

DirectX 8 graphicsDirectX 8 graphics

PresentersPresenters
�� Phil TaylorPhil Taylor

� Phil Taylor is the DirectX SDK Program Manager, and was
responsible for Direct3D evangelism from DirectX 3.0
through 7.0.

�� Chas. BoydChas. Boyd
� Chas. Boyd is currently the DirectX Graphics Architect, and

was Program Manager responsible for the design and
specification of Direct3D from DirectX 5.0 through 8.0.

Introduction Introduction

AgendaAgenda
HistoryHistory
Brief statusBrief status
TrendsTrends

Agenda - MorningAgenda - Morning

Design Goals & ArchitectureDesign Goals & Architecture
Programming ModelProgramming Model
Vertex ProcessingVertex Processing

�Overview

�Vertex shaders

Pixel ProcessingPixel Processing
�Overview

Agenda - AfternoonAgenda - Afternoon

Pixel ProcessingPixel Processing
� Pixel shaders

Higher Order SurfacesHigher Order Surfaces
D3DX utility library supportD3DX utility library support

� Texture support, meshes, skinning, and more

Authoring tool supportAuthoring tool support
� 3DSMax, Maya, Lightwave

History History

DirectX evolved from the Windows 95DirectX evolved from the Windows 95 GameSDKGameSDK
Now ships as part of the OSNow ships as part of the OS

� DirectX 5 with Windows 98

� DirectX 6 with Windows 98 SE

� DirectX 7 with Windows 2000 & Millenium

� DirectX 8 with Windows XP

Coincides with yearly IHV cycleCoincides with yearly IHV cycle
� In time for yearly ISV Christmas cycle

Status � DX 8Status � DX 8

Shipped DX 8.0 Nov 2000Shipped DX 8.0 Nov 2000
shader hardware as of 1H 2001shader hardware as of 1H 2001
Working on DX 8.1 for Q3 2001Working on DX 8.1 for Q3 2001

� Mainly shader updates to support new hardware

DX 9 in spec review summer 2001DX 9 in spec review summer 2001
� Mail directx@microsoft.com if interested

Status - DX 8 hardware Status - DX 8 hardware

Parallel Vertex DMA InputParallel Vertex DMA Input
ProgrammableProgrammable ShadersShaders

� For vertex and pixel processing

Volume TexturesVolume Textures
Particle RenderingParticle Rendering
MultiMulti--sample Renderingsample Rendering
HigherHigher--Order PrimitivesOrder Primitives
1.2GPix/s, 60MPoly/s1.2GPix/s, 60MPoly/s

Trends - PC 3-D PerformanceTrends - PC 3-D Performance
1200M

900M

600M

300M

0

25M

20M

15M

10M

5M

0

Polygons/sec
Pixels/sec

1998 1999 2000

Design GoalsDesign Goals

Support IHV communitySupport IHV community
Support ISV communitySupport ISV community
Update and improve the APIUpdate and improve the API

Support IHV CommunitySupport IHV Community

Identify hardware featuresIdentify hardware features
From ISV requests, IHV proposals

Evangelise to Evangelise to IHVsIHVs
Demonstrate features in reference device implementation

Implement DDIImplement DDI
Provide DirectX betas to IHVs with sample and ref. driver.

SimulSimul--Ship with new HWShip with new HW
Validate HW & drivers vs. ref. deviceValidate HW & drivers vs. ref. device

Support ISV CommunitySupport ISV Community

Identify API featuresIdentify API features
� Graphics Advisory Board

� Key ISV contacts

� Industry events (reviews, GDC, Meltdown)

Evangelize to Evangelize to ISVsISVs
Implement APIImplement API

� Provide DirectX betas to >3000 beta customers

SimulSimul--ship with new hardware/titlesship with new hardware/titles

Support IHV and ISV CommunitySupport IHV and ISV Community

InnovationInnovation
� Guarantees latest technology is always available

on the Windows PC platform

�A key draw in entertainment apps

LeadershipLeadership
� Sets common target for all

�Encourages consistency of implementations

DirectX 8.0 Graphics APIDirectX 8.0 Graphics API

Simplify APISimplify API
Evolve pipeline to add programmabilityEvolve pipeline to add programmability
Support other new hardware featuresSupport other new hardware features
Improve support librariesImprove support libraries

� D3DX

� Authoring tool support

DirectX 8.0 Simplification goalsDirectX 8.0 Simplification goals
Merge DirectDrawMerge DirectDraw®® and Direct3Dand Direct3D
Narrower focus:support 3D Narrower focus:support 3D fullscreenfullscreen gamesgames
Reduce API clutterReduce API clutter
Promote overall robustnessPromote overall robustness

� Reducing app LOC and code paths

� Fewer features

Lines of Code:Lines of Code:
� DDraw in DX7 : 67k. DX8:14k

DirectX 8 Direct3D® EvolutionDirectX 8 Direct3D® Evolution

Next Generation 3D APINext Generation 3D API
� Fundamentally new architecture

�Photo�Photo--RealReal--Time�Time�
� Photo-real quality

� Real-time performance

� Programmable Vertex & Pixel shaders

New Hardware Features New Hardware Features

MultiMulti--sampling renderingsampling rendering
� Fullscreen AA and multisampling enables motion-blur,

depth of field, etc.

Point spritesPoint sprites
� High-performance rendering primitive for particles

33--D volumetric texturesD volumetric textures
� Per-pixel lighting attenuation, atmospheric effects

HigherHigher--order primitive supportorder primitive support
� Quintic Bezier, B-Splines and N-Patches

DirectX 8 Direct3D® Support DirectX 8 Direct3D® Support

Indexed vertex blendingIndexed vertex blending
� Matrix palette skinning

HigherHigher--level technologieslevel technologies
� Exporters for 3DS-MAX and Maya, inc. src.

Expansion of the D3DX Utility LibraryExpansion of the D3DX Utility Library
� Programmable shader assemblers

� Mesh creation/manipulation functions
�Optimisations
�N-Patch emulation

Architecture OverviewArchitecture Overview

PipelinePipeline
FeaturesFeatures

Direct3D Programmable ArchitectureDirect3D Programmable Architecture

Direct3D Vertex PipelineDirect3D Vertex Pipeline

Vertex PipelineVertex Pipeline

Vertex Assembly (format conversion)Vertex Assembly (format conversion)
TessellationTessellation
VertexVertex ShaderShader (or FF T(or FF T--nn--L)L)
Primitive AssemblyPrimitive Assembly
Clipping Clipping --frustum and arbitraryfrustum and arbitrary
BackfaceBackface CullCull
Perspective DivisionPerspective Division
ViewportViewport TransformTransform

Direct3D Raster PipelineDirect3D Raster Pipeline

Pixel PipelinePixel Pipeline

Triangle Triangle SetupSetup
PixelPixel ShaderShader (or FF (or FF Multitexture Multitexture))

� Iterate colours, texcoords, etc

� Sample textures with address ops

� Texture/colour blend

Fog BlendFog Blend
FrameFrame--Buffer BlendBuffer Blend

Antialiasing APIAntialiasing API
Check quality range availableCheck quality range available

� Expressed as number of samples from
CheckDeviceMultiSampleTypes()

Specify to Specify to CreateRenderTargetCreateRenderTarget()()
Early hardware will support max of 2 or Early hardware will support max of 2 or

possibly 4 samplespossibly 4 samples
� Implementation may round down

PerPer--Primitive enable:Primitive enable:
� D3DRS_MULTISAMPLEANTIALIAS

MultiSample RenderingMultiSample Rendering
Can reCan re--use AA hardware for more!use AA hardware for more!
Cool effects:Cool effects:

� Motion Blur, Focus Blur, Reflection Blur

API is same as FSAA but can restrict API is same as FSAA but can restrict
rendering to subset of samplesrendering to subset of samples
� D3DRS_MULTISAMPLE_MASK

Set mask and render multiple passesSet mask and render multiple passes

MultiSample UsesMultiSample Uses
Motion blurMotion blur

� Draw separate copies of moving objects

� If 1st person, even world is moving object

Focus blurFocus blur
� Rotate camera about center of focus

Reflection blurReflection blur
� Shift reflected scene slightly

Volume TexturesVolume Textures
Current hardware featureCurrent hardware feature

� More common in Fall �00

Straightforward usage:Straightforward usage:
� Create MipVolume 3D texture

� SetTexture() the volume texture

� Render sending 3-D texture coords to that
stage

Watch memory consumptionWatch memory consumption
� Compression techniques coming

Volume Texture UsesVolume Texture Uses
Range effects in perRange effects in per--pixel lightingpixel lighting

� point light fall-off with range

� spot light cone fall-off and range

Texturing procedural geometryTexturing procedural geometry
� simpler for complex shapes

Possibly of use in foggingPossibly of use in fogging

Particle SystemsParticle Systems
Realistic environmental effectsRealistic environmental effects

� Sparks, explosions, snow, rain, hail

� Well understood technique

HW enables 2HW enables 2--4x performance boost4x performance boost
� If bandwidth limited

Direct3D solution is Sprite PointsDirect3D solution is Sprite Points

Sprite PointsSprite Points
ScreenScreen--space quadsspace quads

� With current texture and raster state to allow any
shape or effect

No preNo pre--defined round dot texturedefined round dot texture
App can set max particle sizeApp can set max particle size
Only transforms 1 vertexOnly transforms 1 vertex

� Expansion to 4 on far side of bus

Sprite Point SizeSprite Point Size
Specified as Specified as

� A constant renderstate

� On a per vertex basis

Size can be in screen spaceSize can be in screen space
� For transformed vertices (e.g., TLVERTEX)

Or in world space�Or in world space�
� Programmed using vertex shader

� Or distanced based attenuation using fixed function
pipeline

Sprite Point LimitationsSprite Point Limitations
On some hardware, they won�t clip against On some hardware, they won�t clip against

arbitrary clip planesarbitrary clip planes
� Just culled at center point

� Can use border of pt width around teleportals if
this is an issue

� There is a cap flag for this

Frustum clipping will always workFrustum clipping will always work

A Sprite Point A Sprite Point

(x+s/2,y+s/2,z)(x+s/2,y+s/2,z)(x(x--s/2,y+s/2,z)s/2,y+s/2,z)

Position = (xPosition = (x--s/2, ys/2, y--s/2,z)s/2,z) (x+s/2, y(x+s/2, y--s/2,z)s/2,z)

(x,y,z)(x,y,z)

(u,v) = (0,0)(u,v) = (0,0) (1,0)(1,0)

(0,1)(0,1) (1,1)(1,1)

Sprite Point RenderingSprite Point Rendering
Texture coordinatesTexture coordinates

� Forced to 0-1.0 as shown in diagram

� Use supplied coordinate on all 4 vertices

Coordinates of Coordinates of allall texture stages in vertex are texture stages in vertex are
overwritten with these valuesoverwritten with these values

Sprite Point APISprite Point API
Set RenderstatesSet Renderstates

D3DRS_POINT_SIZED3DRS_POINT_SIZE

D3DRS_POINT_SPRITE_ENABLED3DRS_POINT_SPRITE_ENABLE

D3DRS_POINT_SCALE_ENABLED3DRS_POINT_SCALE_ENABLE

Draw usingDraw using
D3DPT_POINTLISTD3DPT_POINTLIST

CheckCheck
D3DDEVCAPS_MAXPOINTSIZED3DDEVCAPS_MAXPOINTSIZE

Programming ModelProgramming Model

Simplification of Common TasksSimplification of Common Tasks
API Usage & Behavior PatternsAPI Usage & Behavior Patterns
ResourcesResources
RenderingRendering

SimplificationSimplification

InitializationInitialization
DevicesDevices
Presenting imagesPresenting images
MiscellaneaMiscellanea

InitializationInitialization
Now just create Direct3D objectNow just create Direct3D object

� No more QueryInterface

Enumerating vastly simplifiedEnumerating vastly simplified
Creating and setting up device vastly Creating and setting up device vastly

simplifiedsimplified

EnumerationEnumeration
GetCapsGetCaps is on IDirect3Dis on IDirect3D

� GetCaps without creating device

� Clarified what caps depend on

Callbacks eliminatedCallbacks eliminated
� Check functions, CheckDeviceType, CheckDeviceFormat, etc

�Probe Model� for texture, Z/Stencil, render�Probe Model� for texture, Z/Stencil, render--target target
formatsformats
� You have to ask for what you want

Code Example: EnumerationCode Example: Enumeration
D3DPRESENT_PARAMETERSD3DPRESENT_PARAMETERS ParamsParams; ;

ParamsParams..BackBufferFormatBackBufferFormat = D3DFMT_X1R5G5B5; = D3DFMT_X1R5G5B5;

if(FAILED(m_pD3Dif(FAILED(m_pD3D-->>CheckDeviceTypeCheckDeviceType(Device.m_(Device.m_uAdapteruAdapter, ,
Device.m_Device.m_DevTypeDevType,,
ParamsParams..BackBufferFormatBackBufferFormat,,
ParamsParams..BackBufferFormatBackBufferFormat, ,
FALSE))) FALSE)))

CreateDeviceCreateDevice

Includes:Includes:
� Creation of back buffer(s)

� �SetDisplayMode�

� Specifying what �Flip� means

� Choice of acceleration level

� D3DDEVTYPE - i.e. HAL/HEL/etc

�Unknown� Formats�Unknown� Formats
� Allow app to specify minimum color resolution per channel

� Not Lockable

Direct3D Device TypesDirect3D Device Types
Now just HAL, HEL, and REF devicesNow just HAL, HEL, and REF devices
HAL can have 3 modesHAL can have 3 modes

� Software vertex processing*

� Hardware vertex processing*

� *Mixed for both on same device

HAL and REF support PURE flagHAL and REF support PURE flag
� Reduces call overhead

� No Gets supported

� Check PUREDEVICE cap

Device owns resourcesDevice owns resources

Presentation buffersPresentation buffers
front, back, front, back, rendertargetrendertarget

Geometry storageGeometry storage
vertex buffers, index buffersvertex buffers, index buffers

TexturesTextures
StateState

Code Example: CreateDeviceCode Example: CreateDevice
D3DPRESENT_PARAMETERS d3dpp;D3DPRESENT_PARAMETERS d3dpp;
memsetmemset(&d3dpp, 0,(&d3dpp, 0, sizeofsizeof(d3dpp));(d3dpp));

d3dpp.d3dpp.BackBufferWidthBackBufferWidth = 640;= 640;
d3dpp.d3dpp.BackBufferHeightBackBufferHeight = 480;= 480;
d3dpp.d3dpp.BackBufferFormatBackBufferFormat = D3DFMT_UNKNOWN_C5;= D3DFMT_UNKNOWN_C5;
d3dpp.d3dpp.BackBufferCountBackBufferCount = 2;= 2;
d3dpp.Windowedd3dpp.Windowed = FALSE;= FALSE;
d3dpp.d3dpp.SwapEffectSwapEffect = D3DSWAPEFFECT_FLIP;= D3DSWAPEFFECT_FLIP;
d3dpp.d3dpp.EnableAutoDepthStencilEnableAutoDepthStencil = TRUE;= TRUE;
d3dpp.d3dpp.AutoDepthStencilFormatAutoDepthStencilFormat = D3DFMT_D16;= D3DFMT_D16;

pEnumpEnum-->>CreateDeviceCreateDevice((
D3DADAPTER_DEFAULT, //D3DADAPTER_DEFAULT, // iAdapteriAdapter
D3DDEVTYPE_HAL, // device typeD3DDEVTYPE_HAL, // device type
hWindowhWindow, // focus, // focus
D3DCREATE_FPU_PRESERVE, //D3DCREATE_FPU_PRESERVE, // dwBehaviorFlagsdwBehaviorFlags
&d3dpp, // presentation parameters&d3dpp, // presentation parameters
&&pDevicepDevice);); // [out]// [out] pDevicepDevice

Lost Devices 1Lost Devices 1
(Formerly Lost Surfaces)(Formerly Lost Surfaces)
We�ve done a lot of work to hide thisWe�ve done a lot of work to hide this

� The only error returns are from

�Present (i.e. Flip)
�TestCooperativeLevel

� ALL other methods keep
going regardless

�Only one place to check for loss

Lost Devices 2Lost Devices 2
How should the application respond?How should the application respond?

� Rebuild the device (via Resize)

�Can�t guarantee vidmem still there, so have to
destroy all vidmem resources

�Recovering from alt-tab is now very similar to
setting up device in the
first place

Everything�s gone: shaders, render states; Everything�s gone: shaders, render states;
All except managed resourcesAll except managed resources

Presentation 1Presentation 1
Resize (andResize (and CreateDeviceCreateDevice))

� Subsumes SetCooperativeLevel, SetDisplayMode,
CreateSurface(DDSCAPS_PRIMARY) and some of
Flip

Present Present
� Subsumes Flip and Presentation Blts

� Consistency - Windowed or Full Screen

� Eases WM_* interpretation

Presentation 2Presentation 2
Resize changes the type, size and format of Resize changes the type, size and format of

a back buffera back buffer
� Almost the same code path as

destroy-and-recreate

� Atomic operation: less error-prone

Display Mode is implied by back buffer Display Mode is implied by back buffer
format/sizeformat/size
� If windowed, we�ll do the conversion unless you

override

� Easy defaults for highest performance

Presentation 3Presentation 3

Optimized subOptimized sub--rect rect updateupdate
� Great for software video codecsLPRGNDATALPRGNDATA pDirtyRegionpDirtyRegion;;

RenderFrameOfVideoAndGenerateDirtyRectsRenderFrameOfVideoAndGenerateDirtyRects(&(&pDirtyRegionpDirtyRegion););

pDevicepDevice-->Present(NULL,>Present(NULL, //Source//Source rectrect

NULL,NULL, ////Dest rectDest rect

NULL,NULL, ////Dest hWndDest hWnd

pDirtyRegionpDirtyRegion);); //Optimization region//Optimization region

Presentation Code ExamplesPresentation Code Examples

//How to retrieve back buffer//How to retrieve back buffer
pDevicepDevice-->>GetBackBufferGetBackBuffer((

1,1, ////BackbufferBackbuffer ordinalordinal
&&pBackBufferpBackBuffer);); //Returned interface//Returned interface

//How to present an image, whether windowed or//How to present an image, whether windowed or fullscreenfullscreen

pDevicepDevice-->Present(NULL,>Present(NULL, //Source//Source rectrect

NULL,NULL, ////Dest rectDest rect

NULL,NULL, ////Dest hWndDest hWnd

NULL);NULL); //Optimization region//Optimization region

//How to recover from alt//How to recover from alt--tabtab

DestroyAllVidmemDestroyAllVidmem();();

pDevicepDevice-->Resize(&m_Present_Parameters_That_I_Passed_To_Create);>Resize(&m_Present_Parameters_That_I_Passed_To_Create);

RebuildVidmemRebuildVidmem();();

MiscellaneaMiscellanea
Depth SurfacesDepth Surfaces
UMAUMA
GetAvailableTextureMemGetAvailableTextureMem
Primary SurfacePrimary Surface
CursorsCursors
DebuggingDebugging

Depth/Stencil (Z) SurfacesDepth/Stencil (Z) Surfaces

No longer �attached� to render targetNo longer �attached� to render target
Z buffer now set into the deviceZ buffer now set into the device
Two ways to create:Two ways to create:

� �Auto� Z created and resized automatically by the device

� Explicit Z created by app, and attached to the device

� Useful when switching render targets halfway through a scene

New Graphics Hardware: UMANew Graphics Hardware: UMA

Unified Memory Architecture: Video Unified Memory Architecture: Video
memory IS pagememory IS page--locked locked sysmemsysmem

SystemSystem-->Video BLT not needed>Video BLT not needed
Graphics bandwidth consumption subtracts Graphics bandwidth consumption subtracts

from CPU bandwidthfrom CPU bandwidth
�Video memory� CPU access is fully cached �Video memory� CPU access is fully cached

and very fastand very fast
UMA will be ubiquitous+cheapUMA will be ubiquitous+cheap
USE MANAGED SURFACES!USE MANAGED SURFACES!

GetAvailableTextureMemGetAvailableTextureMem
Problems:Problems:

� Could never guarantee number

� Too many permutations

DirectX 8 offers onlyDirectX 8 offers only
� Estimate of texture memory

� Intentionally rounded off

Use this for highUse this for high--level cache choiceslevel cache choices
� E.G., Should I drop top-level mipmaps?

The Primary Surface R.I.P.The Primary Surface R.I.P.
The front buffer is no longer accessible, The front buffer is no longer accessible,

even syntacticallyeven syntactically
Enables greater freedom of design for the Enables greater freedom of design for the

operating system and hardwareoperating system and hardware
We will help out with:We will help out with:

� Cursors

� Debugging

CursorsCursors
DirectX 8.0 offers a cursor APIDirectX 8.0 offers a cursor API
We will draw a cursor for youWe will draw a cursor for you

� Using hardware if available

� Blts if not

No size/color depth restrictionsNo size/color depth restrictions
We are encouraging hardware to evolve We are encouraging hardware to evolve

towards better towards better
hardware cursorshardware cursors

Debugging HelpDebugging Help
HotHot--swap debug and retailswap debug and retail

� Just set a registry key (or use control panel) and
re-run

Guard pages around resourcesGuard pages around resources
� You can choose to get a page fault when you

over-run a surface

Usage and Behavior PatternsUsage and Behavior Patterns

API and Data OrganizationAPI and Data Organization
Fixed Function PipelineFixed Function Pipeline
Programmable PipelineProgrammable Pipeline

API UsageAPI Usage
New paradigm New paradigm �� Set and GoSet and Go

� Set { VertexShader, StreamSource, Renderstate, Texture,
etc. }

� Go { (minimal) DrawPrimitive }

Separate API functions for different frequencies Separate API functions for different frequencies
of useof use
� Assign vertex buffer(s) via SetStreamSource then do

multiple DrawPrimitive

Very close mapping to DDIVery close mapping to DDI
� Low overhead

Vertex BufferVertex Buffer
Geometry containerGeometry container
Can save a copy in the runtimeCan save a copy in the runtime
Can be in device memoryCan be in device memory
Lock/Access/Unlock SemanticsLock/Access/Unlock Semantics

Parallel Vertex BuffersParallel Vertex Buffers
Chip can DMA from multiple vertex buffers Chip can DMA from multiple vertex buffers

in parallelin parallel
� Faster mapping from application data

� Still forms one complete vertex

Maps better to more application dataMaps better to more application data
Trivial Trivial multitexturemultitexture versus versus multipassmultipass
API is Vertex StreamsAPI is Vertex Streams

Vertex StreamsVertex Streams
A set of input data that is to become part of A set of input data that is to become part of

a vertexa vertex
Defined as portion of a vertex bufferDefined as portion of a vertex buffer
DirectX 8.0 analog of FVF codesDirectX 8.0 analog of FVF codes
Streams can contain user dataStreams can contain user data
Cap for stream count to indicate max Cap for stream count to indicate max

number of parallel number of parallel DMAsDMAs

Vertex Stream InputsVertex Stream Inputs
SemanticSemantic--free for vertex shaders (still FVF free for vertex shaders (still FVF

for legacy modes)for legacy modes)
Element type and dimensionality defined in Element type and dimensionality defined in

shader declaration sectionshader declaration section
� Float, Packed Byte: required

� Short, 1 DWORD Normal: optional

� Maybe other optional types

Single set of indices for all streamsSingle set of indices for all streams
� For DirectX 8.0

Vertex Streaming TermsVertex Streaming Terms

A vertex is composed of n A vertex is composed of n streamsstreams
� A stream is composed of n elements

�An element is {pos, norm, texcoord}

Vertex Stream APIVertex Stream API

SetStreamSourceSetStreamSource((

int StreamNumberint StreamNumber,,

D3DVertexBuffer *D3DVertexBuffer *pStreamDatapStreamData,,

intint Stride);Stride);

!! Maps vertex buffer to streamMaps vertex buffer to stream
!! Defines only data rangeDefines only data range

"" Data format defined by vertex Data format defined by vertex
shader declaration sectionshader declaration section

Indexed DrawingIndexed Drawing

Support for Index Buffers addedSupport for Index Buffers added
� With Direct3D 8.0

Just like Vertex BuffersJust like Vertex Buffers
� But for indices not vertex components

� Card/Driver can cache these efficiently

Not an explicit parameter to the callNot an explicit parameter to the call
� Current index buffer is a state

� Set with SetIndices() call

Index BuffersIndex Buffers
Eliminate (or at least reduce) copying Eliminate (or at least reduce) copying

� significant performance improvement over DirectX 7

Allocate and manage with other memory Allocate and manage with other memory
resources resources
� (vertex buffers, textures)

Cap for max indexCap for max index
� >2**16, but can�t use all 2**32

� Still always allocated 16- or 32-bit

Drawing With Index BuffersDrawing With Index Buffers
// Create the vertex buffer and bind it to a stream// Create the vertex buffer and bind it to a stream
……

// Create the index buffer// Create the index buffer
IDirect3DIndexBuffer8*IDirect3DIndexBuffer8* pIBpIB = NULL;= NULL;
pDevpDev-->>CreateIndexBufferCreateIndexBuffer((numIndicesnumIndices, D3DUSAGE_WRITEONLY,, D3DUSAGE_WRITEONLY,

D3DFORMAT_INDEX16, D3DPOOL_DEFAULT, &IB);D3DFORMAT_INDEX16, D3DPOOL_DEFAULT, &IB);
pIBpIB-->Lock(0,>Lock(0, numIndicesnumIndices ** sizeofsizeof(WORD), &(WORD), &pDatapData,,

D3DLOCK_DISCARD);D3DLOCK_DISCARD);
// Fill the index buffer with your fine content…// Fill the index buffer with your fine content…
pIBpIB-->Unlock();>Unlock();

// Make this index buffer the current index buffer// Make this index buffer the current index buffer
pDevpDev-->>SetIndicesSetIndices((pIBpIB, 0);, 0);

// And actually draw the primitive// And actually draw the primitive
pDevpDev-->>DrawIndexedPrimitiveDrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0,(D3DPT_TRIANGLELIST, 0, numIndicesnumIndices,,

0,0, numPrimitivesnumPrimitives););

Pipeline SetupPipeline Setup

Fixed FunctionFixed Function
ProgrammableProgrammable

The Fixed Function PipelineThe Fixed Function Pipeline

Not too different from what you knowNot too different from what you know
� And love�

Must select fixed function pipelineMust select fixed function pipeline
� Call SetVertexShader() with NULL

Create a Create a VertexBuffer VertexBuffer with FVF codewith FVF code
Set the Set the VertexBuffer VertexBuffer as stream 0as stream 0

� Not an explicit parameter to Draw call

Draw the primitive[s]Draw the primitive[s]

Fixed Function DrawingFixed Function Drawing
// Select legacy fixed function vertex and pixel processing// Select legacy fixed function vertex and pixel processing
pDevpDev-->>SetVertexShaderSetVertexShader(NULL);(NULL);
pDevpDev-->>SetPixelShaderSetPixelShader(NULL);(NULL);

// Create the vertex buffer// Create the vertex buffer
IDirect3DVertexBuffer8*IDirect3DVertexBuffer8* pVBpVB = NULL;= NULL;
pDevpDev-->>CreateVertexBufferCreateVertexBuffer((VBSizeVBSize, D3DUSAGE_WRITEONLY,, D3DUSAGE_WRITEONLY,

D3DFVF_VERTEX, D3DPOOL_DEFAULT, &VB);D3DFVF_VERTEX, D3DPOOL_DEFAULT, &VB);
pVBpVB-->Lock(0,>Lock(0, VBSizeVBSize, &, &pDatapData, D3DLOCK_DISCARD);, D3DLOCK_DISCARD);
// Fill the vertex buffer with your fine content…// Fill the vertex buffer with your fine content…
pVBpVB-->Unlock();>Unlock();

// Select the vertex buffer as the source of stream zero// Select the vertex buffer as the source of stream zero
pDevpDev-->>SetStreamSourceSetStreamSource(0,(0, pVBpVB, 0);, 0);

// Set render states just like you used to// Set render states just like you used to
pDevpDev-->>SetRenderStateSetRenderState(D3DRS_FOGENABLE, TRUE);(D3DRS_FOGENABLE, TRUE);

// And actually draw the primitive// And actually draw the primitive
pDevpDev-->>DrawPrimitiveDrawPrimitive(D3DPT_TRIANGLELIST, 0,(D3DPT_TRIANGLELIST, 0, numPrimitivesnumPrimitives););

UP (User Pointer) DrawingUP (User Pointer) Drawing

You don�t have to use vertex buffersYou don�t have to use vertex buffers
� or index buffers

You can supply your own buffersYou can supply your own buffers
� From your own memory

� Hence, User Pointer (UP)

DrawPrimitiveUPDrawPrimitiveUP()()
DrawIndexedPrimitiveUPDrawIndexedPrimitiveUP()()

The Programmable PipelineThe Programmable Pipeline

How to setup for drawingHow to setup for drawing
� Creating and selecting shaders

� Creating and binding vertex buffers

� Setting constants

� Drawing

VertexBuffers and ShadersVertexBuffers and Shaders

VertexBuffersVertexBuffers are are untyped untyped (no FVF)(no FVF)
� When using vertex shaders

� VB�s do have FVFs in fixed function pipeline

Shader interprets VB dataShader interprets VB data
� API doesn�t

Vertex StreamsVertex Streams

Each input to vertex shader is a streamEach input to vertex shader is a stream
Each stream is a vertex bufferEach stream is a vertex buffer
Each vertex buffer holds one or more vertex Each vertex buffer holds one or more vertex

componentscomponents
� Position, normal, color, texture coords.

Distribute the components as you see fitDistribute the components as you see fit
� Up to the maximum number of supported streams

It simply needs to match what shader expectsIt simply needs to match what shader expects

Creating the Vertex ShaderCreating the Vertex Shader
DWORD*DWORD* pDeclartionpDeclartion;; // Shader declaration// Shader declaration
DWORD*DWORD* pFunctionpFunction;; // Shader function// Shader function
DWORDDWORD ShaderHandleShaderHandle;; // Shader handle// Shader handle
//// InitializeInitialize declaration and function…declaration and function…

// Create the shader// Create the shader
pDevpDev-->>CreateVertexShaderCreateVertexShader((pDeclarationpDeclaration,, pFunctionpFunction,,

&&ShaderHandleShaderHandle, 0);, 0);

// Select this as the current vertex shader// Select this as the current vertex shader
pDevpDev-->>SetVertexShaderSetVertexShader((ShaderHandleShaderHandle););

Create the Vertex BuffersCreate the Vertex Buffers
IDirect3DVertexBuffer8*IDirect3DVertexBuffer8* pPosVBpPosVB; // VB for position and normal; // VB for position and normal
IDirect3DVertexBuffer8*IDirect3DVertexBuffer8* pTexVBpTexVB; // VB for texture; // VB for texture coordscoords
void*void* pDatapData;;

// Create the position and normal vertex buffer// Create the position and normal vertex buffer
pDevpDev-->>CreateVertexBufferCreateVertexBuffer((posVBSizeposVBSize, D3DUSAGE_WRITEONLY, 0,, D3DUSAGE_WRITEONLY, 0,

D3DPOOL_DEFAULT, &D3DPOOL_DEFAULT, &pPosVBpPosVB););

pPosVBpPosVB-->Lock(0,>Lock(0, posVBSizeposVBSize, &, &pDatapData, D3DLOCK_DISCARD);, D3DLOCK_DISCARD);
// Fill this vertex buffer with position and normal data// Fill this vertex buffer with position and normal data
pPosVBpPosVB-->Unlock();>Unlock();

// Create the texture coordinate vertex buffer// Create the texture coordinate vertex buffer
pDevpDev-->>CreateVertexBufferCreateVertexBuffer((texVBSizetexVBSize, D3DUSAGE_WRITEONLY, 0,, D3DUSAGE_WRITEONLY, 0,

D3DPOOL_DEFAULT, &D3DPOOL_DEFAULT, &pTexVBpTexVB););

pTexVBpTexVB-->Lock(0,>Lock(0, posVBSizeposVBSize, &, &pDatapData, D3DLOCK_DISCARD);, D3DLOCK_DISCARD);
// Fill this vertex buffer with texture coordinate data// Fill this vertex buffer with texture coordinate data
pTexVBpTexVB-->Unlock();>Unlock();

Bind Vertex Buffers to StreamsBind Vertex Buffers to Streams
// Bind the position vertex buffer to stream zero// Bind the position vertex buffer to stream zero

pDevpDev-->>SetStreamSourceSetStreamSource(0,(0, pPosVBpPosVB,, sizeofsizeof(D3DVECTOR) * 2);(D3DVECTOR) * 2);

// Bind the texture coordinate vertex buffer to stream one// Bind the texture coordinate vertex buffer to stream one

pDevpDev-->>SetStreamSourceSetStreamSource(1,(1, pTexVBpTexVB,, sizeofsizeof(float) * 4);(float) * 4);

Create the Index BufferCreate the Index Buffer
// Create the index buffer// Create the index buffer
IDirect3DIndexBuffer8*IDirect3DIndexBuffer8* pIBpIB = NULL;= NULL;
pDevpDev-->>CreateIndexBufferCreateIndexBuffer((numIndicesnumIndices, D3DUSAGE_WRITEONLY,, D3DUSAGE_WRITEONLY,

D3DFORMAT_INDEX16, D3DPOOL_DEFAULT, &IB);D3DFORMAT_INDEX16, D3DPOOL_DEFAULT, &IB);

pIBpIB-->Lock(0,>Lock(0, numIndicesnumIndices ** sizeofsizeof(WORD), &(WORD), &pDatapData,,
D3DLOCK_DISCARD);D3DLOCK_DISCARD);

// Fill the index buffer with your fine content…// Fill the index buffer with your fine content…
pIBpIB-->Unlock();>Unlock();

// Make this index buffer the current index buffer// Make this index buffer the current index buffer

// Note, there is only a single index buffer, not an index// Note, there is only a single index buffer, not an index
// buffer per// buffer per--stream. The indices apply to the vertex datastream. The indices apply to the vertex data
// in all streams// in all streams
pDevpDev-->>SetIndicesSetIndices((pIBpIB, 0);, 0);

Set Vertex Shader ConstantsSet Vertex Shader Constants
// We will load multiple constants in one call// We will load multiple constants in one call

// Base register at which to start load// Base register at which to start load
DWORDDWORD BaseRegisterBaseRegister = 4;= 4;

// Constant data to load into registers// Constant data to load into registers
D3DVECTORD3DVECTOR ConstantDataConstantData[] =[] =
{{

// …// …
};};

// Load the constants up// Load the constants up
pDevpDev-->>SetVertexShaderConstantSetVertexShaderConstant((

BaseRegisterBaseRegister,,
ConstantDataConstantData,,
sizeofsizeof((ConstantDataConstantData) /) / sizeofsizeof((ConstantDataConstantData[0]);[0]);

Creating the Pixel ShaderCreating the Pixel Shader
DWORD*DWORD* pFunctionpFunction;; // Pixel shader function// Pixel shader function
DWORDDWORD PixelShaderHandlePixelShaderHandle;; // Pixel shader handle// Pixel shader handle

//// InitializeInitialize functionfunction
……

// Create the pixel shader// Create the pixel shader
pDevpDev-->>CreatePixelShaderCreatePixelShader((pFunctionpFunction, &, &PixelShaderHandlePixelShaderHandle););

// Select this as the current pixel shader// Select this as the current pixel shader
pDevpDev-->>SetPixelShaderSetPixelShader((PixelShaderHandlePixelShaderHandle););

// Load pixel shader constants (just like vertex shaders)// Load pixel shader constants (just like vertex shaders)
……

And Finally DrawAnd Finally Draw
// And actually draw the primitive// And actually draw the primitive

pDevpDev-->>DrawIndexedPrimitiveDrawIndexedPrimitive((
D3DPT_TRIANGLELIST,D3DPT_TRIANGLELIST, // Primitive type// Primitive type
0,0, // Minimum index// Minimum index
numIndicesnumIndices,, // Number of indices referenced// Number of indices referenced
0,0, // Start index// Start index
numPrimitivesnumPrimitives);); // Number of primitives to draw// Number of primitives to draw

ResourcesResources

Resource ObjectsResource Objects
Managed ResourcesManaged Resources
Locking ResourcesLocking Resources

Resource ObjectsResource Objects
Textures:Textures:

� MipMaps, MipVolumes, CubeMaps

� Only operations allowed and needed:
�Create, Lock, Copy, Draw

Geometry:Geometry:
� Vertex Buffers, Index Buffers

� Only operations allowed:
�Create, Lock, Copy

New Aspects Of ResourcesNew Aspects Of Resources
Pool, Usage, Format, Type, are now Pool, Usage, Format, Type, are now

independent propertiesindependent properties
� Usage is enforced

Lock of video memory textures is goneLock of video memory textures is gone
� Never did happen! (On some cards)

Resource PoolsResource Pools
PoolsPools

� SystemMem, �Default�, or managed

�Default� resolves to �best� for device�Default� resolves to �best� for device
� Whether software or hardware device

Resource FormatsResource Formats
Formats are now an enumerated typeFormats are now an enumerated type
Runtime will preRuntime will pre--define several True Color formats,define several True Color formats, DXTnDXTn, Vertex , Vertex

Data, and Volume Luminance Formats:Data, and Volume Luminance Formats:
D3D_FORMAT_UNKNOWND3D_FORMAT_UNKNOWN = 0,= 0,

• D3D_FORMAT_565 = 1,

• D3D_FORMAT_L8 = 2,

• D3D_FORMAT VERTEX_FVF = 25,

• D3D_FORMAT_VOLUME_LUMINANCE = 42,

• D3D_FORMAT_FOURCC_DXT1 =
MAKEFOURCC('D', 'X', 'T', '1'),

� // etc - This is NOT a complete list

Note Note IHVsIHVs may still add vendormay still add vendor--specific formatsspecific formats

The �Managed� PoolThe �Managed� Pool
USE MANAGED USE MANAGED

� Unless you know better

� But always on UMA

� We or the driver can �Do the Right Thing�

� Works for any class of device

Resource ManagementResource Management
A Unified Resource ManagerA Unified Resource Manager

� Like DirectX 7 texture manager

� But manages ALL resources

�Dirty Regions��Dirty Regions�
� The region you locked is remembered

� Or you can set explicitly

We�ll do our best to optimize download to We�ll do our best to optimize download to
just the dirty regionsjust the dirty regions

Textures Contain LevelsTextures Contain Levels
MipMapsMipMaps,, MipVolumesMipVolumes andand CubeMapsCubeMaps

� All contain surfaces (or volumes)

� These are the objects you actually use
�I.E. Call SetTexture with

App retrieves specific surfaces (volumes) App retrieves specific surfaces (volumes)
from the texture for loadingfrom the texture for loading
� The only time you talk to a �surface�

� (And: No more GetAttachedSurface)

Code Example: MipMapsCode Example: MipMaps
IDirect3DMipMap8IDirect3DMipMap8 **pMipMappMipMap;;
D3DLOCKED_RECTD3DLOCKED_RECT Lock;Lock;

pDevpDev-->>CreateMipMapCreateMipMap((
512, // width512, // width
512, // height512, // height
8, //8, // cLevelscLevels
D3DUSAGE_LOAD_ONCE, // UsageD3DUSAGE_LOAD_ONCE, // Usage
Format, // FormatFormat, // Format
D3DPOOL_MANAGED, // PoolD3DPOOL_MANAGED, // Pool
&&pMipMappMipMap); //); // ppMipMapppMipMap

for(for(intint Level=0; Level <Level=0; Level < pMipMappMipMap-->>GetLevelCountGetLevelCount(); Level++)(); Level++)
{{

pMipMappMipMap-->>LockRectLockRect(Level, &Lock, NULL, 0);(Level, &Lock, NULL, 0);
......
pMipMappMipMap-->>UnlockRectUnlockRect(Level);(Level);

}}

Resource MiscellaneaResource Miscellanea
The The ImageSurfaceImageSurface

� A surface that you can only lock and copy

� Always sysmem

� Good transport for carrying images between components

CopyRectsCopyRects
� Blt square chunks of pixels around

� (A bit more optimally than many blts)

Locking Resources ILocking Resources I

Grants CPU access to resourceGrants CPU access to resource
Texture locksTexture locks
•LockRect() for 2D textures and cube maps

•LockBox() for volume textures

� Typically only one lock per resource

Geometry locksGeometry locks
•Lock() for both index and vertex buffers

� Multiple locks per buffer allowed

Locking Resources IILocking Resources II

Must relinquish lock with Must relinquish lock with UnLockUnLock()()
before resource can be used by devicebefore resource can be used by device
� Any device operations with locked resource

will be serialised until resource unlocked

Locking Resources IIILocking Resources III

General lock flagsGeneral lock flags
•D3DLOCK_READONLY

�Won�t write to resource so no recompression on
unlock

�Can�t use with VBs/IBs created with WRITEONLY
flag

•D3DLOCK_NOSYSLOCK
�No system-wide critical section taken

Locking Resources IVLocking Resources IV

Geometry specific lock flagsGeometry specific lock flags
•D3DLOCK_DISCARD
•D3DLOCK_NOOVERWRITE

RenderingRendering

�� Primitive typesPrimitive types
�� Vertex BuffersVertex Buffers
�� TexturesTextures

Primitive TypesPrimitive Types

�� PointsPoints
�� LinesLines
�� TrianglesTriangles
�� PatchesPatches

� More in the HO surfaces section this afternoon

Primitive TypesPrimitive Types

�� ListsLists
� undifferentiated

�� StripsStrips
� Maximum vertex reuse

� Degenerate strips good way to stitch together larger runs of
vertex data

� eg

�� FansFans
� Around a single common vertex

Primitive TypesPrimitive Types

�� NonNon--indexedindexed
� In primitive order

�� IndexedIndexed
� Controlled by list of indices, Index Buffer

� Managed resource

�� Indexed allows interleaving state changes and Indexed allows interleaving state changes and
primitive drawingprimitive drawing
� On CPU, only range is transformed

� On GPU, entire VB is transformed

Vertex Buffer Handling
Strategies
Vertex Buffer Handling
Strategies
Classify your Geometry Classify your Geometry

� Static data

� Dynamic data

Never specify SYSTEMMEMORY for Never specify SYSTEMMEMORY for
drawable VBsdrawable VBs
� the driver needs them in AGP or local vidmem

� For good performance

Classify your GeometryClassify your Geometry
Static data is:Static data is:

� Permanent for the current level

� Only manipulated with matrix operations
�Put the whole thing into video memory
�Use Optimize (cannot Lock data after optimize)

Dynamic data is:Dynamic data is:
� Data that is frequently changing

� Static data that does not fit into video memory
(e.g. huge terrain maps)

Organize Your Video MemoryOrganize Your Video Memory

Allocate Allocate
� static geometry in videomem first

� dynamic geometry next

� textures

Don�t interleave textures and vertex dataDon�t interleave textures and vertex data
� it is (usually) more important that the geometry

be in video memory - plus, fragmentation will kill
you later

Organize Your Video MemoryOrganize Your Video Memory

Do not dynamically create/destroyDo not dynamically create/destroy VBsVBs! !
�Static or dynamic

Leave some free space in video Leave some free space in video
memory for the driver to play with...memory for the driver to play with...

Video memory LayoutVideo memory Layout

Textures

Static
geometry

Dynamic
geometry

pages

Free space
Top of VRAM

FB / ZB etc.

0MB

The content is dynamic

The content and the
amount are dynamic

Dynamic DataDynamic Data

Two types of dynamic data. Two types of dynamic data.
� Complete Updates

� When updating, entire range is written

� Partial Updates
� When updating, only a part of the range is written

Need to handle the two types in different Need to handle the two types in different
waysways

Complete Updates: Dynamic
Geometry
Complete Updates: Dynamic
Geometry
Specify WRITEONLY to Specify WRITEONLY to CreateVertexBuffer CreateVertexBuffer

� Create in AGP memory

Specify DISCARDCONTENTS when LockingSpecify DISCARDCONTENTS when Locking
� These flags allow the driver to double buffer or

�rename� a vertex buffer, and that requires free
space...

Partial Updates - Dynamic
Geometry
Partial Updates - Dynamic
Geometry

Specify WRITEONLY toSpecify WRITEONLY to CreateVertexBufferCreateVertexBuffer
� Consider creating in system memory if need to read the data

� AGP reads are slower

Cannot Specify DISCARDCONTENTS when LockingCannot Specify DISCARDCONTENTS when Locking
� You will not be able to do partial VB updates if you specify

DISCARDCONTENTS. You must write the entire locked range

(Create) Vertex Buffer Options(Create) Vertex Buffer Options

Static
Dynamic, Complete
Dynamic, Partial

Y
Y

Y/N

WRITEONLY

DISCARDCONTENTS

Optimize()

Y
N
N

N
Y
N

Dynamic Vertex Buffer Usage
Strategies
Dynamic Vertex Buffer Usage
Strategies

Think in terms of VB �pages� Think in terms of VB �pages�
� reusable sections of video memory that are

dynamically loaded with vertex data (analogous
to texture pages)

Never OptimizeNever Optimize
� because you will need to Lock them

Handled differently by the driverHandled differently by the driver
� depending on flags given to CreateVertexBuffer

Handling Vertex Buffer PagesHandling Vertex Buffer Pages

Complete Updates Complete Updates �� Behavior PatternBehavior Pattern
� Create �n� vertex buffer pages

� WRITEONLY
� Do not optimize them

� Lock vertex buffer range with DISCARDCONTENTS

� (re-)write the whole range

� Unlock and go to next page

� Round-Robin your pages...

Handling Vertex Buffer PagesHandling Vertex Buffer Pages

Complete Updates Complete Updates -- VB Page Size VB Page Size
� VB pages should not be too small and should not be too

large

� Too small and the overhead for each call will swamp you

� (we recommend >200 vertices)
� Too large and there is a higher probability that you will

stall, waiting for it to become free

Locking Vertex Buffers ILocking Vertex Buffers I

DX8 DX8 Lock()Lock() on on VBsVBs and and IBsIBs allows suballows sub--
ranges to be specifiedranges to be specified
� Multiple locks on single buffer permitted

� Allows efficient usage of large VBs containing
multiple models, as you can render from one
sub range whilst locking and modifying
another

Locking Vertex Buffers IILocking Vertex Buffers II

D3DLOCK_DISCARDD3DLOCK_DISCARD and and
D3DLOCK_NOOVERWRITED3DLOCK_NOOVERWRITE flags are valid flags are valid
only on buffers created with only on buffers created with
D3DUSAGE_DYNAMICD3DUSAGE_DYNAMIC

� Therefore can't be managed buffers

Progressive meshesProgressive meshes

Load full vertex set into one VB Load full vertex set into one VB
Use different index lists to select different Use different index lists to select different

levelslevels
� remember that all index lists are 0 based

LOD0LOD2... ...

Indices1Indices2

LOD1

Indices0

Managing Huge Terrain Data setsManaging Huge Terrain Data sets

Should be set up as terrain blocksShould be set up as terrain blocks
Allows for trivial rejection of individual blocksAllows for trivial rejection of individual blocks
Use vertex buffer pagesUse vertex buffer pages
Limited to 64k Vertices forLimited to 64k Vertices for

DrawIndexedPrimitivesDrawIndexedPrimitives

TexturingTexturing

Textures & Texture BlendingTextures & Texture Blending
Texture StateTexture State
Locking TexturesLocking Textures
Render TargetsRender Targets

TexturesTextures
Associated with deviceAssociated with device

� Create methods for Mip, Cube,and Volume textures

Can be ManagedCan be Managed
� Specified at creation time

Standard and Advanced UsesStandard and Advanced Uses
� Blending, lookup tables

Compressed Texture SupportCompressed Texture Support
D3DX file loader supportD3DX file loader support

� See D3DX talk this afternoon

Multiple Texture OperationsMultiple Texture Operations
DefinitionDefinition

� Operations that combine multiple textures onto the same
polygon

ApplicationsApplications
� light/shadow maps

� specular reflections

� bump/detail textures

� . . .

For both Fixed Function and Programmable For both Fixed Function and Programmable
PipelinesPipelines

Fixed Function Hardware ModelFixed Function Hardware Model
Each texture has one operation unitEach texture has one operation unit

� separately programmable alpha output

A separate texture/diffuse blending unit A separate texture/diffuse blending unit
exposed in API for TBLENDexposed in API for TBLEND

Validation occurs for all texture blending Validation occurs for all texture blending
opsops
� Multi-Texture and TBLEND

Alpha and fog are separate operationsAlpha and fog are separate operations

Fixed Function Hardware ModelFixed Function Hardware Model

Validation

TBLEND

D3DBLEND

OP1

OP2

Texture1

Texture2 Iterated Color

Multiple Texture OperationsMultiple Texture Operations
Determine operation this unit performsDetermine operation this unit performs

� D3DTS_COLOROP

� D3DTS_ALPHAOP

Can be one of:Can be one of:
� DISABLE -texture does not show

� COPY* -texture replaces everything

� MODULATE -multiply

� ADD -add

� BLEND -texture morphing

Modulate OperationsModulate Operations
� MODULATE

�multiplies
�used for diffuse light map effects

� MODULATE2

�multiplies and scales by 2

� MODULATE4

�multiplies and scales by 4

ADD OperationsADD Operations
ADDADD

� just adds them together

ADDSIGNEDADDSIGNED
� add with bias of -128

� effect that this texture is signed data

Linear BLEND OperationsLinear BLEND Operations
CoutCout == CtextureCtexture*x +*x + CinputCinput*(1*(1--x)x)

� D3DTOP_BLENDTEXTUREALPHA
�x = alpha from this texture

� D3DTOP_BLENDINPUTALPHA
�x = �current� alpha (incoming)

� D3DTOP_BLENDDIFFUSEALPHA
�x = alpha from diffuse iterator

� D3DTOP_BLENDFACTORALPHA
�x = alpha from renderstate

Multiple Texture ArgumentsMultiple Texture Arguments
Determine inputs to the operationDetermine inputs to the operation

� For color operation

�D3DTS_COLORARG1
�D3DTS_COLORARG2

� For alpha operation

�D3DTS_ALPHAARG1
�D3DTS_ALPHAARG2

Multi-Texture Operation UnitMulti-Texture Operation Unit

Tex2.ColorOp
Copy
Modulate
Add
Blend
�

Tex2.ColorArg1
Previous Texture
Iterated Color
FACTOR
ALPHA
+Inverted

Output

Tex2.ColorArg2
This Texture
ALPHA
+Inverted

Input

Operation

Texture

Texture ArgumentTexture Argument
Supports some modifications to this texture Supports some modifications to this texture

before use in operationbefore use in operation
� D3DTS_COLORARG1

� D3DTS_ALPHAARG1

Only the following (modifiers)Only the following (modifiers)
� D3DTA_INV

�performs x=(1-x)

� D3DTA_TEXTUREALPHA
�replicates alpha to colors

Input ArgumentInput Argument
What this texture is combined withWhat this texture is combined with

� D3DTS_COLORARG2

� D3DTS_ALPHAARG2

One of the followingOne of the following
� INPUT* - result of previous operation

� DIFFUSE - iterated color data

� FACTOR - api-specified scalar
�D3DRENDERSTATE_TEXTUREFACTOR

� XXXALPHA replicates alpha to colors

Argument ModifiersArgument Modifiers
Can be applied to any argumentCan be applied to any argument

� D3DTA_INV

�inverts argument before use
�applied using OR or add (| or +)

� D3DTA_XXXXALPHA

�replicates alpha channel to colors
�automatic for single channel textures
�not required for ALPHAARGs

Texture ValidationTexture Validation
Multitexture and texture blend opsMultitexture and texture blend ops

� fails if current blending ops cannot be
accomplished

� returns number of additional passes that would
be reqd to emulate via multipass

�this warns app that framebuffer alpha and fog will
be different

Alpha-blendingAlpha-blending

Standard Alpha operators supportedStandard Alpha operators supported
� Framebuffer blending after Multi-Texture or pixel

shader operations

Controlled by Controlled by RenderstatesRenderstates
� SetRenderState(D3DRS_ALPHABLENDENABLE,TRUE)

� SetRenderState(D3DRS_SRCBLEND, alphaop)

� SetRenderState(D3DRS_DESTBLEND, alphaop)

Texture StateTexture State

Fixed Function RenderingFixed Function Rendering
� SetTexture

�Loads the texture and its bits

� SetTextureStageState

�Sets the state, per stage

Texture StateTexture State

Programmable RenderingProgrammable Rendering
� Still uses SetTextureStageState for

�Filtering: Min-, Mag-, and Mip-
�Tiling, wrapping modes

� Shader performs the rest of the operations

Locking Textures ILocking Textures I

LockRectLockRect()() can lock whole surface or subcan lock whole surface or sub--
rect rect of 2D texture or face of cube mapof 2D texture or face of cube map
� Lock with RECT or NULL for entire surface

� Returns D3DLOCKED_RECT

� Consists of data pointer and pitch (in bytes)
� Simpler than DX7 surface lock return DDSURFACEDESC2

� Must specify mip level required for lock

� Cube textures must also specify face

Locking Textures IILocking Textures II
Use Use LockBoxLockBox()() for to lock volume or for to lock volume or

subsub--volume of volume of 3D texture 3D texture
� Lock with D3DBOX structure or NULL for

entire volume

� Must also specify mip level
�All 3 dimensions of each level are divided by

2 (rounding down) down to minimum 1x1x1
� Returns D3DLOCKED_BOX

�Consists of data pointer, row pitch and slice
pitch

Locking Textures IIILocking Textures III

Compressed DXT formats Compressed DXT formats
� Can only be locked on 4x4 boundaries

� Minimum actual size is 4x4 on a side

�Textures or mip levels less than this are
padded

�Render Targets�Render Targets

Standard backStandard back--bufferbuffer
Optional texture as renderOptional texture as render--surfacesurface
�� on the deviceon the device
�� HRESULT HRESULT SetRenderTargetSetRenderTarget(IDirect3DSurface8*(IDirect3DSurface8*
pRenderTargetpRenderTarget, IDirect3DSurface8*, IDirect3DSurface8* pNewZStencilpNewZStencil););

D3DX supportD3DX support
�� D3DXCreateRenderToSurfaceD3DXCreateRenderToSurface
�� ID3DXRenderToSurfaceID3DXRenderToSurface

Render TargetsRender Targets

UsesUses
� Dynamic textures for reflection, env-mapping

� cubemaps

� Procedural textures

� (A bit more optimally than many blts)

Morning BreakMorning Break

�� ~10:15~10:15
�� Be back in 15 minutesBe back in 15 minutes
�� Vertex ProcessingVertex Processing

Vertex ProcessingVertex Processing

Architecture & PipelineArchitecture & Pipeline
Programmable ShadersProgrammable Shaders
APIAPI

Direct3D Programmable ArchitectureDirect3D Programmable Architecture

Vertex ProcessingVertex Processing
Vertex Processing continues to be an area Vertex Processing continues to be an area

of IHV innovation/differentiationof IHV innovation/differentiation
Most hardware is flexible insideMost hardware is flexible inside

� Fixed function API does not expose this

Minimize policy imposed Minimize policy imposed
on applicationon application

Enable smaller dedicated algorithmsEnable smaller dedicated algorithms

Vertex Processing Support in
DirectX 8
Vertex Processing Support in
DirectX 8
Implemented inImplemented in refrastrefrast

For testing purposes

Software implementations Software implementations
optimized for

� Pentium II, III SSE
� AMD K6, K7 3DNow

Hardware implementationsHardware implementations

Vertex Shader LanguageVertex Shader Language
Typeless vector languageTypeless vector language

� All values are nominally IEEE float[4]

� Converted from vertex buffer format before shader

Designed for 3D graphicsDesigned for 3D graphics
� Common operations like dot products

� Arbitrary swizzle of components

Implemented in Implemented in
� HW pipeline

� SW pipeline, optimized for SSE, 3DNow!

Direct3D Vertex PipelineDirect3D Vertex Pipeline

Vertex PipelineVertex Pipeline

Vertex Assembly (format conversion)Vertex Assembly (format conversion)
TessellationTessellation
VertexVertex ShaderShader (or FF T(or FF T--nn--L)L)
Primitive AssemblyPrimitive Assembly
Clipping Clipping --frustum and arbitraryfrustum and arbitrary
BackfaceBackface CullCull
Perspective DivisionPerspective Division
ViewportViewport TransformTransform

Vertex Pipeline
Vertex Assembly
Vertex Pipeline
Vertex Assembly

Gather all streams into one vertexGather all streams into one vertex
Convert all components to float format for Convert all components to float format for

processingprocessing
Swizzle RGB data from integer orderingSwizzle RGB data from integer ordering

Vertex Pipeline
Tessellation
Vertex Pipeline
Tessellation

Set up primitiveSet up primitive
For every componentFor every component

� Compute new values at all points

Vertex Pipeline
Vertex Shader (or FF TnL)
Vertex Pipeline
Vertex Shader (or FF TnL)

Programmable stageProgrammable stage
All components of one vertex are accessible All components of one vertex are accessible

as inputsas inputs
No knowledge of previous vertices allowedNo knowledge of previous vertices allowed
Includes any lighting, Includes any lighting, envtenvt. mapping. mapping
Must generate homogeneous positionMust generate homogeneous position

� Required for next stage

Vertex Shader Virtual MachineVertex Shader Virtual Machine

Vertex Pipeline
Primitive Assembly
Vertex Pipeline
Primitive Assembly

Identify vertices of a triangleIdentify vertices of a triangle
Or ends of a lineOr ends of a line
ReRe--unites vertices with topology unites vertices with topology

informationinformation
Primitive type, and any indicesPrimitive type, and any indices

Vertex Pipeline
Backface Cull
Vertex Pipeline
Backface Cull

Also requires assembled primitiveAlso requires assembled primitive

Vertex Pipeline
Clipping
Vertex Pipeline
Clipping

Both frustum and ArbitraryBoth frustum and Arbitrary
This must happen to entire primitiveThis must happen to entire primitive
May generate additional vertices and topology May generate additional vertices and topology

datadata
� new triangles

May clip against guard bandMay clip against guard band
� Like D3D Vertex pipeline does

Vertex Pipeline
Perspective Division
Vertex Pipeline
Perspective Division

Must be performed after clippingMust be performed after clipping

Vertex Pipeline
Viewport Transform
Vertex Pipeline
Viewport Transform

Maps resulting vertices into screen space Maps resulting vertices into screen space
coordinatescoordinates

Vertex Processing
Programmability
Vertex Processing
Programmability

Complete control of the transformation and Complete control of the transformation and
lighting pipelinelighting pipeline

Custom vertex lightingCustom vertex lighting
Custom skinning and blendingCustom skinning and blending
Custom Custom texgentexgen
Custom texture matrix operationsCustom texture matrix operations
Insert vertex operation of your choiceInsert vertex operation of your choice

Vertex ShadersVertex Shaders
Assembly language interface to theAssembly language interface to the

transformation and lighting enginetransformation and lighting engine
Instruction set to perform all vertex Instruction set to perform all vertex TnLTnL
Constant table to store data Constant table to store data

� (matrices, light position, attenuation, etc)

Registers to save intermediate dataRegisters to save intermediate data
Reads an untransformed, unlit vertexReads an untransformed, unlit vertex
Creates a transformed and lit vertexCreates a transformed and lit vertex

Vertex Shader Assembly languageVertex Shader Assembly language

Fixed, complete, very powerful SIMD instruction setFixed, complete, very powerful SIMD instruction set
Four operations simultaneously Four operations simultaneously

� argb, xyzw

Dynamically loaded between primitive callsDynamically loaded between primitive calls
Extensive support for vector and matrix operationsExtensive support for vector and matrix operations

� lighting, rotations, etc.

Capable of efficiently implementing the entire Capable of efficiently implementing the entire
functionality of DX7functionality of DX7

�What a Shader does�What a Shader does

Per vertex calculationPer vertex calculation
Processing of:Processing of:

� Colors - true color, pseudo color

� 3D coordinates - procedural geometry, blending, morphing,
deformations

� Texture coordinates - texgens, set up for pixel shaders, tangent
space bumpmap setup

� Fog - elevation based, volume based

� Point size

Shader program accepts one input vertex,Shader program accepts one input vertex,
generates one output vertexgenerates one output vertex

What a Shader doesn�t doWhat a Shader doesn�t do

Does not perform polygon based operationsDoes not perform polygon based operations
Back face cullingBack face culling
Two sided lighting (more on this later)Two sided lighting (more on this later)
Occlusion cullingOcclusion culling
Can�t write to other verticesCan�t write to other vertices
Does not create verticesDoes not create vertices

What is calculated?What is calculated?

Create a completely specified vertexCreate a completely specified vertex
Vertex position in HCLIP spaceVertex position in HCLIP space
And, optionally:And, optionally:

� Texgen/ texture matrix/ texture coord output

� Lighting/ color output

� Fog

� Point size

Vertex Shader ApplicationsVertex Shader Applications
basic geometry transformation and lighting basic geometry transformation and lighting

models models
advanced or custom lighting modelsadvanced or custom lighting models
texture transforms and generationtexture transforms and generation
vertex blending and morphing vertex blending and morphing
advanced environment mapping functionsadvanced environment mapping functions

Vertex Shader ComponentsVertex Shader Components
Shader has 2 components: input + functionShader has 2 components: input + function
Declaration (input)Declaration (input)

� Map vertex buffer streams to input regs

� Pre-load some constant registers

Code (function)Code (function)
� Instructions or fixed function

Can fail, if�Can fail, if�
� Break rules (DirectX version-specific)

� (Few) caps disobeyed

No Validate() requiredNo Validate() required

Vertex Shader DeclarationsVertex Shader Declarations
Bind input data to shader input vertex registersBind input data to shader input vertex registers
Three possible data sources:Three possible data sources:

� Read from input vertex stream

� Declared as constants

� Generated by surface tessellator

� -Normals and U,Vs

Indicate data formats usedIndicate data formats used

Vertex Shader DeclarationVertex Shader Declaration

�� Vertex structureVertex structure

structstruct Vertex Vertex
{ {

D3DXVECTOR3 Position; D3DXVECTOR3 Position;
D3DXVECTOR3 Normal; D3DXVECTOR3 Normal;
D3DCOLOR Diffuse; D3DXVECTOR2 TexCoord0; D3DCOLOR Diffuse; D3DXVECTOR2 TexCoord0;

}; };

Vertex Shader DeclarationVertex Shader Declaration
�� Stream/register Stream/register declaratordeclarator

DWORD DWORD dwDecldwDecl[] = [] =
{ {

D3DVSD_STREAM(0), D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3), D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3), D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR), D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2), D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
D3DVSD_END()D3DVSD_END()

}; };

Vertex Shader DeclarationVertex Shader Declaration
�� FVF codeFVF code

DWORD DWORD dwFVFdwFVF = D3DFVF_POSITION | = D3DFVF_POSITION |
D3DFVF_NORMAL | D3DFVF_DIFFUSE | D3DFVF_NORMAL | D3DFVF_DIFFUSE |
D3DFVF_TEX0 | D3DFVF_TEXCOORDSIZE2(0); D3DFVF_TEX0 | D3DFVF_TEXCOORDSIZE2(0);

Instruction formatInstruction format

Generally of the form:Generally of the form:

OpName dest, [-]s1 [,[-]s2 [,[-]s3]] ;comment

e.g.

mov r1, r2

mad r1, r2, r3, r4

Destination �r� can have a write-mask

Source �r� can be swizzled

e.g. mov r1.x, r2.y mov r1, r2.zxyw
�[� and �]� indicate optional modifiers

Vertex Shader Program
Resources
Vertex Shader Program
Resources
Input registersInput registers 1616 r/or/o 11
Constant registersConstant registers 9696 r/or/o 11
Temp registersTemp registers 1212 r/wr/w 33
Address register(s)Address register(s) 11 w/ow/o 11
Output registersOutput registers per per rasterizerrasterizer
Max instruction count Max instruction count 128128

Simple InstructionsSimple Instructions

••nopnop

••movmov

••mulmul

••madmad

••addadd

••rsqrsq

• dp3

• dp4

• dst

• lit

• min

• max

• slt

• sge

• expp

• log

• rcp

nop, mov, mulnop, mov, mul

nopnop
� Do nothing

movmov destdest, , srcsrc
� Move (with conditional sign change, mask and swizzle)

mulmul destdest, src1, src2, src1, src2
� Set dest to the product of src1 and src2

add, mad, rsqadd, mad, rsq

addadd destdest, src1, src2, src1, src2
� Add src1 to src2. [And the optional negation creates

subtraction]

mad mad destdest, src1, src2, src3, src1, src2, src3
� Multiply src1 by src2 and add src3 - into dst

rsq rsq destdest, , srcsrc
� Source must have one subscript�

� dest.x = dest.y = dest.z = dest.w = 1/sqrt(src)

� Reciprocal square root of src (much more useful than
straight �square root�).

dp3, dp4dp3, dp4

3 and 4 Component dot products3 and 4 Component dot products
dp3 dp3 destdest, src1, src2, src1, src2

� dest.x = dest.y = dest.z = dest.w =

� (src1.x * src2.x) +

� (src1.y * src2.y) +

� (src1.z * src2.z)

And dp4 does the same but includes �w� in And dp4 does the same but includes �w� in
the computationthe computation

min, maxmin, max

min min destdest, src1, src2, src1, src2
� Component-wise min operation

max max destdest, src1, src2, src1, src2
� Component-wise max operation

slt, sgeslt, sge

slt slt destdest, src1, src2, src1, src2
� dest = (src1 < src2) ? 1 : 0

� For each component�

sge sge destdest, src1, src2, src1, src2
� dst = (src1 >= src2) ? 1 : 0

� Which is equivalent to�

� dst = (src1 < src2) ? 0 : 1

� i.e. the exact opposite of slt

� For each component�

dstdst

dstdst destdest, src1, src2, src1, src2
� Calculate distance vector. src1 vector is

(NA,d*d,d*d,NA) and src2 is (NA,1/d,NA,1/d).

� dest is set to (1,d,d*d,1/d)

� Which is what you want for standard attenuation�

litlit

litlit destdest, , srcsrc
Calculates lighting coefficients from two dot products and a

power.

src is:
� src.x = n � l (unit normal and light vectors)
� src.y = n � h (unit normal and halfangle vectors)
� src.z is unused
� src.w = power (in range +128 to �128)

dest set to (1.0, src.x, L, 1.0)
� If src.x > 0.0
� L = (MAX(src.y, 0)
� else L = 0

src.w

expp, logexpp, log

exppexpp destdest, , srcsrc.w.w
� dest.x = 2 ** (int)src.w

� dest.y = fractional part (src.w)

� dest.z = 2 ** src.w

� dest.w = 1.0

loglog destdest, , srcsrc.w.w
� dest.x = exponent((int)src.w)

� dest.y = mantissa(src.w)

� dest.z = log2(src.w)

� dest.w = 1.0

rcprcp

rcp destrcp dest, , srcsrc.w.w
� Source must have just one subscript (x, y, z or w)

� dest.x = dest.y = dest.z = dest.w =

1 / src.w

� So� this is the other half of the puzzle for division

� � you divide by doing a �rcp� and then a �mul�

Complex, or macro, InstructionsComplex, or macro, Instructions

••expexp

••LogLog

••frcfrc

••m3x2m3x2

••m3x3m3x3

••m3x4m3x4

••m4x3m4x3

••m4x4m4x4

Exp, logExp, log

Full precision versions of Full precision versions of exppexpp, , logplogp

frcfrc

Fractional partFractional part
� dest.x = m_Source[0].x -

(float)floor(m_Source[0].x);

� dest.y = m_Source[0].y - (float)floor(m_Source[0].y)

� dest.z = m_Source[0].z - (float)floor(m_Source[0].z)

� dest.w = m_Source[0].w -
(float)floor(m_Source[0].w

m3x2m3x2

� dest.x = m_Source[0].x * m_Source[1].x +
m_Source[0].y * m_Source[1].y + m_Source[0].z *
m_Source[1].z

� dest.y = m_Source[0].x * m_Source[2].x +
m_Source[0].y * m_Source[2].y + m_Source[0].z *
m_Source[2].z

m3x3m3x3

� dest.x = m_Source[0].x * m_Source[1].x +
m_Source[0].y * m_Source[1].y + m_Source[0].z *
m_Source[1].z

� dest.y = m_Source[0].x * m_Source[2].x +
m_Source[0].y * m_Source[2].y + m_Source[0].z *
m_Source[2].z

� dest.z = = m_Source[0].x * m_Source[3].x +
m_Source[0].y * m_Source[3].y + m_Source[0].z *
m_Source[3].z;

m3x4m3x4

� dest.x = m_Source[0].x * m_Source[1].x + m_Source[0].y *
m_Source[1].y + m_Source[0].z * m_Source[1].z

� dest.y = m_Source[0].x * m_Source[2].x + m_Source[0].y *
m_Source[2].y + m_Source[0].z * m_Source[2].z

� Dest.z = m_Source[0].x * m_Source[3].x + m_Source[0].y *
m_Source[3].y + m_Source[0].z * m_Source[3].z

� Dest.w = m_Source[0].x * m_Source[4].x + m_Source[0].y *
m_Source[4].y + m_Source[0].z * m_Source[4].z;

m4x3m4x3

�� destdest.x = .x = m_Source[0].x * m_Source[1].x + m_Source[0].x * m_Source[1].x +
m_Source[0].y * m_Source[1].y + m_Source[0].z * m_Source[0].y * m_Source[1].y + m_Source[0].z *
m_Source[1].z + m_Source[0].w * m_Source[1].wm_Source[1].z + m_Source[0].w * m_Source[1].w

�� destdest.y = .y = m_Source[0].x * m_Source[2].x + m_Source[0].x * m_Source[2].x +
m_Source[0].y * m_Source[2].y + m_Source[0].z * m_Source[0].y * m_Source[2].y + m_Source[0].z *
m_Source[2].z + m_Source[0].w * m_Source[2].wm_Source[2].z + m_Source[0].w * m_Source[2].w

�� destdest.z = .z = m_Source[0].x * m_Source[3].x + m_Source[0].x * m_Source[3].x +
m_Source[0].y * m_Source[3].y + m_Source[0].z * m_Source[0].y * m_Source[3].y + m_Source[0].z *
m_Source[3].z + m_Source[0].w * m_Source[3].wm_Source[3].z + m_Source[0].w * m_Source[3].w

m4x4m4x4

�� destdest.x = .x = m_Source[0].x * m_Source[1].x + m_Source[0].y * m_Source[0].x * m_Source[1].x + m_Source[0].y *
m_Source[1].y + m_Source[0].z * m_Source[1].z + m_Source[1].y + m_Source[0].z * m_Source[1].z +
m_Source[0].w * m_Source[1].wm_Source[0].w * m_Source[1].w

�� destdest.y = .y = m_Source[0].x * m_Source[2].x + m_Source[0].y * m_Source[0].x * m_Source[2].x + m_Source[0].y *
m_Source[2].y + m_Source[0].z * m_Source[2].z + m_Source[2].y + m_Source[0].z * m_Source[2].z +
m_Source[0].w * m_Source[2].wm_Source[0].w * m_Source[2].w

�� destdest.z = .z = m_Source[0].x * m_Source[3].x + m_Source[0].y * m_Source[0].x * m_Source[3].x + m_Source[0].y *
m_Source[3].y + m_Source[0].z * m_Source[3].z + m_Source[3].y + m_Source[0].z * m_Source[3].z +
m_Source[0].w * m_Source[3].wm_Source[0].w * m_Source[3].w

�� destdest.w = m_Source[0].x * m_Source[4].x + m_Source[0].y * .w = m_Source[0].x * m_Source[4].x + m_Source[0].y *
m_Source[4].y + m_Source[0].z * m_Source[4].z + m_Source[4].y + m_Source[0].z * m_Source[4].z +
m_Source[0].w * m_Source[4].wm_Source[0].w * m_Source[4].w

Vertex Shader Efficiency, Simple
Instructions
Vertex Shader Efficiency, Simple
Instructions
All execute in a single clockAll execute in a single clock

Vertex Shader Efficiency,
Complex Instructions
Vertex Shader Efficiency,
Complex Instructions
m4x4, r, s0, s1m4x4, r, s0, s1 (4)(4)
m3x3, r, s0, s1m3x3, r, s0, s1 (3)(3)
exp r, s0.wexp r, s0.w (12)(12)
log r, s0.wlog r, s0.w (12)(12)
frcfrc r, s0r, s0 (3)(3)

Expand to number of instructions shownExpand to number of instructions shown
Take corresponding clocks to executeTake corresponding clocks to execute

Vertex Shader EfficiencyVertex Shader Efficiency

Only one vertex at a timeOnly one vertex at a time
Can�t do things likeCan�t do things like

� Tessellation,

� Area calculations

No branching No branching -->> parallelizableparallelizable
Allows fast implementationsAllows fast implementations

Vertex Shader TuningVertex Shader Tuning

Shader does not expose timingShader does not expose timing
Most instructions are one clockMost instructions are one clock

� So timing does not matter

RCP and RSQ are several clocksRCP and RSQ are several clocks
� Do not use result immediately afterward

Tuning will be implementationTuning will be implementation--specificspecific
� Don�t bother

� Just space out dependencies

Vertex Shader Sample 1Vertex Shader Sample 1
DP4 r0.x, v[0], c[0]DP4 r0.x, v[0], c[0]

DP4 r0.y, v[0], c[1]DP4 r0.y, v[0], c[1]

DP4 r0.z, v[0], c[2]DP4 r0.z, v[0], c[2]

DP4 r0.w, v[0], c[3]DP4 r0.w, v[0], c[3]

MOV color[0], c[4]MOV color[0], c[4]

MOV position, r0MOV position, r0

Vertex Shader Sample 1Vertex Shader Sample 1
Vertex element 0 is positionVertex element 0 is position

� Assumed homogeneous

Transform matrix in const[0Transform matrix in const[0--3]3]
Diffuse color loaded into const[4]Diffuse color loaded into const[4]
Executes in 6 clocksExecutes in 6 clocks

� One-matrix transform with constant color

Vertex Shader APIVertex Shader API
CreateVertexShaderCreateVertexShader((decldecl, , funcfunc))

� Takes declaration and

� Shader code instruction list

� Returns shader handle (dword)

SetVertexShaderSetVertexShader(handle)(handle)
� Loads shader to hw

SetVertexShaderConstantsSetVertexShaderConstants (float*)(float*)

Vertex Shader APIVertex Shader API

D3DXAssembleVertexShader()D3DXAssembleVertexShader()
� Takes ascii shader language shown here

Utility to load matricesUtility to load matrices
� Must do a transpose

Utility to load a 4Utility to load a 4--vectorvector

Vertex Shader VersioningVertex Shader Versioning
Implementation reports versionImplementation reports version

� D3DCaps8->VertexShaderVersion

All shaders preceded by tokenAll shaders preceded by token
� vs.1.0 is now legacy -> don�t use

� vs.1.1 for DirectX 8.0

Vertex Shader PortabilityVertex Shader Portability
Direct3DDirect3D®® does all validationdoes all validation

� Runtime fails illegal shaders

Implementation is required to Implementation is required to
execute anything that passesexecute anything that passes

Definition of shader model cannot Definition of shader model cannot
vary between implementationsvary between implementations

Shader CombinatoricsShader Combinatorics
May have to create manyMay have to create many

� Skinning, lighting, envt mapping

It�s OK, we�ll make moreIt�s OK, we�ll make more
Future versions may address this with Future versions may address this with

macros/subroutinesmacros/subroutines

Shader ConsistencyShader Consistency
All shaders preceded by tokenAll shaders preceded by token

� 1.0, 1.1 for DirectX 8.0

� 1.2 for DirectX 8.1

� 2.0 for DirectX 9.0

Card must support min feature setCard must support min feature set
� Else Direct3D does not pass to driver

Syntax separated from protocolSyntax separated from protocol
� Utilities will provide higher-level language support

Usage NotesUsage Notes
TCI is ignored when using shadersTCI is ignored when using shaders

� All texture coordinates are mapped
in numerical order

All iterated quantities transferred out All iterated quantities transferred out
of vertex shader are clamped to [0..1]of vertex shader are clamped to [0..1]
� If you need signed values you must

bias them in the vertex shader, and
then re-expand in pixel shader using _bx2

Pixel ProcessingPixel Processing

Architecture & PipelineArchitecture & Pipeline
Programmable ShadersProgrammable Shaders
APIAPI

Direct3D Programmable ArchitectureDirect3D Programmable Architecture

Pixel Processing FeaturesPixel Processing Features
Expose new rasterizer functionalityExpose new rasterizer functionality
Multiple intermediate registersMultiple intermediate registers

� not just one _CURRENT

More address opsMore address ops
� beyond _BUMPENVMAP

No moreNo more ValidateDeviceValidateDevice()()
Defined minimum feature setDefined minimum feature set

� For DirectX 8 pixel shaders

Pixel Shader SupportPixel Shader Support
Implemented inImplemented in refrastrefrast

For testing purposes

Hardware implementationsHardware implementations

Pixel ShadersPixel Shaders
Typeless vector languageTypeless vector language

� All values are nominally 9- to 16-bit ints

Evolved directly fromEvolved directly from multitexturemultitexture
� 2X from D3DTOP_MODULATE2X

� _bias from D3DTOP_ADDSIGNED

Since DX8 hardware must run DX7 appsSince DX8 hardware must run DX7 apps

Direct3D Pixel PipelineDirect3D Pixel Pipeline

Pixel PipelinePixel Pipeline

Triangle Triangle SetupSetup
PixelPixel ShaderShader (or FF Multi(or FF Multi--texture)texture)

� Iterate colours, texcoords, etc

� Sample textures with address ops

� Texture/colour blend

Fog BlendFog Blend
FrameFrame--Buffer BlendBuffer Blend

Pixel Pipeline
Triangle Setup
Pixel Pipeline
Triangle Setup

Performs clip to inner frustum boundaryPerforms clip to inner frustum boundary
� Finishes work of guard-band

Compute gradients for all components in the Compute gradients for all components in the
vertexvertex

Prepare to iterate colours, Prepare to iterate colours, texcoordstexcoords for for
each pixeleach pixel

Feed iterated Feed iterated texcoordstexcoords into respective into respective
texture addressing/sampling unitstexture addressing/sampling units

Pixel Shader Virtual MachinePixel Shader Virtual Machine

Pixel Pipeline
Iteration
Pixel Pipeline
Iteration

Process whereby perProcess whereby per--vertex attributes vertex attributes
become perbecome per--pixel onespixel ones

Affect coloursAffect colours
� Diffuse, Specular

And Texture CoordinatesAnd Texture Coordinates
� 0, 1, 2, 3

Currently these are all clamped to Currently these are all clamped to
� [0.0 .. 1.0]

Pixel Pipeline
Pixel Shader Addressing
Pixel Pipeline
Pixel Shader Addressing

Perform any address perturbation defined Perform any address perturbation defined
by pixel addressby pixel address shadershader
� BUMPENVMAP

� TEXMAT3x3

Put sampled texture colour in specified Put sampled texture colour in specified
temp register temp register RnRn

Expressed in pixelExpressed in pixel shadershader declaration declaration
sectionsection

Pixel Pipeline
Pixel Shader Blending
Pixel Pipeline
Pixel Shader Blending

Combine register colours using specified Combine register colours using specified
algorithmalgorithm
� Texture colours in temp register

� Iterated colours from vertex stream

� D3DRS_TEXTUREFACTOR-style colours from constants

ShaderShader must include any desired specular must include any desired specular
addadd

Pixel Pipeline
Fog Blend
Pixel Pipeline
Fog Blend

Fog is added using fixed function modelFog is added using fixed function model
Never flat shadedNever flat shaded

Pixel Pipeline
Frame-Buffer Blend
Pixel Pipeline
Frame-Buffer Blend

Alpha test can reject pixel hereAlpha test can reject pixel here
� If so, can save read of FB data

Allows introduction of frameAllows introduction of frame--buffer colours buffer colours
and destination alpha channeland destination alpha channel

Pixel Pipeline
Depth-Buffer Update
Pixel Pipeline
Depth-Buffer Update

If pixel not rejectedIf pixel not rejected
� Write it out

Pixel Shader ProgrammabilityPixel Shader Programmability

Pixel processing power/flexibility requires a Pixel processing power/flexibility requires a
more powerful modelmore powerful model
� Running out of mode names

Nothing scales complexity better than Nothing scales complexity better than
languageslanguages

Programmable syntax can scale over timeProgrammable syntax can scale over time
Tradition of flexible shaders in Tradition of flexible shaders in PhotoReal PhotoReal

renderingrendering

Pixel ShadersPixel Shaders
Assembly language interface to theAssembly language interface to the

pixel processing enginepixel processing engine
Instruction set to perform pixel operationsInstruction set to perform pixel operations

� Texture addressing, blending, etc

Input registers preloaded with texture Input registers preloaded with texture colorcolor
Constant table to store data Constant table to store data
Registers to save intermediate dataRegisters to save intermediate data
Reads a transformed, clipped vertexReads a transformed, clipped vertex
Creates an output pixelCreates an output pixel

Pixel Shader OrthogonalityPixel Shader Orthogonality
Cleaner syntaxCleaner syntax

� 2X, 4X orthogonal, etc

� lrp instruction takes 3rd argument

�No more BLENDXXXX

Address Operators separated out as Address Operators separated out as
declarations phasedeclarations phase
� BUMPENVMAP

� BUMPENVMAPLUM

Pixel Shader ApplicationsPixel Shader Applications

PhotoPhoto--realistic lightingrealistic lighting
MembraneMembrane shadersshaders

� Balloons, skin, etc

KubelkaKubelka--MunkMunk shadersshaders
� Translucency effects

Fur/hairFur/hair shadershader
Plus more!Plus more!

LunchLunch

Return at 1:00Return at 1:00
�� Pixel ProcessingPixel Processing

� Pixel shaders, pixel shaders, pixel shaders

�� Pixel LightingPixel Lighting
�� Higher Order SurfacesHigher Order Surfaces
�� D3DX utility library supportD3DX utility library support

� Texture support, meshes, skinning, and more

�� Authoring tool supportAuthoring tool support
� 3DSMax, Maya, Lightwave

Pixel Shader ComponentsPixel Shader Components

Two parts to each programTwo parts to each program
� Texture Declarations

� Up to 4 Texture Address Ops
� Essentially here is where you say what each set of 4 texture

coordinates are doing
� This is HOW the texels are fetched

� Blending

� Up to 8 Texture Blending Ops
� These map to the register combiners similarly to the old

TextureStageStates
� This is AFTER the texels are fetched and filtered
� There is no loopback to the Texture Address Ops

Pixel Shader Texture InputsPixel Shader Texture Inputs
Direct mapping between input register Direct mapping between input register

colors and texture stagescolors and texture stages
� Temp registers preloaded with texture colors

from corresponding stages

� Conversely, textures are bound directly to temp
registers

�Using SetTexture(i, texture);

Texcoords Texcoords are also mapped directlyare also mapped directly
Defined by texture declarationsDefined by texture declarations

Texture DeclarationsTexture Declarations
Separate pixel shader instructionsSeparate pixel shader instructions

� Must appear at top of shader

� Can only use previously defined values

Can also perform some operationsCan also perform some operations
� Modify texture coordinates used as addresses by

sampling stages

� Enable perturbation effects like Directx6
BUMPENVMAP

Called Texture Address OperatorsCalled Texture Address Operators

Pixel Instruction FormatPixel Instruction Format

OP<_OP<_opmodopmod> d<> d<dmaskdmask>, s<>, s<srcmodsrcmod>>

Pixel Shader ResourcesPixel Shader Resources
Texture registersTexture registers ttnn 44 r/wr/w
Temp registersTemp registers rrnn 22 r/wr/w 22
Color registers Color registers ddnn 22 r/or/o 11
Constant registersConstant registers ccnn 88 r/or/o 22

Instruction countInstruction count 88
� +Texture address ops 4

No output registersNo output registers
� Just emits R0

Pixel Source Arg ModifiersPixel Source Arg Modifiers
regreg.a.a Alpha replicateAlpha replicate
11--regreg Invert or complement*Invert or complement*
--regreg Negate (signed data only)Negate (signed data only)
regreg_bias_bias Bias (subtract 0.5)Bias (subtract 0.5)
regreg__sgnsgn Signed range conversionSigned range conversion

i.e. bias and scale x2 or 2 * (x � 0.5f)

very common for dp3

� incompatible with -, _bias, or _sgn

Pixel Shader Op ModifiersPixel Shader Op Modifiers

Scaling ModifiersScaling Modifiers
� instr_x2 scales output 2x

� instr_x4 scales output 4x

� instr_d2 divides output by 2

Saturation ModifierSaturation Modifier
� instr_sat clamp to range [0..1]

Op ModifiersOp Modifiers

You can use _sat together with scaling :You can use _sat together with scaling :

For instance :For instance :
add_bx2_sat r0, r1, t2add_bx2_sat r0, r1, t2

Common Example :Common Example :
dp3_sat r1, r0_bx2, t0_bx2dp3_sat r1, r0_bx2, t0_bx2

Pixel Shader Output MasksPixel Shader Output Masks
Allow portion of Allow portion of dest regdest reg to be updatedto be updated
� reg.rgb update only 3 colors

� reg.a update only alpha

� reg = reg.rgba does both <default>

Analog of DX6/7 COLOROP/ALPHAOPAnalog of DX6/7 COLOROP/ALPHAOP
In DirectX 8 Pixel Shaders v1.0In DirectX 8 Pixel Shaders v1.0

� Can�t separate r, g, or b individually yet

� No arbitrary swizzle

Pixel Shader ALUPixel Shader ALU

bias
<<, -

Alpha
Op

Color
Op

Destination ABGR

ABGR ABGRInputs

bias
<<, -

Input Modifier

Output Modifier <<, >> <<, >>

Instruction

bias
<<, -

bias
<<, -

Instruction Op OrderingInstruction Op Ordering
Input ModifiersInput Modifiers

� Replicate Alpha

� Bias -0.5 for _bias and _sgn

� Scale x2 for _sgn

� Negate/complement

Core Instruction ExecutionCore Instruction Execution
Instruction ModifiersInstruction Modifiers

� Scale _2x, _4x, _d2

� Clamp _sat

Output MasksOutput Masks

DX8 Pixel Shader InstructionsDX8 Pixel Shader Instructions

Three types of InstructionsThree types of Instructions
� Constant Definitions

� Similar to Setting the TFACTOR

� Texture Address Ops

� Fetching texels

� Texture Blending Ops

� Combining texels, constant colors and iterated colors to
produce SrcColor and SrcAlpha

Setting ConstantsSetting Constants

defdef c#,c#, x,x, y,y, z,z, ww

Sets the Constant, from 0 to 7 with the Sets the Constant, from 0 to 7 with the
appropriate floating point value appropriate floating point value

which will be clamped to be between which will be clamped to be between
0.0f and 1.0f 0.0f and 1.0f

Setting ConstantsSetting Constants

def c0, 1.0f, 4.0f, def c0, 1.0f, 4.0f, --10.0f, 1.0f,10.0f, 1.0f,

Note that not all Constants are visible to Note that not all Constants are visible to
all instructionsall instructions

Instructions 0Instructions 0--1 reference Constants 01 reference Constants 0--11
Instructions 2Instructions 2--3 reference Constants 23 reference Constants 2--

3, etc.3, etc.

Texture Address OpsTexture Address Ops

Each Texture Address Op represents the use of Each Texture Address Op represents the use of
a particular set of texture coordinatesa particular set of texture coordinates

Either :Either :

� Look up a filtered texel color

� Use as a vector

� Use as the part of a matrix

Texture Address OpsTexture Address Ops

textex t0t0
� Just fetch a filtered texel color

texcoord tDesttexcoord tDest
� Just turn the texture coordinate into a color

texkill tDesttexkill tDest
� Kill any texels where at least one of s,t,r,q is < 0

texbem tDesttexbem tDest, tSrc0, tSrc0
� Bump Environment Map

� U += 2x2 matrix(dU)
� V += 2x2 matrix(dV)
� Then Sample at (U, V)

Texbeml tDestTexbeml tDest, tSrc0, tSrc0
� Bump Environment Map w/ Luminance

� U += 2x2 matrix(dU)
� V += 2x2 matrix(dV)
� Then Sample at (U, V) & Apply Luminance

TEXBEM, BEMLTEXBEM, BEML
� Consumes 2 stages/slots

� Texture on previous stage is ignored

Texture Address OpsTexture Address Ops

Texture Address OpsTexture Address Ops

Texm3x2pad t1, t0Texm3x2pad t1, t0
� �padding� instruction as part of the texm3x2tex

instruction � performs a dot product of t0�s color
with these texture coordinates

Texm3x2tex t2, t0Texm3x2tex t2, t0
� Take previous dot product from �pad� instruction

as the S coordinate

� Perform dot product of t0�s color with this
texture coordinate and use as T

� Sample from a 2D texture using (S, T)

Texture Address OpsTexture Address Ops

texreg2artexreg2ar tDesttDest,, tSrctSrc
� Sample from (tSrc.A, tSrc.R)

texreg2gbtexreg2gb tDesttDest,, tSrctSrc
� Sample from (tSrc.G, tSrc.B)

These are the general dependent texture read These are the general dependent texture read
operationsoperations

They take part of a color from the They take part of a color from the tSrctSrc texture texture
to use as S,T coordinates of the to use as S,T coordinates of the tDest tDest
texture fetchtexture fetch

3x3 Texture Address Ops3x3 Texture Address Ops

Texm3x3padTexm3x3pad
� Padding for 3x3 matrix operation

� Uses the 3D texture coordinate as a row of the matrix

Texm3x3specTexm3x3spec
� Compute Non-Local Viewer Specular reflection about

Normal from Normal Map

� tex t0 ; Normal Map
� texm3x3pad t1, t0 ; 1st row of matrix
� texm3x3pad t2, t0 ; 2nd row of matrix
� texm3x3spec t3, t0, c0 ; 3rd row, reflect & sample
� mov r0, t3

Local Viewer ReflectionLocal Viewer Reflection

Texm3x3vspecTexm3x3vspec
� Compute Local Viewer Specular reflection about

Normal from Normal Map

� Eye vector comes from q coordinates of the 3 sets of
4D textures

� tex t0 ; Normal Map
� texm3x3pad t1, t0 ; 1st matrix row, x of eyevector
� texm3x3pad t2, t0 ; 2nd matrix row, y of eyevector
� texm3x3spec t3, t0, c0 ; 3rd row & eye z, reflect &

sample
� mov r0, t3

3x3 Per-Pixel Vector Rotation3x3 Per-Pixel Vector Rotation

texm3x3mattexm3x3mat
� Rotate vector through 3x3 matrix, then sample a

CubeMap or 3D texture

� tex t0 ; Normal Map
� texm3x3pad t1, t0 ; 1st matrix row
� texm3x3pad t2, t0 ; 2nd matrix row
� texm3x3mat t3, t0, c0 ; 3rd matrix row & sample
� mov r0, t3

R3R3

R2R2

R0R0
��

TC0TC0 TC1TC1 TC2TC2 TC3TC3

R4R4

Tex0Tex0

Tex1Tex1

Tex2Tex2

Tex3Tex3

R1R1

TEXCOORDINDEXTEXCOORDINDEX

TEXOPTEXOP

TEXOPTEXOP

TEXOPTEXOP

TEXOPTEXOP

Pixel Shader Addressing

Texture Blending OpsTexture Blending Ops

After all Texture Address Ops, you can have After all Texture Address Ops, you can have
up to 8 texture blending instruction slotsup to 8 texture blending instruction slots

Each slot can hold a color and an alpha Each slot can hold a color and an alpha
operation to be executed simultaneouslyoperation to be executed simultaneously

These are analogous to the old These are analogous to the old
TextureStageStateTextureStageState COLOROP and COLOROP and
ALPHAOPsALPHAOPs

You must add your own specular if using the You must add your own specular if using the
Pixel Shader pipelinePixel Shader pipeline

Texture Blending OpsTexture Blending Ops
addadd destdest, src1, src2, src1, src2

dest dest = src1 + sr2= src1 + sr2

sub sub destdest, src1, src2, src1, src2
dest dest = src1 = src1 �� src2src2

dp3dp3 destdest, src1, src2, src1, src2
dest dest = (src1.x * src2.x + src1.y * src2.y �)= (src1.x * src2.x + src1.y * src2.y �)

lrplrp destdest, factor, src1, src2, factor, src1, src2

destdest = (factor)src1 + (1= (factor)src1 + (1--factor)src2factor)src2

Texture Blending OpsTexture Blending Ops
mulmul destdest, src0, src1, src0, src1

destdest = src0 * src1= src0 * src1

mad mad destdest, src0, src1, src2, src0, src1, src2
dest dest = (src0 + src1 * src2)= (src0 + src1 * src2)

mov destmov dest, , srcsrc
dest dest = = srcsrc

cnd destcnd dest, r0.a, src1, src2, r0.a, src1, src2
if (r0.a > 0.5) {if (r0.a > 0.5) { destdest = src1; }= src1; }

else {else { destdest = src2; }= src2; }

Dot Product LightingDot Product Lighting
Dot products require signed data, so we Dot products require signed data, so we

need to convert inputs using need to convert inputs using __sgnsgn

Lighting clamps negatives using Lighting clamps negatives using _sat_sat
; diffuse is light direction

tex t0 ; normal map

dp3_sat r0, t0_sgn, d0_sgn

These were hard coded into DirectX 6/7�s These were hard coded into DirectX 6/7�s
D3DTOP_DOTPRODUCT3 opD3DTOP_DOTPRODUCT3 op

Efficiency and Instruction
Pairing
Efficiency and Instruction
Pairing
Hardware has 2 pipelines:Hardware has 2 pipelines:

� 1 vector (RGB) and 1 scalar (Alpha)

Instructions can be pairedInstructions can be paired
� Reducing total clocks is important

� Affects pixel fill rate performance

Pairs specified via shader syntaxPairs specified via shader syntax

Output Masks and PairingOutput Masks and Pairing

Output masks indicate pipeline usedOutput masks indicate pipeline used
� .a indicates op is in scalar pipe

� .rgb indicates op is in vector pipe

� .rgba puts same op in both pipes

�So it already counts as a pair

Like DirectX 6/7 COLOROP/ALPHAOPLike DirectX 6/7 COLOROP/ALPHAOP

Dot Product Output MasksDot Product Output Masks
Dot products are vector operationsDot products are vector operations
Always executed in vector pipelineAlways executed in vector pipeline

� Can specify different instruction in alpha pipe and
still get pairing:

dp3 r0.rgb, t0, t1
mul r0.a, t0, t1

� Can�t specify dot as scalar instruction without dot
as vector instruction

Comparison InstructionComparison Instruction
cndcnd d, s0, s1, s2d, s0, s1, s2

Has restrictions in DirectX 8Has restrictions in DirectX 8
� Input s0 MUST be �r0.a�

� Compare MUST be � > 0.5�

Therefore net instruction returnsTherefore net instruction returns
•d = (r0.a>0.5 ? s1 : s2)

Will be more general in the futureWill be more general in the future

Comparison ExampleComparison Example

To compare 2 values:To compare 2 values:
sub r0, v0, v1_bias

cnd r0, r0.a, c0, c1

Since a Since a �� (b (b -- 0.5) = a 0.5) = a �� b + 0.5b + 0.5

Sample Pixel ShaderSample Pixel Shader

D3DPS_01,D3DPS_01, // DirectX8 version// DirectX8 version

textex t0t0 // declare texture*// declare texture*

textex t1t1 // declare light map*// declare light map*

mulmul r0, t0, t1r0, t0, t1 // modulate// modulate lightmaplightmap

mulmul r0, r0, d0r0, r0, d0 // modulate diffuse// modulate diffuse

add r0, r0, d1add r0, r0, d1 // add specular// add specular

!! Base texture with light map, Base texture with light map,
diffuse color, and specular adddiffuse color, and specular add

Gloss Map ShaderGloss Map Shader

Gloss factor in alpha of base textureGloss factor in alpha of base texture
D3DPS_01,D3DPS_01, // DirectX8 version// DirectX8 version

textex t0t0 // base texture + gloss// base texture + gloss

textex t1t1 // environment map// environment map

mulmul r0, t1, t0.ar0, t1, t0.a // scale// scale envtenvt by glossby gloss

// replicate alpha 1st// replicate alpha 1st

add r0, r0, t0add r0, r0, t0 // add in base texture// add in base texture

Texture Address ShaderTexture Address Shader
BUMPENVMAP on lit base textureBUMPENVMAP on lit base texture

� As in EarthBump.exe

D3DPS_01,D3DPS_01, // DirectX8 version// DirectX8 version

TEX, r0TEX, r0 // declare texture*// declare texture*

TEX, r1TEX, r1 // declare// declare bumpmapbumpmap**

TEXBEM, r3TEXBEM, r3, r1, r1 // perturb and then// perturb and then

// sample// sample envtenvt mapmap

MUL, r0, r0, i1MUL, r0, r0, i1 // modulate diffuse// modulate diffuse

ADD, r0, r0, r3ADD, r0, r0, r3 // add specular// add specular envtenvt..

Pixel Shader LightingPixel Shader Lighting
33--D BUMPENVMAPD BUMPENVMAP

� Sample normal map

� Iterate 3x3 matrix across polygon
�Use texcoords as rows

� Transform and index into diffuse radiance
cubemap, or

� Reflect and index into specular environment
cubemap

� Apply to base from previous pass

Per-Pixel Diffuse LightingPer-Pixel Diffuse Lighting

D3DPS_01,D3DPS_01, // DirectX8 version// DirectX8 version

TEX, r0TEX, r0 // declare n// declare n--mapmap

TEXDP3X, r3, r0TEXDP3X, r3, r0 // 1// 1stst row ofrow of xformxform

TEXDP3Y, r3, r0TEXDP3Y, r3, r0 // 2// 2ndnd row ofrow of xformxform

TEXDP3Z, r3, r0TEXDP3Z, r3, r0 // 3// 3rdrd row ofrow of xformxform

DP3 r0, r3, i1DP3 r0, r3, i1 // light dir in i1// light dir in i1

Use DOTPRODUCT3 for diffuse intensityUse DOTPRODUCT3 for diffuse intensity

Per-Pixel Diffuse IrradiancePer-Pixel Diffuse Irradiance
D3DPS_01,D3DPS_01, // DirectX8 version// DirectX8 version

TEX, r0TEX, r0 // declare n// declare n--mapmap

TEXDP3X, r3, r0TEXDP3X, r3, r0 // 1// 1stst row ofrow of xformxform

TEXDP3Y, r3, r0TEXDP3Y, r3, r0 // 2// 2ndnd row ofrow of xformxform

TEXDP3ZTEXDP3ZSS, r3, r0, r3, r0 // 3// 3rdrd row ofrow of xformxform andand

// then sample cube map// then sample cube map

MOV r0, r3MOV r0, r3 // emit to FB blender// emit to FB blender

// will modulate in FB blender with base// will modulate in FB blender with base

// texture from preceding pass// texture from preceding pass

Per-Pixel Specular MappingPer-Pixel Specular Mapping
D3DPS_01,D3DPS_01, // DirectX8 version// DirectX8 version

TEX, r0TEX, r0 // declare n// declare n--mapmap

TEXDP3X, r3, r0TEXDP3X, r3, r0 // 1// 1stst row ofrow of xformxform

TEXDP3Y, r3, r0TEXDP3Y, r3, r0 // 2// 2ndnd row ofrow of xformxform

TEXDP3ZRFIS, r3, r0TEXDP3ZRFIS, r3, r0 // 3// 3rdrd row ofrow of xformxform thenthen

// reflect infinite & sample cube map// reflect infinite & sample cube map

MOV r0, r3MOV r0, r3 // emit to FB blender// emit to FB blender

// will add to Frame Buffer contents// will add to Frame Buffer contents

Combination
5-stage
Combination
5-stage

D3DPS_01,D3DPS_01, // DirectX8 version// DirectX8 version

TEX, r0TEX, r0 // declare n// declare n--mapmap

TEXDP3X, r3, r0TEXDP3X, r3, r0 // 1// 1stst rowrow xformxform

TEXDP3Y, r3, r0TEXDP3Y, r3, r0 // 2// 2ndnd rowrow xformxform

TEXDP3ZS, r3, r0TEXDP3ZS, r3, r0 // 3// 3rdrd rowrow xformxform &diff&diff

TEXDP3ZRFIS, r4, r0TEXDP3ZRFIS, r4, r0 // reflect and then// reflect and then

// sample// sample envtenvt cube mapcube map

MOV, r0, r4MOV, r0, r4 // output specular color// output specular color

MOV, r0.a, r3.bMOV, r0.a, r3.b // put diffuse in alpha// put diffuse in alpha

Texture Coords per StageTexture Coords per Stage
0 Texture 0 Texture coordscoords ofof bumpmapbumpmap
1 1st row of 3x31 1st row of 3x3
2 2nd row of 3x32 2nd row of 3x3
3 3rd row of 3x3 for texmat3x3*3 3rd row of 3x3 for texmat3x3*

Textures SetTextures Set
0 Bump map image (normals in RGB)0 Bump map image (normals in RGB)
1 Ignored, no texture set1 Ignored, no texture set
2 Diffuse lighting cubemap2 Diffuse lighting cubemap

� diffuse light irradiance

3 Specular lighting cubemap3 Specular lighting cubemap
� environment map

� Usually much higher resolution than diffuse
cube map

Options to support local modelsOptions to support local models

Pixel Shader APIPixel Shader API
CreatePixelShaderCreatePixelShader((funcfunc, &Handle), &Handle)

� Takes Shader code instruction list

� Returns shader handle (dword)

SetPixelShaderSetPixelShader(handle)(handle)
� Loads shader to hw

SetPixelShaderConstantsSetPixelShaderConstants (float*)(float*)
� Load pixel shader constant register(s)

Pixel Shader APIPixel Shader API
D3DXAssemblePixelShader()D3DXAssemblePixelShader()

� Takes ascii shader language shown here

Pixel Shader StatePixel Shader State
String .String .asmasm syntax defines shaderssyntax defines shaders
Still uses TSS forStill uses TSS for

� Filtering: Min-, Mag-, and Mip-

� Tiling, wrapping modes

Can use state blocks for theseCan use state blocks for these
Put shader handle in same block if you Put shader handle in same block if you

want to group them togetherwant to group them together

Pixel Shader DebuggingPixel Shader Debugging
Reference device is early Reference device is early

development environmentdevelopment environment
� Allows interactive debugging

� Debug port can be disabled for retail

MFCPixelShader MFCPixelShader sample in SDKsample in SDK
DPFsDPFs in debug runtimein debug runtime
IHV tools provide debugging supportIHV tools provide debugging support

Pixel Shader VersioningPixel Shader Versioning
D3DCaps8D3DCaps8-->>PixelShaderVersionPixelShaderVersion

� Major.Minor version number

� Indicates level of shaders that this
implementation can always Create()

All shaders preceded by tokenAll shaders preceded by token
� ps.1.0 is now legacy -> don�t use

� ps.1.1 for DirectX 8.0

� ps.1.2 for DirectX 8.1

� ps.2.0 for DirectX 9.0

Pixel Shader CapPixel Shader Cap
D3DCaps8D3DCaps8-->>MaxPixelShaderValueMaxPixelShaderValue

� Represented as a float

Indicates internal data range of colors used Indicates internal data range of colors used
in pixel processingin pixel processing
� 1.0 means [-1 .. 1]

� 0.0 means [0 .. 1] as per DirectX6/7

Signed TexturesSigned Textures
Signed means true negative, not biasedSigned means true negative, not biased
UVWQ indicate signed channelsUVWQ indicate signed channels

� L6V5U5 formats for bem, beml only

� In multitexture or pixel shaders

D3DFMT_Q8W8V8U8 is signed D3DFMT_Q8W8V8U8 is signed ver ver
of D3DFMT_A8B8G8R8of D3DFMT_A8B8G8R8

Can use signed or biased withCan use signed or biased with
� texm*, dp3, D3DTOP_DOTPRODUCT3

16-Bit Textures16-Bit Textures
Enable improved image quality for Enable improved image quality for

dependent read operationsdependent read operations
Are still only 32Are still only 32--bits per pixelbits per pixel

� Therefore only support 2 channels

One format added in DirectX 8.0One format added in DirectX 8.0
� D3DFMT_V16U16

Unsigned version added in DirectX 8.1Unsigned version added in DirectX 8.1
� D3DFMT_G16R16

Art For Pixel ShadersArt For Pixel Shaders
Use biased formats instead of signedUse biased formats instead of signed
_bx2 allows using same art for:_bx2 allows using same art for:

� dp3 pixel shaders

� texm3x3* pixel shaders

� DOTPRODUCT3 multitexture fallbacks

Note: There is now a 16Note: There is now a 16--bit unsigned format bit unsigned format
in 8.1, so can use _bx2 here alsoin 8.1, so can use _bx2 here also

ProposalProposal
Store bump maps as height fields on CDStore bump maps as height fields on CD

� Compact, compressible, independent

On load of imageOn load of image
� Generate normal maps for dot shaders

� Generate perturbation maps for BEML
�Which require signed components

Pretty pictures�Pretty pictures�

Fur RendererFur Renderer

Fur 2Fur 2

Pixel LightingPixel Lighting

FundamentalsFundamentals
Standard PerStandard Per--Pixel LightingPixel Lighting
Custom PerCustom Per--Pixel LightingPixel Lighting

GoalsGoals
DirectX 8.0 allows enough flexibility for a variety DirectX 8.0 allows enough flexibility for a variety

of lighting modelsof lighting models
We want everyone to be understand the standard We want everyone to be understand the standard

models and be able to define their own models models and be able to define their own models
based on their needsbased on their needs

This talk will cover the standard models, the This talk will cover the standard models, the
process of defining new models, and provide process of defining new models, and provide
examples of how others have done thisexamples of how others have done this

TopicsTopics
Fundamentals of Pixel LightingFundamentals of Pixel Lighting
Standard Lighting ModelsStandard Lighting Models

� Per-Vertex

� Per-Pixel

� Anisotropic Lighting

Custom Lighting ModelsCustom Lighting Models
� Roll your own

� Area lights, fresnel shaders, etc.

Overview Of Pixel LightingOverview Of Pixel Lighting
Tangent Space Basis TransformTangent Space Basis Transform

� Approximations

PerPer--Pixel Diffuse LightingPixel Diffuse Lighting
� Fallbacks to emboss, etc.

PerPer--Pixel Specular LightingPixel Specular Lighting
� Fallbacks to subtraction, etc.

PerPer--Pixel Anisotropic LightingPixel Anisotropic Lighting
� Fallbacks to per-vertex anisotropic

Per-Pixel LightingPer-Pixel Lighting
All lighting math should be All lighting math should be

in same coordinate spacein same coordinate space
Normal maps and bump maps are stored in Normal maps and bump maps are stored in

texture space (tangent space)texture space (tangent space)
Light directions and environment maps are Light directions and environment maps are

in object or world spacein object or world space
We need to construct the transform between We need to construct the transform between

themthem
�Tangent space basis��Tangent space basis�

Texture Coordinate SystemTexture Coordinate System

uu

ww

vv

Per-Pixel Lighting
Basis computation
Per-Pixel Lighting
Basis computation

ShapeShape
Normal Map

Projecting a Normal Map onto a surface Projecting a Normal Map onto a surface

Tangent Space BasisTangent Space Basis
Rows of matrix are vectors:Rows of matrix are vectors:
Normal is zNormal is z--axis vectoraxis vector

� Comes from std vertex normal

Tangent is uTangent is u--axis vectoraxis vector
BinormalBinormal is vis v--axis vectoraxis vector
If orthonormal, then v = u x wIf orthonormal, then v = u x w

� Binormal = Tangent cross Normal

Terminology conventionTerminology convention

Per-Pixel Lighting
Pre-computing the Tangent Vector
Per-Pixel Lighting
Pre-computing the Tangent Vector

The desired vector is the vector which The desired vector is the vector which
points along the U axis of the texture at points along the U axis of the texture at
every pointevery point

Per-Pixel Lighting
Setting up the Matrix
Per-Pixel Lighting
Setting up the Matrix

From linear algebra, if we have an From linear algebra, if we have an
orthonormal basis, then the inverse matrix orthonormal basis, then the inverse matrix
is the transposeis the transpose

So, given U,V,W are the basis vectors So, given U,V,W are the basis vectors
of the surface. Then, the transform is:of the surface. Then, the transform is:
[U.x U.y U.z] [Light.X] [U.x U.y U.z] [Light.X]
[V.x V.y V.z] * [Light.Y][V.x V.y V.z] * [Light.Y]
[W.x W.y W.z] [Light.Z][W.x W.y W.z] [Light.Z]

Per-Pixel Lighting
Matrix expansion
Per-Pixel Lighting
Matrix expansion

Expanding this out, it becomesExpanding this out, it becomes
Light.X� = DOT3(U,Light.X� = DOT3(U,--Light)Light)
Light.Y� = DOT3(V,Light.Y� = DOT3(V,--Light)Light)
Light.Z� = DOT3(W,Light.Z� = DOT3(W,--Light)Light)

U = the tangent along X axis of textureU = the tangent along X axis of texture
W = the normalW = the normal
V = the V = the binormalbinormal UxWUxW

� Note that we dot against the negative
of the Light Direction

Per-Pixel Lighting
The magic tangent equation
Per-Pixel Lighting
The magic tangent equation

Vec1 = Vert3 Vec1 = Vert3 �� Vert2Vert2
Vec2 = Vert1 Vec2 = Vert1 �� Vert2Vert2
DeltaU1 = Vert3.u DeltaU1 = Vert3.u -- Vert2.uVert2.u
DeltaU2 = Vert1.u DeltaU2 = Vert1.u �� Vert2.uVert2.u
DirectionVDirectionV = | DeltaU2*Vec1 = | DeltaU2*Vec1 ��DeltaU1*Vec2) |DeltaU1*Vec2) |
DirectionUDirectionU = | (= | (DirectionVDirectionV X X VertexNormalVertexNormal) |) |

Vert1Vert1--3 are vertices of the triangle3 are vertices of the triangle
Tangents need to be averagedTangents need to be averaged
Be careful about Texture wrapping!Be careful about Texture wrapping!
D3DX will do this for youD3DX will do this for you

Blinn�s Basis fnBlinn�s Basis fn
Compare with his resultsCompare with his results
Transpose as inverse requires orthogonal Transpose as inverse requires orthogonal

basisbasis
AlternativesAlternatives

� Compute tangent and binormals in tool

� Compute normal in shader

� Allows non-orthogonal basis

� Use cross products to invert

Cross Product To InvertCross Product To Invert

If mostly unit lengthIf mostly unit length
� V� = N x U

� U� = V x N

N, N�N, N�

VVV�V�

U�U�

UU

Tangent Space If SkinningTangent Space If Skinning
Not much more work to addNot much more work to add
Have to skin Have to skin normalsnormals and tangentsand tangents
Generate Generate binormalbinormal after skinningafter skinning

� Else have to skin 3 vectors

Works fine withWorks fine with
� Indexed Palette Skinning

� 2/4-Matrix Skinning

� Morphing, etc.

If you skin If you skin normalsnormals and tangentsand tangents

Two ApproachesTwo Approaches
Pixel lighting in tangent spacePixel lighting in tangent space

� Use tangent-space basis to transform light direction
vectors into tangent space

� Common for procedural models

� Diffuse or specular

Pixel lighting in world spacePixel lighting in world space
� Transform data from tangent space

into world space

� Required for map-based techniques

� Diffuse or specular

Lighting In Tangent SpaceLighting In Tangent Space
Faster since transform can be done Faster since transform can be done

at a per vertex levelat a per vertex level
� Less vertex clocks than vertex lighting

� Per�pixel dp3 is fast as any pixel op

For diffuse and For diffuse and specularspecular in same passin same pass
� Compute light direction and half-angle vectors in

vertex stage and transform both into texture space

Perturbation and dot product are done in Perturbation and dot product are done in
pixel pipeline pixel pipeline --shader or shader or multitexturemultitexture

Tangent Space Lighting
The vertex shader
Tangent Space Lighting
The vertex shader

// v8 is tangent vector// v8 is tangent vector

// v3 is normal vector// v3 is normal vector

// c0// c0--c3 is World Transformc3 is World Transform

// c12 is light dir// c12 is light dir

m3x3 r7,v8,c0m3x3 r7,v8,c0 // transform tangent to world space// transform tangent to world space

m3x3 r8,v3,c0m3x3 r8,v3,c0 // transform normal to world space// transform normal to world space

mul r0,r7.zxyw,r8.yzxw;mul r0,r7.zxyw,r8.yzxw; // cross prod to generate binormal// cross prod to generate binormal

mad r5,r7.yzxw,r8.zxyw,mad r5,r7.yzxw,r8.zxyw,--r0;r0;

dp3 r6.x,r7,dp3 r6.x,r7,--c12c12 // transform the light vector,// transform the light vector,

dp3 r6.y,r5,dp3 r6.y,r5,--c12c12 // by resulting matrix// by resulting matrix

dp3 r6.z,r8,dp3 r6.z,r8,--c12c12 // r6 is light dir in tangent space// r6 is light dir in tangent space

Per-Pixel Diffuse Effects
dp3 Lighting
Per-Pixel Diffuse Effects
dp3 Lighting

PerPer--pixel diffuse lighting is consistent with pixel diffuse lighting is consistent with
standard lighting model standard lighting model
(with no (with no specularspecular))

Nice, because there is no need to modulate Nice, because there is no need to modulate
against another lighting term. Each pixel is against another lighting term. Each pixel is
correctly litcorrectly lit

Filtering can be a major problem. Filtering can be a major problem. NormalsNormals
cannot be filtered for a cannot be filtered for a
variety of reasonsvariety of reasons

Per-Pixel Diffuse Lighting
The Vertex Shader
Per-Pixel Diffuse Lighting
The Vertex Shader

mulmul r0,r7.zxyw,r8.yzxwr0,r7.zxyw,r8.yzxw // Cross prod to get// Cross prod to get binormalbinormal
mad r5,r7.yzxw,r8.zxyw,mad r5,r7.yzxw,r8.zxyw,--r0;r0;

dp3 r6.x,r7,dp3 r6.x,r7,--c12c12 //// xformxform light dir into tangent spacelight dir into tangent space
dp3 r6.y,r5,dp3 r6.y,r5,--c12c12
dp3 r6.z,r8,dp3 r6.z,r8,--c12c12

mulmul r6.xyz,r6.xyz,c33.xyzr6.xyz,r6.xyz,c33.xyz //// mutiplymutiply by 0.5,by 0.5,
add r6.xyz,r6.xyz,c33.xyzadd r6.xyz,r6.xyz,c33.xyz // then add 0.5 to bias// then add 0.5 to bias

movmov oD0.xyz,r6.xyzoD0.xyz,r6.xyz // load biased light dir into color// load biased light dir into color
movmov oT0.xy,v7.xyoT0.xy,v7.xy // load texture// load texture coordscoords for bump mapfor bump map
movmov oT1.xy,v7.xyoT1.xy,v7.xy // load texture// load texture coordscoords for texturefor texture

Per-Pixel Diffuse Lighting
State Settings
Per-Pixel Diffuse Lighting
State Settings

Must be careful about filteringMust be careful about filtering
No need to normalize incoming vectorNo need to normalize incoming vector

� In most cases

ColorOp[0] = DotProduct3;ColorOp[0] = DotProduct3;

ColorArg1[0] = Texture;ColorArg1[0] = Texture;

ColorArg2[0] = Diffuse;ColorArg2[0] = Diffuse;

ColorOp[1] = Modulate;ColorOp[1] = Modulate;

ColorArg1[1] = Texture;ColorArg1[1] = Texture;

ColorArg2[1] = Current;ColorArg2[1] = Current;

VertexShaderConstant[0] = World Matrix;VertexShaderConstant[0] = World Matrix;

VertexShaderConstant[8] = Total Matrix;VertexShaderConstant[8] = Total Matrix;

VertexShaderConstant[12] = Light Direction;VertexShaderConstant[12] = Light Direction;

Texture[0] = Normal MapTexture[0] = Normal Map

Per-Pixel Diffuse Lighting
Conclusions
Per-Pixel Diffuse Lighting
Conclusions

Easy to get goodEasy to get good--looking resultslooking results
Works on any hardware with dp3Works on any hardware with dp3
Need to generate a normal map from height Need to generate a normal map from height

field (future D3DX functions will do this for field (future D3DX functions will do this for
you)you)

Be careful about filteringBe careful about filtering
� Cosine (dp3) is not a linear function

Multitexture DOTPRODUCT3
Per-Pixel Diffuse Fallback #1
Multitexture DOTPRODUCT3
Per-Pixel Diffuse Fallback #1

Multitexture Multitexture fallback for fallback for
DirectX 7.0/6.0 cardsDirectX 7.0/6.0 cards

D3DTOP_DOTPRODUCT3D3DTOP_DOTPRODUCT3
� Check cap, use MT shader

� Remember this does _sat and _bx2 automatically

�Must use biased art for normal maps

If you need signed result, forget itIf you need signed result, forget it

Emboss Bump Mapping
Per-Pixel Diffuse Fallback #2
Emboss Bump Mapping
Per-Pixel Diffuse Fallback #2

Only requirement is a dual texture Only requirement is a dual texture
unit with a subtract operationunit with a subtract operation

Works by shifting a height map in Works by shifting a height map in
the direction of the light vector, and the direction of the light vector, and
subtracting this from the base heightsubtracting this from the base height

The results can be very convincing, The results can be very convincing,
but takes quite an effort to tune for but takes quite an effort to tune for
good looking resultsgood looking results

Emboss Bump Mapping
The Vertex Shader
Emboss Bump Mapping
The Vertex Shader

vs.1.0vs.1.0

m4x4 r0,v0,c8m4x4 r0,v0,c8

movmov oPos,r0oPos,r0

m3x3 r7, v8, c0m3x3 r7, v8, c0 // transform light vector into texture space// transform light vector into texture space

m3x3 r8, v3, c0m3x3 r8, v3, c0

mulmul r0,r7.zxyw,r8.yzxw;r0,r7.zxyw,r8.yzxw;

mad r5,r7.yzxw,r8.zxyw,mad r5,r7.yzxw,r8.zxyw,--r0;r0;

dp3 r6.x,r7,c12dp3 r6.x,r7,c12

dp3 r6.y,r5,c12dp3 r6.y,r5,c12

//// dp3 r6.z,r8,c12 don’t need thisdp3 r6.z,r8,c12 don’t need this --only x and y shifts matteronly x and y shifts matter

// set up the texture, based on light direction:// set up the texture, based on light direction:

mulmul r1.xy, r6.xy,r1.xy, r6.xy, --c24.xyc24.xy

movmov oT0.xy, v7.xyoT0.xy, v7.xy // copy the base texture and// copy the base texture and

add oT1.xy, v7.xy, r1.xyadd oT1.xy, v7.xy, r1.xy // offset the second texture// offset the second texture

// simple dot product to get global darkening effects:// simple dot product to get global darkening effects:

d 3 0 3 12d 3 D0 3 12

Emboss Bump Mapping
Other states
Emboss Bump Mapping
Other states

MultitextureMultitexture settings:settings:
ColorOp[0] = SelectArg1;ColorOp[0] = SelectArg1;

ColorArg1[0] = Texture;ColorArg1[0] = Texture;

ColorOp[1] =ColorOp[1] = AddSignedAddSigned;;

ColorArg1[1] = Texture | Complement;ColorArg1[1] = Texture | Complement;

ColorArg2[1] = Current;ColorArg2[1] = Current;

VertexShaderConstant[24] = Offset ConstantVertexShaderConstant[24] = Offset Constant

VertexShaderConstant[0] = World Matrix (transpose)VertexShaderConstant[0] = World Matrix (transpose)

VertexShaderConstant[8] = Total Matrix (transpose)VertexShaderConstant[8] = Total Matrix (transpose)

VertexShaderConstant[12] = Light Direction;VertexShaderConstant[12] = Light Direction;

Texture[0] = Height Texture;Texture[0] = Height Texture;

Texture[1] = Height Texture;Texture[1] = Height Texture;

S i d f li d fil i

Emboss Bump Mapping
Conclusions
Emboss Bump Mapping
Conclusions

Fallback for hardware which does not Fallback for hardware which does not
support dp3 in pixel pipelinesupport dp3 in pixel pipeline
� Most DirectX 6-generation cards

For ideal results, modify artwork slightlyFor ideal results, modify artwork slightly
� Textures should be brightened on load

� Or use MODULATE2X, etc.

Can be filtered much more easily Can be filtered much more easily
than normal mapsthan normal maps
� This technique may be better than dp3

even on hardware that supports it

Other Diffuse FallbacksOther Diffuse Fallbacks
BEML with 0.0 BEML with 0.0 texcoordstexcoords on G400on G400

� Sample on Matrox site

� Can do arbitrary color shifts with interesting bump map

OIMOIM
� Needs no special hardware

� Takes tons of passes (6-12)

Specular EffectsSpecular Effects

SpecularSpecular*(N.H)**(power)*(N.H)**(power)
How do we get the exponent?How do we get the exponent?

� Multiply-based exponentiation

� Table-based exponentiation

Per-Pixel Specular LightingPer-Pixel Specular Lighting
Similar to diffuse lightingSimilar to diffuse lighting

� But requires a pixel shader

Instead of light direction, use an Instead of light direction, use an
interpolated halfinterpolated half--angle vector Hangle vector H
� Computed in Vertex Shader

In pixel shaderIn pixel shader
� H is dotted with pixel normal

� raised to a pre-determined power

Specular is added to other passesSpecular is added to other passes

Per-Pixel Specular Lighting
Half Angle Vertex Shader
Per-Pixel Specular Lighting
Half Angle Vertex Shader

vs.1.0vs.1.0 // for pow2 per// for pow2 per--pixelpixel specularspecular

m4x4 r0,v0,c08m4x4 r0,v0,c08

movmov oPos,r0oPos,r0

m3x3 r7,v8,c0m3x3 r7,v8,c0

m3x3 r8,v3,c0m3x3 r8,v3,c0

m4x4 r2,v0,c0m4x4 r2,v0,c0

add r2,r2,add r2,r2,--c14c14 // compute view direction// compute view direction

dp3 r3.x,r2.xyz,r2.xyzdp3 r3.x,r2.xyz,r2.xyz

rsqrsq r3.xyz,r3.xr3.xyz,r3.x

mulmul r2.xyz,r2.xyz,r3.xyzr2.xyz,r2.xyz,r3.xyz // normalize// normalize

mulmul r0,r7.zxyw,r8.yzxw;r0,r7.zxyw,r8.yzxw; // cross product// cross product

mad r5,r7.yzxw,r8.zxyw,mad r5,r7.yzxw,r8.zxyw,--r0;r0;

dp3 r6.x,r7,dp3 r6.x,r7,--c12c12 // transform light (r6)// transform light (r6)

dp3 r6.y,r5,dp3 r6.y,r5,--c12c12

dp3 r6.z,r8,dp3 r6.z,r8,--c12c12

dp3 r1.x,r7,dp3 r1.x,r7,--r2r2 // and view vector (r1)// and view vector (r1)

dp3 r1.y,r5,dp3 r1.y,r5,--r2r2

Per-Pixel Specular Lighting
Half Angle Vertex Shader
Per-Pixel Specular Lighting
Half Angle Vertex Shader

// normalize the half angle (in surface space)// normalize the half angle (in surface space)
add r2.xyz,r6.xyz,r1.xyzadd r2.xyz,r6.xyz,r1.xyz
dp3 r3.x,r2.xyz,r2.xyzdp3 r3.x,r2.xyz,r2.xyz
rsqrsq r3.xyz,r3.xr3.xyz,r3.x
mulmul r2.xyz,r2.xyz,r3.xyzr2.xyz,r2.xyz,r3.xyz

// scale and center (bias) for use in pixel shader// scale and center (bias) for use in pixel shader
mulmul r2.xyz,r2.xyz,c33.xyzr2.xyz,r2.xyz,c33.xyz
add oD1.xyz,r2.xyz,c33.xyzadd oD1.xyz,r2.xyz,c33.xyz // half// half--angle goes into D1angle goes into D1
mulmul r6.xyz,r6.xyz,c33.xyzr6.xyz,r6.xyz,c33.xyz
add oD0.xyz,r6.xyz,c33.xyzadd oD0.xyz,r6.xyz,c33.xyz // light goes into D0// light goes into D0

movmov oT0.xy,v7.xyoT0.xy,v7.xy // copy// copy texcoordstexcoords
movmov oT1.xy,v7.xyoT1.xy,v7.xy

Per-Pixel Specular Lighting
Multiply exponential pixel shader
Per-Pixel Specular Lighting
Multiply exponential pixel shader

ps.1.1ps.1.1 // pow2 exponentiation by multiplies// pow2 exponentiation by multiplies
tex t0tex t0 // normal vector map// normal vector map
tex t1tex t1 // diffuse texture// diffuse texture

// specular lighting dotproduct// specular lighting dotproduct
dp3_sat r0,t0_bx2,v1_bx2dp3_sat r0,t0_bx2,v1_bx2 // t0 and v1 are biased// t0 and v1 are biased

mul r1,r0,r0 // 2mul r1,r0,r0 // 2ndnd powerpower
mul r0,r1,r1 // 4mul r0,r1,r1 // 4thth powerpower
mul r1,r0,r0 // 8mul r1,r0,r0 // 8thth powerpower
mul r0,r1,r1 // 16mul r0,r1,r1 // 16thth power!power!

// diffuse lighting dot product// diffuse lighting dot product
//dp3 r1,t0,v0_bias//dp3 r1,t0,v0_bias // v0 is light direction// v0 is light direction
//mul r0,r0,t1//mul r0,r0,t1 // modulate by base texture// modulate by base texture
//add r0,r1,r0//add r0,r1,r0 // add specular// add specular

Per-Pixel Specular Lighting
Additional States, Vertex Constants
Per-Pixel Specular Lighting
Additional States, Vertex Constants

VertexShaderConstant[0] = World MatrixVertexShaderConstant[0] = World Matrix

VertexShaderConstant[8] = Total MatrixVertexShaderConstant[8] = Total Matrix

VertexShaderConstant[12] = Light DirectionVertexShaderConstant[12] = Light Direction

VertexShaderConstant[14] = Camera Position (World)VertexShaderConstant[14] = Camera Position (World)

VertexShaderConstant[33] = (.5f,.5f,.5f,.5f)VertexShaderConstant[33] = (.5f,.5f,.5f,.5f)

MinFilter[0] = Point;MinFilter[0] = Point;

MagFilter[0] = Linear;MagFilter[0] = Linear;

MipFilter[0] = Linear;MipFilter[0] = Linear;

Texture[0] = Normal MapTexture[0] = Normal Map

Texture[1] = Color MapTexture[1] = Color Map

Per-Pixel Specular Lighting
Multiply Exponential Conclusions
Per-Pixel Specular Lighting
Multiply Exponential Conclusions

Easy to implementEasy to implement
Can be used with diffuse lightingCan be used with diffuse lighting
However:However:

� Exponentiation sensitive to precision

� Technique can�t be used for powers >16

On higher precision parts, this may On higher precision parts, this may
not be an issuenot be an issue

Per-Pixel Specular Lighting
3x2 Table lookup
Per-Pixel Specular Lighting
3x2 Table lookup

Uses texture as table of exponentsUses texture as table of exponents
� Stores function y = pow(x)

Uses dependent read capabilityUses dependent read capability
� Texm3x2tex instruction

3x2 multiply is also 2 dot products3x2 multiply is also 2 dot products
� Can do specular and diffuse if desired

� Or two light sources, etc.

Per-Pixel Specular Lighting
Half Angle Vertex Shader
Per-Pixel Specular Lighting
Half Angle Vertex Shader

vs.1.0vs.1.0 // for table// for table--based perbased per--pixelpixel specularspecular

m4x4 r0,v0,c08m4x4 r0,v0,c08

movmov oPos,r0oPos,r0

m3x3 r7,v8,c0m3x3 r7,v8,c0

m3x3 r8,v3,c0m3x3 r8,v3,c0

m4x4 r2,v0,c0m4x4 r2,v0,c0

add r2,r2,add r2,r2,--c14c14 // compute view direction// compute view direction

dp3 r3.x,r2.xyz,r2.xyzdp3 r3.x,r2.xyz,r2.xyz

rsqrsq r3.xyz,r3.xr3.xyz,r3.x

mulmul r2.xyz,r2.xyz,r3.xyzr2.xyz,r2.xyz,r3.xyz // normalize// normalize

mulmul r0,r7.zxyw,r8.yzxw;r0,r7.zxyw,r8.yzxw; // Cross product// Cross product

mad r5,r7.yzxw,r8.zxyw,mad r5,r7.yzxw,r8.zxyw,--r0;r0;

dp3 r6.x,r7,dp3 r6.x,r7,--c12c12 // transform the light (r6)// transform the light (r6)

dp3 r6.y,r5,dp3 r6.y,r5,--c12c12

dp3 r6.z,r8,dp3 r6.z,r8,--c12c12

dp3 r1.x,r7,dp3 r1.x,r7,--r2r2 // and the view vector (r1)// and the view vector (r1)

dp3 r1.y,r5,dp3 r1.y,r5,--r2r2

Per-Pixel Specular Lighting
Vertex Shader � 3x2 lookup
Per-Pixel Specular Lighting
Vertex Shader � 3x2 lookup

// normalize the half// normalize the half--way vector (in surface space)way vector (in surface space)
add r2.xyz,r6.xyz,r1.xyzadd r2.xyz,r6.xyz,r1.xyz
dp3 r3.x,r2.xyz,r2.xyzdp3 r3.x,r2.xyz,r2.xyz
rsqrsq r3.xyz,r3.xr3.xyz,r3.x
mulmul r2.xyz,r2.xyz,r3.xyzr2.xyz,r2.xyz,r3.xyz

// Pass half// Pass half--way vector to pixel shader as stage 2way vector to pixel shader as stage 2 texcoordstexcoords
movmov oT2.xyz,r2.xyzoT2.xyz,r2.xyz // don’t need to bias these// don’t need to bias these
movmov oT1.xyz,r6.xyzoT1.xyz,r6.xyz
movmov oT0.xy,v7.xyoT0.xy,v7.xy
movmov oT3.xy,v7.xyoT3.xy,v7.xy

Per-Pixel Specular Lighting
3x2 pixel shader
Per-Pixel Specular Lighting
3x2 pixel shader

ps.1.1ps.1.1 // exponentiation by table lookup// exponentiation by table lookup

// texcoord t1// texcoord t1 // the diffuse light direction// the diffuse light direction
// texcoord t2// texcoord t2 // half// half--angle vectorangle vector
// texture at stage t2 is a table lookup function// texture at stage t2 is a table lookup function

tex t0tex t0 // sample the normal map// sample the normal map
texm3x2pad t1, t0_bx2 // diffuse dotproducttexm3x2pad t1, t0_bx2 // diffuse dotproduct
texm3x2tex t2, t0_bx2 // 2nd dotprod and table readtexm3x2tex t2, t0_bx2 // 2nd dotprod and table read
tex t3tex t3 // sample a base color texture// sample a base color texture

mov r0,t2mov r0,t2 // get intensity// get intensity
mov r1.rgba,r0.amov r1.rgba,r0.a // extract diffuse from alpha chan// extract diffuse from alpha chan
mad r0,r1,t3,r0mad r0,r1,t3,r0 // = diff*tex + spec// = diff*tex + spec

Per-Pixel Specular Lighting
3x2 Function Table Texture
Per-Pixel Specular Lighting
3x2 Function Table Texture

void LightEval(D3DXVECTOR4 *col, D3DXVECTOR2 *input,void LightEval(D3DXVECTOR4 *col, D3DXVECTOR2 *input,
D3DXVECTOR2 *D3DXVECTOR2 *sampSizesampSize, void *, void *pfPowerpfPower))

{{
floatfloat fPowerfPower = (float)= (float) powpow(input(input-->y,*((float*)>y,*((float*)pfPowerpfPower));));
colcol-->x =>x = fPowerfPower;;
colcol-->y =>y = fPowerfPower;;
colcol-->z =>z = fPowerfPower;;
colcol-->w = input>w = input-->x;>x;

}}

D3DXCreateTexture(m_pd3dDevice, 256,256, 0,0,D3DXCreateTexture(m_pd3dDevice, 256,256, 0,0,
D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &pLightMap100);D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &pLightMap100);

floatfloat fPowerfPower = 100;= 100;
D3DXFillTexture(m_pLightMap100,LightEval,&fPower);D3DXFillTexture(m_pLightMap100,LightEval,&fPower);

Per-Pixel Specular Lighting
Table lookup conclusions
Per-Pixel Specular Lighting
Table lookup conclusions

Looks much better than exponent Looks much better than exponent
via repeated multipliesvia repeated multiplies

Supports high exponents: > 100Supports high exponents: > 100
� Important for visual effect

Higher precision in texture read unitHigher precision in texture read unit
Table lookup is nicely filteredTable lookup is nicely filtered

� Still some banding, but tolerable

Other functions can be used besides Other functions can be used besides
exponent table�exponent table�

Specular FallbackSpecular Fallback
Analog of emboss for Analog of emboss for specularspecular termterm
Subtract light map from height fieldSubtract light map from height field

� Requires subtract capability

Manually position Manually position specularspecular highlightshighlights
� Not hard with vertex shader

Composite using subtract and compareComposite using subtract and compare
Add result as perAdd result as per--pixel pixel specularspecular termterm

Example
Wet Cobblestone Street
Example
Wet Cobblestone Street

Street Cobbles

Streetlight GlowsStreetlight Glows

Subtraction SpecularSubtraction Specular
Light map highlightLight map highlight

HeightfieldHeightfield bump mapbump map

NegatedNegated

Anisotropic LightingAnisotropic Lighting
Satin, spools of wire, fibers, etc.Satin, spools of wire, fibers, etc.
Primarily a Primarily a specularspecular effecteffect

Per-Pixel Anisotropic
Per-pixel �satin�
Per-Pixel Anisotropic
Per-pixel �satin�

Similar to 3x2, but very different function in Similar to 3x2, but very different function in
the lookup table texturethe lookup table texture

Use lighting equation in Wolfgang Use lighting equation in Wolfgang HeidrichHeidrich
and Hansand Hans--Peter Seidel�s paper: Peter Seidel�s paper:

sqrt(1sqrt(1-- <L,T>)*sqrt(1<L,T>)*sqrt(1--<V,T>) <V,T>) --<L,T>*<V,T><L,T>*<V,T>

This creates two dot products as inputs, This creates two dot products as inputs,
<L,T> and <V,T> where T is the tangent <L,T> and <V,T> where T is the tangent
vector, L is the Light Vector, and V is the vector, L is the Light Vector, and V is the
view vectorview vector

Per-Pixel Anisotropic
Getting around the 3x2
Per-Pixel Anisotropic
Getting around the 3x2

The 3x2 does 2 dot products, each of which will The 3x2 does 2 dot products, each of which will
return a result return a result --1 to 11 to 1

But our texture is referenced from 0 to 1, But our texture is referenced from 0 to 1,
with .5f being 0with .5f being 0

No way to map around this problem for No way to map around this problem for specularspecular
term. With wrapping about 20% term. With wrapping about 20%
of the texture will be grossly incorrectof the texture will be grossly incorrect

Only solution is to use Cube Map Only solution is to use Cube Map
and use 3x3 insteadand use 3x3 instead

Per-Pixel Anisotropic
Generating Procedural Texture
Per-Pixel Anisotropic
Generating Procedural Texture

void AnisoTable(D3DXVECTOR4 *col, D3DXVECTOR3 *input,void AnisoTable(D3DXVECTOR4 *col, D3DXVECTOR3 *input,
D3DXVECTOR3 *D3DXVECTOR3 *sampSizesampSize, void *, void *pPowerpPower))

{{
float fSin1, fSin2;float fSin1, fSin2;
float x,y;float x,y;
x = inputx = input-->x;>x; // x will be <L,T>// x will be <L,T>
y = inputy = input-->y;>y; // y will be <V,T>, z is ignored// y will be <V,T>, z is ignored
fSin1 = sqrtf(1fSin1 = sqrtf(1--x*x);x*x);
fSin2 = sqrtf(1fSin2 = sqrtf(1--y*y);y*y);
colcol-->x = powf((fSin1*fSin2>x = powf((fSin1*fSin2 -- x*y),*((float*)x*y),*((float*)pPowerpPower));));
colcol-->y =>y = colcol-->x;>x;
colcol-->z =>z = colcol-->x;>x;
colcol-->w = fSin1;>w = fSin1; // diffuse intensity// diffuse intensity

}}
D3DXCreateCubeTexture(m_pd3dDevice,256,0,0,D3DFMT_A8R8G8B8,D3DXCreateCubeTexture(m_pd3dDevice,256,0,0,D3DFMT_A8R8G8B8,

D3DPOOL_MANAGED,pSatinMap2);D3DPOOL_MANAGED,pSatinMap2);
floatfloat fPowerfPower = 40;= 40;
D3DXFillCubeTexture(pSatinMap2,D3DXFillCubeTexture(pSatinMap2, AnisoTableAnisoTable, &fPower);, &fPower);

Per-Pixel Anisotropic
The Vertex Shader
Per-Pixel Anisotropic
The Vertex Shader

vs.1.0vs.1.0

m4x4 r0,v0,c08m4x4 r0,v0,c08
movmov oPos,r0oPos,r0

m3x3 r7,v8,c0m3x3 r7,v8,c0 // transform normal,// transform normal,
m3x3 r8,v3,c0m3x3 r8,v3,c0 //// binormalbinormal, and, and
m4x4 r2,v0,c0m4x4 r2,v0,c0 // position to world space// position to world space

mulmul r0,r7.zxyw,r8.yzxw;r0,r7.zxyw,r8.yzxw; // cross product// cross product
mad r5,r7.yzxw,r8.zxyw,mad r5,r7.yzxw,r8.zxyw,--r0;r0;

add r2,r2,add r2,r2,--c14c14 // compute view direction// compute view direction

dp3 r3.x,r2.xyz,r2.xyzdp3 r3.x,r2.xyz,r2.xyz // normalize it// normalize it
rsqrsq r3.xyz,r3.xr3.xyz,r3.x
mulmul r2.xyz,r2.xyz,r3.xyzr2.xyz,r2.xyz,r3.xyz

Vertex ShaderVertex Shader
//transform the light vector//transform the light vector
dp3 r6.x,r7,dp3 r6.x,r7,--c12c12
dp3 r6.y,r5,dp3 r6.y,r5,--c12c12
dp3 r6.z,r8,dp3 r6.z,r8,--c12c12

//transform the view vector//transform the view vector
dp3 r1.x,r7,dp3 r1.x,r7,--r2r2
dp3 r1.y,r5,dp3 r1.y,r5,--r2r2
dp3 r1.z,r8,dp3 r1.z,r8,--r2r2

//load into T2 and T1//load into T2 and T1
movmov oT2.xyz,r1.xyzoT2.xyz,r1.xyz
movmov oT1.xyz,r6.xyzoT1.xyz,r6.xyz

movmov oT0.xy,v7.xyoT0.xy,v7.xy
movmov oT3.xyz,c40oT3.xyz,c40

Per-Pixel Anisotropic
The pixel shader
Per-Pixel Anisotropic
The pixel shader

ps.1.1ps.1.1 // anisotropic light model// anisotropic light model
textex t0t0

// generate a 3// generate a 3--D texture coordinateD texture coordinate
texm3x3pad t1, t0_bx2texm3x3pad t1, t0_bx2 // x = <L,T>// x = <L,T>
texm3x3pad t2, t0_bx2texm3x3pad t2, t0_bx2 // y = <V,T>// y = <V,T>
texm3x3tex t3, t0_bx2texm3x3tex t3, t0_bx2 // z = Some non// z = Some non--zero valuezero value

//c0 is Ks, c1 is Ka//c0 is Ks, c1 is Ka
//the alpha channel contains the diffuse//the alpha channel contains the diffuse
//and//and rgbrgb contains thecontains the specularspecular
movmov r0,t3;r0,t3;
movmov r1.rgba,r0.ar1.rgba,r0.a
mulmul r0,r0,c0r0,r0,c0
mad_sat r0,r1,c1,r0mad_sat r0,r1,c1,r0

Per-Pixel Anisotropic
States and Constants
Per-Pixel Anisotropic
States and Constants

VertexShaderConstant[0] = World MatrixVertexShaderConstant[0] = World Matrix
VertexShaderConstant[8] = Total MatrixVertexShaderConstant[8] = Total Matrix
VertexShaderConstant[12] = Light DirectionVertexShaderConstant[12] = Light Direction
VertexShaderConstant[14] = Camera PositionVertexShaderConstant[14] = Camera Position
VertexShaderConstant[40] = (1.0f,1.0f,1.0f,0.0f)VertexShaderConstant[40] = (1.0f,1.0f,1.0f,0.0f)

PixelShaderConstant[0] = (.8f,.8f,.8f,.8f) // KsPixelShaderConstant[0] = (.8f,.8f,.8f,.8f) // Ks
PixelShaderConstant[1] = (.2f,.2f,.2f,.2f) //PixelShaderConstant[1] = (.2f,.2f,.2f,.2f) // KdKd

MinFilter[0] = Point;MinFilter[0] = Point;
MagFilter[0] = Linear;MagFilter[0] = Linear;
MipFilter[0] = Linear;MipFilter[0] = Linear;
MinFilter[3] = Linear;MinFilter[3] = Linear;
MagFilter[3] = Linear;MagFilter[3] = Linear;
MipFilter[3] = Linear;MipFilter[3] = Linear;

Texture[0] =Texture[0] = BinormalBinormal map;map;
Texture[3] = Normal Map;Texture[3] = Normal Map;

Per-Pixel Anisotropic
Conclusions
Per-Pixel Anisotropic
Conclusions

Can be used to make much more realistic Can be used to make much more realistic
brushed metal and fiber clothbrushed metal and fiber cloth
� Crushed velvet

Can easily be used for hair or fur lighting Can easily be used for hair or fur lighting ��
each normal would indicate the direction each normal would indicate the direction
of the current hairof the current hair
� Horse-hair, not always in tangent plane

Vertex Shader Anisotropic Anisotropic
Fallback #1
Vertex Shader Anisotropic Anisotropic
Fallback #1

Can model local viewer effectsCan model local viewer effects
InfInf viewerviewer

Fixed Function Anisotropic
Anisotropic Fallback#2
Fixed Function Anisotropic
Anisotropic Fallback#2

Infinite viewer Infinite viewer -- infinite light model using infinite light model using
fixed function pipelinesfixed function pipelines
� Probably a reasonable approximation

Use texture transform matrix to store light Use texture transform matrix to store light
direction and halfdirection and half--way vectorsway vectors

World Space Pixel LightingWorld Space Pixel Lighting
Don�t transform light vectors in vertex Don�t transform light vectors in vertex

shader, leave in world spaceshader, leave in world space
Pass basis transform into pixel shader as 3 Pass basis transform into pixel shader as 3

texture coordinatestexture coordinates
� Generate binormal by crossproduct

to save bandwidth

IteratorsIterators will interpolate this matrix will interpolate this matrix
to each pixelto each pixel

Do perturbations and transforms in pixel Do perturbations and transforms in pixel
shadershader

Per-Pixel Environment Map
3x3vspec texture lookup
Per-Pixel Environment Map
3x3vspec texture lookup

MapMap--based based specularspecular techniquetechnique
Most complete model of Most complete model of specularspecular lightinglighting
3x3 matrix transform and reflection calculation at 3x3 matrix transform and reflection calculation at

every pixel, then looks the result up into cube every pixel, then looks the result up into cube
texturetexture

The 3x3 matrix is interpolated across The 3x3 matrix is interpolated across
each polygoneach polygon
� Given decent tessellation, artifacts are

not noticeable

Per-Pixel Environment Map
Vertex Shader
Per-Pixel Environment Map
Vertex Shader

vs.1.0vs.1.0 // set up for texm3x3 pixel shader// set up for texm3x3 pixel shader
m4x4 r0,v0,c08m4x4 r0,v0,c08
movmov oPos,r0oPos,r0

m3x3 r7,v8,c0m3x3 r7,v8,c0 // transform// transform
m3x3 r8,v3,c0m3x3 r8,v3,c0
m4x4 r2,v0,c0m4x4 r2,v0,c0

add r2,r2,add r2,r2,--c14c14 // compute view direction// compute view direction
dp3 r3.x,r2.xyz,r2.xyzdp3 r3.x,r2.xyz,r2.xyz
rsqrsq r3.xyz,r3.xr3.xyz,r3.x
mulmul r2.xyz,r2.xyz,r3.xyzr2.xyz,r2.xyz,r3.xyz // normalize it// normalize it

mulmul r0,r7.zxyw,r8.yzxw;r0,r7.zxyw,r8.yzxw; // cross product// cross product
mad r5,r7.yzxw,r8.zxyw,mad r5,r7.yzxw,r8.zxyw,--r0;r0;

Per-Pixel Environment Map
Vertex Shader �page2
Per-Pixel Environment Map
Vertex Shader �page2

// transform the view vector into the// transform the view vector into the w’sw’s of eachof each
// component of the matrix// component of the matrix
dp3 r7.w,r7,dp3 r7.w,r7,--r2r2
dp3 r5.w,r5,dp3 r5.w,r5,--r2r2
dp3 r8.w,r8,dp3 r8.w,r8,--r2r2

// load these into the texture// load these into the texture interpolatersinterpolaters
movmov oT1,r7oT1,r7
movmov oT2,r5oT2,r5
movmov oT3,r8oT3,r8

// texture coordinate for the normal map.// texture coordinate for the normal map.
movmov oT0.xy,v7oT0.xy,v7

Per-Pixel Environment Map
Pixel shader
Per-Pixel Environment Map
Pixel shader

ps.1.1ps.1.1 // texm3x3v// texm3x3v specularspecular lightinglighting

textex t0t0
// transform the normal into world space// transform the normal into world space
// do a reflection calculation// do a reflection calculation
// and lookup result in a cube map// and lookup result in a cube map
texm3x3pad t1, t0_bx2texm3x3pad t1, t0_bx2
texm3x3pad t2, t0_bx2texm3x3pad t2, t0_bx2
texm3x3vspec t3, t0_bx2texm3x3vspec t3, t0_bx2

movmov r0,t3r0,t3 // move result into color channel// move result into color channel
// No texture slots left for a diffuse term// No texture slots left for a diffuse term

Per-Pixel Environment Map
Additional States
Per-Pixel Environment Map
Additional States

VertexShaderConstant[0] = World MatrixVertexShaderConstant[0] = World Matrix
VertexShaderConstant[8] = Total MatrixVertexShaderConstant[8] = Total Matrix
VertexShaderConstant[14] = Camera Position in WorldVertexShaderConstant[14] = Camera Position in World
SpaceSpace

MinFilter[0] = Point;MinFilter[0] = Point;
MagFilter[0] = Linear;MagFilter[0] = Linear;
MipFilter[0] = Linear;MipFilter[0] = Linear;

MinFilter[3] = Linear;MinFilter[3] = Linear;
MagFilter[3] = Linear;MagFilter[3] = Linear;
MipFilter[3] = Linear;MipFilter[3] = Linear;

Texture[0] = Normal Map;Texture[0] = Normal Map;
Texture[3] = CubicTexture[3] = Cubic EnviromentEnviroment Map;Map;

Per-Pixel Environment Map
Conclusions
Per-Pixel Environment Map
Conclusions

Cable of creating very realistic resultsCable of creating very realistic results
Very sensitive to artifacts:Very sensitive to artifacts:

� Filtering normals (as in diffuse case)

� Potential wide variance in the texture lookups into
environment map cube

Sensitive to precision of dependent texture Sensitive to precision of dependent texture
read unitread unit
� Can cause �blockiness�

Be careful with this techniqueBe careful with this technique

Fallback To BEMLFallback To BEML
Broader support in hardwareBroader support in hardware
Now available from:Now available from:

� Matrox, Trident, ATI, nVidia

Lots of samples out thereLots of samples out there
May be a win on DirectX 8.0 hwMay be a win on DirectX 8.0 hw

� Consumes fewer instructions
than texm3x3*

BEMLBEML

uu

ww

vv

dvdv

dudu

Perturbation Map

Perturbed MapPerturbed Map
U� = U + U� = U + dudu
V� = V + V� = V + dvdv

What If Axes Don�t Line Up?What If Axes Don�t Line Up?

uu

ww

vv

dvdv

dudu

Perturbation Map

Perturbed MapPerturbed Map
U� = U + U� = U + dudu*M*M0000 + + dvdv*M*M0101

V� = V + V� = V + dudu*M*M0101 + + dvdv*M*M1111

Per-Pixel Lighting
Modifying vertex shaders
Per-Pixel Lighting
Modifying vertex shaders

Examples here are directional lights, Examples here are directional lights,
but it is very easy to use point lights but it is very easy to use point lights
for any of the shadersfor any of the shaders

Examples can also easily be modified Examples can also easily be modified
to handle skinned datato handle skinned data

Content RecommendationsContent Recommendations
Store data as height fieldsStore data as height fields
Convert to desired format on loadConvert to desired format on load

� Leave alone for emboss fallbacks

� (and displacement maps someday)

� Compute normal map for dp3 shaders

� Compute DuDv map for BEML shaders

� May need to subsample for slower parts

If load time is a problemIf load time is a problem
� Cache on HD, or install time?

Afternoon BreakAfternoon Break

�� ~2:45~2:45
�� Be back in 15 minutesBe back in 15 minutes

Custom Per-Pixel LightingCustom Per-Pixel Lighting

�� Summary of TechniquesSummary of Techniques
�� Legacy Lighting ModelsLegacy Lighting Models
�� DoDo--ItIt--Yourself LightingYourself Lighting

Diffuse Shader TechniquesDiffuse Shader Techniques
dp3, texm3x3texdp3, texm3x3tex DX8 hwDX8 hw
DOTPRODUCT3DOTPRODUCT3 DX6/7DX6/7
Diffuse BEMLDiffuse BEML DX6/7DX6/7
EMBOSSEMBOSS anyany
Detail textureDetail texture anyany
PerPer--Vertex LightingVertex Lighting anyany

� Software shaders or

� Fixed-Function Vertex hardware

Specular TechniquesSpecular Techniques
Procedural: exponent modelsProcedural: exponent models

� Save dependent read effort

� Suitable for round, constant color lights

MapMap--based: based: texmtexm*, *, bemlbeml
� Much more general

� Arbitrary number of lights

� Arbitrary colors and shapes

� Basically any environment

� Need care with precision

Legacy Lighting ModelLegacy Lighting Model
Diffuse*N.L Diffuse*N.L
+ Specular*(N.H)**(power)+ Specular*(N.H)**(power)
+ Ambient+ Ambient
+ Emissive+ Emissive

LightColorLightColor**VertexColorVertexColor**TexelColorTexelColor

Rendering > LightingRendering > Lighting
Need Need modellingmodelling, animation, etc., animation, etc.
Main impact is deciding object versus vertex Main impact is deciding object versus vertex

versus pixel componentsversus pixel components

DIY Lighting ModelsDIY Lighting Models
Don�t be restricted to basic modelDon�t be restricted to basic model
Look for terms appropriate Look for terms appropriate

to your scenarioto your scenario
Build shaders for those termsBuild shaders for those terms
Ignore everything elseIgnore everything else
Lots of examples followLots of examples follow
More in the literatureMore in the literature

� Shirley, Schlict, etc.

� http://www.citeseer.com

The ProcessThe Process
Identify the key effects in each sceneIdentify the key effects in each scene

� Analyze: what are the effects?

� Prioritize: which are important ones?

Characterize lighting environmentCharacterize lighting environment
� How many sources?

� What shapes are they?

� What shadows, reflections result?

Importance will vary with contentImportance will vary with content

The Process Step 2The Process Step 2
Identify an algorithm to implement Identify an algorithm to implement

each key effecteach key effect
Segment it into steps:Segment it into steps:

� Pre-computation � author-time, load-time

� Vertex-level ops � host, vertex shader

� Pixel-level ops � pixel shader, framebuffer

Define implementations Define implementations
and test independentlyand test independently

Blend them togetherBlend them together

FocusFocus

Today we focus on local lightingToday we focus on local lighting
Still need attenuation effects, atmospheric Still need attenuation effects, atmospheric

effectseffects
Left as an exerciseLeft as an exercise

Lighting GeometryLighting Geometry

EE

LL HHNN

SurfaceSurface

Lighting ProcessLighting Process
Light SourceLight Source

IncidentIncident
GeometryGeometry

Surface ModelSurface Model

ReflectionReflection
GeometryGeometry

CameraCamera

Incident LightIncident Light

Compact LightCompact Light
� Directional

� Point

Distributed Area LightDistributed Area Light
Secondary ReflectorsSecondary Reflectors

Surface ModelSurface Model
Single layer versus multilayerSingle layer versus multilayer
Metal versus DielectricMetal versus Dielectric
Deep interface effectsDeep interface effects
Level of roughness:Level of roughness:

� Totally diffuse

� Non-coherent reflection

� Coherent reflection/refraction

Reflection GeometryReflection Geometry
Angle of reflectionAngle of reflection
Are there limits on visible angles?Are there limits on visible angles?

Legacy Lighting ModelLegacy Lighting Model
Diffuse*N.L Diffuse*N.L
+ Specular*(N.H)**(power)+ Specular*(N.H)**(power)
+ Ambient+ Ambient
+ Emissive+ Emissive

LightColorLightColor**VertexColorVertexColor**TexelColorTexelColor

Development Of LLMDevelopment Of LLM
Lambert Model for diffuse termLambert Model for diffuse term
Light reflected in all directions equallyLight reflected in all directions equally
Intensity depends only on input energyIntensity depends only on input energy

� Amount of incoming light intercepted

� Area of micro-facet perp. to light direction

� Also known as a form-factor

Trivial to compute with dot productTrivial to compute with dot product

Lambert MicrofacetLambert Microfacet

MicroMicro--facetfacet

MicrofacetMicrofacet

NormalNormal Light DirectionLight Direction

Microfacet can be a pixel or a vertexMicrofacet can be a pixel or a vertex

Form factor is Form factor is coscosθθθθθθθθ

θθθθθθθθ

Area Light EffectsArea Light Effects
Primarily a diffuse effectPrimarily a diffuse effect
More interesting ambient termMore interesting ambient term
Provides �shadow detail�Provides �shadow detail�
Shows that object is groundedShows that object is grounded

Vital For Outdoor ScenesVital For Outdoor Scenes
Two light sources: sun and skyTwo light sources: sun and sky
SunSun

� Directional light source

� Sharp shadows

SkySky
� Omni-directional light source

� Soft shadows

Most scenes need bothMost scenes need both
� More interesting ambient term

Distributed Light ModelDistributed Light Model
For large area light sourcesFor large area light sources

� No single direction vector

Energy based on number of directionsEnergy based on number of directions
� Fraction of possible directions that can illuminate

the microfacet

What % of possible hemisphere can shine on What % of possible hemisphere can shine on
this point?this point?

Exercise 1Exercise 1

Exercise 2Exercise 2

Exercise 3Exercise 3

Distributed Light ModelDistributed Light Model

Hemisphere of possible incident light directionsHemisphere of possible incident light directions

MicrofacetMicrofacet
Microfacet NormalMicrofacet Normal
-- defines axis of hemispheredefines axis of hemisphere

θθθθθθθθ

Integrate With FormFactorIntegrate With FormFactor
Light near plane of Light near plane of microfacetmicrofacet contributes contributes

less energyless energy
Use Use cosqcosq form factor term to scale energy form factor term to scale energy

downdown
Integrate over HemisphereIntegrate over Hemisphere
L = 1/p S L = 1/p S cosqcosq dddd

Model Irradiance TermModel Irradiance Term
Light source is far fieldLight source is far field
Can Integrate Can Integrate envtenvt map map

to get diffuse irradianceto get diffuse irradiance
� Even works on DirectX 7.0 hardware

� Image-based lighting

� Arnold, Debevic, Heidrich

Cube Map And Its IntegralCube Map And Its Integral

Integrate Environment MapIntegrate Environment Map

Observe that its mostly 2 colorsObserve that its mostly 2 colors
� Sky color

� Ground color

Too slow for interactive applicationsToo slow for interactive applications
� Must be done off-line

� Then it can�t change during game

22--Hemisphere ModelHemisphere Model

2-Hemisphere Model2-Hemisphere Model

Sky ColorSky Color

Ground Color

θθθθθθθθ

Model ElementsModel Elements

Sky Color

Final ColorFinal Color

Ground ColorGround Color

Hemisphere ModelHemisphere Model

Actual FunctionActual Function
Color = a *Color = a *SkyColorSkyColor+ (1+ (1-- a)*a)*GndColorGndColor
Actual solution is:Actual solution is:

� a = 1- 0.5*sinq for q < 90

� a = 0.5*sinq for q > 90

We use:We use:
� a = 0.5 + 0.5*cosq

Integral ComparisonIntegral Comparison

180180oo9090oo00oo

0.5 + 0.5*0.5 + 0.5*coscosθθθθθθθθ

Actual solutionActual solution

Integral ComparisonIntegral Comparison

Our solution takes 2 clocksOur solution takes 2 clocks
� dp3 and mad

Not visually identicalNot visually identical
� Provides more bump detail along equator

� Provides less bump detail facing light

Still provides desired effectStill provides desired effect

Incident EnergyIncident Energy
What % of incident hemisphere What % of incident hemisphere

has what color?has what color?
Far field hemisphereFar field hemisphere

� Sky and ground

� 2 colors, simple proportion

Next term is:Next term is:
What % of incident light is far field versus What % of incident light is far field versus

locally reflected?locally reflected?
� Self-occluded

Real-Time ApproachReal-Time Approach
Apply environment model at runtimeApply environment model at runtime

� Environment simplified to 2 colors

� Sky versus ground plane

Enables dynamic updatesEnables dynamic updates
� Car entering canyon, tunnel

� Pavement or sky color changes

Use preUse pre--integrated sameintegrated same--object termobject term
� Author-time utility routine to generates

�self-occlusion� term and stores in art

Can add more reflectors if neededCan add more reflectors if needed

Hemisphere ImplementationsHemisphere Implementations

Can be done perCan be done per--vertexvertex
Or perOr per--pixelpixel

Hemisphere Vertex Technique
Vertex Shader
Hemisphere Vertex Technique
Vertex Shader

vs.1.0vs.1.0 // vertex hemisphere shader// vertex hemisphere shader

m4x4 oPos,v0,c8m4x4 oPos,v0,c8 // transform position// transform position
m3x3 r0, v3,c0m3x3 r0, v3,c0 // transform normal// transform normal

dp3 r0,r0,c40dp3 r0,r0,c40 // c40 is sky vector// c40 is sky vector
mmov r1,c33ov r1,c33 // c33 is .5f in all channels// c33 is .5f in all channels
mad r0,r0,c33,r1mad r0,r0,c33,r1 // bias operation// bias operation

mov r1,c42mov r1,c42 // c42 is ground color// c42 is ground color
sub r1,c41,r1sub r1,c41,r1 // c41 is sky color// c41 is sky color
mad r0,r1,r0,c42mad r0,r1,r0,c42 // lerp operation// lerp operation

//c44 = (1,1,1,1)//c44 = (1,1,1,1)
sub r1,c44,v7.zzzsub r1,c44,v7.zzz // v7.zzz = occlusion term// v7.zzz = occlusion term
mul r0,r0,r1mul r0,r0,r1
mul oD0,r0,c43mul oD0,r0,c43

Hemisphere Pixel Technique
Vertex Shader
Hemisphere Pixel Technique
Vertex Shader

If you pass hemisphere axis as light dirIf you pass hemisphere axis as light dir
You can just use std tangent You can just use std tangent

space shaderspace shader

Hemisphere Pixel Technique
Vertex Shader
Hemisphere Pixel Technique
Vertex Shader

Pass Hemisphere axis as light directionPass Hemisphere axis as light direction
Then use std tangent space Then use std tangent space

vertex shadervertex shader
� Just transforms hemi axis into tangent space

instead of light direction vector

Hemisphere Pixel Technique
Pixel Shader
Hemisphere Pixel Technique
Pixel Shader

//// v0.v0.rgbrgb is hemi axis in tangent spaceis hemi axis in tangent space

//// v0.a is occlusion ratio fromv0.a is occlusion ratio from vshadervshader

textex t0t0 // normal map// normal map

textex t1t1 // base texture// base texture

dp3_d2 r0,v0_bx2,t0_bx2dp3_d2 r0,v0_bx2,t0_bx2 // dot normal with hemi axis// dot normal with hemi axis

add r0,r0,c5add r0,r0,c5 // map into range, not _sat// map into range, not _sat

lrplrp r0,r0,c1,c2r0,r0,c1,c2

mulmul r0,r0,t1r0,r0,t1 // modulate base texture// modulate base texture

Image-Based LightingImage-Based Lighting
Supported in many raySupported in many ray--trace toolstrace tools
RendererRenderer integrates at each pointintegrates at each point
Casts rays from microCasts rays from micro--facet/pixel facet/pixel

out to all points of hemisphereout to all points of hemisphere
Accumulates color from ray intersectionsAccumulates color from ray intersections

� Other parts of same object

� Environment map image

Can take hours to renderCan take hours to render

Lightwave ImageLightwave Image

LimitationsLimitations

This does not take object selfThis does not take object self--shadowing into shadowing into
accountaccount

Works fine for convex objects, but others Works fine for convex objects, but others
will need more workwill need more work

Model ElementsModel Elements
Sky Color

Final ColorFinal Color

Ground ColorGround Color

Object ColorObject Color Sphere ModelSphere Model

Occlusion TermOcclusion Term

Computing Occlusion TermComputing Occlusion Term

Can be done vertexCan be done vertex--toto--vertexvertex
� Fires hemisphere of rays from each

normal and store as vertex color

Or pixelOr pixel--toto--pixelpixel
� Fire rays in height field, and store

in alpha channel of normal map

Or bothOr both
� Fire rays from vertices and pixels

and store in texture map channel

Vertex-Vertex OcclusionVertex-Vertex Occlusion
How much do adjacent polygons shadow How much do adjacent polygons shadow

each other?each other?
Store result in vertex attributeStore result in vertex attribute
Should handle object level effectsShould handle object level effects

� Looking only at neighbors may be OK

We used D3DXWe used D3DX raytraceraytrace routineroutine
� Takes 1 day to run for 25k vert model

� 4 hrs for 4k vertices quadratic!

Adding an acceleration data structure would Adding an acceleration data structure would
help substantiallyhelp substantially

Image ComparisonImage Comparison

Pixel-Pixel OcclusionPixel-Pixel Occlusion

How much to adjacent pixels shadow each How much to adjacent pixels shadow each
other?other?

Example is bumpExample is bump--mapped earthmapped earth
Geometry provides no selfGeometry provides no self--occlusion since a occlusion since a

sphere is everywhere convexsphere is everywhere convex
All occlusion can be done in All occlusion can be done in bumpmapbumpmap In this In this

casecase

Per-Pixel Occlusion SearchPer-Pixel Occlusion Search
Look at adjacent height field elementsLook at adjacent height field elements
Fit a part sphere to 8 neighborsFit a part sphere to 8 neighbors
Return ratio of area of part sphere to Return ratio of area of part sphere to

possible hemispherepossible hemisphere
Provided in D3DX for DX8.1Provided in D3DX for DX8.1
Same D3DX routineSame D3DX routine

� Computes normal maps from heights, and

� Can put occlusion term in alpha channel

Ideal OcclusionIdeal Occlusion
VertexVertex--Pixel OcclusionPixel Occlusion
How much do adjacent vertices shadow each How much do adjacent vertices shadow each

otherother
Store in texture channelStore in texture channel
Requires normal map and geometry locked Requires normal map and geometry locked

togethertogether
D3DX may try to do this at some pointD3DX may try to do this at some point

Area Light ApplicationsArea Light Applications
Also appropriate for interior scenes Also appropriate for interior scenes

with diffuse lighting with diffuse lighting �� fluorescents, white fluorescents, white
walls/ceilingwalls/ceiling

Anywhere you can handle more �shadow Anywhere you can handle more �shadow
detail�detail�

Area + Directional LightingArea + Directional Lighting
For outdoor scenes add sunlight termFor outdoor scenes add sunlight term

� Addition is correct approach

Eliminates dark shadows due to Eliminates dark shadows due to
selfself--shadowing/occlusion term shadowing/occlusion term
where appropriatewhere appropriate

Provides natural, realistic effectProvides natural, realistic effect
Still need good shadows from directional Still need good shadows from directional

lightlight

Smaller Area LightsSmaller Area Lights
Use dp3 as �cone� effectUse dp3 as �cone� effect

� Can�t do spotlight cone angles
in pixel shader

FormForm--factor for grazing lightfactor for grazing light
Still need range term: 1/r**2Still need range term: 1/r**2

� Compute in vertex shader

� Stored texture function table

Gray-Day ShadowsGray-Day Shadows

Shadows cast by hemisphere light source are Shadows cast by hemisphere light source are
like negative (dark) lightslike negative (dark) lights
� Fall off with form-factor angle

� Fall off with 1/r**2 just like lights

Other Gray-Day EffectsOther Gray-Day Effects
Water surface lighting simulationWater surface lighting simulation
If you use fog for range limits, cloudy sky If you use fog for range limits, cloudy sky

makes more sensemakes more sense
Similar 2Similar 2--color modelcolor model

� Sky color hemisphere

� Transmitted color
�Backscatter from below surface

Add sky light scaled byAdd sky light scaled by FresnelFresnel termterm
A type of procedurally generated A type of procedurally generated

environment mapenvironment map

Procedural Ocean ModelProcedural Ocean Model

θθθθθθθθ

Sky HemisphereSky Hemisphere

Transmitted BackscatterTransmitted Backscatter

EyeEye Surface
Normal

Fresnel Term ApproximationFresnel Term Approximation
Use Use ff = 1 = 1 -- coscosθθθθθθθθ = (1 = (1 -- E dot N)E dot N)
Raise to power for better approxRaise to power for better approx
ff = (1 = (1 �� coscosθ)θ)θ)θ)θ)θ)θ)θ)3 3 3 3 3 3 3 3

∼ [Schlick] used 5th pow

Hack curve fit to Hack curve fit to GlassnerGlassner
Color = Color = f f **SkyColorSkyColor + + WaterColorWaterColor
Local viewer effects are importantLocal viewer effects are important

� Compute eye direction accordingly

Fresnel ComparisonFresnel Comparison

4545oo 9090oo00oo

11-- coscosθθθθθθθθ

Actual solutionActual solution

(1(1-- coscosθ)θ)θ)θ)θ)θ)θ)θ)44444444

Fresnel PerVertex Technique
Vertex Shader
Fresnel PerVertex Technique
Vertex Shader
m4x4m4x4 oPosoPos,v0,c8;,v0,c8; //// xformxform pos. to output spacepos. to output space

m4x4 r0,v0,c0m4x4 r0,v0,c0 //// xformxform pos. to world space,pos. to world space,

m3x3 r1,v3,c0m3x3 r1,v3,c0 //// xformxform normal to world spacenormal to world space

add r0,add r0,--r0,c14r0,c14 // compute eye ray// compute eye ray

dp3 r3.x,r0.xyz,r0.xyzdp3 r3.x,r0.xyz,r0.xyz

rsqrsq r3.xyz,r3.xr3.xyz,r3.x

mulmul r0.xyz,r0.xyz,r3.xyz// normalize itr0.xyz,r0.xyz,r3.xyz// normalize it

dp3 r0,r0,r1;dp3 r0,r0,r1; // dot eye ray with normal// dot eye ray with normal

add r0,c18,add r0,c18,--r0r0 // complement color// complement color

mulmul r1,r0,r0r1,r0,r0 // square// square

mulmul r0,r1,r0r0,r1,r0 // cube// cube

mulmul r0,r0,c21r0,r0,c21 // scale for// scale for fresnelfresnel

add oD0,r0,c20add oD0,r0,c20 // bias and emit as diffuse// bias and emit as diffuse

Fresnel PerVertex Technique
Pixel Shader -Multitexture
Fresnel PerVertex Technique
Pixel Shader -Multitexture

// base (transmitted) color// base (transmitted) color

TexturefactorTexturefactor = (0.0, 0.2, 0.1, 1.0);= (0.0, 0.2, 0.1, 1.0);

ColorOpColorOp[0] = Add;[0] = Add;

ColorArg1[0] = Diffuse;ColorArg1[0] = Diffuse;

ColorArg2[0] =ColorArg2[0] = TfactorTfactor;;

Fresnel Per-Pixel Technique
Vertex Shader, part 1
Fresnel Per-Pixel Technique
Vertex Shader, part 1

vs.1.1vs.1.1

m4x4m4x4 oPosoPos,v0,c8;,v0,c8; //// xformxform pos. to output spacepos. to output space

m4x4 r0,v0,c0m4x4 r0,v0,c0 //// xformxform pos. to world spacepos. to world space

m3x3 r8,v3,c0m3x3 r8,v3,c0 //// xformxform normal to world spacenormal to world space

m3x3 r7,v8,c0m3x3 r7,v8,c0 //// xformxform tangent to world spacetangent to world space

mulmul r3,r7.r3,r7.zxywzxyw,r8.,r8.yzxwyzxw;; // cross to get// cross to get binormalbinormal in r5in r5

mad r5,r7.mad r5,r7.yzxwyzxw,r8.,r8.zxywzxyw,,--r3;r3;

Fresnel Per-Pixel Technique
Vertex Shader contd.
Fresnel Per-Pixel Technique
Vertex Shader contd.

add r0,add r0,--r0,c14r0,c14 // compute eye ray// compute eye ray

dp3 r3.x,r0.xyz,r0.xyzdp3 r3.x,r0.xyz,r0.xyz // sum of squares// sum of squares

rsqrsq r3.xyz,r3.xr3.xyz,r3.x // square root// square root

mulmul r0.xyz,r0.xyz,r3.xyzr0.xyz,r0.xyz,r3.xyz // normalize eye vector// normalize eye vector

dp3 r6.x,r7,r0dp3 r6.x,r7,r0 //// xformxform eye ray to tangent sp.eye ray to tangent sp.

dp3 r6.y,r5,r0dp3 r6.y,r5,r0 // tangent,// tangent, binormalbinormal, normal, normal

dp3 r6.dp3 r6.zwzw,r8,r0,r8,r0

mulmul r6,r6,c33r6,r6,c33 // scale, bias to fit// scale, bias to fit iteratorsiterators

add oD0,r6,c33add oD0,r6,c33 // emit eye ray as diffuse// emit eye ray as diffuse

movmov oT0.oT0.xyxy,v7.,v7.xyxy // emit// emit texcoordstexcoords forfor nmapnmap

Fresnel Per-Pixel Technique
Pixel Shader
Fresnel Per-Pixel Technique
Pixel Shader

Shorter due to complement modifierShorter due to complement modifier
psps.1.1.1.1

textex t0t0 // normal map// normal map

dp3 r0,v0_bx2,t0_bx2;dp3 r0,v0_bx2,t0_bx2; // dot eye ray with normal// dot eye ray with normal

mulmul r1,1r1,1--r0,1r0,1--r0r0 // complement and square// complement and square

mulmul r0,r1,1r0,r1,1--r0r0 // cube// cube

mad r0,r0,c1,c0mad r0,r0,c1,c0 // scale & bias// scale & bias

add r0,r0,c3add r0,r0,c3 // add to transmitted color// add to transmitted color

2-Clock Fresnel Pixel Shader2-Clock Fresnel Pixel Shader
Ps.1.1Ps.1.1 // 4// 4--clockclock fresnelfresnel pixel shaderpixel shader

// uses f = 1// uses f = 1--costhcosth

def c0def c0 // transmitted water color// transmitted water color

def c1def c1 // sky color// sky color

textex t0t0 // load normal map// load normal map

dp3 r0, eye, t0_bx2dp3 r0, eye, t0_bx2 // dot with eye ray// dot with eye ray

mad r0, 1mad r0, 1--r0, c0, c1r0, c0, c1// scale sky by f// scale sky by f

// and add to transmitted// and add to transmitted

Brave New FutureBrave New Future
DIY lighting modelsDIY lighting models
Cooperate with Art Directors to identify key Cooperate with Art Directors to identify key

effectseffects
Show them how you can achieve themShow them how you can achieve them

Avoiding Aliasing ArtifactsAvoiding Aliasing Artifacts
Beware of the Beware of the cnd cnd instruction!instruction!

� Best way to produce jaggies

� OK for slope discontinuities

Much better to formulate expressions Much better to formulate expressions
as multiplies by a parameteras multiplies by a parameter
� mul is 1 clock -just as fast as cnd

Make sure parameter is continuousMake sure parameter is continuous

Higher Order SurfacesHigher Order Surfaces
NN--PatchesPatches

� Mesh resolution enhancement

Rect Rect / Tri Patches/ Tri Patches
� Quadrangular surface patches

� Triangular surface patches

Smooth Surface PrimitivesSmooth Surface Primitives
A) Map well to data in current content A) Map well to data in current content

creation toolscreation tools
� Format consistent with major tools

B) Improve quality of content with minimal B) Improve quality of content with minimal
bandwidth impactbandwidth impact
� Efficient rendering in hardware

DirectXDirectX®® 8.0 provides solutions for both8.0 provides solutions for both
� Grid primitives

� N-Patches

N-PatchesN-Patches
NormalNormal--patchespatches

� Triangular cubic Bezier surfaces using tangent
planes at vertices defined by normals

� Tessellate into triangles

�Given (float) numsegs renderstate

All existing triangle primitive typesAll existing triangle primitive types
� [Indexed] lists, strips, fans, grids

� Quads some day�

N-Patch BenefitsN-Patch Benefits

Hardware friendlyHardware friendly
� Same bandwidth and cache behavior as current 1st-order

primitives

Content friendly Content friendly
� No change required in art pipeline!

� Effectively generates extra LODs on the far side of the bus

Subdividing just a bit helps a lotSubdividing just a bit helps a lot
� 2x vertex count, 4x poly count

N-Patch Edge GenerationN-Patch Edge Generation

e = v3 e = v3 �� v0v0
v1 = v0 + (e v1 = v0 + (e -- (e.n0)*n0)*0.3333(e.n0)*n0)*0.3333

v0

v1

v2

v3

N-Patch Surface GenerationN-Patch Surface Generation

vMidvMid == edgePtsedgePts/4 /4 �� cornerPtscornerPts/6/6

N-Patch ApplicationsN-Patch Applications

Some applications may �just work�Some applications may �just work�
� Most will need a content check

� We are working on a viewer

� Check pseudo-code in spec

CPU emulation provided in D3DXCPU emulation provided in D3DX
� Useful at lower tessellation levels

Benefits from goodBenefits from good normalsnormals
� Check these

N-Patch UsageN-Patch Usage
Set tessellation levelSet tessellation level
•D3DRS_PRIMSEGMENTS 2..3

Then render trianglesThen render triangles

Rect / Tri PatchesRect / Tri Patches
New primitives added to DirectX 8.0 APINew primitives added to DirectX 8.0 API

� DrawRectPatch

� DrawTriPatch

Great for surfaces that are smooth when Great for surfaces that are smooth when
viewed close upviewed close up
� Car bodies, waves

� Character limbs

Light weight animationLight weight animation
Continuous level of detailContinuous level of detail

Rectangular Patch FeaturesRectangular Patch Features
Scalable via tessellation levelScalable via tessellation level
Linear or cubicLinear or cubic
3 formulations (bases)3 formulations (bases)

� B-Spline

� Bézier

� Catmull-Rom - interpolating

Can generateCan generate normalsnormals
Can generate Can generate texcoordstexcoords
M x N array of verticesM x N array of vertices

Rectangular Patch LayoutRectangular Patch Layout
Standard PrimitivesStandard Primitives

VerticesVertices

bStridebStride

WidthWidth

HeightHeight

StartWidthStartWidth

Rect. PatchesRect. Patches

VerticesVertices
StartHeightStartHeight

Basis Determines InterpretationBasis Determines Interpretation

Bézier B-Spline
Catmull-Rom

Rectangular Patch APIRectangular Patch API

DrawRectPatchDrawRectPatch(UINT Handle, float*(UINT Handle, float* pNumSegspNumSegs,,
D3DRECTPATCH_INFO*D3DRECTPATCH_INFO* pRectPatchInfopRectPatchInfo))

typedef structtypedef struct _D3DRECTPATCH_INFO{_D3DRECTPATCH_INFO{
UINTUINT StartVertexOffsetWidthStartVertexOffsetWidth;;
UINTUINT StartVertexOffsetHeightStartVertexOffsetHeight;;
UINT Width;UINT Width;
UINT Height;UINT Height;
UINT Stride;UINT Stride;
D3DBASISTYPE Basis;D3DBASISTYPE Basis;
D3DORDERTYPE Order;D3DORDERTYPE Order;

} D3DRECTPATCH_INFO;} D3DRECTPATCH_INFO;

Triangular PatchesTriangular Patches

BezierBezier basisbasis
DrawTriPatchDrawTriPatch(UINT Handle, float*(UINT Handle, float* pNumSegspNumSegs,,
D3DTRIPATCH_INFO*D3DTRIPATCH_INFO* pTriPatchInfopTriPatchInfo))

typedef structtypedef struct _D3DTRIPATCH_INFO_D3DTRIPATCH_INFO
{{

UINTUINT StartVertexOffsetStartVertexOffset;;
UINTUINT NumVerticesNumVertices;;
D3DBASISTYPE Basis;D3DBASISTYPE Basis;
D3DORDERTYPE Order;D3DORDERTYPE Order;

} D3DTRIPATCH_INFO;} D3DTRIPATCH_INFO;

Rect / Tri Patch HandlesRect / Tri Patch Handles

HW can�t quite tessellate these fullyHW can�t quite tessellate these fully
SW computation of forward difference SW computation of forward difference

coefficientscoefficients
Cache these across multiple callsCache these across multiple calls

� User supplied handle used to refer to these
cached coefficients

CoefficentsCoefficents are resolution independentare resolution independent

Overview Of D3DXOverview Of D3DX
Mesh UtilitiesMesh Utilities
Effect FrameworkEffect Framework

� Shader assemblers

Texture UtilitiesTexture Utilities
Math UtilitiesMath Utilities
Shape libraryShape library
Text UtilitiesText Utilities
Authoring tool supportAuthoring tool support

Mesh LibraryMesh Library
Progressive meshesProgressive meshes
NN--Patch tessellationPatch tessellation
Mesh Mesh optimizationoptimization
Skinned meshesSkinned meshes
Other mesh utilitiesOther mesh utilities

� Bounding volume generation (sphere, box)

� Ray intersections (mesh, sphere, box)

� Mesh cleanup

Mesh BasicsMesh Basics
Vertex Buffer, Index Buffer, Vertex Buffer, Index Buffer,

and Attributesand Attributes
Indexed Triangle listsIndexed Triangle lists
16/3216/32--bit indices supportedbit indices supported
Supports file I/O (via .X)Supports file I/O (via .X)
Can be used independently of .X filesCan be used independently of .X files
DrawSubset is only for convenienceDrawSubset is only for convenience

� Not the only way to draw a mesh

Manipulates adjacency if requestedManipulates adjacency if requested

Attributes: Buffer? Table?Attributes: Buffer? Table?
Mesh has 1 DWORD per triangle (face)Mesh has 1 DWORD per triangle (face)

� Stored in mesh object as Attribute Buffer

Semantics of values is up to the appSemantics of values is up to the app
� Need not be sequential

Attribute TableAttribute Table
� A compact representation

of the attribute buffer

� Generated by Attribute Sorting a mesh

� GetAttributeTable, no SetAttributeTable

Mesh RenderingMesh Rendering
DrawSubset() draws all triangles DrawSubset() draws all triangles

of a given attributeof a given attribute
Needs Attribute TableNeeds Attribute Table

� Else it does linear search per face

Efficient if attributes are sequential, starting Efficient if attributes are sequential, starting
from 0from 0
� Else it does search of attribute table

Uses Fixed Function FVF shaderUses Fixed Function FVF shader
Avoid unless all above conditions metAvoid unless all above conditions met

Mesh Adjacency In D3DXMesh Adjacency In D3DX
Many mesh operations Many mesh operations

require adjacencyrequire adjacency
All mesh operations that change adjacency All mesh operations that change adjacency

will optionally return will optionally return
updated adjacencyupdated adjacency

Array of 3 Array of 3 DWORDsDWORDs per faceper face
� Each DWORD is a face index

Load from .X returns adjacencyLoad from .X returns adjacency

Point RepresentativesPoint Representatives
Alternate way of encoding adjacency infoAlternate way of encoding adjacency info
Keeps track of vertices which have the same Keeps track of vertices which have the same

position but replicated due to differing position but replicated due to differing
attributes (like attributes (like normalsnormals, , tex coordstex coords, etc.), etc.)

One DWORD per vertexOne DWORD per vertex
All vertices in a set of replicated vertices point to All vertices in a set of replicated vertices point to

any one of them as a �representative�any one of them as a �representative�
NonNon--replicated vertices point to themselvesreplicated vertices point to themselves

Meshes And AdjacencyMeshes And Adjacency
Can convert from PRep to adjacency and Can convert from PRep to adjacency and

backback
Generating adjacency from scratchGenerating adjacency from scratch

� Can use identity Prep, ignoring duplicates
�Works in some cases

� GenerateAdjacecncy() will identify vertices with
same position (i.e., infer PRep)
�Slower than above
�Will get correct adjacency if epsilon

is appropriate

Mesh OptimizationMesh Optimization
StripifyStripify

� Rearrange vertices of a mesh in strip order

Vertex cache Vertex cache optimizeoptimize
� Based on Hugues Hoppe�s

Siggraph 99 paper

Both these Both these optimizationsoptimizations need adjacency need adjacency
informationinformation
� In this case ConvertPointRepsToAdjacency with an

NULL (identity) PRep array
will suffice

Mesh OptimizationMesh Optimization
Attribute sortAttribute sort

� Sorts faces and vertices on the
attribute ids

� Splits shared vertices if necessary

� Generates Attribute Table

Compact MeshCompact Mesh
� Eliminates vertices not referred to

by the index array

Progressive Meshes
Overview
Progressive Meshes
Overview

Generate an ID3DXPMesh object from high Generate an ID3DXPMesh object from high
polypoly--count mesh using ID3DXSPMesh objectcount mesh using ID3DXSPMesh object
� Done either offline or load time

Render the ID3DXPMesh object at any LOD at Render the ID3DXPMesh object at any LOD at
runtimeruntime

Generate a bunch of ID3DXMesh Generate a bunch of ID3DXMesh
objects from ID3DXPMesh objectobjects from ID3DXPMesh object

Progressive Meshes
Mesh Simplification
Progressive Meshes
Mesh Simplification

Based on GarlandBased on Garland--Heckbert Heckbert
quadric error metricquadric error metric

Incorporates refinements by Incorporates refinements by HuguesHugues Hoppe Hoppe
to accommodate normal and attribute to accommodate normal and attribute
space metricsspace metrics

Needs accurate adjacency informationNeeds accurate adjacency information

Progressive Meshes
Mesh Simplification(2)
Progressive Meshes
Mesh Simplification(2)

API for simplification via ID3DXSPMesh objectAPI for simplification via ID3DXSPMesh object
� No more batch files

� Allows you to incorporate automated LOD generation in your
internal tools

User controls to influence simplification processUser controls to influence simplification process
� Assigning weights to vertices

� Weighing the importance of various vertex attributes

Progressive Meshes
Half-edge collapses
Progressive Meshes
Half-edge collapses

Chooses one of the two original vertices Chooses one of the two original vertices
during each edge collapseduring each edge collapse

No significant quality degradationNo significant quality degradation
Mesh vertices never change with LODMesh vertices never change with LOD

� Enables mixing PM and mesh deformation
algorithms like morphing and skinning

Reduces the amount of information stored in Reduces the amount of information stored in
a vertex split recorda vertex split record
� LOD changes are faster

Progressive Meshes
Dynamic LOD changes
Progressive Meshes
Dynamic LOD changes

ID3DXPMesh object allows dynamic LOD ID3DXPMesh object allows dynamic LOD
changes to arbitrary changes to arbitrary
face/vertex countsface/vertex counts

LOD changes are fast enough LOD changes are fast enough
to do at runtimeto do at runtime

Modifies the index buffer and Modifies the index buffer and
the adjacencythe adjacency

Progressive Meshes
Cloning
Progressive Meshes
Cloning

Support sharing the vertex data Support sharing the vertex data
across clonesacross clones

Can �clone� multiple ID3DXMesh objects Can �clone� multiple ID3DXMesh objects
from a progressive mesh all from a progressive mesh all
of which share the same VBof which share the same VB
� Can even optimize the resultant mesh while

sharing the original VB

Progressive Meshes
Persistency
Progressive Meshes
Persistency

Persist to Persist to IStreamIStream
� Can embed PMs in any custom file format

ID3DXPMesh::SaveID3DXPMesh::Save
D3DXCreatePMeshFromStreamD3DXCreatePMeshFromStream

Progressive Meshes
Optimization
Progressive Meshes
Optimization

PMeshPMesh face ordering may not be face ordering may not be
cache optimalcache optimal

Can at least make base mesh Can at least make base mesh optimizedoptimized
� ID3DXPMesh::OptimizeBaseLOD

Use multiple clones of Use multiple clones of PMeshPMesh with with
increasing base increasing base LODsLODs
� ID3DXPMesh::TrimByVertices

� ID3DXPMesh::TrimByFaces

Switch to Switch to PMeshPMesh with highest base LODwith highest base LOD

N-Patch TessellationN-Patch Tessellation
D3DX provides SW ND3DX provides SW N--Patch tessellationPatch tessellation
Uses adjacency to share vertices Uses adjacency to share vertices

in tessellated meshin tessellated mesh
Assumes mesh is smoothAssumes mesh is smooth
Any sharp edges due to normal discontinuity Any sharp edges due to normal discontinuity

will cause crackswill cause cracks
� Use D3DXWeldVertices to merge normals within

epsilon

� Improved in D3DX 8.1 to make
welding normals lot easier

Other Mesh UtilitiesOther Mesh Utilities
Compute bounding box and sphereCompute bounding box and sphere
Compute Compute normalsnormals
Ray mesh intersectionRay mesh intersection

� Returns triangle index and barycentric coordinates
of point of intersection if hit

Ray box and sphere intersectionRay box and sphere intersection
CleanClean--up topology for simplificationup topology for simplification
Cloning for VB and IB format conversionCloning for VB and IB format conversion

Mesh Library ImprovementsMesh Library Improvements

D3DXIntersectTriD3DXIntersectTri
D3DXSplitMeshD3DXSplitMesh

� Use to split large 32-bit meshes into multiple 16-bit meshes

� Splits shared vertices

� Minimized if mesh is vertex cache optimized

D3DXWeldVerticesD3DXWeldVertices
� Takes per component epsilons

� Does partial welds

Skinned MeshesSkinned Meshes
PlugPlug--ins for authoring tools to export ins for authoring tools to export

skinning dataskinning data
� 3D Studio Max and Character Studio

� Maya (work in progress)

.X files extended to handle .X files extended to handle
skinning dataskinning data
� D3DX functions to load skinned meshes

� Skin interface independent of .X files

ID3DXSkinMesh independent of .X filesID3DXSkinMesh independent of .X files

Skinned Mesh ObjectSkinned Mesh Object
Contains a mesh object plus Contains a mesh object plus

skinning dataskinning data
Skinning data supplied as a bone Skinning data supplied as a bone

and a list of vertices it affectsand a list of vertices it affects
� And a weight corresponding to each vertex

Though not HW friendly, this input method is Though not HW friendly, this input method is
simple and generalsimple and general

Can convert to Can convert to optimizedoptimized formsforms

Skinning Technique #1Skinning Technique #1
Direct3DDirect3D®® 7.0 style7.0 style
Per vertex weightsPer vertex weights
Up to 4 bones (matrices) per triangleUp to 4 bones (matrices) per triangle
ConvertToBlendedMeshConvertToBlendedMesh generates generates

a mesh with per vertex weightsa mesh with per vertex weights
� Groups faces to minimize matrix changes

Can cause mesh to have Can cause mesh to have
many �subsets�many �subsets�

Works well with tessellation techniquesWorks well with tessellation techniques

Skinning Technique #2Skinning Technique #2
New in Direct3D 8.0New in Direct3D 8.0
Per vertex indices refer to matrices from a Per vertex indices refer to matrices from a

palette that affect it palette that affect it
� Up to 4 indices per vertex, 12 per face

� Up to 256 matrices in a palette

Reduces API calls and matrix changesReduces API calls and matrix changes
Works well with progressive meshesWorks well with progressive meshes
ConvertToIndexedBlendedMeshConvertToIndexedBlendedMesh generates generates

mesh with per vertex weights and matrix mesh with per vertex weights and matrix
indicesindices

Skinning Technique #3Skinning Technique #3
Software skinning in D3DXSoftware skinning in D3DX
Arbitrary number of influences Arbitrary number of influences

per vertexper vertex
Useful for skinning curved surface control meshUseful for skinning curved surface control mesh
Useful for accessing post skinned Useful for accessing post skinned

mesh datamesh data
� Hit testing skinned meshes

GenerateSkinnedMeshGenerateSkinnedMesh() / () / UpdateSkinnedMeshUpdateSkinnedMesh() ()
does thisdoes this

ConvertToBlendedMeshConvertToBlendedMesh
Truncates bone influences when Truncates bone influences when

>4 per triangle exists>4 per triangle exists
� Keeps the 4 most important weights

� Uses adjacency info to avoid cracks

Orders bone combinations by increasing # of Orders bone combinations by increasing # of
influencesinfluences
� Enables using GeForce�s restricted skinned support by

rendering a prefix
of the mesh in HW

� Use SW for the rest

ConvertToIndexedBlended�ConvertToIndexedBlended�
Will truncate if >4 influences per vertexWill truncate if >4 influences per vertex
Handles palette sizes < num bonesHandles palette sizes < num bones

� But must be > maxFaceInfl

Partitions mesh into subsets that Partitions mesh into subsets that
fit in a palettefit in a palette

Output can be used with vertex shadersOutput can be used with vertex shaders
� Output mesh has only necessary #

of weights

� Use Clone to pad extra weights if shader expects
fixed #

Skinning PerformanceSkinning Performance
Minimize # of bone combinations?Minimize # of bone combinations?

� Can merge subset combinations

� Increases # of blends

Improve matrix coherence across combinations?Improve matrix coherence across combinations?
� Can�t prevent extra DrawPrim calls

� Can�t prevent matrix concatenation

� Does not seem worthwhile

Skinning PerformanceSkinning Performance
Non HW T&L devicesNon HW T&L devices

� Indexed palette skinning using FF pipeline is best

On GeForce 1,2 and Radeon, On GeForce 1,2 and Radeon,
nonnon--indexed skinning is fastestindexed skinning is fastest

On Geforce 3 indexed skinning using vertex On Geforce 3 indexed skinning using vertex
shader is fastest ?shader is fastest ?

Skinning PMeshesSkinning PMeshes
Skinning causes mesh to be split into Skinning causes mesh to be split into

subsets, adversely affecting simplification subsets, adversely affecting simplification
qualityquality

Using Indexed skinning reduces subsets (1 if Using Indexed skinning reduces subsets (1 if
palette size >= num bones)palette size >= num bones)

Call ConvertTo* and use result Call ConvertTo* and use result
to create PMeshto create PMesh

D3DX SW skinning of PMeshes D3DX SW skinning of PMeshes
will be supported in D3DX 8.1will be supported in D3DX 8.1

Simplification And SkinningSimplification And Skinning
Simplification ignores geometry changes due Simplification ignores geometry changes due

to skinningto skinning
Default pose of mesh (figure mode?) may not Default pose of mesh (figure mode?) may not

be best to simplifybe best to simplify
� Many joint (elbows, knees, etc.) are straight

� Geometric error when simplifying across joints
lower than would be when joint
is bent

Choose some different pose for simplification Choose some different pose for simplification
(How?)(How?)

Skinning And NPatchesSkinning And NPatches
Tessellating indices is messyTessellating indices is messy
Use SW skinning of control point meshUse SW skinning of control point mesh

� Use only if HW doing full tessellation

Use nonUse non--indexed skinning indexed skinning
of tessellated meshof tessellated mesh
� ConvertToBlendedMesh first

� Tessellate the result

� Update bone combination table with new attribute table

Effect FrameworkEffect Framework
Encapsulation of device stateEncapsulation of device state
Enables scalable rendering techniquesEnables scalable rendering techniques
Allows controlled fallbackAllows controlled fallback
Can�t just switch to multiCan�t just switch to multi--passpass

� Older hardware can�t do more passes
since alpha blending fill rate is less

Helps rapid prototypingHelps rapid prototyping
� Runtime interpretation of text-based

effect definition

D3DX TerminologyD3DX Terminology
Technique versus effect versus fallbackTechnique versus effect versus fallback

Given a visual Given a visual effecteffect you can seeyou can see
� Shading, highlight, sparkle, etc.

Identify a Identify a techniquetechnique can represents itcan represents it
� There�s always a way

Define Define fallback techniquesfallback techniques for for
older hardwareolder hardware

Effect Framework
Fallback Techniques
Effect Framework
Fallback Techniques

Uses controlled effect fallbacksUses controlled effect fallbacks

EffectEffect
Technique

Pass

Implementation

Simple text file (.fx) to define effectsSimple text file (.fx) to define effects

Effect Framework
Fallback Techniques
Effect Framework
Fallback Techniques

Techniques are grouped by their quality or Techniques are grouped by their quality or
�LOD��LOD�

Techniques can be chosen based on what HW Techniques can be chosen based on what HW
creates successfullycreates successfully

Can test performance in back bufferCan test performance in back buffer
User responsible for drawing geometryUser responsible for drawing geometry

Effect Framework
Creating Effects
Effect Framework
Creating Effects

D3DXCompileEffectFromFileD3DXCompileEffectFromFile
� Parses text file

D3DXCreateEffectD3DXCreateEffect
� Use compiled effect to create

an effect object

State for each pass is encoded State for each pass is encoded
as state blocksas state blocks

Effect Data TypesEffect Data Types
DWORD, FLOATDWORD, FLOAT
VECTOR, MATRIXVECTOR, MATRIX
TEXTURETEXTURE
VERTEXSHADER, PIXELSHADERVERTEXSHADER, PIXELSHADER
STRINGSTRING

� Enables user-data associated with effects

� Not used to program device state

Parameterized EffectsParameterized Effects
Effects can have parameters Effects can have parameters

of various typesof various types
Parameters augment static Parameters augment static

state description in the .fx filesstate description in the .fx files
How (and which) parameters get How (and which) parameters get

used defined by the effectused defined by the effect

Effect ImprovementsEffect Improvements
Support for longer namesSupport for longer names

� No longer limited to FourCC

Enable ordinal or string based parameter Enable ordinal or string based parameter
resolutionresolution

Block comment /* */ supportBlock comment /* */ support
Merge ID3DXEffect and ID3DXTechniqueMerge ID3DXEffect and ID3DXTechnique

� Need to carry around only 1 pointer

OnLost() and OnReset() methodsOnLost() and OnReset() methods

Effect Framework
Shader Assemblies
Effect Framework
Shader Assemblies

InIn--line or load from fileline or load from file
� Vertex

�D3DXAssembleVertexShader()
�D3DXAssembleVertexShaderFromFile()

� Pixel
�D3DXAssemblePixelShader()
�D3DXAssemblePixelShaderFromFile()

Texture UtilitiesTexture Utilities

Image file loadersImage file loaders
� JPG, PNG, TGA, BMP, PPM, DDS

� Supports files in memory

Format conversionFormat conversion
Image reImage re--samplingsampling

� Better filtering options

� Supports wrap modes

MipMip--map generationmap generation
ColorColor--key to alpha conversionkey to alpha conversion

Texture FillTexture Fill
Texture fill functionsTexture fill functions

� D3DXFillTexture

� D3DXFillCubeTexture

� D3DXFillVolumeTexture

Handles mipHandles mip--mapsmaps
Callback function gets a 2D/3D Callback function gets a 2D/3D

location and size of texellocation and size of texel
Create lookCreate look--up tables for pixel shadersup tables for pixel shaders

Math UtilitiesMath Utilities
D3DXMATRIX derived from D3DMATRIX D3DXMATRIX derived from D3DMATRIX
D3DXVECTOR3 derived from D3DVECTORD3DXVECTOR3 derived from D3DVECTOR

� No conversion operators necessary

� Subscript names have changed!

Watch out for D3DXMatrixLookAt{LH}Watch out for D3DXMatrixLookAt{LH}
� Both fixed now

Math Library ImprovementsMath Library Improvements
D3DXQuaternionSqaudSetupD3DXQuaternionSqaudSetup

� Use with D3DXQuaternionSqaud

D3DXFresnelTermD3DXFresnelTerm
Useful along with texture fill functionsUseful along with texture fill functions
CPU specific optimizations CPU specific optimizations

for some functionsfor some functions

Bump MappingBump Mapping
D3DXComputeNormalMapD3DXComputeNormalMap

� Converts a height field to a normal map

D3DXComputeTangentsD3DXComputeTangents
� Create a per vertex coordinate system

� Normal define one axis

� Texture coordinate (u,v) gradients
used to orient tangents

� Can use cross product or gradients
to compute third axis

Shape LibraryShape Library
Regular polygonRegular polygon
BoxBox
Cylinder/ConeCylinder/Cone
SphereSphere
TorusTorus
And, of course, the teapotAnd, of course, the teapot
Optional adjacency info availableOptional adjacency info available

2D Text2D Text
Draw text to surface using GDIDraw text to surface using GDI

� Render to off screen DC

� Blit to an internal texture

� Render using quad

Cache output by rendering to a textureCache output by rendering to a texture
Supports all GDI features: italics, kerning, Supports all GDI features: italics, kerning,

international fonts, etc.international fonts, etc.
ID3DXFont::ID3DXFont::DrawTextDrawText

Dynamic 2D textDynamic 2D text
Using GDI every time can be slowUsing GDI every time can be slow
Render alphabet to a textureRender alphabet to a texture
Render a quad per characterRender a quad per character
Texture coordinates into the texture depend Texture coordinates into the texture depend

on the characteron the character
Works well with simple fontsWorks well with simple fonts

� Not for international fonts, kerning, etc.

CD3DFont in sample framework CD3DFont in sample framework
does thisdoes this

3D Text3D Text
D3DXCreateTextD3DXCreateText
Extrudes a string rendered using Extrudes a string rendered using

a TrueTypea TrueType®® fontfont
Returns a mesh objectReturns a mesh object
Does not handleDoes not handle

� Kerning, etc.

� International font spacing

Authoring Tool supportAuthoring Tool support

Content PipelineContent Pipeline
DirectX provided ToolsDirectX provided Tools

Traditional PipelineTraditional Pipeline

3D Content3D Content
Creation ToolCreation Tool ExporterExporter ConverterConverter EngineEngine

Traditional Pipeline
Problems
Traditional Pipeline
Problems

Artist and Programmer have to guess on Artist and Programmer have to guess on
requirements for contentrequirements for content

Artists model and animate blindArtists model and animate blind
� It takes additional work to view

the content on the engine

� The engine may not be ready for viewing objects
until a later date

Viewing the data requires programmer time Viewing the data requires programmer time
early in the processearly in the process

Better PipelineBetter Pipeline

3D Content3D Content
Creation ToolCreation Tool ExporterExporter ConverterConverter EngineEngine

PreviewerPreviewer

Better Pipeline
Problems solved
Better Pipeline
Problems solved

Artist and programmer can view Artist and programmer can view
content immediatelycontent immediately

Advanced features can be viewed Advanced features can be viewed
independent of the engineindependent of the engine

Frees the programmerFrees the programmer

X File ExportersX File Exporters
Microsoft createdMicrosoft created

� Max 3, 3.1, 4.0

� Maya 2.5, 3.0

Third party createdThird party created
� Lightwave

� Others

X File FeaturesX File Features
Model dataModel data

� 3D representation

� Material representation

� Single skin weighting

Animation dataAnimation data
ExtensibleExtensible

Immediate ViewingImmediate Viewing

Max4 of Direct3DMax4 of Direct3D®®

� Ability to define and view shaders

MViewMView utilityutility
� Included in an upcoming D3DX release

Higher Order SurfacesHigher Order Surfaces

Progressive meshesProgressive meshes
NN--patchespatches
Bezier patchesBezier patches

ConclusionConclusion

�� HintsHints
�� QuestionsQuestions

Helpful HintsHelpful Hints

Check out DirectX8.1 SDKCheck out DirectX8.1 SDK
Read Meltdown presentationsRead Meltdown presentations

http://www.http://www.microsoftmicrosoft.com/.com/hwdevhwdev/meltdown//meltdown/

Read MSDN articles Read MSDN articles
http://http://msdnmsdn..microsoftmicrosoft.com/.com/directxdirectx//

Use DirectX DeveloperUse DirectX Developer--mailing listmailing list
http://discuss.http://discuss.microsoftmicrosoft.com/archives/.com/archives/directxdevdirectxdev.html.html

Give us feedbackGive us feedback
� Mail directx@microsoft.com

� Ask for help if you need it!

QuestionsQuestions

??

AcknowledgemensAcknowledgemens

Richard Richard HuddyHuddy, nVidia, nVidia
Dan Baker, MicrosoftDan Baker, Microsoft

