
1

Michael Wand Matthias Fischer Ingmar Peter
Friedhelm Meyer auf der Heide Wolfgang Straßer

WSI / GRIS
University of Tübingen

Heinz Nixdorf Institute
University of Paderborn

The Randomized z-Buffer Algorithm
Interactive Rendering of Highly Complex Scenes

Introduction

2/27

3/27

Scene Complexity

Highly detailed scenes:
• Visualization, Games, CAD, …
• Interactive walkthrough, editing
• Efficient rendering needed

106 triangles 108 triangles 1014 triangles

4/27

Complexity parameters: (triangle scene)
• Number of triangles: n
• Projected area (visible + occluded): a

Z-Buffer-Algorithm:

• Rendering time Θ(n + a)
• Not suitable for large scenes

Conclusion:
• We need output-sensitive algorithms
• Weak dependence of rendering time on scene complexity

Output-Sensitive Rendering

5/27

Randomized z-Buffer

Outline of our algorithm:

• Select sample points dynamically, approximately
uniformly distributed on the projected areas of the objects

• Reconstruct an image out of the sample points

Running time: O(a·logn)

triangles sample points bitmap

sample
point

selection

image
recon-

struction

6/27

Multi-resolution point sample rendering:
• QSplat [Rusinkiewicz, Levoy 2000]
• Surfels [Pfister et al. 2000]

Approach:
• Precomputed hierarchy

of point samples

Open problems:
• Fixed resolution
• Memory consumption
• Dynamic updates are expensive

Related Techniques

Qsplat

Surfels

2

7/27

Randomized z-buffer:

• Fast on-the-fly generation of sample points
• Sampling time O(a·logn) with O(n) storage
• Efficient dynamic scene modifications
• Fallback to hardware z-buffer rendering for large triangles

Our Contribution

Example: (800Mhz PC)

• 1014 triangles
• Sampling time: 4.3 sec
• Rendering time: 0.4 sec

Randomized z-Buffer:
Image Reconstruction

8/27

9/27

Image Reconstruction

Sample
points

1. Reconstruction
of occlusion

2. Filling

Two problems:

Remove adjacent
points with
larger depth

Scattered data
interpolation

10/27

Per-Pixel Reconstruction

Per-pixel reconstruction:
Draw sample points into z-buffer

To cover all foreground area: a⋅lnv sample points
a - Projected area (visible and occluded) [pixels]
v - Visible projected area [pixels]

11/27

Splatting: Draw colored splats of constant depth

Splatting

d = 2
(30 msec)

d = 5
(7 msec)

d = 1
(110 msec)

(d = splat size)
12/27

Gaussian Reconstruction:
• Use weighted averages in filling step
• Removes noise & aliasing
• Non-interactive reconstruction times (1-2 minutes)

Gaussian Filtering

z-Buffer
Gaussian

reconstruction
Per-pixel

reconstruction

12/27

3

Choosing Sample Points

13/27 14/27

Projection Factor

Projection factor: Factor by which an area fragment is
scaled during perspective projection

Goal: Sample points uniformly distributed
on the objects in the image plane

prj(x)
z

cos= ⋅1
2

β

depth factor
orientation factor

image plane

image

surface

normalα

β
x

cos
⋅ 1

α

distortion factor

z

15/27

Approximation (1)

Chose sample points: Projection factor as probability density
in the view frustum

Efficient solution: Approximation algorithm

Idea: Approximation of the ideal distribution

• Do not fall below minimum sampling density
• Exceeding the ideal sampling density leads to

longer rendering time “only”

15/27 16/27

Approximation (2)
Approximation strategy:

• Precomputed hierarchical clustering of objects
• Online: choose groups of similar projection factor,

calculate maximum projection factor
• In each group: distribution by unprojected area

Choosing Groups Choosing Triangles

17/27

Spatial classification:
• Precomputed octree
• Choose boxes, in which 1/z² does not

vary by more than a constant
• O(logτ) time, τ = minimal viewing

distance / scene diameter

Classification by orientation:
• Orientation classes
• Useful in special cases only

Analysis: neglect orientation factor
• Uniformly distributed surface normals

⇒ overestimation factor = 4

Grouping Objects

18/27

Selection by Unprojected Area

Precomputation: Distribution List
• List of cumulated area values

Dynamic triangle selection:
• Chose random number uniformly from [0, maxarea]
• Binary search
• O(logn) running time for n triangles!

Sample point: Random linear combination

4

Improvements

19/27 20/27

Handling of large triangles:
• Projected area:

triangle area × projection factor
• Classification by unprojected area
• Rasterize large triangles with

z-buffer hardware

Performance

Sample caching:

• Cache samples in spatial hierarchy nodes
• Speedup of up to factor 10
• Realtime performance on PC-hardware

additional classification
by triangle area:

21/27

Dynamic modifications:

• Substitute dynamic search tree
for distribution lists

• Insertion, deletion, modification in O(h)
(h = height of the spatial octree)

Efficient storage of highly complex scenes:

• Scene-graph based instantiation
• Storage O(|SG|) instead of O(n),

|SG| = size of scene graph

Enhanced Data Structure

Example Renderings

22/27

Example:
Landscape

Complexity: 400 million triangles
Hardware: 800Mhz PC, GeForce 2

Phong lighting,
per pixel reconstruction,
rendering time: 19.2 sec

diffuse lighting, splatting (d=2),
sample caching,

rendering time 0.26 sec

splatting, d = 2,
sample caching,

rendering time: 0.41sec

Example:
Forrest Scene

Complexity: 1014 triangles
Hardware: 800Mhz PC, GeForce 2

Gaussian reconstruction,
rendering time: 120sec

5

Future Work

25/27 26/27

Future Work

Future Directions:

• Modeling techniques for highly complex scenes
• Software framework
• Occlusion culling
• Global illumination

27/27

