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Animation Techniques

Making graphical characters move

• State-of-the-art: 
predominantly kinematic

• Reality: 
physics + control

Physics

GGTorquesTorques

Control

Divide and conquer

“jump 0.5m” controller TT

balance

sitwalk

dive
... 

Questions

What goes in a controller?

How do we arbitrate between controllers?
• Controllers model their own abilities

Related Work

Controller Design
• Athletic motions  [Hodgins 95]

• Leaping, Tumbling, Landing, Balancing  [Wooten 98]

• Walking controllers  [Laszlo 96]

Controller Composition 
• Juggling  [Burridge 99]
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Designing Controllers

Difficult !

• How do people move?

– Study biomechanics
– Use intuition

• Helpful Techniques

– Manual trial and error
– Automatic refinement

• Strategy: Basic to advanced

Finite State Machine
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Start Start 
Stand up controller

Controller Composition

Two Level Control Scheme

Supervisor

Controller nController 1

Supervisory level

Specialist level

Intuition

State space

A B

“Composable” Controllers

Pre-conditions

Expected performance

Post-conditions
Controller

Interface

Pre-conditions

Know When to Operate

• Initial state: qi

• Environment: Ce
)),(( ei CRPP q= )),(( ei CRPP q=
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Expected Performance 

Know When to Quit

• Unexpected situations

• Failure or early success

))(),((( tCtRC? eq= ))(),((( tCtRC? eq=

Post-conditions 

Know the Target or Goal

• Target state, qo

• Environment, Ce
)),(( eo CRCO q= )),(( eo CRCO q=

Controller Arbitration

Supervisor

Controller nController 1

Target state

• How to arbitrate ? 

• When to arbitrate ?

Determining Pre-conditions

Difficult !

• Multidimensional region approximation

• Irregular shape State space

Region of 
competence

Two Solutions

• Analytic or manual

• Machine learning

State space

Analytical 
approximation

Pre-condition 
region

Learning of Preconditions

Trained machineInput: qInput: q > 0  (success)

< 0 (failure)

> 0  (success)

< 0 (failure)

PredictionPrediction

classification problemclassification problem
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• Regular sampling is impractical

• Stochastic perturbations of initial states

• Random forces

Training Set (Known Examples)

States that 
caused failure

State space

States that 
caused 
success

Support Vector Machines

SVM models decision boundary

• Well studied technique

• Slow training time

• Fast query time

Results

Falling and getting up

• 5 Controllers:

–Default
–Fall 
–Roll over
–Get up
–Balance

Other Ways to Get up

Controllers
• Default
• SitUpGetUp
• Balance

Controllers
• Default
• Kip
• Balance

An Elaborate Fun Example

Controllers:

Balance

Step

Balance

ProtectStep

Fall

Default

Controllers:

Balance

Dive

Default

A Robot in Action!

DOFs: 14

Sound effects
by Harriet Hume

Robot Model
by J. A. Murphy
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Conclusions

Control Framework
• Controllers model their own competency

• Exchangeable and composable controllers

• On-the-fly controller selection

DANCE software system (with Victor Ng)
• Unifying platform for collaborative research

• Publicly available

Future Work

Towards real-time
Cooperative controllers
Planning

Acknowledgements

Victor Ng-Thow-Hing
Joe Laszlo
Michael Neff
Glenn Tsang
Meng Sun

Questions?

Anastasia Bezerianos
David Mould
Chris Trendal
Harriet Hume Questions ?

Overview 

Introduction
Controller design
Controller composition
SVM learning of controller competency
DANCE software system
Conclusion

DANCE
(Dynamic Animation and Control Environment)

Developed jointly with Victor Ng-Thow-Hing
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Features

• Common platform for animation research 

• Component abstraction for physics-based 
animation environments

• Communication between abstract modules

• Innovative plug-in architecture

DANCE is Powerful

MainMain

Tcl script
interface

Tcl script
interface

Tcl/Tk GUITcl/Tk GUI

DANCE Architecture

pluginsplugins

Simulator
Manager

Simulator
Manager

System
Manager
System

Manager

View
Manager

View
Manager

Geometry
Manager

Geometry
Manager

Actuator
Manager
Actuator
Manager

SimulatorSimulator

SystemSystem

ActuatorActuator

GeometryGeometry

ViewView

Example I:
Composable Controllers

SD/FASTSD/FASTsimulatorsimulator

systemsystem articulated objectarticulated object

indexed face setindexed face setgeometrygeometry

actuatoractuator fall controllerfall controller

ground forcesground forces

gravitygravity

Example II: Muscles (Victor Ng)

articulated objectarticulated objectsystemsystem

simulatorsimulator SD/FASTSD/FAST

B-spline solid muscleB-spline solid muscle

B-spline geometryB-spline geometry

Hill force modelsHill force models

actuatoractuator

Example III: Salt Shaker

ground forcesground forces
actuatoractuator

gravitygravity

articulated objectarticulated object
systemsystem

particle systemparticle system

simulatorsimulator
SD/FASTSD/FAST

EulerEuler
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Example IV: Dynamic Free-Form 
Deformations   [IEEE TVCG’97]

Lagrangian dynamics
Hierarchical deformations

Dynamic Free-form Deformations
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Who Wants to DANCE ?

Do not re-invent the wheel!
• Researchers in robotics, graphics, biomechanics

• Students (classroom tool)

• Game programmers

DANCE Saves a Lot of Time

Without        With
Base system: command shell,  interface                      4 months     0

component classes
Articulated figure + Simulator: data structures,           5 months     0

in/out, rendering
Actuators: Ground, Playback, Gravity, Collision 2 months     0
Misc: utility functions, optimization, debugging         1 month       0
Getting familiar with DANCE                                     0                  3 hours

13 months       3 hours

DANCE Is Already in Use

Dept. of Computer Science, University of Toronto
• Interactive virtual puppetry

• Interactive animation of characters

Dept. of Anatomy, University of Toronto
Human Simulation Group, Stanford University

DANCE code is free for non-commercial use atDANCE code is free for non-commercial use at

http://www.dgp.toronto.edu/DGP/software/dancehttp://www.dgp.toronto.edu/DGP/software/dance

Overview 

Introduction
Controller design
Controller composition
SVM learning of controller competency
DANCE software system
Conclusion
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Contributions

Control System Framework for Autonomous 
Dynamic Characters
• Extensible

• Dynamic Composition

• Controllers learn their competency

DANCE software system (with Victor Ng)
• Unifying platform for collaborative research

Related Work

Controller Design
• Athletic motions  [Hodgins 95]

• Walking controllers  [Laszlo 96]

• Falling  [Smeesters 99]

Controller Composition 
• Leaping, Tumbling, Landing, Balancing  [Wooten 98]

• Juggling  [Burridge 99]

Composition: Another Benefit

Controller 1
from GATECH

Controller 2
from UofT

Harness independent results

Composition
Framework

Biomechanics

Modeling human and 
other animal bodies
(Victor’s muscle model)

Understanding and 
simulating motor 
control

Potential Applications to 
Robotics

HondaHondaHonda SonySonySony

MIT Leg LabMIT Leg LabMIT Leg Lab

Future Work

Efficient simulation
Multiple controllers
Motor control and planning
Behavior animation and AI

PhysicsBiomechanics / Motor ControlBiomechanics / Motor Control

PerceptionPerception

BehaviorBehavior

LearningLearning

CognitionCognition
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Publications/Software

Graphics
• Composable Controllers  [ACM SIGGRAPH 2001]

• Animation of Deformable Characters  [IEEE TVCG 1997]

• DANCE Software System  [ACM SIGGRAPH 2000]

Robotics
• Dynamic Articulated Characters  [ICRA 2000]

Visualization
• Modeling Real Computer Networks  [ACM SIGCOMM 1999]

• Bibliographic Data Visualization  [CASCON 1996]

Software
• DANCE  www.dgp.toronto.edu/dgp/software/dance

• Graphics Engine  www.thelivingletters.com

Thank You!

Character Animation
in the Film Industry

Pixar’s 
Toy Story

Disney’s 
Jurassic Park

Character Animation
in the Game Industry

Xena by 
Electronic Arts

NHL by 
Electronic Arts

Shenmue by 
AM2             

and SEGA
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Discrete time approximationDiscrete time approximation

Can be computationally expensive!Can be computationally expensive!
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Examples

KneelKneelProtect StepProtect Step

First step: Self-Animating Characters
• Rich repertoire of motor skills 

• Capable of autonomous, reactive movement

Long-Range Goal: 
Intelligent Virtual Characters

PhysicsPhysics

ControlControl

PerceptionPerception

CognitionCognition

BehaviorBehavior

Contributions

• Control System Framework for Autonomous 
Dynamic Characters

– Dynamic composition
–Extensible
–Controllers learn their competency

• Runs on top of DANCE (DANCE jointly developed 
with Victor Ng-Thow-Hing)

• Share and re-use results

Overview 

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Overview 

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Applying Newtonian Mechanics

Nonlinear 2nd-order differential eqs of 
motion
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What is a “Controller”?

controller

ntt ,,  : 1 LTorques ntt ,,  : 1 LTorques

“jump 0.5m” Action

e.g., jump!

qMF &&= qMF &&=

TT

Overview 

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Standing → Step → Fall
• Fall Controller

–Pre-conditions: 

–Expected performance:
Contact with ground in 2 seconds

–Post-conditions:

Composite Fall Controller

ac >& ac >&},{SP∉c },{SP∉c

0~c& 0~c&

ac ′>& ac ′>&

Transitions Between Controllers

Transitions happen when preconditions 
overlap with postconditions

PreC1 PostC1 ?

PostC2

PreC2

C1C1

C2C2

State space

Standing → Step → Fall

Composite Fall Controller
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Notation
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Overview 

Introduction
Controller design
Controller composition
SVM learning of controller competency
DANCE software system
Conclusion

SVM Theory

Method for fitting functions to training data
• Introduced by Vapnik in 1979

• Decision function f(x,α) classifies observation x 
(α: Lagrange multipliers)

• Solve a quadratic programming problem for the α

• Training data for which α > 0 are the support vectors

• Kernel functions generalize linear SVM theory to 
nonlinear cases (Gaussian (RBF), polynomial, sinusoidal, linear…)

• Extensions of SVM theory: 
prior knowledge, fast  classification

SVM Examples 
in 2D

Linear

Support 
vectors

Class 1Class 1

Class 2Class 2

SVM Examples 
in 2D

Polynomial

Support vectorsSupport vectors

Class 1Class 1
Class 2Class 2

SVM Examples 
in 2D

Gaussian

MisclassifiedMisclassified

Support vectorsSupport vectors Class 1Class 1

Class 2Class 2



13

A Robot in Action!

DOFs: 14

Sound effects
by Harriet Hume

The SVM Method Works Well

97.73%92.78%8,65811,020Walk

87.67%83.63%20,39317,317StandIn
Place

99.77%98.05%14,2726,926
BentToS
tand

SVM Nearest 
Neighbor

Test set 
size

Training 
set size

Controll
er

SVMs and Random Element

5499.734199.77Crouch to 
Stand

86296.1773896.73Walk

166086.68160487.29Dstance 
to Stand

#Support 
vectors

Success % 
with noise

#Support 
vectors

Succes no 
noise %

Controller

SVMs and Noise 

65.70371981.861.00

80.87181187.230.10

81.05162587.480.01

80.97160487.290.00

NN#Sup. VecsSVMNoise

DStanceToStand

Overview 

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Simple Composition Examples

Sit - get upSit - get up

Dive 1Dive 1 Dive 2Dive 2

StepStep Protect StepProtect Step
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Examples

KneelKneelProtect StepProtect Step

Autonomous characters

PhysicsPhysics

ControlControl

PerceptionPerception

CognitionCognition

BehaviorBehavior

Future Work

Towards real-time
Cooperative controllers
Planning
Behavior animation and AI

PhysicsBiomechanics / Motor ControlBiomechanics / Motor Control

PerceptionPerception

BehaviorBehavior

LearningLearning

CognitionCognition


