we can give 
the illusion of adding (or growing) each stroke individually, in 
addition to fading in large waves of strokes, as was previously 
possible. Preference for one effect over another is an aesthetic 
decision we can now offer the designer. 

Figure 4 shows a comparison of the three methods, using 
different representations of the same 255-column TAM.  Our 
previous method (Figure 4a) has large areas of gray strokes.  In 
the volume rendering approach (Figure 4b) there are a few gray 
strokes caused by tri-linear interpolation (due primarily to 
mipmapping rather than tone interpolation).  The threshold 
scheme (Figure 4c) has no gray strokes, only gray pixels around 
strokes for anti-aliasing.  This is due to the fact that interpolation 
happens on the thresholds, before being compared to the tone.  An 
artifact of this is the presence of a few thin strokes that don’t get 
anti-aliased, since their boundary pixels do not pass the test using 
the interpolated thresholds.  

While the threshold scheme uses less memory, it is actually 
slightly slower to render than the volume approach, since it 

involves accessing more textures per pixel.  However, it gives us 
the opportunity for interesting per-pixel effects, such as 
modulating tone using a different texture.  With fewer threshold 
bins or additional texture accesses on future hardware, one could 
integrate more complicated effects such as bump mapping and 
Phong shading.  Using these effects with the volume texture 
rendering approach may be possible in the near future, on 
graphics cards that allow more complicated dependent texture 
accesses.  Another feature that is likely to be available soon is 
anisotropic filtering of volume textures; its absence causes the 
slightly blurrier regions near the silhouettes in Figure 4b. 

 

 
One of the advantages of the volume rendering approach is the 

ease of integrating color.  This opportunity raises an interesting 
artistic question: what can we convey with color that we cannot 
convey with tone alone?  While we do not offer a substantial 
answer to this question, we have experimented with choosing a 
path through the color cube, parameterized by luminosity (tone).  
We have chosen the hues for the colors along this path from 
compatible color palettes. 

4. Fine-level TAM generation 

Both rendering schemes require the construction of a TAM that is 
much denser along the tone axis than in [Praun et al. 2001] (as 
many as 255 tones2 instead of 6 tones).  This can be constructed 
using the algorithm described in our previous paper.  Obtaining 
more tone levels does not require any more pre-processing time, 
since the same number of candidate strokes are still added; we 
simply “snapshot” more TAM images during the process. 

In the remainder of this section, we present an alternative 
method for TAM generation that allows the user more control and 
more expressive power.  We generate the finest levels of the TAM 
using a high-quality drawing package, by placing strokes in an 
image to achieve gradually darker tones.  An automated process 
then replays the sequence of strokes, and selects images 
corresponding to the tones we want to represent at the finest TAM 
level.  From this, we then construct the coarser levels of the TAM.  
This scheme works particularly well as it leverages the strengths 
of the artist and computer to compensate for the other’s weakness.  
The artist need not be overly concerned with the mechanics of 
TAM generation; he or she simply works on a single texture, 
drawing a sequence of strokes until satisfied with the range of 
tones.  The computer then handles the task of selecting subsets of 
strokes to form each image in the volumetric TAM (a task that is 
prohibitively tedious for a user to undertake).  

                                                                 
2 The number 255 is due to the precision currently available in commodity 
graphics hardware.  
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Figure 4: Comparison of rendering schemes. 



 

  

  

  
Figure 5: Results.  Top two rows: volume texture rendering.  Bottom row: thresholds rendering. 



 

In order to maintain coherence and tone at each level of the 
mipmap volume, it is important to select correlated sets of strokes. 
The image at a given level and tone (ℓ, t) should consist of the set 
of strokes in the next lightest tone at the same resolution (ℓ, t-1) 
plus some subset of the strokes used in the same tone at the next 
highest resolution (ℓ+1, t).  Since the resolution decreased for the 
new level, the strokes are relatively larger, so fewer of them will 
be needed for the same coverage, or tone difference.  For 
grayscale TAMs, we can simply select a prefix of the stroke 
sequence.  However, for color TAMs representing a path 
parameterized by tone through the color space, taking the prefix 
that produces the desired tone difference will very likely give us 
the wrong hue.  In this case, we first decimate the stroke sequence 
(throw out a constant fraction of randomly selected strokes), and 
then take the prefix.  In theory, one could do a binary search to 
find the right fraction for each TAM or even for each image (this 
fraction depends on stroke properties such as aspect ratio), in 
practice though we have found that choosing a constant fraction 
works well, given that we are sampling small tone steps. 

5. Results 

Figure 5 shows several stills produced with our system.  The 
accompanying video shows short animations of these models. 

The hand image is drawn using a style reminiscent of chalk and 
charcoal.  Following artistic conventions, the highlight strokes are 
hatched in a single direction whereas the shading also employs 
crosshatched strokes.  The fruit bowl image uses an ink texture in 
which overlapping strokes combine to increase darkness.  This 
differs from the hand image in which overlapping strokes do not 
darken the surface.  The color stipple pattern used on the gargoyle 
model was an interesting artistic experiment, since it produced the 
widest range of reactions from the people we have shown it to.  It 
lessens the illusion of a growing front of strokes, since the length 
of the stroke is short enough that new strokes are distinct from 
existing strokes.  Finally, for the rocker arm, we tried to achieve a 
look evocative of mechanical sketch. 

The bottom row of Figure 5 shows two examples of objects 
rendered using threshold textures.  When these objects rotate, the 
strokes give the appearance of growing into the highlight regions.  
The crisp black and white aspect of the strokes is reminiscent of a 
hand drawn pen-and-ink style. 

The Earth image in Figure 1 shows the integration of threshold 
textures and per-pixel modulation with a map texture.  The bunny 
of Figure 1 is drawn using short arcs with random orientations.  
When animated, these strokes provide a different impression from 
the other models: since they grow in different directions, there is 
no illusion of an advancing front of strokes.   

All these models render at around 30-40 frames per second on 
our GeForce3 card.  This includes time spent extracting the 
silhouettes and drawing the background.  The original models 
have between 7,500 and 15,000 faces.  For all models except the 
Earth globe and the fruit bowl, we created a lapped texture 
parametrization.  The objects in the fruit bowl were created using 
spline patches, and we used their intrinsic u,v parametrization. 

The 6-column TAM used in [Praun et al. 2001] required 
800KB of texture memory.  By comparison, the volume texture 
requires 15MB (or 20MB when keeping alpha for border 
correction), and the threshold textures take up 1.8MB. 

6. Conclusions and future work 

We have presented two methods to improve the quality of 
interactive hatch renderings.  Both methods provide fine tone 

control.  Volumetric textures allow for greater user expression by 
adding the ability to render color hatchings.  Threshold textures 
store a discrete set of tone transitions per texel, supporting hatch 
rendering with fine tone control and anisotropic filtering with far 
less memory consumption.  This is at the cost of restricting the 
hatched models to grayscale images.     

We have found that harsh polygonal silhouettes are often the 
largest factor in associating the rendering with a 3D model.  We 
would like to investigate methods draw smooth stroke-based 
silhouettes that complement the volumes textures.  

The current implementation of volume TAMs utilizes a large 
amount of texture memory.  Since volume TAMs have an 
extremely high degree of coherence by definition, it may be 
possible to greatly reduce the amount of memory consumption.   

We would also like to investigate methods that provide a 
provable error bound on tone and hue among the different 
mipmap levels.   

Furthermore, we are interested in rendering entire scenes 
instead of single objects.  This introduces new opportunities to 
explore other artistic techniques as haloing and shadowing. 
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1 Introduction

Most of the research in computer graphics rendering over the last
twenty years has been devoted to the problem of creating images of
physical scenes with ever-increasing complexity and realism. The
success of this research has been a well-heralded achievement in
graphics.

However, the computer’s ability to display images of ever-increasing
complexity gives rise to a new problem: communicating this com-
plex information in a comprehensible and effective manner. In order
to communicate truly complex information effectively, some form
of visual abstraction is required. This type of abstraction has been
studied most comprehensively in the fields of graphic design and
traditional illustration.

In this paper, we therefore examine algorithms for the “non-photo-
realistic” rendering of complex forms. While photorealistic images
certainly have their place, in many applications, such as architectural
and industrial design, a stylized illustration is often more effective.

The advantages of illustration are numerous. Illustrations can con-
vey information better by omitting extraneous detail, by focusing
attention on relevant features, by clarifying and simplifying shapes,
or by exposing parts that are hidden. In addition, illustrations often
consume less storage than realistic images, and are more easily re-
produced and transmitted. Illustrations also provide a more natural

vehicle for conveying information at different levels of detail. Fi-
nally, in many applications, illustrations can add a sense of vitality
difficult to capture with photorealism.

The benefits of illustrations over photographs are well-recognized
in many practical contexts. For example, medical texts almost al-
ways employ hand-drawn illustrations in place of (or in addition
to) photographs, since they allow tiny and hidden structures to be
much better described. In addition, most assembly, maintenance, and
repair manuals of mechanical hardware employ illustrations rather
than photographs because of their clarity. For example, at Boeing,
even when CAD databases of airplane parts exist, all high-quality
manuals are still illustrated by hand in order to provide more effective
diagrams than can be achieved with either photorealistic rendering
or simple hidden line drawings [16].

To explore the use of abstraction as a means for conveying infor-
mation effectively, it makes sense to begin with an area with well
established conventions. For this reason, we are beginning our inves-
tigation using the domain of pen-and-ink illustrations of architectural
forms, for which a great number of well-documented conventions
already exist [5, 11, 13, 14, 17, 20]. Restricting the domain to “pen
and ink” also has the advantage that no exotic display technology is
required to view the algorithms’ output: conventional laser printers,
even the inexpensive 300 dots-per-inch variety, give quite reasonable
results.

In the rest of this paper, we describe a number of principles of tradi-
tional pen-and-ink illustration, and we show how a great number of
them can be implemented as part of an automated rendering system.

1.1 Related work

The area of “non-photorealistic rendering” has received relatively
little attention in the computer graphics community. We survey most
of the related work here.

Seligmann and Feiner have described methods for automatically
constructing illustrations to achieve a particular communicative
goal [24]. Their system is primarily concerned with the high-level
goal of composing the best model for communicating a particular
intent, whereas the system we describe is more concerned with the
low-level details of rendering the model once it is built. Thus, our
system could serve as a “back-end” for theirs.

With respect to the rendering of architectural forms, Yessios de-
scribed a prototype “computer drafting” system for common ma-
terials in architectural designs, including stones, wood, plant, and
ground materials [26], which, like our work, attempts to provide a
warmer, hand-drawn appearance as opposed to a mechanical one.
Miyata also gave a nice algorithm for automatically generating stone
wall patterns [19]; these patterns would make a good starting point
for some of the pen-and-ink techniques described in this paper.



With respect to line-drawing techniques, Appel et al. were the first
to discuss how a line could be “haloed” automatically to give the ap-
pearance of one line passing behind another [2]. Kamada and Kawai
generalized this work by showing how different line attributes, such
as dashed and dotted line, could be used to give a more informative
treatment of hidden lines [12]. Dooley and Cohen later introduced
more line qualities, such as thickness, and discussed how the treat-
ment of outline and surface shading could be customized by a user
to create more effective illustrations [6, 7]. In the commercial realm,
the Premisys Corporation markets a product called “Squiggle” that
adds waviness and irregularities to CAD output as a post-process,
lending a hand-drawn appearance to the drawings [21]. The Adobe
Dimensions program allows PostScript stroke textures to be mapped
onto surfaces in three dimensions [1].

The research described in this paper was most directly inspired by
the work of Saito and Takahashi, who introduced the concept of a “G-
buffer” for creating comprehensible renderings of 3D scenes [22].
Our work takes a somewhat different approach, in that it integrates
aspects of 2D and 3D rendering, whereas their method essentially
uses image processing techniques once the set of G-buffers are cre-
ated. In addition, by introducing methods for texturing surfaces with
strokes, the work in this paper extends the repertoire of the types of
renderings that can be produced in a purely automated way.

In related works, our group is exploring several different aspects
of the pen-and-ink illustration problem. This paper describes the
overall vision of computer-generated illustration, surveys principles
from traditional illustration, and shows how they can be incorpo-
rated into an automated system for rendering 3D models. A second
paper discusses the issues of creating pen-and-ink illustrations inter-
actively, with an emphasis on using 2D greyscale images as a starting
point [23]; in this interactive work, the responsibility of producing
an effective illustration is primarily the artist’s. A third paper exam-
ines the issues involved in representing, editing, and rendering the
individual strokes that are the building blocks of any line illustration
system [8].

1.2 Overview

The rest of this paper is organized as follows. Section 2 surveys
the principles of traditional pen-and-ink illustration. Section 3 dis-
cusses how these principles can be used to guide the design of an
automated system for producing this type of imagery. Section 4 in-
troduces “strokes” and “stroke textures,” the building blocks of our
system, and describes how they can be used to implement many of
the traditional illustration principles. Section 5 discusses some of our
results, and Section 6 lays out an agenda for future research in the
area. Finally, the appendix gives details about the implementation.

2 Principles of pen-and-ink illustration

While pen-and-ink drawing has a long history, dating back to the
illuminated manuscripts of the Middle Ages, it is only relatively
“recently” — that is, since the end of the 19th century — that pen-
and-ink illustration has been developed as an art form in and of
itself.

Pen-and-ink illustration is a limiting medium. The pen gives off no
color or tone, so both color and shading must be suggested by combi-
nations of individual strokes. Furthermore, when rendered manually,
it is very difficult and time-consuming with pen and ink to cover a
large area with tone, and it is practically impossible to lighten a tone
once it is drawn.

However, pen-and-ink illustrations have some particular qualities
that make them especially attractive. First, they are ideal for out-

Figure 1:Two doors. The lines of wood grain are drawn with an even
pressure, while the lines between the planks use varying pressure.
For wood grain, we typically use the waviness function of the left
door, while that of the right door has been exaggerated.

lines: each individual pen-and-ink stroke can be made expressive by
employing small irregularities in its path and pressure. Second, pen
and ink provide a real economy of expression in representing tones
and texture: the character of a few small strokes can clearly indicate
the difference between textures like smooth glass and old knotted
wood.

In addition to these concrete advantages, pen-and-ink drawings by
their very nature possess some special qualities that are difficult to
capture in other media. Their simplicity provides an appealing crisp-
ness and directness. Finally, pen-and-ink illustrations blend nicely
with text, due to their linear quality and their use of the same ink on
the same paper, making them ideal for printed publications.

In the rest of this section, we survey some of the fundamental prin-
ciples of illustrating in pen and ink. These principles are distilled
primarily from Guptill’s classic text,Rendering in Pen and Ink[11],
and also from Lohan’sPen&Ink Techniques[17] and several other
sources [5, 13, 14, 20]. While the field of pen-and-ink is too vast to
allow a comprehensive treatment within the scope of this paper, the
principles described here should be sufficient to motivate many of
the design choices for a computer-graphics system. We organize our
treatment into three parts: Strokes, Tone and texture, and Outline.

2.1 Strokes

In classical pen-and-ink illustration, a “stroke” is produced by plac-
ing the point, or “nib,” of a pen in contact with the paper, and allowing
the nib to trace out a path. The thickness of the stroke can be varied
by varying the pressure on the nib.

Some principles of stroke-drawing are summarized below:

• Too thin a stroke can give a washed-out appearance; too coarse
can detract from the delicate details.

• It is frequently necessary to vary the pen position, with the nib
sometimes turning as the stroke is drawn.

• Strokes must look natural, not mechanical. Even-weight line
drawings appear lifeless; instead, the thickness of a line should
vary along its length.

• Wavy lines are a good way to indicate that a drawing is schematic
and not yet completely resolved.



Figure 2:Using strokes to indicate both texture and tone. The stroke textures used, from top to bottom, are: “cross-hatching,” “stippling,”
“bricks,” “shingles,” and “grass.” Notice how the outline style of the white areas is also particular to each texture.

2.2 Tones and texture

The terms “value” and “tone” are used interchangeably to refer to
the amount of visible light reflected toward the observer from a point
on a surface. In traditional pen-and-ink illustration, it is impossible
to portray the value of each surface precisely; instead, combinations
of strokes are used to create an overall impression of the desired
tone.

The tone achieved by a combination of strokes is a function of the
ratio of black ink to white paper over a given region of the illustration.
If the character of the strokes is varied, then the same strokes that are
used to achieve a particular tone can also be used simultaneously to
indicate the “texture” of the subject being rendered. This dual role
of individual strokes to convey both tone and texture is part of the
economy of pen-and-ink illustration.

Here are some of the principles of drawing tones and textures with
pen-and-ink strokes:

• Tones should be created from lines of roughly equal weight and
spacing.

• It is not necessary to depict each individual tone accurately; how-
ever, presenting the correct arrangement of tones among adjacent
regions is essential.

• To disambiguate objects, it is sometimes important to “force tone”
by enhancing contrast or inventing shadows.

• The character of strokes is important for conveying texture, as
well as geometry and lighting. For example:

· Crisp, straight lines are good for “glass.”

· Horizontal surfaces should be hatched with predominantly
horizontal lines.

· Absence of detail altogether indicates glare.

· A sketchy kind of line is good for “old” materials, while careful
stippling is good for “new” materials.

• To lend economy to the illustration, it is important to utilize some
form of “indication” for conveying the impression of a texture
without drawing every single stroke. The method of indication
should also be varied across the drawing to avoid monotony.

2.3 Outlines

Realistic scenes contain no real outlines; instead, forms are defined
by variations in texture and tone. However, outline is nevertheless
a very natural means for portraying objects — for example, most
children’s drawings utilize outline almost exclusively.

The medium of pen and ink is ideal for creating outlines with an
incredible range of expressiveness. The pen allows for outlines that
change thickness, sometimes disappearing altogether. In addition,
the character of the outline stroke can be a very powerful indicator
of texture.

Outline strokes are used not only for the contours of an object, but
also for delineating the essentials of its interior. For example, in an
illustration of a leaf, the veins are typically rendered in outline, in
addition to the contour.



Figure 3:Creating the same texture and tone at different scales. At the smallest scale, the brick outline strokes are sufficient to build the tone. As
the scale increases, the prioritized stroke texture automatically introduces shading inside the bricks to maintain the tone. The same technique
applies to generating illustrations at the same scale but for different printer resolutions.

Different styles of rendering use various combinations of outline and
tone; all combinations are possible. Moreover, there exists an entire
spectrum between outline and tone illustrations: as outline drawings
become increasingly complex, they begin to take on more and more
aspects of an illustration with tone.

Here are some of the important classical principles for drawing ex-
pressive outlines:

• The quality of the outline stroke is important for conveying texture.
For example, crisp straight lines are good for hard objects, while
a greater variety of line quality is better for soft objects.

• Thick outlines are used to suggest shadows, or to bring one object
or part of an object forward in the scene. Thick line junctions
are used to suggest darkness where objects overlap and to add
“snappiness” to the illustration.

• Outlines should become “haloed” and fade away where one ob-
ject passes behind another object.

• Outlines must be introduced where tones are omitted to convey
shape.

• Using “indication” for drawing outlines is just as important as
for drawing tones.

3 Computer-generated pen-and-ink illustration

Implementing these principles of pen-and-ink illustration as part of
an automated system presents an interesting challenge. A reasonable
starting point is to take the traditional “graphics rendering pipeline”
for photorealistic imagery and see which parts, if any, need to be
altered in order to support this style of non-photorealism.

We identified two fundamental differences:

1. The dual nature of strokes.In the traditional graphics pipeline,
the renderings of texture and tone are completely independent.
A texture is typically defined as a set of images assigned to each
surface, which affect the shading parameters. Tone is produced
by dimming or brightening the rendered shades, while leaving
the texture invariant. However, for pen-and-ink illustration, the
very same strokes that produce tone must also be used to convey
texture. Thus, tone and texture must become more tightly linked
in a system for producing this type of imagery.

2. The need to combine 2D and 3D information.In the traditional
graphics pipeline, the information used for rendering is entirely
three-dimensional, with the final projection to two dimensions

largely a matter of sampling the rendered shades. For pen-and-
ink illustration, the 2D aspects of the particular projection used
are every bit as essential as the 3D information for creating a
proper rendering. The necessary 2D information takes a num-
ber of forms. First, the size of the projected areas must be used
to compute the proper stroke density, in order to accommodate
the dual nature of strokes described above. In addition, the 2D
adjacencies of the projected geometry must also be used, since
outlining depends on such issues as the type of junction between
2D boundaries (whether two adjacent regions in 2D are adjoining
in 3D or passing one behind the other), and the level of contrast
between tones of adjacent 2D regions.

Thus, our rendering system is a basic graphics pipeline with a few
notable changes. The standard aspects of the pipeline include:

• The model.Any standard polygonal 3D model will do.

• The assignment of texture.Textures are assigned to 3D surfaces in
the usual way. However, the textures are no longer described by
images, but by “stroke textures,” as discussed in the next section.

• The lighting model.Any standard illumination model can be em-
ployed to compute a “reference solution,” which is then used
as a target for tone production with strokes. We use the Phong
model, which, although not physically-based, appears to be quite
adequate for most non-photorealistic rendering.

• The visible surface algorithm.Any object-space or list-priority
visible surface algorithm will do; we use BSP trees in our imple-
mentation.

• Shadow algorithm.The shadow algorithm must also use an
object-space or list-priority method; we use Chin and Feiner’s
BSP tree shadow volumes [4].

Here are the notable differences from the standard pipeline:

• Maintaining a 2D spatial subdivision.The need to consider 2D
adjacency information in rendering suggests the use of some form
of spatial subdivision of the visible surfaces. We use a half-edge
data structure for maintaining this planar map [18].

• The rendering of texture and tone.Polygons are no longer scan
converted; instead, both texture and tone must be conveyed with
some form of hatching. The stroke textures we define in the next
section achieve this effect.

• Clipping. The strokes must be clipped to the regions they are
texturing. Since so many strokes are drawn, the clipping must
be extremely fast. In addition, in order to simulate a hand-drawn



effect, the clipping should not be pixel-based — that is, it should
not remove just those pixels of the stroke that are outside the
clipping region — since this gives an unnatural, mechanical ap-
pearance. Instead, the clipping should be stroke-based, allowing
a wavy stroke to sometimes stray slightly outside of the clipping
region. To achieve this effect, we clip the straight-line paths of
our strokes prior to adding in the function for waviness (see Sec-
tion 4.1). For fast clipping, we use set operations on a 2D BSP
tree representation of the planar map [25].

• Outlining. Outlines play a significant role in pen-and-ink illus-
tration. Outlines come in two varieties. The “boundary outlines,”
which surround visible regions, must be drawn in a way that
takes into account both the textures of the surrounded regions,
and the adjacency information stored in the planar map. In ad-
dition, “interior outlines” are used within polygons to suggest
shadow directions or give view-dependent accents to the stroke
texture.

A brief description of the rendering process follows; more details
about the rendering algorithm can be found in the appendix. To
render a scene, the system begins by computing the visible surfaces
and the shadow polygons. It then uses these polygons, projected to
Normalized Device Coordinate (NDC) space, to build the 2D BSP
tree and the planar map. Each visible surface is then rendered. The
procedural texture attached to each surface is invoked to generate
the strokes that convey the correct texture and tone for the surface.
All the strokes are clipped to the visible portions of the surface using
set operations on the 2D BSP tree. Finally, the outline strokes are
drawn by extracting from the planar map all of the outline edges
necessary for the illustration, as described in Section 4.3.

4 Strokes and stroke textures

In this section we discuss strokes and stroke textures, the essential
building blocks of our system.

4.1 Strokes

In our system, all strokes are generated by moving a nib along a
basic straight path. Character is added to the stroke by perturbing
the path with awaviness functionand by varying the pressure on
the nib with apressure function. Figure 1 demonstrates some of the
effects that can be achieved with different waviness and pressure
functions. A more detailed explanation of our strokes can be found
in Appendix A.3.1.

4.2 Stroke textures

A stroke textureis a collection of strokes used to produce both texture
and tone. We define aprioritized stroke textureas a set of strokes
each with an associated priority. When rendering a prioritized stroke
texture, all of the strokes of highest priority are drawn first; if the
rendered tone is still too light, the next highest priority strokes are
added, and so on, until the proper tone is achieved.

For our stroke textures, we assign different aspects of the texture
different priority. For example, for a “brick” texture, the outlines
of the individual brick elements have highest priority, the strokes
for shading individual bricks have medium priority, and the hatch-
ing strokes that go over the entire surface have lowest priority. In
the cross-hatching texture, vertical strokes have priority over hori-
zontal strokes, which have priority over the various diagonal stroke
directions. Figure 2 demonstrates several greyscales of tone pro-
duced using different procedural prioritized stroke textures, includ-
ing “cross-hatching,” “stipple,” “brick,” “shingle,” and “grass.” For

Figure 4:The effect of changing view direction on outline strokes of
a shingle texture. Notice how the vertical edges begin to disappear
as the texture is viewed from a more edge-on direction.

each texture, the relative priorities of the strokes can be seen from
the collection of strokes used to achieve a particular value of grey.
More details about the procedural methods for our stroke textures
are given in Appendices A.3.2 and A.3.3.

Although not explored in this paper, the idea of prioritized stroke
textures is general enough to support many kinds of non-procedu-
rally generated textures as well, such as textures drawn directly by an
artist, or strokes produced through edge extraction from a greyscale
image. These kinds of non-procedural stroke textures are explored
in more detail by Salisbury et al. [23].

4.2.1 Resolution dependence

A common problem with the figures created by existing computer
drawing programs is that they do not scale well when printed at
different sizes or resolutions. Enlargement is typically performed
either by pixel replication, which yields ugly aliasing artifacts, or
by drawing the same strokes at higher resolution, which yields thin-
ner strokes and an overall lighter illustration. Reduction is almost
always performed by scan-converting the same curves at a lower
resolution, often yielding a large black mass of overlapping strokes.
Printing speed is also a common problem with illustration reduction,
since the same number of strokes needs to be transmitted to and ren-
dered by the printer, even when a smaller number of strokes would
have sufficed (and actually have been preferable from an aesthetic
standpoint, as well).

The prioritized stroke textures described here do not suffer from
these problems. Strokes are chosen to provide the proper texture and
tone for a given illustration size and printer resolution, as demon-
strated in Figure 3. Note that for smaller images or coarser reso-
lutions, fewer strokes are required, improving printing efficiency.
Efficiency can be improved still further by rendering a simplified
approximate version of each stroke, accurate to within one printer
pixel [8].

4.2.2 Indication

As discussed in the principles of texture generation, it is important
to suggest texture without drawing every last stroke. This principle
of “indication” lends economy to an illustration. It also makes an
illustration more powerful by engaging the imagination of the viewer
rather than revealing everything.

Indication is one of the most notoriously difficult techniques for
the pen-and-ink student to master. It requires putting just enough
detail in just the right places, and also fading the detail out into the
unornamented parts of the surface in a subtle and unobtrusive way.



Clearly, a purely automated method for artistically placing indication
is a challenging research project.

We therefore decided to compromise and implement a semi-auto-
mated method, whereby the user specifies at a very high level where
detail should appear in the drawing, and indication is used every-
where else. For easy specification of the areas of detail, we borrowed
the idea of using “fields” generated by line segments from the mor-
phing paper of Beier and Neely [3]. The user interactively places
“detail segments” on the image to indicate where detail should ap-
pear. Each segment is projected and attached to the texture of the
3D surface for which indication is being designed.

A fieldw(x, y) is generated by the detail segment` at a point(x, y)
in texture space according to

w(x, y) = (a+ b ∗ distance((x, y), `))−c

wherea, b, andc are non-negative constants that can be used to
change the effect of the field. When several detail segments are
present, we define the field at a point(x, y) to be that of the closest
segment. So as not to create patterns that are too regular, the field
w(x, y) is perturbed by a small random value. Textures such as
“bricks” and “shingles” evaluate the strength of the field of indication
at the center of each brick or shingle element. The set of strokes for
that element is generated only if the indication field is above some
preset threshold.

This approach seems to give reasonable results, as demonstrated in
Figures 6 and 9. Figure 5 shows the detail segments that were used
to generate Figure 6.

4.3 Outline

As described in Section 3, outlines come in two varieties:boundary
and interior outlines. Theboundary outlinessurround the visible
polygons of the image, and must be drawn in a way that takes into
account both the textures of the surrounded regions, and the adja-
cency information stored in the planar map. Theinterior outlines
are used within polygons to suggest shadow directions or to give
view-dependent accents to the stroke texture.

In our implementation we have tried to address many of the princi-
ples for the effective use of these two types of outline, as described
below.

Expressing texture with outline.Each stroke textureT has associ-
ated with it aboundary outline texture, which is used whenever the
outline of a polygon textured withT is rendered. The boundary out-
line textures for some of our procedural textures are demonstrated in
the white squares of Figure 2. These boundary outline textures are
also displayed with and without their accompanying stroke textures
in the illustrations of Figure 7.

Minimizing outline. Let E be an edge that is shared by two faces
F andG of a planar subdivision. Our rendering algorithm drawsE
only if the tones of faceF andG are not sufficiently different for
the two faces to be easily disambiguated by their shading alone. In
this sense, we minimize the use of boundary outline strokes. When
a boundary outline strokeis drawn, it must be rendered according
to the boundary outline texture for one of the two facesF orG. We
choose the texture of the face of the planar subdivision that represents
a polygon closer to the viewer. Figure 8 demonstrates how outline
is omitted in the presence of sharp changes in tone, and added in the
absence of tone changes.

Accented outlines for shadowing and relief.“Accenting,” or thick-
ening, outline edges is a technique for providing subtle but important
cues about the three-dimensional aspects of an illustrated scene. In

Figure 5:Detail segments. The user interactively attaches “detail
segments” to the surfaces to indicate roughly where details should
appear.

our implementation, the interior outlines of each brick in the “brick”
stroke texture are drawn according to their relationship with the di-
rection of the light source: brick edges that cast shadows are rendered
with thickened edges, while illuminated brick edges are not drawn
at all. Figure 10 demonstrates this effect.

Dependence of viewing direction.In addition to the light source
direction, the viewing direction is another important parameter that
should be taken into account when drawing outline strokes. For
example, consider a roof of shingles. Viewed from above, all edges
between individual shingles are clearly visible; viewed from more
to the side, however, the shingles tend to blend together, and vertical
edges begin to disappear, leaving the horizontal edges predominant.
This effect is demonstrated in Figure 4. To implement this effect,
each stroke texture is outfitted with a very simplified “anisotropic
bidirectional reflectance distribution function” (BRDF), to borrow a
term from radiometry, which describes its outline features in terms
of both the lighting and viewing directions.

5 Results

Our computer-generated pen-and-ink illustration system was used
to create all the figures in this paper. The system was developed on
a Macintosh Quadra 700 using ThinkC.

The only input to the program is the scene geometry, including tex-
ture assignments for each surface, and some field lines for specifying
the “indication.”

We also used the system to generate an image of the top two floors
of Frank Lloyd Wright’s “Robie House,” as shown in Figure 9. The
model consist of 1043 polygons. It took 30 minutes to compute and
print the image. Of this time, 22 minutes were devoted to computing
the planar map from the input geometry, and 8 minutes were required
for actually rendering the image at 600 dots per inch.

6 Summary and future work

This paper does not propose any radically new algorithms or present
any complex mathematics. However, we feel it nevertheless provides
a number of contributions to the computer graphics community.
These contributions include:

• Surveying established principles from traditional illustration that
can be used for communicating visual information effectively.

• Showing that a large number of these principles can be incor-
porated as part of an automated rendering system, and that the



Figure 6:Indicating texture. The left house is drawn using “indication”; the right house is not.

information present for driving the ordinary graphics pipeline
is in many respects also sufficient for achieving important non-
photorealistic effects.

• Introducing the concept of a “prioritized stroke texture,” a general
framework for creating textures from strokes, and providing a
methodology for building procedural versions of these textures.

• Allowing a form of resolution-dependent rendering, in which the
choice of strokes used in an illustration is appropriately tied to
the resolution of the target medium.

However, the work described in this paper is just one early step in the
exploration of automated non-photorealistic rendering algorithms.
There are many ways to extend this work, including:

• Improving the procedural stroke textures, and automating further
our methods for creating them.

• Incorporating other illustration effects, such as exploded, cut-
away, and peel-back views, for showing parts that are hidden.

• Adding more interactive controls to help in designing 3D illus-
trations. Also, experimenting with very high-level controls—for

Figure 7: Indicating texture through outline. Notice how different
textures are delineated with different styles of boundary outlines.
The upper and lower illustrations are the same, except that all but the
boundary outline textures have been removed in the upper illustration
to present the different styles more clearly.

example, a control to add emphasis to parts of an illustration,
which would work by automatically accentuating and suppress-
ing detail over different parts of the image.

• Rendering other natural forms that appear in architectural draw-
ings (and for which established conventions also exist), such as
trees, grass, water, human figures, etc.

• Rendering other types of databases besides architectural models,
such as databases of mechanical parts. Also, applying traditional
illustration techniques and principles to databases that are not
inherently visual in nature, such as flow simulations or higher-
dimensional datasets. (This variety of rendering could be thought
of as a form of scientific visualization.)

• Creating animations. Because our system uses randomness pro-
fusely, issues in frame-to-frame coherence arise. For instance,
large features that are random, such as the selection of bricks that
are shaded, should not vary from frame to frame. However, more
subtle features, such as the waviness of strokes used to give the
hand-drawn appearance, should be allowed to waver [15].

• Exploring other forms of illustration besides pen-and-ink, includ-
ing traditional forms like watercolor and air brushing, as well as
new methods of conveying information visually that may not nec-
essarily mimic traditional forms.
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A Implementation Details

A.1 Overview

Three main global data structures are used by our system:

• The modelM . The model is stored as a collection of polygons
in three-space. For convenience, concave polygons and polygons
with holes are decomposed into convex polygons.

• BspTree. The 2D BSP tree [25] is a representation of the visible
polygons projected to Normalized Device Coordinates (NDC)
space. It is used for fast clipping of strokes.

• PlanarMap. The planar map [18] is a partition of the NDC plane
into vertices, edges, andfaces, according to the NDC projections
of the visible polygons. It is used to generate the outline strokes
of the surfaces.



Figure 9:Frank Lloyd Wright’s “Robie House.”

The rendering process is structured as follows:

procedure RenderScene(M):

(BspTree,PlanarMap) ← VisibleSurfaces(M)
for each visible surfaceS∈ M do

Strokes← Texture(S,Tone(S))
for each strokes∈ Strokesdo

Render(ClippedStroke(s,BspTree))
end for

Render(ConstructMinimalOutline(S,PlanarMap))
end procedure

The following sections describe the individual stages of the render-
ing process in more detail.

A.2 Computing the visible surfaces

We use a 3D BSP tree to compute visibilities [9], and Chin and
Feiner’s shadow volumes [4] to compute the shadow polygons. The
result is a set of convex polygons that can easily be ordered in depth
with respect to the view point. To build the 2D BSP tree, the visible
polygons are examined in front-to-back order. Each polygon is first
projected to NDC space, and then inserted into the 2D BSP tree.
The insertion into the 2D BSP tree is equivalent to the set union
operation described by Thibault and Naylor [25], except that “in”
leaf nodes carry an additional pointer back to the 3D polygon from
which they originate. As such, the 2D BSP tree forms a partition of
NDC space, with each cell in the partition corresponding either to a
unique frontmost polygon in the 3D scene, or to the background.

The planar map data structure is computed with the help of the
2D BSP tree. We begin by inserting a single rectangular region,
representing the entire drawing surface in NDC space, into the tree.
As each node of the tree is traversed, the original region is partitioned
into smaller and smaller faces in each branch of the tree. Faces
reaching an “out” leaf node are tagged as background faces. Faces
reaching an “in” leaf node receive a pointer to the corresponding
3D polygon inM. The BSP tree node also receives a pointer to the
planar map face. Because of numerical inaccuracies, it is possible
that some leaf nodes in the BSP tree never receive a matching face
in the planar map. During clipping, a segment that falls in a leaf
node having no planar map pointer is simply discarded. Because
such nodes correspond to extremely thin regions, no visible artifacts
result.

Geometrically, the planar map and the BSP tree are redundant: they
encode the same 2D partition. However, the two data structures are
amenable to different tasks. The BSP tree is efficient for clipping
strokes through set operations, but does not readily allow searching
among neighboring polygons. By contrast, the planar map encodes
polygon adjacencies, but does not lend itself as well to clipping.

A.3 Rendering the textures

A.3.1 Individual strokes

A strokeS consists of three parts:

• a pathP (u) : [0, 1] → IR2, giving the overall “sweep” of the
stroke, as a function of the parameteru.

• anibN (p), defining the cross-sectional “footprint” of the stroke,
as a function of the pressurep on the nib.

• a character functionC(u) = (Cw(u), Cp(u)), describing the
wavinessof the curveCw(u) (how the curve departs from its
path) and the pressureCp(u) on the nib.

The strokeS is defined as all pixels in the region

S = (P (u) + Cw(u)) ∗ N (Cp(u))

where∗ denotes the convolution of two parameterized point sets
A(u) andB(u) of the Cartesian planeIR2. This convolution is
defined as [10]:

A(u) ∗B(u) =
⋃

u∈[0,1]

{a+ b | a ∈ A(u) ∧ b ∈ B(u)}.

A strokeS is rendered by scan-converting the path (after waviness
is added) and stamping a copy of the nib, scaled by the pressure
value, in place of drawing each pixel. Note that more efficient scan-
conversion methods undoubtedly exist. Indeed, the investigation of
a good representation for individual strokes, including their overall
sweep and character functions, is a sizable research topic in and of
itself [8].

All strokes are drawn by a C++ object namedInkPen. An InkPenis
in turn composed of three objects: aNib, a WavinessFunction, and
a PressureFunction. Different pens can be created by assembling
various combinations of these components. So far, we have only used
circular nibs of variable radius, and a sine-wave waviness function
with randomly perturbed amplitude and wavelength. Two kinds of
pressure functions are used throughout the images in this paper: a
simple “broken-line” function that lifts the pen off the paper with
some randomness, and a random sine wave function that creates
strokes of varying thickness. Although our implementation does
not allow for all the generality of real pen and ink as described in
Section 2.1, the limited set of functions we have implemented still
allows for a fairly wide range of expressiveness.

An InkPensupports methods to: scale the nib size; query the amount
of ink deposited between two points when using a particular nib size;
and draw a stroke between two points to achieve a particular dark-
ness, in which case the darkness of the stroke will be appropriately
modulated by thePressureFunctionof the pen.



Figure 10:Illuminated bricks. Notice how the thickened edges change to follow the shadow direction.

A.3.2 Building tone from strokes

The first step in building tone is to compute a reference shadev ∈
[0 = white, 1 = black]; we use a simple Phong model in our
implementation. A procedural stroke texture is then used to produce
a set of strokes that together achieve the target grey valuev. As a
simple example, to achieve a tonev over an areaA using a nib of
width w with non-overlapping strokes requires drawing strokes of
total lengthvA/w.

To compute tone accurately, it is also important to take into account
the overlap between strokes that cross each other. Assuming un-
correlated overlap between the strokes of each non-overlapping set
seems to work well. For example, for bidirectional hatching, suppose
that the strokes in each hatching direction deposit a quantity of ink
x on the paper. Then the total ink in the cross-hatched area is given
by the sum of the ink from the strokes in each direction2x, minus
the quantity of ink that is deposited in the same place twice, which,
assuming uncorrelated strokes, can be approximated byx2. Thus, in
order to achieve a valuev, we use enough strokes in each direction to
achieve a valuex that satisfies the quadratic equation2x− x2 = v.
The correct level for each set is therefore given byx = 1−

√
1− v.

This expression is used, for example, by the “cross-hatching” texture
to achieve the right tone when two different directions of hatching
are crossed (Figure 2).

A.3.3 Stroke textures

To draw more complex textures, we use procedural prioritized stroke
textures, as described in Section 4. In this section, we examine the
“brick” texture in some detail. The description in this section can
readily be extended to other types of stroke textures.

The “brick” texture builds tone out of three sets of strokes: the brick
outlines; shading strokes within the bricks; and hatching strokes
layered over the whole surface. Each set of strokes is associated
with a differentInkPen.

The rendering process for “brick” textures is summarized below:

procedure RenderBrickTexture(TargetTone,Polygon3D)
Layout← GenerateBricks(Polygon3D,BrickSizes)
for each brickB ∈ Layoutdo

DrawBrickOutline(B,TargetTone,ViewPoint, Lights)
if the tone ofB is too light then

ShadeWithinBrick(B,TargetTone)
end if

end for
if the overall tone is still too lightthen

HatchOver(Layout,TargetTone)
end if

end procedure

The brick outlines are generated from a simple layout that is com-
puted on the fly in texture space and then projected into device space

before drawing takes place.

The width of the nib used to draw the outline strokes is scaled ac-
cording to the tone being rendered: darker tones use the default nib
size; for lighter tones, the nib size is scaled down. The same nib
size is used for all the bricks in order to achieve a consistent result
over the entire surface. The darkness of each stroke is then adjusted
so as to take the BRDF and shadow edge effects into account, as
described in Section 4.3. The darkness of the strokes may be further
reduced, for example, when the area of the bricks becomes smaller
due to perspective forshortening.

LetTo be the tone created by the outline strokes for a given brickB.
We estimateTo by taking the sum of the amount of ink deposited
by each outline stroke and dividing it by the area covered by
the brick on the paper, as discussed in Appendix A.3.2. IfTo is
not dark enough to achieve the desired tone, then the interior of
the brick is shaded. The darkness of each brick is limited by a
constantTs. Rather than shading every brick with the same tone
T = TargetTone−To, we instead shade each brick with probability
min{1, T/Ts}. If the brick is shaded, enough strokes are used to
achieve a toneTs, with some randomness added.

If the shaded bricks still do not achieve the target tone, that is, if
To+Ts < TargetTone, then additional hatching is used over the top
of all the bricks. For these hatch lines, we use the method described
in Appendix A.3.2 to take into account the overlap between strokes.

A.3.4 Clipping strokes

The strokes must be clipped to the visible regions they texture. The
2D BSP tree data structure is used for this purpose. The path of each
stroke is “pushed” down the BSP tree until it reaches one or more
leaf nodes. Only the portions of the path that reach nodes belonging
to the region being textured are rendered. Other clipping conditions
can also be used. For instance, hatching shadow areas is handled by
generating strokes over the entire surface and clipping them to the
regions in shadow.

A.3.5 Constructing the outline strokes

The outlines of visible surfaces are extracted by traversing the set of
edges stored in the planar map. As described in Section 4.3, these
outline edges are rendered only when the tones on either side of the
edge are very similar, and when the edges themselves are not directly
illuminated by the light source. Testing the tones of adjacent faces
is easily accomplished by searching in the planar map.
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