=~SIGOGRAPH

2 O_O 1 EXPLORE INTERACTION

AND DIGITAL IMAGES

DirectX 8 graphics

Presenters

e Phil Taylor

e Phil Taylor is the DirectX SDK Program Manager, and was
responsible for Direct3D evangelism from DirectX 3.0
through 7.0.

e Chas. Boyd

e Chas. Boyd is currently the DirectX Graphics Architect, and
was Program Manager responsible for the design and
specification of Direct3D from DirectX 5.0 through 8.0.

AAAAAAAAAAAAAA

Introduction

Agenda
History
Brief status
Trends

Agenda - Morning

Design Goals & Architecture
Programming Model
Vertex Processing

e Overview

* Vertex shaders

Pixel Processing
* Overview

EEEEEEEEEEEEEEEEEE

AAAAAAAAAAAAAAAA

Agenda - Afternoon

Pixel Processing
e Pixel shaders

Higher Order Surfaces
D3DX utility library support

e Texture support, meshes, skinning, and more

Authoring tool support
e 3DSMax, Maya, Lightwave

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

History

DirectX evolved from the Windows 95 GameSDK

Now ships as part of the OS
e DirectX 5 with Windows 98

e DirectX 6 with Windows 98 SE
e DirectX 7 with Windows 2000 & Millenium
e DirectX 8 with Windows XP

Coincides with yearly IHV cycle

e |In time for yearly ISV Christmas cycle

£

AAAAAAAAAAAAAA

Status - DX 8

Shipped DX 8.0 Nov 2000
shader hardware as of 1H 2001
Working on DX 8.1 for Q3 2001

* Mainly shader updates to support new hardware

DX 9 in spec review summer 2001
e Mail directx@microsoft.com if interested

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Status - DX 8 hardware

Parallel Vertex DMA Input

Programmable Shaders
e For vertex and pixel processing

Volume Textures

Particle Rendering
Multi-sample Rendering
Higher-Order Primitives
1.2GPix/s, 60MPoly/s

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Trends - PC 3-D Performance

1200M

Pixels/sec

Polygons/sec

Design Goals

Support IHV community
Support ISV community
Update and improve the API

Support IHV Community

Identify hardware features
From ISV requests, IHV proposals

Evangelise to IHVs
Demonstrate features in reference device implementation

Implement DDI

Provide DirectX betas to IHVs with sample and ref. driver.

Simul-Ship with new HW
Validate HW & drivers vs. ref. device

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Support ISV Community

|dentify API features
e Graphics Advisory Board

o Key ISV contacts

* Industry events (reviews, GDC, Meltdown)

Evangelize to ISVs
Implement API

e Provide DirectX betas to >3000 beta customers

Simul-ship with new hardware/titles

RRRRRRRRRRRR
AAAAAAAAAAAAAAAA

Support IHV and ISV Community

Innovation

e Guarantees latest technology is always available
on the Windows PC platform

* A key draw in entertainment apps

Leadership
e Sets common target for all

e Encourages consistency of implementations

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

DirectX 8.0 Graphics API

Simplify API
Evolve pipeline to add programmability
Support other new hardware features

Improve support libraries
 D3DX

e Authoring tool support

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

DirectX 8.0 Simplification goals

Merge DirectDraw® and Direct3D
Narrower focus:support 3D fullscreen games
Reduce API clutter

Promote overall robustness
e Reducing app LOC and code paths

e Fewer features

Lines of Code:
o DDraw in DX7 : 67k. DX8:14k

e

AAAAAAAAAAAAAAAA

DirectX 8 Direct3D- Evolution
Next Generation 3D API

e Fundamentally new architecture

“Photo-Real-Time”
e Photo-real quality

e Real-time performance

* Programmable Vertex & Pixel shaders

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

New Hardware Features

Multi-sampling rendering

* Fullscreen AA and multisampling enables motion-blur,
depth of field, etc.

Point sprites
 High-performance rendering primitive for particles

3-D volumetric textures
e Per-pixel lighting attenuation, atmospheric effects

Higher-order primitive support

AAAAAAAAAAAAAA

DirectX 8 Direct3D-Support

Indexed vertex blending
e Matrix palette skinning

Higher-level technologies
e Exporters for 3DS-MAX and Maya, inc. src.

Expansion of the D3DX Utility Library

* Programmable shader assemblers

* Mesh creation/manipulation functions
e Optimisations

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Architecture Overview

Pipeline
Features

Direct3D Programmable Architecture

Geometry
L D_r.l*n

‘iﬂfm

Pixel

shader

Samplers Output pixels

m
-
z O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Direct3D Vertex Pipeline

Vertex Data |

¥

ERNgine

Geometry
Pipeline

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Vertex Pipeline

Vertex Assembly (format conversion)
Tessellation

Vertex Shader (or FF T-n-L)
Primitive Assembly

Clipping -frustum and arbitrary
Backface Cull

Perspective Division

Viewport Transform

EEEEEEEEEEEEEEEEEE

AAAAAAAAAAAAAAAA

Direct3D Raster Pipeline
1 1

Pixel &
Texture
Blending

Alpha, Ste
sl et
Tazsilrie)

Rasterization
Ehaime SLpen
=lzrieliric

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Pixel Pipeline

Triangle Setup
Pixel Shader (or FF Multitexture)

* |terate colours, texcoords, etc

e Sample textures with address ops

e Texture/colour blend

Fog Blend
Frame-Buffer, Blend

Antialiasing API

Check quality range available

e Expressed as number of samples from
CheckDeviceMultiSampleTypes()

Specify to CreateRenderTarget()

Early hardware will support max of 2 or
possibly 4 samples

* Implementation may round down

Per-Primitive enable:

AAAAAAAAAAAAAAAA

MultiSample Rendering

Can re-use AA hardware for more!

Cool effects:
* Motion Blur, Focus Blur, Reflection Blur

APl is same as FSAA but can restrict
rendering to subset of samples

» D3DRS_MULTISAMPLE_MASK
Set mask and render multiple passes

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

MultiSample Uses

Motion blur
e Draw separate copies of moving objects

* If 15t person, even world is moving object

Focus blur
e Rotate camera about center of focus

Reflection blur
e Shift reflected scene slightly

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Volume Textures

Current hardware feature
e More common in Fall ‘00

Straightforward usage:
* Create MipVolume 3D texture

e SetTexture() the volume texture

e Render sending 3-D texture coords to that
stage

Watch memory consumption

AAAAAAAAAAAAAAAA

Volume Texture Uses

Range effects in per-pixel lighting
e point light fall-off with range

* spot light cone fall-off and range

Texturing procedural geometry
e simpler for complex shapes

Possibly of use in fogging

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Particle Systems

Realistic environmental effects
e Sparks, explosions, snow, rain, hail

e Well understood technique

HW enables 2-4x performance boost
e If bandwidth limited

Direct3D solution is Sprite Points

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Sprite Points

Screen-space quads

e With current texture and raster state to allow any
shape or effect

No pre-defined round dot texture
App can set max particle size

Only transforms 1 vertex
e Expansion to 4 on far side of bus

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Sprite Point Size

Specified as
e A constant renderstate

e On a per vertex basis

Size can be in screen space
e For transformed vertices (e.g., TLVERTEX)

Or in world space...
* Programmed using vertex shader

e Or distanced based attenuation using fixed function
pipeline .

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Sprite Point Limitations

On some hardware, they won’t clip against
arbitrary clip planes

e Just culled at center point

e Can use border of pt width around teleportals if
this is an issue

e There is a cap flag for this

Frustum clipping will always work

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

A Sprite Point

Position = (x-s/2, y-s/2,2) (x+s/2, y-s/2,z)
(u,v) = (0,0) (1,0)
(x-s/2,y+s/2,2) (x+s/2,y+s/2,z)

(0,1) (1,1)

Sprite Point Rendering

Texture coordinates
e Forced to 0-1.0 as shown in diagram

» Use supplied coordinate on all 4 vertices

Coordinates of all texture stages in vertex are
overwritten with these values

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Sprite Point API

Set Renderstates
D3DRS POl NT_SI
DoDRS_ PO NI SPR
DSDRS_ PO NI SCA

W
-
z O O IEXPLORE INTERACTION

AND DIGITAL IMAGES

Programming Model

Simplification of Common Tasks
APl Usage & Behavior Patterns

Resources
Rendering

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Simplification

Initialization
Devices
Presenting images
Miscellanea

Initialization

Now just create Direct3D object
* No more Queryinterface

Enumerating vastly simplified

Creating and setting up device vastly
simplified

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Enumeration

GetCaps is on IDirect3D
* GetCaps without creating device

e Clarified what caps depend on

Callbacks eliminated
e Check functions, CheckDeviceType, CheckDeviceFormat, etc
“Probe Model” for texture, Z/Stencil, render-target
formats
e You have to ask for what you want

=~SICGRAPH

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Code Example: Enumeration

SIS EINURRPARAM EdE RS AT INS)

Params:BackButerEormat =D ShEMINXARSGSB5;

ICEATEED(m I pDh3SD=>Checkbevicelype(bDevice-m_uAdapter;

Device.m_Deviiype,
Params:BackBufferFormat,
Params.BackBufferFormat,
FALSE)))

~SICGRAPH
2 O O IEXPLORE INTERACTION

AND DIGITAL IMAGES

CreateDevice

Includes:
e Creation of back buffer(s)

e “SetDisplayMode”

* Specifying what “Flip” means

e Choice of acceleration level
o D3DDEVTYPE - i.e. HAL/HEL/etc

“Unknown” Formats
e Allow app to specify minimum color resolution per channel

e Not Lockable

Direct3D Device Types

Now just HAL, HEL, and REF devices

HAL can have 3 modes
e Software vertex processing*

e Hardware vertex processing®

e *Mixed for both on same device

HAL and REF support PURE flag

e Reduces call overhead

* No Gets supported
* Check PUREDEVICE cap

e

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Device owns resources

Presentation buffers
front, back, rendertarget
Geometry storage

vertex buffers, index buffers
Textures
State

Code Example: CreateDevice

J\ r_ PARANVE

rerWatn
dppd KBuUT T er Hel ght
0ppP. KBUT I er For mat
dpp. BackBut 1 er Count
03dpp.
03dpp. S
03dpp. E
0Sapp.

B O
o A
o O

O
’\.

5 DEMII_UNKNOVWN- Co;

03
03
03
03

- =

TN
B
1

(0

X
O C O

=

>

L)

i

L

bl

[Tl

e

o

bl

|

T

\w
C

I

=

nOmQw

N

@
\
(D

PIEALINE:

S

o) L’J

A

]

(@

=0 w @ V

plef eV

S Q) = U
@ Sk]
2

W
Q

S G
oWy = U

2L
il
S
3

VIO EIRagS
PIfESENT A BN PG

]

(L
S

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Lost Devices 1

(Formerly Lost Surfaces)

We’ve done a lot of work to hide this
e The only error returns are from

* Present (i.e. Flip)
» TestCooperativelevel

e ALL other methods keep
going regardless

* Only one place to check for loss

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Lost Devices 2

How should the application respond?
e Rebuild the device (via Resize)

* Can’t guarantee vidmem still there, so have to
destroy all vidmem resources

* Recovering from alt-tab is now very similar to
setting up device in the
first place

Everything’s gone: shaders, render states;
All except managed resources

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Presentation 1

Resize (and CreateDevice)

e Subsumes SetCooperativelLevel, SetDisplayMode,
CreateSurface(DDSCAPS_PRIMARY) and some of
Flip

Present
e Subsumes Flip and Presentation Blts

» Consistency - Windowed or Full Screen

» Eases WM_" interpretation

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Presentation 2

Resize changes the type, size and format of
a back buffer

* Almost the same code path as
destroy-and-recreate

e Atomic operation: less error-prone

Display Mode is implied by back buffer
format/size

 [f windowed, we’ll do the conversion unless you
override

» Easy %ts for highest performanees>GRAPH
. T _ DIRECT 8.0 W

AAAAAAAAAAAAAAAA

Presentation 3

Optimized sub-rect update

2 O O IEXPLORE INTERACTION

AND DIGITAL IMAGES

Presentation Code Examples

[/ How t o
pDevi ce-

or di nal
JI“—\fJ'r-I(e

/ /'HOw t O pr | nege, Wnet ner w]mdowed
pDev]c;—>Pr (JJL_, []S

[/ D
/I Dest
/- Opt I mi zat fon regiion

HOW @ FECOVErR fIirom
IOV AN CER()S

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Miscellanea

Depth Surfaces

UMA
GetAvailableTextureMem
Primary Surface

Cursors
Debugging

Depth/Stencil (Z) Surfaces

No longer “attached” to render target
Z buffer now set into the device

Two ways to create:
e “Auto” Z created and resized automatically by the device

e Explicit Z created by app, and attached to the device

e Useful when switching render targets halfway through a scene

AAAAAAAAAAAAAA

New Graphics Hardware: UMA

Unified Memory Architecture: Video
memory IS page-locked sysmem

System->Video BLT not needed

Graphics bandwidth consumption subtracts
from CPU bandwidth

“Video memory” CPU access is fully cached
and very fast

UMA will be ubiquitous+cheap
USE MANAGED SURFACES!

AAAAAAAAAAAAAAAA

GetAvailableTextureMem

Problems:
e Could never guarantee number

* Too many permutations

DirectX 8 offers only
e Estimate of texture memory

* Intentionally rounded off

Use this for high-level cache choices
e E.G., Should I drop top-level mipmaps?

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

The Primary Surface R.I.P.

The front buffer is no longer accessible,
even syntactically

Enables greater freedom of design for the
operating system and hardware

We will help out with:

e Cursors

e Debugging

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Cursors

DirectX 8.0 offers a cursor API
We will draw a cursor for you
e Using hardware if available

e Blts if not

No size/color depth restrictions

We are encouraging hardware to evolve
towards better
hardware cursors

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Debugging Help

Hot-swap debug and retail

e Just set a registry key (or use control panel) and
re-run

Guard pages around resources

* You can choose to get a page fault when you
over-run a surface

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Usage and Behavior Patterns

APl and Data Organization
Fixed Function Pipeline
Programmable Pipeline

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

AP Usage

New paradigm - Set and Go

» Set { VertexShader, StreamSource, Renderstate, Texture,
etc. }

* Go { (minimal) DrawPrimitive }

Separate API functions for different frequencies
of use

* Assign vertex buffer(s) via SetStreamSource then do
multiple DrawPrimitive

Very close mappmg to DDI

AAAAAAAAAAAAAA

Vertex Buffer

Geometry container
Can save a copy in the runtime
Can be in device memory

Lock/Access/Unlock Semantics

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Parallel Vertex Buffers

Chip can DMA from multiple vertex buffers
in parallel

e Faster mapping from application data

e Still forms one complete vertex

Maps better to more application data
Trivial multitexture versus multipass
APl is Vertex Streams

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Streams

A set of input data that is to become part of
a vertex

Defined as portion of a vertex buffer
DirectX 8.0 analog of FVF codes
Streams can contain user data

Cap for stream count to indicate max
number of parallel DMAs

AAAAAAAAAAAAAAAA

Vertex Stream Inputs

Semantic-free for vertex shaders (still FVF
for legacy modes)

Element type and dimensionality defined in
shader declaration section

* Float, Packed Byte: required

e Short, 1 DWORD Normal: optional

e Maybe other optional types
Single set of indices for all streams
* For DirectX 8.0

e

AAAAAAAAAAAAAAAA

Vertex Streaming Terms

A vertex is composed of n streams
* A stream is composed of n elements

* An element is {pos, norm, texcoord}

Vertex Stream API

<+ Maps vertex buffer to stream
<+ Defines only data range

» Data format defined by vertex
shader declaration section

Set St r eantSour ce(
| nt St reanmNunber,

D3DVert exBuf fer *pStreanDat a,
I nt Stride);

~ DIRECT 8.0

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Indexed Drawing

Support for Index Buffers added
e With Direct3D 8.0

Just like Vertex Buffers

e But for indices not vertex components

e Card/Driver can cache these efficiently

Not an explicit parameter to the call
e Current index buffer is a state

* Set with Setindices() call

AAAAAAAAAAAAAAAA

Index Buffers

Eliminate (or at least reduce) copying

 significant performance improvement over DirectX 7

Allocate and manage with other memory
resources

e (vertex buffers, textures)

Cap for max index
o >2**16, but can’t use all 2**32

 Still always allocated 16- or 32-bit

AAAAAAAAAAAAAA

Drawing With Index Buffers

/] Create the vertex buffer and bind it to a stream

i ndex bu
DI ndexBuf f er 8*
at el ndexBuf f er
IVAT_ | NDE> lo
K(O, nunil ndi ¢
K_DI SCARD) ;
[nNdex: DUt er W thn your i ne

Q)

(U

o Q= Lv
»y

® ‘—l—l (,-w ~—+
@
+- (Fj ._‘_

o1
>
5D
L
D
J

— |
=
(1>

)

HETARAR At USRS draWs e PRt e
pIREVE =D anisnideExed PRtmEt InV e IDSIDRITHRISANGE EISFSIES 0
05 UmPEIEmS I ES)

z O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Pipeline Setup

Fixed Function
Programmable

The Fixed Function Pipeline

Not too different from what you know
e And love...

Must select fixed function pipeline
e Call SetVertexShader() with NULL

Create a VertexBuffer with FVF code

Set the VertexBuffer as stream O
e Not an explicit parameter to Draw call

Draw the primitive[s]

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Fixed Function Drawing

/| Select |egacy fixed function vertex and pi xel processing
pDev- >Set Ver t exShader (NULL) ;

pDev- >Set Pi xel Shader (NULL) ;

NS AN SR GF WA or]rﬂ NVE
PIDEV/= /Dra [t Ve D2 O IRPANGEERIESTES 05 Uy tIVes

EXPLORE INTERACTION
AND DIGITAL IMAGES

UP (User Pointer) Drawing

You don’t have to use vertex buffers
e or index buffers

You can supply your own buffers
 From your own memory

* Hence, User Pointer (UP)

DrawPrimitiveUP()
DrawlndexedPrimitiveUP()

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

The Programmable Pipeline

How to setup for drawing
* Creating and selecting shaders

* Creating and binding vertex buffers
e Setting constants

e Drawing

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

VertexBuffers and Shaders

VertexBuffers are untyped (no FVF)
* When using vertex shaders

* VB’s do have FVFs in fixed function pipeline

Shader interprets VB data
e APl doesn’t

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Streams

Each input to vertex shader is a stream
Each stream is a vertex buffer

Each vertex buffer holds one or more vertex
components

* Position, normal, color, texture coords.

Distribute the components as you see fit

e Up to the maximum number of supported streams

It simply needs to match what shader exgectg»

RRRRRRRRRRRRR
AAAAAAAAAAAAAAAA

Creating the Vertex Shader

DWORD* pDecl arti on; [/
DWORD* pFunct i on;

DWORD Sha cJ el Handl

[Initiall

EXPLORE INTERACTION
AND DIGITAL IMAGES

Create the Vertex Buffers

| Di rect 3DVert exBuffer8* pPosVB; // VB for position and nor nal
| Di rect 3DVert exBuffer8* pTexVB; // VB for texture coords

E VWRITEONLY, O,

pPesVB->Lock(0, VESI &P Dat SDLOCK_DI SCARD) ;
[B Al VAT puUf f el | 1 PDOSI t 1 on ar nor nal dat a

| S
pPosVB- =Unl ock();

Fern(tex | 5 C’V‘ﬁ VWRIFTEONL Y, 0]

SPHIEX VIS

pTIex\VB-
i
pTlexVB: >

EXPLORE INTERACTION
AND DIGITAL IMAGES

[/ Bind the position vert

pDev- >Set St mSour ce(0,

Xt ure coordi nate vertex buffer to stream one

x

SI zeof (1l oat)

EXPLORE INTERACTION
AND DIGITAL IMAGES

Create the Index Buffer

| ndex buffer

ufrer8* plB =
xBuf fer (num ndi

\DEX16, D3DPOCL_

num' ndi ¢
K_DI SCARD) ;
ndex oufifer wtn your filne

dex puf f | urrent I ndex opufifer

2 | pdex buirer, not
[CES] apply to the Vert

EXPLORE INTERACTION
AND DIGITAL IMAGES

Set Vertex Shader Constants

[/ W w |l load multi ple constant

L ar 1

gl st

\
—
<)
1ab
(2
(P
)
=

Lo
\ab
L
Lo

O
L
12 i

oy @
(® =y

= O

o
(2
S
L
\V
)
=
(2
—
(L
N
N
Lﬂ)

>
(ad
(3

e

Q) W
1ab

b

A

D

(S

- (D
=

©
= U
)
=t
el

S)

) © @
QD T
Lo
{ab

("j Lo
@

2

)

L

Q -
e

—
(W

(2

(=

Sl (b

(p
IN
(L
@

EXPLORE INTERACTION
AND DIGITAL IMAGES

Creating the Pixel Shad

on;) shader functi on
0 handl e

DWORD* pFuncti c
DWORD PiI xel Sha

[/ Initiall

EXPLORE INTERACTION
AND DIGITAL IMAGES

And Finally Draw

[/ And actually draw the primtive
JJLe/ >Dr awl ndexedPri m ti1 ve(

SDPT_TRI ANGLELI ST, [/ Primtive type
D, [/ M ni num: | ndex
Aund ndi ces, [/ Nunber of | ndi ces
0, [/ Start I ndex

{

.
nunPrimtives); [/ Nunmper of primtiV

EXPLORE INTERACTION
AND DIGITAL IMAGES

Resources

Resource Objects
Managed Resources
Locking Resources

Resource Objects

Textures:
e MipMaps, MipVolumes, CubeMaps

* Only operations allowed and needed:
* Create, Lock, Copy, Draw
Geometry:
* Vertex Buffers, Index Buffers

* Only operations allowed:
* Create, Lock, Copy

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

New Aspects Of Resources

Pool, Usage, Format, Type, are now
independent properties

e Usage is enforced

Lock of video memory textures is gone
* Never did happen! (On some cards)

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Resource Pools

Pools
e SystemMem, “Default”, or managed

“Default” resolves to “best” for device
e Whether software or hardware device

Resource Formats

Formats are now an enumerated type

Runtime will pre-define several True Color formats, DXTn, Vertex
Data, and Volume Luminance Formats:
D3D FORMAT UNKNOWN = 0,
D3D_FORMAT 565

D3D FORMAT L8
D3D_FORMAT VERTEX_FVF
D3D FORMAT VOLUVE_LUM NANCE

D3D FORMAT FOURCC DXT1
MAKEFOURCC(' D', 'X', 'T', '1'),

. // etc - This is NOT a complete list
Note IHVs may still add vendor-specific formats

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

The “Managed” Pool
USE MANAGED

e Unless you know better

e But always on UMA
* We or the driver can “Do the Right Thing”

e Works for any class of device

Resource Management

A Unified Resource Manager
e Like DirectX 7 texture manager

e But manages ALL resources
“Dirty Regions”
e The region you locked is remembered

e Or you can set explicitly

We’'ll do our best to optimize download to
just the dirty regions

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Textures Contain Levels

MipMaps, MipVolumes and CubeMaps

* All contain surfaces (or volumes)

* These are the objects you actually use
e |.E. Call SetTexture with

App retrieves specific surfaces (volumes)
from the texture for loading

* The only time you talk to a “surface”
* (And: No more GetAttachedSurface)

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Code Example: MipMaps

*pM pMVap;
Lock;

S

=

S

=

e
bJAJ
For mat
PooI
PPV pPIVEP

Q -

)

5
9)
=
9)
o]
O
D
—
=
D

0

™

o (it ‘ | ount ()5 L€

PIVISPIVER==UnINe

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Resource Miscellanea

The ImageSurface
* A surface that you can only lock and copy

e Always sysmem

* Good transport for carrying images between components
CopyRects

e Blt square chunks of pixels around

* (A bit more optimally than many blts)

Texture locks

* LockBox() for vo
e Typically only one
Geometry locks

Locking Resources |

Grants CPU access to resource

* LockRect () for 2

* Lock() for both index and vertex buffers

D textures and cube maps
lume textures

lock per resource

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Locking Resources I

Must relinquish lock with UnLock()
before resource can be used by device

* Any device operations with locked resource
will be serialised until resource unlocked

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Locking Resources lli

General lock flags
* D3DLOCK_READONLY

* Won’t write to resource so no recompression on
unlock

e Can’t use with VBs/IBs created with WRI TEONLY
flag

e D3DLOCK_NOSYSLOCK

* No system-wide critical section taken

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Locking Resources IV

Geometry specific lock flags
* D3DLOCK_DI SCARD

* D3DLOCK NOOVERVRI TE

Rendering

e Primitive types
e Vertex Buffers
e Textures

Primitive Types

e Points
e Lines
e Triangles

e Patches
* More in the HO surfaces section this afternoon

Primitive Types

e Lists
e undifferentiated

e Strips
e Maximum vertex reuse

e Degenerate strips good way to stitch together larger runs of
vertex data

[) eg
e Fans
e Around a single common vertex

< ~SIGGRAPH"
_ DIRECT .

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Primitive Types

e Non-indexed
e |n primitive order

e Indexed
» Controlled by list of indices, Index Buffer

e Managed resource

¢ Indexed allows interleaving state changes and
primitive drawing
* On CPU, only range is transformed

Lj e VB is transformed

AAAAAAAAAAAAAA

Vertex Buffer Handling
Strategies

Classify your Geometry
 Static data

e Dynamic data

Never specify SYSTEMMEMORY for
drawable VBs

e the driver needs them in AGP or local vidmem

* For good performance

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Classify your Geometry

Static data is:
e Permanent for the current level

e Only manipulated with matrix operations

* Put the whole thing into video memory
e Use Optimize (cannot Lock data after optimize)

Dynamic data is:
e Data that is frequently changing

e Static data that does not fit into video memory
(e.g. huge terrain maps)

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Organize Your Video Memory

Allocate
e static geometry in videomem first

e dynamic geometry next

e textures

Don’t interleave textures and vertex data

e it is (usually) more important that the geometry
be in video memory - plus, fragmentation will kill
you later

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Organize Your Video Memory

Do not dynamically create/destroy VBs!
» Static or dynamic

Leave some free space in video
memory for the driver to play with...

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Video memory Layout

Top of VRAM —
Free spaceé | The content and the

Textures :|) amount are dynamic

Dynamic

geometry |~ The content is dynamic
pages y
Static

geometry

FB / ZB etc.

Dynamic Data

Two types of dynamic data.
e Complete Updates
* When updating, entire range is written
e Partial Updates
 When updating, only a part of the range is written

Need to handle the two types in different
ways

Complete Updates: Dynamic
Geometry

Specify WRITEONLY to CreateVertexBuffer

e Create in AGP memory

Specify DISCARDCONTENTS when Locking

* These flags allow the driver to double buffer or
“rename” a vertex buffer, and that requires free
space...

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Partial Updates - Dynamic
Geometry

Specify WRITEONLY to CreateVertexBuffer

e Consider creating in system memory if need to read the data

e AGP reads are slower

Cannot Specify DISCARDCONTENTS when Locking

* You will not be able to do partial VB updates if you specify
DISCARDCONTENTS. You must write the entire locked range

2 O 0 EXPLORE INTERACTION

AND DIGITAL IMAGES

(Create) Vertex Buffer Options

DISCARDCONTENTS

WRITEONLY l lOptimize()

Dynamic Vertex Buffer Usage
Strategies

Think in terms of VB “pages”

* reusable sections of video memory that are
dynamically loaded with vertex data (analogous
to texture pages)

Never Optimize
e because you will need to Lock them

Handled differently by the driver

e depending on flags given to CreateVertexBuffer

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Handling Vertex Buffer Pages

Complete Updates - Behavior Pattern
e Create 'n’ vertex buffer pages

e WRITEONLY
* Do not optimize them

e Lock vertex buffer range with DISCARDCONTENTS

e (re-)write the whole range

e Unlock and go to next page

Round-Robin your pages...

=~SICGRAPH

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Handling Vertex Buffer Pages

Complete Updates - VB Page Size

e VB pages should not be too small and should not be too
large

* Too small and the overhead for each call will swamp you

e (we recommend >200 vertices)

* Too large and there is a higher probability that you will
stall, waiting for it to become free

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Locking Vertex Buffers |

DX8 Lock() on VBs and IBs allows sub-
ranges to be specified

e Multiple locks on single buffer permitted

* Allows efficient usage of large VBs containing
multiple models, as you can render from one
sub range whilst locking and modifying

another

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Locking Vertex Buffers Il

D3DLOCK DI SCARD and
D3DLOCK NOOVERWRI TE flags are valid

only on buffers created with
D3DUSAGE DYNAM C

* Therefore can't be managed buffers

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Progressive meshes

Load full vertex set into one VB

Use different index lists to select different
QEN

* remember that all index lists are 0 based

Indices0

Managing Huge Terrain Data sets

Should be set up as terrain blocks
Allows for trivial rejection of individual blocks
Use vertex buffer pages

Limited to 64k Vertices for
DrawlndexedPrimitives

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Texturing

Textures & Texture Blending
Texture State

Locking Textures

Render Targets

Textures

Associated with device
e Create methods for Mip, Cube,and Volume textures

Can be Managed

e Specified at creation time

Standard and Advanced Uses
e Blending, lookup tables
Compressed Texture Support

D3DX file loader support
e See D3DX talk this afternoon

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Multiple Texture Operations

Definition
e Operations that combine multiple textures onto the same
polygon

Applications
e light/shadow maps

e specular reflections

* bump/detail textures

For both Fixed Function and Programmable
Pipelines

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Fixed Function Hardware Model

Each texture has one operation unit
e separately programmable alpha output

A separate texture/diffuse blending unit
exposed in APl for TBLEND

Validation occurs for all texture blending
ops
e Multi-Texture and TBLEND
Alpha and fog are separate operations

AAAAAAAAAAAAAAAA

Fixed Function Hardware Model

Texture1

Texture?2

O

P

s

A\
A\

N
|

O

P

S

v

[TBLEND

<4

Ny Iterated Color
/

¢

_________ #————————— Validation

(D3DBLEND]
\ J

Multiple Texture Operations

Determine operation this unit performs
 D3DTS_COLOROP

e D3DTS_ALPHAOP

be one of:
DISABLE

-texture does not show
e COPY* -texture replaces everything
MODULATE -multiply
ADD -add

AAAAAAAAAAAAAA

Modulate Operations
* MODULATE

e multiplies
e used for diffuse light map effects

e MODULATE?2

e multiplies and scales by 2
* MODULATE4

e multiplies and scales by 4

ADD Operations

ADD
* just adds them together

ADDSIGNED
e add with bias of -128

o effect that this texture is sighed data

Linear BLEND Operations

Cout = Ctexture*x + Cinput*(1-x)
e D3DTOP_BLENDTEXTUREALPHA

e X = alpha from this texture
e D3DTOP_BLENDINPUTALPHA

e x = “current” alpha (incoming)
e D3DTOP_BLENDDIFFUSEALPHA

e X = alpha from diffuse iterator
e D3DTOP_BLENDFACTORALPHA

e X = alpha from renderstate

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Multiple Texture Arguments

Determine inputs to the operation
* For color operation

* D3DTS_COLORARGH1
* D3DTS_COLORARG2
e For alpha operation

* D3DTS_ALPHAARG1
* D3DTS_ALPHAARG2

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Multi-Texture Operation Unit

Operation

Texture

Tex2.ColorOp

Copy
Tex2.ColorArg1 Modulate
This Texture Add
ALPHA Sl
+Inverted

Input
Tex2.ColorArg2

Output

<

Previous Texture
Iterated Color
FACTOR

ALPHA
+Inverted

EXPLORE INTERACTION

AND DIGITAL IMAGES

Texture Argument

Supports some modifications to this texture
before use in operation

* D3DTS_COLORARG1
e D3DTS_ALPHAARG1

Only the following (modifiers)
* D3DTA_INV
e performs x=(1-x)
e D3DTA_TEXTUREALPHA
* replicates alpha to colors

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Input Argument

What this texture is combined with
e D3DTS_COLORARG?2

e D3DTS_ALPHAARG?2
One of the following
e INPUT* - result of previous operation
e DIFFUSE - iterated color data

e FACTOR - api-specified scalar
* D3DRENDERSTATE_TEXTUREFACTOR

¢ XXXA%eplicates alpha to colors _

RRRRRRRRRRRR
AAAAAAAAAAAAAAAA

Argument Modifiers

Can be applied to any argument
e D3DTA_INV

e inverts argument before use
* applied using OR or add (| or +)

* D3DTA_XXXXALPHA
e replicates alpha channel to colors

e automatic for single channel textures
* not required for ALPHAARGsS

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Texture Validation

Multitexture and texture blend ops

e fails if current blending ops cannot be
accomplished

e returns number of additional passes that would
be reqd to emulate via multipass

e this warns app that framebuffer alpha and fog will
be different

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Alpha-blending

Standard Alpha operators supported

* Framebuffer blending after Multi-Texture or pixel
shader operations

Controlled by Renderstates
* SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE)

» SetRenderState(D3DRS_SRCBLEND, alphaop)
erState(DBDRS_DESTBLEND, alphaop)

* SetRenc

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Texture State

Fixed Function Rendering
» SetTexture

e Loads the texture and its bits
» SetTextureStageState

* Sets the state, per stage

Texture State

Programmable Rendering
* Still uses SetTextureStageState for

e Filtering: Min-, Mag-, and Mip-
e Tiling, wrapping modes
* Shader performs the rest of the operations

Locking Textures |

LockRect () can lock whole surface or sub-
rect of 2D texture or face of cube map
e Lock with RECT or NULL for entire surface

e Returns D3DLOCKED RECT

e Consists of data pointer and pitch (in bytes)
e Simpler than DX7 surface lock return DDSURFACEDESC2

e Must specify mip level required for lock

e Cube textures must also specify face

2 O 0 EXPLORE INTERACTION

AND DIGITAL IMAGES

Locking Textures Il

Use LockBox() for to lock volume or
sub-volume of 3D texture

e Lock with D3DBOX structure or NULL for
entire volume

* Must also specify mip level

» All 3 dimensions of each level are divided by
2 (rounding down) down to minimum 1x1x1

e Returns D3DLOCKED BOX

» Consists of data pointer, row pitch and slice
pitch

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Locking Textures lli

Compressed DXT formats
e Can only be locked on 4x4 boundaries

e Minimum actual size is 4x4 on a side

e Textures or mip levels less than this are
padded

Render Targets

Standard back-buffer
Optional texture as render-surface

J on the device

B HRESULT SetRenderTarget(IDirect3DSurface8*
pRenderTarget, IDirect3DSurface8* pNewZStencil);

D3DX support

° D3DXCreateRenderToSurface
. ID3DXRenderToSurface

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Render Targets

Uses
e Dynamic textures for reflection, env-mapping

e cubemaps

e Procedural textures

* (A bit more optimally than many blts)

Morning Break

e ~10:15
e Be back in 15 minutes
e Vertex Processing

Vertex Processing

Architecture & Pipeline

Programmable Shaders
API

Direct3D Programmable Architecture

Geometry
L D_r.l*n

‘iﬂfm

Pixel

shader

Samplers Output pixels

m
-
z O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Vertex Processing

Vertex Processing continues to be an area
of IHV innovation/differentiation

Most hardware is flexible inside
* Fixed function APl does not expose this

Minimize policy imposed
on application
Enable smaller dedicated algorithms

AAAAAAAAAAAAAAAA

Vertex Processing Support in
DirectX 8

Implemented in refrast
For testing purposes

Software implementations
optimized for

e Pentium Il, Ill SSE
* AMD Ké, K7 3DNow

Hardware implementations

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Language

Typeless vector language
e All values are nominally IEEE float[4]

e Converted from vertex buffer format before shader

Designed for 3D graphics

e Common operations like dot products
e Arbitrary swizzle of components

Implemented in
e HW pipeline

e SW pipeline, optimized for SSE, 3DNow!

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Direct3D Vertex Pipeline

Vertex Data |

¥

ERNgine

Geometry
Pipeline

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Vertex Pipeline

Vertex Assembly (format conversion)
Tessellation

Vertex Shader (or FF T-n-L)
Primitive Assembly

Clipping -frustum and arbitrary
Backface Cull

Perspective Division

Viewport Transform

EEEEEEEEEEEEEEEEEE

AAAAAAAAAAAAAAAA

Vertex Pipeline

Vertex Assembly

Gather all streams into one vertex

Convert all components to float format for
processing

Swizzle RGB data from integer ordering

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Pipeline

Tessellation

Set up primitive
For every component
e Compute new values at all points

Vertex Pipeline
Vertex Shader (or FF TnL)

Programmable stage

All components of one vertex are accessible
as inputs

No knowledge of previous vertices allowed
Includes any lighting, envt. mapping

Must generate homogeneous position
* Required for next stage

AAAAAAAAAAAAAAAA

Vertex Shader Virtual Machine

Input Vector

Const1
Const2
Cconst3

Vertex ALU

Const95

Colour

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Vertex Pipeline

Primitive Assembly

|ldentify vertices of a triangle
Or ends of a line

Re-unites vertices with topology
information

Primitive type, and any indices

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Pipeline
Backface Cull

Also requires assembled primitive

Vertex Pipeline
Clipping

Both frustum and Arbitrary
This must happen to entire primitive

May generate additional vertices and topology
data

* new triangles

May clip against guard band
» Like D3D Vertex pipeline does

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Pipeline

Perspective Division

Must be performed after clipping

Vertex Pipeline

Viewport Transform

Maps resulting vertices into screen space
coordinates

Vertex Processing
Programmability

Complete control of the transformation and
lighting pipeline

Custom vertex lighting

Custom skinning and blending

Custom texgen

Custom texture matrix operations

Insert vertex operation of your choice

AAAAAAAAAAAAAAAA

Vertex Shaders

Assembly language interface to the
transformation and lighting engine

Instruction set to perform all vertex TnL

Constant table to store data
e (matrices, light position, attenuation, etc)

Registers to save intermediate data
Reads an untransformed, unlit vertex
Creates a transformed and lit vertex

AAAAAAAAAAAAAAAA

Vertex Shader Assembly language

Fixed, complete, very powerful SIMD instruction set
Four operations simultaneously
e argb, xyzw

Dynamically loaded between primitive calls
Extensive support for vector and matrix operations
e lighting, rotations, etc.

Capable of efficiently implementing the entire
functionality of DX7

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

What a Shader does

Per vertex calculation
Processing of:
e Colors - true color, pseudo color

e 3D coordinates - procedural geometry, blending, morphing,
deformations

Texture coordinates - texgens, set up for pixel shaders, tangent
space bumpmap setup

Fog - elevation based, volume based

Point size

Shader program accepts one input vertex,

generates one output vertex - SICGRAPH
il ac . P WEXPLORE INTERACTION

AND DIGITAL IMAGES

What a Shader doesn’t do

Does not perform polygon based operations
Back face culling

Two sided lighting (more on this later)
Occlusion culling

Can’t write to other vertices

Does not create vertices

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

What is calculated?

Create a completely specified vertex
Vertex position in HCLIP space
And, optionally:

* Texgen/ texture matrix/ texture coord output

e Lighting/ color output
* Fog

e Point size.

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Applications

basic geometry transformation and lighting
models

advanced or custom lighting models

texture transforms and generation

vertex blending and morphing

advanced environment mapping functions

AAAAAAAAAAAAAAAA

Vertex Shader Components

Shader has 2 components: input + function

Declaration (input)
e Map vertex buffer streams to input regs

* Pre-load some constant registers

Code (function)
e |nstructions or fixed function

Can fail, if...

e Break rules (DirectX version-specific)

e (Few) caps disobeyed

No Vallda srequired = CMRGRAPH

- DIRECT
Ti
AAAAAAAAAAAAAAAA

Vertex Shader Declarations

Bind input data to shader input vertex registers

Three possible data sources:
e Read from input vertex stream

e Declared as constants

e Generated by surface tessellator

e -Normals and U,Vs

Indicate data formats used

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Declaration

°* Vertex structure

struct Vertex

{

D3DXVECTORS3 Position;
D3DXVECTOR3 Normal;
D3DCOLOR Diffuse; D3IDXVECTOR2 TexCoord0;

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Declaration
* Stream/register declarator

DWORD dwDecl[] =

{

D3DVSD_STREAM(0),

D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT _FLOAT3),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT D3DCOLOR),
D3DVSD REG(D3DVSDE_TEXCOORDO, D3DVSDT FLOAT2),
D3DVSD_END()

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Vertex Shader Declaration
* FVF code

DWORD dwFVF = D3DFVF_POSITION |
D3DFVF_NORMAL | D3DFVF_DIFFUSE |
D3DFVF_TEXO | D3DFVF_TEXCOORDSIZE2(0);

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Instruction format

Generally of the form:

OpName dest, [-]s1 [,[-]s2 [,[-]s3]] ;comment

e.g.
mov r1, r2
mad r1,r2, r3, r4

Destination ‘r’ can have a write-mask
Source ‘r’ can be swizzled

mov r1, r2.zxyw.

Resources
Input registers

Constant registers
Temp registers
Address register(s)
Output registers

Vertex Shader Program

Max instruction count

16
96
12
L

per rasterizer
128

r/'o 1
r/'o 1
r’'w 3
w/o 1

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Simple Instructions

°® nop * dp3
° MoV » dp4
° mul » dst
° mad o |t
°* add e M N

Max

slt
sge
expp

| 0g
rcp

nop, mov, mul

nop
e Do nothing

mov dest, src
* Move (with conditional sigh change, mask and swizzle)

mul dest, src1, src2
e Set dest to the product of src1 and src2

add, mad, rsq

add dest, src1, src2

e Add src1 to src2. [And the optional negation creates
subtraction]

mad dest, src1, src2, src3
e Multiply src1 by src2 and add src3 - into dst

rsq dest, src
e Source must have one subscript...

e dest.x = dest.y = dest.z = dest.w = 1/sqrt(src)

e Reciprocal square root of src (much more useful than

AAAAAAAAAAAAAA

dp3, dp4

3 and 4 Component dot products
dp3 dest, src1, src2

e dest.x = dest.y = dest.z = dest.w =

o (src1.x * src2.x) +
° (srcl.y * src2.y) +
o (src1.z * src2.z)

And dp4 does the same but includes ‘W’ in
the computation

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

min, max

min dest, src1, src2
e Component-wise min operation

maXx dest, src1, src2
 Component-wise max operation

slt, sge

slt dest, src1, src2
e dest = (src1 <src2)?1:0

» For each component...

sge dest, src1, src2
e dst = (src1 >=src2)?1:0

 Which is equivalent to...
e dst = (src1 <src2)?0:1

i.e. the exact opposite of slt

dst

dst dest, src1, src2

e Calculate distance vector. src1 vector is
(NA,d*d,d*d,NA) and src2 is (NA,1/d,NA,1/d).

e dest is set to (1,d,d*d,1/d)

* Which is what you want for standard attenuation...

lit

lit dest, src

Calculates lighting coefficients from two dot products and a
power.

Src is:

src.x = n « | (unit normal and light vectors)
src.y = n « h (unit normal and halfangle vectors)
src.z is unused

src.w = power (in range +128 to -128)

dest set to (1.0, src.x, L, 1.0)

e If src.x>0.0
* L= (MAX(src.y, 0) grc.w
o eLs_e | =

=~SICGRAPH

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

expp, log

expp dest, src.w
e dest.x =2 ** (int)src.w

e dest.y = fractional part (src.w)
dest.z = 2 ** src.w
dest.w = 1.0

log dest, src.w
e dest.x = exponent((int)src.w)

e dest.y = mantissa(src.w)
o dest.z =.lpg?(src.w) _ - -

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

rcp

rcp dest, src.w
e Source must have just one subscript (X, y, Z or w)

e dest.x = dest.y = dest.z = dest.w =

1/ src.w
e S0... this is the other half of the puzzle for division

* ... you divide by doing a ‘rcp’ and then a “‘mul’

=~SICGRAPH

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Complex, or macro, Instructions

° exp °* MBx2 °* Mix3
* | og ° MBx3 ° Midx4
efr C e n8x4

Exp, |og

Full precision versions of expp, logp

frc

Fractional part

e dest.x = m_Source[0].x -
(float)floor(m_Source[0].x);

e dest.y = m_Source[0].y - (float)floor(m_Source[0].y)

e dest.z = m_Source[0].z - (float)floor(m_Source[0].z)

e dest.w = m_Source[0].w -
(float)floor(m_Source[0].w

EEEEEEEEEEEEEEEEEE

AAAAAAAAAAAAAAAA

nBx2

e dest.x = m_Source[0].x * m_Source[1].x +
m_Source[0].y * m_Source[1].y + m_Source[0].z *
m_Source[1].z

e dest.y = m_Source[0].x * m_Source[2].x +
m_Source[0].y * m_Source[2].y + m_Source[0].z *
m_Source[2].z

nB8x3

e dest.x = m_Source[0].x * m_Source[1].x +
m_Source[0].y * m_Source[1].y + m_Source[0].z *
m_Source[1].z

e dest.y = m_Source[0].x * m_Source[2].x +
m_Source[0].y * m_Source[2].y + m_Source[0].z *
m_Source[2].z

e dest.z = = m_Source[0].x * m_Source[3].x +
m_Source[0].y * m_Source[3].y + m_Source[0].z *
m_Sogrce[(_i].z;

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

nBx4

e dest.x = m_Source[0].x * m_Source[1].x + m_Source[0].y *
m_Source[1].y + m_Source[0].z * m_Source[1].z

e dest.y = m_Source[0].x * m_Source[2].x + m_Source[0].y *
m_Source[2].y + m_Source[0].z * m_Source[2].z

e Dest.z = m_Source[0].x * m_Source[3].x + m_Source[0].y *
m_Source[3].y + m_Source[0].z * m_Source[3].z

e Dest.w = m_Source[0].x * m_Source[4].x + m_Source[0].y *
m_Source[4].y + m_Source[0].z * m_Source[4].z;

M x 3

e dest.x = m_Source[0].x * m_Source[1].x +
m_Source[0].y * m_Source[1].y + m_Source[0].z *
m_Source[1].z + m_Source[0].w * m_Source[1].w

e dest.y = m_Source[0].x * m_Source[2].x +
m_Source[0].y * m_Source[2].y + m_Source[0].z *
m_Source[2].z + m_Source[0]l.w * m_Source[2].w

e dest.z = m_Source[0].x * m_Source[3].x +
m_Source[0].y * m_Source[3].y + m_Source[0].z *

m_Source[3].z + m_Source[0]l.w * m_Source[3].w

AAAAAAAAAAAAAAAA

md x4

e dest.x = m_Source[0].x * m_Source[1].x + m_Source[0].y *
m_Source[1].y + m_Source[0].z * m_Source[1].z +
m_Source[0].w * m_Source[1].w

e dest.y = m_Source[0].x * m_Source[2].x + m_Source[0].y *
m_Source[2].y + m_Source[0].z * m_Source[2].z +
m_Source[0].w * m_Source[2].w

e dest.z = m_Source[0].x * m_Source[3].x + m_Source[0].y *
m_Source[3].y + m_Source[0].z * m_Source[3].z +
m_Source[0].w * m_Source[3].w

°* dest.w = m_Source[0].x * m_Source[4].x + m_Source[0].y *

m_Source[4].y + m_Source[0].z * m_Source[4].z +

m_Source[0].w * m_Source[4].w

AAAAAAAAAAAAAAAA

Vertex Shader Efficiency, Simple
Instructions

All execute in a single clock

Vertex Shader Efficiency,
Complex Instructions

m4x4, r, sO, s1 (4)
m3x3, r, sO, s1 (3)
expr, sO.w (12)
log r, sO.w (12)
frcr, sO (3)

Expand to number of instructions shown

Take corresponding clocks to execute
. = SIGGRAPH

RRRRRRRRRRRRR
AAAAAAAAAAAAAAAA

Vertex Shader Efficiency

Only one vertex at a time
Can’t do things like

» Tessellation,

e Area calculations

No branching -> parallelizable
Allows fast implementations

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Tuning

Shader does not expose timing

Most instructions are one clock
e So timing does not matter

RCP and RSQ are several clocks
* Do not use result immediately afterward

Tuning will be implementation-specific
e Don’t bother

e Just space out dependencies

£

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Sample 1

DP4 r0.x, v[O0O], c[O]
DP4 rO.y, v[0], c[1]
DP4 r0.z, v[O], c[?2]
DP4 rO.w, v[0], c[3]
MOV color[0O], c[4
MOV position, rOQ

o < < <

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Sample 1

Vertex element 0 is position
e Assumed homogeneous

Transform matrix in const[0-3]
Diffuse color loaded into const[4]

Executes in 6 clocks
e One-matrix transform with constant color

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader API

CreateVertexShader(decl, func)

e Takes declaration and

e Shader code instruction list

e Returns shader handle (dword)

SetVertexShader(handle)

e Loads shader to hw

SetVertexShaderConstants (float*)

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader API

D3DXAssembleVertexShader()

e Takes ascii shader language shown here

Utility to load matrices
* Must do a transpose

Utility to load a 4-vector

Vertex Shader Versioning

Implementation reports version
 D3DCaps8->VertexShaderVersion

All shaders preceded by token

e vs.1.0 is now legacy -> don’t use

e vs.1.1 for DirectX 8.0

Vertex Shader Portability

Direct3D® does all validation
e Runtime fails illegal shaders

Implementation is required to
execute anything that passes

Definition of shader model cannot
vary between implementations

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Shader Combinatorics

May have to create many
e Skinning, lighting, envt mapping
It’s OK, we’ll make more

Future versions may address this with
macros/subroutines

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Shader Consistency

All shaders preceded by token
1.0, 1.1 for DirectX 8.0

e 1.2 for DirectX 8.1
e 2.0 for DirectX 9.0

Card must support min feature set
e Else Direct3D does not pass to driver

Syntax separated from protocol
 Utilities will provide higher-level language support

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Usage Notes

TCl is ignored when using shaders

* All texture coordinates are mapped
in numerical order

All iterated quantities transferred out
of vertex shader are clamped to [0..1]
e If you need signed values you must

bias them in the vertex shader, and
then re-expand in pixel shader using _bx2

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Processing

Architecture & Pipeline

Programmable Shaders
API

Direct3D Programmable Architecture

Geometry
L D_r.l*n

‘iﬂfm

Pixel

shader

Samplers Output pixels

m
-
z O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Pixel Processing Features

Expose new rasterizer functionality

Multiple intermediate registers
* not just one _CURRENT

More address ops
* beyond _BUMPENVMAP

No more ValidateDevice()

Defined minimum feature set
e For DirectX 8 pixel shaders

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Support

Implemented in refrast
For testing purposes

Hardware implementations

Pixel Shaders

Typeless vector language
e All values are nominally 9- to 16-bit ints

Evolved directly from multitexture
e 2X from D3DTOP_MODULATE2X

e _bias from D3DTOP_ADDSIGNED
Since DX8 hardware must run DX7 apps

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Direct3D Pixel Pipeline
1 1

Pixel &
Texture
Blending

Rasterization
Ehaimne SLpen
Slznielinie

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Pixel Pipeline

Triangle Setup
Pixel Shader (or FF Multi-texture)

* |terate colours, texcoords, etc
e Sample textures with address ops
e Texture/colour blend

Fog Blend
Frame-Buffer Blend

Pixel Pipeline
Triangle Setup

Performs clip to inner frustum boundary
* Finishes work of guard-band

Compute gradients for all components in the
vertex

Prepare to iterate colours, texcoords for
each pixel

Feed iterated texcoords into respective
texture addressing/sampling units

AAAAAAAAAAAAAAAA

Pixel Shader Virtual Machine

Colour (diffuse & specular)
TC3 dO d1

constant
cO

iy
% " =

cd

Texture
Stages

Pixel
rQ

Pixel Pipeline

Iteration

Process whereby per-vertex attributes
become per-pixel ones

Affect colours
e Diffuse, Specular

And Texture Coordinates
°0,1,2,3

Currently these are all clamped to
* [0.0 .. 1.0]

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Pipeline
Pixel Shader Addressing

Perform any address perturbation defined
by pixel address shader

* BUMPENVMAP
 TEXMAT3x3

Put sampled texture colour in specified
temp register Rn

Expressed in pixel shader declaration
section

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Pipeline
Pixel Shader Blending

Combine register colours using specified
algorithm

e Texture colours in temp register

e lterated colours from vertex stream

e D3DRS_TEXTUREFACTOR-style colours from constants

Shader must include any desired specular
add

AAAAAAAAAAAAAA

Pixel Pipeline
Fog Blend

Fog is added using fixed function model
Never flat shaded

Pixel Pipeline

Frame-Buffer Blend

Alpha test can reject pixel here
* If so, can save read of FB data

Allows introduction of frame-buffer colours
and destination alpha channel

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Pipeline
Depth-Buffer Update

If pixel not rejected
* Write it out

Pixel Shader Programmability

Pixel processing power/flexibility requires a
more powerful model

e Running out of mode names

Nothing scales complexity better than
languages

Programmable syntax can scale over time

Tradition of flexible shaders in PhotoReal
rendering

AAAAAAAAAAAAAAAA

Pixel Shaders

Assembly language interface to the
pixel processing engine

Instruction set to perform pixel operations
e Texture addressing, blending, etc

Input registers preloaded with texture color
Constant table to store data

Registers to save intermediate data

Reads a transformed, clipped vertex
Creates an output pixel

AAAAAAAAAAAAAAAA

Pixel Shader Orthogonality

Cleaner syntax
e 2X, 4X orthogonal, etc

* lrp instruction takes 3" argument
* No more BLENDXXXX

Address Operators separated out as
declarations phase

* BUMPENVMAP
e BUMPENVMAPLUM

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Applications

Photo-realistic lighting

Membrane shaders
e Balloons, skin, etc

Kubelka-Munk shaders

e Translucency effects

Fur/hair shader
Plus more!

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Lunch

Return at 1:00
e Pixel Processing
* Pixel shaders, pixel shaders, pixel shaders
e Pixel Lighting
e Higher Order Surfaces
e D3DX utility library support

e Texture support, meshes, skinning, and more

E Authormg tool support

g3, Lightwave

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Components

Two parts to each program

e Texture Declarations

* Up to 4 Texture Address Ops

« Essentially here is where you say what each set of 4 texture
coordinates are doing

« This is HOW the texels are fetched

« Blending

e Up to 8 Texture Blending Ops
« These map to the register combiners similarly to the old
TextureStageStates

e This is AFTER the texels are fetched and filtered
e There is no loopback to the Texture Address Ops

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Pixel Shader Texture Inputs

Direct mapping between input register
colors and texture stages

 Temp registers preloaded with texture colors
from corresponding stages

e Conversely, textures are bound directly to temp
registers

e Using SetTexture(i, texture);
Texcoords are also mapped directly

Defined by texture declarations

~ DIRECT 8.0

AAAAAAAAAAAAAAAA

Texture Declarations

Separate pixel shader instructions
* Must appear at top of shader

e Can only use previously defined values

Can also perform some operations

* Modify texture coordinates used as addresses by
sampling stages

e Enable perturbation effects like Directx6
BUMPENVMAP

Pixel Instruction Format

OP<_opmod> d<dmask>, s<srcmod>

Pixel Shader Resources

Texture registers tn 4 r/w

Temp registers r 2 r/w 2
Color registers dn 2 r/o 1
Constant registers cn 8 r/o 2

Instruction count
* +Texture address ops 4

No output registers
e Just emit

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

reg.a
1-reg

-reg
reg_bias
reg_sgn

Pixel Source Arg Modifiers

* incompatible with -, _bias, or _sgn

Alpha replicate

Invert or complement*
Negate (sighed data only)
Bias (subtract 0.5)

Signed range conversion
i.e. bias and scale x2 or 2 * (x - 0.5f)

very common for dp3

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Op Modifiers

Scaling Modifiers
° instr X2 scales output 2x

° instr x4 scales output 4x

* instr_d2 divides output by 2

Saturation Modifier
* instr_sat clamp to range [0..1]

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Op Modifiers

You can use _sat together with scaling :

For instance :
add_bx2_satrO, r1, t2

Common Example :
dp3_sat r1, rO_bx2, t0O_bx2

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Output Masks
Allow portion of dest reg to be updated

* reg.rgb update only 3 colors
° reg.a update only alpha
* reg = reg.rgba does both <default>

Analog of DX6/7 COLOROP/ALPHAOP
In DirectX 8 Pixel Shaders v1.0

e Can’t separater, g, or b individually yet

e No arbitrary swizzle

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader ALU

Inputs R| G| B A R| G| B A
Input Modifier bias bias bias bias
<<, - <<, - <<, - <<, -

: Color Alpha
Instruction \ Op / \ Op /
v v

Output Modifier

AND DIGITAL IMAGES

Instruction Op Ordering
Input Modifiers

* Replicate Alpha

* Bias -0.5 for _bias and _sgn

e Scale x2 for _sgn
* Negate/complement

Core Instruction Execution

Instruction Modifiers
e Scale _2Xx, _4x, _d2

* Clam

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

DX8 Pixel Shader Instructions

Three types of Instructions
e Constant Definitions
e Similar to Setting the TFACTOR

e Texture Address Ops

* Fetching texels

e Texture Blending Ops

* Combining texels, constant colors and iterated colors to

produce SrcColor and SrcAlpha

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Setting Constants

def c#, x, vy, z, W

Sets the Constant, from O to 7 with the
appropriate floating point value

which will be clamped to be between
0.0f and 1.0f

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Setting Constants

def cO, 1.0f, 4.0f, -10.0f, 1.0f,

Note that not all Constants are visible to
all instructions

Instructions 0-1 reference Constants 0-1

Instructions 2-3 reference Constants 2-
3, etc.

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Texture Address Ops

Each Texture Address Op represents the use of
a particular set of texture coordinates

Either :

e Look up a filtered texel color
* Use as a vector

e Use as the part of a matrix

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Texture Address Ops

tex t0O
e Just fetch a filtered texel color

texcoord tDest
e Just turn the texture coordinate into a color

texkill tDest
e Kill any texels where at least one of s,t,r,qis <0

Texture Address Ops
texbem tDest, tSrcO

e Bump Environment Map

e U += 2x2 matrix(dU)
e V += 2x2 matrix(dV)
e Then Sample at (U, V)

Texbeml tDest, tSrcO
e Bump Environment Map w/ Luminance

e U += 2x2 matrix(dU)
e V += 2x2 matrix(dV)
e Then Sample at (U, V) & Apply Luminance

TEXBEM, BEML

e Consumes 2 stages/slots

AAAAAAAAAAAAAA

Texture Address Ops

Texm3x2pad t1, t0

e “padding” instruction as part of the texm3x2tex
instruction - performs a dot product of t0’s color
with these texture coordinates

Texm3x2tex t2, t0

e Take previous dot product from “pad” instruction
as the S coordinate

e Perform dot product of t0’s color with this
texture coordinate and use as T

Texture Address Ops

texreg2ar tDest, tSrc
e Sample from (tSrc.A, tSrc.R)

texreg2gb tDest, tSrc
e Sample from (tSrc.G, tSrc.B)

These are the general dependent texture read
operations

Theystaked. Ft of a color from them

to us as"‘?‘\’“ T coordinates of the tDe

3x3 Texture Address Ops

Texm3x3pad

e Padding for 3x3 matrix operation

o Uses the 3D texture coordinate as a row of the matrix

Texm3x3spec

 Compute Non-Local Viewer Specular reflection about
Normal from Normal Map

e tex t0 ; Normal Map
e texm3x3pad t1, t0O ; 15t row of matrix
e texm3x3pad t2, t0 ; 2" row of matrix

* texm3x3spec t3, t0, c0 ; 3" row, reflect & sample

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Local Viewer Reflection

Texm3x3vspec

 Compute Local Viewer Specular reflection about
Normal from Normal Map

e Eye vector comes from g coordinates of the 3 sets of
4D textures

e tex t0 ; Normal Map
e texm3x3pad t1, t0O ; 1t matrix row, X of eyevector
e texm3x3pad t2, t0 ; 2"d matrix row, y of eyevector

e texm3x3spec t3, t0, c0 ; 3 row & eye z, reflect &

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

3x3 Per-Pixel Vector Rotation

texm3x3mat

e Rotate vector through 3x3 matrix, then sample a
CubeMap or 3D texture

e tex t0 ; Normal Map

e texm3x3pad t1, t0O ; 1t matrix row

e texm3x3pad t2, t0 ; 2" matrix row

e texm3x3mat t3, t0, c0 ; 379 matrix row & sample

* mov r0, t3

=~SICGRAPH

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

RO

R1

R2

R3

200 Lo oo
EXPLORE INTERACTION

AND DIGITAL IMAGES

Texture Blending Ops

After all Texture Address Ops, you can have
up to 8 texture blending instruction slots

Each slot can hold a color and an alpha
operation to be executed simultaneously

These are analogous to the old
TextureStageState COLOROP and
ALPHAOPs

You must add your own specular if using the
Pixel Shader pipeline

AAAAAAAAAAAAAAAA

Texture Blending Ops

add dest, src1, src2
dest = src1 + sr2

sub dest, src1, src2
dest = src1 - src2

dp3 dest, src1, src2
dest = (src1.x * src2.x + src1.y * src2.y ...)

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Texture Blending Ops

mul dest, src0O, src1
dest = srcO * src1

mad dest, src0, src1, src2
dest = (srcO + src1 * src2)

mov dest, src
dest = src

cnd dest_ ro.a, src1, src2

_&5){dest-src1 } W

AAAAAAAAAAAAAAAA

Dot Product Lighting

Dot products require signed data, so we
need to convert inputs using sgn

Lighting clamps negatives using sat
diffuse is light direction

tex tO , nornmal map

dp3 sat r0, tO sgn, dO sgn

These were hard coded into DirectX 6/7’s
D3DTOP_DOTPRODUCT3 op

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Efficiency and Instruction
Pairing
Hardware has 2 pipelines:

» 1 vector (RGB) and 1 scalar (Alpha)

Instructions can be paired
* Reducing total clocks is important

o Affects pixel fill rate performance

Pairs specified via shader syntax

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Output Masks and Pairing

Output masks indicate pipeline used
* .a indicates op is in scalar pipe

e .rgb indicates op is in vector pipe

e .rgba puts same op in both pipes

* S0 it already counts as a pair

Like DirectX 6/7 COLOROP/ALPHAOQOP

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Dot Product Output Masks

Dot products are vector operations

Always executed in vector pipeline

e Can specify different instruction in alpha pipe and
still get pairing:

dp3 r0O.rgb, t0, t1
mul rO0. a, to, t1l

e Can’t specify dot as scalar instruction without dot
as vector instruction

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Comparison Instruction

cnd d, sO, sl1, sZ2

Has restrictions in DirectX 8
° Input sO MUST be “r 0. a”

* Compare MUST be “ > 0.5"

Therefore net instruction returns
°d =(r0.a>0.5 ? s1 : s2)

Will be more general in the future

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Comparison Example

To compare 2 values:
sub r0, vO, vl bias

cnd rO, of O o |

r0. a,

Since a-(b-0.5)=a-b+0.5

Sample Pixel Shader

¢ Base texture with light map,
diffuse color, and specular add

D3DPS 01, [/ Direct X8 version
tex tO [/ decl are texture*
tex t1l /|l declare |ight map*

mul r0O, t0, t1l /1 modul ate |1 ght map
mul r0O, r0, dO /] nmodul ate diffuse
add r0, r0, di [/ add specul ar

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Gloss Map Shader

Gloss factor in alpha of base texture

D3DPS 01, [/ Direct X8 version
tex tO /] base texture + gl oss
tex t1l [/ environnent map

mul rO, t1, t0O.a // scale envt by gl oss
/1 replicate al pha 1st

add r0, r0, toO [/ add 1 n base texture

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Texture Address Shader
BUMPENVMAP on lit base texture

e As in EarthBump.exe

D3DPS 01, [/ Direct X8 version
TEX, r0 /|l declare texture*
TEX, rl /| decl are bunpmap*
TEXBEM r3, rl /[l perturb and then

/] sanple envt map
MU, rO, r0, 11 /'l modul ate diffuse
ADD, rQ0, rQ0,

r3 /| add specul ar envt.

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Lighting
3-D BUMPENVMAP

e Sample normal map

e [terate 3x3 matrix across polygon

* Use texcoords as rows

e Transform and index into diffuse radiance
cubemap, or

» Reflect and index into specular environment
cubemap

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Diffuse Lighting
Use DOTPRODUCT3 for diffuse intensity

D3DPS 01, [/ Direct X8 version
TEX, rO0 /] declare n-nmap

TEXDP3X, r3, r0 [[1St row of xform
TEXDP3Y, r3, r0 [2" row of xform
'EXDP3Z, r3, rO0 [l 3'd row of xform

DP3 r0, r3, i1 [/ light dir In i1l

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Diffuse Irradiance

D3DPS 01, [/ DirectX8 version
TEX, r0 /] declare n-nmap
TEXDP3X, r3, r0 [/ 1St row of xform
TEXDP3Y, r3, r0 [l 2" row of xform
TEXDP3ZS, r3, r0 /[l 3'9 row of xform and

[/ then sanpl e cube map
MOV r0O, r3 [/ emt to FB bl ender
[/ wll nodulate in FB bl ender wth base
[/ texture from precedi ng pass

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Specular Mapping

D3DPS 01, [/ DirectX8 version

TEX, r0 /] declare n-nmap
TEXDP3X, r3, r0 [/ 1St row of xform
TEXDP3Y, r3, r0 [l 2" row of xform
TEXDP3ZRFIS, r3, r0 // 3'd row of xformthen

/[l reflect Infinite & sanple cube map

MOV r0, r3 /] emt to FB bl ender
[l wll add to Frane Buffer contents

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Combination

5-stage

D3DPS 01, [/ DirectX8 version
TEX, rO0 [/ declare n-nmap
TEXDP3X, r3, r0 [1St row xform
TEXDP3Y, r3, r0 [2" row xform

TEXDP3ZS, r3, r0 [3"9 row xform &di f f
TEXDP3ZRFI'S, r4, rO0 // reflect and then

/|l sanpl e envt cube nap
MOV, r0O, r4 /| out put specul ar col or
MOV, r0O.a, r3.b /[l put diffuse In al pha

EEEEEEEEEEEEEEEEEE

AAAAAAAAAAAAAAAA

Texture Coords per Stage

0 Texture coords of bumpmap
1 1st row of 3x3

2 2nd row of 3x3
3 3rd row of 3x3 for texmat3x3*

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Textures Set

O Bump map image (normals in RGB)
1 Ignored, no texture set
2 Diffuse lighting cubemap

e diffuse light irradiance

3 Specular lighting cubemap

e environment map

e Usually much higher resolution than diffuse
cube map

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader API

CreatePixelShader(func, &Handle)
e Takes Shader code instruction list

e Returns shader handle (dword)

SetPixelShader(handle)

e Loads shader to hw

SetPixelShaderConstants (float*)
* Load pixel shader constant register(s)

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader API
D3DXAssemblePixelShader()

e Takes ascii shader language shown here

Pixel Shader State

String .asm syntax defines shaders

Still uses TSS for
e Filtering: Min-, Mag-, and Mip-

e Tiling, wrapping modes

Can use state blocks for these

Put shader handle in same block if you
want to group them together

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Debugging

Reference device is early
development environment

* Allows interactive debugging

* Debug port can be disabled for retail

MFCPixelShader sample in SDK
DPFs in debug runtime
IHV tools provide debugging support

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Versioning
D3DCaps8->PixelShaderVersion

e Major.Minor version humber

* Indicates level of shaders that this
implementation can always Create()

All shaders preceded by token

e ps.1.0 is now legacy -> don’t use
e ps.1.1 for DirectX 8.0

* ps.1.2 for DirectX 8.1
-+ psize0fs “DirectX 9.0 =SICGRAPH

e

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pixel Shader Cap
D3DCaps8->MaxPixelShaderValue

e Represented as a float

Indicates internal data range of colors used
in pixel processing
e 1.0 means [-1 .. 1]

* 0.0 means [0 .. 1] as per DirectX6/7

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Sighed Textures

Sighed means true negative, not biased

UVWQ indicate sighed channels
e L6V5U5 formats for bem, beml only

* In multitexture or pixel shaders

D3DFMT_Q8W8V8US is sighed ver
of D3DFMT_A8B8GS8RS

Can use signed or biased with
* texm*, dp3, D3DTOP_DOTPRODUCT3

AAAAAAAAAAAAAAAA

16-Bit Textures

Enable improved image quality for
dependent read operations

Are still only 32-bits per pixel
e Therefore only support 2 channels

One format added in DirectX 8.0
e D3DFMT V16U16

Unsigned version added in DirectX 8.1
. D3DFMT__G16R16

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Art For Pixel Shaders

Use biased formats instead of signed

_bx2 allows using same art for:
e dp3 pixel shaders

» texm3x3* pixel shaders
e DOTPRODUCT 3 multitexture fallbacks

Note: There is now a 16-bit unsigned format
in 8.1, so can use _bx2 here also

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Proposal

Store bump maps as height fields on CD
e Compact, compressible, independent

On load of image
* Generate normal maps for dot shaders

e Generate perturbation maps for BEML
* Which require signed components

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Pretty pictures...

S3IOVWI TVLIOId d
NOILDVYILNI J40Td

4
w

Pixel Lighting

Fundamentals
Standard Per-Pixel Lighting
Custom Per-Pixel Lighting

Goals

DirectX 8.0 allows enough flexibility for a variety
of lighting models

We want everyone to be understand the standard
models and be able to define their own models
based on their needs

This talk will cover the standard models, the
process of defining new models, and provide
examples of how others have done this

AAAAAAAAAAAAAAAA

Topics

Fundamentals of Pixel Lighting
Standard Lighting Models

o Per-Vertex

e Per-Pixel

e Anisotropic Lighting
Custom Lighting Models
e Roll your own

* Area lights, fresnel shaders, etc.

Overview Of Pixel Lighting

Tangent Space Basis Transform
e Approximations

Per-Pixel Diffuse Lighting

* Fallbacks to emboss, etc.

Per-Pixel Specular Lighting
e Fallbacks to subtraction, etc.

Per-Pixel Anisotropic Lighting
» Fallbacks to per-vertex anisotropic

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Lighting
All lighting math should be

in same coordinate space

Normal maps and bump maps are stored in
texture space (tangent space)

Light directions and environment maps are
in object or world space

We need to construct the transform between
them

“Tangent space basis”

AAAAAAAAAAAAAAAA

Texture Coordinate System

Per-Pixel Lighting

Basis computation

Normal Map onto.mrfassis

Tangent Space Basis

Rows of matrix are vectors:

Normal is z-axis vector
e Comes from std vertex normal

Tangent is u-axis vector
Binormal is v-axis vector

If orthonormal, thenv =uxw
* Binormal = Tangent cross Normal

Terminology convention

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Lighting

Pre-computing the Tangent Vector

The desired vector is the vector which

points along the U axis of the texture at
every point

Per-Pixel Lighting

Setting up the Matrix

From linear algebra, if we have an
orthonormal basis, then the inverse matrix
is the transpose

So, given U,V,W are the basis vectors
of the surface. Then, the transform is:

[U.x U.yU.z] [Light.X]
[V.x V.y V.z] *[Light.Y]
[WxW.yW.z] [Light.Z]

AAAAAAAAAAAAAAAA

Per-Pixel Lighting

Matrix expansion

Expanding this out, it becomes
Light.X’ = DOT3(U,-Light)
Light.Y’ = DOT3(V,-Light)
Light.Z’ = DOT3(W,-Light)
U = the tangent along X axis of texture
W = the normal
V = the binormal UxW

* Note that we dot against the negatlve
of*ﬁh Direction

AAAAAAAAAAAAAAAA

Per-Pixel Lighting

The magic tangent equation

Vec1 = Vert3 - Vert2

Vec2 = Vert1 - Vert2

DeltaU1 = Vert3.u - Vert2.u

DeltaU2 = Vert1.u - Vert2.u

DirectionV = | DeltaU2*Vec1 -DeltaU1*Vec2) |
DirectionU = | (DirectionV X VertexNormal) |

Vert1-3 are vertices of the triangle
Tangents need to be averaged
Be careful about Texture wrapping!

D3DX will do this for you

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Blinn’s Basis fn

Compare with his results

Transpose as inverse requires orthogonal
basis

Alternatives
e Compute tangent and binormals in tool

e Compute normal in shader
e Allows non-orthogonal basis

 Use cross products to invert

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Cross Product To Invert

If mostly unit length
eV =NxU
e U =VxN

Tangent Space If Skinning

Not much more work to add
Have to skin normals and tangents

Generate binormal after skinning
e Else have to skin 3 vectors

Works fine with
* Indexed Palette Skinning

e 2/4-Matrix Skinning
* Morphing, etc.

If you s sk:m)0

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Two Approaches

Pixel lighting in tangent space

e Use tangent-space basis to transform light direction
vectors into tangent space

e Common for procedural models

e Diffuse or specular

Pixel lighting in world space
 Transform data from tangent space
into world space
 Required for map-based techniques

* Diffuse or specular

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Lighting In Tangent Space

Faster since transform can be done
at a per vertex level

* Less vertex clocks than vertex lighting

» Per-pixel dp3 is fast as any pixel op

For diffuse and specular in same pass

e Compute light direction and half-angle vectors in
vertex stage and transform both into texture space

Perturbation and dot product are done in

plxeﬂ!npﬂpe -shader or multlte)@-@@‘m:

AAAAAAAAAAAAAAAA

Tangent Space Lighting

The vertex shader

/Il v8 is tangent vector
/'l v3 is normal vector
/[l c0-c3 is Wrld Transform
[l cl2 is light dir

nB8x3 r7,v8, cO /[l transformtangent to world space
nB8x3 r8, v3, cO [/ transformnornmal to world space

mul r0, r7.zxyw, r8. yzxw, /'l cross prod to generate bi nornmal
mad r5,r7.yzxw, r8. zxyw, -rO0;

dp3 r6.x,r7,-cl12 /|l transformthe |ight vector,
dp3 r6.y,r5,-cl2 /[l by resulting matri x
dp3 r6. z, r8¢

S 1 re e et o SICORUAPHF
_ DIRECT -

EXPLORE INTERACTION
AND DIGITAL IMAGES

Per-Pixel Diffuse Effects
dp3 Lighting

Per-pixel diffuse lighting is consistent with
standard lighting model
(with no specular)

Nice, because there is no need to modulate
against another lighting term. Each pixel is
correctly lit

Filtering can be a major problem. Normals
cannot be filtered for a
variety of reasons

e

AAAAAAAAAAAAAAAA

Per-Pixel Diffuse Lighting

The Vertex Shader

mul rO,r7.zxyw,r8. yzxw /|l Cross prod to get binornal
mad r5,r7.yzxw, r8. zxyw, - rO0;

dp3 r6.x,r7,-cl12 // xformlight dir into tangent space
dp3 r6.y,r5,-cl12
dp3 r6.2z,r8,-cl2

mul r6.xyz,r6.xyz, c33. xyz [l mutiply by 0.5,
add r6.xyz, r6.xyz, c33. xyz [/ then add 0.5 to bias

nmov 0DO0. xyz, r6. xyz /'l load biased light dir into col or
nov oTO. xy,v7.xy [/ load texture coords for bunp map
nmov oTl.xy,v7.xy [/ load texture coords for texture

=~SICGRAPH

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Diffuse Lighting

State Settings

Must be careful about filtering

No need to normalize incoming vector
* In most cases

Col or Op[O]
Col or Ar gl O]
Col or Ar g2[0]

Dot Pr oduct 3;
Text ure;
Di f f use;

Col or Op[1] = Modul at e;
Col or Argl[1] = Texture;
Col orArg2[1] = Current;

Ver t exShader Const ant [O] Wrld Matri Xx;
Ver t exShader Coggst ant [8]

: Total Matri x;] - .
- Vert exShadc8Omsh ant [12] Li ght Direction; W

Ly T —
AND DIGITAL IMAGES

Per-Pixel Diffuse Lighting

Conclusions

Easy to get good-looking results
Works on any hardware with dp3

Need to generate a normal map from height
field (future D3DX functions will do this for

you)
Be careful about filtering
e Cosine (dp3) is not a linear function

AAAAAAAAAAAAAAAA

Multitexture DOTPRODUCT3
Per-Pixel Diffuse Fallback #1

Multitexture fallback for
DirectX 7.0/6.0 cards

D3DTOP_DOTPRODUCT3
e Check cap, use MT shader

e Remember this does _sat and _bx2 automatically

* Must use biased art for normal maps
If you need sighed result, forget it

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Emboss Bump Mapping
Per-Pixel Diffuse Fallback #2

Only requirement is a dual texture
unit with a subtract operation

Works by shifting a height map in
the direction of the light vector, and
subtracting this from the base height

The results can be very convincing,
but takes quite an effort to tune for
good looking results

AAAAAAAAAAAAAAAA

Emboss Bump Mapping

The Vertex Shader

vs. 1.0
mdx4 r0, vO, c8
nov oPos, r0

nB8x3 r7, v8, cO /1 transformlight vector into texture space
nMBx3 r8, v3, cO

mul rO, r7.zxyw,r8.yzxw

mad r5,r7.yzxw,r8. zxyw, - r0;

dp3 r6.x,r7,cl2

dp3 r6.y,r5,cl2

dp3 r6.z,r8,cl12 don't need this -only x and y shifts matter

/|l set up the texture, based on light direction:
mul rl.xy, r6.xy, -c24.xy
mov oTO. Xy, W/.Xy /'l copy the base texture and

add oT1. Xy Ay, r1.xy /1 of fset tﬁeg,@m

~ DIRECT
EXPLORE INTERACTION
AND DIGITAL IMAGES

[l si oIe dot product to get gl obal darkeni ng effects

Emboss Bump Mapping

Other states

Multitexture settings:

Col or Op[O] = Sel ect Argl,;

Col or Argl][O] = Texture;

Col or Op[1] = AddSi gned,;

Col orArgl[1] = Texture | Conpl enent;
Col orArg2[1] = Current;

O fset Const ant
Wrld Matri x (transpose)

Ver t exShader Const ant [24]
Ver t exShader Const ant [O]

Vert exShader Constant[8] = Total Matrix (transpose)
Ver t exShader Const ant [12] Li ght Direction;

& olei ght Texture: ~SIGGRAPH "

A W EXPLORE INTERACTION
I‘El g ht TeXt ur e: AND DIGITAL IMAGES

Emboss Bump Mapping

Conclusions

Fallback for hardware which does not
support dp3 in pixel pipeline

e Most DirectX 6-generation cards

For ideal results, modify artwork slightly
e Textures should be brightened on load

e Or use MODULATE2X, etc.

Can be filtered much more easily
than normal maps

° ThlS techmue may be better than dp3

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Other Diffuse Fallbacks
BEML with 0.0 texcoords on G400

e Sample on Matrox site

e Can do arbitrary color shifts with interesting bump map

OIM

* Needs no special hardware

e Takes tons of passes (6-12)

Specular Effects

Specular*(N.H)**(power)

How do we get the exponent?
* Multiply-based exponentiation

* Table-based exponentiation

Per-Pixel Specular Lighting

Similar to diffuse lighting
e But requires a pixel shader

Instead of light direction, use an
interpolated half-angle vector H

 Computed in Vertex Shader

In pixel shader
* H is dotted with pixel normal

* raised to a pre-determined power

Specular is added to other Pass€Seysmramer-

AAAAAAAAAAAAAAAA

Per-Pixel Specular Lighting
Half Angle Vertex Shader

vs. 1.0 [l for pow2 per-pixel specul ar
mix4 r0, vO, c08

nmov oPos, r0
nBx3 r7,v8, c0
nBx3 r8, v3, c0
mix4 r2,v0, c0

add r2,r2,-cl14 /] conpute view direction
dp3 r3.X,r2.xyz,r2. xyz

rsq r3.xyz,r3.x

mul r2.xyz,r2.xyz,r3.xyz // normalize

mul rO,r7.zxyw, r8.yzxw, [/ cross product
mad r5,r7.yzxw, r8. zxyw, - rQ0;
dp3 r6.x,r7,-cl2 [l transformlight (r6)

dp3 r6.y,rs, - -
dP3 phrsy =SICGRAPH -
[l and vi ew Veca' @ O 11 EI;(P].D;IE INTERACTION

- dp3 rl.>
AND DIGITAL IMAGES

)
!

Per-Pixel Specular Lighting
Half Angle Vertex Shader

/'l normalize the half angle (in surface space)
add r2.xyz,r6.xyz,rl. xyz

dp3 r3.X,r2.xyz,r2. xyz

rsq r3.xyz, r3.x

mul r2.xyz,r2.xyz,r3.xyz

/'l scale and center (bias) for
mul r2.xyz,r2.xyz, c33.xyz

use I n pixel shader

add oD1. xyz, r2.xyz, c33. xyz /'l half-angle goes into D1
mul r6.xyz,r6.xyz, c33. xyz
add oDO. xyz, r6. xyz, c33. xyz [l 1ight goes into DO

nmov oT0. Xy, v7. Xy
nov oT1l. xy, v/. Xy

/| copy texcoords

=~SICGRAPH

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Specular Lighting

Multiply exponential pixel shader

ps. 1.1 /'l pow2 exponentiation by multiplies
tex t0 /'l normal vector nmap
tex t1l [l diffuse texture

specul ar |ighting dot product
dp3_sat r0,t0 _bx2,vl bx2// tO0 and vl are bi ased

mul r1,r0,r0 // 2nd power
mul rO,rl,r1l // 4th power
mul r1,r0,r0 // 8th power
mul rO,rl,r1 // 16'" power!

di ffuse |lighting dot product
[/dp3 r1,t0,v0 _bias /1l vO is light direction

[Trmul 10, r0, tL- [nDdU|aEEﬂ§éE$E§Eikﬁééﬁi§
T, /1 add spe¢ .

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Specular Lighting

Additional States, Vertex Constants

Vert exShader Constant[0] = Wrld Matri X

Vert exShader Constant[8] = Total Matrix

Vert exShader Constant[12] = Light D rection

Vert exShader Constant|[14] = Canera Position (Wrld)
Vert exShader Constant[33] = (.5f,.5f,.5f,.5f)

MnFilter[0] = Point;
MagFi I ter[O] = Linear,;
MpFilter[0] = Linear;

Text ur e[0] = Normal Map
Texture[l] . ,= Color Mp

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Specular Lighting

Multiply Exponential Conclusions

Easy to implement
Can be used with diffuse lighting

However:
* Exponentiation sensitive to precision

e Technique can’t be used for powers >16

On higher precision parts, this may
not be an issue

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Specular Lighting
3x2 Table lookup

Uses texture as table of exponents
e Stores functiony = pow(x)

Uses dependent read capability
e Texm3x2tex instruction

3x2 multiply is also 2 dot products

e Can do specular and diffuse if desired

e Or two light sources, etc.

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Specular Lighting
Half Angle Vertex Shader

vs. 1.0 /| for tabl e-based per-pixel specul ar
mix4 r0, vO, c08

nov oPos, r0
nm8x3 r7,v8, c0
mMx3 r8, v3, co
mix4 r2,v0, c0

add r2,r2,-cl14 /1 conpute view direction
dp3 r3.X,r2.xyz,r2. xyz

rsq r3.xyz,r3.x

mul r2.xyz,r2.xyz,r3.xyz /'l normalize

mul rO, r7.zxyw,r8.yzxw, /'l Cross product

mad r5,r7.yzxw, r8. zxyw, - rQ0;

dp3 r6.x,r7,-cl12 /|l transformthe |light (r6)
dp3 r6.y,r5, -ck

// and the vi eWZ%ﬂQ{ORE</NrTEJA?TION
AND DIGITAL IMAGES

dp3 Bl
dp3 r1. >

)
!

Per-Pixel Specular Lighting
Vertex Shader - 3x2 lookup

/[l normalize the hal f-way vector (in surface space)
add r2.xyz,r6.xyz,rl. xyz
dp3 r3.X,r2.xyz,r2. xyz
rsq r3.xyz, r3.x
mul r2.xyz,r2.xyz,r3.xyz

Pass hal f-way vector to pixel shader as stage 2 texcoords
nov oT2. Xxyz, r2.xyz /'l don’t need to bias these

nov oTl. xyz, r6.xyz

nov oT0. Xy, v7. Xy

nov oT3. Xy, V7. Xy

=~SICGRAPH

2 O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Specular Lighting

3x2 pixel shader

ps.1.1 /| exponentiation by table | ookup
/'l texcoord tl /1 the diffuse light direction
/'l texcoord t2 /1l hal f-angle vector

/[l texture at stage t2 is a table | ookup function

tex t0 /| sanple the nornmal map
texnBx2pad t1, t0O _bx2 // diffuse dotproduct
texnBx2tex t2, t0 _bx2 [// 2nd dotprod and table read
tex t3 /| sanple a base col or texture

nov r0,t2 /[l get intensity
nov rl.rgba,r0.a // extract diffuse from al pha chan
mad r0,r1,t3,r0 [l = diff*tex + spec

 DIRECT .t

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Specular Lighting

3x2 Function Table Texture

voi d Li ght Eval (D3DXVECTOR4 *col, D3DXVECTOR2 *i nput,
D3DXVECTOR2 *sanpSi ze, voi d *pf Power)

{

float fPower = (float) powi nput->y, *((fl oat*) pfPower));

col ->x = f Power;
col ->y = f Power;
col ->z = f Power;
col ->w = i nput - >X;

}

D3DXCr eat eText ure(m pd3dDevi ce, 256, 256, 0,0,
D3DFMI_ ABR8G8B8, D3DPOOL MANAGED, &pLi ght Mapl100);

fl oat fPower = 100;

D3DXFi | | Texture(’pLi ght Map100, Li ght Eval , &fm

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Specular Lighting

Table lookup conclusions

Looks much better than exponent
via repeated multiplies

Supports high exponents: > 100

e Important for visual effect

Higher precision in texture read unit
Table lookup is nicely filtered
e Still some banding, but tolerable

Other functions can be used besides
exponent table...

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Specular Fallback

Analog of emboss for specular term
Subtract light map from height field

e Requires subtract capability

Manually position specular highlights
* Not hard with vertex shader

Composite using subtract and compare
Add result as per-pixel specular term

AAAAAAAAAAAAAAAA

Example
Wet Cobblestone Street

Streetlight Glows

Street Cobbles

Subtraction Specular

Light map highlight

Negated

WAy A

Anisotropic Lighting

Satin, spools of wire, fibers, etc.
Primarily a specular effect

Per-Pixel Anisotropic
Per-pixel “satin”

Similar to 3x2, but very different function in
the lookup table texture

Use lighting equation in Wolfgang Heidrich
and Hans-Peter Seidel’s paper:
sqrt(1- <L, T>)*sqrt(1-<V,T>) -<L,T>*<V,T>

This creates two dot products as inputs,
<L,T> and <V,T> where T is the tangent
vector L is the Light Vector, and V is the

AAAAAAAAAAAAAAAA

Per-Pixel Anisotropic
Getting around the 3x2

The 3x2 does 2 dot products, each of which will
return a result -1 to 1

But our texture is referenced from O to 1,
with .5f being O

No way to map around this problem for specular
term. With wrapping about 20%
of the texture will be grossly incorrect

Only solution is to use Cube Map
and use 3x3 instead

AAAAAAAAAAAAAAAA

Per-Pixel Anisotropic
Generating Procedural Texture

voi d Ani soTabl e(D3DXVECTOR4 *col , D3DXVECTOR3 *i nput,
D3DXVECTOR3 *sanpSi ze, void *pPower)

{
float fSinl, fSin2;
float Xx,y;
X = i nput->x; Il x wll be <L, T>
y = i nput->y; Il 'y wwll be <V, T> z is ignored
fSinl = sqrtf(1-x*x);
fSin2 = sqrtf(1l-y*y);
col->x = powf ((fSIin1*fSin2 - x*y),*((fl oat*)pPower));
col ->y = col ->x;
col ->z = col - >x;
col ->w = f Si nl; /[l diffuse intensity
}

D3DXCr eat eCubeText ure(m pd3dDevi ce, 256, 0, 0, D3DFMI_ ABR8G3BS,
D3DPOCL_MANAGED, pSat i nMap2) ;
float fPower = 40

D3DXFi | | Cﬁqb'g e o pSati nMap2, AnisoTable, &f Pﬁm

h...; EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Anisotropic
The Vertex Shader

vs.1.0

mdx4 r0, vO, c08
nmov oPos, r0

nB8x3 r7,v8, cO [l transform nornmal,
nB8x3 r8, v3, cO /! binormal, and
mix4 r2,vO0, cO /[l position to world space

mul rO0, r7.zxyw,r8.yzxw /'l cross product
mad r5,r7.yzxw, r8. zxyw, - r0;

add r2,r2,-cl4 /1 conpute view direction

dp3 r3.Xx,r2.xyz,r2. xyz /[l normalize it

rsq r3.xyz, r3.x

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Vertex Shader

[ltransformthe |ight vector
dp3 r6.x,r7,-cl2
dp3 r6.y,r5,-cl2
dp3 r6.2z,r8,-cl12

[/transformthe view vector
dp3 rl.x,r7,-r2
dp3 rl.y,r5,-r2
dp3 rl1l.z,r8,-r2

//1oad into T2 and T1
nov oT2.xyz,rl.xyz
oT1l. Xyz, r6. xyz

oTO. xy V7. xy

=~SICGRAPH

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Anisotropic
The pixel shader

ps.1.1 /'l anisotropic |ight nodel
tex t0

/'l generate a 3-D texture coordi nate

texnBx3pad t1l, t0 _bx2 Il x = <L, T>
texnBx3pad t2, tO0_bx2 Iy = <V, T>
texnBx3tex t3, t0 _bx2 /Il z = Sonme non-zero val ue

//cOis Ks, cl is Ka

/I the al pha channel contains the diffuse

//and rgb contains the specul ar

nmov roO0,t3;

mov rl.rgba,r0.a

mul r0,r0,cO

mad_sat r0,rl3c61,r0 -
 DIRECT 8.0 W

2 O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Anisotropic
States and Constants

World Matri x

Total Matri X

Li ght Direction
Camera Position
(1.0f,1.0f,1.0f,0.0f)

Ver t exShader Const ant [O]
Ver t exShader Const ant [8]
Ver t exShader Const ant [12]
Ver t exShader Const ant [14]
Ver t exShader Const ant [40]

Pi xel Shader Const ant [O]
Pi xel Shader Const ant [1]

(.8f,.8f,.8f,.8f) [/ Ks
(.2f,.2f,.2f,.2f) I/ Kd

MnFilter[0O] = Point;
MagFi |l ter[0] = Linear;
MpFilter[0] = Linear;
MnFilter[3] = Linear;
MagFi |l ter[3] = Linear;
MpFilter[3] = Linear;

Texture[0] o
_Text ur gir3ler

Bi por mal nmap; _ - _
smal Map; =SMCGRAPH -
EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Anisotropic
Conclusions

Can be used to make much more realistic
brushed metal and fiber cloth

e Crushed velvet

Can easily be used for hair or fur lighting -
each normal would indicate the direction
of the current hair

e Horse-hair, not always in tangent plane

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vertex Shader Anisotropic Anisotropic
Fallback #1

Can model local viewer effects

Inf viewer

Fixed Function Anisotropic
Anisotropic Fallback#2

Infinite viewer - infinite light model using
fixed function pipelines

* Probably a reasonable approximation

Use texture transform matrix to store light
direction and half-way vectors

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

World Space Pixel Lighting

Don’t transform light vectors in vertex
shader, leave in world space

Pass basis transform into pixel shader as 3
texture coordinates

* Generate binormal by crossproduct
to save bandwidth

Iterators will interpolate this matrix
to each pixel

Do perturbations and transforms in pixel
shader, .

AAAAAAAAAAAAAAAA

Per-Pixel Environment Map
3x3vspec texture lookup

Map-based specular technique
Most complete model of specular lighting

3x3 matrix transform and reflection calculation at
every pixel, then looks the result up into cube
texture

The 3x3 matrix is interpolated across
each polygon

* Given decent tessellation, artifacts are
not noticeable

AAAAAAAAAAAAAAAA

Per-Pixel Environment Map
Vertex Shader

vs. 1.0 /] set up for texnBx3 pixel shader
mix4 r 0, v0, c08
nov oPos, r0

n8x3 r7,v8, cO
nM3x3 r8, v3, cO
mdx4 r 2, vO0, cO

[l transform

add r2,r2,-cl4
dp3 r3.X,r2.xyz,r2. xyz

rsq r3.xyz, r3.x

mul r2.xyz,r2.xyz,r3.xyz// normalize it

/'l conpute view direction

mul rO,r7.zxyw, r8.yzxw, // cross product
mad r5, r7. yzxw. 8. zxyw, - r0;

' =SMCGRAPH -
 DIRECT .t

2 O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Environment Map
Vertex Shader -page2

[l transformthe view vector into the ws of each
/'l conponent of the matri X

dp3 r7.w, r7,-r2
dp3 r5. w, r5,-r2
dp3 r8.w, r8,-r2

/'l load these into the texture interpolaters
nmov ofll,r7/
nov oT2,r5
ol13,r8

/'l texture coordinate for the nornmal nmap.
nmov oTO0. xy, v/

 DIRECT .t

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Environment Map
Pixel shader

ps. 1.1 [l texnBx3v specular |ighting

tex tO

[l transformthe normal into world space
/]l do a reflection cal culation

/'l and | ookup result I1n a cube map

t exnBx3pad tl, t0 bx2

t exnBx3pad t2, t0 bx2

t exnBx3vspec t3, t0 bx2

mov r0,t3 /] nove result 1 nto col or channel
/] No texture slots left for a diffuse term

=~SICGRAPH

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Environment Map
Additional States

Ver t exShader Const ant [O] World Matri x
Ver t exShader Const ant [8] Total Matrix

Vert exShader Constant|[14] = Canera Position in Wrld
Space

MnFilter[0] = Point,;
MagFi I ter[O] = Linear;
MpFilter[0] = Linear;

MnFilter[3] = Linear;
MagFi I ter[3] = Linear;
MpFilter[3] = Linear;

i,

Text ur e[0]
-Text.urefcs)

B oo v ~SIGGRAPH -
- ClJbI C EnVI rorrent Nhlp; EXPLORE INTERACTION

AND DIGITAL IMAGES

Per-Pixel Environment Map
Conclusions

Cable of creating very realistic results

Very sensitive to artifacts:
* Filtering normals (as in diffuse case)

e Potential wide variance in the texture lookups into
environment map cube

Sensitive to precision of dependent texture
read unit

* Can cause “blockiness™

Be carefuj#¥i

AAAAAAAAAAAAAAAA

Fallback To BEML

Broader support in hardware

Now available from:
e Matrox, Trident, ATI, nVidia

Lots of samples out there

May be a win on DirectX 8.0 hw

e Consumes fewer instructions
than texm3x3*

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Perturbed Map
U'=U+du
V'=V + dv

Perturbatlon Map

What If Axes Don’tLine.Up?

Perturbed Map
U =U + du*M,, + dv*M,,

V> =V + du*M,, + dv*M,,
L

f’ du
dv

Perturbatlon Map

/i C iR

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Per-Pixel Lighting

Modifying vertex shaders

Examples here are directional lights,
but it is very easy to use point lights
for any of the shaders

Examples can also easily be modified
to handle skinned data

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Content Recommendations

Store data as height fields

Convert to desired format on load
» Leave alone for emboss fallbacks

e (and displacement maps someday)
e Compute normal map for dp3 shaders

e Compute DuDv map for BEML shaders

* May need to subsample for slower parts

If load time is a problem
¢ Cache on HD, or install time?

AAAAAAAAAAAAAA

Afternoon Break

o ~2:45
e Be back in 15 minutes

Custom Per-Pixel Lighting

e Summary of Techniques
e Legacy Lighting Models
e Do-It-Yourself Lighting

Diffuse Shader Techniques

dp3, texm3x3tex DX8 hw
DOTPRODUCTS3 DX6/7
Diffuse BEML DX6/7
EMBOSS =11}
Detail texture any
Per-Vertex Lighting any

e Software shaders or

e Fixed-Function Vertex hardware

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Specular Techniques

Procedural: exponent models

e Save dependent read effort

e Suitable for round, constant color lights
Map-based: texm®*, beml

* Much more general

e Arbitrary number of lights

e Arbitrary colors and shapes

e Basically any environment

Need care with precision

AAAAAAAAAAAAAA

Legacy Lighti

Diffuse*

"“"**(power)

VertexColor

_/

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Rendering > Lighting

Need modelling, animation, etc.

Main impact is deciding object versus vertex
versus pixel components

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

DIY Lighting Models

Don’t be restricted to basic model

Look for terms appropriate
to your scenario

Build shaders for those terms
Ignore everything else
Lots of examples follow

More in the literature
 Shirley, Schlict, etc.

* http://www.citeseer.com

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

The Process

Identify the key effects in each scene

e Analyze: what are the effects?

e Prioritize: which are important ones?

Characterize lighting environment

e How many sources?

* What shapes are they?

 What shadows, reflections result?

Importance will vary with content

AAAAAAAAAAAAAA

The Process Step 2
Ildentify an algorithm to implement
each key effect

Segment it into steps:
* Pre-computation - author-time, load-time

* Vertex-level ops - host, vertex shader

* Pixel-level ops - pixel shader, framebuffer

Define implementations
and test independently

Blend thgm. together

e

~ DIRECT 8.0

AAAAAAAAAAAAAAAA

Focus

Today we focus on local lighting

Still need attenuation effects, atmospheric
effects

Left as an exercise

Lighting Geometry

NA

AAAAAAAAAAAAAAAA

Samera

Incident Reflection
Geometry Geometry

m
-
z O O | EXPLORE INTERACTION

AND DIGITAL IMAGES

Incident Light

Compact Light

e Directional
e Point

Distributed Area Light
Secondary Reflectors

Surface Model

Single layer versus multilayer
Metal versus Dielectric
Deep interface effects

Level of roughness:
e Totally diffuse

 Non-coherent reflection

e Coherent reflection/refraction

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Reflection Geometry

Angle of reflection
Are there limits on visible angles?

Legacy Lighting Model
Diffuse*N.L
+ Specular*(N.H)**(power)

+ Ambient
+ Emissive

LightColor*VertexColor*TexelColor

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Development Of LLM

Lambert Model for diffuse term
Light reflected in all directions equally

Intensity depends only on input energy
* Amount of incoming light intercepted

* Area of micro-facet perp. to light direction

e Also known as a form-factor

Trivial to compute with dot product

AAAAAAAAAAAAAAAA

Lambert Microfacet

A
Microfacet | ©
Normal / Light Direction
y 4

Micro-facet

Microfacet can be a pixel or a vertex

Area Light Effects

Primarily a diffuse effect
More interesting ambient term
Provides “shadow detail”

Shows that object is grounded

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Vital For Outdoor Scenes

Two light sources: sun and sky

Sun
e Directional light source

e Sharp shadows

Sky

e Omni-directional light source

e Soft shadows

Most scenes need both
o MQL@ nt) tlng ambient term W

AAAAAAAAAAAAAAAA

Distributed Light Model

For large area light sources
* No single direction vector

Energy based on number of directions

e Fraction of possible directions that can illuminate
the microfacet

What % of possible hemisphere can shine on
this point?

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Exercise 1

“SIGGRAPH"-

EXPLORE INTERACTION
AND DIGITAL IMAGES

Exercise 2

2 O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Exercise 3

“SIGGRAPH"-

EXPLORE INTERACTION
AND DIGITAL IMAGES

Distributed Light Model

Hemisphere of possible lincident light directions

E
< M v
Microfacet

Mlcrofacet Normal

$ of hemisphere —SICGRAPH

Integrate With FormFactor
Light near plane of microfacet contributes
less energy

Use cosq form factor term to scale energy
down

Integrate over Hemisphere
L=1/p S cosq dd

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Model Irradiance Term

Light source is far field

Can Integrate envt map
to get diffuse irradiance

e Even works on DirectX 7.0 hardware

* Image-based lighting

e Arnold, Debevic, Heidrich

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Cube Map And Its Integral

Integrate Environment Map

Observe that its mostly 2 colors
» Sky color

e Ground color

Too slow for interactive applications
* Must be done off-line

* Then it can’t change during game

re Model
"n;ﬁ m

RRRRRRRRRRRR
AAAAAAAAAAAAAAAA

2-Hemisphe

.. DIRE!

2-Hemisphere Model

Model Elements

Sky Color

Ground Color

Actual Function

Color = a *SkyColor+ (1- a)*GndColor

Actual solution is:
*a=1-0.5%inqg for g < 90

ea= 0.5%ing for q > 90

We use:
*a=0.5+0.5%cosq

Integral Comparison

Actualrsoliution

m
= o
z O O | EXPLORE INTERACTION

AND DIGITAL IMAGES

Integral Comparison

Our solution takes 2 clocks
e dp3 and mad

Not visually identical
* Provides more bump detail along equator

* Provides less bump detail facing light

Still provides desired effect

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Incident Energy
What % of incident hemisphere
has what color?

Far field hemisphere
e Sky and ground

e 2 colors, simple proportion

Next term is:

What % of incident light is far field versus
locally reflected?

e Self-occluded

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Real-Time Approach

Apply environment model at runtime
e Environment simplified to 2 colors

e Sky versus ground plane

Enables dynamic updates
e (Car entering canyon, tunnel

e Pavement or sky color changes

Use pre-integrated same-object term

e Author-time utility routine to generates
“self-occlusion” term and stores in art

Can add more reflectors if needed

2 O 0 EXPLORE INTERACTION

AND DIGITAL IMAGES

Hemisphere Implementations

Can be done per-vertex
Or per-pixel

Hemisphere Vertex Technique

Vertex Shader

vs. 1.0 [/l vertex hem sphere shader
mdx4 oPos, vO, c8 [l transform position
n8x3 r0, v3,cO [l transform nornal

dp3 r0,r0, c40 /[l c40 1s sky vector
mov rl, c33 [/ ¢33 is .5f in all channels
mad r0,r0,c33,r1 /] Dbias operation

nov rl, c42 /[l c42 is ground col or
sub rl1,c4l,r1 /'l c4l1 is sky col or
mad r0,rl1,r0, c42 /1l lerp operation

[/lc44 = (1,1,1,1)
sub rl,c44,v7.zzz [l v7.zzz = occlusion term

il (0,10, ~SIGGRAPH"
- mJlﬁTﬁf, TO,-‘_;.
| = e 2 O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Hemisphere Pixel Technique
Vertex Shader

If you pass hemisphere axis as light dir

You can just use std tangent
space shader

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Hemisphere Pixel Technique
Vertex Shader

Pass Hemisphere axis as light direction

Then use std tangent space
vertex shader

e Just transforms hemi axis into tangent space
instead of light direction vector

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Hemisphere Pixel Technique
Pixel Shader

[/ vO.rgb Is hem axis in tangent space
[/ vO.a Is occlusion ratio from vshader
tex tO /[l normal map

tex t1 /| base texture

dp3_d2 r0,v0 bx2,t0 bx2 // dot normal wth hem axis

add r0,rQ0,c5 // map Into range, not _sat
lrp r0,r0,cl, c2
mul r0,r0,t1l /'l nodul ate base texture

=~SICGRAPH

2 O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Image-Based Lighting

Supported in many ray-trace tools
Renderer integrates at each point

Casts rays from micro-facet/pixel
out to all points of hemisphere

Accumulates color from ray intersections
e Other parts of same object

e Environment map image

Can take hours to render

AAAAAAAAAAAAAAAA

Lightwave Image

Limitations

This does not take object self-shadowing into
account

Works fine for convex objects, but others
will need more work

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Model Elements

Ground Color

=d Final Color

=~SICGRAPH

Computing Occlusion Term

Can be done vertex-to-vertex

* Fires hemisphere of rays from each
normal and store as vertex color

Or pixel-to-pixel
e Fire rays in height field, and store
in alpha channel of normal map

Or both

e Fire rays from vertices and pixels
and store in texture map channel

£

AAAAAAAAAAAAAA

Vertex-Vertex Occlusion

How much do adjacent polygons shadow
each other?

Store result in vertex attribute

Should handle object level effects
* Looking only at neighbors may be OK

We used D3DX raytrace routine
e Takes 1 day to run for 25k vert model

* 4 hrs for 4k vertices quadratic!

Adding an acceleration data structure would

AAAAAAAAAAAAAAAA

Image Comparison

Pixel-Pixel Occlusion

How much to adjacent pixels shadow each
other?

Example is bump-mapped earth

Geometry provides no self-occlusion since a
sphere is everywhere convex

All occlusion can be done in bumpmap In this
case

AAAAAAAAAAAAAAAA

Per-Pixel Occlusion Search

Look at adjacent height field elements
Fit a part sphere to 8 neighbors

Return ratio of area of part sphere to
possible hemisphere

Provided in D3DX for DX8.1

Same D3DX routine
 Computes normal maps from heights, and

e Can put occlusion term in alpha channel

AAAAAAAAAAAAAAAA

ldeal Occlusion

Vertex-Pixel Occlusion

How much do adjacent vertices shadow each
other

Store in texture channel

Requires normal map and geometry locked
together

D3DX may try to do this at some point

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Area Light Applications

Also appropriate for interior scenes
with diffuse lighting - fluorescents, white
walls/ceiling

Anywhere you can handle more “shadow
detail”

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Area + Directional Lighting

For outdoor scenes add sunlight term
e Addition is correct approach

Eliminates dark shadows due to
self-shadowing/occlusion term
where appropriate

Provides natural, realistic effect

Still need good shadows from directional
light

AAAAAAAAAAAAAAAA

Smaller Area Lights

Use dp3 as “cone” effect

e Can’t do spotlight cone angles
in pixel shader

Form-factor for grazing light

Still need range term: 1/r**2
e Compute in vertex shader

e Stored texture function table

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Gray-Day Shadows

Shadows cast by hemisphere light source are
like negative (dark) lights

e Fall off with form-factor angle

e Fall off with 1/r**2 just like lights

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Other Gray-Day Effects

Water surface lighting simulation

If you use fog for range limits, cloudy sky
makes more sense

Similar 2-color model
* Sky color hemisphere

e Transmitted color

e Backscatter from below surface

Add sky light scaled by Fresnel term
A type of procedurally generated

AAAAAAAAAAAAAAAA

Procedural Ocean MO&SIHemisphere

Surface
0 Normal

Transmitted Backscatter

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Fresnel Term Approximation

Use £ =1 -cosO = (1 - E dot N)
Raise to power for better approx
f = (1- cosB)?

HSchlick] used 5t pow

Hack curve fit to Glassner
Color = *SkyColor + WaterColor

Local viewer effects are important
 Compute eye direction accordingly

AAAAAAAAAAAAAAAA

Fresnel Comparison

solution

Fresnel PerVertex Technique
Vertex Shader

mix4 oPos, vO, c8; [/ xformpos. to output space
mix4 r0, vO, cO /[l xformpos. to world space,
n8x3 rl1,v3, cO [l xformnormal to world space

add r0,-r0,c14 /] conpute eye ray
dp3 r3.x,r0.xyz, r0. xyz

rsq r3.xyz, r3.x

mul rO0.xyz,r0.xyz,r3.xyz// normalize it

dp3 r0,r0,r1; /] dot eye ray wth normal

add r0,cl18,-r0 /1 conpl ement col or
mul rl,r0,r0 /| square
mul r0,rl1,r0 /| cube

nulr%LrO,qu"
add .o DOYIREET L

/] scale for fggsg? - -
[/ bias and emt S #f?hgéiit

AND DIGITAL IMAGES

Fresnel PerVertex Technique
Pixel Shader -Multitexture

/|l base (transmtted) col or
Texturefactor = (0.0, 0.2, 0.1, 1.0);

Col or Op|[O] = Add,;
Col orArgl[0] = Diffuse;
Col or Arg2[0] = Tfactor;

Fresnel Per-Pixel Technique
Vertex Shader, part 1

vs.1l.1
mix4 oPos, vO, c8; [/l xform pos. to output space

mix4 r0, vO, cO /[l xformpos. to world space
n8x3 r8, v3, cO [l xformnormal to world space
n8x3 r7,vs8, c0 /]l xformtangent to world space

mul r3,r7.zxyw,r8.yzxw;, // cross to get binormal in r5
mad r5,r7.yzxw, r8. zxyw, -r3;

=~SICGRAPH

2 O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Fresnel Per-Pixel Technique
Vertex Shader contd.

add r0,-r0,c14 /] conpute eye ray

dp3 r3.x,r0.xyz, r0. xyz /'l sum of squares

rsq r3.xyz,r3.X /'l square root

mul r0.xyz,r0.xyz, r3.xyz /'l normalize eye vector
dp3 r6.x,r7,r0 /|l xformeye ray to tangent sp.
dp3 r6.y,r5,r0 /] tangent, Dbinormal, nornal
dp3 r6.zw,r8,r0

mul r6,r6, c33 /|l scale, bias to fit iterators
add oDO, r6, c33 // emt eye ray as diffuse

oTO. xy, V7. Xy /[l emt texcoords for nmap

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Fresnel Per-Pixel Technique
Pixel Shader

Shorter due to complement modifier

ps. 1.1

tex tO0 [l normal map

dp3 r0,v0 bx2,t0 bx2; // dot eye ray wth nornal
mul rl1,1-r0,1-r0 /'l conpl enent and square
mul rO,rl1,1-r0 /| cube

mad r0,r0,cl, cO /|l scale & bias

add r0,r0, c3 [/ add to transmtted col or

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

2-Clock Fresnel Pixel Shader

Ps. 1.1 /|l 4-clock fresnel pixel shader
/|l uses f = 1-costh

def cO [/ transmtted water col or

def cl /|l sky col or

tex t0 /1l 1oad normal map

dp3 r0, eye, t0 bx2 // dot wth eye ray
mad r0O, 1-r0, cO, cl// scale sky by f
// and add to transmtted

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Brave New Future

DIY lighting models

Cooperate with Art Directors to identify key
effects

Show them how you can achieve them

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Avoiding Aliasing Artifacts

Beware of the cnd instruction!
» Best way to produce jaggies

e OK for slope discontinuities

Much better to formulate expressions
as multiplies by a parameter

e mul is 1 clock -just as fast as cnd

Make sure parameter is continuous

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Higher Order Surfaces
N-Patches

e Mesh resolution enhancement

Rect / Tri Patches
e Quadrangular surface patches

e Triangular surface patches

Smooth Surface Primitives

A) Map well to data in current content
creation tools

 Format consistent with major tools

B) Improve quality of content with minimal
bandwidth impact

» Efficient rendering in hardware

DirectX® 8.0 provides solutions for both
e Grid primitives

AAAAAAAAAAAAAAAA

N-Patches

Normal-patches

* Triangular cubic Bezier surfaces using tangent
planes at vertices defined by normals

e Tessellate into triangles
* Given (float) numsegs renderstate
All existing triangle primitive types
* [Indexed] lists, strips, fans, grids

e Quads some day...

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

N-Patch Benefits

Hardware friendly

e Same bandwidth and cache behavior as current 1st-order
primitives

Content friendly

e No change required in art pipeline!
o Effectively generates extra LODs on the far side of the bus

Subdividing just a bit helps a lot

* 2x vertex count, 4x poly count

AAAAAAAAAAAAAA

N-Patch Edge Generation

N-Patch Surface Generation

N-Patch Applications

Some applications may “just work”
e Most will need a content check

* We are working on a viewer

* Check pseudo-code in spec

CPU emulation provided in D3DX

o Useful at lower tessellation levels

Benefits from good normals
e Check these

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

N-Patch Usage

Set tessellation level
» D3DRS PRI MSEGVENTS 2. .3

Then render triangles

Rect / Tri Patches

New primitives added to DirectX 8.0 API
e DrawRectPatch

e DrawTriPatch

Great for surfaces that are smooth when
viewed close up

e Car bodies, waves

e Character limbs

Light weight animation
Continuglitlevel of detail ~SICGRAPH -

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Rectangular Patch Features

Not- 111 CRER SE L LT R EE
Linear or cubic

3 formulations (bases)
e B-Spline

» Bezier
e Catmull-Rom - interpolating
Can generate normals

Can generate texcoords
M X N arraysof vertices

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Rectangular Patch Layout

Standard Primitives Rect. Patches
Vertices >

StartWidth Width
StartHeight ¥ e i . e mmm

e

Vertices

Height

E—) — | |

< —SICGRAPH
bStride

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Basis Determines Interpretation

B-Spline
Catmull-Rom

[P R

— 5

Bézier

3

Rectangular Patch API

Dr awRect Pat ch(Ul NT Handl e,

D3DRECTPATCH | NFO* pRect Pat chl nf o)

t ypedef struct D3DRECTPATCH | NFO|
[StartVertexO fset Wdt h;
StartVertexO fset Hel ght ;

Ul N
Ul NT
Ul NT
Ul NT
Ul NT
D3DBASI ST

D3 DORDERT

W dt h;
Hel ght ;
Stride;
Basi S;
Or der ;

float* pNuntegs,

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Triangular Patches

Bezier basis
Drawlri Pat ch(Ul NT Handl e, float* pNuntegs,

D3DTRI PATCH | NFO* pTri Pat chl nf o)

typedef struct D3DTRI PATCH | NFO
{
Ul NT StartVertexOF f set:
Ul NT Nun\Verti ces;
D3DBASI STYPE Basi s:
'YPE O der:

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Rect / Tri Patch Handles

HW can’t quite tessellate these fully

SW computation of forward difference
coefficients

Cache these across multiple calls

e User supplied handle used to refer to these
cached coefficients

Coefficents are resolution independent

AAAAAAAAAAAAAAAA

Overview Of D3DX

Mesh Utilities

Effect Framework
e Shader assemblers

Texture Utilities

Math Utilities

Shape library

Text Utilities
Authoring tool support

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Mesh Library

Progressive meshes
N-Patch tessellation
Mesh optimization
Skinned meshes

Other mesh utilities
e Bounding volume generation (sphere, box)

e Ray intersections (mesh, sphere, box)

e Mesh cleanup

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Mesh Basics
Vertex Buffer, Index Buffer,
and Attributes
Indexed Triangle lists
16/32-bit indices supported
Supports file 1/0 (via .X)
Can be used independently of .X files

DrawSubset is only for convenience
* Not the only way to draw a mesh

Manipulates adjacency if requested

AAAAAAAAAAAAAAAA

Attributes: Buffer? Table?
Mesh has 1 DWORD per triangle (face)

e Stored in mesh object as Attribute Buffer

Semantics of values is up to the app
* Need not be sequential

Attribute Table

e A compact representation
of the attribute buffer

* Generated by Attribute Sorting a mesh

* GetAttributeTable, no SetAttributeTable

RRRRRRRRRRRR
AAAAAAAAAAAAAAAA

Mesh Rendering

DrawSubset() draws all triangles
of a given attribute

Needs Attribute Table

 Else it does linear search per face

Efficient if attributes are sequential, starting
from O

e Else it does search of attribute table

Uses Fixed Function FVF shader

Avoid unless all above conditions met
o S =SICGRAPH

AAAAAAAAAAAAAAAA

Mesh Adjacency In D3DX

Many mesh operations
require adjacency

All mesh operations that change adjacency
will optionally return
updated adjacency

Array of 3 DWORDs per face
 Each DWORD is a face index

Load from .X returns adjacency

AAAAAAAAAAAAAAAA

Point Representatives

Alternate way of encoding adjacency info

Keeps track of vertices which have the same
position but replicated due to differing
attributes (like normals, tex coords, etc.)

One DWORD per vertex

All vertices in a set of replicated vertices point to
any one of them as a “representative”

Non-replicated vertices point to themselves

AAAAAAAAAAAAAAAA

Meshes And Adjacency

Can convert from PRep to adjacency and
back

Generating adjacency from scratch
* Can use identity Prep, ignoring duplicates

e Works in some cases

* GenerateAdjacecncy() will identify vertices with
same position (i.e., infer PRep)

e Slower than above

* Will get correct adjacency if epsilon
is appropriate

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Mesh Optimization
Stripify

e Rearrange vertices of a mesh in strip order

Vertex cache optimize

e Based on Hugues Hoppe’s
Siggraph 99 paper

Both these optimizations need adjacency
information

* In this case ConvertPointRepsToAdjacency with an
NULL (identity) PRep array
will suffige;

~ DIRECT

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Mesh Optimization
Attribute sort

e Sorts faces and vertices on the
attribute ids

» Splits shared vertices if necessary
e Generates Attribute Table

Compact Mesh

e Eliminates vertices not referred to
by the index array

Progressive Meshes
Overview

Generate an ID3DXPMesh object from high
poly-count mesh using ID3DXSPMesh object

e Done either offline or load time

Render the ID3DXPMesh object at any LOD at
runtime

Generate a bunch of ID3DXMesh
objects from ID3DXPMesh object

AAAAAAAAAAAAAAAA

Progressive Meshes
Mesh Simplification

Based on Garland-Heckbert
quadric error metric

Incorporates refinements by Hugues Hoppe
to accommodate normal and attribute
space metrics

Needs accurate adjacency information

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Progressive Meshes
Mesh Simplification(2)

API for simplification via ID3DXSPMesh object

e No more batch files

e Allows you to incorporate automated LOD generation in your
internal tools

User controls to influence simplification process
e Assigning weights to vertices

 Weighing the importance of various vertex attributes

AAAAAAAAAAAAAA

Progressive Meshes
Half-edge collapses

Chooses one of the two original vertices
during each edge collapse

No significant quality degradation

Mesh vertices never change with LOD

* Enables mixing PM and mesh deformation
algorithms like morphing and skinning

Reduces the amount of information stored in
a vertex spllt record

AAAAAAAAAAAAAAAA

Progressive Meshes
Dynamic LOD changes

ID3DXPMesh object allows dynamic LOD
changes to arbitrary
face/vertex counts

LOD changes are fast enough
to do at runtime

Modifies the index buffer and
the adjacency

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Progressive Meshes
Cloning

Support sharing the vertex data
across clones

Can “clone” multiple ID3DXMesh objects
from a progressive mesh all
of which share the same VB

e Can even optimize the resultant mesh while
sharing the original VB

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Progressive Meshes
Persistency

Persist to IStream
e Can embed PMs in any custom file format

ID3DXPMesh::Save

D3DXCreatePMeshFromStream

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Progressive Meshes
Optimization

PMesh face ordering may not be
cache optimal

Can at least make base mesh optimized
e |ID3DXPMesh::OptimizeBaseLOD

Use multiple clones of PMesh with
increasing base LODs

e ID3DXPMesh::TrimByVertices
e |ID3DXPMesh::TrimByFaces

Switch to PMesh with highest base LOD

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

N-Patch Tessellation

D3DX provides SW N-Patch tessellation

Uses adjacency to share vertices
in tessellated mesh

Assumes mesh is smooth

Any sharp edges due to normal discontinuity
will cause cracks

* Use D3DXWeldVertices to merge normals within
epsilon

e Improved in D3DX 8.1 to make
welding pgrmals lot easier —SIGRAPH

AAAAAAAAAAAAAAAA

Other Mesh Utilities

Compute bounding box and sphere
Compute normals

Ray mesh intersection

e Returns triangle index and barycentric coordinates
of point of intersection if hit

Ray box and sphere intersection
Clean-up topology for simplification

Cloning for VB and IB format conversion

AAAAAAAAAAAAAAAA

Mesh Library Improvements

e

D3DXIntersectTri
D3DXSplitMesh

» Use to split large 32-bit meshes into multiple 16-bit meshes

e Splits shared vertices

e Minimized if mesh is vertex cache optimized

D3DXWeldVertices

e Takes per component epsilons

* Does partial welds

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Skinned Meshes

Plug-ins for authoring tools to export
skinning data

» 3D Studio Max and Character Studio
e Maya (work in progress)

X files extended to handle
skinning data

e D3DX functions to load skinned meshes

e Skin interface independent of .X files

ID3DXSkinMesh independent of .X files

RRRRRRRRRRRRR
AAAAAAAAAAAAAAAA

Skinned Mesh Object

Contains a mesh object plus
skinning data

Skinning data supplied as a bone
and a list of vertices it affects

* And a weight corresponding to each vertex

Though not HW friendly, this input method is
simple and general

Can convert to optimized forms

AAAAAAAAAAAAAAAA

Skinning Technique #1

Direct3D® 7.0 style
Per vertex weights
Up to 4 bones (matrices) per triangle

ConvertToBlendedMesh generates
a mesh with per vertex weights

* Groups faces to minimize matrix changes

Can cause mesh to have
many “subsets”

Works well with tessellation techniques

AAAAAAAAAAAAAAAA

Skinning Technique #2

New in Direct3D 8.0

Per vertex indices refer to matrices from a
palette that affect it

* Up to 4 indices per vertex, 12 per face

* Up to 256 matrices in a palette

Reduces API calls and matrix changes
Works well with progressive meshes

ConvertTolndexedBlendedMesh generates

mesh with per vertex weights and matrix
lndlﬁesﬁ' X W

AAAAAAAAAAAAAAAA

Skinning Technique #3

Software skinning in D3DX

Arbitrary number of influences
per vertex

Useful for skinning curved surface control mesh

Useful for accessing post skinned
mesh data

e Hit testing skinned meshes

GenerateSkinnedMesh() / UpdateSkmnedMesh()
~does; this, g

OIRELT

AAAAAAAAAAAAAAAA

ConvertToBlendedMesh

Truncates bone influences when
>4 per triangle exists

* Keeps the 4 most important weights

» Uses adjacency info to avoid cracks

Orders bone combinations by increasing # of
influences

e Enables using GeForce’s restricted skinned support by
rendering a prefix
of the mesh in HW

* Use SW for th

AAAAAAAAAAAAAA

ConvertTolndexedBlended...

Will truncate if >4 influences per vertex

Handles palette sizes < hum bones
e But must be > maxFacelnfl

Partitions mesh into subsets that
fit in a palette

Output can be used with vertex shaders

e Qutput mesh has only necessary #
of weights

* Use Clone to pad extra weights if shader expects

AAAAAAAAAAAAAAAA

Skinning Performance

Minimize # of bone combinations?

e Can merge subset combinations

e |ncreases # of blends

Improve matrix coherence across combinations?
e Can’t prevent extra DrawPrim calls

e Can’t prevent matrix concatenation

e Does not seem worthwhile

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Skinning Performance
Non HW T&L devices

* Indexed palette skinning using FF pipeline is best

On GeForce 1,2 and Radeon,
non-indexed skinning is fastest

On Geforce 3 indexed skinning using vertex
shader is fastest ?

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Skinning PMeshes

Skinning causes mesh to be split into
subsets, adversely affecting simplification
quality

Using Indexed skinning reduces subsets (1 if
palette size >= num bones)

Call ConvertTo* and use result
to create PMesh

D3DX SW skinning of PMeshes
will be supported in D3DX 8.1

AAAAAAAAAAAAAAAA

Simplification And Skinning
Simplification ignores geometry changes due
to skinning

Default pose of mesh (figure mode?) may not
be best to simplify

* Many joint (elbows, knees, etc.) are straight

e Geometric error when simplifying across joints
lower than would be when joint
is bent

Choose some dlfferent pose for simplification

AAAAAAAAAAAAAAAA

Skinning And NPatches

Tessellating indices is messy

Use SW skinning of control point mesh
* Use only if HW doing full tessellation

Use non-indexed skinning
of tessellated mesh

e ConvertToBlendedMesh first
e Tessellate the result

e Update bone combination table with new attribute table

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Effect Framework

Encapsulation of device state
Enables scalable rendering techniques
Allows controlled fallback

Can’t just switch to multi-pass
e Older hardware can’t do more passes
since alpha blending fill rate is less
Helps rapid prototyping

* Runtime interpretation of text-based
effect definition

AAAAAAAAAAAAAAAA

D3DX Terminology

Technique versus effect versus fallback

Given a visual effect you can see
e Shading, highlight, sparkle, etc.

|ldentify a technique can represents it
e There’s always a way

Define fallback techniques for
older hardware

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Effect Framework
Fallback Techniques

Uses controlled effect fallbacks

Effect
Technique

Pass
Implementation

Effect Framework
Fallback Techniques

Techniques are grouped by their quality or
QQLOD”

Techniques can be chosen based on what HW
creates successfully

Can test performance in back buffer
User responsible for drawing geometry

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Effect Framework
Creating Effects

D3DXCompileEffectFromFile

e Parses text file

D3DXCreateEffect

» Use compiled effect to create
an effect object

State for each pass is encoded
as state blocks

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Effect Data Types

DWORD, FLOAT

VECTOR, MATRIX

TEXTURE

VERTEXSHADER, PIXELSHADER
STRING

e Enables user-data associated with effects

* Not used to program device state

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Parameterized Effects

Effects can have parameters
of various types

Parameters augment static
state description in the .fx files

How (and which) parameters get
used defined by the effect

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Effect Improvements S

Support for longer names
* No longer limited to FourCC

Enable ordinal or string based parameter
resolution

Block comment /* */ support
Merge ID3DXEffect and ID3DXTechnique

* Need to carry around only 1 pointer
OnLost() and OnReset() methods

AAAAAAAAAAAAAAAA

Effect Framework
Shader Assemblies

In-line or load from file
e Vertex

* D3DXAssembleVertexShader()
* D3DXAssembleVertexShaderFromFile()

e Pixel

e D3DXAssemblePixelShader()
* D3DXAssemblePixelShaderFromFile()

Texture Utilities

Image file loaders
* JPG, PNG, TGA, BMP, PPM, DDS

e Supports files in memory

Format conversion
Image re-sampling
o Better filtering options
e Supports wrap modes
Mip-map generation
alpha conversion

AAAAAAAAAAAAAA

Texture Fill
Texture fill functions

e D3DXFillTexture

e D3DXFillCubeTexture

e D3DXFillVolumeTexture

Handles mip-maps

Callback function gets a 2D/3D
location and size of texel

Create look-up tables for pixel shaders

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Math Utilities

D3DXMATRIX derived from D3DMATRIX
D3DXVECTOR3 derived from D3DVECTOR

* No conversion operators necessary

e Subscript nhames have changed!

Watch out for D3DXMatrixLookAt{LH}

e Both fixed now

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Math Library Improvements

D3DXQuaternionSgaudSetup w&
e Use with D3DXQuaternionSgaud

D3DXFresnelTerm

Useful along with texture fill functions

CPU specific optimizations
for some functions

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Bump Mapping
D3DXComputeNormalMap

e Converts a height field to a normal map

D3DXComputeTangents

e Create a per vertex coordinate system
e Normal define one axis

e Texture coordinate (u,v) gradients
used to orient tangents

e Can use cross product or gradients
to compute third axis

2 O O EXPLORE INTERACTION

AND DIGITAL IMAGES

Shape Library

Regular polygon

Box

Cylinder/Cone

Sphere

Torus

And, of course, the teapot
Optional adjacency info available

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

2D Text

Draw text to surface using GDI
e Render to off screen DC

e Blit to an internal texture

e Render using quad

Cache output by rendering to a texture

Supports all GDI features: italics, kerning,
international fonts, etc.

ID3DXFont::DrawText

EEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Dynamic 2D text

Using GDI every time can be slow
Render alphabet to a texture
Render a quad per character

Texture coordinates into the texture depend
on the character

Works well with simple fonts
* Not for international fonts, kerning, etc.

CD3DFont in sample framework
does this_ ,j

AAAAAAAAAAAAAAAA

3D Text

D3DXCreateText

Extrudes a string rendered using
a TrueType® font

Returns a mesh object

Does not handle
» Kerning, etc.

 International font spacing

EEEEEEEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

Authoring Tool support

Content Pipeline
DirectX provided Tools

Traditional Pipeline

S Content
greauon ool

Convariar Engine

m
-
z O O | EXPLORE INTERACTION

AND DIGITAL IMAGES

Traditional Pipeline
Problems

Artist and Programmer have to guess on
requirements for content

Artists model and animate blind

o |t takes additional work to view
the content on the engine

* The engine may not be ready for viewing objects
until a later date

Viewing the data requires programmer time
early)€ process -SIGGRAPH

AAAAAAAAAAAAAAAA

Better Pipeline

z O O | EXPLORE INTERACTION

AND DIGITAL IMAGES

Better Pipeline
Problems solved

Artist and programmer can view
content immediately

Advanced features can be viewed
independent of the engine

Frees the programmer

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAA

X File Exporters

Microsoft created
e Max 3, 3.1, 4.0

* Maya 2.5, 3.0

Third party created

e Lightwave

o Others

X File Features
Model data

* 3D representation

e Material representation

* Single skin weighting
Animation data
Extensible

Immediate Viewing

Max4 of Direct3D®

e Ability to define and view shaders
MView utility

* Included in an upcoming D3DX release

Higher Order Surfaces

Progressive meshes
N-patches
Bezier patches

Conclusion

e Hints
e Questions

Helpful Hints

Check out DirectX8.1 SDK

Read Meltdown presentations
http://www.microsoft.com/hwdev/meltdown/

Read MSDN articles

http://msdn.microsoft.com/directx/

Use DirectX Developer-mailing list
http://discuss.microsoft.com/archives/directxdev.html

Give us feedback

e Mail directx@microsoft.com

2 O 0 EXPLORE INTERACTION

AND DIGITAL IMAGES

Questions

z O O |EXPLORE INTERACTION

AND DIGITAL IMAGES

Acknowledgemens

Richard Huddy, nVidia
Dan Baker, Microsoft

