
1

Composable Controllers for Physics-
based Character Animation

Petros Faloutsos
Michiel van de Panne
Demetri Terzopoulos

University of Toronto
Dept. Of

Computer Science

Animation Techniques

Making graphical characters move

• State-of-the-art:
predominantly kinematic

• Reality:
physics + control

Physics

GGTorquesTorques

Control

Divide and conquer

“jump 0.5m” controller TT

balance

sitwalk

dive
...

Questions

What goes in a controller?

How do we arbitrate between controllers?
• Controllers model their own abilities

Related Work

Controller Design
• Athletic motions [Hodgins 95]

• Leaping, Tumbling, Landing, Balancing [Wooten 98]

• Walking controllers [Laszlo 96]

Controller Composition
• Juggling [Burridge 99]

2

Designing Controllers

Difficult !

• How do people move?

– Study biomechanics
– Use intuition

• Helpful Techniques

– Manual trial and error
– Automatic refinement

• Strategy: Basic to advanced

Finite State Machine

1
1

,11
1

11)(θθθτθ &
ddesireds kk −−=→ 1
1

,11
1

11)(θθθτθ &
ddesireds kk −−=→

n
n
ddesirednn

n
snn kk θθθτθ &−−=→)(, n

n
ddesirednn

n
snn kk θθθτθ &−−=→)(,

Start Start
Stand up controller

Controller Composition

Two Level Control Scheme

Supervisor

Controller nController 1

Supervisory level

Specialist level

Intuition

State space

A B

“Composable” Controllers

Pre-conditions

Expected performance

Post-conditions
Controller

Interface

Pre-conditions

Know When to Operate

• Initial state: qi

• Environment: Ce
)),((ei CRPP q=)),((ei CRPP q=

3

Expected Performance

Know When to Quit

• Unexpected situations

• Failure or early success

))(),(((tCtRC? eq=))(),(((tCtRC? eq=

Post-conditions

Know the Target or Goal

• Target state, qo

• Environment, Ce
)),((eo CRCO q=)),((eo CRCO q=

Controller Arbitration

Supervisor

Controller nController 1

Target state

• How to arbitrate ?

• When to arbitrate ?

Determining Pre-conditions

Difficult !

• Multidimensional region approximation

• Irregular shape State space

Region of
competence

Two Solutions

• Analytic or manual

• Machine learning

State space

Analytical
approximation

Pre-condition
region

Learning of Preconditions

Trained machineInput: qInput: q > 0 (success)

< 0 (failure)

> 0 (success)

< 0 (failure)

PredictionPrediction

classification problemclassification problem

4

• Regular sampling is impractical

• Stochastic perturbations of initial states

• Random forces

Training Set (Known Examples)

States that
caused failure

State space

States that
caused
success

Support Vector Machines

SVM models decision boundary

• Well studied technique

• Slow training time

• Fast query time

Results

Falling and getting up

• 5 Controllers:

–Default
–Fall
–Roll over
–Get up
–Balance

Other Ways to Get up

Controllers
• Default
• SitUpGetUp
• Balance

Controllers
• Default
• Kip
• Balance

An Elaborate Fun Example

Controllers:

Balance

Step

Balance

ProtectStep

Fall

Default

Controllers:

Balance

Dive

Default

A Robot in Action!

DOFs: 14

Sound effects
by Harriet Hume

Robot Model
by J. A. Murphy

5

Conclusions

Control Framework
• Controllers model their own competency

• Exchangeable and composable controllers

• On-the-fly controller selection

DANCE software system (with Victor Ng)
• Unifying platform for collaborative research

• Publicly available

Future Work

Towards real-time
Cooperative controllers
Planning

Acknowledgements

Victor Ng-Thow-Hing
Joe Laszlo
Michael Neff
Glenn Tsang
Meng Sun

Questions?

Anastasia Bezerianos
David Mould
Chris Trendal
Harriet Hume Questions ?

Overview

Introduction
Controller design
Controller composition
SVM learning of controller competency
DANCE software system
Conclusion

DANCE
(Dynamic Animation and Control Environment)

Developed jointly with Victor Ng-Thow-Hing

6

Features

• Common platform for animation research

• Component abstraction for physics-based
animation environments

• Communication between abstract modules

• Innovative plug-in architecture

DANCE is Powerful

MainMain

Tcl script
interface

Tcl script
interface

Tcl/Tk GUITcl/Tk GUI

DANCE Architecture

pluginsplugins

Simulator
Manager

Simulator
Manager

System
Manager
System

Manager

View
Manager

View
Manager

Geometry
Manager

Geometry
Manager

Actuator
Manager
Actuator
Manager

SimulatorSimulator

SystemSystem

ActuatorActuator

GeometryGeometry

ViewView

Example I:
Composable Controllers

SD/FASTSD/FASTsimulatorsimulator

systemsystem articulated objectarticulated object

indexed face setindexed face setgeometrygeometry

actuatoractuator fall controllerfall controller

ground forcesground forces

gravitygravity

Example II: Muscles (Victor Ng)

articulated objectarticulated objectsystemsystem

simulatorsimulator SD/FASTSD/FAST

B-spline solid muscleB-spline solid muscle

B-spline geometryB-spline geometry

Hill force modelsHill force models

actuatoractuator

Example III: Salt Shaker

ground forcesground forces
actuatoractuator

gravitygravity

articulated objectarticulated object
systemsystem

particle systemparticle system

simulatorsimulator
SD/FASTSD/FAST

EulerEuler

7

Example IV: Dynamic Free-Form
Deformations [IEEE TVCG’97]

Lagrangian dynamics
Hierarchical deformations

Dynamic Free-form Deformations

[]nllglobal ,1, ???RTq
r

L
rr

=variablesState []nllglobal ,1, ???RTq
r

L
rr

=variablesState

q
M

q
q

M
qQFJKqqM &&&&& 








∂
∂

−
∂

∂
++=+

t
T

cext
T

2
1 q

M
q

q
M

qQFJKqqM &&&&& 







∂
∂

−
∂

∂
++=+

t
T

cext
T

2
1

Equations of motion:Equations of motion:

),(),(),(

),(),(),(

3

0

3

0

3

0 1

positiondeformed

3

0

3

0

3

0 1

kuBjtBisB
u
t
s

kuBjtBisBP

lll
i j k

D

n
lijk

n
lijk

l
n

g

g

g

ggg
i j k

D

n
gijk

n
gijk

g
n

g

g

∑∑∑ ∑

∑∑∑ ∑

= = = =

= = = =









+=



























++=

Lda

LdRT

γ

γ

444444444 8444444444 76

),(),(),(

),(),(),(

3

0

3

0

3

0 1

positiondeformed

3

0

3

0

3

0 1

kuBjtBisB
u
t
s

kuBjtBisBP

lll
i j k

D

n
lijk

n
lijk

l
n

g

g

g

ggg
i j k

D

n
gijk

n
gijk

g
n

g

g

∑∑∑ ∑

∑∑∑ ∑

= = = =

= = = =









+=



























++=

Lda

LdRT

γ

γ

444444444 8444444444 76

Who Wants to DANCE ?

Do not re-invent the wheel!
• Researchers in robotics, graphics, biomechanics

• Students (classroom tool)

• Game programmers

DANCE Saves a Lot of Time

Without With
Base system: command shell, interface 4 months 0

component classes
Articulated figure + Simulator: data structures, 5 months 0

in/out, rendering
Actuators: Ground, Playback, Gravity, Collision 2 months 0
Misc: utility functions, optimization, debugging 1 month 0
Getting familiar with DANCE 0 3 hours

13 months 3 hours

DANCE Is Already in Use

Dept. of Computer Science, University of Toronto
• Interactive virtual puppetry

• Interactive animation of characters

Dept. of Anatomy, University of Toronto
Human Simulation Group, Stanford University

DANCE code is free for non-commercial use atDANCE code is free for non-commercial use at

http://www.dgp.toronto.edu/DGP/software/dancehttp://www.dgp.toronto.edu/DGP/software/dance

Overview

Introduction
Controller design
Controller composition
SVM learning of controller competency
DANCE software system
Conclusion

8

Contributions

Control System Framework for Autonomous
Dynamic Characters
• Extensible

• Dynamic Composition

• Controllers learn their competency

DANCE software system (with Victor Ng)
• Unifying platform for collaborative research

Related Work

Controller Design
• Athletic motions [Hodgins 95]

• Walking controllers [Laszlo 96]

• Falling [Smeesters 99]

Controller Composition
• Leaping, Tumbling, Landing, Balancing [Wooten 98]

• Juggling [Burridge 99]

Composition: Another Benefit

Controller 1
from GATECH

Controller 2
from UofT

Harness independent results

Composition
Framework

Biomechanics

Modeling human and
other animal bodies
(Victor’s muscle model)

Understanding and
simulating motor
control

Potential Applications to
Robotics

HondaHondaHonda SonySonySony

MIT Leg LabMIT Leg LabMIT Leg Lab

Future Work

Efficient simulation
Multiple controllers
Motor control and planning
Behavior animation and AI

PhysicsBiomechanics / Motor ControlBiomechanics / Motor Control

PerceptionPerception

BehaviorBehavior

LearningLearning

CognitionCognition

9

Acknowledgements

Victor Ng-Thow-Hing
Joe Laszlo
Michael Neff
DGP lab group at the University of Toronto

• Glenn Tsang, Meng Sun, Anastasia Bezerianos, David Mould,
Chris Trendal

Harriet Hume (Sound effects)

Publications/Software

Graphics
• Composable Controllers [ACM SIGGRAPH 2001]

• Animation of Deformable Characters [IEEE TVCG 1997]

• DANCE Software System [ACM SIGGRAPH 2000]

Robotics
• Dynamic Articulated Characters [ICRA 2000]

Visualization
• Modeling Real Computer Networks [ACM SIGCOMM 1999]

• Bibliographic Data Visualization [CASCON 1996]

Software
• DANCE www.dgp.toronto.edu/dgp/software/dance

• Graphics Engine www.thelivingletters.com

Thank You!

Character Animation
in the Film Industry

Pixar’s
Toy Story

Disney’s
Jurassic Park

Character Animation
in the Game Industry

Xena by
Electronic Arts

NHL by
Electronic Arts

Shenmue by
AM2

and SEGA

Numerical Solution

)(
2

)()()(

)()()(

,
)()(

2

t
t

ttttt

ttttt

tt

qqqq

qqq

qbqM
bM

qq

&&&

&&&&

&&&&

&

∆
+∆+=∆+

∆+=∆+

=
Intergrate

forSolve
Compute

andGiven

)(
2

)()()(

)()()(

,
)()(

2

t
t

ttttt

ttttt

tt

qqqq

qqq

qbqM
bM

qq

&&&

&&&&

&&&&

&

∆
+∆+=∆+

∆+=∆+

=
Intergrate

forSolve
Compute

andGiven

Discrete time approximationDiscrete time approximation

Can be computationally expensive!Can be computationally expensive!

10

Examples

KneelKneelProtect StepProtect Step

First step: Self-Animating Characters
• Rich repertoire of motor skills

• Capable of autonomous, reactive movement

Long-Range Goal:
Intelligent Virtual Characters

PhysicsPhysics

ControlControl

PerceptionPerception

CognitionCognition

BehaviorBehavior

Contributions

• Control System Framework for Autonomous
Dynamic Characters

– Dynamic composition
–Extensible
–Controllers learn their competency

• Runs on top of DANCE (DANCE jointly developed
with Victor Ng-Thow-Hing)

• Share and re-use results

Overview

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Overview

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Applying Newtonian Mechanics

Nonlinear 2nd-order differential eqs of
motion

∑∑∑ ++=+
k

kj
T
R

l
lext

T
R

i
i

T
TtCtt ,,),,()(),(tJtJfJqqqqM &&& ∑∑∑ ++=+

k
kj

T
R

l
lext

T
R

i
i

T
TtCtt ,,),,()(),(tJtJfJqqqqM &&&

][jext ttf
TorquesandForces

][jext ttf
TorquesandForces

][qq &State][qq &State

Inertial
Forces

Gyroscopic
Forces

External
Forces

External
Torques

Joint
Torques

11

What is a “Controller”?

controller

ntt ,, : 1 LTorques ntt ,, : 1 LTorques

“jump 0.5m” Action

e.g., jump!

qMF &&= qMF &&=

TT

Overview

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Standing → Step → Fall
• Fall Controller

–Pre-conditions:

–Expected performance:
Contact with ground in 2 seconds

–Post-conditions:

Composite Fall Controller

ac >& ac >&},{SP∉c },{SP∉c

0~c& 0~c&

ac ′>& ac ′>&

Transitions Between Controllers

Transitions happen when preconditions
overlap with postconditions

PreC1 PostC1 ?

PostC2

PreC2

C1C1

C2C2

State space

Standing → Step → Fall

Composite Fall Controller

12

Notation

][

][1

qq

RTq
&

L

=
=

State

DOFs System n??
][

][1

qq

RTq
&

L

=
=

State

DOFs System n??

iθiθ

RR
TT

World Coordinate System

Body Coordinate System

Overview

Introduction
Controller design
Controller composition
SVM learning of controller competency
DANCE software system
Conclusion

SVM Theory

Method for fitting functions to training data
• Introduced by Vapnik in 1979

• Decision function f(x,α) classifies observation x
(α: Lagrange multipliers)

• Solve a quadratic programming problem for the α

• Training data for which α > 0 are the support vectors

• Kernel functions generalize linear SVM theory to
nonlinear cases (Gaussian (RBF), polynomial, sinusoidal, linear…)

• Extensions of SVM theory:
prior knowledge, fast classification

SVM Examples
in 2D

Linear

Support
vectors

Class 1Class 1

Class 2Class 2

SVM Examples
in 2D

Polynomial

Support vectorsSupport vectors

Class 1Class 1
Class 2Class 2

SVM Examples
in 2D

Gaussian

MisclassifiedMisclassified

Support vectorsSupport vectors Class 1Class 1

Class 2Class 2

13

A Robot in Action!

DOFs: 14

Sound effects
by Harriet Hume

The SVM Method Works Well

97.73%92.78%8,65811,020Walk

87.67%83.63%20,39317,317StandIn
Place

99.77%98.05%14,2726,926
BentToS
tand

SVM Nearest
Neighbor

Test set
size

Training
set size

Controll
er

SVMs and Random Element

5499.734199.77Crouch to
Stand

86296.1773896.73Walk

166086.68160487.29Dstance
to Stand

#Support
vectors

Success %
with noise

#Support
vectors

Succes no
noise %

Controller

SVMs and Noise

65.70371981.861.00

80.87181187.230.10

81.05162587.480.01

80.97160487.290.00

NN#Sup. VecsSVMNoise

DStanceToStand

Overview

Introduction
Controller design
Controller composition
SVM learning of controller competency
Conclusion

Simple Composition Examples

Sit - get upSit - get up

Dive 1Dive 1 Dive 2Dive 2

StepStep Protect StepProtect Step

14

Examples

KneelKneelProtect StepProtect Step

Autonomous characters

PhysicsPhysics

ControlControl

PerceptionPerception

CognitionCognition

BehaviorBehavior

Future Work

Towards real-time
Cooperative controllers
Planning
Behavior animation and AI

PhysicsBiomechanics / Motor ControlBiomechanics / Motor Control

PerceptionPerception

BehaviorBehavior

LearningLearning

CognitionCognition

