A User-Programmable Vertex Engine

Erik Lindholm
Mark Kilgard
Henry Moreton

NVIDIA Corporation

Pipeline Role

Introduction

= Programmability vs. Configurability

® Programmability is trend

= Very efficient vertex engine

= Simple yet powerful programming model
e Supports fixed function pipeline

e Delivered in the GeForce3

Previous Work: Geometry Engine

il ®High bandwidth + lots of Flops

e Low clock rate

{ ®No architectural continuity

= VERY hard to program

= Some high-level language support (maybe)
= A compromise solution (vtx,prim,pix,...)

Alternative: The CPU

e Low bandwidth + reasonable Flops

= High clock rate

= Excellent architectural continuity

= VERY hard to use efficiently

= Excellent high-level language support
e Flexible, but often too slow

New Design: The Vertex Engine

= Simple hardware for a commodity GPU

= Allows user to manipulate vertex transform
= Simple to use programming model

= Superset of fixed function mode

Why Not Primitive Processing?

i| ®Face culling and clipping break parallelism
| e Complicates memory accesses

| = Inefficient (control takes time)

e L et hardware designers optimize

Why Vertex Processing?

= Very parallel

@ Use single vertex programming model
e Hardware can batch or interleave
=KISS

Programming |Model

16x4 repisters

>
128 insfuctions <«

12x4 registers

15x4 registers

Programming Model: Vertex 1/O

® Streaming vertex architecture

= Source data converted to floats

@ Source data loaded

® Run program

@ Destination data drained

@ Destination data re-formatted for hw

Write I\:VI

XY ZW

Instruction Set: The Core Features

e |mmediate access to sources

® Swizzle/negate on all sources

= Write mask on all destinations

e DP3,DP4 most common graphics ops

e Cross product is MUL+MAD with swizzling
e LIT instruction implements phong lighting

Sample OpenGL Vertex Program

static const GLubyte vpgm[] = “\I!VP1. O\
DP4 o[HPOS].x, c[0], Vv[O];
DP4 o[HPOS].y, c[1], v[O];
DP4 o[HPOS].z, c[2], v[O];
DP4 o[HPOS].w, c[3], v[0];
MOV o[COLO],V[3];
END";

Cross Product Coding Example

Cross product R2 = RO x R1

MUL R2, RO.zxyw, R1.yzxw;
MAD R2, RO.yzxw, R1.zxyw, -R2;

Hardware Implementation

|| = Vector SIMD Unit + Special Function Unit

| ®Multithreaded and pipelined to hide latency
|| ® Any one instruction/cycle

e All instructions equal latency

e Free swizzling/negate/write mask support

Instruction Set: The ops

= 17 instructions total

e ARL

= MOV, MUL, ADD, MAD, DST
= DP3, DP4

e MIN, MAX, SLT, SGE

®RCP, RSQ, LOG, EXP, LIT

HW Block Diagram

Constant
Memory

Special
Function

API Support

@ Designed to fit into OpenGL and D3D API’s
® Program mode vs. Fixed function mode
@ |_oad and bind program

= Simple to add to old D3D and OpenGL
programs

Conclusion

i ®Very simple, efficient implementation
= Allows vertex programming continuity
| ®Stanford Imagine Architecture
e A work in progress, lots more to come...
= \We welcome your feedback

