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Summary.

This course presents the essential tools and techniques for processing volume data as part of
rendering and visualization. We will examine the processes of 1) linear and nonlinear filtering,
2) interpolation, 3) reconstruction, 4) feature extraction, 5) segmentation, and 6) model fitting.
Both basic fundamentals of linear image processing as well as more advanced nonlinear methods
in level set and energy-minimization-based techniques will be covered, illustrated by case studies
and applications.
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Summary Statement:

This course presents the essential tools and techniques for processing volume data as part of
rendering and visualization. We will examine the processes of 1) linear and nonlinear filtering,
2) interpolation, 3) reconstruction, 4) feature extraction, 5) segmentation, and 6) model fitting.
Both basic fundamentals of linear image processing as well as more advanced nonlinear methods
in level set and energy-minimization-based techniques will be covered, illustrated by case studies
and applications.

Expanded Statement:

Conventional volume rendering has been used to visualize volume data as a sampled density
map. However, more and more people are looking at high dimensional data that has noise,
occluding surfaces, limited resolution, etc., requiring users to do more "processing”. Advanced
volume processing is what enables filtering, interpolation, reconstruction, feature extraction, and
model fitting. This course covers the reconstruction of continuous models from sampled data,
the application of transfer functions for shading and classification, and the segmentation and
projection of the reconstructed values for rendering. The goal is to illuminate structures within
the data without unwanted artifacts or masking detail.

Prerequisites

Basic knowledge of 3D computer graphics and an understanding of the basic principles of image-
processing.



Topics:

Participants will gain insights into the mathematics of the elements of effective volume
visualizations and the processes by which they are created. In addition, we will cover emerging
topics in volume data processing including level sets, shape extraction using adaptive deformable
systems and model-based segmentation.
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Course Syllabus:

Our goal isto elevate the level of the debate regarding the mathematics of volume graphics. We
will treat the issues of reconstruction, anaysis, and resampling from the perspective of
continuous mathematical and statistical models. In order to keep the material from being dry and
theoretical, a great deal of emphasis is being placed on examples and case studies. Examples
will be presented periodically throughout the course, illuminating the motivations, benefits, and
potential pitfalls of the image processing techniques being discussed. The afternoon will be
dedicated to emerging techniques relevant to both 3D image processing and volume graphics.
The selected topics represent active areas of research that should interest those who wish to
explore new research in volume graphics.

We have designed the course to flow from one topic to the next, beginning with the
elementary mathematics of volume image processing, continuing to linear and then nonlinear
methods. In the afternoon, emerging topics, too, flow from basic tools, through model-based
methods, and end with new approachesin level sets.



Course Syllabus
1st morning session - (90 min. total)

INTRODUCTION TO VOLUME DATA FOR COMPUTER GRAPHICS[Yo00] (10 mins)
The connection between mathematics and visualization
Sources of volume data:
Scanning of physical objects and medical subjects.
Range data.
Simulation and CFD.
Topics to be covered and not to be covered, & what we hope to accomplish.

FILTERING AND FREQUENCY FUNDAMENTALS|[Y o0] (30 mins)
Filters
Frequency — abiological example
Fourier Transforms
The convolution theorem and the Fourier dlice theorem

LINEAR FILTERING AND FILTER DESIGN [Machirgju] (50 mins)
Derivatives of volume data.
Sources of error and error propagation in filtering.
Approximation, interpolation, and anti-aliasing.

---BREAK (15 min.)---
2nd morning session - (105 min. total)

ASSESSMENT OF QUALITY IN VOLUME RENDERING [Moeller and Machiraju] (90 mins)
Function Reconstruction from Discrete Data.
Exploring transfer functions for volume rendering: Cause and effect examples.
Error analysis of reconstruction processing and derivative filters

INTRODUCTION TO NONLINEAR FILTERING [Y 00] (15 mins)
The diffusion equation.
Nonlinear diffusion.
Geometry driven diffusion.

---LUNCH---



Cour se Syllabus (cont.)
1st afternoon session - (100 Minstotal)

ELASTICALLY ADAPTIVE DEFORMABLE MODELS [Kakadiaris] (50 min.)
Generating energy functionals for segmentation.
Deformable surfaces and contours.
Finite element and finite differencing techniques for deformable models.
Examples.

MODEL BASED SEGMENTATION [Gerig] (50 mins)
Shape representation: Alternatives to triangular meshes.
Shape variability.
Object evolution toward atarget shape.
Examples.

---BREAK (15 min.)---
2nd afternoon session - (95 min. total)

LEVEL SETS [Whitaker] (90 min.)
Blobby models and beyond.
Level set basics.
Evolving isosurfaces.
Applications of level set methods to morphing and reconstruction of range data.

WRAPUP [Y 00 or Machirgju] (5min.)
Suggested reading.
Suggested venues, journals, and conferences.
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Digital Filtering and Sampling Fundamentals

Terry S. Yoo
Office of High Performance Computing and Communications
The National Library of Medicine, National Institutes of Health

1 Introduction

Digital sampling theory is intrinsic to computer graphics, image processing, and visualization. Representing
complex shapes and flows using pixels, voxels, and other discrete atomic data types creates repercussions
that pervade all of volume graphics. Familiar artifacts such as aliasing can only be understood through
digital sampling and filtering theory. Likewise, effective reconstruction, the inverse of sampling, requires a
clear understanding of digital sampling theory.

This chapter is a review or introduction (depending on your background) of the digital theories that
underlie sampling and filtering. This material will be covered from a practical viewpoint: what should we
know about the basic principles of digital sampling theory? What are the repercussions of which we should
be aware? How do these theoretical results affect our output images? What can you do about it, and where
are the pitfalls that should be avoided? This presentation is intended as a cursory introduction or review
only. We will not explore proofs or rigorous mathematics associated with the presented theorems or tools.

For example, the presentation of the Fourier transform will be far from exhaustive, not even listing all of
the important mathematical properties of the transform, but rather just those properties that are relevant
to volume graphics. We also will not be presenting any implementations. However, we will provide pointers
to references for more rigorous treatments of this material, as well as forums, journals, and venues where
current research may be found.

2 Images

In this course, we are principally concerned with volume images. A volume image, ¢, is a function or mapping
from R2 to ™ where n = 1 for the typical, scalar-valued volume. More precisely:

¢: U R and U C B3, 1)

where U is the domain of the volume. The image ¢ will also frequently be written as a function ¢(z,y, z).
Throughout this introductory chapter, however, many example images will be presented either as pro-
jections from a 1-D or a 2-D domain. Most exercises in sampling theory are more easily examined in 1D
(at least in print), and generalized to higher dimensions. Wherever we explore images of fewer than three
dimensions, we will use the function notation (i.e., ¢(x) or ¢(z,y) ).
We distinguish discrete, sampled digital images from the description of images as contiuous mappings of
functions in real space. If F' is a discrete sampling of ¢ then we can say that

Fijrx = &(xi, s, 2:). (2)

We also use notation to distinguish between discrete and continous differential operators. To take the
approximate partial derivative in the x direction of a discretely sampled image we can say that

0
b2 (@i, ¥i, ) = 8_f R Oz fi gk (3)
Ti,Yir24i
where f f f f
S f, . = ditLik = Jiigk _ Jirtgk = i1k 4
af:fz,],k Tit1 — Tiot 2h ) ( )



where h is the grid spacing, which we normally assume to be 1-pixel width. The value d,f; ;& is an
approximation of the instantaneous partial derivative of ¢(z;,y;, 2;). taken at (z;,y;, 2;) in the z direction.
Equation 4 is the method of central differences commonly used to take derivatives of uniformly, discretely
sampled datasets.

3 Linear Filtering

When was the last time you used the convolution integral? If you’ve run a blurring function, taken a deriva-
tive, done some edge enhancement, or other simple operation, it is likely that you’ve used convolution (either
the continuous integral form or the discrete iterative summation). Filters are used to make measurements,
detect features, smooth noisy signals, and deconvolve operations from previous operations (e.g., deblurring
the known optical artifacts from a telescope). The effect of the filter depends not on the operation of
convolution, but rather on the nature of input filter kernel.

3.1 Convolution

Convolution, denoted with the operator ® can be described in 1-D as a continuous operation applying a
filter kernel h(z) (itself an image) to an image ¢(x) using the following integral form:

o) ohiz) = [ " gz — rh(r) dr (5)

Note that the expression ¢(z) ® h(x) itself describes an image mapping. Thus the following equality
holds:

¢(x) ® h(z) = (¢ @ h)(z) (6)

The expressions ¢(z) ® h(z) and (¢ ® h)(x) are used interchangably, with the position index z often
omitted to help streamline and clarify the notation especially when higher dimensional (e.g., 3-D) images
are involved. In the practice of digital image processing, h(z) typically does not have infinite extent, nor is
it infinitely dense; however, when working in the continuous domain of digital filtering theory, functions or
signals that can be considered infinitely wide (thus avoiding the complications of truncation) are often more
convenient. We will elaborate later on discrete, bandlimited functions in the discussion on sampling.

We can generalize the 1-D convolution operation to 2-D and 3-D images. Thus, in 2-D, convolution
becomes:

é(x,y) @ h(z,y) = / / o(x — 1,y —v)h(r,v)dvdr (7)
Similarly, convolution in 3-D is expressed as:
(z,y,2) @ h(z,y,2) = / / / dx— 71,y — v,z — w)h(1,v,w) dwdvdr (8)

3.1.1 Example - Convolution as Noise Reduction (1-D)

One of the most common uses of convolution is as a filter for the suppression of noise in an image. Consider
the Gaussian function as a smoothing filter kernel. If convolved with a relatively noisy signal, the result is
an output image that locally averages the image intensities. The output image typically has reduced noise
at the cost of some “sharpness” of the original image. That is, the resulting image has less perceived noise,
but also has blurred features.

Figure 3.1.1 shows a 1-D step discontinuity, or edge. The figure ranges continuously from x = 0 to
x = 255 with a step function at z = 128. The signal to noise ratio is approximately 4:1.
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(b) a 1-D Gausssian kernel, g(z, o) (c) output of ¢(z) ® g(x,16)
where o = 16

Figure 2: Gausssian filtering of input ¢(z) where o = 16

Figures 2, 3, and 4, show a progression of filtered versions of the input from figure 3.1.1 with Gaussian
filter kernels of increasing aperture or width. Notice how the perceived noise in the signal decreases with
aperture and the consequent softening of the gradient information at the discontinuity. This trade of detail
and resolution for noise reduction is one of the many considerations in the design of linear filter systems.

3.2 Properties of the Convolution Operation

The properties of a linear filtering operation often depend on the nature of the filter kernel. For instance,
the “shape” of the kernel will determine whether the operation remains invariant with respect to rotation.
However, there are many inherent properties of the convolution operation. The convolution operation has
many useful properties. It is linear, commutative, associative, and distributive over addition.

In mathematical terms, convolution is commutative and reflexive:

0.12 5
0.1 A
0.0 3
ofo6 2
0. 04 1
200 250 002 50 100 150 200 250
T100 50 50 100 -t
(b) a 1-D Gausssian kernel, g(z, o) (c) output of ¢(z) ® g(x,24)

where o = 24

Figure 3: Gausssian filtering of input ¢(z) where o = 24
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(a) Input ¢(x) (b) a 1-D Gausssian kernel, g(z, o) (c) output of ¢(z) ® g(x, 32)

where o = 32

Figure 4: Gausssian filtering of input ¢(z) where o = 32

PRI=q®p 9)
Convolution is also associative:
PR®q®@r=pa(qar) (10)
Convolution is distributive over addition:
pR(q+r)=pR®q+tp®T (11)

These combined properties create the justification for using convolution as the principal operation in linear
filtering.

3.2.1 2-D Example - Convolution as Feature Detection and Enhancement

Linear filter kernels can be selected to detect and enhance features. For example, if a difference of two
Gaussian functions is used as a filter kernel, edge information can be both detected and enhanced. The
difference of an image filtered with two Gaussians of different apertures is a process called “unsharp masking.”
The result is an edge-enhanced image.

Specifically, given a 2-D input image generating function ¢(z, y) and two Gaussian filter kernels of differing
aperture, g(z,y,01) and g(z,y, 02) where o1 < 02, an edge enhanced image ¢/(z,y) can be formed by a linear
combination of the two filters. That is:

d)l(way) = ¢(w,y) ® (g(xvyvo'l) - g(x,y,az)) (12)

From equation 11 it follows that ¢/(x,y) is also the subtraction of two filtered images.

¢I($7y) = (¢(JU,:U) ® (9(33,?/,01)) - (¢(5L",y) ® g(xayaaz))) (13)

In other words, the difference of two “blurred” versions of the same image yields a version of the same
image where edge information is accentuated.

A specific use of this technique is the detection of edges. If one applies two filter kernels that have
unit gain (they do not amplify the signal) of differing widths and subtracts the results, the result is an
image where regions of continuous intensity have a zero value, areas near boundaries are strongly negative or
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Figure 6: a 2-D image filtered by a Difference of Gausssians (depicted in 3-D as a height field).
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(a) 2-D Input ¢(z,y) with o1

Figure 7: a 2-D image filtered by a Difference of Gausssians (depicted as a 2-D greyscale density field).
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Figure 8: a Difference of Gausssians filter used for contrast enhancement (depicted as a 2-D greyscale density
field).

strongly positive (depending on which side of a boundary you are on) and the boundaries itself denoted by
the closed curve of zero-crossings, those points where the function crosses from positive to negative values.
Figure 5 shows such a differnce of Gaussian kernel as a 3-D projection where intensity is plotted as a height
field above an x-y plane. Figure 6 is the same kernel show in figure 5 applied to a circular pulse function.
These views are also represented as a 3-D projection of intensity as a height field. Figure 7 is the same
functions as in figure 6 depicted as a 2-D intensity field. The areas of contiguous intensity result in a flat
signal value of approximately zero. At the boundaries, there is a rise in the output intensity followed by a
negative dip in intensity values. The zero crossing represents the boundary between the foreground intensity
and the background.

With a slight adjustment of the filter kernel, applying coefficients to each of the Gaussian kernels, we
can modify the edge detection kernel into a contrast enhancement kernel. Figure 7?7 shows an adjusted filter
kernel with a combined gain of 1; that is, the difference of Gaussians will return the same value in areas of
even intensity, but activates near boundaries to create a band of intensities that exaggerate the discontinuity.

3.3 Differentiation - Measurement Through Linear Filtering

Differentiation is seldom portrayed as a convolution; however, the measurement of the instantaneous rate of
change of intensities is in fact subject to all of the attributes of the convolution operation. The derivative
operator is a convolution kernel that is infinitesimal in width, but is applied everywhere. Put another way,
we can explicitly denote differentiation as convolution using the ® operator as seen in the following example
using the partial derivative in the x direction:

0 0
o —£®¢ (14)

Differentiation is susceptible to noise, so it is often necessary to regularize a noisy dataset before com-
puting its derivative. Therefore, derivatives are often taken of smoothed functions. It follows from the
associative and commutative properties of convolution that:

h(o9,2) © 5 0(2,4,7) = 5 -h(z,0,2) @ 62,9, 2) (15)

In other words, the derivative of a function ¢ convolved by a filter kernel h is equivalent to convolving the
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Figure 9: Taking derivatives of a noisy input by convolution with the derivative of a filter kernel.

derivative of the h with ¢. This suggests that one of the easiest ways to compute the derivative of a volume
dataset is through convolution with the derivative of some smoothing kernel.

3.3.1 Example - Convolution as Measurement (1-D)

To show how derivatives can be approximated through convolution, we suggest the use of the Gaussian g(z)
as a regularizing (smoothing) filter kernel. Its infinitely differentiable properties make it attractive as a
measurement, and scaling function.

Figure 9 depicts a noisy 1-D input signal for which derivative information is desired. When convolved
with the derivative of a Gaussian, the resulting output reports the derivative of a smoothed function. By
the commutative and associative properties of convolution, it is also a smoothed version of the derivative
of the input. This techniques for differentiating difficult functions can be extended to higher orders and is
quite commonplace in the practice of volume image processing.

3.4 Convolution of Discretely Sampled Data

Convolution of discretely sampled data is similar to the continuous form, except that discrete summation is
substituted for integration. Also, since discrete filter kernels seldom have infinite extent, the limits of the
summations do not range from —oo to oo but are rather constrained to the size of the filter kernel. In 2-D,
a discrete convolution looks like

domaing Q] domainy[Q)]

Pry®Quy= Y. Y PeiyiQij (16)
i j

The discrete version of convolution shares all of the attributes of its continous cousin. Convolution of
discretely sampled data is commutative, associative, and distributive over addtion. Among its many uses,
convolution can be used to smooth noisy data, detect or enhance edgeness, or make measurements of the
image. Derivatives of sampled digital images can be approximated through discrete convolution using a well-
chosen kernel. An example of discrete convolution for differentiation is the central differences operation shown
in equation 4. From the perspective of linear filtering of discrete data, all such operations can now be seen
to be either convolutions or adaptations of a convolution operation. For more information on differentiation
of discrete image data through convolution, see the attached paper.

The primary caveat (as in caveat emptor) regarding discrete convolution is that all such discrete operations
are subject to error induced by the effects of sampling, a class of artifacts known as aliasing. How much
aliasing? We’ll explore that later. Before we can appreciate the problems associated with sampling, we must
first understand the nature of the sampling operation and its effects on the information embedded within
the image. For that, we use an image analysis and manipulation tool called the Fourier Transform.



i v \/ ’
1 0.5 0.5 1 0.2

(a) The nearest neighbor inter- (b) Frequency Space nearest neigh-
polant (Box) bor interpolant (Sinc)

Figure 10: The Box Filter and its Fourier Transform, the Sinc Function.

4 The Fourier Transform

One of the most important tools for understanding images (1-D, 2-D, 3-D or even higher) is the Fourier
Transform. The Fourier transform of an image decomposes the input signal into a series sum of sinusoidal
functions. The representation of an image as a series of frequencies is a computationally useful means of
viewing and manipulating image data. The relationship between an input function and its Fourier transform
is governed by the following equation:

Foa) = [ swe s = a) (17

This relationship maps the domain and range of space, x and intensity, ¢(z) to a new space where the
domain and range are frequency, v, and magnitude + phase, ®(v), respectively. The transform space is
often called frequency space, and the transformed input is described as the frequency space representation.
As a transform, the process is also reversible. The inverse Fourier transform is:

oo
Few) = [ ey = o) (19)
—0oQ

There are some simple generalizations of these formulas to 2-D, 3-D, and higher dimensions. Among its
most important attributes, the Fourier transform is separable in each of the orthonnormal basis dimensions.
One simply recasts the transform equation with additional independent variables of integration and within
the integrand to extend it to higher dimensions. A complete description and exhaustive derivation of the
Fourier transform and its properties is beyond the scope of this tutorial. However, there are some key
properties of the frequency space and the transform that creates it that we will discuss to illuminate the
problems of sampling in computer graphics.

4.1 Some Properties of the Fourier Transforms

Lets begin by looking at some functions commonly used in manipulating images. The four functions of
interest as part of this discussion are the box filter (a square pulse, used as a nearest neighbor interpolant
in reconstruction), the comb function (used to discretely sample data in the image domain), the pyramid
function (a pyramid shaped filter used for linear interpolation in reconstruction), and the Gaussian (a good
all purpose filter, except for its infinite extent).

Figures 10, 11, 12, and 13 show the box, comb, pyramid, and Gaussian functions represented in image
space along with their Fourier transforms, represented in frequency space. By studying this array of functions,
one pair of important characteristics of the relationships between image space and freqency space become
clear.
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Figure 11: The Sampling Function and its Fourier transform.

15 05 1 Ls 3 2 3
(a) Linear Interpolating Pyramid (b) The Fourier Transform of the
Function Pyramid

Figure 12: The Linear Interpolation Function and its Fourier transform.
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Figure 13: The Gaussian Function and its Fourier transform.



Spatial Scaling — Inverse Frequency Scale Change An increase in the magnitude (height) of the
function in the spatial domain leads to an inversely proportional broadening of the function in the
frequency domain as well as an inversely proportional decrease of the height of the function in the
frequency domain.

Frequency Scaling — Inverse Spatial Scale Change The converse of the consequences of spatial scal-
ing are true for frequency scaling. An increase in the magnitude (height) of the function in the frequency
domain leads to an inversely proportional broadening of the function in the spatial domain as well as
an inversely proportional decrease of the height of the function in the spatial domain.

Mathematically speaking:

Flota) = @ (%) (19)
and
FH @) = o (%) (20)
Conversely:
Frare (£) (9laz)) = B(a) (21)
and
}‘_IET'@ (%) = plaz) (22)

There are many other properties of the Fourier transform associated with its symmetry and its use of
complex numbers to describe complicated behaviors of signals. We have neither the space or time to explore
them all (For a more complete treatment, see the excellent text by E. O. Brigham.). However, the two
related properties of spatial/frequency scaling mapping onto inverse scale change have profound impact on
image analysis and scene generation. The emphasize them and address their importance in the following
sections.

4.2 The Convolution Theorem

The convolution theorem relates frequency space to linear filtering. This is perhaps the most important
theorem for linear system analysis. Simply, convolution in image space between a filter kernel and an input
translates to multiplication of their Fourier transforms in frequency space. That is, given two functions ¢(z)
and h(z) (e.g., an input ¢ and a filter kernel h), and their Fourier transforms, ®(v) and H (v) the following
relation holds:

F(¢(z) ® h(z)) = ®(v)H (v) (23)

As with most relationships across the transform, the converse can also be easily generated.

FH(2(v) ® H(v)) = ¢(z)h() (24)

Succintly, practitioners often say, convolution in one domain is multiplication in the other domain. Given
this theorem, it is easy to conceive of why convolution is distributive over addition, symmetric, refexive,
commutative, etc. It shares most of the properties of multiplication.

10



Linear filtering under these circumstances can now be considered in a different light. It can be changed
from an integral with infinite extent in image space (a difficult continuous operation to implement with a
digital computer) to a multiplication in frequency space, with only two Fourier transforms and one inverse
Fourier transform to be calculated.

$(z) * h(z) = F~(F($(2))F (h(z))) (25)

Depending on the size of both the filter kernel and in the input signal, casting the convolution problem in
the frequency domain often makes difficult iterative problems more tractable. The Fourier transform itself is
an integral with infinite extent. A discrete implementation that can be implemented on a digital computer
is required to translate the Fourier transform from a useful mathematical abstraction to a practical tool.

4.3 The Discrete Fourier transform

How do we parley all of this frequency space theory into practical use? A typical digital image does not have
infinite extent! Nor can it be sampled at infinitesimal rates, since it has already been sampled at a particular
discrete sampling rate. The application of the Fourier transform to discretely sampled data results in the
Discrete Fourier Transform.

Sinusoids are periodic, and for it to be computable, a decomposition of an input signal or image must
also be considered periodic. To create a periodic signal, a discrete image with n uniformly spaced samples
is wrapped so that samples 0 through n-1 index the data array exactly, but sample n “wraps” to 0. In fact,
if n is the number of uniform samples, the effective index z.;; of a location z is, .y = # mod n. This can
be applied to any dimension (i.e., x, y, or z). This concept of a discrete image as a periodic signal can also
be conceived as an infinite concatenation of the image to itself.

This repetition allows us to treat digital images as periodic signals. Moreover, it allows us to represent
them as the sum of a finite (countable and finite) sinusoidal functions. The maximum representable wave-
length is governed by dimensions and sampling rate of the input image. Consider a discrete input image F'
with n samples in each dimension. If the input image is considered to be a single period, we can map the
domain of the input image to the interval from 0 to 27 (or from —7 to 7). The dimension of each voxel then
becomes 27

The result is the discretization of the Fourier transform, with the sampled input function F' transformed
to a sampled frequency space representation representing the sum of n separate frequencies. The discrete
inverse Fourier transform of the frequency space representation reproduces the original sampled data without
loss of fidelity to the sampled signal. There may be a loss in the process of sampling. The implications to
sampling become clear on an examination of the frequency space representation.

What remains is all the rest of sampling error, aliasing artifact, and digital fitler design. We cover some
of these issues in the accompanying papers and provide references for extended reading on the subject.

5 Summary and Discussion

Filtering and frequency space are essential to the understanding of digital sampling theory. As we have seen
in the convolution theorem, linear filtering and Fourier analysis are tightly linked, with profound implications
in the understanding and manipulation of digital data. Aliasing and other sampling errors are directly related
to the properties of the Fourier transform and the behavior of filters and input signals when discretized.

Frequency space arises everywhere, so a command of the basics is very important. The source of many
volume images is in fact a manipulation of frequency space. The principals of image reconstruction in X-ray
CT scanners and Magentic Resonance Imaging (MRI) are all based on uses of frequency space. Iterative
methods, filtered back projection, etc. all have important roots in Fourier analysis. The resulting algorithms,
even if they do not use a Fourier slice projection approach are often best understood in frequency space.

Basic control of these tools will help you get a handle on your data. Sampling, aliasing, level of detail,
perspective texture correction (e.g., “mip mapping”), and other common graphics techniques are only to be
fully understood with through the window of frequency spaces.
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Image Processing

Fundamentals

*Terry S. Yoo
the National Library of Medicine, NIH

Do What? How?

¢ Find the surface normal to the embedded surface?

Locate an object within the volume?

Take the derivative of a kidney?

How do | evaluate the error introduced by sampling?

What is aliasing, really?

How does this all work together in volume graphics?

15




Image Basics

» Given a discrete volume dataset, vol[x][y][z]

* Imagine a volume generating function, f, such that for
any particular point p, = (X,y;.z;):

f(x,y:,z) = vol[x]lyl[z]

* Must reconstruct f(x,y,z) from vol[x][y][z].
» Can make measurements of f(x,y,z), (e.g.,derivatives)
* HOW?

Convolution

» Sampling.

* Interpolation.

* Reconstruction.

* Low pass filtering.

* Noise suppression.

» Edge enhancement.

» Derivative measurement.

* Linear scale space analysis.

16




Convolution

Convolution integral

h(x) A 1(x) = &, h(t)I(x- t) ci

Convolution & the Gaussian

Convolution integral

h(x) A 1(x) = &, h(t)I(x- ) ci

Gaussian as a convolution kernel
(with spatial scale parameter, s)

X2
232

h(x)=G(s,X) = s/ €
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Smoothing - noise filtering

Input, f(x) A  Kernel, G(x,s) =f(x) A G(x,s)

Linear Scale Space
1 v

m(x|s)=G(s, ) AI(x) =, G(s,t)I(x- t)ck

iy
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Convolution in 2D

=1(p) A G(p.s)

nout. o
nput, f(p) Kernel, G(p,s)

[

Properties of the Convolution
Operator

Property: Mathematically:

« Commutative. s fAh=hAf

» Associative e fAhYAg=fA(hAQ)

+ Distributive over addition. e fA(h+g)=(FAh)+(fA Q)

19




Convolution & differentiation

* Problem: Real-world data are seldom

accompanied with continuous functions, ;
suitable for differentiation. I 1/(2m)
» Observation: Differentiation is just a S B4
convolution! 9 .
‘—i.'f b i o b (Zm)
chr i

» Problem: Derivatives of real-world data are not always defined.
» Observation: Differentiation is associative and commutative.
h(x) A 1/1x A f(x) = 7/1x A h(x) A f(x)

» Solution: Combine differentiation with a regularizing kernel.

Differentiation

Not-differentiable NaN

20




Differentiation

""'. Ll '-._'
i A weh] =
il J
/7 \n\ ‘ I||'" l\‘
| II"._ = *:
) ‘1‘ 8 ; } l'-.
Differentiation
—~.\_\\
\
‘.ﬁ ) {
'\ A A
B e
il
R
0
1
T b
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Differentiation

Now for something different...

*But not completely different...

22




elr=-1

eatb =cos a +isinb
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The Fourier Transform

» A different mirror with which to view images.

e The Fourier transform

>

Flo(x) = / Pla)e™ 2 dy = ()

-

* The result transforms a function of x in image space to a
function of nin frequency space.

* There is an Inverse Fourier transform for undoing this process.

FUB()) = j T B dy = )

Fourier Transforms of common
functions

Image Space: Frequency Space:
Box F(Box)

(nearest neighbor) sinc

Pyramid ol F(Pyramid)

(linear interpolant) I (linear interpolant)
Gaussian Gaussian

(std. distribution) ] (non-normalized)

Comb / Shah - Comb
(sampling function) fh

24




Properties of the Fourier

Transform
Property: Property:
» Frequency Scaling © » Spatial Scaling ©
Inverse Spatial Scale Change Inverse Frequency Scale
Change
B LI W ; Flolar)) = i(i) (Ejl
F—=ip (—) (lax)) = Plav) ST al it
|a| " Mu
and
and
1 b FYH @ (ar)) = lr-:I(E)
:Jr_l—‘;_’ (—) = r;'J{uif:l | / |{[| ' i
|{J.'| {r

The Convolution Theorem

» Convolution in space = multiplication in frequency

» Convolution in frequency = multiplication in space

F(¢(x) @ h(x)) = (v)H(v)

FH@(v) @ H(v)) = d(x)h(x)

25




Revisiting Convolution

*now see convolution as a transform, a
multiplication, and an inverse transform.

p(x) $hx) = F~H(F () F (h()))

Revisiting Convolution (2)

X
filEisiy
2 -
i
|

26




Revisiting Convolution (3)

¥
1
t
M

Input, f(x) A Kernel, g(x,s) =f(X) A g(x,s)
l Fourier Transform l Inverse Fourier 1

]
B
a8

i

F(lnput), F(X) x : i'<er:nell, G'(x,é) C= F(X) ¢ G(n,s)

Discrete Fourier Transforms

e Periodic.

— Assume that the function is a single period of a
infinitely repeating function.

— Or: Think of it as an image that wraps onto itself
like a doughnut (torus).

* Discrete.

— If there are n samples in the spatial domain, there
will be n samples in frequency domain, too.
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Discrete Fourier Transforms (1)

Discrete Fourier Transforms (2)

f{x)
T o S . O,
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! | ' _' 7 e 1 ANANANANNANNYY e WII | s '._W' '.h.' Lt
fdy e et e
, LES ™ M |"II ™
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el e I._,-I o B |
Fiul ni7x 2 | | b
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= ' = i
I 0 2x dn dfm Er 1= G Ix dx &z En
(€
hi
Fourler seansform, (a) square wave; (b) spectrum; (o} partial sums. |

(from G. Wolberg, 1990, Digital Image Warping, |EEE Press)
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Discrete Fourier Transforms (3)
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Fowrier transform. (a) aperiodic signal; (b spectrum; (c) partial soms.

(from G. Wolberg, 1990, Digital Image Warping, |EEE Press)

Sampling

*now see sampling as a multiplication with
frequency issues.

ey = b ;
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Sampling (2)

Note: adding more
(higher) frequencies
alters the period of
the ringing, but does
not reduce the
amplitude.

(from A. Glassner, 1995,
Principles of Digital Image Synthesis,
Morgan Kaufman)

Sampling (3)

* Bandlimited.

— A signal f is considered bandlimited if its Fourier transform,

F(f (X)) = F(w) satisfies the following condition

F(w) =0 and

» Satisfies the Nyquist criterion.

— The discrete sighal does not contain frequencies higher than 1/2

the sampling frequency

F('W) =0 forallw>w limit

30




Aliasing

» Signal that isn’t Bandlimited.

» Sampling effects.

Sources of Aliasing

Non-bandlimited signal

N

%

Low sampling rate (below Nyquist)

A

Non perfect reconstruction

PV Vel

31




Possible Errors

» Post-aliasing

—Reconstruction filter passes frequencies beyond the Nyquist
frequency (of duplicated frequency spectrum) => frequency

components of the original signal appear in the reconstructed signal
at different frequencies.

* Smoothing

—Frequencies below the Nyquist frequency are attenuated.

Possible Errors(2)

* Ringing (overshoot)
—Occurs when trying to sample/reconstruct discontinuity.
* Anisotropy

—Caused by non-spherically symmetric filters.

—Requires filters that are invariant with respect to rotation.
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the pipeline (westover ‘91)

Discrete Continuous Discrete
3D 3D 2D

| Input |—> Reconstruct
(filtering)
v
| Transform |
v
Manipulation & analysis:
shade,project, composite
(opacity, scatter, density)

v
Antialias wirt 2D
(filtering)

v
| Resample |—>| Image

input

* Bandlimited.

» Appropriately sampled: above the Nyquist frequency.
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Reconstruction - Interpolation

2D 1D

Given: Given:
Y

VP
/]
e
o
0,:5
il

% .............. X
N Needed: r
Needed: r
Example in 1D
% ‘ _NHHLMHL] -
I - T I
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How? Convolution

Interpolation (summary)

» Very important; regardless of algorithm
expensive => done very often for one image

» Requirements for good reconstruction
— performance
— stability of the numerical algorithm

— accuracy

Nearest
neighbor

Linear

35




the pipeline (westover ‘91)

Discrete Continuous Discrete
3D 3D 2D
| Input |—> Reconstruct
(filtering)
v
| Transform |
v

Manipulation & analysis:
shade,project, composite
(opacity, scatter, density)

v
Antialias w/rt 2D
(filtering)
¥
| Resample |—>| Image

transformation - magnify / minify

* Remember, spatial scaling = inverse frequency scale.

» Magnification / scaling of the reconstructed input p
transformation / minimization of the sampling function.

» Minification / scaling of the reconstructed input p
transformation / magnification of the sampling function.
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Resample

» with antialiasing

» without antialiasing

Summary

* For (n=1;n<image_size; nt++)

gradx[n] = image[n-1] * -0.5 + image[n+1] * 0.5;

37




You're really approximating...

w T -- w A *;ﬁ
7
i ||I
..... | .
W = 3 =|,I
With all the consequences in the A
I

frequency domain! e O

Summary

» Convolution is a basic operation, used in:

interpolation, reconstruction.

Noise filtering.

Differentiation, measurement.

Statistics.

* The frequency domain.
— It exists.

— Operations in discrete images have frequency based
conseguences.

— It's happening whether you're watching for it or not.
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Evaluation & Design of Filters

Torsten Moeller, Simon Fraser Univ.
Raghu Machiraju, The Ohio State University

Other Significant Contributors:
Klaus Mueller, SUNY-Stony Brook
Roni Yagel, Insight Theraputics

Image Processing

Nearest neighbor Linear Interpolation

SIGGRAPH 2001
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Practical Volume Rendering

Interpolate - f(t)
Determine opacity - a(t)

Determine shade - c(t)

SIGGRAPH 2001

Numerical evaluation of Rendering Integral
discretization of rays necessary

Signal Sources & Processing

Original

signal Pre-filter

Reconstruction
filter

signal

SIGGRAPH 2001

>

bandlimited
signal

sampled
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‘ Functional Assumptions
I

v

BandLimited Function: F(w) = 0, W > W o yist

Sampled signal originated from a smooth polynomial signal

SIGGRAPH 2001

Signal Processing

> A—'
— Pre-filter

Reconstruction
filter A

\ 4

SIGGRAFPH Z001
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‘ Framework

! Numerical Analysis approach:

= discretization: ’\/\E>
f[k]=f(kT) —— m

= reconstruction: Interpolation

Nearest neighbor Linear interpolation

ppi with zero-degree polynomial ppi with first degree polynomial

e Dy

SIGGRAPH 2001

Problem Definition

"= Given a set of n+l points {(x;, f;)}.

= Find a function f(x) for an arbitrary
X.

Approximation: Interpolation:

f(x)- fi=e  f(x)- f,=0

SIGGRAPH 2001

42




Problem Definition

' Generally there is no way to predict the
values in-between the given (measured)
points (x;, ;).

= Need knowledge of the space of functions,
that our measurements were made in.

A

A\ 4

X.

><i+1

SIGGRAPH 2001

‘ Mathematical Approach

"« Usual assumptions are:
» space of smooth functions C"
» space of bandlimited functions

= Function spaces characterized by specific
basis functions f (x),

» Each function expressed as a linear
combination of these bases:

f(X)=af ,(x)+af (X)+...

SIGGRAPH 2001
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‘ Mathematical Approach (2)

'« different possible bases:
* represent different function spaces
* vary in quality
= vary in computational efficiency
= Resort to:

Polynomial interpolation (Lagrange basis, Newton form)

» Piecewise polynomial interpolation (Hermite, cubic
splines, Bezier, B-splines)

= Orthogonal polynomials (Legendre, Chebychev, others)
* Trigonometric functions
* Wavelet basis

SIGGRAPH 2001

Polynomial Interpolation

'« Given: Set of n+1 points S = {(x;, f;)}
= Sought: Representation of f(x) in the
polynomial basis f(x) = X'
= there is a unique polynomial p, of degree n,
that interpolates S

f(X)» p,(x)=a,x°+ax' +...+a X"

SIGGRAPH 2001

44




Lagrange Polynomials

'« Defined as:
. (x) = (X= X )(X= %)+ (X X_)(X- X))+ (X- X,)

(% = %) 06 = %)+ (% = X)) (% = Xug) (% = X))
= We conclude:

P, (X) = é fklk(x)
k=0

= Problems: very costly o evaluate.

= Solution: Power form or Horner s Method
Better - Newtons form

SIGGRAPH 2001

Accuracy

P2 TIF T C () then” 21 1T (MIN(z, Xy, MEX(Z, Xy )

(n+)
(@ b= 00

Twhere @200 %)

= Warning 1: For z outside [Xu: %] T .(2) grows
way foo fast.

= Warning 2: There are functions for which
p,(x) doesn t approach f(x).

SIGGRAPH 2001
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Piecewise Polynomial Interp.

' Many possible schemes for PPI, which
differ in their accuracy, and features

* Hermite,

» pth degree Splines

= Bezier

= B-splines

= NURBS.

SIGGRAPH 2001

‘ Orthogonal polynomials

" Computation of coefficients of p,(x) is
unstable.

= Basis x' is not orthogonal.

= Rewrite polynomial p,(x) in a different,
orthogonal, basis P;:

P (X) =B Ry (X) + B R (X) +... + 1, R, (X)

SIGGRAPH 2001
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‘ Orthogonal polynomials (2)

"« with condition, that inner product is zero:
(7.p), =0

i1

» where w is a weighting function. For a
continuous domain, we have:

(R,P) = Z‘ﬁ(x)Pj (x)wW(x)dx

SIGGRAPH 2001

‘ Orthogonal polynomials (3)

"= Common orthogonal polynomials:
= Legendre,
= Chebychey,
= Trigonometric functions (not polynomials)
= Bessel functions (not polynomials).

SIGGRAPH 2001
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Trigonometric functions

More than just a tool for interpolation
Widely used for analysis of sighals
Basis functions:

(X) - eiWX

w

Transform y

f(x) = ¢F (u)e™du

¥

1 Y - jux
F(U)ZEO‘C (x)e ™ dx

SIGGRAPH 2001

Trigonometric functions (2)

Discrete transform - is an approximation
of the continuous transform, but
constructed, such that the inverse
transform works:

n-1
— 2 i2pik
f=a Re™"
k=0
St izpik
—_ - | n
Re=2a fe®

j=0

With basis functions: £ (k) = @2k
]

SIGGRAPH 2001
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Wavelet basis

" Major idea - decompose the function space
into smaller spaces:

V.=V, AW

= Typically this multi-scale representation
can be exploited:

Vg =Vo AW, AW A - AW,

SIGGRAPH 2001

Wavelet basis (2)

'« Basis | j(x) for smooth spaces V; fulfills
dilati tion:
ilation equation i :Zé_ hj (2x- K)
k

i 0)=20 (2'x-1)
" Basis y;(x) for detail spaces W; fulfills
wavelet equation: o .
y (X)=2q 9d (2x- k)
k

SIGGRAPH 2001
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Wavelet basis (3)

' Synthesis of a function (assumingj ;(x),

y ;(x) are orthogonal):
f(x)=a b,y (X
ik

» Analysis of a function (assuming | j,|(><),
y ;(x) are orthogonal):

¥
b, = C\)f (X ;. (X)dX
¥

SIGGRAPH 2001

Requirements

'« Performance

Stability of the numerical algorithm
Accuracy (numerical + perceptual)
Smoothness of reconstructed function

SIGGRAPH 2001
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Requirements (2)

= Accuracy considerations depend on
underlying function space.

= For smooth function spaces, we consider
asymptotic error behaviors.

» For bandlimited spaces, we consider

blurring, aliasing and overshoot (Frequency

domain).

» Not considered Perceptual metrics

SIGGRAPH 2001

Reconstruction in Practice

Engineering approach:

black-box with reconstruction filter

{71 e

System or
Algorithm

SIGGRAPH 2001
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‘ Reconstruction in Practice (2)
I

Engineering approach (cont.):
= nearest neighbor

—> Convolution with E’W‘T
. box filter 1] .
» |inear filter: >

»

—> Convolution with Ly
m tent filter ‘

SIGGRAPH 2001

Reconstruction - Convolution

' How can we characterize our black box ?
» Black-box/algorithm:

* linear
* fime-invariant

= then it can be characterized by the
response to an impulse :

—3p| System or|l_y,
Algorithm

SIGGRAPH 2001
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Convolution (2)

"+ Finite Impulse Response (FIR) vs.
Infinite Impulse Response (IIR)

= Impulse: d(x)=0,if x* 0
¥
Ol (x)dx =1

» discrete impulse:
d[k] =0,if k* 0
d[0] =1

SIGGRAPH 2001

Convolution (3)

"+ An arbitrary signal x[k] can be written as:

X[K] = -+ - 1d[k +1] + x[O]d[K] + X{1]d [k - 1] +---
= Let impulse response be h[k]:

System or
d[k] —> Algorithm — hik]

SIGGRAPH 2001
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Convolution (4)

"« for a time-invariant system h[k-n] would be
the impulse response to a delayed impulse

d[k-n]

* hence, if y[k] is the response of our system
to the input x[k] (and we assume a linear

system): o
yik] = a x{nlhlk - n]

IIR - N=inf.
FIR - N¢inf.

—3p| System or
x[k] Algorithm

SIGGRAPH 2001

y[K]

‘ Transforms Pairs

| W.. Fourier |y

Transform

Filter

35 Sinc(t)

--10-8 6-4-202 46810
SIGGRAPH 2001

> Average >

i PR Bo>f/5mc ©
05 Filter

v
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| Transforms Pairs (2)
| g

linear interpolation

< Li.near' P 3‘8\
Filter o

1
0.8 .
06 Gaussian !
04 /\ <+ . > 05
lqa 2270 Z & FIITer‘ g:g
) 0 444444

. o der'!vahve P
- Filter ‘

SIGGRAPH 2001

| Higher Dimensions

| = An-isotropic Filters
* (radially symmetric)

h(x,y)= h(\/ x* + yz) [ h(x, y) = h(x)*(y)

SIGGRAPH 2001

» separable filters
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‘ Filter Evaluation

Frequency Domain Spatial Domain
= global features = local features
= robust noise = minimal error
handling = smoothness
= no blurring
= no aliasing

4 Approximation
& Signal Processing Theory/Analysis

SIGGRAPH 2001

‘ Frequency Domain Issues

" Postaliasing

» reconstruction filter passes frequencies beyond
the Nyquist frequency (of duplicated frequency
spectrum)

* Frequency components of the original signal
appear in the reconstructed signal at different
frequencies

= Smoothing

» frequencies below the Nyquist frequency are
attenuated

SIGGRAPH 2001
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‘ Frequency Domain Issues (2)

' Ringing (overshoot)
» occurs when trying to sample/reconstruct
discontinuity

= Anisotropy
» caused by not sp

herically symmetric filters

- ""-.-I.L L B ‘_f > k"ll.luli '
\ 1 s

‘ AIdeaI Reconstructio
[

/

A

U\\\\\\\\\\\\

P P
Low-pass band-pass high-pass
filter filter filter

Realizable filters do not have sharp transitions;
also have ringing in pass/stop bands
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Evaluation of Filters

I
= Frequency methods = Spatial Methods

m Discrete Fourier = Discrete Moments
Transform = Asymptotic Error

= Divergence from = Smoothness
Ideal

= Laplace Transform

SIGGRAPH 2001

| Fourier Transforms

"» Lets look at a special input sequence:

X[k] - eiWk
* then: N
yikl= g €"*"hn]

N
=eiWk é e-iwnh[n]

n=-N
=H (w)e"™

SIGGRAPH 2001
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Fourier Transforms (2)

Hence € is an eigen-function and H(w) its
eigenvalue

H(w) is the Fourier-Transform of the h[n]
and hence characterizes the underlying
system in terms of frequencies

H(w) is periodic with period 2p
H(w) is decomposed into
= phase (angle) response <1 H (W)

* magnitude response |H (W)|
SIGGRAPH 2001
‘ Example
I
_ 1 1
y(n) = Zx(n) + 5x(n-1)
x(n) — einw
y(n) — ge%_+%_e—nwgeinw
_ el 1 - .
C(w ) = ge-z-+ 5 e nwe
— W
C(w) = gecos‘-g—ge 2
C(0) = 1
C(p) = 0

SIGGRAPH 2001
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‘ Tdeal Interpolation

| Spatial Domain: Frequency Domain:
= convolution is exact = cut off freq. replica
- = . sin(px
L0 =0 |ging(x)=Snte)
1 pX
Oz o ,\vnunvﬂvhv Uﬂvl\vr\vﬂu,\vu .U'B

0. 065

.4
25 20 15 10 5 0 5 10 15 20 25 0 005 01 015 02 025 03 035 04 045 05

SIGGRAPH 2001

Or Ideal Reconstruction

'« Box filter in frequency domain =
= Sinc Filter in spatial domain
impossible to realize (really?)

1

Pass-band. | stop-band

A

.— Ldeal filter 0‘:
Smoothing

0.75

U.U. D I50. 0. 29 3030 F50.5

Practical
filter

Post-aliasing

v

SIGGRAPH 2001
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12 linear interpolation

1
0.8
0.6
0.4

0
002 06 1 4 18 2
12 windowed 3&10

1
0.8 \
0.6

0.4

0.2

0
002 06 1 14

1.8 2|

SIGGRAPH 2001

An Easy Fix Windowing

0.95
0.9]
0.85

0.8
0.75,

U U0 U.I10.4).28.30.339.47.43].5
1

0.95
0.9
0.85

0.8
0.75
0.7]

.65,
0 (CAVA VR 7V e VJ: 0 de VAR VS T VI VAL V)

Windows ?

0

wind(t, M) = o —HEnEl
€ otherwise
A +tav -ME£t£0
wind(t,M) = gl—td\/l 0EtEM
e 0 otherwise

1o
wind(t, M) = ? +boosBry
e

M E£tEM

otherwise

SIGGRAPH 2001
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Far From Ideal -
‘ Marschner, Lobb

\

fass band  stop band S(h)=1- - gHdw

1
R

<«—  ideal filter
P(h)= idH ‘dw
R|x
smoothing error
«— actual filter
A

N

postaliasing error
SIGGRAPH 2001

Carlbom

I
Approximates ideal frequency response with error

Uses Remez algorithm to minimize error:

- /7 .\ [ & WA AN U B B R AN — 7/ _ N\ 1\

With ideal interpolation filter

-i 2pwt

Wheret is the offset

SIGGRAPH 2001

62




‘ Ideal Derivatives

| Spatial Domain: Frequency Domain:
= convolution is exact = cut off freq. replica
£9(x)- F€x)=0 |cosc(x)= X snlpy
X pX

15

1 0.95

05 09

0.85

0
08

-05

0.75

1 07

E 0.65
1'5-25 20 -15  -10 -5 0 5 10 15 20 25 0 005 01 015 02 025 03 035 04 045 05

SIGGRAPH 2001

| Far From Ideal

I
pass band :stop band

smoothing error
-+

.

<

postaliasing error
SIGGRAPH 2001
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Practical Derivative Filters

frequency in radfs

Traquency in radis

Lichtenbelt et al

SIGGRAPH 2001

Dutta Roy & Kumar

| QuickFix Windowing (Goss)

a0
Idsal —
Gradienl fiter (alpha w40 ---
Gradienl flter nlg:a-ﬁ.o .-
Gradient hr (akpha = 16,0} ~nm- —
20 Cener Differsnce ——- i ‘\ .
= S,
| e \
5
H \
!
# . &
"""""""""""""" LY
- "~ *, k]
L, . . i
10k e T T T e ~ Y
= e Y
- L
N
7 et '.‘b
Al
g NN
1 I
a0 o 2

Fretquency

= Window of ideal derivative filter (Cosc).
= Kaiser window (based on Bessel Functions)

SIGGRAPH 2001
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Example Fourier Trans.

y(n) = Zx(m)=3x(n-1)
x(n) = el
D(w) = &-Ze ™0
C(w) = g%m"gvgeﬂ_zv

C(0) = 0
Cp) =1

SIGGRAPH 2001

Accuracy

= Taylor Series:

» agpproximate the error of the numerical
algorithm

= evaluate its asymptotic behavior.
= Assumption:

some derivatives of the underlying function f
exist.

F(x)= (1) + f'(t)(%th f"(t)%h.

SIGGRAPH 2001
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Keys
I

Constructs cubic interpolation kernel, such that it is
symmetric, interpolating, C?

Leads fo cardinal splines

Uses Taylor series expansion - optimal a = -05
Compares these methods in spatial as well as in frequency
domain

3 2
Fa+ 2t —(a+3)l +1 0O<fl<1
= 3 2
@) Sal’-salt’ +sali-4a 1<ftl<2
2 <|t|

& 0

SIGGRAPH 2001

‘ Mitchell, Netravali

I
Construct cubic filters (piecewise polynomial), that are

C! normalized

8

30 o 2 Bp
?—EB—ng +(=3+2B+C)[t| +gi—§ﬂ O£t <1

ht) = X .
é—és—@f’ +(B+5C)t/*+ (~2B—8C0)lf + Ze+acdien <2

DAOOOIO OO

0 211

Numerical study:

f(t)— ') = (2C+B - 1)TF€t)r(t) + O(TH

SIGGRAPH 2001
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‘ Mitchell, Netravali (contd.)

14 Cubic In'rerpolgﬁon Filter for B=C
12

1
0.8
0.6
0.4
0.2

0
-0.2
-0.4

5T 035 0 05 T 15 2

SIGGRAPH 2001

| Spatial Domain Evaluation

|
» Reconstruction of the Nth derivative:

f(t)=a,f+..+a,,fNY+a, ™ +a,,, 0 +..
= Analyze Are all a(t) = O for IkKN?

= Normalize Isay(t)=1?

= Classify How many a,(t)=0 for I>N?

= Error How large is the error term?

SIGGRAPH 2001
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Apply Taylor Series

Numerical Reconstruction - Convolution

£ ()=t F (k- DW(E- (K- D)+ FRW(E- K) +...

Apply Taylor Series to Convolution Sum

f (D) =a,(t) f (1) +a (t) F'(t) +ay(t) F* (1) +...

SIGGRAPH 2001

What are all these as ?

L

w _ o w (|) w

fr (= g a OO+ i(t)
=0

W TI * |

A’ = T 8 (k-t)lwi -k
-k:—¥

They are nothing but discrete moments |

And one can also prescribe the accuracy of
reconstructed function

SIGGRAPH 2001
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‘ Example

I
» Good interpolation filters

3(t) =1 a(t)»0 a,(t)»0
= Good derivative filters
(1) =0 |a(t)=1 a(t)»0
= Good 2nd derivative filters
a(1)=0 a(t)=0 [a,(1)=1

SIGGRAPH 2001

‘ Error Estimation

WO EE o max T D00y ghY 0]
Error of the Cubic Derivative filter
600000 with a=-1 applied to f(x) = °
500000 /\
400000
300000
200000 \
100000
oL MMM
5 10 15 20 25 30 35 40 x 50

SIGGRAPH 2001
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Catmull-Rom Interpolation

1
0.8

04

0|~
-0.2

ao=1, a;=T(2a+1)(1-2t)(t-1)
a, = 2T?(2a+1)t?(+-1)?, a5=T3t(1-2t)(1-1)

SIGGRAPH 2001

Catmull-Rom Derivative

a,=1, a=T(2a+2)(1-61)(1-1)
a, = 3T2(2a+1) T(1-t)(1-2t), a;=T3(6t2-6t +1)

SIGGRAPH 2001
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‘ Proof is in the Pictures
| — — e s 10

Interpolation it
a=-02,-5,-10 &

SIGGRAPH 2001

Normal Estimation Schemes
[

Method (FD)H - derivative first
Compute normal at grid points
Interpolate new normals
Method (FH)D - interpolation first
Reconstruct continuous function f(t)
Apply discrete derivative filter
Method F(DH) - continuous derivative (new)
Convolve derivative filter with interpolation filter
Apply this filter to the data samples
Method FH - analytic derivative
Analytical derivative of the interpolation filter

SIGGRAPH 2001
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Normal Estimation Schemes
[

Central Difference + Linear Interpolation:
ao=1, a;=T a, = 0, a3=T3(-3t2+3t +1)

Cubic Derivative (a=-0.5):
ao=1, =0, a, =0, a5=T3(6t2-6t+1)

Turns out Simple Estimation is not that bad after all |

SIGGRAPH 2001

‘ Spatial Filter Design

[
Which DERIVATIVE of the

original function do we want to

/ reconstruct? \

What ACCURACY How SMOOTH

do we require from <«—» (space C") should the

the reconstruction reconstructed function
process? be?

SIGGRAPH 2001
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Piecewise Catmull-Rom

14 Catmull-Rom Interpolation Filter

1.2
1} w(t) w_(t) Pa \wo(t)

wy(t)

0.8}*
0.6
0.4
0.2
0
-0.2
-0.4

2 -1 0

SIGGRAPH 2001

Example

I 1.5

deriv; Cn 2EF

Eg W, =%t2- %+%a

SIGGRAPH 2001
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| Smoothness
I

» Smoothness = Visual Artifacts
» Reconstructed Function:

f ()=t F (K- DW(E- (K- D)+ F(KW(E- K) +...

* For f to be smooth (in CM) the filter
weights must be smooth:

w I C" W™ (1) = w1 (0)

SIGGRAPH 2001
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‘ Frequency Considerations

|
Accuracy Smoo’rhness

H™(0) = j"a,(t) \H(w)\

N W@/

All such filters have linear phase.

SIGGRAPH 2001

Interpolation filters

| [EF  2EF  3EF _ 4EF
“ _l—l__/\_./\,_/\._
“ AIAIA LA
A TA A
N BUANE I NS WA AN

SIGGRAPH 2001
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Results - Marschner/Lobb

linear error cubic error
derivative filter derivative filter
. . = Y
discontinuous  fupr e diitl gt
derivative 'rv.""'-"—' it 2
. 'lll
filter hhhuf‘- u.,l.';ﬂ
Iy 'Hum
i |l‘|'.lr-4. e
CO continuous .
derivative 4

. 8
flITer' _I"k.!’__:

S1vurAarn 2001

Results - Pattern Mapping

discontinuous
linear error
derivative
filter

CO continuous
quadratic
error
derivative
filter

SIGGRAPH 2001

C! continuous
quadratic
error
derivative
filter
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Results - Pattern Mapping

SIGGRAPH 2001

Results - Pattern Mapping

SIGGRAPH 2001
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Results - Pattern Mapping

SIGGRAPH 2001

‘ Derivative Example

|
2EF first derivative filter:

f.t)=a,f +af'+a,f"+..

8 =0=w,+w, +w,+w
a =1=w,(2- t)+w (1- t)+wy(-t)+w(-1-t)
a, =0=wW,,(2- t)*+W (1- t)* +wy(- t)* +w; (- 1- t)

SIGGRAPH 2001
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‘ Derivative Filters

1EF 2EF 3EF  4EF

LRE

oLl
Sslsle
sJslelle

SIGGRAPH 2001

Summary
I

» To evaluate filters spatial domain approach yields
constraints on filters

* Frequency domain approach allows
= interpretation of designs
» wise choice of parameters

SIGGRAPH 2001
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Classification and Local Error Estimation of Interpolation and
Derivative Filters for Volume Rendering

Torsten Moller'-3, Raghu Machiraju®-3, Klaus Mueller?, Roni Yage

|1 2,3

Department of Computer and Information Science
Biomedical Engineering Center
3The Advanced Computing Center for the Arts and Design
The Ohio State University, Columbus, Ohio

ABSTRACT

We describe a new method for analyzing, classifying, and
evaluating filters, which can be applied to interpolation filters, and
derivative filters. Our analysis is based on the Taylor series expan-
sion of a convolution sum and some assumptions on the behavior
of the data function. As a result of our analysis, we derive the need
and the method for normalization of derivative filter coefficients.
As an example, we demonstrate the utilization of our methods to
the analysis of the class of cardinal cubic filters. Since our tech-
nique is not restricted to interpolation filters, we can show that the
Catmull-Rom spline filter and its derivative are the most accurate
reconstruction and derivative filter among this class of filters. We
show that the derivative filter has a much higher impact on the ren-
dered volume than the interpolation filter. We demonstrate the use
of these optimal filters for accurate interpolation and gradient esti-
mation in volume rendering.

1 INTRODUCTION

Reconstruction of a continuous function and possibly its
derivatives from a set of samples is one of the fundamental opera-
tions in visualization algorithms. In volume rendering, for
instance, we must be able to interpolate the data set at arbitrary
locations to evaluate the rendering integral. The gradient (or first
derivative of the function) is important in classifying the volume
and applying a proper illumination model [5][12].

Assumptions - We denote by f{#) a continuous function (the
signal) which is sampled into the discrete function f, = f(k7),
where T is the sampling distance and k is an integer. In computer
imaging f{¢) is not available; we have only f;, which is the discrete
image we need to manipulate. An important assumption we make
is that the continuous signal fis sampled at or above the Nyquist
Sfrequency [17][21]. Inherent to this assumption is that the underly-
ing function is bandlimited and hence analytic, i.e., all derivatives
exist at all points. In fact, signals commonly found in volume visu-
alization are bandlimited because, during the process of acquiring
digital images, acquisition devices (e.g., cameras, scanners) per-
form a filtering operation and bandlimit the function. Images gen-
erated by numerical simulations of physical phenomena (common
in disciplines such as computational fluid dynamics) are also band-

1395 Dreese Lab, 2015 Neil Ave, Columbus, OH 43210
{moeller | raghu | yagel@cis.ohio-state.edu}

2260 Bevis Hall, 1080 Carmack Rd., Columbus, OH 43210
{klaus @chaos.bme.ohio-state.edu}
© 1996 IEEE

0-7803-3708-5/96 ..$4.00

71

limited because, typically, robust numerical solutions can be
obtained only if the algorithm incorporates a smoothing step.
Finally, all rendering and scan-conversion algorithms, in order to
provide antialiased images, typically employ a filtering step that
bandlimits the image. Malzbender presents similar observations
for volumes obtained through medical acquisition devices (e.g CT,
MRI) [14]. Much has been written about the reconstruction of sam-
pled data sets in the fields of signal processing [17] (1D data) and
image processing [3][6] (2D data), applied numerical mathematics
(1][10](21].

Motivation - Before resampling, we must recgnstruct from f;
the continuous function, which we denote by f, () . Here, A
denotes the low-pass interpolation filter. Before we can classify or
apply any shading method to our data set, we need to reconstruct
the derivative of f{t) from the known samples f;. We denote the
derivative of the continyous function f{¢) by f (¢) and the recon-
structed derivative by f, () . Here, d denotes the high-pass deriva-
tive filter. The filters £ and d are usually chosen without much
thought towards the adverse effects of the filter performance. The
trilinear and central difference filters are often used for the recon-
struction of the underlying function and its derivative, because
they are inexpensive. However, the use of the trilinear filter results
in blurring and aliasing in the final image, while the application of
the central difference filter results in the loss of fine details.

With recent advances in hardware it is now possible to con-
sider the use of better, albeit computational expensive filters. As a
result, there exists a need for quantitative and qualitative methods
to evaluate the goodness of the interpolation and derivative filters.
Quantitative methods are useful since they provide an error metric
to compare and contrast filters. Also, they can lead to the selection
of optimal filters. On the other hand, qualitative methods allow the
classification of the filters into categories and may lead to the
application of further metrics e.g perceptual.

For our evaluation methods, we also require that the function
is included in the evaluation. Also, the evaluation should be con-
ducted in the spatial domain instead of the more cumbersome fre-
quency domain.

With this background and assumptions in mind we summa-
rize, in Section 2, what previous research has been done in this
field. In Section 3 we introduce our concept of Taylor series expan-
sion of the convolution sum. Because of their importance, we sin-
gle out the case of interpolation and derivative filters. In Section 4,
we illustrate an application of our general methods to the group of
cardinal cubic interpolation and derivative filters. In Section 5 we
show some experimental results, and, in Section 6 we suggest steps
for furthering this research. Finally, in Section 7, we summarize
our findings.
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2 RELATED WORK

Researchers have generally studied and evaluated filters in
frequency domain. One of the earliest comparative studies of inter-
polation filters for image resampling was done by Parker et al [19].
They compared nearest neighbor, linear, cubic B-Spline, and two
members of the class of cardinal cubic splines, through a discus-
sion of their respective frequency spectra. They found the Catmull-
Rom spline to be superior.

A thorough study of cardinal cubic splines in frequency
domain was performed by Park and Schowengerdt [18]. They
found that the optimal interpolation filter of this class highly
depends on the signal to which it will be applied. For most applica-
tions, the parameter ¢« will be around 0.6 or close to the Cat-
mull-Rom spline, for which the parameter is -0.5. Keys [11]
showed that the latter filter is optimal, within the class of cardinal
splines, in the sense that it interpolates the original function with
the smallest spatial error. By using a Taylor series expansion of the
convolution sum, he found that the Catmull-Rom spline interpola-
tion filter has an error proportional to the cube of the sampling dis-
tance.

Mitchell and Netravali [16] introduce a more general class of
cubic splines, which we refer to as BC-splines. Cardinal cubics are
a subclass of these cubics. Mitchell and Netravali conducted a
study of more than 500 sample images, classifying the parameter
space into different regions of dominating image artifacts such as
blurring, ringing, and anisotropy. They also found, by using a Tay-
lor series expansion, that filters in which B +2C = 1 are most
accurate numerically and have an error proportional to the square
of the sampling distance. Neither Keys nor Mitchell and Netravali
approximate the actual error of their filters.

A recent comparative study by Marschner and Lobb [15] pro-
poses the use of different metrics for different image artifacts. Spe-
cifically, they introduce metrics in the frequency domain to
measure the smoothing, postaliasing, and overshoot of an interpo-
lation filter and found the windowed Sinc filter to behave the best.
Unfortunately, their metrics do not depend on the actual function to
be reconstructed, an issue that Park and Schowengerdt found to be
crucial for frequency analysis.

All the aforementioned approaches neglect to take derivative
filters into account in their studies, a precondition to compare ren-
dered and shaded images. A good survey of existing derivative fil-
ters can be found in the paper by Dutta Roy and Kumar [7] in
which they describe the design of maximal linear filters in fre-
quency domain. Their filters can be adapted to various frequency
ranges, an important consideration for practical applications.

Goss [9] extends the idea of windowed filters to derivative fil-
ters. He uses a Kaiser window for the ideal derivative filter, which
is shown, e.g. in [2], to be the derivative of the Sinc filter and
which we denote as the Cosc filter, but does not explain why this
windowing is necessary and why a Kaiser window will work rea-
sonably well. The work by Bentum [2] uses the cardinal cubics as a
basis to develop derivative filters. Although he shows different
plots of these filters for different parameters, he does not analyti-
cally compare these different filters.

While most of the existing research concentrates on frequency
analysis, we believe that the spatial analysis is just as important. If
the local error can be kept small, then the effect of image artifacts
also diminishes. In fact, we find that the results of Keys’ spatial
analysis are nearly identical to the results of the frequency analysis
done by Park and Schowengerdt.

In this work we develop tools for the spatial analysis of inter-
polation and derivative filters. We show the importance of the nor-
malization of the filter coefficients and how this step is performed.
Specifically for the class of cardinal splines, we derive known and
new results in Section 4 using our new spatial method.
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3 TAYLOR SERIES EXPANSION OF THE
CONVOLUTION SUM

To reconstruct a continuous function f{z) or its derivative
f(#) from a set of sampled points f, , we compute a weighted
average of these samples. This process is also known as convolu-
tion of the sampled signal with a filter which determines the
weights. If we convolve the samples with a continuous interpola-
tion filter 4, we reconstruct the original function f{¢). Similarly, if
we convolve the samples with a continuous derivative filter d, we
can reconstruct the ath derivative of the original function. We
denote the result by f, () , where w denotes the kind of filter used.
This can be written as:

Fw= 3 fi-we-h M

k= —co

Now f, represents the samples of the original function f{t) at
the values kT, where T is the sampling distance. Since we assume

that all the derivatives of f{#) exist, we can expand f, = flkT) ina
Taylor series in f around ¢. Therefore, we write:
(N+1)
(x £
@ (t) __(lg_ (N
f = FKT) = 2 (KT =) " 4 = (KT 1)

n=0

where &, € [, kT] . Substituting this Taylor series expansion
into Equatlon (1) and reordering the terms according to the deriva-
tives of f{t), we can rewrite Equation (1) as:

N
£ =Y aof™®+ryo )
n=0

where the coefficients a:(t) and the remainder term rx(t)
are:

oo

an@ = ’-11— Y (kT—t)"w(%—-k)

k =00

) = (N“), 2 SEEDEY (KT —1) B+ D iz - Ry

k= —o0

This gives us the i 1mpres‘§)10n that the values of the coefficients
ar , and the remainder term r,, depend on ¢. This is somewhat mis-
leading. Let us first have a look at the coefficients a. . For practi-
cal reconstructions of signals, we do not use an mﬁnitely long
filter. Therefore, a filter w has a finite filter length that we call M.
The filter w is defined to be zero outside the interval /-M, M]. Next,
we observe that we are evaluating the filter w at points exactly one
unit length apart. These weights are applied to an n-th degree poly-
nomial (k7 --t)" sampled also at points exactly T apart, centered
at t. Therefore, it makes sense to rewrite ¢ in terms of an offset ©
from 7, written as:

t = (i+7) T, where 0<'c<1 and i€ Z
Therefore, the coefficients a can be expressed in terms of
this offset:

i+M
= Y (k=) T-1T)"w(T— (k-i))

k=i-M

ay D) = ay((i+7)T) =

which can be simplified to:
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M

ay, (V) = ?2 (k—1)"w(t - k)

k= -

3)

Here, we clearly see that a: depends not on ¢ itself, but rather
on the distance to the next sampling point (expressed by 1 ). This is
because 1 tells us how ‘far away” a reconstructed value is from an
already known sampled value. Therefore, we can_guantify how
‘hard’ the reconstruction process really is. Since aw r does not
depend on i and, T is set by the data acquisition step (and therefore
cannot be changed during the reconstruction procgss) we will drop
the appropriate subscripts in the expression for a,

If we do the same analysis for the remamder term rN, we
find:

M

T D S S, ) (- e @)
M

where §k € [t (k+i)T] . Finally, the convolution sum in
Equation (1) can be expressed as:

N

> a,Of M@ +ry (%)

n=0

o=

Our objective is to quantify and classify the error occurring
during the reconstruction process. We can do this by comparing the
w w
a, and ry of various filters w. The principal idea is to choose the
largest N such that all the coefficients a,l evaluate to zero, with the
exception of ay for interpolation filters and a” for m-th order
derivative filters. This coefficient should evaluate to one, since we
want to reconstruct the continuous function or its m-th order deriv-
ative respectively. Choosing the value of N in tnllis way, the recon-
struction error is simply the remainder term r,,. We observe that
the coefficients depend solely on the underlying filter w. This leads
us to a conceptually ideal way to compare and classify different fil-
ters. We can put all the filters characterrzed by the sa +1¥ in one
class. The reconstruction error ry is o order O( ). That

s that for typical applrcatronlef will be smaller than
I: :r iff N > N, . Therefore, in gene e prefer filters in a class

largest N. The filters in class (N-1) we simply call N-th degree
error filters (N-EF) to comply with standard nomenclature in
numerical mathematics. We can further distinguish among filters in
the same class using their absolute errors Tr

This classification is very important and should strongly influ-
ence the choice of a filter for a given application. A N-EF will
reconstruct a polynomial of (N-1)th or lower degree (the original
function as well as its derivative) without any errors. In many
applications, the underlying data can be sufficiently modeled with
lower degree polynomials. Therefore, a 3EF or 4EF may be suffi-
cient.

This classification scheme is important in determining the suf-
ficient and necessary resolution of voxelization (discretization)
algorithms. One restriction might occur, when the researcher can-
not change the resolution, e.g. the resolution of an MRI scanner. In
such cases, one needs to consider the error terms quantitatively
only, because the placement of a filter in a N-EF group depends on
the asymptotic behavior of the filter error. Therefore, one can find
examples where, for some T, a specific filter in the 2EF group will
perform better than a specific filter of the 3EF group.

3.1 Continuous Interpolation Filters

In the case of an interpolation filter 4, we need to require that
a, be exactly one. This requirement is also recommended by
Mitchell and Netravali [16]. To achieve this, we simply normalize
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. . h . .
the filter coefficients by dividing them by a,, . Without this normal-
ization step, we cannot rely on the accuracy of the interpolated
function.

3.2 Continuous Derivative Filters

As with interpolation filters, we also need to normalize a
derivative filter d. For simplicity, we will concentrate on the deriv-
ative filter for the reconstruction of the first derivative f'(¢) of the
original function. Higher order derivative filters can be treated sim-
ilarly.

We are reconstructing the derivative of the function instead of
the function itself and therefore need to set the coefficient in front
of f(£) to one. That means we must normalize it by dividing the
filter coefficients by a; . This is less known, yet very important for
a reliable normal estimation. The reconstruction of derivatives is
still more complicated than this; we also need to require that a,, is
zero! In fact, if this condition does not hold, the result is useless.
As an example, let us examine the Cosc filter, the ideal derivative
filter. It has been shown that the ideal derivative filter is simply the
derivative of the ideal interpolation filter Sinc [2). Therefore, we
have

04 The ratio ag/a; in terms of the offset

03
0.2
0.1

-0.1
-0.2
-0.3
-0.4

0 0.2 04 0.6 08 1

offset
FIGURE 1. We computed the normalized coefficient

a¢ in terms of the offset to the next sampled value.
V\?e find it only to be zero for t© = 0.5.

0
%( cos (mt) —

t =0

Cosc (1) 120

= Sinc’(t) = sin (Ttt))

Tt

The Cosc filter (like the Sinc filter) is an infinite filter and
therefore not applicable. In the case of the Sinc filter, we could use
a truncated Sinc filter, which is equal to the Sinc filter for all
lt| € M and zero outside of this interval. In the case of the Cosc fil-
ter, we cannot simply use a truncated Cosc filter, since ao will not
be zero. To demonstrate this, let us set M to three, which results in
six filter weights for the reconstruction. This is a rather expensive
ﬁl}er. In Figure! we plotted the normalized -coefficient
ao(‘c)/a,('c) . We found this function to be varying between -0.4
and 0.4. Notice the behavior of this specific truncated Cosc filter on
a linear function as shown in Figure 2. We would expect a function
close to constant one (the derivative of the linear function
fix) = x), but instead we see a linearly increasr g grror on A
order to get a correct result, we need to subtract ao('t)/ a.(1T)
from the reconstructed value. That means we actually need to
reconstruct the original function f{t) in order to compute its deriva-
tive. But this would require another convolution with an interpola-
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tion filter, which would be inefficient. A proposed way around this
problem is to window the truncated Cosc filter [9].
We conclude that a careful analysis of a filter is necessary

before its use.

Truncated Cosc Filter applied to f(x) = x

15

-15

5 10 15 20 25 30 35 40

FIGURE 2. We truncated the Cosc filter at M=3.
Since the coefficient a§ is not zero, we end up with
artifacts that make the’ filter useless. (The expected
result is the constant function one.)

3.3 An Approximation of the Error rl‘:;

The error as computed in Equation 4 is more a theoretical
result than a practical one, because we do not know the E_,k ;- To
get a fair idea about the behavior of the actual error, we suggest an
approximation of r;v,. In practical applications the length M of the
used filter w is usually small, since a larger filter width M results in
reduced efficiency. Therefore, we conclude that the interval

[(i-M)T, (i+M)T], in which all the E_.k ; are to be found, is
relatively small. In addition, for MRI and CT data sets we found a
behavior of the data sets in the frequency spectrum corresponding
to the function 1/w” for small . Therefore, we do not expect a lot
of high frequencies, which would result in a fast changing function
within a short interval. It is reasonable to assume that especially
FW¥+D () will not change much on a small interval of length 2M.

We conclude, that:
max
Ee [(i-M)T, (i+M)T)

T(N+1)
N+1)!
( ) .

D))

ry, (DS (

M
Y (k-1 W+ Dw(r—k)
=-M

o1,

max
Ee [(i-MT, (i+MT]
If we can approximate the (N+1)st derivative of the underly-
ing function, then we can approximate the actual error. Even if this
is not possible, we can at least compute a,,  , to get an idea about
the scale of the error. How well this error-bound approximates the
actual error can be seen in Figure 3, where we used the derivative
of the cubic interpolation filter to compute the derivative of a quin-
tic polynomial. People usually model practical data sets with cubic
polynomials locally. We have chosen a quintic polynomial since it
is a supergroup of cubic polynomials and has higher variations and
faster changing derivatives.

X E) a1 @] ©

rx' l.('t) < (
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Error of Cubic Derivative filter (o = -1) applied to f(x) = x5

600000
500000
400000
300000
200000
100000

0

§
Y4
i

i

{]

filh
il 1

5 10 15 20 25 30

5

FIGURE 3. The absolute error of the cubic derivative
filter with the parameter o set to -1 applied to the
polynomial of 5th degree. Also we have computed the
error bound according to Equation 5 using the result
from Table 1 in Section 4.2. We can see that our error
bound is very tight and almost exact. The actual error is
shown as error bars and the computed error-bound is
drawn as a connected curve.

4 OPTIMAL CUBIC FILTER

Now, let us apply the methods we developed in Section 3 to
the group of cubic filters. The group of cubic filters are described
as:

0<«<ld<1
1<|f<2
2<|d

(@+2) | = @+ 3|2 +1

h(t) = ocItI3 - Sozltl2 +8alf —4a

0

This class of filters is derived by Keys [11]. He shows that for
o = —0.5 this filter is a 3EF. He also uses a Taylor series expan-
sion to derive this result. In Section 4.1 we will derive this result
again, to demonstrate the power of our method. Bentum [2] devel-
oped a continuous derivative filter originating from the cubic inter-
polation filter. This filter is simply the derivative of the cubic
interpolation filter, and can be written as:

-3at2— 100 - 8a

~-2<t<~1
3(a+2) P —2(0+3)1 ~1<1<0
40 =| 3(q+2)F—2(a+3): 0<r<l
2 l<t<2
3af - 10as + 8a .
2<i4

0

In section Section 4.2 we show that for this derivative filter as
well, o = —0.5 is optimal and produces a 2EF.

4.1 The cubic interpolation filter

The cubic filter has a window size of two, i.e. an overall
extent of four. Therefore, we have four weights to consider. These
are:

83



W) = (0+2)T - (0+3)T +1
h(‘c~1)=—-((x+2)1:3+(2(x+3)1:2~0vc ©
h(t+1) = oc'c3 - 2a12 + 0ot
h(t-2) = - 0L13 + oc12
We are using these filter weights to compute the coefficients
a, from Equation 3. The results are summarized in Table 1.

TABLE 1. Coefficients for the cubic interpolation filter

h 1

)

a:l TQRa+1)t(1-21) (t-1)
a 2T 20+ )T (1-1)2

a;' (evaluated only for

it(l—Zt) (-1
o= -05) 6

For ag we compute their sum and find that this coefficient is
exactly one. This is an important result, for it tells us that cubic
interpolation filters do not need to be normalized. This saves many
computations and makes this class of filters more efficient and
more attractive for Bractical applications.

Considering a; we find, as Keys [11] did, that the cubic filter
with o = -0.5, also known as the Catmull-Rom-Spline, has the
best behavior in terms of numerical accuracy and makes this cubic
interpolation filter at least a 2EF. Additionally, we find, that in the
special case of T = 0.5 the cubic interpolation filter is, for any
choice of o, at least a 2EF too. This means we interpolate exactly
in the middle of two sampling points. If we neither choose o to be
-0.5 nor interpolate in the middle of two sampling points, the cubic
interpolation filter represents a linear order filter (1EF) and a
substituted in Equation S represents an error bound for this class of
cubic filters.

For fyrther analysis in the case of & = 0.5 or T = 0.5, we
evaluate a, . For T = 0.5 it will not be zero, and therefore substi-
tuted in Equatjon 5 presents an error approximation. In the case of
a = =05, a, will evaluate tg zero and in order to approximate
the error, we need (o analyze a, .

Computing a, for o = 0.5, we find that this coefficient is
not zero and therefore, substituted in Equation 5, represents an
error-bound for the Catmull-Rom cubic filter. Thus this filter is a
3EF filter. We conclude that the choice o0 = ~0.5 results in an
optimal cubic interpolation filter. This filter is optimal in terms of
numerical accuracy. Keys presented this same result, except, that
he did not provide an error-bound and did not mention the special
case in which the offset T is set to -0.5.

With T set to -0.5, we find that also dy evaluates to zero and
we get an even better filter. This special discrete interpolation filter
has the following filter coefficients:

h(*0.5) = 9/16
h(*1.5) = -1/16

For this filter, we find similarly aZ(O.S) = -3 T4/]28 , which,
again, we plug into our error approximation of Equation S. There-
fore, when both conditions hold (T = 0.5 and o = -0.5), we
have a 4EF filter.
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4.2 The cubic derivative filter

Bentum [2] introduced the cubic derivative filter, but did not
provide an analysis nor an analytical comparison of its perfor-
mance for different values of the parameter o . Although this filter
is really just a quadratic filter, we prefer to call it ‘cubic derivative’
filter, since its parent is the cubic interpolation filter, which is a
very well known and commonly used class of filters. The four rele-
vant weights in this case are:

d1) = 3(0+2) T ~2(a+3)T
dt-1) = =3 (a+2)T +2(20+3)T—a
dt+1) = 301 4ot + 0
dT-2) = -301° +201

These are the derivatives of the weights for the interpolation
filter in Equation 6. As in the previous section, we compute the
coefficients in Table 2 using Equation 3.ex

To compute a,, we compute the sum of these weights and find
that a, is indeed zero. In Section 3.2 we found that this is a
requirement for good derivative filters, and we also saw that it is
not obvious this condition holds. Here, we note once again that
cubic filters are a well-defined class of filters. As shown in Section
3.2, we need to normalize the other coefficients by a, . Note that
for oo = -0.5, the normalization step is a simple division by the
sample distance T. This again saves time and the convolution
becomes more efficient, making this class of filters useful for fast,
accurate volume rendering. Especially in the case of T = 1 this
division does not need to be performed. In the given literature we
could not find a mention of this necessary normalization step. We
also want to point out that in the case of a; = 0, we really have a
filter which computes a higher order derivative. This is the case,
eg if @ = -1.5 and T = 0.5. Wenot only find a; to be zero but
also a,. That means that we actually recover at least the third
derivative of the underlying glnction. A more thorough analysis,
where one would compute a, or higher, is beyond the scope of
this paper.

Interpolation coefficient a,

0 0.2 0.4 0.6 0.8 1

FIGURE 4. Here we plot the coefficient ah of the cubic
interpolation filter for varying o. o is d -0.2, -04, -
0.6, -0.8 and -1. We set T to one.

As is the case for the cubic interpolation fiJter, we discover
that for o = ~0.5 or t© = 0.5 the coefficient a, is zero, leading
us to a derivative filter of higher order error. If none of these two
conditions hold, we substitute the normalized a, into Equation 5
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and find an error bound. In the case that o = -0.5, we substitute
a,/T into Equation 5 for an error bound. Since we normalize by
T, this filter is a 2NF.

Again, we conclude that for the cubic derivative filter
o = -0.5 is the optimal filter in terms of numerical accuracy.
Note that we lose one degree of accuracy for the first derivative fil-
ter. The cubic interpolation filter is a 3EF. However, the cubic
derivative filter is only a 2EF.

In the case that o #-0.5, we find that both filters are linear
error filter (1EF). For a better perspective we plotted the error coef-
ficients of the error term in Equation (5). For the interpolation filter
we plotted a{' for different & in Figure 4 and for the derivative fil-
ter we plotted a4/a{ in Figure 5. We find that the actual error
term is larger in magnitude for the derivative filter.

TABLE 2. Coefficients for the cubic derivative filter.

d 0

g

a 1+ @a+n(-6+6t-1))
ag 37220+ )T (1~-1) (1-27)

ag (evaluated only

3
%(612—6T+ 1)
for o = -0.5)

These are important observations, for in order to obtain as
reliable data for derivatives as for the interpolated signal, we need
to apply more sophisticated filters. Furthermore, if we use the same
o for interpolation and derivative filter as Marschner and Lobb
[15], the error introduced by the derivative filter is larger.

Derivative coefficient ay/a;

0.4 o=0
).2

o =

—— o —— - ——— - g e

a=-10

02 04 0.6 0.8

FIGURE 5. We plot the normalized coefficient
ad/af of the cubic derivative filter for varying o.
o is d, -0.2,-0.4, -0.6, -0.8 and -1. We set 7 to one.

5 EXPERIMENTAL RESULTS

For our experiments we used an analytic data set and a MRI
data set. The synthetic data set is the same function as the one used
by Marschner and Lobb [15], sampled into a 40 x 40 x 40 volume
lattice. A high definition ray caster, sampling the volume at a step
size of 0.05 voxel lengths, was employed to display the function’s
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opaque isosurface at 0.5 of the maximum function value. In con-
trast to the images given in [15], Figure 6 focuses on the center
section of the function, where the distinct effects induced by the
various interpolation-derivative filter pairings are most apparent.
In Figure 6.1 through Figure 6.9 we rendered this data set
with varying o for interpolation and derivative filters. Along the
rows we decrease o for the interpolation filter from top

(o0 = ~0.2)to bottom (& = —1). Along the columns we decrease
o for the derivative filter from left (o0 = -0.2) to right
(o = ~1). We find that the differences between rows are not as

striking as the differences between columns. That demonstrates our
findings in Section 4.2, where we concluded that the derivative fil-
ter has more influence on image quality than the interpolation filter.
In order to be able to compare interpolation filters, we suggest to
fix the derivative filter, preferably one with error that is negligeable
compared to the errors in the interpolation filter.

The second data set is an MRI of a human head, also used by
Bentum [2]. Here, we fixed the interpolation filter to the optimal
cubic filter and varied o for the derivative filter. In
Figure FIGURE 7..1 through Figure FIGURE 7..3, we find that the
best image is achieved when o is set to -0.5. That is exactly what
we expected from our analysis in Section 4.2. Figure FIGURE 8..1
through Figure FIGURE 8..3 show the same set of filters applied to
a small section of the brain and rendered from a close-up view.

6 FUTURE GOALS

In many applications, especially volume rendering, we want
to both reconstruct the underlying function and/or its derivative
and also resample it on a new grid. Therefore, it is necessary to
study the overall error expressed in the L, error norm. We are
working on developing better tools to study this error. Eventually,
we want to come up with techniques similar to the ones presented
in this paper that will allow us to classify different filters and also
to quantify them, efficiently computing their L, error.

In terms of filter design, we can use our tools to design filters
of arbitrary order. Setting the coefficients in Equation 2 to zero for
a given N, we end up with N linear equations for 2M+] coeffi-
cients. We can solve this linear system, matching N and M appro-
priately, and we find a NEF. It would be interesting to study how
this filter behaves in terms of the offset T, for it would enable us to
construct filters of arbitrary accuracy. Similar to the adaptive filter
design of Machiraju et al [13], we can use these different filters
adaptively in different areas of the function. Knowing the error,
caused by convolving a particular filter with a particular applica-
tion, we want to find ways to adapt the type of filter we use,
according to a given error tolerance.

We plan to extend the techniques describes in Section 3.2 for
higher order derivatives and to the evaluation of filters others than
the cardinal cubic splines, such BC splines {16] and other optimal
filters [4].

It is alse important to study the behavior of different filters,
when applied to rapidly changing functions. (Such behavior could
be caused by noise.) Our analysis remains valid, except for the
error estimation in Equation 5, where we assumed slowly changing
functions.

7 SUMMARY

In this paper we applied a Taylor series expansion to the con-
volution sum. This resulted in an alternative representation of the
convolution sum which lead to a qualitative and quantitative com-
parison of both reconstruction and derivative filters. We found that
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the normalization of the filter coefficients is important for accurate
reconstruction.

We then applied these techniques to the analysis of the class
of cardinal cubic splines. We derived several special filters, which
_ are numerically optimal within this class. Especially, we concen-
trated our efforts on interpolation and derivative filters and found
that, when both are applied to a function, the error introduced by
derivative filters are more significant than those caused by interpo-
lation filters.

We expect the techniques developed here to be applicable to
the design and evaluation of other reconstruction and high order
derivative filters.
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Abstract

The task of reconstructing the derivative of a discrete function
is essential for its shading and rendering as well as being widely
used in image processing and analysis. We survey the possible
methods for normal estimation in volume rendering and divide
them into two classes based on the delivered numerical accuracy.
The three members of the first class deterniine the normal in two
steps by employing both interpolation and derivative filters.
Among these is a new method which has never been realized. The
members of the first class are all equally accurate. The second
class has only one member and employs a continuous derivative

filter obtained thrnnah the nnnl\ﬂgr derivation of an interpolation

obtained e analytic derivation of an inter polation
Silter, We use the new method to analyttcally compare the accuracy
of the first class with that of the second. As a result of our analysis
we show that even inexpensive schemes can in fact be more accu-
rate than high order methods. We describe the theoretical compu-
tational cost of applying the schemes in a volume rendering
application and provide guidelines for helping one choose a
scheme for estimating derivatives. In particular we ﬁnd that the
new niethod can be veéry méxpéi‘l&ve and can compete s with the nor-
mal estimations which pre-shade and pre-classify the volume [8].

Keywords: interpolation filters, derivative filters, filter design, nor-
mal estimation, Taylor series expansion, efficient volume rendering
INTRODUCTION

Reconstruction of a continuous function and its derivatives
from a set of samples is one of the fundamental operations in visu-
alization algorithms. In volume rendering, for instance, we must be
able io interpolate ihe function at arbitrary locations to obiain the
volume densities. The gradient (the first derivative of the function)
is employed in both volume classification and shading [3](8]. If the

gradient estimation is done carelessly, shading and classification
will yield wrong colors and opacities. Since the derivative of a

otinn valiise tha
function indicates the velocity of change of the function values, the

presence of noise especially will lead to incorrect images [4]).

There have been various studies and comparisons of accurate
interpolation filters, a summary of which is given in {10][12].
However, as is also shown in [1 2] the derivative approximation has

fnemane fommevant aee 2ermren nesd dlenenlinmn dnaneean

a largel nnpact Il uu: quaul.y Ul ulc uuasc any uu;u:u)lc aescives a

thorough analysis, which is the goal of this paper.
The ideal derivative filter is the Cosc filter, which is the denv-

ative of the ideal interpolation filter (Sinc) [1]{4]. For a practical
use of the Sinc ﬁlter, wmdowmg is suggested {7). Goss [6] extends
mc luca OI wmuowmg Il'0m mu:rpmauon mmrs {0 GCHVHUVC Ill'
ters. He uses a Kaiser window to mitigate the adverse effects of the
truncated ideal derivative filter. Bentum et al. [1] use the Cardinal

cubic splines to develop derivative filters. A good survey of exist-
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ing digital derivative filters can be found in the paper by Dutta Roy
and Kumar [4].

While all of the previous work focuses on the design of deriv-
ative filters, no work is known to us, that tries to conduct a compar-
ative study of gradient filters. Especially, in the case of volume
rendering, most algorithms are driven by efﬁciency considerations

and may dpr\nmpncn the mdmnt estimation in one or two cfmpe

@il fd

One step is typically the mterpolatlon of the normals or of the data
values with a continuous interpolation filter. The other step is the
application of a digital derivative filter (e.g. central differences) in
order to compute the normal at the sampling location. However,
there have been schemes proposed, that estimate the normal at an
arbitrary point in the volume in one step [1]. The goal of this paper
is to enumerate and classify the different schemes of gradient esti-

lllduUll dllu to dlldlyLC l.llClll lll termis Ul au,um(.y auu ClllblCllby

In this paper, we denote by f{¢) a continuous function (the sig-
nal) which is sampled into the discrete function fik] = fkT), where
Tis the sampling distance and k is an integer. In computer imaging,
j(t) is not available, we only have fJk]. We denote by h(r) the con-
tinuous funciion kemnel used for inierpolation and by dik] the digi-
tal (i.e. only defined for integer arguments) derivative filter.

We emp!eya Taylor series expansion of the convolution sum
for our numerical analysis, as introduced in [12]. Our Taylor series
expansion provides both qualitative and quantitative means of ana-
Iyzing filters. In Section 3, this analysis is expanded to the convo-
lution of two filters. The methods of [12] are briefly summarized.

1.1 Taylor Expansion of the Convoiution
Sum

To reconstruct a continuous function () or its derivative f(r)
from a set of sample points f{k], we convolve f[k] with a filter ker-
nel, i.e. we compute a weighted average of these samples. By con-
volving the sampled signal f[k] with a continuous interpolation
filter h, we reconstruct an approximation of the original function
f). Similarly, if we convolve the samples with a continuous deriv-
ative filter d, we reconstruct an approximation of the derivative of
the original funciion. We denoie the resuii of ihis operation by
f;_"(t) , where w is the filter used. Formally, this can be written as:

Y flkl-wiz-h )

km—o

Now we can expand f[k] = f(kT) into a Taylor series about ¢,
The Taylor series expansion at that point would be:

g
W+

o=

N (m
JIk} = Z f—m—(t—)(kT—t)"+ (KT - )N+ 1)

»=0N

ne=v

where f (")(t) is the n-th derivative of fand "gk e[t kT]

Substituting the Taylor series e

sum of Equation 1, leads to an alternative representation for the
reconstructed value at a point #:

axnansion into the convolution
/\Pullalvll IV IV WUIY ViUV
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where 1 is chosensuchthat £ = (i +T)T ,with0<t<1,andiis
an integer. It is noteworthy that the derived Taylor coefficients a
and the remainder term r only depend on the offset to the nearest
sampling point, i.e., they are periodic in the sampling distance T.
For further details, please refer to (12].

The characterization of the filtering process in Equation 2
imposes 4 different criteria for a good normal estimation scheme.
First of all, we require aff to be zero. Secondly we have to normal-
ize by a}’ in order to reconstruct the actual derivative as opposed
to a multiple of it. Further by determining the largest N, such that
a} is zero, we can determine the asymptotic error behavior of a
filter for a decreasing sampling distance 7. Finally, the remainder
term r gives us an indication of the absolute error of that filter,

This expansion of the convolution sum assumes that at least
the first N derivatives of the function f exist, where N depends on
our error analysis. This condition is generally met in practice since
image and volume acquisition devices such as scanners and cam-
eras inherently perform a low-pass filtering operation that bandlim-
its the functions [2]. Numerical simulations of physical
phenomena, as performed in the field of computational fluid
dynamics, usually generate bandlimited images as well since typi-
cally robust numerical solutions can be obtained only if the algo-
rithm incorporates a smoothing step [15]. Finally, all rendering and
scan-conversion algorithms, in order to provide antialiased images,
usually also employ a filtering step that bandlimits the image.
Bandlimited functions do not contain frequencies higher then a
certain limiting frequency in their spectra. One can conclude, that
bandlimited functions are analytic functions and all N derivatives
exist.

The remainder of the paper is organized as follows. In
Section 2, we summarize the different schemes for normat estima-
tion. In Section 3, we modify the Taylor series expansion of the
convolution operation for the specific use of cascading two filters,
and compare the schemes of Section 2 numerically. In Section 4,
we examine possible implementations of the normal estimation
schemes and compare their efficiency. Experimental results are
also presented in Section 5. Finally, in Section 6, we summarize
the results of this paper and discuss some open questions.

2 GRADIENT RECONSTRUCTION FROM
THE VOLUME SAMPLES

We will use the symbol F to represent the discrete function
JTk]. Further, we let D and H denote the derivative and interpola-
tion ' operators, respectively. In the process of volume rendering
there are two additional operators applied to the data. The first is
the transfer function, which maps the raw data values into material
attributes such as color, opacity, and reflectivity. We denote this
operator, also called classification function, by C. The second oper-
ator applied to the data is shading, which illuminates the data. The
shading operator, which we denote by S, takes as input material
attributes, light attributes, and the surface normal, and produces a

displayable value (e.g., RGBw).

Since S needs the output of C, shading will always be per-
formed after classification. Since $ needs the function’s derivative,
it will always be after D. We now present four different ways of
computing the function derivatives. Except for the first approach,
(FD)H in all others the operators CS will be performed qfter the
interpolated derivative has been computed.

2.1 Method (FD)H - Derivative First

One way of computing the derivative at a point ¢ of a discrete
function fTk] is to first compute the normal at the grid points k7" and
then interpolate these normals, producing the derivative at the
desired location ¢. This is the method most commonly used in vol-
ume graphics [6][9]. The first step, the computation of the deriva-
tive at the grid points, can be expressed in the following
convolution:

Ftk = Y fi-dik-1

= oo

Now the derivative at an arbitrary point can be interpolated as:

] - t
O WA (3 RS0

k= —co
-3 (2 f[ll°d[k—l]]-h(%—k)
ko —co\ wmeco

Square brackets are used to emphasize the discrete nature of the
operator. Since a convolution in spatial domain is the same as a
multiplication in frequency domain, we conclude the following fre-
quency characterization of the above operation:

FP(@) = Fp@Dp@)H®) 3
Here Dp(w) denotes the Fourier transform of the discrete deriva-
tive filter and Fp() denotes the Fourier transform of the sampled
function f{k]. The Fourier transform of a discrete function contnins
replicated frequency spectra at k2r (where k is an arbitrary inte-
ger). Therefore Dp(w) and Fp(w) are periodic functions with
petiod 21, Following the Fourier transform in Equation 3, we will
refer to this method as (FD)H.

Unlike all other methods described in this paper, some algo-
rithms ([81{3][16]) perform interpolation after classification and
shading. Normal values are computed at the grid points and classi-
fication is also applied to the original data values. Then, these data
points are shaded. The final RGBo. volume is then interpolated at
the appropriate sampling points. Using our notation, this method
can be summarized by ((FD)C)S)H. This is indeed an efficient
method, since CS does not have to be computed for every sample
point (which is the case for all other methods described in this
paper where interpolation is done before CS) but rather it is com-
puted only for the original data points. However, this method will
produce correct results only if both C and § are linear operators.
The result of employing a non-linear transfer function or illumina-

- tion model may, for example, cause the appearance of errors or
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pseudo-features that are non-existent in the original data, In the
case of S, one must therefore allow illumination models consisting
of only ambient lighting. In the case of C, the linearity restriction
may not be acceptable for many applications. For example, if we
want to find the opacity in-between two data values a and b (using
linear interpolation), we would find (C(a)+C(b))/2 by performing
classification first. However we would find C((a+b)/2) by perform-
ing interpolation first. Obviously, if C is a non-linear operator, the
two results will be different. We therefore concentrate our analysis
and discussion in the more general and accurate methods that per-
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form CS only after gradient estimation and interpolation.
2.2Method (FH)D - Interpolation First

In this approach, we first reconstruct the continuous function
K1) from the sampled values f; and then apply the discrete deriva-
tive filter d [10}[14]. Since the derivative filter is discrete, we only
need to evaluate the convolution sum of the interpolated function at
discrete points. The interpolated function f%(f) can be expressed
as a convolution of the samples f;, using the interpolation filter A:

- t
£10) = DIRLCRE

The reconstructed derivative can be computed by:

o= 3 k- fle-xn

k= —co

Using similar arguments as above, we find the Fourier Transform -

to be:
F Q) = (Fp@H@)Dp®) @

Using our previous notation scheme, we refei' to this method as
method (FH)D.

2.3Method F(DH) - Continuous Derivative

Looking at all possible combinations of applying the interpo-
lation filter and the derivative filter to the discrete signal, we are led
to a theoretical result. Namely, that we can first convolve the digital
derivative filter with the continuous interpolation filter. The result
will be a new continuous derivative filter which we can apply to the
data samples, enabling us to reconstruct the derivative at any arbi-
trary point ¢ directly. This can be written as:

VO W R
k o= —c0
where the continuous derivative filter dh(?) is obtained as the con-
volution of the digital filter dfk] with the interpolation filter h:

dhe) = Y, dlk]-Hz-B
ko=

We can show that the frequency representation of this process is:
dh
F, (?) = Fp(0)(Dp(0)H(0)) ®

therefore referring to this method as F(DH). The benefit of this
scheme is more conceptual at this moment. In Section 3 we show
how it can be used for a convenient analysis of the normal estima-
tion process. Further we will show in Section 4, that this method
can also be the most efficient to use for volume rendering algo-
rithms.

2.4Method FH’ - Analytic Derivative

A fourth method to compute the gradient of a discrete func-
tion is to convolve the samples f{k] with the analytical derivative of
the interpolation filter /:

‘ o fr ., 1
o= kz = WG
In this case, &’ represents a continuous derivative filter, allowing
us to reconstruct the continuous derivative f(t) directly from the
samples JTk] in just one convolution. This is very similar to the pre-
vious method F(DH). It differs only in the way we construct the
derivative filter: In method F(DH) we compute a convolution sum
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for the continuous derivative filter, while in this method we com-
pute the continuous derivative filter analytically. Bentum et al. {1]
apply this idea to cardinal splines, and Marschner and Lobb [113
use this for the BC-splines. The Fourier transform of the derivative
of a function is simgly the scaled Fourier transform of that function
multiplied by iw (i*=-1)[2]. Therefore, we find that the Fourier
transform of fH'(r) is: -

FY& = Py pHw)

and we refer to this method as FH’.

3 NUMERICAL ACCURACY :

Comparing Equations 3, 4, and 5 we easily find that these
three methods are numerically equivalent and thus produce the
exact same reconstructed derivative of f. Therefore, we will con-
centrate on comparing the methods (FD)H, (FH)D, F(DH) with the
method FH’. In order to compare the numerical accuracy of the
methods, we use the tools developed in [12] and summarized in
Section 1.1.

For method FH’, w in Equation 1 is simply the derivative of
the interpolation filter A, For other methods, we choose the deriva-
tive filter described in Section 2.3. To clarify the notation,dzve will
replace w by dh. To better compute the coefficients a,, (t) of
Equation, 2 for the derivative filter dh, we will substitute the convo-
lution sum of the derivative and interpolation filters into the
expression for a, (v) in Equation 2:

M) = %’ 3 (k~t)"[ D a'[l]-h(t-—k—l)]

k= —o -—co
which simplifies to:
) dh n .- ' -]
¥y = % 3 d[l]-( 3 (k—t)"h(‘c—-k—l))
I = —co - —co

Substituting m for k+! in the inner sum, we get:

a‘,f"(r) = g Y, dui- hy (m—t-—l)”h('c—m))

] m—co - —co
) Py n
= ’E!‘I 2 d Ul( h ('%(';)(m—t)'(—l)""jh(t-m)J
which resolves to

aﬁh('c) - giio(':)[

. n
= 3 d_ 0@
i=0
This means that the error coefficient of a convolution filter is

simply the convolution of the error coefficients of both filters, In
Table 1, we have computed the coefficients for some commonly
used filter combinations. The first column shows the error coeffi-
cients for the probably most common used filter combination of
linear interpolation and central differences, abbreviated by DL.
Another common choice is the combination of a cubic interpola-
tion filter (we have chosen the class of cubic cardinal splines) with
central differences. We let DC denote this filter class. For the class
of analytic derivative filters we have chosen the derivative of the
cubic interpolation filter, as introduced in [1}. We use C to repre-
sent this filter class.

In the case that a=-0.5, ag is zero for all three methods and

] = —co

2 n"" i 1) ]](mz (m- ‘C)ih(‘l: - m))
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central difference + central difference +
linear interpolation (DL) cubic interpolation (DC) cubic derivative (C)
as 0 0 0
a} T T T(1+Q2a+1)(-67 +6t~1))
a 0 T’ Qa+ 1)1(1 —7)(1-27) 3720+ 1)t(1 - 7)(1 - 27)
d
2
% «=-05: T a=-05: (672 ~61+1)
(normalized) 7 ) ) 6 " 6
—(1+37-3 =0: = =0: =
g (1+31-377) =0 6T 3 T=0:%
T=05: -—(—a+ ) (140‘ + 3)
6\4 "8 =03 T\ga+ 12

Table 1.Coefficients for some commonly used filter combinations

we must compare 21‘3’ . One can easily prove that this coefficient for
DL is always greater than T%/6 (the coefficient for DC), which in
turn is greater than the coefficient for C. This implies that, the
worst behavior is observed for DL, and C is more accurate than
DC.

Therefore we conclude, that the optimal filter to use is C for
o =-0.5. However, one might be interested to use different o in
different situations. For instance Park and Schowengerdt [13] con-
clude from a frequency study of the cardinal cubic splines, that
some o (different than -0.5) might yield better images. They find
that o depends strongly on the underlying function to be recon-
structed. Therefore it is of interest to analyze the spatial error for
different oL as well, ,

In the case that o ## -0.5, the coefficient for ag is zero only for
the method DL. In order to compare the error coefficient among the
methods DC and C, we compare a‘Z’ for both filters. As we have
pointed out in [12], these coefficients need to be normalized. Fig. 1
shows a plot of a2 after its normalization. Note that T simply
scales both plots equally. Therefore, it can be set to one. In Fig. 1,
one can clearly see that the error coefficient for DC is smaller than
the error coefficient for C. Therefore, we conclude that DC is supe-
rior to C when o.# -0.5. This is a rather, unexpected result, since
one would naturally expect the analytic derivative of a filter to be
more exact and therefore to perform better. As we have just seen,
this is not necessarily the case.

For the special cases that =0 and T=0.5 (where a3 0)
we found by comparing a3 , that C is more accurate than DC force
o € [-3,-0.6]. Another value to consider is the second derivative of
the underlying function. When it goes to zero, we also have to use
the error coefficient ag for an error comparison.

Normalized derivative coefficient a;for DC

04
0.2 o = -1.0

e

@
=0

02 ¢
-0.4

0 0.2 0.4 0.6 0.8

FIGURE 1. In both plots we set T'to 1.0. o takes the values 0, -0.2, -0.4, 6,
and cubic interpolation filter for varying o . (b) The normalized coefficient ag/af
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We are left to compare the error behavior of the most common
method DL with the other two methods. Again, for the special
cases, where the second coefficient or the second derivative of the
function go to zero, we must compare af in order to find the most
accurate filter. For the other cases however, we can follow the fol-
lowing analysis. If we have influence on the original sampling dis-
tance T for our applications, we can always find a T, such that the
combination of central difference and linear interpolation is supe-
rior to the other two methods. In other words, DL is asymptotically
better than DC and C. However in most practical applications we
are given a data set with fixed sampling distance 7. In these cases
we need to weight the actual error of the filters and conclude from
this comparison which filter is. more accurate. If we are comparing
DL and DC, we want to find out for which o DC performs better
than DL. Mathematically:

lench 2 llencl

Using the second error approximation of Equation 2, we find the
following criteria:

8 ]2 foy w20

We can conclude that the choice of ¢ very much depends on
the resampling offset T and the actual data. After some algebraic
manipulations, we can conclude:

f‘ YN > 0 +05> 72 “f(”(l)u
7@ S0
For o. in this range the method DC is more accurate than DL. As

expected, the choice of the most accurate filter strongly depends on
the underlying data.

For a similar comparison of the methods DL and C we find:

©®

Normalized derivative coefficient a)/a for C

04 a=0
o =>{.2
0.2 /_\\
N\
(b) o --------- -~ - L S vy e oy S
-0.2
04 o =-10
~
0 0.2 0.4 0.6 08
-0.6, -0. 8 -1. (a) The coefficient a" of the central difference

of the cubic derivative ﬁlter for varying o.
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An important observation that we draw from Equation 6 and
Equation 7 is the dependency of the comparative accuracy on the
sampling distance. The higher the sampling rate the smaller the
range in which C or DC performs better than DL. This means that
for densely sampled data sets a combination of linear interpolation
and central difference is not only efficient, but also recovers the

derivative accurately. That can also be explained in the frequency

domain, The higher the sampling rate, the further apart the fre-
quency spectra are placed. In other words, the signal’s aliases are
more separated. Thus, the deficiencies of the central difference
operator at higher frequencies do not impose a problem since no
signal aliases exist in this frequency range. This is an important
and new result, since it tells us, that for some data sets DL is just as
accurate, as the other two (more expensive) methods DC and C.

4 EFFICIENCY CONSIDERATIONS

In this section, we compare the four methods (FH)D, (FD)H,
F(HD), and FH’ from an efficiency perspective. While the first
three methods are equivalent from an accuracy standpoint, they are
not so from an efficiency point of view. This section also contrasts
the overall computational effort of these four shading-deferring
methods with the demands of the popular, but less accurate, pre-
shading scheme [8]. We denote this approach as (FD)CS)H, where
C and § stand for classification and shading that occur after gradi-
ent computation but before color interpolation. Our comparisons
will be valid for the 3D case only (a typical application will be vol-
ume rendering algorithms). If we compare nommal estimation
schemes in other dimensions, our analysis will be similar.

In the following discussion, we distinguish between imple-
mentations that compute all results on-the-fly, and implementa-
tions that utilize some form of caching to reuse previously
computed results. The latter approaches obviously requires an
extra amount of memory and cache management overhead. We
now introduce some terminology:

E): The computational effort to apply the operator A where A can
be H,D, DH, H' , or CS.

[|All :Number of filter weights used for applying the operator A.
n:  Number of data elements (voxels).
nt;  Number of samples.

For digital filters []A] is obviously the length of the filter, but
for continuous filters (e.g. cardinal splines) {A] is usually the filter
support, i.e. the number of sample values, that are influenced by
the filter. Since the filter operation is the weighted sum of [[A] ele-
ments, we usually have E, = 2JAf -1 for a straight forward
implementation of JA| multiplications and A] -1 additions.
However, for some special filters, there will be a more efficient
implementation. For instance, the central difference filter (in one
dimension), can be implemented in 2 operations (one subtraction
and one division by 2) as opposed to 3 operations (two multiplica-
tions by 0.5 and one subtraction). Therefore, we find it important to
separate between E, and [A] .

In the following discussion we will discuss the cost of recon-
structing the function and its derivative at all the sample points. We
will also comment on the cost of applying the classification and
shading operators.

4.1(FD)H - Derivative First

In this method, we first compute the gradient at all grid voxels
within the extent of the interpolation filter &, and then interpolate
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these gradients using H. An on-the-fly approach would have to
compute §H| gradients for a total cost of [H[Ep,, followed by
three interpolations to compute the three gradient components and
one interpolation to compute the data value itself. The total cost is
thus:

m({H|| - Ep, + 3Ey + Ey)

By storing computed gradienis in a gradient volume, one could
reduce the cost to:

n-Ep+m(3Ey+Ey)

The process of classification and shading will require additional
m-Ecg cost and the total cost will then be:

n-Ep+m(4Ey +Ecg)

However, in the ((FD)CS)H method, classification and shading are
applied to the data values, and the interpolation filter is applied to
the resulting RGBo. values. Therefore, the total cost for this
method, assuming caching, is:

n+(Ep+Egg)+m(4Ey)

Since in most cases, to assure proper sampling, n<m, the
computational advantage of this method is clear. Moreover, when
classification and illumination does not change for multiple render-
ing, the cost of the first component in the last two equations is
amottized and can therefore be ignored. If we ignore the shading
component then the cost of reconstructing the function and its
derivative assuming caching is given by:

n-Ep+m(4Ey)

4.2 (FH)D - Interpolation First

The (FH)D method computes the derivative at a ray sample
location from a set of additionally interpolated samples in the
neighborhood of the sample location. In parallel (orthographic)
rendering of volumes the data is resampled into a new grid. If this
grid is cached somewhere, one can perform the derivative calcula-
tions using the data values at that grid.

Without caching, in order to compute the derivative at a sam-
ple location, (FH)D interpolates D] additional samples, each at a
cost of Egy, and uses them to obtain three axis derivatives at the cost
Ep. Another interpolation at the sample location, each at a cost of
Ey, yields the function value. The total cost for reconstructing the
function and its derivative is:

m(iD} - Ey + Ep + Ey)

Later, these samples are classified and shaded, with an additional
cost (for the whole volume) of m - E . However, if caching is
employed, only one interpolation is needed per sample, and the D
operator uses only existing samples. Therefore the total cost for
reconstructing the function and its derivative:

m(Ep+Ey)
4.3 F(DH) - Continuous Derivative

Here the derivative filter is pre-convolved with the interpola-
tion filter which increases its size. The gradients are then computed
by convolving the volume by this combined DH-filter. The total
cost for computing the function and its derivative is then given by:

: m(Epy+Ey)
This is the most direct method of the three methods presented so
far and there is no caching mechanism available to gain some
speedup. )

4.4Method FH’ - Analytic Derivative

This method is not equivalent to the previous three in terms of
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accuracy, as other sections of this paper demonstrate. FH’ uses a
special gradient filter derived from the interpolation filter to esti-
mate the gradients. Since this derivative filter has the same size as
H the corresponding cost for computing the function and its deriva-
tive is:

m(Ey +Ey).

4.5 Summary and Numerical Examples

We are now ready to compare the theoretical cost functions
presented in the previous subsections and provide some numerical
examples to highlight the differences. Table 2 lists all costs derived
above and gives two numgrical examples: In case 1, H and H’ are
cubic filters (|Hfl = 4°), D is a central differenge filter
(kD] = 6), and in case 2, H is a trilinear filter (JH]| = 2°)and D
is again the central difference filter. For the following discussion
we count the number of floating point operations associated with
each operator, but we do not distinguish between additions, multi-
plications or dig'isions. In this case, the cost of Ep for H being
cubi% is 2:4° -1 =127, of Ey for H being trlinear is
2.2° -1 = 15, of Ep, for D being central difference the cost is 6.
Since the derivative filters are directional filters, and Epy denotes
the cost of computing all three derivative components, we find that
Epy, is three times the cost of one derivative component operation.
In order to find the directional derivative, we convolve the interpo-
lation filter of size s-s.s5 = 53 with a 1D derivative filter of
length k (in our case - central differences - k = 2), That results in a
filter of size (s+k—1)-s-5. Therefore we find the cost of Epy
for H being cubic is 477 and for H being trilinear is 69.

As expected the analytical derivative method (FH’) is the
most efficient one. However, as we showed in Section 3, it is not
necessarily the most accurate, Among the other three schemes
(which are numerically identical), we find our new method
(F(DH)) most efficient if there is no caching. However, if caching
is available, (FH)D is certainly the most efficient way to compute
the normal and the data value at this point. Therefore, we conclude
that in terms of efficiency and in terms of accuracy, there is no need
for the most commonly used method (FD)H (in the case of
deferred shading). As was pointed out already in Section 4.1, if we
do shading at the grid locations, we might find a more efficient
algorithm, yet trading speed for accuracy.

5 EXPERIMENTS

The images were rendered employing a simple raycaster to
find isosurfaces.The volumes were resampled at an interval of 0.05
voxel lengths. At each sampling point, the raycaster first applied
the interpolation kernel to reconstruct the function at that point, If
the reconstructed value was above a pre-set isovalue, the derivative
filter was used to compute the 3D gradient. Shading was then per-
formed using the traditional Phong lighting model {5] with diffuse
and specular reflections. The obtained color and opacity were com-
posited with the previous ray values, and the ray was terminated
after the opacity reached a value close to one. Since for all our fil-
ters both the interpolation and the derivative kernel were separable,
the filter operations could be efficiently performed using a scheme
similar to the one given by Bentum et al [1].

For our experiments we used an analytic data set, deriw}ed
from the same function as the one used by Marschner and Lobb
[11]. Specifically, we used:

1 2. (n 1 nf2 2
Jxo 32 = i—gsm(iz)+-16cos(12ncos(i x4y D

Since we study different derivative filters, we have fixed the
interpolation filter to be the Catmull-Rom interpolation filter - a
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cubic filter with small error as was also shown in [12], From Equa-
tions 6 and 7 we leam that the range of o where C and/or DC per-
forms better than DL is dependent on the data set. To address this
issue, we have computed the ratio | f3)(5)/ £ ()| analytically
for the data points for the three axis directions x, y, and z, where we
reconstruct and collected them in a histogram, plotted in Fig. 2. In
order to guarantee that all data points are reconstructed more accu-
rately using DC (or C) than DL, 'we would have to choose the min-
imal ratio. This ratio is zero and therefore we can conclude that
only for o = -0.5 we can guarantee, that the derivative reconstruc-
tion at any single point will be better for the methods DC and C as
opposed to DL. In order to get practical results, we could choose a
higher ratio of [| £3)(r)/ f@n)l, giving up on the accuracy assur-
ance for some reconstructed values. If we for instance choose the
ratio 7, we still guarantee all z directional derivatives to be estl-
mated more accurately. Approximatly 8% of the directional deriva-
tives in y will be more accurate by DL, and only 3.8% of the
directional derivatives in x will be better by DL.

When we plug in the ratio of 7 into Equations 6 and 7, we find
the theoretical result that for o € [-0.78,-0.22], DC performs better
than DL and for o € [-0.65,-0.34], C performs better than DL,
These theoretical ranges have steered our experiments and in Fig. 3
(see color plates) we have rendered the Marschner-Lobb data set
for several different .. For a better (analytical) understanding of
these rendered images, we have also drawn the angular error
images in Fig. 4. For each reconstructed normal we computed the
actual normal and recorded their angular difference. The grey
value of 255 was displayed for an angular error of 5 degrees.

For the first row of images we have used o = -0.5, Following
our analysis in Section 3, we expect that €(C) < £(DC) < g(DL),
where £(A) denotes the error measure of image A, The first row of
Fig. 3 shows the different images for o =-0.5, Although the differ-
ences are small, one can find DC to be better, than DL. Although
the image for DC is overall smoother, it’s error image in Fig. 4
reveals a much higher error than for C.

The images for o = -1.0 show the opposite behavior. From our
analysis we deduce the following error behavior:
£(DL) < &(DC) < &(C). From Fig. 3 we conclude, that C clearly is
the worst image. Also a visual comparison of DC and DL leads to
the conclusion, that DL is better than DC. The error images in
Fig. 4 support this analysis.

* The rows for o = -0.6 and o =-0.7 show rather a transitional
phase. Since the change of the filter weights happens continuously,
we cannot necessarily expect a sudden sharp change in the image
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FIGURE 2. The ratio of [[f3)0)/f@Xnl for the directional

derivatives in x, y, and z direction respectively for the
Marschner Lobb data set.
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Cubic Interp. Trilinear Interp.
Theoretical Cost and Central Diff. and Central DIiff,
No Caching Caching No Cache Cache No Cache | Cache
(FD)H m(|H - Ep + 3Ey + Ey) n-Ep+m(4Ey) 1084m 9n+508m 132m In+60m
((FD)CS)H - n-Ep+m(4Ep) - 9n+508m - 9n+60m
(FH)D m(|D] - Ey + Ep, + Epy) m(Ep +Ep) 898m 136m 114m 24m
F(DH) m(Eyp +Ey) - 604m —-- 84m ---
FH' m(2Ey) - 254m --- 30m -

Table 2. Comparison of efficiency of the normal estimation schemes

quality. The differences in the image quality can be better studied
using the error images in Fig. 4. We can conclude, that for . =-0.6
our results follow our theoretical analysis: e(DC) < &(C) <&(DL).
However, for o =-0.7 it is debatable, which method is preferable
in terms of image quality. Analytically we show
g(DC) < &(DL) < £(C). It is clear, that the image for C is the least
appealing to the viewer.

6 CONCLUSIONS AND FUTURE GOALS

We have classified the different techniques of normal estima-
tion into four groups, and we have developed a new scheme
F(DH). We showed that the schemes (FD)H, (FH)D and F(DH) are
numerically equivalent, and then extended the idea of classifying
filters using Taylor series expansion to the convolution of two fil-
ters, We found that computing the analytic derivative of a filter ker-
nel (method FH') is not always more accurate than using a
combination of that filter with the central difference kemel (any of
the methods FDH). Therefore, a careful analysis of existing filters
and filter combinations is suggested.

The new scheme F(DH) opens up new ways to design contin-
uous derivative filters. Furthermore, this method of normal estima-
tion is also the second most cost-efficient one, if no caching is
performed (with FH’ being the most cost effective one). However,
if caching is enabled, then the method (FH)D is clearly preferable
over any other method in terms of efficiency. In fact, what is
believed as one of the most commonly used methods, (FD)H, is
one of the slowest normal estimation method. The only advantage
one could gain is the pre-calculation of the shading operation at the
grid voxels, as Levoy [8] has proposed it. However, as was pointed
out in Section 2, this method is certainly not preferable if accu-
rately rendered images are required.

One of our immediate goals is to compare various combina-
tions of known derivative and interpolation filters in order to find
new derivative filters. We also would like to extend the error analy-
sis to frequency space so that we can examine any aliasing and
smoothing errors. Finally, it would contribute to the accuracy of
our analysis to include a noise model. We also believe that it is
very important to further investigate the shading and classification
steps in terms of numerical accuracy.
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ABSTRACT rather arbitrary, and one cannot talk abouidsal reconstruction
function. The notion ofdeal reconstruction is based on the

The correct choice of function and derivative reconstruction filters @ssumption, that a given function is a member of a certain func-
is paramount to obtaining highly accurate renderings. Most filter tional space, e.g. the? space or the bandlimited function space.
choices are limited to a set of commonly used functions, and the' his functional space (and therefore ideal reconstruction
visualization practitioner has so far no way to state his preferences Method) is usually determined by the particular application. In
in a convenient fashion. Much work has been done towards theVisualization, and in other fields, we assure that the given function
design and specification of filters using frequency based methodsP€longs to the space of smooth functi@fiswheren is an integer.

However, for visualization algorithms it is more natural to specify A very important and often studied space in the class of all smooth
a filter in terms of the smoothness of the resulting reconstructed fnctional spaces, is the space of bandlimited functions (a subclass
function and the spatial reconstruction error. Hence, in this paper, of c*). They are often studied in the frequency domain using a

we present a methodology for designing filters based on spatial signal processing approach. Although these methods are capable
smoothness and accuracy criteria. We first state our design crite- of controllingglobal errors such as blurring and aliasing,lacal

ria and then provide an example of a filter design exercise. We alsogpatial assessment of their accuracy can be conducted directly. It
use the filters so designed for volume rendering of sampled datay,ns out that the ideal reconstruction filters for the space of band-
sets and a synthetic test function. We demonstrate that our resultyimited functions are impractical to use. Hence research in this area
compare favorably with existing methods. has focused on finding efficient filters that approximate the ideal
filter [1][4][7][9][1O][14][15].

Keywords: Interpolation(G.1.1)Approximation(G.1.2)Quadra-
ture and Numerical Differentiatio(G.1.4)Picture/lmage Genera-
tion (1.3.3) Reconstructior{l.4.5)

Another body of work has concentrated on minimizing the local
spatial error for design and evaluation of filters [11][16][17][20].
The local error was measured and minimized using a Taylor series
Other Keywords: Volume Rendering, Filter Design, interpola- expansion. Since visual perception, judged by ringing, aliasing and

tion, derivatives blurring, was of concern, the frequency behavior of the resulting
filter was discussed. In addition, spatial design gives an easy con-
1. INTRODUCTION trol over the size of the filter, and hence on the efficiency of the

resulting filter, a property frequency-based methods do not have.
However, it was found that the sole concern for numerical accu-
racy can lead to discontinuous filters, which can produce visual
artifacts that are easily detected [17]. The goal of this paper is to
overcome this problem by introducing a smoothness requirement
into the filter design process.

The reconstruction of a function and its derivatives from a set of
given samples of that function is a fundamental operation in many
areas. Computer graphics, scientific visualization, and image pro-
cessing are just a few examples. In all these areas, a set of sample
of an unknown function is usually all we know of that function.
Hence, the reconstruction of the function between sample points is
All filter designs in the spatial domain have built filters according
to an accuracy criteria. In this paper we introduce, for the first
time, filter design criteria for interpolation and derivative filters
which yield functions with a minimal numerical error and still
maintain good spectral properties. The only assumption that we
require of the original function (represented by the given samples)
is that it is smooth and a member of the functional s@ica&ve
also show how our design criteria relate to criteria in frequency
domain.

Ouir filter design is not restricted to cubic polynomial basis func-
{moeller, mueller, kurzion, yagel}@cis.ohio-state.edu, raghu@erc.msstate.edu tions, but can generate filters of arbitrary smoothness and accu-
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racy. In this paper, we design optimized piecewise polynomial that it is suitable for practical applications in computer graphics.
interpolation filters according to a set of smoothness and accuracyMitchell and Netravali [16] introduced a more general class of
requirements. These filters are drawn from the set of all piecewisecubic splines which we refer to B cubic splinesr in short,
polynomial filters, a more general class of filters than the popular BC-splines Cardinal cubic splines are a subclass of the BC-
BC-splines. Since our methods also apply easily to any derivativesplines. Mitchell and Netravali conducted a study involving more
filter design, we find optimal piecewise polynomial gradient filters than 500 sample images, classifying the parameter space into dif-
as well. Our results, which go beyond the de-facto standard of theferent regions of dominating reconstruction artifacts such as blur-
popular cubic BC-splines introduced by Mitchell and Netravali ring, ringing, and anisotropy. They found, by using a Taylor series
[16], are summarized in Table 1 and Table 2. These tables provideexpansion, that filters for whicA+2C = 1  are the most numeri-
a guide to which filters should be used in most applications. Fur- cally accurate within the class of BC-splines and have an error pro-
thermore, we provide the practitioner with an easy and fast way toportional to the square of the sampling distance. They also found,
design filters that are specific to their applications by determining through their empirical studies, that these filters, although numeri-
an application oriented set of smoothness and accuracy criteria. cally superior, are not always visually superior.

The outline of this paper is as follows; Section 2 summarizes pre-Recently, we have shown [17] that the derivative approximation
vious research in this field. In Section 3, we introduce the designhas a larger impact on the quality of the volume rendered image
criteria that we use in Section 4 to design new filters. In Section 5 than the interpolation operation and therefore deserves a thorough
we present some experimental results and in Section 6 we suggesanalysis. Unfortunately, not much work has been done in the spa-
steps for furthering this research. Finally, in Section 7, we summa-tial design of derivative filters. Bentum et al. [1] use the Cardinal

rize our findings. cubic splines as a basis to constructing the derivative filter through
an analytic derivation of the interpolation filter. Although the
2. PREVIOUS RESEARCH authors illustrate the effect of various parameters on these filters

via a number of frequency plots, they do not analytically compare
the different filters. We (in [17]) have developed tools for the spa-
tial analysis of both interpolation and derivative filters of arbitrary
order. We used a Taylor series of the convolution sum in order to
come up with four evaluation criteria. These criteria include
asymptotic, as well as absolute, local error effects of the filter on
the reconstructed function. We use these criteria in our current
paper as a way to control the numerical error of the filters that we
design. Using the methods developed in [17] we conducted a com-
Many researchers have shown that$icfilter is an ideal inter- parison of various derivative (normal vector) reconstruction meth-
polation filter for the space of bandlimited functions (a subclass of ods and classified them into four reconstruction schemes [18].

c” ). In this space th€oscfilter, which is the analytic derivative

of the Sincfilter, is an ideal derivative filter [1][7][19]. These fil-
ters completely cut off the frequencies above a certain Nyquist fre-
quency. Because of this discontinuity in the frequency domain,
those filters have infinite support in the spatial domain and there-2.1 Taylor Expansion of the Convolution Sum
fore are impractical to use for digital signals. Windowing$irec

filter was introduced in order to smoothly limit this filter spatially
[10][19]. Carlbom [4] computed an approximation to a modified
Sincfilter with a minimized Chebychev error. Goss [9] extended
the idea of windowing from interpolation filters to derivative fil-
ters. He used a Kaiser window to mitigate the adverse effects of
the truncated ideal derivative filter. Instead of trying to find a good o
approximation to the ideal filter for all frequency ranges, Dutta f\rN(t) = z fK] BN(£ -k, (1)
Roy and Kumar’s filter design [7] can be easily adapted to find K= T

good approximations for select frequency ranges.

Two of the more important and well studied reconstruction algo-
rithms are interpolation and gradient estimation. In volume render-
ing, we must be able to interpolate the function at arbitrary
locations to obtain the volume densities needed for arbitrary view-
ing. The gradient (the first derivative of the function) is employed

in both volume classification and shading [6][13]. If the gradient

estimation is done incorrectly, shading and classification will yield

misleading colors and opacities.

Since we will employ the results of [17] throughout our paper, we
include a summery here:

To reconstruct a continuous functitft) or its derivativef'(t) from

a set of sample poinff], we convolvef[K] with a continuous fil-
ter kernel. The filterw can be either an interpolation or a deriva-
tive filter. We denote the result of this operation Wt)
Formally, this can be written as:

whereT is the sampling distance. Now we can expand
A comparative study by Marschner and Lobb [15] proposed the f[k] = f(kT) into a Taylor series dfi+1 terms about. The
use of different error metrics for various reconstruction artifacts of Taylor series expansion at that point would be:
interpolation filters. These error metrics operate in the frequency
domain and measure the smoothing, post-aliasing, and overshoc N ()
attributes of an interpolation filter. This study showed that the win- ~ f[k] = 2 f—l(t) (kT—t) "+
dowedSincfilter has the best behavior. n=0 n

In the spatial domain, Keys [11] analyzed a certain class of cubicwheref ™ (1) is ther-th derivative of andg, O [t KT] .
splines, also calledardinal splinesusing a Taylor series expan-
sion. He showed that, within this class, the Catmull-Rom spline is
optimal in the sense that it interpolates the original function with
the smallest asymptotic spatial error. He also graphically compared
the Catmull-Rom spline with the ideal interpolation filter, noticing

f(N+1)(Ek)

(N+1)! (kT—p (N

Substituting the Taylor series expansion into the convolution sum
of Equation 1, leads to an alternative representation for the recon-
structed value at a poitit
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N reconstructed a test function (introduced in [15]) and an MRI data
f‘r"’(t) = z a\:(r)f(”) )+ r‘,’\l" i (D) set with a filter that was designed solely by requiring high accu-
n=o0 ' racy [17] and therefore yields very little absolute error. It, how-
® ever, suffers from discontinuities, leading to a discontinuous
w Tn . .
a(r)=— z (k=1) "W(t —K) reconstructed function. Consequently, we would like to reconstruct
" n! K a function, that is a member of the continuous function space

)
w O N+1 w For practical applications, the efficiency of the reconstruction pro-
(0 Us o [ (i —Mr;h:jll'?((i +M)T] e )(E))Ha’\“lm‘ cess is of great importance as well. In volume rendering, the effi-
or ciency of a reconstruction filter, which is employed routinely many
w w times [1], is a source of great concern. It is desirable to use as few
@ =ay, (OF N+ () samples as possible in order to reconstruct the function at a new

) ) ) . location.
wheret is chosen such that= (i+1T)T ,wih<t<1l ,ahi

an integer. It is noteworthy that the derived error coefficiants ~We conclude that for general filter design we have to answer three
only depend on the offsetto the nearest sampling point, i.e., they guestions:
are periodic in the sampling distanteFor further details, please

* What derivative of the original function do we want to recon-
refer to [17].

struct?
The characterization of the filtering process in Equation 2 imposes
four different criteria for a good reconstruction scheme okitie
derivative. First of all, we require?  to be zero forramaller
thank. Secondly we have to normalize by in order to recon-
struct the actual derivative as opposed to some multiple of it. Fur-Commonly there is also the question of how many filter weights
ther by determining the |argeNt such thataK‘V is zero, we can should the filter have. We have elegantly answered this question by
determine the asymptotic error behavior of a filter for a decreasingminimizing the number of weights and by designing the most effi-
sampling distanc&. Finally, the remainder termgives us an indi-  cient filter fulfilling the constraints of the design.

cation of the absolute error of that filter.

* What accuracy do we require from the reconstruction process?

« What space&" should the reconstructed function belong to?

The first two questions can easily be expressed using the frame-
This expansion of the convolution sum assumes that at least thework developed in [17]. Assuming that we want to reconstruct the
first N derivatives of the functiohexist, whereN depends on our ~ k-th derivative of the given digital signflwe simply require that
error analysis. Hence, we assume that the underlying function is &all error coefficientsay’ in Equation 2 be zero, where k. Fur-
member of the class of smooth functid®®. This condition is ther, we require that the coefficient of tkth derivative be one.
generally met in practice [2][17][21]. Formally, this can be expressed as:

3. DESIGN CRITERIA Condition 1 a¥ = 0 foralln<k anda) = 1 .
Whenever we are trying to reconstruct a function from sample
points we are hoping that the reconstruction process perfoeths
and we don't get manartifacts. However our understanding of
such terms likgood reconstructioms well asartifacts during this
process is usually highly dependent on the specific application. Condition 2:a¥ = 0 forallk<n< N+ k-1.
Most applications share an attempt to recover the original samplec
function as accurately as possible. In order to measure the accu
racy of the process, one must have an idea about the type of origi
nal function from which the samples were recovered. As we have
pointed out in Section 2.1, it is not restrictive to most applications
to assume that the original function is continuous to some daegree An example of this piecewise decomposition of the filtés illus-

and therefore belongs to the class of functiohsThis is the only trated in Fig. 1. Now it is easy to see that the first two conditions
assumption, that we require for our filter design. yield an equation system in the unknowws The solution of that
equation system will define a filtev, that fulfills Condition 1and

2. Since this is a linear equation system, we can easily solve it
symbolically by Gaussian elimination, which yields a solution for
thew,. This concludes the first step of our function design, defin-
ing a class of filters, that guarantee an N-EF accurate reconstruc-
tion of thekth derivative of the original function.

The major goal of the design in spatial domain is numerical accu-
racy. We gain numerical accuracy by requiring the error coeffi-
cientsa? beyond to be zero. This leads to what we call N-EF
filters (that is, Error Function of thh order) ([17]):

It is no restriction to consider the filterto be composed of ele-
mentsw, which are defined by

W, = W(T) = W(T +K).

In addition of hoping for an accurate function reconstruction,
almost all applications will require the reconstruction of a smooth
function. Since we assume a smooth original function, it is natural
to expect a smooth function as the result of the reconstruction pro-
cess. A smooth reconstruction will also guarantee the disappear-
ances of image artifacts in visualization and imaging applications.
Another application is CAD in which designers reconstruct sur- As we have pointed out earlier, not every filter of this class yields a
faces from a set of sample points (knots) using basis functions thacontinuous reconstructed function and therefore might lead to
are developed to yield surfaces@ C? or higher continuity. The undesirable artifacts. Hence, we desire the reconstructed function
reason for smooth function reconstruction is that our visual systemto be part of a smooth function spag¥. From Equation 1 it is

is capable of detecting and enhancing even small discontinuities inclear that we need to require our filketo be in this class. In order
images. For example, in Fig. 2b and Fig. 4b (see color plates) weto be a member &&M, a functionw and itsM derivatives must all
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come very close to the ideal filter in parts of the frequency spectra

1.4 Catmull-Rom Interpolation Filter and includes some important frequencies. For general applications,
12 we would expect to have the most important frequencies around
' the DC value.
1} w(T) w_1(T) Wo(T) wy(T)

Since the accuracy criteria only fixes the frequency domain at a
single point, it is not enough to guarantee well behaved filters. Our

08‘ | |t |t L

0.6 smoothness criterion in Condition 3 constructs filterf the class
0.4 CM. That means they can be decomposed (using a Taylor series)
0.2 into a polynomial ot degree and a remainder term. Now, the
' polynomial ofmth degree translates into a function defined as
Ob—— N~ —] w-M=1) in frequency space [3]. This guarantees a quick decay
-0.2 of our reconstruction filter. The higher the smoothness condition,
04 the quicker the decay. This ensures that aliasing effects of our

designed filter diminish with increasing.

FIGURE 1. A piecewise polynomial interpolation filter using
four filter weightsw, = w, (1) = w(t +K) . Essentially
the filter hap parts. For both symmetric and anti-symmet-

Having explained the general design process, we turn to demon-
strate it by ways of an example.

ric filtersp is even. 4. EXAMPLE
be continuous everywhere, including every open intefigéh 1) Let us assume we want to construct a derivative filter. We expect
for every integek, and also at all the integer poilkithemselves. this derivative filter to be somewhat reliable in terms of accuracy,

Since the equation system@dnditions 1and2 yields a piecewise S0 we choose a 2EF filter. Further, we aim f@'acontinuous fil-
filter kernel, we can mathematically express the smoothness crite-ter. That leads to three conditions to fulffill:

raas: 1. derivative filter:

Condition 3: w, (1) 0 cM andwém) @ = wéT)l(O) for allk and ayt =0
(m) - a() =1 )
all m< M, wherewk denotes the-th derivative ofwk . 1
After solving the equation system @bnditions 1and2 and deter- 2. numerical accuracy 2EF:
mining the smoothness of the desired filter, we have a new set of a,(t) =0 4)
Lo . ) 2
criteria for our filter that needs to be met. In order to design an
actual filter, we have to find a solution that fulfills all these condi- 3. smoothness®
tions. While it is not necessary to restrict oneself to piecewise 1
polynomial filters, we have done so here. The reason for this is that wOC (5)

they are easy to use and implement, and are therefore very popula,
Now Conditions 1, 2and3 translate to a linear equation system in ositive offsett. 0<T<1. The filter to be constructed ig
the coefficients of piecewise polynomials. The solution of this P : P . ! .
- . . Decomposing our filtew in piecesw, as mentioned in Section 3,
equation system yields a class of polynomials. These can be fur- . o . .
. . . . . we can write the three conditions above in terms of the filter

ther restricted by choosing efficient filters, i.e. with the least num- _ " _ _ . .

) ’ . . weightsw, = w,(1) = w(t +K) . We will use the notation, and
ber of filter weights and small degrees of polynomials. This . . - o
concludes the filter design. Summarizing the filter design includes w,(T) interchangeably. Using the definition of the error coefficients
the following steps: ' in Equation 2 will simplify the conditions of Equation 3 through

Equation 5 to:

Here a (1) are the error coefficients defined in Equation 2 with a

Step 1:Solve a linear equation system created by Conditions 1 and

2 in the piecesy, of the filterw. 1. derivative filter:

Step 2: Choose a set of basis functions for the representation of W_pt Wy +Wo+w, = 0 ©)
W T(R-mw,+ (1-1)w_; + (-0 wy+ (-1-1)w,;) =
Step 3: Solve for the coefficients of the basis functions, consider- 2. numerical accuracy 2EF:

ing Condition 3 as well as the solution of Step 1.

Our design criteria also have validity in the frequency domain. It (2—T) 2W_2 +(1-1) 2W_1 +(=1) 2Wo +(-1-1) 2W1 =0
can be shown that our accuracy criteria, defined by specifying the
error coefficientss)Y , translate to conditions on the frequency rep-
resentation of the filtew at the DC valuea)l represents the DC
value itself andg)¥  thé-th derivative of the frequency spectra at
that point. This is a very desirable condition and was suggested a¢
a filter design criteria by Dutta Roy et al. [7], for designing maxi-
mal linear filters. Since it is impractical to use an ideal reconstruc-
tion filter (in the c” sense), their idea was to design filters that

3. smoothness: (herg’,,  denotes the derivative of )
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w0t and Substituting the polynomial definition of the filter weights into

k Equation 9 yields these conditions on their coefficients:

w_0) =0 w_,0 =0
= _3a -3
W_2(1) = W_1(o) W_z(l) = W_l(O) ®) CO = —3C1 BO = _3Bl+ 1 AO - 3Al 2
w_y(1) = w(0) and  W_4(1) = w0 C,=3C, B, =3B-2 A, =3A+2
Wo(l) = W]_(O) Wlo(l) = W']_(O) C_2 = _Cl B_2 = _Bl+ 1 A_2 - _Al_l.
wy(1) = 0 w,(1) = 0 2

Further, requiring anti-symmetric filters, yields the following con-
The choice of the number of filter weightg (which is the same ditions:

as the number of piecewise, non-zero parts of the funetias
rather arbitrary. If we choose too many, the resulting filter becomes w0 = -w_(1-1),
inefficient. If we choose too few, the equation system might not
lead to a solution at all. Since we are trying to design cost-efficient
filters, we'd like to have as few as possible filter weights. Since, in

which translates to

. . i . . L Co_,=—C,

computer graphics, we are interested in anti-symmetric derivative
filters (symmetric interpolation filters) and the weightgt) are B,_, =2C_ +B_
defined over integer intervals, we always need an even number o A = C +B . +A

. - o ] k-1 =~k Pk Ak
weights (Fig. 1). Conditions 1 and 2 already impose three equa-
tions on the filter weights, thus we expect at least four weights toin all positivek. This leads to an equation system in the coeffi-
be necessary for our resulting filter. cients, which solved and substituted into Equation 9, leads to the

. . . . following filter weights:
The equation system in Equation 6 and Equation 7 has three equa g 9

tions in the four unknownsy. Therefore it is under-determined 12 1
and leads to the following set of solutions (setting T to 1): Wy = 5T +1-5
W, = W _ 3.2
1 1 Wo = 5T -2t
3 .
W, = 3w, +T—= 3.2 1
0 1 2 = _S1t%+1+=
©) w_, S0 +1+3
W, = 3w, -2t +2
w, = ot
- 1 272
W, = -W; +T— 5

This concludes our filter design oA 2EF first derivative filter.
Any filter w whose filter weights fulfill Equation 9 is guaranteed to
be a 2EF first derivative filter. The actual filter can be constructed
using specific basis functions for tg and insuring that our
smoothness condition (Equation 8) is fulfilled. An obvious choice
for the C! continuous basis function would be polynomials, since

In the Appendix we list all the interpolation and first derivative fil-
ters that we constructed using different accuracy and smoothness
criteria. Because of space constraint we have only given the poly-
nomial coefficients in a matrid. The filter weights are computed

: . . by:

polynomials are a member o@” . Using our notation y
W, = W, (1), we require: - -
w_y(T)

w (1) = Ckr2 +B T+A,, W_(T) r3
where the coefficient€,, By, A, are unknown and remain to be w_y (D] _ M2
determined. Here again the choice of a second order polynomial is wy(1) .
rather arbitrary. If we choose too high of a degree, we get an ineffi-
cient, parameter depending solution. For too low of a polynomial wy(D) 1
degree, we might not get a solution, since not all constraints on the W,(T)

wy from Equation 9 an€ondition 3can be fulfilled. Substituting o ) . ) .
this definition of the filter weightsv, into Equation 8 yields the for a cubic filter with 6 weights. The size bfis adapted by the
following condition on their coefficients: size of the filter and the degree of the polynomial. All filters are

laid out in a table where the rows represent the smoothness criteria

A,=0 B,=0 and the columns represent the accuracy criteria. We have looked at
1EF through 4EF filters an@® throughC® smoothness criteria.
Co*+BL+AL, = A, 2C,+B, =B, We also included filters that were constructed without Condition 3
C,+B +A, = A, and 2C ,+B_, = B, - smoqthness. That simply Ieads_to o_Iiscontinuous filters. Those fil-
ters might be of interest for applications that care about accuracy
CotBy*+Ag = Ay 2Cy*+By = By only, for example in cases where the resulting function is used for
C,+B,+A; =0 2C,+B; = 0 measurement, rather than visual inspection. The advantage of

these filters is that they are sometimes faster while having only lit-
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tle (numerical) error. We have argued in [17] that these filters constraint, which is reflected in ti@? filters, results in very accu-
might even lead to reasonable images under certain conditions anrate images that are free of visible artifacts. It also becomes very
therefore represent an efficient alternative that should not be dis-clear, especially in the error images of Fig. 3, that the 3EF filter
carded. will lead superior images in terms of numerical accuracy.

The most general usable filters are probatflyC' and 2EF, 3EF | gl 8 (B 71 - [ el * 00 g 0L
filters. For the interpolation filters we find that the most efficient H.I - AR ‘-.l_l{" ' J.r "'-:‘ h'-.i'
CL-3EF filter is the well known Catmull-Rom spline, also found by !
others to be the most accurate BC-spline. It is also noteworthy thar
this filter is not the best filter in the class of cubic BC-splines in
terms of smoothness. We also found that the BC-filter for which !
B=1 and C=0 is £2-2EF filter. Therefore this filter might be pref- i
erable over the Catmull-Rom spline for some applications. In order

to improve on the Catmull-Rom filter in terms of accuracy one ].l |
requires 6 filter weights. In order to improve smoothness of the |
reconstructed function while maintaining the same accuracy, one

has to choose at least a fourth degree polynomial. The best filter

with just 2 filter weights would be either a 2EF d€%continuous

filter.

LI
'."'H'i.l

For derivative filters, the filte€1-2EF is probably a good first L,
derivative filter. It is one of the best possible that only requires 4 ! \
filter weights and is still only a quadratic filter. In order to improve i
on it, we would either have to go to 6 filter weights or to a fourth
degree polynomial. It is also interesting to note, that this filter is
the analytic derivative of the2-2EF interpolation filter, which

was a BC-spline with B=1 and C=0.

5. EXPERIMENTS (©)
] . i . FIGURE 3. Error images of the Marschner Lobb data set ren-
The images were rendered employing a simple ray-caster to find o6 ysing the following derivative filter (a) discontinuous
the iso-surfaces. The volumes were sampled at an interval of 0.0¢ 1EF (b) discontinuous 3EF (C)O-lEF (d)CO-SEF; darker
voxel lengths. At each sampling point, the ray-caster first applied
an interpolation kernel (we used the Catmull-Rom cubic spline) to
reconstruct the function at that point. If the reconstructed value The same behavior as for the analytic data set can also be observed
was above a pre-set iso-value, the derivative filter was used tofor the MRI data set in Fig. 4. This data set is a close up view of an
compute the 3D gradient. Shading was then performed using theMRI of a human brain. Here, we also fixed the interpolation filter
traditional Phong lighting model [8] with diffuse and specular to the Catmull-Rom filter and varied the derivative filter in the
reflections. The obtained color and opacity were composited with same way as we did for the Marschner Lobb images.
the previous ray values, and the ray was terminated after the opac L . L )
ity reached a value close to 1.0. Since both the interpolation andAnother application requiring smooth reconstruction filters is the

the derivative kernel were separable, for all our filters, the filtering SIZ& Préserving pattern mapping of Kurzion et al. [12]. Here, the
operations could be efficiently performed using a scheme similar problem is to continuously map a texture to a parametric surface or
to the one given in [1] and [18] implicit surface, including volumetric iso-surfaces, at a constant

density. In the past, only manual mappings were able to perform
For our experiments we used an analytic data set and an MRI datithis task, while this paper introduces an automatic method. The
set. The analytic data set is derived from the same function as theauthors use the curvature of a surface at a point in order to continu-
one used by Marschner and Lobb [15]. Since, due to spatial con-ously vary the scale of the mapped image. This curvature is
straints, it is not possible to include the entire set of images thatapproximated using the derivative of the underlying function. A
can be obtained using all given filters, summarized in Table 1 andC! continuous filter is essential for the success of this method as it
Table 2, we have chosen the discontinuousGhdEF filters as ensures continuous mapping of texture on the surface. We used a
well as the discontinuous ai@? 3EF filters. Fig. 2 (Fig. 2,4,5in 163 grid (a shrunken down version of the original ?128ad) for
color plates) shows the synthetic data set. In order to better visual-calculating the curvature. This means that the head is composed of
ize the influence of the filters we also computed the angular errorrectangular patches on which the normal derivative is calculated
images. For each reconstructed normal we computed the actuaby the same #grid samples. Fig. 5a uses the central difference fil-
normal and recorded their angular difference. The grey value ofter, which gives a very poor estimation of the curvature, hence the
255 was displayed for an angular error of 15 degrees. The disconmapping of the density varies sharply between patches. Fig. 5b
tinuous 1EF filter is simply the well known central difference filter, uses aC%-2EF filter that generates a very constant density across
and the discontinuous 3EF filter is the filter that we have found to the head, but shows discontinuities along the patch lines. The filter
be a filter yielding better accuracy in our previous work [17]. Here we designed for this application is 62 continuous 2EF deriva-
itis clearly visible, that filter design solely based on accuracy crite- tive filter of Table 2. Fig. 5¢ shows an application of this filter and
ria will not lead to acceptable images. Adding a simple smoothnesswe observe that all previous problems no longer exist.

colors mean lesser error
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10. APPENDIX

10.1 Interpolation filters

TABLE 1. the new actual filters for interpolation filters

1EF 2EF 3EF AEF
C_ . - — -
1 1 0 1 1 1 1
{W]J: é {_1J Z 2a—Z —a é 0—60
wo| |1 1 _Dg, 50 11
5 7 Dea 20 3a 55 1 0
1 3 1 1
2 Ga—é—1 —(3a-1) 5_1_5
1 00,10 111
|2 %23+4D a 62 39
Co 14 10 [N 141
-11 -11 4 4 6 6
15 11
230 2310
1 3 1 1
274t 3 131
1 1 11 1
12721 62 39
c1 f f . -
230 1 11 - B, 10
L_soj 400 22OO a D§a24DO
111 3,1 o s, 19 1 1. 1
2342 3250 Er}’MGD 022780 12 22
141 3 5 _Dioas 10 5 2 0,1
205 5301 Hoa+3q 18a+= 3 -qpa
111 1,1 1 _Oyg,,130 3
12 34 721 2({ lOa+2 D15a+12D0 3a+4
10 15 5 2 0 1
—%a+ém 7a+§ 3 _Dza_éD
B,,101 1 1
| 2 B ?
c2 f . - . f .
6 -15 10 00 1 5 3 1
= 0 00 -1 = =000 -— 0 0 O
{—6 15—1000j 6 2 2 36
1111 3 15911, 141 1 1
22 26 2 2 2 2 36 12 12 36
1 2 15 9 7 5 2 1
37103 B35 57101 S 6 3 09
11 11 531 1 7 3 5
62 28 1t 23237329 s 2 % %
a5 21
36 6 3 9
111 1
36 12 12 36
C3 ] [-20 708435 000 Llog 00| ][22 50004 L 14 40 of
20 -70 84 -35000 10 4 2 2 30 16
3 3 11 3 63 75 11 1 17 1 1 1 7
10 2%23220 || %2 2103530 6 28 12 24 12 240
3 3 7 63 75 1 19 1 2 2 7
10407107 | |97 7 150-101 324763 3
1 1 1 13 21 25 1 1 1 7 5 33
17072°%3 220 | 22 2 ° %2327 38 %2 °% %
1231 2 2 1
6 48 6 3 3 60
15 1 .11 7
| 30 48 12 24 12 240
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TABLE 2. the new actual derivative filters
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10.2 First Derivative filters




FIGURE 2. Marschner Lobb data set rendered using the following derivative filter (a)
discontinuous 1EF (b) discontinuous 3EFC&1EF (d)C-3EF (e)C3-4EF

FIGURE 5. Size preserving pattern mapping of
a texture on an MRI scan of a human head
using (a) a discontinuous 1EF derivative
filter (central differences) (b) g%-2EF
derivative filter (c) aC1-2EF derivative fil-
ter in order to determine the pattern density.

FIGURE 4. MRI data set rendered using the following derivative filter (a) discontin-
uous 1EF (b) discontinuous 3EF @3-1EF (d)C%-3EF
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Raghu Machiraju
The Ohio State University

Contributions: | e
Jinho Lee,Shiva Tenginaki, Ohio State

Joe Marks, Hanspeter Pfister, MERL

Siggraph 2001

Iso-Surface Detection

Extract Render

| . \
Surface Surface \

1
—— Validate le—

#

Siggraph 2001

107




Which Iso-value ?
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| Transfer Functions

I
» Determine classification/shading step on the
rendering pipeline

» Assign visual optical properties to numerical
values of dataset

= Typically, color, opacity, and emittance

» Opacity transfer function makes features of
interest opaque

Siggraph 2001

‘ TFs and Salient Iso-Values

» Key - Determine material interfaces, e.g., air-bone,
bone-tissue

= Salient iso-values exist on either side of a
boundary

» TF generation and salient iso-value determination
are related

Siggraph 2001
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| Transfer Function-1

Siggraph 2001

| Transfer Function-2

Siggraph 2001
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Common Transfer Functions

Challenge: Find placement of knots with
= Little aliasing in classified dataset
= Detect structures

Siggraph 2001

‘ Basic Task

histogram
% Materid Assgnment

Air a i Bone

CcT

= Segmentation of voxel intensity histogram  usually
non-linear division and based on presence of features.

» Functional variation within each segment - Usually
linear, although non-linear ones can be selected

* CT datasets - OK

Siggraph 2001
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| Error & Trial - MRI

Cannot always
segment histogram
ith error and trial |

Siggraph 2001

Obstacles

* Various combinations of homogenous materials,
although finite, can be large.

» Segmentation of MRI histogram is very difficult
given noise and low discrimination.

* Blending effects along the depth direction
complicates matters.

* Lack of spatial component makes finding transfer
functions frustrating.

» Viewing and shading parameters defy complete
control and comprehension of the process.

Siggraph 2001
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‘ Desirable Tools
[

» Should aid user in discovery process
» Assumptions about data minimal

» Flexible and tangible interface

Siggraph 2001

Taxonomy of Methods

I
* Trial and error, with minimum computer aid

» Data-centric, using an underlying data model
= Histogram Volume (Kindlmann and Durkin)

* Data driven, with no underlying assumed model
= Contour Spectrum (Bajaj et al)
» Higher Order Moments

» Image-centric, using organized sampling
» Design Gallery (Marks et al)

Siggraph 2001
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Semi-Automatic Method

Goal: boundaries between homogeneous regions

Compute Histogram Volume

» 3D histogram of data value and 1st and 2nd
derivatives

* Project out spatial component of the boundary

Create Distance Function
» Signed distance fo middle of nearest boundary

* Bridge unintuitive space of data values to an
intuitive, spatial domain
Siggraph 2001

Boundary Model

» Assume to be blurred by Gaussian during
measurement process

oA S

(a) Step (b) Gaussian (c) Measured
function boundary
prior to
sampling
Lterf(—2)
— — . _ . ——
v = f{l‘) = Vmin _|_ [Umﬂ,.:: Umr,n.) 5

Siggraph 2001
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‘ Relationship between f, f, f
I

Measuring f, f , f across boundary

() | f(2) W /(=)

Y/

Siggraph 2001

‘ Plotting Histogram Volume

/ \ \ J Number of zero
\ : crossings determines

boundaries !

1) Cylinder

o [

{bp Mested Cylimders

Siggraph 2001
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‘ TF Generation

I
» g(v) : average f over all the positions x where f(x)=v

h(v) : average f over all the positions x where f(x) = v

g(v) and h(v) obtained from histogram volume

Recover model specific s using max(g(v)) and max(h(v))

Siggraph 2001

‘ TF Generation

I
» Define mapping p(v) from value v to a boundary

position

plv) = —c’h(v) =~ = f"( _l(U)):
g(v) fr{f~t(v))

» Define boundary emphasis function, b(x), to map a

boundary position to opacity

» The final opacity function a(v) can be defined as
a(v) = b(p(v))

Siggraph 2001
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Examples

- v

(a) Semi-transparent

a =b(zx)

J—A; x
0

@

(c) More opaque (d) Sharper boundary

Result - CT Teeth |

I el
detancs

Siggraph 2001
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Result - CT Foot !
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2

Siggraph 2001
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Result MRI Temple Bone ?

Siggraph 2001

Summary
I

» Very impressive results
= Intuitive interface
= Strong assumptions about boundary characteristics

= Cannot detect boundaries for some MR datasets

Siggraph 2001
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Data-Centric No Model

Determine signatures

Histogram based
= Using Factor Analysis on histograms
= Use localized higher order moments of histogram features

Using characteristic curves of contours

Determine salient iso-values !

Siggraph 2001

Contour Spectrum

2D Interface: X-axis = scalar value; y-value =
normalized signature

Select ranges for queries

Signatures:
= Length
= Area
* Gradient integral (length of integral * constant)

Compute signatures from contours

Siggraph 2001
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Contour Signatures

I
» Length of contour is C%-spline function

» Area within each contour is a C!-spline function

Siggraph 2001

Results - CT
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Using Statistical Moments

= Histogram equalization uses first moment

D (X) = number of voxelswith data value x
! total number of voxelsinthedataset

* Higher Order Central Moments:
m=a (x- m'p,(x)

x=0

= Variance = m

Siggraph 2001

‘ Higher Order Moments

I
= Skewness = m;- Symmetric distributions, m=0

» Kurtosis = m-3 Normal distribution, m=0

» Infinite number of central moments can completely
describe distribution p,(x)

» Using 3D windowing, calculate and assign m,, my, m, for
each voxel

Siggraph 2001
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Second Order  siggraph 2000 Fourth Order

‘ Example Third Order
|

Siggraph 2001
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Voxels and HOMs
( =

" Hi

\/

\

W ey

2-mixture material model for small cells

Boundary exists only if m,n>0

Determine cummulants and localized HOMs

Maximas and minimas correspond to material interfaces |

Siggraph 2001

Second Order |
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Skewness |

Zero
Crossings !
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e,

Summary

= Signature-based methods are new
= Have promise

= Much needs to be done to develop
statistical and geometrical basis

= User interface needs more thought |

Siggraph 2001
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Image Centric
Design Gallery

= Sometimes finding an optimal parameters
for graphic or animation is problematic

= A different idea:
= Compute a covering of possible
graphics
= Display them in a gallery using
evolutionary computation

Siggraph 2001

‘ Dispersion

Siggraph 2001
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Arrangement

Organize the outputs for easy browsing

o ® ® o0
® o °, o, o °
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Siggraph 2001

Browsing with volDG

Use MDS |

Siggraph 2001
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Example

Siggraph 2001
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‘ Example HOM volume

‘ Example
|

Same data, different transparencies

Siggraph 2001
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Summary

Very flexible change volumes, metrics

Does not include user in generation !

Not goal-oriented no guided search !

Lack of customization

Siggraph 2001

Which Approach is Better ?
I

Too soon to tell !
Top ten problems in volume visualization (VolViz '92).
No general method still exists

Data-centric methods with and without data-models
show most promise |
Siggraph 2001
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The Transfer Function Bake-Off

D irect volume rendering is a key technology for visu-
alizing large 3D data sets from scientific or medical
applications. Transfer functions are particularly impor-
tant to the quality of direct volume-rendered images. A
transfer function assigns optical properties, such as color
and opacity, to original values of the data set being visu-
alized. Unfortunately, finding good transfer functions
proves difficult. Pat Hanrahan called it one of the top 10
problems in volume visualization in his inspiring keynote
address at the 1992 Symposium on Volume Visualiza-
tion. And it seems that today, almost a decade later, there
are still no good solutions at hand. Or are there?

In a panel discussion at the Visualization 2000 con-
ference, we pitched four of the currently most promis-
ing approaches to transfer function design against each
other. The four approaches and their advocates are

m trial and error, with minimum computer aid (Will
Schroeder);

m data-centric, with no underlying assumed model
(Chandrajit Bajaj);

m data-centric, using an underlying data model
(Gordon Kindlmann); and

m image-centric, using organized sampling (Hanspeter
Pfister).

Ahead of time, each of the four panelists received
three volume data sets from Bill Lorensen. The data are
static 3D scalar volumes sampled on rectilinear grids.
The panelists’ task was to create meaningful volume ren-
derings using their respective approaches to transfer

two isosurfaces.

1 The tooth data set modeled with
isosurfaces.
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2 The sheep heart modeled with

function design. During the panel session, each panelist
presented a summary of the method and results of the
visualization, including visual results (images and ani-
mations), performance (timings and memory use), and
observations (how easy or hard it was, what the find-
ings were, and so on). At the end of the panel session,
Bill Lorensen discussed the content of the volume data,
what an experienced visualization practitioner would
have hoped to find, and how well the panelists’ meth-
ods achieved this goal. Bill also announced a winner.

This was a unique event: alternative approaches to a
pressing research problem went head-to-head, on mul-
tiple real-world data sets, and with an objective quality
metric (Bill Lorensen). The panel took place in an atmos-
phere of lighthearted fun, but with a serious goal, name-
ly to emphasize the importance of further research in
transfer function design. This article presents the four
methods in more detail and answers such questions as:
How well did they do? Which method works best? And
who won the bake-off?

Data sets

Bill Lorensen chose three volume data sets to repre-
sent a variety of challenges for the bake-off. Figures 1
through 3 show marching-cube isosurface renderings of
the data for comparison to the direct volume rendering
images presented by the panelists. The data is available
for noncommercial use at http://visual.nlm.nih.gov/.

The first data set was generated at GE Aircraft Engines
in Evendale, Ohio. The data is industrial x-ray comput-
ed tomography (CT) data of a human tooth. The axial

8

3 The segmented MRI knee.

0272-1716/01/$10.00 © 2001 IEEE



slices are ordered from bottom to top, one slice per file.
The pixel samples are spaced 1 mm within each slice,
and the slices are 1 mm apart. This data set was the eas-
iest of the three to work with. Figure 1 shows the two
materials in the tooth extracted as isosurfaces.

The second data set is magnetic resonance image
(MRI) data of a sheep heart generated at the Center for
In-Vivo Microscopy, Duke University, North Carolina
(http://wwwcivm.mc.duke.edu/). These axial slices are
ordered from top to bottom, one slice per file. The pixel
samples are spaced 1 mm within each slice, and the
slices are 1 mm apart. The heart data is a bit more chal-
lenging to visualize than the tooth, because the heart
has a variety of tissues including some damaged tissue
that was caused by blocking circulation to part of the
heart. Figure 2 shows the normal and damaged (yellow)
tissue in the sheep heart.

The final data set was generated at Brigham and
Women’s Hospital Surgical Planning Laboratory
(http://splweb.bwh.harvard.edu:8000/). The data is
clinical MRI data of the knee. These sagittal slices are
ordered from left to right. The pixel samples are spaced
.25 mm within each slice, and the slices are 1.5 mm
apart. This was the most challenging of the three data
sets to visualize. Meaningful visualizations of this knee
data set are only possible using sophisticated segmen-
tation techniques. Figure 3 shows segmentation per-
formed at Brigham and Women’s Hospital, Surgical
Planning Lab.

Trial and error
William Schroeder, Lisa Sobierajski Avila, and Ken Martin
Kitware
he widespread use of volume rendering has been
hampered by the difficulty of creating effective
transfer functions. The complexity of the transfer func-
tion is further exacerbated by the blending effects along
the depth direction. As a result, recent research has
focused on automatic and semiautomatic techniques
for creating transfer functions.

Such methods are potentially dangerous because the
techniques remove the human from the visualization
process. Visualization isn’t just about generating pretty
pictures. It’s also a vehicle of exploration by which the
observer comes to understand the data. You can easily
imagine semiautomatic and automatic techniques that
generate images that fulfill the observer’s expectations,
but aren’t necessarily true to the nature of the data.
Thus, we believe that creating a transfer function is a
necessary part of the visualization (that is, data explo-
ration) process. Methods that assist the user in creating
transfer functions—and thus improve the efficiency of
data exploration—are beneficial. Methods that elimi-
nate the human from the exploration process are dan-
gerous and should be avoided.

Figures 4 through 6 demonstrate these ideas. We used
Kitware’s VolView volume rendering system and the
RTViz VolumePro volume-rendering hardware to gen-
erate the images quickly. VolView allows interactive,
intuitive creation of transfer functions, while the
VolumePro board enables maximum interactive
response (up to 30 frames per second). For example, we

e _lslx|
Tl 5o Veu. Fropees 1
arrl| | st

ﬂm

Seatr[73767 Hue/Saiucto

T
[ Hfi
o sfier
o Vo
™ Interactive Apply

C30" ScatrOpaciy Color 05500

© Fea

c hsv

P10 Scater Opacty Fuscion

i

I Lotk [oom
Sealar

000 resfentOgectyFuncion]F1900_
I == —

J Kitware

Valuo  Hus/Satusion

afron Hfooon
a[roon sfooon e
B[tom v[ion

I Intracive Apgly

090" Scalor Opaciy /Color [403500

© poa

c risv "
[190 " Scalor Opaciy Funcion

Wi

000 Gradient Opacty Functon 01900
B ]

J Kitware

6 Rendering of
the sheep data
set through trial
and error.

created both the knee (see Figure 4) and tooth images
(see Figure 5) in less than five minutes from start-up to
image capture.

The sheep heart (see Figure 6) was much more chal-
lenging to render, requiring approximately 20 minutes
to create the final image. However, the time to generate
the image was essential: the exploratory process of
adjusting the transfer functions taught us much about
the data set. For example, after exploring the tooth for
five minutes, we felt that we fully understood the impor-
tant structures within the data. In contrast, the five min-
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4 Rendering of
the knee data
set through trial
and error.

5 Rendering of
the tooth data
set through trial
and error.
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7 While the maximum of the gradient integral function
(yellow signature curve) determined the average scalar
intensity for the knee bone, the multiple peaks in the
surface area corresponded to the multiple muscular
tissues captured by the imaging data set.

8 The isocontour surface automatically selected by the
maximum of the gradient integral signature function
(left). A volume rendering of the sheep data set. The
data set’s primary isocontour value indexes the color
map range as it centers on purple (right).

9 The gradient integral function again shows four
distinctive peaks for the four material types present in
the the tooth data set. The left and right renderings
were obtained by determining the intensity values
for the peaks from the contour spectrum and using
that to assign a white color with no transparency

(for the left rendering) and purple, pink, and white
colors with varied transparency assignments (for the
right rendering).
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utes spent visualizing the knee taught us that the data
was fairly complex, requiring additional segmentation
processing for more effective visualization.

Data-centric, without data model

Chandrajit Bajaj

University of Texas at Austin

In addition to computational and space complexity
issues, user interfaces have a tremendous impact on

avisualization environment’s level of interactivity.

A contour spectrum consists of computed metrics over
ascalar field. On the basis of such metrics you can define
a set of functions that provide a useful tool to enhance
a data set’s interactive query. One primary advantage
of the contour spectrum interface is that it lets you dis-
play—in a 2D image—a global view of the examined
scalar field, independent of its dimension. For example,
in a 3D isosurface display, one contour component may
be hidden inside another. If you associate the isocon-
tour display with the contour tree, it becomes immedi-
ately clear that the current isosurface has two
components. Hence, you might need a clipping plane to
look inside the current isosurface. For time-varying
data, we can compute functional properties over time
and display it with a 2D interface. This gives users a glob-
al overview of the time-varying function and lets them
interact with both the isovalue and time step.

All three of the challenge data sets were imaging data
sets (static scalar fields over structured rectilinear mesh-
es). The primary characteristic function I used was the
gradient integral function curve (shown in yellow in
Figures 7 through 10), which automatically separated the
various materials in each of the imaging data and gener-
ated the appropriate color and opacity map for the final
volume rendering. For details of the signature function
computations and the contour spectrum, please see the
IEEE Visualization Conference 1997 paper® or the Web
pages where these tools have been applied to various
domains http://www.ticam.utexas.edu/CCV/projects/
VisualEyes.

10 Alternate transfer function selection for the tooth
data set highlights the inner tooth surface cap of differ-
ent material types (and higher density) than the outer
surface shown in Figure 9.



11 Renderings of the knee data set using a semiauto-
matically generated 1D opacity function.

13 Renderings of the heart data set using the transfer
functions in Figure 12. The two segments in the opacity
function correspond with two boundaries: one
between the heart and the background (left) and one
for fine structures within the heart tissue (right).

Data-centric, with data model
Gordon Kindlmann
University of Utah

or many medical volume data sets, a good transfer

function makes opaque only those values consis-
tently associated with a boundary between materials.
The semiautomatic method borrows edge detection
concepts from computer vision in order to “locate”
boundaries in the 1D space of data value (voxel inten-
sity), since that’s the domain in which transfer func-
tions are specified. The method starts with a preprocess
that takes a few minutes and requires minimal user
input: creating a 3D histogram of data value versus first
and second derivatives and then distilling this into a
distance map that records the relationship between data
value and boundary proximity. Using the distance map,
users can interactively experiment with different set-
tings, but the transfer functions are usefully constrained
by the boundary information measured in the given
data set. (For more details, see the 1998 IEEE
Symposium on Volume Visualization paper? or visit
http://www.cs.utah.edu/~gk/MS.)

Of course, this method has trouble on data sets in
which there are noise and coarse boundary sampling,
such as the knee MRI scan. As Figure 11 shows, the
method detected the boundary between air and skin and
rendered it clearly, but the boundaries among the vari-
ous internal tissues are less clear.

One benefit of the semiautomatic method is the abil-

12 Making a 2D transfer function (from left to right):
an automatically generated distance map (white indi-
cates the boundary center), a semiautomatic opacity
function, and a manually created color map.

14
Automatically
created 2D
distance map
for the tooth
data set. In the
cross-section,
the colors of the
small rectangles
(marking the
different
boundaries)
indicate the
corresponding
boundary colors
in the transfer
function.

ity to create transfer functions that map not just data
value, but also a 2D space of data value and gradient
magnitude. Although they can often disambiguate
complex material boundaries, 2D transfer functions
are even more difficult to specify by hand than tradi-
tional 1D functions. The sheep heart MRI data set is a
good example. Figure 12 shows the 2D distance map
and transfer function used to make the renderings in
Figure 13.

You might think that for a clean data set such as the
tooth CT scan, transfer functions based on data value
alone could accurately convey all the boundaries.
However, the tooth cross-section in Figure 14 shows the
data set to have four boundaries between four materials
(from dark to bright: pulp, background, dentine, and
enamel). The presence of four arcs in the distance map
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15 Renderings of the tooth data set. Opacity functions are inset in each
image; surface colors are determined by the color map in
Figure 14.
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16 VoIDG user interface.

(Figure 15) show that the semiautomatic method suc-
cessfully discerned all the boundaries and thereby facil-
itated the renderings in Figure 15, which emphasize and
color the boundaries in sequence. In particular, with an
isosurface or 1D transfer function, it would have been
impossible to isolate the dentine-enamel boundary
shown in cyan.

The current version of the semiautomatic method
assumes a specific mathematical boundary model; this
may reduce its effectiveness on some data sets. However,
the method ultimately derives its utility from combin-
ing a common volume-rendering task (“show me the
boundaries”) with a characterization of boundaries in
terms of easily measured derivatives. A tool such as
Design Galleries can answer What’s possible? in the

20 May/June 2001
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space of all transfer functions, while this approach
intends to answer What’s probable?—that is, What’s
most likely to be a good transfer function, assuming the
goal of visualizing boundaries? Unconstrained explo-
ration of transfer functions is sometimes needed, but
interactivity in a visualization tool proves more valuable
when the interface itself embodies information and con-
straints derived from the data in question.

Image-centric, using organized sampling
Hanspeter Pfister
Mitsubishi Electric Research Laboratories
Raghu Machiraju and Jinho Lee
The Ohio State University
long the lines of the Design Gallery approach,® my
colleagues and I developed VolDG—Design Galleries
for Volume Graphics as a viable alternative to facilitate
transfer function selection. The image-centric transfer
function design of VolDG focuses on what matters most
to the user: the image. VolDG evaluates transfer functions
on the basis of the images they produce, not in terms of
data set properties. Instead of asking the computer What’s
best? we ask the computer What’s possible? The com-
puter picks a set of input-parameter vectors that span the
space of output values as much as possible; the user sim-
ply selects from among the presented possibilities.

AsFigure 16 shows, VolDG interfaces present the user
with the broadest selection—automatically generated
and organized—of perceptually different images that
can be produced by varying transfer functions.

The VolDG approach’s principal technical challenges
are dispersion (finding a set of input-parameter vectors
that optimally generates dissimilar output values) and
arrangement (arranging the resulting designs for easy
browsing). For dispersion, we use a form of evolution-
ary computation. For arrangement, we use multidi-
mensional scaling. The dispersion process can require
rendering hundreds or thousands of candidate images
and therefore benefits greatly from hardware accelera-
tion by Mitsubishi’s VolumePro board. In addition, expe-
dient rendering aids the interrogative process between
user and computer.

We built our current system on top of the popular
Visualization Toolkit (vtk) to using the VolumePro
board. The real-time volume-rendering speed of the
VolumePro board lets large galleries be generated in
minutes. VoIDG is freely available at http://www.
merl.com/projects/dg/.

Even though VolDG can manipulate both color and
opacity transfer functions, we believe that generating
gray-scale images leads to the most insight into
unknown data sets. Figure 17 shows two representative
images of the knee and sheep heart data set. Note that
VolDG automatically detected the interior structure in
both images. This is remarkable because MRI data is
notoriously difficult to deal with.

Figure 18 shows the transfer function for one MRI
knee image. Note that the function is piecewise linear.
More sophisticated curve parameterizations, such as B-
splines or wavelets, could improve the results of VolDG.

Not surprisingly, the tooth CT scan shows better inte-
rior structure and detail (see Figure 19). Each gallery
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17 VoIDG-generated images of the knee (top) and sheep heart (bottom).

with 200 images and 20,000 iterations took approxi-
mately 7 hours to generate. Absolutely no user inter-
vention was necessary. A smaller gallery with 50 images
and 1,000 iterations only takes about 3 to 4 minutes.
Plus, users can interactively browse the gallery.

Discussion
Bill Lorensen
GE Corporate Research and Development
Since its introduction in the late 1980s, volume visu-
alization has had limited success in cost-effective

applications. Advances in image quality and feature sets
continue to outpace the technology’s acceptance in
commercial products.

Several factors contribute to the slow adoption of vol-
ume visualization:

m Alack of proven application areas. Routine use of 3D
in medicine is still, for the most part, limited to
research and teaching hospitals.

m There’s no agreement on software application pro-
gramming interfaces (APIs) for volume visualization.
This limitation translates to risk for commercial prod-
ucts that adopt one vendor’s API over another’s.

m Volume visualization is slow, requiring expensive

workstations with large amounts of memory and spe-
cial graphics hardware extensions.

m The volume techniques are difficult to use by all but
an experienced engineer or scientist.

Fortunately, various universities and companies are

addressing these limitations:

m New scanners are presenting much more information
than a radiologist can possibly review on a slice-by-
slice basis. Three-dimensional visualization could be
the key to increasing productivity.

m APIs are emerging that fit within current graphics and

visualization systems.

m Low-cost, special-purpose hardware is now available
for personal computers. And, the general-purpose
processor speeds continue to improve. Texture-
mapping hardware is available on cheap graphics
cards. In addition, 3D texture mapping could also get
cheap if the gamers find a use for it.

However, ease of use is still an issue. Volume visual-
ization has the potential to significantly reduce the
amount of time to segment medical data. We need fast,
robust techniques to create color and opacity transfer

19 VoIDG-
generated
images of the
tooth.

18 Transfer function generated by VolDG.
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functions before volume rendering can move from the
lab to the hospital. It doesn’t matter whether the tech-
niques are automatic, semiautomatic, or manual. They
just need to be fast and simple.

Summary and conclusions
Bill Lorensen
GE Corporate Research and Development
he four groups on the panel weren’t given a specif-
ic task to perform. Their sole goal was to produce
images that would impress the panel judge (me). All
the groups gave a short presentation of their results.
Each team performed admirably, presenting a variety of
renderings for all the data sets.

The Kitware panelist produced “artistic” renderings
of each data set by manually choosing transfer func-
tions. The MERL approach presented dozens of alter-
natives for each data set, requiring the user to choose
an appropriate rendering. The Texas algorithm auto-
matically created transfer functions based on metrics
derived from the data. The Utah panelist also present-
ed an automatic technique that followed a more tradi-
tional feature-extraction approach, designed to find
boundaries in the data.

As the judge, I was biased against techniques that
required too much or too little human interaction. This
bias eliminated the manual Kitware approach and the
automatic MERL technique. I had a difficult time decid-
ing the winner between the two remaining datacentric
approaches. The Texas reliance on observable metrics
in the data seems to be more intuitive than the Utah
approach. However, in my opinion, the Utah algorithm
shows the most promise and is most likely to stimulate
future research in the area of automatic transfer func-
tion synthesis.

Rectilinear, static grids are the simplest volumetric
data, yet it’s obvious that many problems exist in devel-

May/June 2001 137

oping effective renderings. Other types of volumetric
data are even more challenging, such as time-varying
data, time-varying grids, irregular grids, scattered data,
or nonscalar fields. We hope that this panel encourages
further research in transfer function design, particular-
ly for more complex, difficult-to-visualize volumetric
data sets. u
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Semi-Automatic Generation of Transfer Functions
for Direct Volume Rendering

Gordon Kindlmanrtand James W. Durkih

Program of Computer Graphics
Cornell University

Abstract Finding a good transfer function is critical to producing an infor-
mative rendering, but even if the only variable which needs to be set
Although direct volume rendering is a powerful tool for visualizing is opacity, it is a difficult task. Looking through slices of the vol-
complex structures within volume data, the size and complexity of ume dataset allows one to spatially locate features of interest, and a
the parameter space controlling the rendering process makes genermneans of reading off data values from a user-specified point on the
ating an informative rendering challenging. In particular, the speci- slice can help in setting an opacity function to highlight those fea-
fication of the transfer function — the mapping from data values to tures, but there is no way to know how representative of the whole
renderable optical properties — is frequently a time-consuming and feature, in three dimensions, these individually sampled values are.
unintuitive task. Ideally, the data being visualized should itself sug- User interfaces for opacity function specification typically allow the
gest an appropriate transfer function that brings out the features ofuser to alter the opacity function by directly editing its graph, usu-
interest without obscuring them with elements of little importance. ally as a series of linear ramps joining adjustable control points.
We demonstrate that this is possible for a large class of scalar vol- This interface does not itself guide the user towards a useful set-
ume data, namely that where the regions of interest are the bound-ting, as the movement of the control points is unconstrained and
aries between different materials. A transfer function which makes unrelated to the underlying data. Thus finding a good opacity func-
boundaries readily visible can be generated from the relationship tion tends to be a slow and frustrating trial and error process, with
between three quantities: the data value and its first and second di-seemingly minor changes in an opacity function leading to drastic
rectional derivatives along the gradient direction. A data structure changes in the rendered image. This is made more confusing by the
we term thehistogram volumesaptures the relationship between interaction of other rendering parameters such as shading, lighting,
these quantities throughout the volume in a position independent, and viewing angle.
computationally efficient fashion. We describe the theoretical im-
portance of the quantities measured by the histogram volume, the . . .
implementation issues in its calculation, and a rgethod for semi- 1.2 Direct Volume Rendering of Boundaries
automatic transfer function generation through its analysis. We A sjgnificant assumption made in this paper is that the features of
conclude with results of the method on both idealized synthetic data jnterest in the scalar volume are the boundary regions between ar-
as well as real world datasets. eas of relatively homogeneous materidor instance, this is often
true of datasets from medical imaging. But if the goal is to render
the boundaries of objects, why use direct volume rendering, and not

1 Introduction isosurface rendering? Although this question itself deserves inves-
tigation, it is widely accepted that direct volume rendering avoids
1.1 The Task of Finding Transfer Functions the binary classification inherent in isosurface rendering — either

the isosurface passes through a voxel or not [11]. To the extent that
Transfer functionsnake a volume dataset visible by assigning ren- an object’s surface is associated with a range of values, an opacity
derable optical properties to the numerical values which comprise function can make a range of values opaque or translucent. This be-
the dataset. The most general transfer functions are those that ascomes especially useful when noise or measurement artifacts upset
sign opacity, color, and emittance [12]. Useful renderings can of- the correlation between data value and material type.
ten be obtained, however, from transfer functions which assign just ~ As a quick illustration of this, consider a dataset generated from
opacity, with the color and brightness derived from simulated lights limited angle tomography [6], where there are often streaks and
which illuminate the volume according to some shading model. We blurriness in the data caused by the unavailability of projections at
use the ternopacity functiongo refer to this limited subset of trans-  some range of angles. This type of data is studied in the Collab-
fer functions. During the rendering process, the sampled and in- oratory for Microscopic Digital Anatomy[19], an ongoing project
terpolated data values are passed through the opacity function toaimed at providing remote, networked access to sophisticated mi-
determine their contribution to the final image. Since the opacity croscopy resources. Fig. 1 shows two renderings of a mammalian
function does not normally take into account the position of the neuron dataset, using the same viewing angle, shading, and light-
region being rendered, the role of the opacity function is to make ing parameters, but rendered with different algorithms: a non-
opaque those data values which consistently correspond, across th@olygonal ray-cast isosurface rendering and a shear-warp direct vol-
whole volume, to features of interest. This paper addresses onlyume rendering produced with the Stanford VolPack rendering li-
the problem of setting opacity functions, as this is a non-trivial yet brary [10]. Towards the bottom of the direct volume rendered im-
manageable problem whose solution is pertinent to more generalage, there is some fogginess surrounding the surface, and the sur-
transfer function specification issues. face itself is not very clear. As can be confirmed by looking directly
at slices of the data itself, this corresponds exactly to a region of the

*Address: Department of Computer Science, University of Utah, Salt

Lake City, UT 84102. Email: gk@cs.utah.edu. 1We useboundaryto refer, not to an infinitesimally thin seperating sur-
TAddress: Program of Computer Graphics, Cornell Universityadéh face between two areas of disparate data value, but to the thin region wherein
NY 14853. Email: jwd@graphics.cornell.edu. the data value transitions from one material value to the other.
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dataset where the material boundary is in fact poorly defined. The Other visualization tools have been described which are more
surface rendering, however, shows as distinct a surface here as evdriven by the data itself. Bergman et al. [3] describe a percep-
erywhere else, and in this case the poor surface definition in the tually informed rule-based method for colormap selection which
data is manifested as a region of rough texture. This can be mis-takes into account the data’s spatial frequency characteristics and
leading, as there is no way to know from this rendering alone that the purpose of the visualization. Closer to the goal of the current
the rough texture is due to measurement artifacts, and not a featurgaper is the contour spectrum, described by Bajaj et al. [1], which
on the dendrite itself. helps the user find isovalues for effective isosurface volume visual-
izations of unstructured triangular meshes. By exploiting the math-
ematical properties of the mesh, important measures of an isosur-
face such as surface area and mean gradient magnitude can be com-
puted with great efficiency, and the results of these measurements
are integrated into the same interface which is used to set the iso-
value. By providing a compact visual representation of the metrics
evaluated over the range of possible isovalues, the user can readily
decide, based on their rendering goals, which isolevel to use. The
importance to the current paper is that the contour spectrum is a
good example of how an interface can use measured properties of
the data to guide the user through the parameter space controlling
the rendering.

3 Ideal Boundary Characterization

3.1 Boundary Model

Since our particular goal is the visualization of material boundaries,
we have chosen a model for what constitutes an ideal boundary and
(a) Isosurface Rendering (b) Direct Volume Rendering developed methods around that. We assume that at their boundary,
) ) ) ) ) objects have a sharp, discontinuous change in the physical property
Figure 1: Two renderings of a spiny dendrite from a cortical pyra- measured by the values in the dataset, but that the measurement
midal neuron. The volume dataset was reconstructed from imagesprocess is band-limited with a Gaussian frequency response, caus-
age electron miCI‘OSCOpe at the National Center for MiCI’OSCOpy and a Step function representing an idea| boundary prior to measure-
Imaging Research, San Diego, California, using single-tilt axis to- ment, the Gaussian which performs the band-limiting by blurring,
mography. Specimen kindly provided by Prof. K. Hama of the Na- and the resulting measured boundary (prior to sampling). The re-
tional Institute for Physiological Sciences, Okazaki, Japan. sulting curve happens to be the integral of a Gaussian, which is
called theerror function[9]. Actual measurement devices band-
limit, so they always blur boundaries somewhat, though their fre-
quency response is never exactly a Gaussian, since this has infinite
2 Related Work support. Although certain mathematical properties of the Gaussian
are exploited later, we have not found the inexact match of real-
Two methods have been proposed for assisting the user in the ex-world sampling to the Gaussian ideal to limit application of our
ploration of possible transfer functions. He et al. [7] use genetic technique. A final assumption made for the purposes of this analy-
algorithms to breed a good transfer function for a given dataset. sis is that the blurring is isotropic, that is, uniform in all directions.
Judging from small thumbnail renderings, the user picks desirable Again, our methods will often work even if a given dataset does
transfer functions from an automatically generated population, until not have this characteristic, but results may be improved if it is pre-
the iterative process of image selection and transfer function inter- processed to approximate isotropic blurring.
combination converges. Alternatively, the system can run automat-
ically by using some user-specified objective function (entropy, en-
ergy, or variance) to evaluate rendered images. Marks et al. [13] % -
address the problem of “parameter tweaking” in general, with ap-
plications including light placement for rendering, motion control
for articulated figure animation, as well as transfer functions in di-

S

rect volume rendering. The goal is to create a visual interface to (a) Step func- (b) Gaussian (c) Measured
the complex parameter space by using an image difference metric tion boundary prior
to arrange renderings from a wide variety of transfer functions into to sampling

a “design gallery”, from which the user selects the most appeal-
ing rendering. While both of these methods reportedly succeed in
finding useful transfer functions, and while they both allow the user
to inspect the transfer function behind a rendering, the systems are
fundamentally designed for finding good renderings, notfor finding 3 2 pirectional Derivatives along the Gradient

good transfer functions. Both processes are entirely driven by anal-

ysis of rendered images, and not of the dataset itself. Rather thanAlthough it was suggested in Section 1.2 that isosurfaces are not
having an high-level interface twontrol the transfer function, the  always sufficient for visualizing objects in real world volume data,
user has t@hoosea transfer function from among those randomly the method presented in this paper still indirectly employs them
generated, making it hard to gain insight into what makes a transferas an indicator of object shape. That is, based on the mathemati-
function appropriate for a given dataset. cal property that the gradient vector at some position always points

Figure 2: Boundaries are step functions blurred by a Gaussian.
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perpendicular to an isosurface through that position, we use the gra-3.3  Relationship Between f, f/, and f”
dient vector as a way of finding the direction which passes perpen-
dicularly through the object boundary. Even though isosurfaces do As our goal is to find functions of data value which highlight bound-
not always conform to the local shape of the underlying object, if ary regions, our problem is rather different than that addressed
we average over the whole volume, the gradient vector does tend toby edge detectors. Because the opacity function will be applied
point perpendicular to the object boundary. We rely on the statisti- throughout the volume irrespective of position, we must locate the
cal properties of the histogram to provide the overall picture of the boundary not in the spatial domain, but in the range of data values.
boundary characteristics. In contrast, edge detectors locate boundaries in the spatial domain.
The directional derivative of a scalar fiejlalong a vector, Yet, we still want to borrow from computer vision the notion that
denotedD, f, is the derivative off as one moves along a straight boundaries are somehow associated with a maximuyti and/or
path in thev direction. This paper studigsand its derivatives as & zero-crossing irf”. To see how this is possible, consider just the
one cuts directly through the object boundary — moving along the relationship betweeif and f’. As both of these are functions of
gradient direction — in order to create an opacity function. Be- Pposition, they can be plotted with a three-dimensional graph, as in
cause the direction along which we are computing the directional Fig. 5. The three-dimensional curve can be projected downward to
derivative is always that of the gradient, we employ a mild abuse of form the plot of data value versus position, and projected to the right
notation, usingf’ and " to signify the first and second directional o show first derivative versus position. Projecting the curve along
derivative along the gradient direction, even though these would the position axis, however, eliminates the position information, and
be more properly denoted B f andD%-. f, whereV f is the reveals the relationship between data value and first derivative. Be-
. L Vi Vi ;. cause the data value increases monotonically, there is a (non-linear)
gra_dlent dlrect_lon._ We treat as if it were a functl_on of just ON€ " 5ne-to-one relationship between position and data value, so the first
variable, keeping in mlnd that the axis along Wh'Ch VYe analjze derivative f’, which had been a function gfosition =, can also
always followsV f, which constantly changes orientation depend- e expressed as a functiondsta valuef. This is what the third
ing on position. Fig. 3 shows how the gradient direction changes projection in Fig. 5 depicts.
with position to stay normal to the isosurfaces of a simple object.

f(z)

@ f(x) (b) Isosuréces off ) Vrf

Figure 3:V f is always normal tgf’s isosurfaces.

Fig. 4 analyzes one segment of the cross-section of this same
object. Shown are plots of the data value and the first and second
derivatives as one moves across the boundary. Because of band-
limiting, the measured boundary is spread over a range of positions,
but an exact location for the boundary can be defined with either
the maximum inf’, or the zero-crossing ifi”’. Indeed, two edge
detectors common in computer vision, Canny [4] and Marr-Hildreth
[14], use thef’ and f" criteria, respectively, to find edges.

Figure 5:f, f' and positionz.

The same projections can be done for data value and its second
derivative, as seen in Fig. 6. Projecting the curve downward or to
" ! . . .

() W (=) H /(=) the right produces the graphs of data value or second derivative ver-
sus position (first seen in Fig. 4), while projecting along the posi-
tion axis reveals the relationship between data value and its second
derivative.

Finally, having “projected out” position information, one can
make a three-dimensional graph of the first and second derivatives
as functions oflata value as seen in Fig. 7. The significance of this
curve is that it provides a basis for automatically generating opacity
functions. If a three dimensional record of the relationship between

/ £, f and f" for a given dataset contains curves of the type shown

/ in Fig. 7, we can assume that they are manifestations of boundaries
= in the volume. With a tool to detect those curves and their posi-
tion, one could generate an opacity function which makes the data
values corresponding to the middle of the boundary (indicated with
cross-hairs in Fig. 7) the most opaque, and the resulting rendering
should show the detected boundaries. Short of that, one could use a
measure which responds to some specific feature of the curve (say,
the zero crossing iff’’) and base an opacity function on that. This
is what the current paper seeks to do.

Figure 4: Measuring, f', andf" across boundary.
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ing wherethe boundary was in the idealized dataset. For instance,
Fig. 4 was produced with knowledge of where to place a path so
as to cross through the boundary. In the case of real volume data,
however, the positions of the boundaries are not known, but the
same relationship betweef ' and " needs to be revealed by
some measurement technique.

f//(m)
f”(x)
fx)
f(x)
(a) Continuous linear sampling
. . " .
Figure 6:f, f" and positione. £(x) ()
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(c) Sampling at gridpoints

Figure 8: Sampling the boundary: from continuous to discrete.
Figure 7: The underlying relationship ¢f ', andf".

Itis sufficient to measurg, ', andf” at each point of a uniform

4 The Histogram Volume lattice. Fig. 8(a) shows a boundary being sampled continuously to
produce smooth graphs ¢f and " versusf. In Fig. 8(b), the
4.1 Histogram Volume Structure sampling is along the same path, but is now discrete. The smooth

. . . . graphs have been replaced by scatterplots, but the sequence of mea-
'I_'o measure the_relatlonshlp b(_etween the data value_ and s dem.’a'surements traces out the same curves as before, indicating that dis-
tives described in the last section, we use a three-dimensional his-¢rete sampling and the resulting scatterplots are sufficient to illu-
togram we term _dmsto/gram vls)lumeThere is one axis for each of - inate the important relationships betwegrand its derivatives.
the three quantitieg, f, andf’, and each axis is divided into some Finally, in Fig. 8(c), the boundary is sampled everywhere on a uni-
number of (one-dimensional) bins, causing the interior volume to ¢ .- g’rid. ThougFI now the points are distributed differently —
be divided into a th.re.e-dimensional array of bins. The histogram many more hits have accumulated along wherand /" are near
volume has two defining characteristics: zero — the scatterplots trace out the save curves as before. By sam-
1. Each bin in the histogram volume represents the combination pIin_g everywhere, we no Ion_ger_ require knovx_/Ie_dge of boundary lo-
of a small range of values in each of the three varialfleg cation, and the “global” d_erl_vatlve _characterlstlcs (_)f the bo_undary
' have been measured. This is precisely the sort of information rele-

H
andf". vant to opacity function generation.

2. The value stored in each bin signifies the number of voxels in The approach taken in this paper is to measfirand its di-
the original volume within that same combination of ranges rectional derivatives exactly once per voxel, at the original sample
of these three variables. points of the dataset. One might be concerned that sampling merely

at the original data points is not a sufficient sampling density to pro-
4.2 Histogram Volume Creation duce the curves seen in Figs. 7 and 8. Howevgr, y\(ith real volume

data this will not be a problem, since the band-limiting in data ac-
Fig. 7 illustrated the position-independent relationship betwgen  quisition assures there will always be some blurring, and since the
f', and f” that characterized an ideal boundary. To find that rela- boundaries of real objects tend to assume a variety of positions and
tionship, however, we afforded ourselves the luxury of first know- orientations relative to the sampling grid.
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4.3 Implementation appealing by virtue of their computation efficiency. The Lapla-

. L . . L cian computation is direct and inexpensive, but the most sensitive to
One implementation issue in the histogram volume creation is NOW ¢ ,antization noise. The gradient of the gradient magnitude (Eqn. 3)
many bins to use. There is a trade-off between storage and pro-ig petter, and its computational expense is lessened if the gradient
cessing requirements versus having sufficient resplutlon in the his- magnitude has already been computed everywhere for the sake of
togram volume to discern the patterns from which we generate volume rendering (e.g., as part of shading calculations).

tgﬁggﬁtﬁJg?gg?;ri'véTu?nuésegfpsei;'g]sng}vggﬁ? gnrg‘f El;jg:gs t\)/ivnesre ob- By measuring the derivatives only at the original data points, the
N ’ calculation of the first and second partial derivatives required in

though there is no reason that the histogram volumes need to haVethe above expressions is greatly facilitated by the use of discrete

tec?ldgle rgﬁf;lg'gﬂsig feﬁgsﬁ?.théljgl’ugsiﬁxz L?Stggrgriu\tglclljﬁé convolution masks applied at the data points; we have used stan-

scaling and/or clipping the number of hits to the range 0-255 if dard central dlfferences._ Th_us, our task is somewhat distinct fr_om

hecessar the usual problem of derivative measurement in volume rendering,
Y- where a primary concern is continuity of the derivative between

A more subtle issue is what range of values to include along each . . ;
axis. Obviously, for the data value axis, the full range should be in- Eg?FZIelpe?nts to allow for correct shading of interpolated data val

cluded, since we intend to capture all the values at which boundaries . . . . .
might occur. But along the axes for first and second derivative, it _ 1N general algorithm for creating the histogram is straight-
makes sense to include something less than the full range. Sincgorward:

derivative measures are by nature sensitive to noise, including the . )

full range of derivative values in the histogram volume may cause 1. Initialize the histogram volume to all zeroes.

the important and meaningful sub-range of values to be compressed

to a smaller number of bins, thereby hampering the later step of de- 2. Make one pass through the volume looking for the highest
tecting patterns in the histogram volume. We do not hawe uiori values off" and f”, and the lowest value of’; assume zero
knowledge of the meaningful ranges of derivatives values, so cur- for the lowest value of’. Set ranges on the histogram volume
rently the derivative value ranges are set with an educated guess. axes accordingly.

This is a matter in need of further research and automation.

The most significant implementation issue is the method of mea-
suring the first and second directional derivatives. The first deriva-
tive is actually just the gradient magnitude. From vector calculus
[15] we have:

3. On asecond pass through the volume,

3a. Measurd, f’, andf” at each voxel,

3b. Determine which bin in the histogram volume corre-
sponds to the measured combinationfoff’, and f”,
and

D,f=Vf-v, (1)

thus
v 3c. Increment the bin’s value.

Deyf =Vf-V =V 15m =

IVl @)

Unfortunately there is no similarly compact formula ]D%f, the 4.4 Histogram Volume Inspection

second directional derivative along the gradient direction. Twice It is possible to gain some insight into the object boundaries of the
applying Eqn. 1 gives: original dataset by simple visualization of the histogram volume
. after it has been calculated. One may be tempted to simply volume
D (V) = VIV -V render the histogram volume from arbitrary views, but this usually
turns out to be unrevealing due to the speckled and noisy nature
= V(IVFI) - Vf (3) of the histogram volume. A better way is to use summed-voxel of
IVAI projections the histogram volume, projecting along eitherfther
- the " axis, to produce scatterplots ¢f' versusf or f’ versusf,
Or, using the Taylor expansion gfalongV f [5] gives: respectively. This allows testing of the premise in Section 3.3 —
if there are boundaries in the original dataset that conform to the
Di.f= #(Vf)T HfVf (4) boundary model, there should be curves like that of Fig. 7 in the
v/ V£l histogram volume.

2 .
DL f

Fig. 9 shows cross-sections and scatterplots for two synthetic
datasets. The curves in the scatterplots are exactly the form seen
in Fig. 8, and one can see an important property of the histogram
volume — for each pair of materials that share a boundary, there
is a curve in the histogram volume. This property is again visible
) in Fig. 10, wherein various computed tomography datasets are be-

ing analyzed. Though the scatterplots are noisier, it clear that the
histogram volume is successfully capturing information about the
The approximation is exact only where the isosurfaces have zeromaterials and their boundaries.
mean surface curvature [5]. _ _ It should be noted that a related technique has been used in com-

These three expressions D f each suggest differentimple-  puter vision for feature identification. Panda and Rosenfeld [18]
mentations for the second derivative measure. Although this would use two-dimensional scatterplots of data value and gradient mag-
benefit from more detailed study, we can still make useful obser- nitude to perform image thresholding for night vision applications.
vations regarding the comparative merits of each. While we have They, however, do not assume a boundary model, instead limiting
found the Hessian method to be the most numerically accurate, thetheir analysis of the scatterplot to identifying particular distribu-
others have proven sufficiently accurate in practice to make them tions within regions of low and/or high gradient magnitude.

whereH f is the Hessian off, a3 x 3 matrix of second partial
derivatives off [15]. Alternatively, we can use the Laplacis#t f
to approximatd)% f:

82 82 j 82 j
O + Ay* + 92*

D& frVf =
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(a) Cylinder

(b) Nested Cylinders

Figure 9: Dataset Slice, versusf, andf’ versusf.

5 Opacity Function Generation

5.1 Mathematical Boundary Analysis

In order to develop a method for opacity function generation that

uses our boundary model and the information stored in the his-

togram volume, it is helpful to look at the equation we have used to

describe the ideal boundary data value as a function of position:

1+ erf( af/i)
2

(6)

v = j(T) = VUmin + (’Umal - Umin)

(a) Turbine Blade

(b) Head

rF

Ay

(c) Engine Block

Figure 10: Dataset Slic¢, versusf, andf'’ versusf.

which f(x) = v, andh(v) is likewise the average second direc-
tional derivative at value. These two functions can be obtained

Just as we have taken “position” to always be along an axis point- from the histogram volume by slicing it at data valyeand finding

ing in the gradient direction, we define zero to always be the posi-

tion of the inflection point in the boundary,,;, andv,,.. are the
data values of the materials on either side of the boundaryrfAs

ranges from-1 to 1, v ranges fromv,,,;, 10 vynq.. The parame-
ter controlling the amount of boundary blurringds The first and
second derivatives qf are as follows:

Umazr —

Jle) = S (=g ) ()
. — . 22
fla) = M limndep- 0y @

Our choice of boundary parameterization means féat) is
a Gaussian, witly being the usual standard deviation. Since the
Gaussian has inflection points #ir, this is wheref” (z) attains

the centroid of the scatterplot ¢f and f” at that value. Thef’
axis coordinate of the centroid igv), and thef” axis coordinate
is h(v).

Knowing g(v) andh(v) for all v, one can find the ratio of their
maxima to recoves with Eqn. 9, assuming that attains its max-
ima at f(0), and thath attains its maxima af (—o). With this
information, we define a mapping(v) from data value to an ap-
proximate position along a boundary:

—o%h(v)
9(v)
1)
fr (=)

Roughly speakingp(v) tells us on which side of the nearest

p(v) (11)

its extrema. The same positions can serve as artificial delimiters o nqary ‘a data value tends to fall. For values closer ig,i»

for the extent of the boundary — waefinethe “thickness” of the
boundary to bes. Note that the thickness of a boundary can be
recovered if the maximum values ¢f and " are known:

1o __
=) =7V

More importantly, oncer is known, we can recover the position
2 knowing only the values of’ and f":

f(x) x
f'(2)

9)

(10

5.2 Opacity functions of data value

Before using Eqn. 10 as the basis for opacity function generation,

we define some important functions of data valyéo) is the av-
erage first directional derivative of over all the positionsx at

p(v) will be negative; for values closer t9,.., p(v) will be pos-

itive. In practice, we have found it useful to modify Eqn. 11 to
account for the fact that the gradient magnitude at the interior of
materials is rarely exactly zero. Knowing how it differs from zero
is again a matter of experience, but assuming one can fjnd-a.».
which approximates the ambient gradient magnitude, Eqn. 11 is re-
formulated, with a slight loss of mathematical accuracy, as

—o?h(v)

ma.x(g(v) — Jthresh, 0)

p(v) = 12)

The user supplies the last piece of information needed: a func-
tion b(z) we term theboundary emphasis functipavhich maps
from position along a boundary to opacity. As the intent is to make
only boundaries visible in the rendering(x) should be non-zero
only near zero. For this reason, we have not been especially care-
ful to preventp(v) from attaining infinite values due to a layv);
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such a data value should not contribute to the final image. With
b(x), the user can directly control whether rendered boundaries will
appear thick or thin, sharp or fuzzy, and the proximity of the ren-
dered boundary to the object interior. The final opacity function
a(v) is then defined as

a(v) = b(p(v)) (13)

Instead of exploring the parameter space of all possible opac-
ity functions, the user explores the parameter spack(:f and
lets the information from the histogram volume, embodieg (i),
constrain the search to those opacity functions which display ob-
ject boundaries. Defining opacity as a function of position within
a boundary then becomes a more intuitive task than defining opac-
ity as a function of data value, as there is a more predictable re-
lationship between changes made to the boundary emphasis func-
tion and the corresponding change in rendered results. As there
is a potential for inaccuracy in the calculation @ffrom Eqn. 9, A
the user may need to experiment with different scalings in the do- (a) Semi-transparent (b) Closer to interior
main ofb(x). Fig. 11 shows how the choice of boundary emphasis

function affects the opacity function and the rendered image, for a
synthetically created dataset containing two concentric spheres at
distinct data values. It should be stressed that the user does not
set the location of the peaks #(v), since this is determined by
the information inp(v), but the user can influence the location, as
well as the width, height, and shape of the peaks. This is the main
benefit of this method: if the histogram volume has successfully
captured information about the boundaries in the dataset, the user

enjoys high-level control over the character of the rendered bound-

aries without having to worry about the exact specification (af). o = b(x)
Yet, thea(v) so generated is sensible enough that it could be edited
by hand if desired. For example, since this technique will attempt
to makeall boundaries opaque, a useful supplement to the interface i z 0 x
would be a feature which allows supression of the peaks if) for a a
one or more boundaries.
Even though we have made some strong assumptions about the
boundary characteristics in the volume dataset, the technique de- 4 v m v
scribed here typically works well even if the material boundaries are (c) More opaque (d) Sharper boundary

not “ideal”. Essentially, by taking the ratio of the second and first

derivatives, and by having(z) assign opacity to positions around  Figure 11: Relationship betweéiiz), a(v), and the rendered re-
zero, we are more apt to make opaque those data values associateg||t.

with both low second derivatives and high first derivatives. Or, even

if p(v) is not a perfect indicator of “position relative to boundary”,

the sign change iff” around its zero-crossing affords us some con- and from that an opacity function:

trol over whether we want to emphasize regions closer to or further

from the object’s interior. Fig. 12 on the accompanying colorplate —o?h(v, g)

shows a rendering of an MRI dataset which does not have ideal plv.g) = Max(g — gnresh, 0) (14)
boundaries but for which this technique still works. _ N
afv,g) = b(p(v,g)) (15)
. . . o is calculated as before; the ratio of the extremum of the aver-
5.3 Opacity functions of data value and gradient age first and second derivatives. The benefit of this kind of opac-
magnitude ity function is that it can distinguish between boundaries that have

overlapping ranges of values. For instance, the nested cylinders vol-
So far the opacity functions under consideration have assignedume in Fig. 9 and the engine block volume in Fig. 10 each have one
opacity based on data value alone. Higher quality renderings canboundary which overlaps the two other boundaries in data value,
sometimes be obtained, however, if the opacity is assigned as aspanning from the higher of the two material values to the back-
function of both data value and gradient magnitude. Defining these ground value. Selectively rendering this single boundary is impos-
two-dimensional opacity functions by hand is especially challeng- sible with a value-based opacity function, but because the boundary
ing because there are even more degrees of freedom than in onehas a distinct curve in the plot of data value versus first derivative, it
dimensional, value-based opacity functions. Fortunately, the ideasis possible to create an opacity function which selects only the vox-
presented so far easily generalize to allow semi-automatic genera-els comprising this boundary. As it did in the case of value-based
tion of two-dimensional opacity functions. opacity functions, the technique presented here will generate two-
Analogous to the definition di(v), we defineh(v, g) to be av- dimensional opacity functions which make all detected boundaries
erage second derivative over all locations where the data vatue is opaque; a simple “lasso” tool could then be used to select differ-
and the gradient magnitude gsthis is also easily calculated from  ent regions in the two-dimensional opacity function to render one
the histogram volume. We similarly define a new position function, boundary at a time. In Fig. 13 on the colorplate, the feet of the
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female Visible Human CT dataset [17] are rendered with four dif- References

ferent two-dimensional opacity functions. Using a modification of

an automatically generated opacity function, one rendering shows [1] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore.

almost exclusively the registration cord laced around the body prior
to scanning.

The lower right rendering in Fig. 13 demonstrates another ad-
vantage of two-dimensional opacity functions — the ability to ac-

(2]

curately render the surface of a material which attains a wide range
of data values, as is the case for the bone tissue in this same CT

scan. Different parts of the bone surface are more radio-opaque tha

n [3]

others, leading to a wide range of data values associated with bone,

which in turn causes a wide range of gradient magnitudes within the

boundary region between bone and soft tissue. Knowing the aver- [4]

age second derivative for each locatiorfing) space, we can make

opaque only those voxels near the middle of the boundary (near the

zero-crossing irf”’), regardless of the bone data value. As is visi-

ble in the opacity function generated with Egn. 14, this implies that
as gradient magnitude increases, there is an upward shift in the dat
values which should be made most opaque. This kind of careful

(5]

a

(6]

opacity assignment is not possible with a simple value-based opac-

ity function, though it is reminiscent of the two-dimensional opacity
functions described by Levoy [11]. Although space does not permit

(7]

a detailed comparison between our approach and Levoy’s, the main

difference is that (ideally) the measured first and second derivative
information serves to constrain the opacity function generation so
as to only show boundaries, while in Levoy's method the user still
has to experiment to find the right parameter settings.

6 Conclusions and Future Work

We have shown that semi-automatic generation of opacity functions

(8]

9]

(10]

is possible for datasets where the regions of interest are bound-
aries between materials of relatively constant data value. The his-[11]

togram volume structure presented here captures information abou
the boundaries present in the volume and facilitates a high-level
interface to opacity function creation. The user controls which por-
tions of the boundary are to be made opaque, without having to
know the data values that occur in the boundary.

t
(12]

(13]

Given that boundaries in the volume are always manifested by a
curve of a particular shape in the histogram volume, it makes sense

to apply computer vision object recognition techniques to the his-
togram volume. We are investigating the feasibility of using the

Hough transform to detect the curves in the histogram volume and
measure their intensity [8]. Also, it may be possible to adapt the
methods to non-scalar data, such as comes from multi-echo MRI.
Finally, as mentioned before, we are interested in performing per-
ceptual studies to validate the claim that direct volume rendering

(14]

(15]

can, unlike isosurface rendering, accurately convey surface quality

or measurement uncertainty to the viewer.
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Abstract and tedious for many rendering, modeling, and motion-control pro-

Image rendering maps scene parameters to output pixel values; an-
imation maps motion-control parameters to trgjectory values. Be-
cause these mapping functions are usually multidimensional, non-
linear, and discontinuous, finding input parametersthat yield desir-
able output values is often a painful process of manual tweaking.
Interactive evolution and inverse design are two general method-
ologies for computer-assisted parameter setting in which the com-
puter plays a prominent role. In this paper we present another such
methodology. Design Gallery™ (DG) interfaces present the user
with the broadest selection, automatically generated and organized,
of perceptualy different graphics or animations that can be pro-
duced by varying a given input-parameter vector. The principal
technical challengesposed by the DG approach are dispersion, find-
ing a set of input-parameter vectors that optimally dispersesthe re-
sulting output-value vectors, and arrangement, organizing the re-
sulting graphicsfor easy and intuitive browsing by the user. We de-
scribe the use of DG interfaces for several parameter-setting prob-
lems: light selection and placement for image rendering, both stan-
dard and image-based; opacity and color transfer-function specifi-
cation for volume rendering; and motion control for particle-system
and articul ated-figure animation.

CR Categories: 1.2.6 [Artificial Intelligence]: Problem Solving,
Control Methods and Search—heuristic methods; 1.3.6 [Computer
Graphics]: Methodology and Techniques—interaction techniques,
1.3.7 [Computer Graphics]: Three-Dimensional Graphicsand Real-
ism.

Keywords: Animation, computer-aided design, image rendering,
lighting, motion synthesis, particle systems, physical modeling, vi-
sualization, volume rendering.

1 Introduction

Parameter tweaking is one of the vexations of computer graphics.
Finding input parameters that yield a desirable output is difficult

*Addresss MERL — A Mitsubishi Electric Research Laboratory, 201
Broadway, Cambridge, MA 02139, U.S.A. E-mail: marks@merl.com.

cesses. The notion of having the computer assist actively in set-
ting parametersis therefore appealing. One such computer-assisted
methodology isinteractive evolution [11, 21, 23]: the computer ex-
plores the space of possible parameter settings, and the user acts
as an objective-function oracle, interactively selecting computer-
suggested aternatives for further exploration. A more automatic
methodology is inverse design, e.g., [10, 12, 14, 19, 22, 25, 27]:
the computer searches for parameter settings that optimize a user-
supplied, mathematically stated objective function.

Unfortunately, there are many interesting and important graphics
processesfor which interactive evolution and inverse design are not
very useful. These processes share two common characteristics:

¢ High computational cost: if the process cannot be computed
in near real time, interactive evolution becomes unusable.

¢ Unquantifiable output qualities: even though desirable graph-
icsmay bereadily identified by inspection, it may not be possi-
ble to quantify a priori the qualities that make them desirable.
This lack of a suitable objective function rules out the use of
inverse design.

In this paper we present a third methodology for computer-
assisted parameter setting that is especially applicable to graphics
processes that exhibit one or both of these characteristics. Design
Gallery (DG) interfaces present the user with the broadest selec-
tion, automatically generated and organized, of perceptually differ-
ent graphicsor animations that can be produced by varying agiven
input-parameter vector. Becausethe selection is generated automat-
icaly, it can be done as a preprocess so that any high computational
costs are hidden from the user. Furthermore, the DG approach re-
quiresonly ameasure of similarity between graphics, which can of-
ten be quantified even when optimality cannot.

A DG system includes several key elements. The input vector is
alist of parametersthat control the generation of the output graphic
via a mapping process. The output vector is a list of values that
summarizesthe subjectively relevant qualities of the output graphic.
Thedistance metric on the space of output vectors approximatesthe
perceptual similarity of the corresponding output graphics. Thedis-
persion method is used to find a set of input vectors that map to a
well-distributed set of output vectors, and hence output graphics.
Thedispersed graphicsare presented to the user through a perceptu-
ally reasonable arrangement method that makes use of the distance
metric. Thesesix elements— input vector, mapping, output vector,
distance metric, dispersion, and arrangement — characterizea DG
system. The creator of a DG system choosesthe input vector, out-
put vector, and the distance metric for a specific mapping process.
For particular instances of the process, the computer performs the
dispersion, the mapping of input vectors to output vectors, and the
arrangement of final graphicsin a gallery. The end user need only
recognize and select appealing graphics from the gallery.
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We explain and illustrate the use of DGs for several common
parameter-setting problems: light selection and placement for im-
age rendering, both standard and image-based; opacity and color
transfer-function specification for volume rendering; and motion
control for particle-system and articulated-figure animation. Dur-
ing the discussion, we describethe input and output vectorsfor each
mapping process, and present variousmethodsfor dispersionand ar-
rangement that we have used in building DG systems.

2 Light Selection and Placement

Setting lighting parameters is an essential precursor to image ren-
dering. Previous attempts at computer-assisted lighting specifica-
tion haveusedinversedesign. For example, the user can specify the
location of highlights and shadowsin the image [15], pixel intensi-
ties [19], or subjective impressions of illumination [10]; the com-
puter then attempts to determine lighting parameters that best meet
the given objectives, using geometric [15] or optimization [10, 19]
techniques. Unfortunately, the formulation of lighting specification
asaninverse problem hassomesignificant drawbacks. High-quality
image rendering (e.g., raytracing or radiosity) is costly; to make the
computer’s search task tractable, the user may have to fix the light
positions[10, 19], thereby grossly limiting theilluminationsthat can
be considered. A more intrinsic difficulty is that of requiring the
user to quantify a priori the desired illuminative characteristics of
theresulting image. Thisrequirement may be satisfiablein an archi-
tectural context [10], but seemsvery challenging in a more general
cinematographic context [8]. The most difficult lighting parameters
to set are those relating to light type and placement, so they have
been the focus of our efforts.

2.1 Input and Output Vectors

For the light selection and placement problem, we begin with a
scenemodel comprising surfacesand viewing parameters. Thegoal
isto exploredifferent waysof lighting the scene, so theinput vector
includesalight position, alight type, and alight direction if needed.
The light position is |ocated somewhere on one of the surfaces dis-
tinguished as alight hook surface by the user. The light type comes
from a user-defined group, and describes attributes of the light: its
basic class (e.g., point, area, or spotlight); whether or not it casts
shadows; its falloff behavior (e.g., hone, linear, or quadratic); and
class-specific parameters (e.g., the beam angle of a spotlight). Di-
rectional lights are aimed at randomly chosen points on designated
light target surfaces.

The output vector should be a concise, efficiently computed set
of values that summarizes the perceptual qualities of the final im-
age. Thus, output vectors are based on pixel luminances from sev-
eral low-resolution thumbnail images (32 x 25 pixelsand smaller).
The luminances at resolution p are weighted by afactor f(p). The
distance metric on the output vector is the standard L' (Manhat-
tan) distance. As aresult, the distance between output vectors cor-
respondingto imagesq and r is
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where Y,/ («, y) is the luminance of the pixel at location (z, y) in
image q at resolution p.

1Since we start with a low-resolution thumbnail, the filtered images of
even lower resolution called for in the expression will be truly tiny. Nev-
ertheless, they do contain useful information: two barely nonoverlapping
narrow-beamspotlightswill generateahigh (and somewhat misleading) dif-
ference score at the highest resolution, but smaller, more appropriate differ-

2.2 Dispersion

The dispersion phase selects an appropriate subset of input vectors
from a random sample over the input space. Specifically, T' lights
are generated at each of H positions distributed uniformly over the
light hook surfaces. This procedureyieldsaset L of H x T input
vectors. Typical valuesare H = 500 and T' = 8, in which case
|L] = 4000.2 For each input vector in T, thumbnail images are
generated, and the corresponding output vector is determined as de-
scribed above. The dispersion algorithm outlined in Figure 1 then
findsaset I C L with good spread among output vectors. Thefirst

Input:
L, aset of lights and corresponding thumbnail images.

n < |L|, the size of the selected subset.
¢, an average-luminance cutoff factor.

Output:
I C L, asetof n dispersed lights and their images.

Procedure:
SELECTION.DISPERSE(L, n, ¢) {
L + L\ find_dims(c, L);
I« 0;
for i+ 1tondo{
p-score « —oo;
foreach ¢ € L do{
g-score « oo;
foreachr € I do
if image_diff(g, r) < g-scorethen
g-score « image_diff(q, r);
if g_score > p_scorethen {
p-score < g-Score;

pP—q
}
I« I1u{p}
L« L\{p}
}
}
Notes:

\ denotes set difference.

find_dims(c, L) returns those lights in L with average lumi-
nancelessthan c.

image_diff(q, r) returns the value computed by Equation 1.

Figure 1: A selection-based dispersion heuristic.

step isthe elimination of lightsthat dimly illuminate the visible part
of the scene, becausethey are obscured or point away from the scene
geometry; these lights are unlikely to be of interest to the user and
can confound the rest of the dispersion process. Thumbnail images
whoseaverageluminanceislessthan a cutoff factor ¢ areeliminated
from the set .. (Typical useful valuesof ¢ are in the range 1%-5%
of the maximum luminance value.) The subset I is assembled by
repeatedly adding to [ the light in . whose output vector is most
different from its closest match in the nascent /. The size of I is

encescoresat |ower resolutionsbecausethe beamswill overlapin thelower-
resolution images. The effect of the weighting function f(p) is subtle, but
we havefoundit preferableto weight higher-resolutionimagesslightly more
than lower-resolution ones.

2\We picked these numbersto allow overnight batch processing of the en-
tire DG process for one scene on a single MIPS R10000 processor.
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Figure 2: User-interface map.

determined by the interface, as described below; || = 584 for the
exampleswe discussin the paper.

2.3 Arrangement

We would like the set of lights I to be large, so that the user will
have many complementary lights from which to choose. However,
the greater the size of I, the more difficult it will be for the user
to browse the lights effectively. We accommodate these contradic-
tory requirements by arranging the set 7 in a fully balanced hier-
archy in which lights that produce similar illumination effects are
groupedtogether. Weaccomplishthisgoal of thearrangement phase
by graph partitioning. A complete graphisformed in which the ver-
ticescorrespondto thelightsin 7, and edge costsare given by thein-
verseof the distancemetric usedin the dispersion phase. Anoptimal
w-way partition of this graph would comprisew digjoint vertex sub-
setsof equal cardinality such that the cost of the cut set, the total cost
of al edgesthat connect verticesin different subsets, is minimized.
Optimal graph partitioning is NP-hard[4], but many good heuristics
have been developed for this problem [1]. Our partitioning codeis
based on an algorithm and software developed by Karypis and Ku-
mar [9]. Oncetheinitial w-way partition is formed, representative
lights for each partition are selected, and installed in the hierarchy.
The partitioned subsets, minustheir representative vertices, arethen
processed recursively until a hierarchy with branching factor « and
height £ is completed.

Thevaluesfor w and k are dictated by the user interface, whose
structure is depicted in Figure 2, and actual examples of which are
shownin Figures9-11. For eachlight inthefinal set I, medium-size
(128 x 100 pixels) and full-size (512 x 400 pixels) imagesare gen-
erated for use in the interface. The user is presented with a row of
eightimagesthat serveasthefirst level of thelight hierarchy. Click-
ing on one of theseimages causesits eight children in the hierarchy
to be presented in the next row of images. The third and final level
inthe hierarchy is accessedby clicking on animagefrom the second
row. Thusw = 8 and h = 3. In turn, these parameters determine
the cardinality of 7: |I| = Ejl:l w’ = 584. This particular inter-
face provides additional application-specific functionality that ex-
ploits the additive nature of light [6]. Images can be dragged to the
palette, where light intensity and temperature can be varied interac-
tively. Multiple images are composited to form a full-size imagein
the lower left.

2.4 Results

The DG in Figure 9 contains a scene inspired by an example from
[8]. Thefloor, ceiling, and al four walls (only the rear oneis visi-
ble) were designated light-hook surfaces. The surfaces comprising
the figures were designated light-target surfaces, as was the back
wall. The 584 lights in the gallery were selected from 5,000 ran-
domly generated lights in the dispersion phase. The cost of com-
puting this and the other light-selection-and-placement DGs shown
here was dominated by the cost of raytracing the 584 full-size im-
ages used in the display, which took approximately five hours on a
MIPS R10000 processor.

Figure 10 containsascenewith richer geometry. The ceiling, and
the area around the base of the statue were designated light-hook
surfaces. The surfaces of the two heads, the doors, the tree, and
the statue were designated light-target surfaces. The gallery lights
were selected from 3,000 randomly generated lights in the disper-
sion phase.

Finally, Figure 11 shows a DG for synthetic lighting of a pho-
tograph (inset at lower right). A point- and line-based 3D model
is extracted from a triplet of sceneimages, each taken from a dif-
ferent viewpoint. This reconstruction process is completely auto-
matic, as described in [2]. Points and lines are then aggregated
semi-automatically into planes. An illumination of the final recov-
ered model is used to modulate intensity in one of the original pho-
tographs.

3 Opacity and Color Transfer Functions
for Volume Rendering

Choosing the opacity and color transfer functions for volume ren-
dering is another tedious and difficult manual task amenabletoaDG
approach.® We developed DG interfacesfor two datasets: the simu-
lated electron density of aprotein, and aCT scan of a human pelvis.

3.1 Input and Output Vectors

The protein data set contains values in the interval [0, 255]. The
opacity transfer function over this domain is parameterized by a
polylinewith eight control points, for atotal of 16 values. Thepoly-
lineislow-passfiltered beforeit is used. Thecolor transfer function
is parameterized by five values that segment the data into six sub-
ranges, which are arbitrarily assigned the colorsred, yellow, green,
cyan, blue, and magenta. Thus color is being used only to iden-
tify subranges of the data, and not to convey any quantitative rela-
tionsamong thedata. Figure 3illustrates asample opacity and color
transfer function. The complete input vector comprises 23 parame-
ters.

For the scene-lighting DG, the output vector contains approxi-
mately 850 weighted pixel luminances. This kind of resolution is
necessary becauselights can causecompletely local illumination ef-
fectsin a synthetically rendered image, effects that should be rep-
resentable in the output vector. In comparison, changesto transfer
functions will generally affect many pixels throughout a volume-
rendered image. We can take advantage of this homogeneity by in-
cluding only a handful of pixelsin the output vector. Currently we
use eight pixels, selected manually for each data set. Representing
all of their YUV valuesrequires 24 valuesin the output vector, and
standard Euclidean distanceis used asthe output-spacemetric. Dis-
persion on the basis of eight pixels from different parts of theimage
producesexcellent dispersion of completeimagesat amuch reduced
computational cost.

3The application of both interactive evolution and inverse design to this
problem s the subject of [7].
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Figure 3: Pop-up display depicting transfer functions.

3.2 Dispersion

The dispersion heuristic in Figure 1 works by distilling a set of ran-
domly generated input vectors down to awell-dispersed subset. Al-
though simple, this method hasthe drawback of not utilizing what is
learned via random sampling about the mapping from input to out-
put vectors. In contrast, the dispersion heuristic in Figure 4 uses an
evolutionary strategy that adaptsits sampling over time in response
to what it implicitly learns, and consequently performs much bet-
ter. It starts with an initial set of random input vectors. These vec-
tors are then perturbed randomly. Perturbed vectors are substituted
for existing vectorsin the set if the substitutionimprovesdispersion.
Thekey notion of dispersionused isnearest-neighbor distancein the
space of output vectors.

3.3 Arrangement

The arrangement method based on graph partitioning that is pre-
sented in §2.3 results in asimple and easy-to-use interface. Unfor-
tunately, sometimes the partition contains anomalies, e.g., dissimi-
lar lights placed in the same subset of the partition. Thisproblemis
dueto limitations of the partitioning method (no heuristic partition-
ing strategy guarantees an optimal partition), and to the structure of
the set of output vectors, which may not map well to any regular hi-
erarchical partition.

For the volume-rendering application, we used an aternative ar-
rangement method that eschews a partition-based or hierarchical
framework and instead illustrates the structure of the set of output
vectors graphically in a 2D layout. An interface for this arrange-
ment method is shown in Figure 5. A thumbnail, which in this case
is a small, low-resolution volume-rendered image, is generated for
each final output vector. The thumbnails are arranged in the cen-
ter display panel, in a manner that correlates the distance between
thumbnailswith the distance between the associated output vectors.
The thumbnail display panel can be panned and zoomed. Selecting
athumbnail brings up afull-size image, which can then be moved to
the surrounding image gallery. Mousing on animage in the gallery
highlights its associated thumbnail, and vice versa.

Thumbnail layout is accomplished using a multidimensional
scaling (MDS) [3] method dueto Torgerson[24].* Givenamatrix of
distances between points, MDS procedures compute an embedding

4The use of more sophisticated MDS techniquesfor arranging a database
of imagesis being investigated by Rubner et al. [18].

Input:
A random set of input vectors, 7, and their corresponding out-
put vectors, O. |I| = |O| = n.

A tria count, ¢.

Output:
Modified sets of input and output vectors, 7 and O.

Procedure:
EVOLUTION_DISPERSE(/, O, t) {
fori+ 1totdo{
J « rand.int(1, n);
u + perturb({[4],1);
map(u, v);
k <« worstindex(O);
if is_better (v, O[k], O) then {

ITk] + u;
Olk] « v;
ilseif is_better(v, O[], O) then {
I[j] < u;
O[j] « v;
}
}
Notes:

rand-int(1, n) returns arandom integer in the range (1, n].

perturb(1[;],¢) returns a copy of I[j] in which al the ele-
ments have been perturbed. The magnitude of the perturba-
tionsisinversely proportional tos.

map(«, v) Maps input vector « to output vector v using an
application-specific mapping process.

worst_index(O) returns the index of the output vector in O
with minimum nearest-neighbor distance. Tiesare brokenus-
ing the average distanceto all other vectorsin O.

is_better(v, O[k], O) returnstrueif the nearest neighbor to v
in O \ {O[k]} is further away than the nearest neighbor to
O[k]in O. Tiesare broken using averagedistanceto all other
vectorsin the relevant set.

Figure 4: An evolutionary dispersion heuristic.

of the pointsin alow-dimensional Euclidean space (2D in our case)
such that the interpoint distances in the embedding closely match
those in the given matrix. Torgerson’s “classical scaling” method,
although simpler and less general than iterative methods, is fast and
robust. When the interpoint distances come from an embedding
of the points in a high-dimensional Euclidean space (which is true
for the applications we discuss here, although it need not betrue in
general), classical scaling is equivalent to an efficient techniquefor
computing a principal-component analysis of the points[5, 13].

The layouts computed by classical scaling are not without
anomalies — as we are using it, this MDS method is a projection
from a high-dimensional space onto a 2D space, which cannot be
done without loss of information — but they do reflect the under-
lying structure of the output vectorswell enough to allow effective
browsing. One important practical detail: since full-size versions
of al the images returned by the dispersion procedure must be ren-
dered anyway, it is convenient and better to compute distancesfrom
these full-size imagesin the arrangement phase, instead of from the
eight pixels used in the dispersion phase.
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3.4 Results

Figure 12 illustrates the DG for the volume rendering of the pro-
tein data set. The dispersion procedure returned 256 dispersed in-
put and output vectors. A selection of images is shown in the sur-
rounding image galleries. The linesthat connect images with their
thumbnails give some indication of how images congregate in the
thumbnail display. (During interactive use the association between
thumbnails and imagesis done preferably by dynamic highlighting,
as described above.) Figure 3 shows the result of clicking on one
of the imagesin the image gallery: the corresponding opacity and
color transfer functions are depicted in a pop-up window, allowing
the user to see how image and datarelate.

The performance of the dispersion heuristic from this experi-
ment is documented in Figure 6; this datais representative of all the
DG experimentsthat usethe evolutionary dispersion heuristic. The
curves show how two values, the minimum and average nearest-
neighbor distancesin the set of output vectors, increase over time.
Improvement is rapid at first: the minimum and average nearest-
neighborhood distancesin the initial random set are 184 and 7,789,
respectively. However, the rate of improvement drops quickly. Al-
though we used a trial count of ¢ = 2,000, 000 (see Figure 4), itis
clear that relatively little improvement occurred after ¢ = 500, 000.
To reach this point requires 8 x 500, 000 = 4, 000, 000 raycast op-
erations and takes less than 40 minutes on a single MIPS R10000
processor. This duration is roughly one-sixth of that needed to ren-
der the 256 full-size images (300 x 300 pixels) for the DG.

A second volume-rendering experiment was performed using a
computed tomography (CT) data set for a human pelvis. These
datavaluesare presegmentedinto four disjoint subranges, one each
for air, fat, muscle, and bone. The input vector specifies the y-
coordinates of 12 opacity control points; the z-coordinates are held
fixed. The input vector does not specify a color transfer function,
sincestandard colorsare usedfor the different tissuetypes. Theout-
put vector, distance metric, dispersion, and arrangement were iden-
tical to the protein-rendering experiment. Figure 13 illustrates the
DG for the volume rendering of the pelvis data set.

4 Animation Applications

Motion control in animation involves extensive parameter tuning
because the mapping from input parameters to graphical output is
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Figure 6: Nearest-neighbor distancesover time.

Figure 7: Articulated linkages.

nonintuitive, unpredictable, and costly to compute.® For these rea-
sons, motion control is very amenable to a DG approach. Build-
ing a DG interface for animation is similar to building one for still
images (we reuse the dispersion and arrangement code from §3 vir-
tually without change); the major differences are in computing the
output-vector components. We now discuss three DG systems for
animation tasks, focusing on this latter issue.

4.1 2D Double Pendulum

The 2D double pendulum is asimple dynamic system with rich be-
havior that makesit an ideal test casefor parameter-setting method-
ologies.® A double pendulum consistsof an attachment point /2, two
bobsof massesm; and m-, and two masslessrods of lengthsr; and
r2, connected as shown in Figure 7. Our pendulum also includes
motors at the joints at & and m; that can apply sinusoidal time-
varyingtorques. Theinput vector comprisesthe rod lengths, the bob
masses, the initial angular positions and velocities of the rods, and
the amplitude, frequency, and phase of both sinusoidal torques, for
atotal of 14 parameters.

Choosing a suitable output vector proved to be the most difficult
part of the DG process for the double pendulum, as well as for the
other motion-control applications; several rounds of experimenta-
tion were needed (see §5 for more details). The output vector must

5Both interactive evolution [26] and inverse design [12, 14, 22, 25, 27]
have been applied previously to motion control.

6Evenwithout theapplication of external torquesat itsjoints, the 2D dou-
ble pendulum exhibits chaotic behavior [20].
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capture the behavior of the system over time. For the double pen-
dulum, the output vector has 12 parameters:. the differencesin rod
lengths and bob masses, the average Cartesian coordinates of each
bob, and logarithms of the average angular velocity, the number of
velocity reversals, and the number of revolutions for each rod. Eu-
clidean distanceis used as the distance metric on this output space.

The mapping from input vector to output vector is accomplished
by dynamically simulating 20 seconds of the pendulum’s motion,
and using the algorithm in Figure 4 for dispersion. Arrangement is
accomplished using the MDS layout method of §3.3. Thedisplayed
thumbnailsare staticimages of thefinal state of the pendulum, along
with atrail of the lower bob over the final few seconds. We found
that these images give enough clues about the full animation to en-
able effective browsing. Thumbnails can be dragged into gallery
slots, al of which can be animated simultaneously by clicking on
any occupied slot.

Figure 14 showsthe DG for the double pendulum. Asbefore, the
overlaid lines show where animations in the gallery are located in
the thumbnail display. The plateau in nearest-neighbor distance is
reached after 170, 000 dispersion iterations, which take 6.5 hours
on asingle MIPS R10000 processor.

4.2 3D Hopper Dog

The previous DG is useful in finding and understanding the full
range of motions possible for the pendulum under a given control
regime. However, complete generality is not always a useful goal:
the animator may have some preconceived idea of a motion that
needs subtle refinement to add nuance and detail. The 3D hopper
dog, shown in Figure 7, is an articulated linkage with rigid links
connected by rotary joints. It has ahead, ears, and tail, and moves
by hopping on its single leg. It has 24 degrees of freedom (DOF).
The hopper dog is actuated by a control system that tries to main-
tain a desired forward velocity and hopping height, as well as de-
sired positions for joints in some of the appendages. The equations
of motion for the system are generated using a commercially avail-
able package[17]; dynamic simulation isusedto producethe anima-
tions.

We started with a basic hopping motion, and then used a DG ap-
proach to explore seveninput quantitiesin order to achieve stylistic,
physically attainable gaits. The seven quantities are: the forward
velocity, the hopping height, and the positions of 2-DOF ear joints, a
2-DOF tail joint, and a 1-DOF neck joint. For each of theseseven, a
time-varying sinusoid specifiesthe desired trgjectory, with the min-
imum value, maximum value, and frequency specified in the input
vector, which therefore contains 21 values.

In this particular case, the elements of the output vector corre-
spond closely to those of the input vector. The 14-element output
vector containsthe averagesand variances of the same seven quan-
tities, and is obtained by dynamically simulating 30 seconds of the
hopper dog’'s motion. (Output vectors from simulations in which
the hopper dog falls are discarded automatically.) Asfor the previ-
oustwo applications, the output-space distance metric is Euclidean,
and the arrangement method and interface from §3.3 are used. The
hopper-dog DG isillustrated in the video proceedings.

4.3 Particle Systems

Particle systems are useful for modeling a variety of phenomena
such as fire, clouds, water, and explosions[16]. A useful particle-
system editor might have 40 or more parameters that the animator
can set, so achieving desired effects can be tedious. Asin the previ-
ous subsection, we use aDG interface to refine an animator’s rough
approximation to a desired animation.

The subject for our experiment is a hypothetical beam weapon
for NASA space shuttles. A first draft was produced by hand using

Figure 8: A still from a particle-system animation.

aregular particle-system editor; astill from midway through the an-
imationisshownin Figure8. Theinput vector containsthe subset of
particle-system controls that the animator wishes to have tweaked.
In thisexamplethe controls govern: the mean and variance of parti-
clevelocities, particle acceleration, rate of particle production, par-
ticlelifetime, resilience andfriction coefficient of collision surfaces,
and perturbation vectors for surface normals. Among the parame-
tersthat are held fixed are the origin, averagedirection, and color of
the beam.

For efficiency reasons, DG output vectors are based on subsam-
pled versions of the final graphic where possible, thereby reducing
computational costs and allowing more of the spaceto be explored.
For example, staticimages can berendered at low resolution (§2 and
§3). The subsampling strategy for the particle animation isto simu-
late only every 500th particle generated during the dispersion phase,
and to examine the state of the particle system at just two distinct
pointsintime: once midway through the simulation, and once at the
end. The output vector comprises measures of the number of parti-
cles, their average distancefrom the origin and theindividual varia-
tioninthisdistance, their spread from theaveragebeam, the average
velocity of the entire system, and the individual variation from this
average (we take logs of all of these quantities except for the beam
spread). These six measures are included for each of the two distin-
guishedtimes, resulting in 12 output parameters. Euclidean distance
is the metric on the output space.

Figure 15 shows the DG of variations on the animator’s origi-
nal sketch from Figure 8. The dispersion and arrangement meth-
ods from §3 are used to generate the DG. Each thumbnail is the
midway still from the corresponding animation. (The user can op-
tionally select thumbnails from different stages in the animation.)
As with the double-pendulum DG, thumbnails can be dragged to
galery slots and animated therein. Also as before, lines connect
animation stills with their associated thumbnails. The dispersion
heuristic ran for ¢ = 100, 000 iterations, at which point it appeared
to reach a plateau. This number of trials took approximately six
hours on a MIPS R10000 processor. Generating the 256 animations
in the DG with their full complement of particlestook a little under
five hours on the same processor.

5 Discussion

Table 1 summarizesthe DGs described in this paper, in terms of
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L Light selection & N i
Application placement Volume rendering Double pendulum Particle system Hopper dog
; : Pendulum . -
Light type, Control pointsfor . : L Animator-specified : ]
Input Vector location, and opacity/color %g:]g?ﬁ;nn:’r'nn;g subset of particle Desgier?utsrés\{ggtow
direction transfer functions torqués control parameters

Output Vector L uminances of YUV valuesfor Trajectory statistics
P thumbnail pixels eight pixels (mainly logs of time averages and variances)
Distance Metric Manhattan Euclidean
: : ) 2D dynamic 3D particle 3D dynamic
Mapping Raytracing Volume rendering Si mlill ation S mEIation Si mlill ation
Dispersion ;ﬁggtr'nc’g;%% Evolution from Evolution from random
over neighborhood full random sample sample over neighborhood

Arrangement Graph partitioning Multidimensional scaling

Table 1: Summary of Design Gallery experiments.

the six basic elements of aDG system. Some of the variation in this
tableis application specific, while the remainder stemsfrom our in-
vestigation of alternative dispersion and arrangement methods. All
of the galleries described in the paper produce a useful variety of
output graphics.

Using aDG for aparticular instance of adesign problemisfairly
straightforward for the end user. Asidefrom browsingthefinal DG,
the user’sonly other task may beto loosely focusthedispersion pro-
cess by, for example, selecting suitable light-hook and light-target
surfaces (§2), or by specifying arelevant subset of particle-control
parameters (§4.3). However, creating a DG system for an entire
class of design problemsis more difficult. The DG-system creator
isresponsiblefor choosing the structure of the input and output vec-
tors, and the distance metric on the output space. Thus, the creator
needsa better understanding of the design problemthantheend user.
Of the creator’s tasks, the simplest is choosing the distance metric:
very standard metrics sufficed for all applicationswe tried. Choos-
ing the input vector is also straightforward. Even when there are
many possiblewaysto parameterizetheinput, our experienceisthat
choosing an acceptable parameterization is not hard.

The most difficult task of the DG-system creator is devising an
output vector. Thefirsttwo DGsin Table 1 work onstaticimages. In
these examples, the perceptual similarity betweenimagescorrelates
well with subsampled image or pixel differences, hence the output
vectors comprise subsampledimage and pixel values. An added ad-
vantageis that the ranges of all componentsof the output vector are
bounded and known. Finding measuresthat capture the perceptual
qualities of acomplete animationis harder. The DG systemsfor an-
imation tasks required several experimentsto get a suitable output
vector, although the process became easier for each successivesys-
tem. Among the lessons learned in developing output vectors for
motion-control problems, the two most important preceptsare, with
hindsight, fairly obvious:

e Takethelog of quantitiesthat have alarge dynamicrange. For
many such quantities, e.g., velocity, human ability to resolve
changesin magnitude diminishes as the magnitude increases.
To uniformly sample the perceptual space, one must therefore
samplethe lower end of the dynamic range more thoroughly.

e Therelative weights of the output-vector parameters matter.
In general, the output-vector parameters should be scaled so

that they each have approximately the same dynamic range,
otherwise only the parameters with the largest ranges will be
dispersed effectively.

What inevitably happened with a poorly chosen output vector was
that the dispersion algorithm found a malicious way to get unfortu-
nate and unexpected spread in one of the vector coordinates, usually
through a degenerate set of input parameters, e.g., pendulumswith
extremely short linksand very high rpm’s, and particle systemswith
only afew particles, but very high variancein velocity.

In our experiments, we investigated two dispersion methods and
two arrangement methods. The dispersion method of Figure 4 is
more complex, but performs better. However, an advantage of the
simpler method in Figure 1 is that it may be easier to paralelize.
Two arrangement methods were also tried, one based on graph par-
titioning and the other on MDS. Both allowed the user to navi-
gate through the output graphicseffectively, and both had their fans
among our group of informal testers. Layout and organizational
anomalieswere occasionally evident in both interfaces, but they did
not hinder the user’s ability to peruse the output graphics.

6 Conclusion

Design Gallery interfaces are a useful tool for many applicationsin
computer graphicsthat require tuning parametersto achieve desired
effects. The basic DG strategy is to extract from the set of all possi-
ble graphicsasubset with optimal coverage. A variety of dispersion
and arrangement methods can be used to construct galleries. The
construction phaseistypically computationally intensiveand occurs
off-line, for example, during an overnight run. After the galery is
built, the user is ableto quickly and easily browse through the space
of output graphics.

Inverse design is one technique for setting parameters, but it is
only feasible when the user can articulate or quantify what is de-
sired. DGs replace this requirement with the much weaker one of
quantifying similarity between graphics. Unlike interactive evolu-
tion, DGs are feasible even when the graphics-generating process
has high computational cost. Finally, DGs are useful evenwhen the
user has absolutely noideawhat is desired, but wants to know what
the possibilities are. Thisis often thefirst stepin the creative design
process.
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Figure 9: A DG for light selection and placement.

LIzt Imagea Exll

Figure 10: Another DG for light selection and placement.
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Figure 12: A DG with different opacity and color transfer functions.
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Figure 14: A DG for an actuated 2D double pendulum.
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Figure 15: A DG for aparticle system.
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Salient Iso-Surface DetectionThrough Model-Independent
Statistical Signatures

Shivaraj Tenginaki, Jinho Lee, Raghu Machiraju
Computer and Information Science, The Ohio State University

Volume graphics has not been accepted for widespread use. One of the inhibiting reasons is the lack of general methods
for data-analysis and simple interfaces for data exploration. An error-and-trial iterative procedure is often used to select a
desirable transfer function or mine the dataset for salient iso-values. Thus, simple, robust and general procedures are
needed to detect salient iso-values and guide transfer-function choice. New semi-automatic methods that are also data-
centric have shown much promise [1][8]. However, general and robust methods are still needed for data-exploration and
analysis. In this paper, we propose general model-independent statistical methods based on central moments of data.
Using these techniques we show how salient iso-surfaces at material boundaries can be determined. We provide examples
from the medical and computational domain to demonstrate the effectiveness of our methods.

1. INTRODUCTION

Direct volume rendering is a key technology for the visualization of large 3D datasets from scientific or medical applica-
tions. Consider the example of visualizing a 3D Computed Tomography (CT) dataset of the Visible Man from the
National Library of Medicine. It is known for instance that the bowels can be extracted when the intensity value is set at
700. The muscle can be displayed when intensity range includes the value 1010. For many datasets, one is often ignorant
of the salient iso-values; rather they have to be determined. In other words one needs to divide the voxel intensity space
into segments that delineate homogenous materials, if at all possible. This is akin to feature mining in sample space. Sim-
ilarly, one can employ transfer functions for opacity and color that best produce material interfaces and boundaries.
Salient iso-value detection and transfer function are related [8] and in this paper we will limit our discussion to the former.

Pat Hanrahan called data exploration (including transfer function design) one of the top ten problems in volume visualiza-
tion in his inspiring keynote address at the Symposium on Volume Visualization '92. Recent research has focused on auto-
matic and semi-automatic techniques for creating transfer functions and data exploration [1][2][4][5][8][10]. In the panel
session on transfer function design at the Visualization’00 conference [13]three classes of techniques were identified. One
of the classes included techniques that required an error-and-trial approach. The other classes contained techniques that
are either image- or data-centric. Of all the techniques, it was felt that data-centric techniques held most promise. These
techniques required assumptions to be made about the data [8] or that computable signature functions be obtained [1].
Image-centric methods [10] on the other hand are based on searching a large space and offer little user control. The effec-
tiveness of error-and-trial methods rests very heavily on the expertise and intuition of the user. In any case, the need for
new work that offered general solutions was felt. These methods should be at least semi-automatic giving assistance to the
practitioner rather than completely automatic. Methods that eliminate the human from the exploration process are danger-
ous and should be avoided since they can generate images that may fulfill the expectations of the observer, but are not nec-
essarily true to the nature of the data.

In this paper, we propose to employ data-signatures to explore data. These signatures are obtained fronplocdéired

central moments. The histogram is an example of the first-order central moment. There exist strong relationships between
the various central moments and can be used to locate salient iso-values. The relationships between these signatures can
be exploited in a manner similar to what was done between first and second derivatives in [8]. An attractive trait is that
these methods are general and robust to noise. No assumption about the boundary’s thickness and even it’s suitability be
made for a given dataset. Also, the signatures based on moments are all related in a more comprehensible manner than
those used in [1] and are relatively much easier to compute. It is also our belief that such a method can lead to discrimina-
tion in noisy datasets. Finally, our proposed method is not completely automatic; it provides cues to the presence of mate-
rial interfaces.

Section 2 describes previous work in salient contour extraction and transfer function design. In Section 3 we introduce
various mathematical concepts and, derive and analyze our fundamental equation, the general moment equation. Section 4
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describes the use of local higher order moments to detect boundaries in spatial domain and ample space. In Section 5
we present results that validate our analysis, while Section 6 offers a summary and describes future work.

2. PREVIOUS WORK

In general, the visualization process should be guided by information about the goal of the visualization, and specific
information about the particular dataset in question. There exist techniques that employ a model of the desired fea-
ture. e.g, the boundary between homogeneous regions. This approach was taken by Kindlmann and Durkin [8]. An
initial step in this process is the definition of a boundary. The boundary is essentially a Gaussian smoothed step func-
tion. The spatial component of the boundary is then removed by creating a 3D histogram of the data value and its first
and second derivative. This histogram is very informative and the presence of sharp boundaries can be easily dis-
cerned from the projected plots bf vB. ahd ¥5. . The number of zero-crossings in the second plot (or maximas
in the first plot) essentially determines the number of interfaces. Based on analysis of this histogram, a distance func-
tion is created which tries to bridge the unintuitive space of data values to a synthetic, but intuitive, spatial domain: a
signed distance to the middle of the nearest boundary. The calculation of the distance function is largely automated.
Defining opacity as a function of position within a boundary becomes a more intuitive task than defining opacity as a
function of data value. The success of this method is limited when the boundary model is not Gaussian and far from
being ideal. Other notable work has been conducted by Sato et al [14]. They define a gradient based measure for cer-
tain shapes.

What information about the dataset can one exploit? Bajaj and his associates devised the contour spectrum which can
guide the selection of isovalues for contouring [1]. A 1D plot of geometric and topological characteristics or signa-
tures (volume and gradient integral) are plotted against the function value. A viable selection of salient iso-values is
thus facilitated. The contour spectrum technique does not employ any particular model for the boundary interface.
Rather, they exploit geometrical and/or topological properties of the volume.

Statistical techniques are gaining popularity in data-mining applications. Only a few reported statistics-based meth-
ods exist for volume data-analysis and exploration. In [3][9] statistical inference methods (e.g. Bayesian) are
employed to determine the material density of each voxel. Multiscale statistical techniques have also been proposed
by Yoo [16]. Histograms and local higher order moments have been used in computer vision and image analysis
research to describe shapes of objects. The histogram certainly has some potential as described in [8]. However, not
much has been explored with histograms as a statistical entity to facilitate volumetric data-analysis.

Instead of tweaking input parameters another approach such as inverse design can be used for data-analysis. Such
methods have been again reported in data-mining literature. Inverse design is a general paradigm for computer-aided
design of graphics, where the user supplies an objective function over the output values. This function will generate a
high score (say) for desirable output values, and a low score for other output values. The computer then searches for a
set of input parameters that will maximize the objective-function score. He et al. implemented a genetic algorithm to
seek transfer functions with limited success [5]. A primary reason for failure is the difficulty of specifying a suitable
objective function. A more viable approach entails a search that creates an ensemble of unique images which are then
displayed in such a fashion that the differences are easily discerned. Embodying this approach is the Design Galleries
approach that was used to explore parameter spaces for a host of graphics and animation applications [10]. Generated
images are used in an evolutionary search algorithm in the parameter space. On termination, the chosen images are
generated by an unique set of transfer functions. The problem with inverse design methods are that they are automatic
in nature and do not allow for much control to be exercised on the process.

3. STATISTICAL SIGNATURES OF DATA

In this section we first define the concepts related to higher order moments. We then introduce our definition of a
boundary, and proceed to define local higher order moments. This is followed by a derivation of the general moment
equation, and its analysis. We use results of this section to present techniques for detecting boundaries in Section 4.

3.1 Higher Order Moments (HOMS)

Higher order moments (HOMgre model-independent statistical estimators of central tendency of a data distribu-
tion, i.e. they measure the tendency of a distribution to cluster around some particular value [15]. Usually, the value
around which clustering of a distribution, X, Xg,...., % is measured is th@ean (M)of the distribution, given by:
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Thehigher order momertf the same distribution is defined as:

N
m, = % z (Xj—M)k (2)
j=1

where,my is thehigher order momenof orderk. We can see that are infinitely many HOMs. The second moment
evaluates local variance, while the third and fourth moments evaluate the local skewness and kurtosis. For a
symmetric set of samples, the skewness, , evaluates close to zero, while, for positively skewed samples, the
histogram of the sample will have a heavy tail on the right. A sample set obtained fradotheal distribution will
have kurtosism, — 3, close to zero. When a sample is more dense than that derived from a normal distribution, then
the sample’s likely distribution is ascribed a negative kurtosis value. Otherwise it is positive. Thus, one can
completely characterize the shape of any function if infinite number of central moments, are known. HOMs are used
in nonlinear signal processing for signal and image estimation [11].

3.2 Boundary Model and Local Higher Order Moments

The methods presented in this paper for following model of boundary (though, all the discussion beloR?jsitfor
generalizes easily to higher dimensions). Consider a rd@?cm‘ sizew X win a dataset, centered at a poi(ix,y)

see Figure 1. At boundary, the sample value of the points in the dataset chang€ tm@),. Here we assume that

RZis small enough to contain just one boundary. As a consequence of this assumption, in the presence of a boundary,
there exist exactly two homogenous sub-region€ptnd C, in R2.It follows that absence of a boundary implies

single homogenous region R’. Similar mixture model was employed in [9]. However, we employ much simpler
analysis.

»
o , - (i
(x , ¥l
P
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Figure 1. The Boundary Model

Since, the size dR? isw xw, it follows that there are? “particles” or sample points iR. We call the particles with
sample valu€C, asboundary practicessince they are introduced by the presence of the boundary. Furtherpket
the number of such particleslso, letn be the number of “particles” or sample points with sample v&@lye R?, it
follows thatn+m = w” . We make following observationsnif = 0 or n = 0, which means that there is no boundary
in R%, and we classify such regions as@n-boundary regionelse ifm > 0 andn>0 then there exists a boundary in
R?, and we classify such regions ascandary region.

Further, ifn is less thamn, then the poinP lies to the “left” of the boundary iR, and we classify the region aget-
boundary regionlf nis greater tham, then pointP lies to the “right” of the boundary, and we classify the region as
aright-boundary regionlf n equal tom, then the poin® lies “on” the boundary ifR2, and we classify the region as
anon-boundary region

For purpose of further analysis, we introduce the concepoad! higher order moments (LHOMs)HOMs are
HOMs calculated over the distribution of the sample values in a regfaf a given dataset (compared to HOMs
which are defined over the distribution of the sample values in a dataset). Associated is also the céocaiphetin
which is themeanof sample values in a regid®? of a given dataset. The equationlotal mean (LM)could be
derived from Equation 1 as:

160



LM = _1222)( ,Ox € R2 3)
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The LHOM of a regiorR? is thus defined as:
m, = %%(X‘LM)I( Ox & R 4)
V'R

where,my is the LHOM of orderk. It should be noted any region in a distribution has infinitely many LHOMs. We
now show the derivation of the general moment equation based on the concepts introduced above.

3.3 Derivation of the General Moment Equation

In this section we proceed to simplify Equation 4, based on our model of boundary. Using the model of boundary
defined previously, the expression for local méan, reduces to:

(nC1+ mC2)
M= —m ©
Further, the expression LHOM kfth order reduces to:
. 1 En{c _(nC1+mC2)Jk+m{C _(nC1+mC2)Jk%
k (n+mp 1 (n+m) 2 (n+m) 0
1 O m(Cl—CZ) k n(CZ—Cl) kg
et e e el N ©)
(Y
2771 k k k
= —k+1(mn +(-1) nm))
(n+m)
LetA = C2—Cl, and substitutea + m = w2 , in the above equation. This yields the general moment equation:
Ak k k k
m, = k—+1(mn +(=1) nm) (7)
w
Equation 7 can be rewritten as:
k
_ A
m, = Wk+ 1f(m, n) 8)

where,f(m,n) is defined as thelistribution function It determines behavior of thieth order LHOM in boundary
regions. We now analyze Equation 7 for moments of various order and examine various LHOMSs for boundary
presence.

3.4 Analysis of the General Moment Equation

if A#zO thenR%is aboundaryregion (elseC; would be same a8, and/AA would be zero). From Equation 7,
it is clear that for any non-zerd  all even LHOMSs cannot be non-zero, beuadaryregion implies all non-zero
even LHOMs. Conversely, if any even LHOMs is nonzerdf thenA cannot be zero iR%. That is all non-zero
even LHOMs imply that the associated region lsoaundaryregion. The same argument holds for non-even LHOMs,
except that a non-even LHOM will be zero if the associated region snalboundaryregion. Sincenon-boundary
regions have zero LHOMSs, we confine our interefiiondaryregions.
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Second Order LHOM: The general moment equation for second order LHOM, reduces to:

A2
m, = —(mn) 9
(W )
It can be shown that this equation has one maxima=at=w?/2, i.e when the associated region is@mboundary

2
region. The value ofm, at the location of this maxima is% , which is independent of the size of the associated

region and the actual distribution in the region.
Third Order LHOM : The general moment equation for the third order LHOM reduces to:

3
mg = . zmn(n—m (20)
(w?)
2 15
It can be shown that this equation has one maximamat — 5 E’TL [D , and one m|n|maat B %H ﬁ
A3 A3
The value ofrz at the location of the minima isg-f3 , and its value at the location of the mininméij% . Also, this

equation is zero an=n=w4/2, i.e when the associated region is@mboundaryregion. Here again, it is to be noted
that the value ofng at the location of maxima and minima is independent of the size of the associated region and the

actual distribution in the region.
Fourth Order LHOM : The general moment equation for the fourth order moment reduces to:

4
A 4
m, = . Zmn(w’ —3mn) (12)
(w?)
2
It can be shown that this equation has two maximas. One maximarrs at > %L [D , and the second maxima is
4
at,m = El + —m. The value ofm, at the location of these maximas 'ﬁ . Also, this equation has one local

minima atm=n=w /2, i.e when the associated region isarboundaryregion. The value o, at the location of this
A4
minima is, 16" Here again, it is to be noted that the valuengfat the location of maximas, and at the location of
minima is independent of the size of the associated region and the actual distribution in the region.
Skew: is a non dimensional quantify, it characterizes the degree of asymmetry of a distribution around its mean. It is
defined as:
m
3
= — 12
S 3/2 (12)
(m,)

It can be further shown that the general moment equaticakémin a regiorR2 reduces to:

(n—m)

S =
Jnm

(13)
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Also, it can be shown that this equation is monotonically decreasingsleawis zero atm=n=w?2, i.e when the
associated region is amn-boundaryregion. It follows thatleft-boundaryregions have positivekew,and right-
boundaryregions have negativakew.

Kurtosis: is a non-dimensional quantity which measures the relative peakness or flatness of a distribution. It is
defined as:

2
my — 3m2
K=z —-—_2*% (14)
2
M
It can be shown that the general moment equatiockuidosisin a regiorR2 reduces to:
4
K=%_¢ (15)
mn

It can shown that this equation has a minimanan=w?/2, i.e when the associated region is@mboundaryregion.
The value okurtosisat the location of this minima is -2. It is important that for twe-boundaryregions the value of
kurtosisis a constant.

Figure 2, shows the plots of thiistribution functioncorresponding to the various LHOMSs. The plots confirm the
analysis presented above for the second, third, and fourth order LHOMSs, and akewimdkurtosis

Figure.2. The plot of thedistribution functionfor
various LHOM In the above plots one dimensional
window of size 3 is used. X-axis represents the
number ofedgeparticles in a region, while Y-axis
represents the value of associated LHOM.

4. BOUNDARY DETECTION USING HOM s

From the above analysis and plots in Figure 2, we know that if a region for which we are calculating LHObhis an
boundary regionthen all of the following hold: second order LHOM is locally maximum, third order LHOM is
locally zero, fourth order LHOM is locally minimum, skew has a zero crossingKamtbsishas a constant minima
of -2. Using any of these criteria it is easy to det@eboundaryregions in a given dataset.

Figure 3, shows the plots for the LHOMs for a step function, from these plots it is clear tham-th@undary regions,
occur at the location of boundaries in the original signal. Since, we can use LHOMs to a@lefectindaryregions,
we can indirectly obtain the spatial location of boundaries in a dataset. In the graph of fourth order LHOM we see just
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a single maxima, instead of a minima located between the two maximas

closeness of the maximas and the minima they appear merged when plotted.

. This is probably because due to the
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For detection of salient iso-values in a dataset we need a method for obtaining boundaries in sample space rather than
in spatial space. From the previous analysis we have observed the behavior of LHOMs in the spatial domain in the
neighborhood of boundary. If we obtain a scatter plot of a LH@¥he sample values in for all possible regions in a
dataset, we expect to see similar behavior as in the graph of the LHOM in the spatial domain. This follows from
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Figure 3: LHOM plots for a step function.

exactly same arguments offered by Kindlmann and Durkin in[8].Figure 4 illustrates this point.
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Figure 4: The relation betweem, vs.x, andm, vs. f(x).
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5. RESULTS

Figure 5, shows the scatter plots for LHOMs sample values for CT Tooth dataset. The widtbf each regiorR3 is

5. Values corresponding to all the possible regions, i.e. regions associated with all the sample values in the dataset are
considered. The shape of the scatter plots justifies the reasoning given in previous section for salient iso-surface
detection using local central moments. We see from the plots that there are three distinct boundaries. These are in
neighborhood of 200, 600, and 1100. The iso-surfaces corresponding to these boundaries are shown in Figure 6. Fig-
ure 7, showskewscatter plot for the CT Head dataset, here again our methodology predicts three distinct boundaries
in the neighborhood of 600, 900, and 3500. The iso-surfaces corresponding to these boundaries are shown in the same
figure. Itis clear that the first iso-value represents the skin, the second skull, and third teeth. Figure 8, shows the result
of our analysis for computational dataset of flow over a delta wing. Here again we see that boundaries are in the range
of 800, and 1000. Iso-surface associated with an iso-value in this range is also shown in the same figure. The shape of
the object, and the shape of the vortex and the shock in the flow are clearly visible.

6. SUMMARY AND FUTURE WORK

We presented a method to explore volume data for salient iso-values. We employ statistical signatures based on local-
ized central moments. We relate these localized moments to presence of boundaries. Later we show the effectiveness
of boundary and salient iso-value detection through examples. Future work includes MRI datasets which yield noisy
LHOM plots. Denoising techniques are needed for further use. Also we wish to exploit the relationship of moments

to boundaries to create simple yet tangible interfaces for volume exploration.
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Figure 5: LHOM scatter plots for the tooth dataset. The
width of each region is taken to tae Second order LHOM
(top left) Third order LHOM (top right), Fourth order
LHOM (center left), Skew (center right), and Kurtosis
(bottom left).

Figure 6: Iso-surfaces associated with the three boundaries predicted above in Figla®) 200, (center)600, and
(right) 1100

Figure 7: (far left) skewplot for the head dataset and iso-surfaces predicted by the(lgtt}:600, (center)900, and
(right) 3500. The width of each region3s

Figure 8: (left) skewplot for the delta wing dataset, afrijht) iso-surface for isovalue of 900. Region widtl3.is
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1 Overview

This chapter is a review of mechanisms and methods for partitioning a volume dataset into coherent regions or sub-
volumes that share similar characteristics. A full description of these techniques is beyond the scope of this chapter
and the reader is referred to the references cited for additional information. In addition a nuber of excellnet surveys
insegmentation exist in the literature [1, 2, 3, 4, 5, 6, 7].

Challenges:Segmentation is a difficult task due to: 1) data quality (noise and sampling artifacts), and 2) variability
in the shape of target structures. There exist general methods that can be applied to a variety of data, however methods
specialized to particular applications often achieve better perfoemance bytaking into consideration domain-specific
knowledge. Thus, selecting the most appropriate method for segmentation is a formitable task.

Discretevs Continous segmentations:Segmenation techniques partition discrere volume data in disjoint regions.
Subvoxel accuracy is particuarly important in the applications for which the structrute of interest is on the same order
of magnitute as the voxel resoltion. Continusous segmenation methods (e.g., deformable models) can provide subvoxel
accuarcy, however its dififuclt to validate this level of accuarcy in real data.

User Interaction: The level of user interaction required by different segmentation methods varies widely ranging
from manual delineation of the interesting struucture in various slices to selection of a seed point for region growing
or initial position for a deformabler model. Methods that depend on high levels of user interaction are both consuming
and valnurable to inter-operator variabilities.

Post-Processing:Due to the difficulty of the task, it is often the case that a post-processing is applied to remove
invalid object boundaries.

Validation: The performance of the segmentation methods is quantified by validation experiments [8]. Validation
can be done by: 1) comparing the results of the method with manually outlined segmentations [9, 10], 2) physcial
phantoms [11], or 3) computational phantoms [12]. Each of these validation methods presents its challenges. For
example, manual segmentations could be flawed, or physical phantoms that accurately depict the properties of the
target structure are difficult to be build, while computational phantoms may employ oversimplyfying assumptions in
simulating the data acuisistion process. As it was pointed out in a recent article by Duncan and Ayache [13], we are
beg ining to see the organization of databses with ground trouth in addition to the efforts to form standartised datasets
[12]. For example, the Internet Brain Segmentation Repository at harvard provides manual segmentations by experts
along with the magnetic resonance brain image data [14]

Applications: There are a number applications in which segmented volume data are currently being used. Among
them study of anatomical structures [15, 16], diagnosis [17], localization of pathology [4], quantification of tissue
volumes [18], treatment planning [19] , and computer-integrated surgery [20, 21].

The distinctions in terminology that we are using follow some historical divisions of computer vision research: we
divide the mechanisms presented here into structural and statistical segmentation approaches.

2 Structural Methods

By and large, the structural segmentation methods presented in this chapter will be modeling methods driven by
local volume image geometry. These techniques borrow heavily from calculus and the field of differential geometry.
Structural segmentation algorithms operate in volume image space, attempting to place delimiting boundaries around
contiguous volume sections.
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2.1 Deformable Models

In this section, we briefly summarize the research on the area of deformable models being focused on revealing the
fundamental principles and refer the reader to the cited literature for a full treatment of the topic. Other reviews on de-
formable models can be found in [22, 7, 23]. Deformable models are curves, surfaces or solids defined within an image
or volume domain and they move under the influence of external and internal forces. In the physics-based modeling
paradigm, the data apply forces (external forces) to the deformable model and as a result the model moves towards
the data, while internal forces keep the model smooth during deformation. Deformable models have the following
advantages: 1) they offer a coherent and consistent mathematical description, 2) they are robust to noise and boundary
gaps, and 3) they can offer a subvoxel accuracy for the boundary representation that may be important at a number
of applications, especially the biomedical ones. Figure ?? depicts examples of using deformable models to obtain a
parametric curve and a parametric surface to describe the data depicted. The term deformablemodelsfirst appeared
in the work by Terzopoulos and his collaborators [24, 25, 26]. Since the seminal publication on Snakes [25] a number
of names such as snakes, active contours or surfaces, balloons, deformable contours or surfaces, have been used to
denote a deformable model. The deformable models can be classified in two broad categories: physically-inspied
parametricdeformablemodels[27, 28, 29] and geometric deformable models [30, 31, 32, 33]. On one hand, para-
metric deformable models use parametric forms, allow for direct interaction and they have a compact representation.
However, changes in the topology of the models requires special procedures, since a new parameterization has to be
constructed whenever the topology change occurs [34, 35]. On the other hand, geometric deformable models represent
curves and surfaces implicitly as a level set of a higher-dimensional scalar function (more information can be found
in Section ??). These models, which are based on theory of curve evolution [36, 37, 38] and the level set method
[39, 40] allow changes in the topology of the model easily. In this section, we limit our discussion in the applications
of deformable models in segmentation. Other applications of the deformable models can be found at [41, 42, 43, 44].

Physically-based deformable models can be divided in: 1) energy-minimizing, 2) dynamic and 3) probabilistic
deformable models. Using the energy minimization formulation, the goal is to find a parametric model that minimizes
the weighted sum of internal energy and potential energy. The internal energy specifies the tension or the smoothness
of the surface of the model. The potential energy is defined over the volume domain and typically possesses local
minima at the edges occurring at object boundaries. Minimizing the total energy yields internal forces and potential
forces. Internal forces maintain the smoothness of the model while external forces attract the model towards the desired
object interfaces. Using the generalized force formulation allows using general types of forces. These forces do not
have to be potential forces, that is forces that have to be written as the negative gradient of potential energy functions.
A number of types of external forces have been proposed in the literature. For example, multiscale Gaussian potential
forces [25, 45], pressure forces [28, 46, 47], distance potential forces [48], gradient vector flow [48], distance forces
[49, 50], and interactive forces [25, 29]. An alternate view of deformable models casts the model fitting process in a
probabilistic framework to permit the incorporation of prior model and sensor information as probability distributions
[51].

Various numerical implementations of deformable models have been reported in the literature. For examples, the
finite difference method [25], dynamic programming [27], and greedy algorithm [52] have been used to implement
deformable contours, while finite difference methods [45] and finite element methods [29, 53, 54] have been used to
implement deformable surfaces. So far, we have presented the formulation of a deformable model as a continuous
curve or surface. In practice, however, it is sometimes more straightforward to design the deformable models from a
discrete point of view. Example of work in this area includes [55, 56, 57, 58, 59].

A number of extensions have been proposed to the parametric deformable models. The first category of extensions
refers to modeling global shape properties such as orientation and size. Modeling of global properties can provide
greater robustness to initialization. Reducing the dependence on initialization has been the topic of active research
[28, 30, 31, 60]. Furthermore, global properties are important in object recognition and image interpretation applica-
tions because they can be characterized using only a few parameters [61]. The second category of extensions is the
incorporation of additional prior knowledge into the models by training the model to constrain the deformation to the
deformations encountered in a specific class of structures. This extension is very beneficial for the applications where
the shape of the target structure varies across the acquired data. An example of methods in which prior knowledge is
employed to guide the segmentation are the atlas-guided approaches [62, 63, 64] or methods that build and employ
shape priors [65, 66]. These methods have some of their roots in the visionary efforts of Bajcsy and her collaborators
in 1983 [67]. Atlas-guided approaches have been applied main in MR brain imaging and the atlas has been generated
by compiling information from manually segmented data. The problem of segmentation is then transformed to one of
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Figure 1: Coordinate systems for deformable models.

finding a one-to-one transformation that maps the atlas to the volume that needs to segmented. This atlas warping is
accomplished by using both linear [62, 68, 69] and non-linear transformations [70, 63, 71]. To capture the anatomic
variability, probabilistic atlases have been build.

2.2 Deformable Model Geometry

We briefly review the notation used for deformable models in [54, 61, 72]. The models used are two- and three-
dimensional. The material coordinates u (u = (v) and u = (u,v) for the two- and three-dimensional case, respec-
tively) of a point on these models are specified over a domain 2. The position of a point on the model relative to
an inertial frame of reference @ in space is given by a vector-valued, time varying function. In particular, the three-
dimensional position of a point w.r.t. a world coordinate system is the result of the translation and rotation of its
position with respect to a non-inertial, model-centered coordinate frame ¢ (Fig. 1). Therefore, the position of a point
(with material coordinates u) on a deformable model at time ¢ with respect to an inertial frame of reference & is given
by the formula:

Px(u,t) = (1) + $R(t) *p(u,t) , €N

where %t is the position of the origin O of the model frame ¢ with respect to the frame & (the model’s translation), and
g)R is the matrix that encapsulates the orientation of ¢ with respect to ®. To introduce global and local deformations

the position of a model point with material coordinate u w.r.t. the model frame ¢p(u, ) is expressed as the sum of a
reference shape ?s(u,t) and a local displacement ?d (u, t) as given by the formula:

’p(u,t) = ?s(u,t) + “d(u,t). (3]

The reference shape captures the salient shape features of the model and it is the result of applying global deformation
function T (such as tapering and bending) to a geometric primitive e = (e, ey, e,) . In particular,

d)is(vat) = (Sza Syasz)T = T(quT)a (3)
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where the global deformations defined by T depend on the parameters qr. A superellipsoid e(v):[—m, 7) — IR* with
global shape parameters q. = (a1, as,€1) " is employed as a two-dimensional shape primitive, while a superquadric
e(u,v):[—7m/2,7/2)x[—m,m) — IR® with global shape parameters qe = (a1, az,as, €1, €2) ' is employed as a three-
dimensional shape primitive. The finite element method is employed to represent the continuous surface of the de-
formable model in the form of weighted sums of local polynomial basis functions. The finite element method provides
an analytic, piecewise polynomial surface representation. Local displacements d are computed based on the use of
triangular finite elements. Associated with every finite element node ¢ is a nodal vector variable q4 ;. We collect all the
nodal variables into a vector of local degrees of freedom q4 = (..., qL, ...)T, and we compute the local displace-
ment d based on the finite element theory as d = Sqq. S is the shape matrix whose entries are the finite element shape
functions. Finally, we incorporate into the vector q = (a. ,q, ,q, ,q, )" the degrees of freedom of our model which
consist of the parameters necessary to define the translation q., rotation qnesq, global q, and local deformations qq
of the model [61]. When fitting the model to data the goal is to recover the vector of degrees of freedom q. This is
achieved in a physics-based way [42]. In particular, the simplified equations of motion [61] take the general form

q+Kq=f, (4)

where £, are the generalized external forces computed from the 2D or 3D forces applied from the data to the model
(more details on the computation of the generalized forces are provided in [61]) and K is the stiffness matrix.

2.3 Elastically Adaptive Defor mable M odels

Deformable model formulations provide a powerful mechanism for quantitatively modeling and analyzing an object’s
shape, structure and motion [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 61, 83, 84, 85, 54]. Deformable models offer a data-
driven recovery process, in which forces derived from the image deform the model until it fits the data. However, most
such formulations assume that the user correctly initializes the model’s elastic parameters which significantly affect
the goodness of fit of the model to the given data. For example, in [61] it was assumed that the elastic parameters
of the finite elements used for shape estimation remain constant in space and on time and that the user chooses the
initial values. However, the speed and accuracy of fitting the models to the data depends on the values selected for the
elastic parameters of the model. This is a significant limitation in model fitting applications where the user assumes
no a priori knowledge of the complexity of the given data.

Recently, Kakadiaris and Metaxas [86] developed a formal methodology to automatically determine a deformable
model’s elastic parameters which generalizes the previous formulation [61]. According to the deformable model
framework the surface of the model is tessellated into a grid of finite elements. Each finite element has its own elastic
parameters and these parameters may vary in time during the fitting. Their technique is based on the use of a model
for the adaptation of the model’s elastic parameters. The characteristic of this method is that each elastic parameter
is modified based on the local error of fit and the local rate of change of the error of fit. If the model’s initial elastic
parameters are sufficient to fit the given data within a user specified tolerance, then their change during the fitting
process will be minimal. Otherwise, they will gradually change based on the above criteria. In particular, the elastic
parameters decrease when the model has not fit the data to make the model more elastic and allow for fitting. On
the contrary, when the model is close to the data the elastic parameters increase to make the model more stiff. This
increase of the elastic parameters has the effect of anchoring the model to the portion of the data it has fit and also
improves the continuity of the solution.

3 Adaptive Elastic Parameters

A dynamic deformable model has kinetic energy and deformation strain energy £. In particular, the deformation
energy that is imposed upon the model depends on the desired continuity for the deformable model. According to the
theory of elasticity, the relationship between the stresses (o) and strains () of an elastic material is expressed as

d&
=2 =C 5
o= € )
for a linear material, and as
do = C(e)de (6)
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for a non-linear material. Furthermore, by assuming a small stress-strain displacement! and the use of finite elements,
we can take it one step further to:
€ = Pd = PSqq, @)

where d is the material displacement, S is the finite element shape matrix, q4 are the FEM nodal displacements, and
the symmetric matrix P is derived from the local deformation strain energy. Based on the above definitions and the
theory of elasticity, we can express the (linear or nonlinear) elastic deformation energy £ w.r.t. to the FEM coordinates
as

e=[roau=aj ([ (PS) CEPS) du] a, ®)

where the stiffness matrix K is defined as
K:/@&%mmmmm 9)

In the past, a combined membrane and a thin-plate energy deformation energy has been used which can be written
in the general form:

1 . .
E= 2 /(wlefl + wae3y + wseds + waedy + wseds + weeds) du, (10)

where e;; are the components of the strain vector €. The nonnegative weighting functions w;; control the elasticity of
the material.

Most finite element implementations for segmentation applications, assume that the elastic parameters w; are
constant across the deformable model and during the model fitting process. They are also initialized manually in the
beginning of the shape estimation process. This may result in lengthy manual experimentations to identify the correct
initial elastic parameter values. Second, since these parameters are assumed constant across the model, accurate
shape estimation may never be achieved in case of complex data. Clearly, a technique for automatically adjusting a
deformable model’s elastic parameters in a local fashion is necessary.

The contribution of Kakadiaris and Metaxas [86] is the development of a new method for automatically modifying
the elastic parameters w; for each of the model’s finite elements. The model for the modification of each of the model’s
elastic parameters is based on ideas from the theory of PD (Proportional-Derivative) control. In particular, the model’s
elastic parameters are modified during the fitting process based on the local error of fit and the rate of change of the
error of fit. In all of the experiments, the fitting process is started with the same initial value wo = 0.005 for all the
model’s elastic parameters. In addition, each finite element j, (j = 1,. .., k, where k is the number of finite elements
of model 4) has its own elastic parameters w]. The fitting of the deformable model to the given data is based on
Equation (4). For each finite element j, the error of fit ¢j is defined to be the average of the error of fit of its nodes
k(k=1,...,m,where m is the number of nodes of finite element 3). In particular,

¢j — Z;:nZI (pl]s: — X.ljc) , (11)
m
where xi is the position of the kth node of element j and p,’c is the average position of the data points assigned to this
node, based on algorithms defined in [61]. _
During the fitting process, the values of each of the elastic parameters w; for each finite element j are modified
based on

Wl () = (wo — wimsn) €@ YU+ D 4oy (12

K3
where wyiy, is the minimum value for all the elastic parameters which for a membrane and/or thin-plate deformable

model is 10~°, and sgn is the sign function. Notice that sgn(¢j .dv]) is negative or zero when the model is converging
towards the data and positive otherwise. The whole process of fitting and elastic parameter adaptation terminates when
the error of fit for each finite element is below a tolerance 1);,; specified by the user.

The adaptation of the elastic parameters of a deformable model using the method described above has the following
desired properties. As seen in Equation (12), the change in each of the w}’s is always w.r.t. their initial value wq.

1The theory easily generalizes to large stress-strains.
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Initially, since the error of fit is large, while the rate of change of the error of fit is small or zero, the values of the
w]’s decrease exponentially to quickly improve the fitting. In the intermediate steps of the fitting, the values of the
wf ’s stabilize and are not modified significantly, since the sum of the error of fit and the rate of change of the error of
fit does not change substantially. When the model is very close to the desired data, the sum of the error of fit and the
rate of change of the error of fit decrease (the forces assigned to each node are now small) and the result is an increase
of the w]’s towards wyq. This results in a model that achieves a smooth solution to the data where necessary and also
better “holds” the model to the desired data. .

When the model has almost fit the data, the values of the w]’s start to exponentially increase again towards their
initial value. Therefore, the elastic parameters oscillate mostly between wg and w,,;,. Due to the introduction of

sgn(rpj .ip]) in Equation (12), the model’s elastic parameters are automatically increased beyond wq if the model has
fit the data and tries to deviate from them. Therefore, the model resists deviation from the data once it has fit them.
This is an additional desired property in cases where the model has partially fit the data. It will allow the portion of
the model that has not fit the data to become more elastic and fit the data, while the portion that has fit them will not
be modified or become more stiff in case there is any deviation from the data.

3.0.1 Dynamic ShapeEstimation

The above model for the modification of the model’s elastic parameters does not take into account the noise in the
data. In [87] it was shown how the dynamics of a deformable model can be incorporated into an extended Kalman
filtering framework to formally account for noise in the data. However, an extension to this formulation is necessary
in order to incorporate the model for the madification of the model’s elastic parameters into a Kalman filler. This
is necessary because the model’s elastic parameters are not degrees of freedom, since they do not appear in q, but
are the unknown parameters that determine the value of the stiffness matrix K. Therefore, this problem is that of
parameter identification in a dynamic system. In [88, 89], the theory of parameter identification in dynamic systems
is presented. Based on this approach, with the addition that of a model for the modification of the deformable model’s
elastic parameters? the state vector of the system is augmented to include the model’s elastic parameters. Therefore,
the new state vector is of the form

u= [ v ] : (13)

q

where w is the vector of the model’s elasticity parameters with components wf

Based on the above modification, we introduce the following definitions necessary to define the equations of a
modified extended Kalman filter. Let the observation vector z(¢) denote time-varying input data. We can relate z(¢) to
the model’s state vector u(t) through the nonlinear observation equation

z="h(u) + v, (14)

where v(t) represents uncorrelated measurement errors as a zero mean white noise process with known covariance
V(¢), i.e., v(t) ~ N(0,V(t)). If z consists of observations of time varying positions of model points at material
coordinates u; on the model’s surface, the components of h are computed using (1) evaluated at uz (see also [42]).
In case of computing an image potential, then what is being measured at every node of the model is the difference
z — h(u), which is what is needed for an extended Kalman filter formulation. In addition, let us also assume that
a(t) represents uncorrelated modeling errors as a zero mean white noise process with known covariance i.e., a(t) ~
N(0,Q(t)).

Based on the above definitions and Equation (4), the modifiedextended Kalman filter equations for our dynamic
system take the following form:

u=1f(u) +a, (15)
z="h(u) + v, (16)
17)

2According to that theory the time derivative of the elastic parameters should have been zero as opposed to the one used herein.
3Note that the definition of function ¢ in Equation (1) does not depend on w.
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where

£(u) = [ _¥q ] o = (d ety )T (18)
i, = (o — wyin) BB gonp by ([l 1] + (1. (19)

Note that due to the modification in the state vector, we now have a fully nonlinear extended Kalman filter as opposed
to our previous formulations [61]. However, the filter converges to the right solution since we impose a correct
behavior to the model for the adaptation of the model’s elastic parameters and the model dynamics are appropriate for
our applications.

The state estimation equation for uncorrelated system and measurement noises (i.e., E[a(t)v T (t)] = 0) is

i =f(ia) + PH' V™! (z — h(q)), (20)
where H is computed from
H— Oh(u) 21)
Ou a

The expression G(t) = PHT V! is known as the Kalman gain matrix. The symmetric error covariance matrix P (t)
is the solution of the matrix Riccati equation

P=FP+PF' +Q-PH'V 'HP, (22)
where
_ Of(u)
F(u) = “ou B (23)

The improvement offered from the Kalman filter formulation is that one can formally introduce data noise statistics
into the model.

3.0.2 Implementation

Since the model’s equations of motion are numerically well-conditioned, the full Kalman filter formulated above can
be partitioned into two separate filters for computational efficiency. The first filter includes the translation, rotation and
global deformations, and the second one includes only the local deformations. While the computation to the solution
of the Riccati equation for the first filter is fast since the associated degrees of freedom are few, this is not the case for
the second filter whose state vector includes the model’s elastic parameters and the local degrees of freedom.

To solve the matrix Riccati equations at interactive rates in the latter case, we take advantage of the decomposition
of the model’s surface into finite elements. A similar approach was used by Metaxas [42] for the computation of
the stiffness matrix K. Based on the covariance of each component of u that corresponds to the variable of the
second Kalman filter at a given step, the contribution of each element to (22) is computed using the right hand side
of this equation for each element. This per-element computation of (22) results in matrices of very small dimensions
compared to the size of the respective matrices for the whole system. This computation can be done in parallel and
once all the elements are looped through, the contribution from each element is placed at the appropriate location in
P (in an identical way to the computation of K). Then we solve ( 22). This significantly improves the speed of the
calculations and is justified since the model’s surface is partitioned into finite elements.

3.0.3 Examples

Based on the above implementation, all our experiments run at interactive rates on a Silicon Graphics R10000 Indigo?
workstation. Furthermore, we always started from a unit covariance matrix P. However, the subsequent structure
of P is not diagonal and has a form similar to K. Notice that any other reasonable initial condition will work if
our dynamic model is appropriate for our applications. For the global deformations we used a superellipsoid or a
superquadric, the elastic parameters were always initialized to wo = 0.005, and we used an adaptive Euler integration
method for increased stability. In addition, the noise in the data is small and we defined V as V = 0.1L
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As a first example, we present the results of applying the elastically adaptive deformable models technique to
the semi-automated identification of the myocardial borders from breath-hold MRI. The data were obtained from
the Department of Radiology at the University of Pennsylvania. The dataset included sixteen slice locations, from
the Left Ventricle (LV) apex to the level of the aortic valve. In order to determine the location of the borders with
higher accuracy we magnify each image four times, and then we convolve it with an 8x8 Gaussian mask. An initial
superellipsoid model of the model was placed manually at the vicinity of the border of the first slice. In this study, we
concentrated on the identification of the LV endocardial contour for locations 4 to 11 in which the contour is visible
(Figures 2 and 3). During the fitting process, the results from fitting one slice, were used as the initial model for the
next slice, as if we had an evolving curve over time. Therefore the user only initializes the model in the first slice.

The second example presents the fitting of an elastically adaptive deformable model to the 1269 three-dimensional
data points of a Viewpoint® model of a human head. Each of the figures 4(a-h) and 5(a-h) is composed of four parts.
The two sub-images at the upper row of each sub-figure depict the model as seen from the front and back, respectively.
The lower left sub-image of each figure depicts a side view of the model while the lower right sub-image depicts the
side view of the model along with the three-dimensional data. Each finite element of the three-dimensional model is
color coded to depict the value of the elastic parameters at that time instant.
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Figure 2: Semi-automated identification of the myocardial borders. (a, c, e, g) End diastole phase, and (b, d, f, h) end
systole phase for locations 4, 5, 6 and 7, respectively.
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Figure 3: Semi-automated identification of the myocardial borders. (a, c, e, g) End diastole phase, and (b, d, f, h) end
systole phase for locations 8, 9, 10 and 11, respectively.
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Figure 4: Fitting the three-dimensional data.
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Figure 5: Fitting the three-dimensional data (Cont.).
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Motiv ation, Driving Problems

e large increase of amount of medical image data sets

e 3-D and 4-D images become information source in various
research domains

e Volume images carry detailed morphological and functional information

e need for computer-assisted tools for
- extraction/representation of anatomical structures
- morphometric measurements and shape analysis

e Problem: lack of appropriate analysis tools (efficiency, reliability)
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Non-invasive Imaging: In-viv o studies, morphometr v,
function, temporal studies

Imaging technologies are changing the way science is done

(Science, Vol. 261, July 1993, R.P. Crease)
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Manual 3-D Segmentation

Advantages:

Interactive

Disadvantages:

Inaccurate

Poor Reproducibility
3-D from 2-D Slices
Slow and Tedious
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Methods for morphometric analysis of brain structures

e Atlas-based subdivision of brain images:
Mazziota, 1995 ICBM / Warfield, 1996
Christensen, Vannier, Miller 1997
Ayache and Thirion 1996 / Evans and Collignon 1995

e Model-based segmentation of brain structures:
Cootes and Taylor, 1995, 1998 / Chakraborty, 1996
Delinguette, 1997 / Duncan and Staib, 1996
Vemuri, 1996 / Kelemen, Szekely, Gerig, 1996
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Automatic Segmentation: Related Work

e L.H. Staib & J.S. Duncan: 3D fourier organ
models, region and gradient based segmentation.

e T.F. Cootes & C.J. Taylor: 2D statistical organ
models, modelling gray level appearance, least-
squares based segmentation.

o G. Szekely et al.: 2D statistical organ models,
gradient based segmentation

e B. Vemuri et al.: Multiresolution stochastic hybrid
shape models
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Model Building

Segmented MRI data from R. Kikinis/M.Shenton,
Harvard Medical School, BWH
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Parametrization 1
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Parametrization 2

1 Harmonic 3 Harmonics 6 Harmonics 10 Harmonics
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Normalization in Object Space
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In Parameter Space
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Computing the Statistical Model

1 N
mean model: C = — Zci
N |: 0.4
shape deviation: d = (¢—0 N
5 A O 15-- >~ 20
1 T
Z — m IZ dCi : dCi
eigen analysis: >-P = P-A
individual shape: CC = C+P-b
weights: by = P'(¢—0)
Guido Gerig Page 13

204



Individual Left-Hippocampi
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Eigendeformations of Left-Hippocampus

by=-2vA1 bi=-1VA; b=0 bi=1/A1 b =2V\

PP

bo=-2vA2 by=-1VA; =0 by=1/A; by=2VA;

Guido Gerig

206

Page 15



Individual and Average Brain Objects

Individual Structures Average Models
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Modelling Gray Level Appearance
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Matching Profiles
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Object Representations

Surface Points:

e ._ g 4 s
Local Description Global Shape Description
Regular Sampling Finding Correspondence
Position of Profiles Computing Surface Normals
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Computing the Fit

Parameter Space:
Statistics in spher. harm.:
Multiplying by A:

Object Space:
Statistics in coordinates:

Altering coordinates with dx:

Set of eq. to solve:

AcC

(X +dx)
dx

C+Pcb
AC+ AP:Db

X + Pyb
% + Py(b + db)
Pdb
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Segmentation Results 1

Saggital
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Segmentation Results 2

Saggital
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Validation: Volume Overlap

Test Object Hippocampus

Overlap measure between

Two cubes of 10x10x10 voxels, manual and automatic
one shifted along. its space segmentation before (gray)
diagonal by 1 voxel: and after (red) deformation:
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Validation: Surface Distance

Parseval’'s theorem:

00 |

FlxwPd = 5 3 |cf?

[=0m=—I

41t- MSD

MSD stands for “mean squared
distance” measured from the
origin of the coordinate system.

Average distances in mm
between manual and automatic
segmentation before (gray) and
after (red) deformation:
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Conclusions

e Fully automatic 3-D segmentation

e Model includes geometry and gray-level profiles

e Statistical shape models for several brain structures
e Reproducible results

e Computation time: 2-5" on SUN Ultra-10

e Good approximation to point-to-point correspondence

e Comprehensive tests and validation

Guido Gerig Page 25
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Open Issues

Statistical Surface Model:

e Global shape model, no access to local shape properties
e NoO representation of figure vs. subfigures
e Simultaneous segmentation of set of anatomical shapes

e Robustness of statistics (PCA with small sample number and high
dimensionality)

e Number of training shapes?

e Constrained segmentation: too restrictive?

e Point-to-point correspondence in 3-D to be improved
e Limited to simply-connected objects

e Segmentation of diseased organs?

Guido Gerig Page 26
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Future Directions

e Combination of medial and surface object representation:
3-D Voronoi skeleton and DSL model

e Generate simulated shape models for testing statistical surface
shapes and for the DSL parametrization development

e Test ability of spherical harmonic model and its restricted
deformation to cope with local warps as generated by DSL warps

e Apply shape segmentation and representation methods to
serial 3-D image data to study progression of
disease (make use of correlation)

e Study of shape parameter changes to explain shape changes over time

Guido Gerig Page 27
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Elastic Model-Based Segmentation of 3-D

Neuroradiological Data Sets
Andrés Kelemen, Gédbor Székely and Guido Gerig

Abstract— This paper presents a new technique for the
automatic model-based segmentation of 3-D objects from
volumetric image data. The development closely follows the
seminal work of Taylor and Cootes on active shape models
but is based on a hierarchical parametric object description
rather than a point distribution model. The segmentation
system includes both the building of statistical models and
the automatic segmentation of new image data sets via a
restricted elastic deformation of shape models. Geometric
models are derived from a sample set of image data which
have been segmented by experts. The surfaces of these bi-
nary objects are converted into parametric surface repre-
sentations which are normalized to get an invariant object-
centered coordinate system. Surface representations are
expanded into series of spherical harmonics which provide
parametric descriptions of object shapes. It is shown that
invariant object surface parametrization provides a good ap-
proximation to automatically determine object homology in
terms of sets of corresponding sets of surface points. Gray-
level information near object boundaries is represented by
1-D intensity profiles normal to the surface. Considering
automatic segmentation of brain structures as our driving
application, our choice of coordinates for object alignment
was the well-accepted stereotactic coordinate system. Ma-
jor variation of object shapes around the mean shape, also
referred to as shape Eigenmodes, are calculated in shape pa-
rameter space rather than the feature space of point coordi-
nates. Segmentation makes use of the object shape statistics
by restricting possible elastic deformations into the range of
the training shapes. The mean shapes are initialized in a
new data set by specifying the landmarks of the stereotac-
tic coordinate system. The model elastically deforms driven
by the displacement forces across the object’s surface which
are generated by matching local intensity profiles. Elastical
deformations are limited by setting bounds for the max-
imum variations in Eigenmode space. The technique has
been applied to automatically segment left and right hip-
pocampus, thalamus, putamen and globus pallidus from vol-
umetric magnetic resonance scans taken from schizophrenia
studies. The results have been validated by comparison of
automatic segmentation with the results obtained by inter-
active expert segmentation.

I. INTRODUCTION

EGMENTATION of anatomical objects from large 3D

medical data sets, obtained from routine Magnetic Res-
onance Imaging (MRI) examinations, for example, repre-
sents a necessary yet difficult issue in medical image analy-
sis. With the steady increase of routine use of 3D imaging
methods like magnetic resonance imaging (MRI), computer
tomography (CT) and 3D ultrasound in radiological diag-
nosis, monitoring, radiotherapy and surgical planning, for
example, there is a clear need for improved and efficient
methods for the extraction of anatomical structures and

A. Kelemen and G. Székely are with the Image Science Labora-
tory, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092
Zurich, Switzerland, szekely@vision.ee.ethz.ch

G. Gerig is with the Departments of Computer Science and Psychi-
atry at University of North Carolina at Chapel Hill, USA

for a description by morphometric analysis. In some lim-
ited applications, segmentation can be achieved with mini-
mal user interaction by applying simple and efficient image
processing methods, which can be applied routinely [8].

In many clinical applications such as computer assisted
neurosurgery or radiotherapy planning, a large number of
organs have to be identified in the radiological data sets.
While a careful and time-consuming analysis may be ac-
ceptable for outlining complex pathological objects, no real
justification for such a procedure can be found for the de-
lineation of normal, healthy organs at risk.

Delineation of organ boundaries is also necessary in vari-
ous types of clinical studies, where the correlation between
morphological changes and therapeutical actions or clini-
cal diagnosis has to be analyzed. In order to get statisti-
cally significant results, a large number of data sets has to
be segmented. For such applications manual segmentation
becomes questionable not only because of the amount of
work, but also with regard to the poor reproducibility of
the results. The necessity of obtaining high reproducibility
and the need to increase efficiency motivates the develop-
ment of computer-assisted, automated procedures.

II. MODEL-BASED SEGMENTATION OF 3D
RADIOLOGICAL DATA

Elastically deformable contour and surface models, so-
called snakes [9], have been proposed as tools for support-
ing manual object delineation. While such procedures can
be extended to 3-D [29], [4], their initialization is a criti-
cal issue. Most often, the initial guess must be very close
to the sought contour to guarantee a satisfying result [16].
An excellent overview of elastically deformable models can
be found in [13]. The primary reason for the need of a
precise snake initialization is the presence of disturbing at-
tractors in the image. These attractors do not belong to
the object contour but force the snake into undesired local
energy minima. The procedure could become more robust
if the deformation of a snake would be limited to shapes
within the normal variation of a class of object boundaries.

Elastically deformable parametric models offer a
straightforward way for the inclusion of prior knowledge in
the image segmentation process. This is done by incorpo-
rating prior statistics to constrain the variation of the pa-
rameters of the elastic model. Such procedures have been
developed by Vemuri and Radisavljevic [31] using a hybrid
primitive called deformable superquadrics constructed in a
multi-resolution wavelet base, or by Staib and Duncan [23]
for deformable Fourier models.

For complex shapes described by a large number of of-
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ten highly correlated parameters, the use of such priors
may become tedious. The modal analysis as proposed by
Pentland and Sclaroff [17] offers a promising alternative by
changing the basis from the original modeling functions to
the eigenmodes of the deformation matrix. The dominant
part of the deformations can thus be characterized by only
a few eigenmodes, substantially reducing the dimensional-
ity of the object descriptor space. Methods using modal
analysis have been successfully applied to medical image
analysis by Sclaroff and Pentland [20] and Nastar and Ay-
ache [15], for example.

Cootes et al. [5] combined the power of parametric de-
formable shape descriptors with statistical modal analysis.
They use active shape models, which restrict the possible
deformations using the statistics of training samples. Ob-
ject shapes are described by the point distribution model
(PDM) [7], [6], which represents the object outline by a
subset of boundary points. There must be a one-to-one cor-
respondence between these points in the different outlines
of the training set. After normalization to size, orienta-
tion and position, they provide the basis for the statistical
analysis of the object shape deformations. The mean point
positions and their modes of variation (i.e. the eigenvectors
corresponding to the largest eigenvalues of their covariance
matrix) are used for limiting the object deformations to
a reasonable linear subspace of the complete parameter
space. Principal component analysis has also been used
for the characterization of anatomical shape variability us-
ing other shape parametrization schemes like invariant mo-
ments [18], [19], e.g.

For a large training set containing several anatomical
structures, the generation of the PDM parametrization
becomes very tedious and, because of the lack of a rea-
sonable automatization, can be a source of errors, sug-
gesting alternative approaches for form parametrization.
Staib and Duncan have already demonstrated segmenta-
tion by parametrically deformable elastic models for 2-D
outlines [23] and 3-D object surfaces [22], [24] using Fourier-
descriptors. In our previous work [26] we combined the
statistical modal analysis with parametrization based on
2-D Fourier-descriptors. Using spatial normalization based
on the generally accepted Talairach coordinate system [28]
we demonstrated that fully automatic segmentation of or-
gan contours on 2-D image slices can be achieved. In this
previous paper the feasibility of a 3-D extension of this
method has already been investigated. We have demon-
strated that based on a general surface parametrization
scheme [3] the concept can be generalized for 3-D organ
surfaces with spherical topology using spherical harmon-
ics as shape descriptors. This paper summarizes the basic
concepts of the newly developed 3-D segmentation system
and also presents evaluation results using a collection of 22
volumetric MR brain data sets.

The 3-D segmentation discussed here is based on statis-
tical shape models generated from a collection of manually
segmented MR image data sets of different subjects. The
process can be divided into two major phases; a model-
building stage, and the automatic segmentation of large

series of data sets.

o In the training phase, the results of interactive segmen-
tation of sample data sets are used to create a statistical
shape model which describes the average as well as the
major linear variation modes.

o The model is placed into new, unknown data sets and is
elastically deformed to optimally fit the measured data.

The generation of the statistical model will be discussed
in detail in the following sections. The purely geometri-
cal statistical model proposed in our earlier paper [26] has
been extended by incorporating gray-valued profiles across
the organ surface, implementing the concept proposed by
Cootes and Taylor [5], [6] for 3-D models.

The matching process is initialized using the average ge-
ometrical model resulting from this training phase. A two-
stage algorithm, described in section VII, is used to deform
this model to optimally fit the features of a new data set,
while still restricting the deformations to the variability al-
lowed by the statistical model. This algorithm makes full
use of the gray-value profiles normal to the surface, which
is efficiently calculated by using a dual representation of
the object both as a collection of sample points and as a
parametrized surface.

I1I. 3D OBJECT MODEL

A. Training set

C d

Fig. 1. Model building: interactive segmentation of a left hippocam-
pus (a), reconstruction from surface shape descriptors up to de-
gree one (b), reconstruction up to degree ten (c) and normaliza-
tion of the shape pose in object space (d).

Today’s routine practice for 3-D segmentation involves
slice-by-slice manual processing of high-resolution volume
data. Working on large series of similar scans, human ob-
servers knowlegeable in anatomy become experts and pro-
duce reliable segmentation results, although at the cost of
a considerable amount of time per data set. Realistic fig-
ures are several hours to one day per volume data set for
only a small set of structures. Regions in 2-D image slices
corresponding to cross-sections of 3-D objects are outlined
and painted by different interactive tools performing de-
lineation purely manually [25] or partially supported by
image data using energy minimization schemes discussed
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above. The series of binary regions segmented from con-
secutive slices form volumetric voxel objects. Figure 1.a
illustrates the result of an expert segmentation of the left
hippocampus from a magnetic resonance head dataset.

Our initial training set consisting of 30 male brain MR
volumes, a courtesy of the Harvard Medical School in
Boston, has been processed this way. These datasets have
been acquired and deep gray matter structures have been
processed in the frame of a comparative psychiatric study
[21]. In each volume six brain regions have been man-
ually labeled in both hemispheres, these regions include
the amygdala/hippocampus complez, the parahippocampal
gyrus, thalamus, caudate nucleus, putamen, and globus pal-
lidus. Figure 6 compares the segmented four different brain
objects for an individual case with the average models.

In order to demonstrate some model building aspects
which require a larger training set, we will also refer to a set
of 71 corpus callosum outlines, a courtesy of the European
BIOMORPH project.

B. Parametric shape representation

In the following the term “parametrization” will be used
in two different ways. On the one hand, the process which
maps two parameter values (s,t) to each point on a surface
is called surface parametrization. These surface mappings
parametrize an object shape with respect to surface coor-
dinates v (s, t):

v1(s,1) z(s,t)
'U(Svt) = U2(Sat) = y(s,t) (1)
v3(s,1) z(s,t)

To make a clear distinction, surface parametrization will
refer to this mapping procedure. In the following we will
consider only surfaces with spherical topology, which is true
for a broad class of anatomically interesting organ bound-
aries, in particular for all studied structures of the basal
ganglia. Such surfaces can be parametrized by two polar
variables (0 and ¢) and therefore defined by three explicit
functions over those:

z(0,9)
v(0,9) = | v(0,9) : (2)
(6, ¢)

Secondly, shape parametrization denotes the computa-
tion of object shape descriptors parametrizing these coor-
dinate functions. One possibility is an expansion over a
complete set of basis functions. With respect to comput-
ing elastic shape deformations, the choice of basis functions
is not critical. B-splines or wavelets could be used as well
as other local representations. As discussed later, shape
correspondence among multiple individuals is obtained by
rotating a (6, ¢) parameter net over the object surface to
a canonical position based on global surface parametriza-
tion. We therefore make use of the hierarchical shape rep-
resentation offered by spherical harmonics, resulting in the
following (truncated) series expansion

K k
v(0,6,p) =D Y " Y{"6,¢) (3)
k=0 m=—k
where
Copt
et = Cyp' . (4)
cap

The coefficients ¢;* are three-dimensional vectors with
components ¢, ¢,;* and ¢, with degree [ and order
m. A detailed description can be found in Brechbiihler
et al. [3]. All the ¢/* with components (z,y, 2) define the
shape description vector

_ 0.0 ,.0_.-1_.0_1,-1,0 .1
P = (C20>CygsCz0:Ca1 »Ca1>Ca1>Cyy > Cy1sCypo
-1 .0 .1 -K KN\T
€21 »C211Cz1s+ - Cogg -+ CzK)

Figures 1.b and 1.c illustrate the hierarchical property of
spherical harmonics: reconstructing the shape from coeffi-
cients up to degree 1 results in an ellipsoid. Incorporating
more descriptors (up to degree 10 in Fig. 1.c) increases the
level of details and more closely approximates the original
shape.

C. Anatomic reference coordinate system

Our driving application is the automatic segmentation of
deep gray matter structures of the human brain. We begin
by choosing the standard stereotactic coordinate system
proposed by Talairach for global alignment of the head im-
age data sets. Basic features used for alignment are the
approximation of the inter-hemispheric fissure by a mid-
sagittal plane and the definition of the anterior and poste-
rior commissure (AC-PC) (see Fig. 2). The identification
of the symmetry plane of the brain and the position of the
AC-PC line is performed manually by selecting reference
points on 2-D slices of the volumetric images. Each data
set is transformed into canonical coordinates by 3-D rota-
tion and scaling as illustrated in Fig. 1.d.

In comparison to a fully object-centered spatial normal-
ization the segmentation method described in this paper
can incorporate small deviations of translation and orien-
tation into the shape statistics. This allows us to repro-
ducibly define a global coordinate system based on a small
set of significant external landmarks for initializing shape
models at their most likely positions.

In our earlier work [26] we found that in medical images
there is no real justification for separating similarity trans-
formation from shape deformation because of the strong
correlation between the position and shape of organs. Ac-
cordingly, for images representing anatomy the relative po-
sition, rotation, and size of healthy organs is restricted in a
similar and correlated way to their elastic deformation. We
therefore introduced models incorporating this full biolog-
ical variability with respect to a natural reference sytstem,
which resulted in a much more robust segmentation process
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Fig. 2. Stereotactic coordinate system used for object space normal-
ization

in 2D. The Talairach reference used here is a straightfor-
ward extension to our aerlier AC-PC based 2-D coordinate
system.

IV. CORRESPONDENCE BY PARAMETRIZATION

During the present study we established surface corre-
spondence between the items of the training set by an area-
preserving parametrization followed by the object-oriented
normalization of its starting point. This fully automatic
procedure, which will be described in more detail in this
section, has certainly strong limitations and provides only
a first step in establishing correspondence. However, pre-
liminary 2D studies have been revealed, that corrections
resulting from feature-based correspondence search based
on curvature [27], e.g., are minor, and arc-length based
parametrization provides a good first approximation.

The shape representation proposed in this paper results
in an continuous mapping function between similar objects.
This is done using a uniform parametrization of closed sur-
faces and by calculating an invariant object centered de-
scription (Brechbiihler et al. [2], [3]). By sampling of the
spherical reference surface this method can also be used to
generate corresponding pairs of surface points.

A key step in the shape description of a surface is its
mapping to the parameter space, the sphere. Any point on
the surface must map to exactly one point on the sphere,
and vice versa. The location on the sphere corresponding
to a surface point defines the surface parameters of the
point. It can be represented as two polar or three Cartesian
coordinates, related through the bijection

T sin @ cos ¢
Y = sin @ sin ¢
z cosf

Mapping a surface to the sphere assigns parameters to ev-
ery surface point. The mapping must be continuous, i.e.

neighboring points in one space must map to neighbors in
the other space. Our approach is to achieve a correspon-
dence between different objects by constructing a mapping
that preserves areas. Based on the voxel representation,
such a mapping assigns the square facets on the object
surface to a portion of the surface of the unit sphere. It
is not possible in general to map every surface facet to a
spherical square: distortions cannot be avoided, but they
should be minimal.

The surface parametrization, i.e., the embedding of the
object surface graph into the surface of the unit sphere,
is solved as a constrained optimization problem, looking
for the optimal coordinates of all vertices [3]. However,
the resulting representation of the surface by a parame-
ter net with homogeneous cells is so far only determined
up to a 3-D rotation in parameter space. Point to point
correspondence of surfaces of different objects would re-
quire parameters which do not depend on the relative po-
sition of the parameter net. The object can be rotated
to a canonical position in parameter space by making use
of the hierarchical shape description provided by spherical
harmonic descriptors. The coefficients of the spherical har-
monic function of different degrees provide a measure of
the spatial frequency constituents that compose the struc-
ture. As higher frequency components are included, more
detailed features of the object appear. To define a standard
position we only consider the contribution of the spherical
harmonics of degree one, which is an ellipsoid representing
the coarse elongation of the object in 3-D space. We rotate
the parameter space so that the north pole (6 = 0) will be
at one end of the shortest main axis, and the point where
the zero meridian (¢ = 0) crosses the equator (0 = 7/2)
is at one end of the longest main axis. Figures 1.b and
1.c illustrate the location of the middle main axis on the
reconstruction up to degree one and ten respectively.

Objects of similar shape will get a standard parametriza-
tion which becomes comparable, i.e., parameter coordi-
nates (6,¢) are located in similar regions of the object
shape across the set of objects (see Figure 3). Correspond-
ing points on different object surfaces are therefore found
by calculating a canonical parametrization rather than by
interactive selection of labeled sets of 3-D points.

The normalization techniques described here require the
precondition that coefficients of degree 1 represent a real el-
lipsoid. If, however, the ellipsoid degenerates to an ellipsoid
of revolution or a sphere, the technique will fail to derive
stabile main axes. Objects of higher symmetries, such as
regular polygons and polyhedra are a good example for the
limitations of the normalization technique.

V. CAPTURING STATISTICAL INFORMATION OF SHAPE

After transformation to canonical coordinates, the ob-
ject descriptors are related to the same reference system
and can be directly compared. An existing procedure for
describing a class of objects follows our 2-D method as de-
scribed in Székely et al. [26], where the calculations are
carried out in the domain of shape descriptors rather than
the Cartesian coordinates of points in object space.
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Fig. 3. Corresponding parameter values for § = w/2, ¢ = 0,7, and
¢ =m/2,3w/2 (thick lines) illustrated on an ellipsoid (a) and on
three individual left hippocampal structures.
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Fig. 4. Illustration of all 22 left hippocampal structures of the train-
ing sets, normalized and reconstructed from their descriptors.

A. Principal component analysis of a set of shapes

The mean model is determined by averaging the descrip-
tors ¢; of the N individual shapes (see Fig. 4).

1 N

Eigenanalysis of the covariance matrix ¥ results in eigen-
values and eigenvectors representing the significant modes
of shape variation.

Sy e - ) (e -9 ©)

SP.=AP,, (7)

where the columns of P, hold the eigenvectors and the
diagonal matrix A the eigenvalues A; of ¥. Vectors b; de-

K

o’ P &

Fig. 5. Largest two modes of variation for b; = —2,/X;...2,/A;. In
the middle column, b; = 0 represents the mean model.

scribe the deviation of individual shapes ¢; from the mean
shape using weights in eigenvector space, and are given
below

Figure 5 illustrates the largest two eigenmodes of the hip-
pocampus training set, while Figure 7 depicts the square
root of eigenvalues sorted by size (dotted line) together
with components of one individual vector b;. As after
the first few eigenvectors the variance becomes very small,
the first ¢ largest eigenmodes have been taken for build-
ing a flexible model that explains the biological variability
of the hippocampal shape. Any shape in this linear sub-
space is approximated by combining the mean shape and a
weighted sum of the deviations obtained from the first few
modes

c=c¢c+ P, (9)
where b is a vector of weights, one for each eigenvector,
and since eigenvectors are orthogonal, PZPC =1I,bofa
given shape ¢ can be computed using

b=Pl(c—¢). (10)

The vector b can also be thought of as a new and more
compact representation of the shape in the new basis of
the deformation modes instead of the spherical harmon-
ics. Eq. 10 describes how to generate new examples of the
shapes by varying the parameters b within suitable limits,
so that the new shapes remain similar to those in the train-
ing set. The limits for each element of b are derived by ex-
amining the distributions of the parameter values required
to generate the training set. If Gaussian distributions are
assumed the variances of the elements of b are given by the
corresponding eigenvalues.

To choose the appropriate number of eigenmodes for the
shape representation the followings has to be taken into
consideration. Supposing, Fourier harmonics up to degree
n; has been used, there will be 3n? free parameters describ-
ing the shape, this results in a covariance matrix of the size
(3n?) x (3n?) and theoretically in 3n} different eigenmodes.
However, if the training set only consists of N < (3n?) sam-
ples there will be only N — 1 linearly independent columns
or rows in ¥ and also that many eigenmodes in P.. It fol-
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Fig. 6. Left and right thalamus, globus pallidus, putamen and hip-
pocampus in one individual case (a) and their average models
computed from all cases (b).

lows that the number of modes, ¢, should be smaller than
both N and 3n?:
t < min(N, 3n?) .

(11)

One method for calculating ¢ is to choose the smallest num-
ber of modes such that the sum of their variances explain
a sufficiently large proportion of Ar, the total variance of
all the independent variables, where

min(N,3n?)

2. M

k=1

A\r = (12)

Fig. 7. Statistics of shape deformation. The dotted line represents
the square root of eigenvalues \/)\7 sorted by decreasing size. The
continuous line illustrates the components of an individual vector
b;, which describes the deviation of the shape ¢; from the mean
shape e.

and A is the kth diagonal element of A.

Neglecting eigenmodes corresponding to small eigenval-
ues is only reasonable if the shape variation is globally dis-
tributed along the whole object surface. Some diseases are
thought to be correlated with very small localized anatom-
ical differences. FEigenmodes describing highly localized
(but still significant) variations should not therefore be dis-
carded, even if the corresponding eigenvalue is small. Thus,
choosing eigenmodes related to maximal local deformations
results in a better representation of the training set. To in-
vestigate the influence of local deformations on the selected
eigenmodes we have resampled the surface of our models,
and characterized each deformation mode by the surface
point with the largest deviation dj. For our models both
sorting criteria, A; and di, produced identical ordering of
deformation modes.

B. Validation of statistical models

In the example above 22 samples of hippocampi have
been used to derive a statistical model. Applying equa-
tion 12 we find that the 10 largest eigenvalues express 99%
of the variation represented in the training set. It is im-
portant to note, that this does not correspond to the true
anatomical variability of the organ shape, just that of the
limited representation provided by the selected parametric
shape descriptors. Accordingly, the parametrized 22 shapes
of the training set can be described with minor error using
the model, but no information is provided for shapes not
included in the initial population.

The description error of a shape not included in the train-
ing set can be computed by first projecting its descriptors ¢
into the subspace of the major eigenvectors (eq. 10), then
approximating coefficients ¢ from the projection (eq. 9),
and finally comparing ¢ and ¢. The difference between ¢
and ¢é is given by the Euclidean distance of the two vectors:

€= DEucl(C, é) . (13)

It has to be mentioned that the value of € is an absolute
measure of shape similarity in an abstract, object-dependent
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parameter space and consequently allows comparisons only
between representations of the same, but not of different
organs.

To demonstrate the predictive ability of the statistical
model, we investigated, how the quality of the model in-
creases while incorporating more individuals in the training
set. We first have built a statistical model using 11 arbi-
trarily chosen shapes out of the entire set, as needed to
be able to compute 10 deformation modes, and determine
the above measure of segmentation error for the remain-
ing shapes not included in the training set. Repeating the
computations for a statistically significant subset of the [22
choose 11] combinations of the entire set, and finally av-
eraging the errors, we obtain a measure for the 11-shape
model as shown in Figures 8.a and 8.b by the first data
points. The size of the training set is then increased one-
by-one and the average error is computed based on segmen-
tation results using the largest 10 eigenmodes to obtain the
rest of the data points in the same figure. One can observe
that the average error decreases as the model grows.

While this decrease of the error is significant in practi-
cally all cases, for our 3D training sets even the insertion
of the last item leads to a significant improvement of the
model. As a comparison, a similar experiment for the sta-
tistical model generated from 71 2-D outlines of the corpus
callosum on midsaggital brain slices has been performed.
The result is shown on Figure 8.c. One can clearly see, that
in this case the model becomes saturated and the addition
of a certain number new shapes to the training set does not
increase the models’s information content. On the other
hand, adding new individuals to our 3-D models could fur-
ther increase their ability to describe unseen shapes of the
same kind. This apparent deficiency of our 3D models also
explains the difference in segmentation quality we only ex-
perience in 3-D between shapes included and not included
in the training set, as discussed later on in section VIII.
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Fig. 8. Predictive ability of the models derived from the training sets
of 22 hippocampi in the left (a) and right (b) hemisphere, and the
same performance curve computed for the training set containing
71 corpora callosa (c). It displays the average representation
error ¢ for shapes not included in the training set when using
the 10 largest eigenmodes while increasing the number of shapes
used for the generation of the statistical model from n = 11 to
n = N — 1, where N is the number of available shapes for the
organ in question.

VI. MODELING GREY-LEVEL ENVIRONMENT

Organ geometry represents only a part of the full infor-
mation provided by the original volumetric image data sets.
Besides organ shape, radiological interpretation heavily re-
lies on local brightness and contrast information. Previ-
ous work clearly demonstrated that augmenting geometric
models with information about the gray level environment
of the model surface significantly improves the robustness
of the segmentation ([6]). Therefore, we examine the statis-
tics of the image intensity along 1-D profiles orthogonal to
the object surface at a discrete set of sampling points.

A. Sampling of model surface

Equal processing of each part of the model surface is en-
sured by choosing a homogeneous distribution of sampling
points and profiles over the surface parameter space. A
perfectly regular sampling of a spherical surface does not
exist, but we can find a good approximation by icosahedron
subdivision, a technique often used in computer graphics
to triangulate and display spheres at different scales. The
algorithm takes an icosahedron inscribed in a sphere, and
subdivides its faces as shown in Figure 9. The newly in-
troduced vertices lie slightly inside the sphere, so we push
them to the surface by properly normalizing their distance
to the center to unity.

Fig. 9. Nearly regular sampling of spherical surfaces by icosahedron
subdivision.

The necessary level of subdivision depends of course on
the size of the object. For the hippocampus structures an-
alyzed in this paper a subdivision of £ = 10 resulted in a
sampling distance of about 1 voxel on the surface. This
subdivision results in n = 12 + 30(k — 1) + 20E=1E=2)
1002 vertices. Computing the 6; and ¢; values at each
vertex coordinate 4 of the subdivided icosahedron and sub-
stituting them into

ZT; K l
=y | =)D V0,00,  (14)
Zi =0 m=-1
i=1...1002 (15)

we obtain a dual description of the object surface by the
coordinates of a set of surface points x;. The equation
above can be written in a more compact matrix form as

z = Ac, (16)
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where x represents the coordinates in object space and ¢
the spherical harmonics descriptors. A consists of the func-
tion values of Y} (6;, ¢;), one for each dimension, and de-
scribes the mapping between shape description space and
object space coordinates.

For every surface point ¢ in each data set 7 we can extract
a profile w;; of n, sample points. The distance between
sample points is the length of one voxel. The profiles are
oriented normal to the object surface and centered at the
surface points x;;, as illustrated in Figure 10. For each
sample point ¢ we can obtain a mean profile by averaging
over the sample objects N:

1 N
w; = N le”
J:

We calculate a n, X n, covariance matrix 3,,, which gives
us a statistical description of the expected profiles at each
sample point:

(17)

Bu, = 7 2 (wij = wi)(wig —wi)" . (18)

1 X
=1
Cootes et al. in [6] propose normalized derivative profiles
giving invariance to uniform scaling of gray levels and con-
stant shift. For our applications, however, we achieved best
results using unnormalized original gray level profiles, as all
our data sets have been acquired under the same imaging
conditions. This allows us to avoid the information loss
caused by any normalization procedure.

Fig. 10. Illustration of an individual left hippocampal shape with its
profile vectors shown from the left side of the brain.

B. Dual surface representation

The points of the sampled surface can be considered as
a new representation of the same object which can be ob-
tained from the spherical harmonic descriptors by the lin-
ear transformation described by Equation (16). The de-
formation modes have been previously derived based on

the spherical harmonic coefficients (referred as parameter
space). To examine how the modes can be converted to the
description of the surface based on sample points (referred
as object space), we investigate the covariance matrix. In
parameter space it is defined by

3. = Cov[dc] = E[dcdc?] . (19)

Writing the same equation in object space and substituting
the transformation matrix A we obtain

¥, = Cov[dz] = E[dz dz"] = E[AdcdcTAT] = AX AT |

(20)
where dx denotes the deviation of an individual & from the
average T over the whole population. Performing principal
component analysis on X,

. Py, =A P, , (21)

and substituting Equation (16) and Equation (20) into
Equation (21) and multiplying both sides by A’ we obtain

ATAZ . ATAP, = A, ATAP, . (22)

Comparing Equation (22) with Equation (7), it can be
seen that P, and P, describe the same deformation modes
if, and only if AT A = aI, where a is a scalar and I the
identity matrix. This requirement is fulfilled if A is an
orthogonal matrix, furthermore if A is orthonormal then
a=1

In the 2-D case, columns of A are regularly sampled ver-
sions of cos(kt) and sin(kt) functions (with £ = 0...K,
and 0 < ¢ < 27) which are known to be orthogonal, since
they also build the orthogonal basis vectors of the discrete
Fourier-transformation. It follows that eigenvectors P,
and eigenvalues A, in object space can be easily computed
from those defined in parameter space using the following
equations:

P, =
A, =

AP,
al. .

P, in this case describes real eigenmodes. Thus, the ob-
tained statistical shape representation is identical to Point
Distribution Models introduced by Cootes et al. [6] with
the exception that in our case point to point correspon-
dence has been automatically approximated rather than
manually determined.

Contrary to the special 2-D case, in 3-D matrix A is non-
orthogonal because of the not perfectly regular sampling of
the spherical surface. In our application it is more bene-
ficial that corresponding deformation modes describe the
same alteration in object and parameter space, than their
exact orthogonality, hence we introduce quasi-eigenvectors
P, .

The shape statistics, as described in section V, can be
expressed by equation (9). Multiplying both sides of this
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equation by A we get the dual surface description by a set
of surface points:

Ac= Ae+ AP.b (25)

z=z2+P.'b, (26)

where P,' denotes the product AP, which represents the
matrix of modes of shape variation expressed in object co-
ordinate space. Recall that P. is the matrix of eigenvectors
in the shape descriptor space defined by the components of
the elliptic harmonic descriptors e. Thus, P,' is not a real
matrix of eigenvectors since its column vectors are also non-
orthogonal, although they still represent the same shape
deformations as eigenvectors in P.. This deviation from
orthogonality can be characterized by the ratio between
the average of the non-diagonal and diagonal elements of
P,'P,'" which was 15.2626 in our case. Therefore, weight
vectors b; of individual shapes, which express the devia-
tion from the mean model, remain the same in both shape
representation schemes.

VII. ITERATIVE SEGMENTATION SCHEME

Until now we have only described the creation of a flex-
ible 3D model including geometric shape, gray level envi-
ronment and statistics about normal shape variability. We
now perform the segmentation step by elastically fitting
this model to new 3D data sets. This is achieved with the
following two steps:

o Initialization is done by transforming the model’s coor-
dinate system into that of the new data set.

¢ The elastic deformation of the surface until it best
matches the new gray value environment.

A. Initialization of segmentation

Since the model has been built based on a normalization
to the Talairach coordinate system, the determination of
the symmetry plane of the brain and the position of the
AC/PC line becomes an integral part of the initialization.
Currently this is done manually but the determination of
the symmetry plane and the AC/PC line by can be re-
placed in future by an automatic method [14], [12], [30],
[11]. To derive the position of the midsagittal plane the
user specifies the position of 3 or more points lying on the
inter-hemispheric plane. The program computes parame-
ters of a plane which have the best least squares fit to the
given points. The more points are specified, the more ro-
bust is the fit. Having determined the plane the user finally
marks the location of the AC and PC. A translation vec-
tor and a rotation matrix are computed to transform the
model’s coordinate system into the image space of the new
data set.

B. Elastic deformation of model shape

We introduced two different representations of a surface,
one based on the spherical harmonic descriptors and a sec-
ond one based on the subdivided icosahedron. We attempt
to use the advantages of both representations in our pro-
cedure. Spherical harmonic descriptors were necessary to

find a correspondence between similar surfaces and they
also allow the exact analytical computation of surface nor-
mals by

l

X )
x> > ¢ 6<lzb .
1=0 m=-I

K 1 m
m=y 3l @
=0m

However, they only represent a global description of an ob-
ject shape. The surface points, on the other hand, give
a local representation, which is essential to carry out an
iterative refinement of the model, as will be described in
the next section. Thus, we decided to keep both represen-
tations during the matching process, the relation between
the two being tractable via the matrix A.

C. Calculating displacements for surface points

After initialization of the surface model we calculate the
displacement vector at each surface sample point which
would move that point to a new position closer to the
sought object. Since there is a model of a gray level profile
for each point, the search tries to find an adjacent region
which better matches this profile. A profile w of length
I(> np) normal to the surface is extracted at each model
point. This new profile is shifted along the model profile
in discrete steps s to find the position of the best match.
This is given as the square of the Mahalanobis distance:

a

Fig. 11. Illustration of the surface matching process. Image a shows
part of the model’s triangulated surface with longer extracted (in
black) and shorter model profiles (in grey). Image b visualizes
the computation of a suggested movement for a single surface
point.

igana(5) = (w(s) — W) By ™" (w(s) — w)

where w(s) represents the sub-interval of the extracted pro-
file at step s having a length of n,. The location of the best
fit is thus the one with minimal d3,,,,(s). Suppose Spes:
is the shift between the two profiles providing the best fit.
We choose a displacement vector dz for each model point
which is parallel to the profile, in the direction of the best
fit and has magnitude spcs. Figure 11 illustrates this pro-
cess.

(28)

D. Adjusting shape parameters

Having generated 3-D displacement vectors for each of
the n model points

dx = (dz1,dy;,dz1,. .., dz,), (29)

227



we then adjust the shape parameters to move the model
surface towards a new position. Since rotation, translation
and scale are already incorporated in the model statistics,
we do not have to deal with them separately. Of more
concern are the calculated displacements dx, as these could
freely deform the shape of the object. In order to keep their
resulting shape consistent with the statistical model, we
restrict possible deformations by considering only the first
few modes of variation. This will be solved by minimizing
a sum of squares of differences between actual model point
locations and the suggested new positions.

The shape statistics, as described by equation (26) rep-
resents the matrix of modes of shape variation expressed
in object coordinate space. We seek an adjustment db to
b which causes a deformation in eigenspace which matches
the optimal deformation x as closely as possible.

(x +dx) = + P,'(b +db) . (30)
Subtracting equation (26) from equation (30) we get
dz = P,'db . (31)

This is an over-determined set of linear equations where
the number of equations (3n) is much larger than the num-
ber of variables (the number of modes is usually restricted
from around 5 to 10). Therefore a least squares approx-
imation to the solution can be obtained using standard
methods of linear algebra. Because of the orthogonality of
P, in 2-D, the least squares solution could be obtained by
db = P,Tdx. Tn 3-D, the non-orthogonality of P,' does not
allow of solving equation (31) this simple way. With this
object, the general purpose least squares routine FO4JAF
from the NAGTM Fortran library has been applied to ob-
tain db.

The entire procedure is repeated iteratively and starts
with the average model such that b;—9 = 0. At each itera-
tion step, we compute a new set of displacements from the
match of profiles and update the shape deviation vector b
until the variation of the shape remains below a threshold
value for a certain number of iterations.

E. Shape constraints

There are two different kind of constraints we apply to
keep the resulting shape consistent with the shape model.
On the one hand, there is a limited number of eigenmodes
due to the small number of individuals and the restriction
of the number of modes. And on the other hand, after the
weights have been updated by

bt+1 = b; + dby, (32)
we constrain the components b; of b using the standard
deviation defined by the statistical model, which is given by
the eigenvalues /A; (see Fig. 7). Thus, each component of
b; 141 lying outside of the interval +a+/); will be truncated,
where the constant a is set to 2.

VIII. RESULTS AND VALIDATION OF SEGMENTATION

Figure 12.a shows the initial placement of the left hip-
pocampus model (white line) together with the hand-
segmented contour (gray line) on a sagittal 2D slice and
as a 3D scene viewed from the right side of the head. After
about 100 iterations the model gives a sufficiently close fit
to the data. The model used in this example had 5 de-
grees of freedom, and model profiles had a total length of
11 sample points while the extracted profiles a length of
19 sample points. The whole segmentation process takes
about 2 minutes on a Sun Ultra 1 workstation and runs
fully automatically after initializing the model with a new
data set.

b

Fig. 12. Segmentation result of a left hippocampus on sagittal 2D
slices and 3D views from the left hand side. Image a has been
taken after initialization, while image b illustrates the final result
after about 100 iterations.

The above procedure has been applied to all 21 data sets
where the hippocampus had been manually segmented. To
make optimal use of the relatively small data set, 21 models
have been built leaving out one shape each time and apply-
ing the technique to this specific shape. The performance
of the automatic segmentation has been tested by compar-
isons with manually segmented object shapes, which were
used as a widely accepted standard given the lack of ground
truth. A represents the model shape obtained by human
experts, B the result of the new model-based segmentation.
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Fig. 13. Overlap measure (A N B)/(A U B) in percentage calcu-
lated between manually (A) and automatic (B) segmented left
hippocampi of 21 individuals. Bars in light grey illustrate the
measure at initialization and in dark grey after deformation. In
image a segmentations have been carried out with the leave-one-
out method, while in b all shapes have been included to build
the model.
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The overlap measure (A N B)/(A U B) shown in Fig-
ure 13.a is calculated on binary voxel maps, created by
intersection of the object surfaces with the voxel grid. We
therefore avoid the discretization errors by projecting the
surfaces back to a voxel grid. The resulting measure is very
sensitive to even small differences in overlap, both inside
and outside of the object model, and therefore a strong test
for segmentation accuracy. For example, two voxel cubes
of a volume of 10 x 10 x 10 shifted by one voxel along
the space diagonal direction results in only a 57% over-
lap (729/1271), although the mean distance of surfaces is
roughly one voxel.

The calculation of the mean distance of surfaces can be
determined in an elegant way directly from the coefficients
of the spherical harmonic expansion using Parseval’s theo-
rem relating the energy of the one-dimensional continuous
signal f(t) to its Fourier coefficients (ay, by):

2 oo
—/ ®)dt = 30 > (a2 +b7)
1

The equation also applies to other orthogonal basis func-
tions, such as spherical harmonics, and to higher dimen-
sions as well. This way the average distance of a closed
surface x(u) from the coordinate origin can be described
as

]{Ilw IIZdu—ZZw ’=47-MSD, (34)

=0 m=-1

(33)

where MSD stands for mean squared distance measured
from the origin of the coordinate system. Similarly, the
average distance between two surfaces given by x;(u) and
x>(u) or cjf and cjy can be written as

fnml 2w ||2du—22|cu . (35)

=0 m=—1

providing an elegant way to calculate an error measure
based on average surface distance from the spherical har-
monic coefficients of the model and the segmentation result.

12345678 9101112131415161718192021

1234567 89101112131415161718192021
Fig. 14. Average distances in mm calculated between manually and
automatic segmented left hippocampi of 21 individuals. The bars
in light grey illustrate the mean distance of the initialization of
the model in a new data set and the dark bars the final mean
distance of surfaces to the model surface. The length of the
hippocampus is about 40 mm. In image a segmentations have
been carried out with the leave-one-out method, while in b all
shapes have been included to build the model.

Figure 14.a nicely illustrates how the mean distance of
surfaces is reduced by the iterative elastic deformation of

the model. Again, we take the human expert’s segmen-
tation as ground truth and compare its surface with the
result of the automatic segmentation. The bars in light
grey illustrate the mean distance of the initialization of the
model in a new data set, and the dark bars the final mean
distance of surfaces to the model surface. The horizontal
axis lists the series of 21 normal controls and schizophrenics
that were used in this study.

To illustrate the performance drop caused by using sta-
tistically suboptimal models, obtained from a training set
being too small represent the entire class of shapes, we
also show segmentation results in Figure 13.b and Fig-
ure 14.b which has been computed whit a model including
all 21 shapes. Experiments with the statistically optimal
2-D model of the corpus callosum showed, that including
a shape into a saturated model does not significantly in-
fluence the quality of the segmentation. However, the re-
stricted size of our training set did not allow to generate
such saturated shape models even after including all avail-
able samples, leading to slight degradation of the segmen-
tation results. In other worlds, our statistical 3-D models
does not contain enough information to represent all pos-
sible shapes of a certain organ calling for the compilation
of a larger training set.

IX. CONCLUSIONS

We present a new model-based 3-D segmentation tech-
nique that provides automatic segmentation of objects from
volumetric image data. Tests with a large series of vol-
umetric image data taken from different patient studies
demonstrated that the method was robust and provides
reproducible results.

The new technique uses elastic deformation of surface
models, which carry statistical information of normal geo-
metric shape variation and statistics about gray levels near
the object surface. Our models has been derived from a se-
ries of interactively segmented training data sets. Thereby,
the model represents a real anatomical shape rather than a
simple geometric 3-D figure as obtained by CAD modeling,
for example. Furthermore, information about the statistics
of a normal shape deformation helps to constrain the elas-
tic deformations. This is an important advantage since
3-D snake and balloon techniques are known to be prone
to elastically deform to any smooth object shape and to
be trapped by disturbing attractors not part of the sought
shape.

Our approach has been significantly influenced by the
research work of Cootes, Taylor et al. [5], [6]. However,
the extension of their originally 2-D method to a true 3-
D volumetric segmentation technique required various new
solutions to single steps of the procedure.

Parametric shape representation: The most prominent dis-
tinction to [6] is that we use a parametric 3-D object shape
representation rather than a point distribution model, and
that shape statistics is calculated in the space of these
shape parameters rather than point coordinates.

Statistical shape models: To overcome the problem of get-
ting a reproducible interactive definition of a set of homol-
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ogous points in 3-D space, the approach presented herein
proposes an automatic definition of surface meshes with
homogeneous distribution of nodes defined in a standard,
canonical position.

Object alignment: We define the position and orientation
of objects in a global coordinate system which is is defined
by the type of application. Small translations and rotations
of objects with respect to this coordinate system are part
of the statistical model. Therefore, we do not separate a
similarity transform for alignment and an elastic transform
for remaining shape deformations as in [5].

Dual shape representations: Our approach makes use of
two shape representations which are used in a vice-versa
fashion, taking advantages of shape descriptors holding a
compact global object characterization and of a set of sur-
face points giving access to local shape properties.

Similarly to the experience of Cootes et al. [5] we too
found that the modeling of gray level information near the
object boundaries provides valuable additional information
for a model placement and improves the robustness and
stability of the iterative optimization scheme. An early
version of our segmentation [26] used an energy minimiza-
tion concept similar to standard snake techniques. This
method was very sensitive to the quality of the initializa-
tion, and prone to be trapped by local energy minima. The
additional use of gray-level profile information represents a
strong restriction to the number of possible solutions and
was demonstrated to be robust even in the presence of con-
siderable mismatch between initialization and a new object.

Validation has been done by defining shape distance met-
rics and comparing the results of interactive outlining by
experts, which is a common “gold standard” for compar-
isons, with the shapes obtained by model-based segmenta-
tion (see Fig. 14).

We noticed that the convergence is faster if only a small
number of modes (usually 5) are involved, while a larger
number of modes (usually 10) is required to find the exact
contour. Thus, we plan to apply a relaxation method which
gradually increases the number of modes. The convergence
criteria is set by the size of the deformation of a surface.

The fundamental difficulty of the application of paramet-
ric statistical models for 3D organ segmentation remains
the efficient establishment of correspondence between the
single objects of the training set. This is a major research
area at the moment and different approaches are under in-
vestigation [27], [10], [1]. The method proposed by Kotch-
eff [10] is of particular interest, as it addresses not only the
problem of correspondence, but at the same time the ques-
tion of the underlying distribution model for the shape pa-
rameters under investigation. This is another basic matter
of concern if Principle Component Analysis applied. Using
PCA implies a Gaussian noise model on the parametriza-
tion, which cannot be expected in general. The idea to
use reparametrization for correspondence establishment in
order to change the underlying parameter error distribu-
tion would offer an fundamentally new way for estimating
correspondence in a whole shape population and is cur-
rently investigated. As an alternative, Independent Com-

ponent Analysis looking for higher order correlations in the
data can also be applied to cope with the problem of non-
Gaussian distribution of the analyzed shape parameters.
The application of more sophisticated methods will, how-
ever, be limited by the relatively small number of individ-
ual samples as compared to the degrees of freedom of the
model.

The set of statistical models and the automatic and effi-
cient segmentation technique (only a few minutes per data
set) open new possibilities for the processing a large num-
ber of data sets as collected in clinical studies, for exam-
ple in schizophrenia research. This will provide new sta-
tistical models with increased number of samples for nor-
mal controls and for different patient categories. These
statistical models represent the first step in building an
anatomical atlas based on a set of surfaces of anatomi-
cal shapes. Whereas the current segmentation technique
would segment a series of objects independently, a future
development could provide a combined modeling of several
anatomical structures. The representation of anatomical
objects by normalized shape descriptors further exploits
its access to morphometric parameters. After segmenting
a new set of image data, morphological properties of ob-
jects are available for comparative studies.
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Abstract

This paper describes a new model-based segmentation technique combining desirable properties
of physical models (snakes), shape representation by Fourier parametrization, and modelling
of natural shape variabilityFlexible parametric shape modedse represented by a parameter
vector describing the mean contour and by a seigénmodes of the paramete&fsaracterizing

the shape variation. Usually the segmentation process is divided into an initial placement of
the mean model and an elastic deformation restricted to the model variability. This, however,
leads to a separation of biological variation due to a global similarity transform from small-scale
shape changes originating from elastic deformations ofithimalized model contours onlyhe
performance can be considerably improved by building shape models normalized with respect
to a small set of stable landmarks (AC-PC in our application) and by explaining the remaining
variability among a series of images with the model flexibility. This way the image interpretation

is solved by anew coarse-to-fine segmentation procedbesed on the set of deformation
eigenmodes, making a separate initialization step unnecessary. Although straightforward, the
extension to 3-D is severely impeded by difficulties arising during the generation of a proper
surface parametrization for arbitrary objects with spherical topology. We apply a newly developed
surface parametrization which achieves a uniform mapping between object surface and parameter
space. The 3-D procedure is demonstrated by segmenting deep structures of the human brain
from MR volume data.

Keywords: 3-D deformable models, 3-D shape analysis, segmentation of multidimensional
images, statistical analysis of anatomical objects
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1. INTRODUCTION requiring tedious manual interaction by a human specialist.
Elastically deformable models (snakes) (Katal., 1988)
Segmentation of anatomical objects from large 3-D medical have been proposed as tools for supporting manual object
data sets, which result for example from routine magnetic delineation. While such procedures can be extended to 3-
resonance imaging (MRI) examinations, represents one of theD (Terzopouloset al, 1988; Cohenet al, 1992), their
basic problems of medical image analysis. In some limited initialization becomes difficult. Most often, the initial guess
applications, segmentation could be achieved by minimal must be very close to the sought contour to guarantee a
user interaction, providing procedures for the interpretation successful result (Neuenschwandsral, 1994). While
of medical scenes, which can be applied routinely (Gerig a careful and time-consuming analysis is acceptable for
et al, 1991). For general applications, however, adequate outlining complex pathological objects, no real justification
segmentation cannot be obtained without expert knowledge,for such a procedure can be found for the delineation of normal,
healthy organs, as needed in radiation treatment planning, for

*Corresponding author example.
(e-mail: szekely@vision.ee.ethz.ch)
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The primary reason for the need of a precise snake modes, evaluated from statistical analysis of a training sample.
initialization is the presence of disturbing attractors in the  While the idea of restricted elastic deformation of an
image, which do not belong to the actual object contour but average surface model is very promising, the parametrization
force the snake into local energy minima. Ifthe deformation of of shapes by displacement of corresponding points on their
a snhake could be limited to shapes within the normal anatomic surfaces is not a convenient technique. For a large training set
variation of organs, such local minima could be avoided. containing many different anatomic structures, the generation

Elastically deformable parametric models offer a straight- of this parametrization seems to be very tedious and, because
forward way for the inclusion of prior knowledge in the image of the lack of a reasonable automatization, can be a source
interpretation process by incorporating prior distributions of errors. A similar modal analysis, however, can be
on the elastic model parameters to be estimated. Such gperformed for other contour parametrization techniques, as
procedure has been implemented, for example, by Vemurifor example for the 2-D Fourier descriptors which were
and Radisavljevic (1994) using a hybrid primitive called originally proposed by Persoon and Fu (1977) and Kuhl
deformable superquadrics constructed in a multi-resolution and Giardina (1982). Staib and Duncan have demonstrated
wavelet base or by Staib and Duncan (1992a) for deformablesegmentation by parametrically deformable elastic models
Fourier models. for 2-D outlines (Staib and Duncan, 1992a) and 3-D object

For complex shapes described by a large number of surfaces (Staib and Duncan, 1992b); their 3-D model was,
possbly highly correlated parameters, the usage of such priorshowever, limited to star-shaped surfaces. Here, we propose
may become tedious. The modal analysis as proposed bya novel technique based on modal analysis of the parameter
Pentland and Sclaroff (1991) offers a promising alternative vector of object contours, providing the desirable restriction
by changing the basis from the original modelling functions of elastic deformations. The method uses automatic shape
to the eigenmodes of the deformation matrix. This way the parametrization for any surfaces with spherical topology, thus
dominant part of the deformations can be characterized by theavoiding the problem of finding corresponding points among
few largest eigenmodes, reducing the dimensionality of the different boundaries.
object descriptor space substantially. Such modal analyses The paper is organized as follows. Section 2 discusses
have been successfully applied to medical image analysis,the new 2-D modal analysis procedure and the model-based
for example, by Sclaroff and Pentland (1994) or Nastar and segmentation by restricted deformation. The procedure is
Ayache (1994). illustrated with the segmentation of the corpus callosum

Cooteset al. (1993) combined the power of parametric structure on mid-sagittal MR images of the human brain.
deformable shape descriptors with statistical modal analysis.Section 3 proposes several improvements of the procedure.
They use active shape models, which strictly restrict their Section 4 generalizes the method to 3-D, addressing the
possible deformations according to the statistics of training increased complexity requiring new mathematical and numer-
samples. Object shapes are described by the point distributiorical solutions. Section 5 finally gives the conclusions and
model (PDM) (Cootes and Taylor, 1992), which represents the future directions for the development of automated, model-
object outline by a subset of boundary points. There must bebased segmentation techniques.

a one-to-one correspondence between these points in the dif-

ferent outlines of the training set. After normalization to size, 2. MODAL ANALYSIS OF 2-D FOURIER MODELS
orientation and position they provide the basis for the statistical

analysis of the object shape deformations. The mean pointin this section we first summarize the mathematics of Fourier
positions and their modes of variation (i.e. the eigenvectors descriptors for the parametrization of simple closed curves,
corresponding to the largest eigenvalues of their covarianceand their use in snake-like elastic matching procedures. We
matrix) are used for delimiting the object deformations to a summarize how to apply the modal analysis to 30 normalized
reasonable linear subspace of the complete parameter spaceutlines of the corpus callosum extracted from 2-D mid-
They propose to solve the 3-D shape analysis problem by asagittal MR images. The proposed procedure is a combination
slice-by-slice approach (Hi#it al, 1992) or by extending the  of an initialization using an average model based on template
PDM concept for the description of 3-D shapes (ldilal, matching technique followed by an elastic deformation re-
1993). Similar parametrization based on point-by-point cor- stricted to the major eigenmodes. We demonstrate that this
respondence was proposed for the 3-D shape analysis of braiseparation of the similarity transform (translation, rotation
structures by Martiret al. (1994). By using the free vibration and scaling) from the elastic deformation often leads to
modes of the nodal displacement matrix of an elastic body, unsatisfactory segmentation results, calling for a modified
they even separate physical deformation modes which can besegmentation process that provides a unified framework for
modelled by elastic deformation models from experimental initialization and elastic model matching.
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2.1. Parametrization of 2-D contours with Fourier Staib and Duncan (1992a) propose a different energy
descriptors model, which makes use of the normal direction of the

The contour of a simply connected object (without holes) is parametrized curve and of the image gradient to achieve

represented by a closed curve with coordingtes), y(t)), a higher selectivity. Normalizing the image potential by

with t ranging from O to 2r. The coordinate functions can be the contour length allows contraction and dilation of curves
expanded in a Fourier series. Restricting the series to degreavithout affecting the energy function.
K results in the parametric description

2r
Bt p)= =+ (/0 Vl(r(t,p))-fl(t,P)dt>

_ ([ xtp
e = (y(t, p)) 2 1
. f(t, dt
Co o1 \ G d sin(k) The sign of the energg, (r) will decide between segment-
L . _ing bright objects on a dark background or vice versa. The
Ig;oc;utllne is now completely described by the parameter polarity of the boundary can be neglected by using the absolute

value of the dot product in the integration term.
One has to realize that cutting the Fourier expansion at
a finite degree already serves as a regularization, leaving
The parameters can be eas“y calculated from the Samp”ngout hlgh frequency variations of the coordinate functions.
points of the outlineqo, o, . .., ge With go = gp (We use However, the internal energy cannot be neglected, basically
maximally dense sampling of the boundary, as provided by the for two reasons:
image raster). The resulting parametric shape description can
be made invariant under similarity transformation by shifting,
rotating and scaling according to the actual displacement,

orientation and size of the ellipse determined by the first degree ] _ )
terms of the Fourier series. Similarly, the starting point is Whereas self-crossings of the outline are expensive to detect,

p:(ao aK,b;]_...bK,C()...CK,dl...dK)T

e even Fourier models of low degree can generate sharp
cusps, and
e the parametrized contour can cross itself.

moved to a canonical position. discontinuities of the tangent can be evaluated from the curve
parametrization. At such locations the curvatur@y, p)
2.2. Fourier snakes and its derivativex (to, p) both become infinite. While high

The snake technique as proposed by Ketsal. (1988) tries curvature of the boundary should not be excludegriori,
to find the position of a curve(t, p), which minimizes the the curvature derivative is chosen to indicate discontinuities

energy (see also Staib and Duncan, 1992), providing the following
expression for the internal energy of the Fourier snake:
E(p = EC(t. p) =EE p)+ Ep(rt, p).

21
Ep(r(t,p) = At -l p)lPdt.
By varying p, the curve deforms itself to minimize the p(r(t. p)) /0 i, p

Image energy For the minimization of the total energy function we used the

2 E04JBF routine of th&dAG™ library (1988), using a quasi-
E(r) = / P(r(t, p)) dt, Newton algorithm for finding an unconstrained minimum of
0 a function of several variables.

searching for an optimal position in the image, described by ]
the potentialP(r(t, p)). A typical choice takeP(r(t, p)) 2.3. Model-based segmentation of the corpus callosum

equal to the negative magnitude of the image gradient: We tested the proposed procedure on a collection of 30 mid-
sagittal slices of MRI brain images. A few images from the

P(rt,p) = — VI, p)l, training set are shown in the upper row of Figure 1. Our goal
was the automatic segmentation of the outline of the corpus
wherel is the smoothed image. The deformation tegg1(r) callosum from grey scale images.

is called the internal energy of the snake and serves as a

regularization force. It restricts the elongation and bending 2.3.1. Model building

of the snakes, and normally depends on the first and secondrhe corpus callosum outline had to be segmented and
derivatives of the curve(t, p). parametrized for each image of the training set. We used
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Figure 1. Training set for the analysis of the corpus callosum on mid-sagittal slices of MRI brain data sets. The upper row shows a region of
interest of the original slice, the lower row contains the segmented outline in a standardized invariant configuration (Fourier coefficients up to
degree 100).

1| (L]

Figure 2. Template-matching example to find a similarity transform between the mean model curve and the gradient magnitud@)image. (
Shows the original imagepj its Gaussian smoothed versian & 5 pixels) and €) the corresponding Canny gradient magnitude image,
respectively. Ind) the optimal fit found by template matching is overlaid with the edge image.
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Constrained elastic Fourier models 23

Figure 3. Segmentation examplea) illustrating segmentation failures. Images in the top row illustrate the initial placement of the model
curves (using template matching), the bottom row shows the segmentation reswgarii@sitial model curve is used for the different images.

the Fourier snake program as described above to perform thisCanny edge map on a relatively large scale, since the rigid
task, with a manual initialization of the optimization. The transformation does not allow for elastic shape deformations.
segmentation results can be seen in the lower row of Figure 1.Figure 2 illustrates the result of the initialization by template
Fourier coefficients up to degree 100 have been used for thematching. Figures 2a—c show the originalimage, the Gaussian
description. The resulting contours of the training set have smoothed imageo( = 5 pixels), and the Canny gradient
been normalized to be invariant to translation, rotation, scaling magnitude, respectively. Figure 2d presents an overlay of
and the starting point of the parametrization. the optimal fit between model curve and gradient image.

The mean model has been determined from the normalized
outlines by simply averaging their parameters. In order to 2.3.3. Segmentation by restricted elastic deformation
determine the major deformation modes defined by the aboveafter initialization, we apply a modified version of the Fourier
training set, we performed a principal component analysis of snakes program. Instead of optimizing in the complete space
the covariance matrix of the normalized Fourier coefficients. of the normalized Fourier coefficients, the optimization has
As after the first few eigenvectors the variance becomes verybeen restricted in order to allow only deformations which
small, the few largest eigenmodes have been taken to build aare prominently represented in the training sample. In
flexible model that explains the biological variability of the  the first step the eigenvectors of the parameter covariance

shape of the corpus callosum outline. matrix are selected as a different set of basis functions in
place of the harmonics. The restricted variation is achieved

2.3.2. Initial placement of model contour by template by choosing a subset of eigenmodes, usuallyrtHargest
matching ones, and calculating the optimization in this linear subspace.

A segmentation of the corpus callosum from grey-valued Starting with the result of the template matching, the model is
images based on the deformation of the mean model requireslastically deformed until it fits (in a local optimum) the edges
a suitable initialization. Due to the normalization of the along the object contour.

Fourier coefficients, the average model only expresses shape The procedure described above provided satisfactory seg-
deformations up to a similarity transformation. Therefore, mentation results in many cases. In some cases, however, we
the initial placement has to provide a sufficiently good match found it difficult to find the correct contour. Figure 3 shows a
between the model and the edges in the grey-valued imagefew examples of unsuccessful segmentations. Analysis of the
A standard template-matching procedure was chosen to solveesults has shown that the separation of the similarity transform
this first optimization problem by equidistantly sampling the (in the initialization step) from the elastic deformation is
possible parameters of the similarity transformation within a mainly responsible for this failure. As the models have
reasonable range. The goodness of fit was calculated for abeen normalized before the statistical analysis, translation,
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rotation and scaling have actually been excluded from the
elastic deformation step, forbidding minor corrections of the
similarity transform determined by the template matching in
the initialization step. Restricting the deformations to the
subspace of the dominant eigenmodes made this situation
even worse by not allowing corrections through free elastic
deformations. This has led to the large segmentation errors
demonstrated by the above examples.

The following section describes how these problems can
be solved by incorporating the similarity transform into the
analysis of biological variability. This way all covariation of
the pose and elastic deformation parameters can be handleq
in a consistent way, too. The selected solution also avoids the
somewhat artificial separation of the image analysis process

into an initialization and elastic matching, leading to a two-step
coarse-to-fine segmentation procedure.

3. IMPROVING FOURIER SNAKE SEGMENTATION

3.1. Alternative initialization techniques
One could try different ways to avoid the segmentation
problems analyzed in the previous section.

e The desirable mixing of the effects of similarity trans-
form and elastic deformation could be achieved by the

incorporation of eigenvalues belonging to the the largest .. soum

eigenvectors into the initialization (template matching)
procedure. However, the dimensionality of the sampled

search space would become far too high and would .04

create, especially in view of a generalization to 3-D, an
unacceptable computational burden.

e One could also try to extend the parameters of the elastic

deformation with translation, rotation and scaling. This
would lead to a higher dimensional local optimization
problem without allowing the handling of the optimiza-
tion of the parameters in one coherent framework.

Figure 4. Position of the anterior commissure (AC) and the posterior
commissure (PC) on a mid-sagittal MRl image slice. The connecting
line represents the unit vectoof the external anatomical coordinate
system.
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Figure 5. The 50 largest eigenvalues of the covariance matrix
calculated from the Fourier parameters of the 30 curves in the training
set.

The selected optimization procedure finds the nearest lo-

cal optimum on a high-dimensional strongly non-convex 3.2. Model incorporating full biological variability

goal function. This makes the procedure highly sensitive We expect for images representing anatomy thatdtaive

to non-desired local optima. We are currently experi- position, rotationand size of healthy organs is restricted
menting with alternative global optimization techniques in a similar way as theielastic deformation If we could

as for example genetic algorithms as proposed by Hill define a coordinate system fixed to the anatomy, there would
and Taylor (1992) and the taboo search (Reeves, 1993)be no reason for an unrestricted similarity transform which
borrowed from discrete optimization, which may provide precedes the elastic matching. The Fourier descriptors of
some improvement. However, one should realizettieat ~ the organ outlinesriginally contain this informationbut we
major problem does notlie inthe initialization procedure  suppress it by normalizing the coefficients. In the case of
The template matching usually provides a reasonable the corpus callosum, the AC/PC line is a generally accepted,
first approximation using the mean model, which still well-detectable geometric feature of the mid-sagittal images,
leads to unsatisfactory results due to the separation ofwhich represents such a standard coordinate system. The line
the similarity transform and the elastic deformation de- from the anterior to the posterior commissure (AC/PC line) as
scribed by the principal modes of the Fourier coefficients. illustrated in Figure 4 has been manually extracted for each
This problem is addressed in the next paragraph. image of the training set. After determination of the Fourier
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Figure 6. The upper row shows the segmented outlines of the training set with (left) and without (right) normalization of the pose parameters.
The lower row shows the corresponding mean models.

coefficients, we apply normalization only to fix the starting eigenvalues are plotted in decreasing order in Figure 5. One
point of the curve parametrization. The standardization of the can see that the remaining variation after the 12th eigenvalue
images, necessary for the determination of the deformationbecomes negligible. Accordingly, all deformations have been

modes, is based on a normalization of the AC/PC line to an restricted to the 12 largest eigenvectors.

e unit vector. After that, the same statistical analysis of the  Figure 6 illustrates the determination of the mean model

test set can be performed as previously explained, providing aby comparing the results using the normalized outlines as de-
mean model (now including its relative position and size to the scribed inthe previous section (left side) and the average model
AC/PC line), and the deformation modes which incorporate resulting without normalization presented in the anatomical

the parameters of the similarity transform, too. The resulting reference frame (right side). One can see the variation of the
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for the following local optimization step. One should realize
that the larger the number of eigenmodes participating in
this coarse step, the better the initial fit will be in the
following step. On the other hand, the computational burden
grows exponentially with the dimensionality of the sampled
parameter space. The number of eigenmodes considered in
this step can be selected by trading the fit quality and the
computational requirements.

On the fine level the segmentation is performed in the ho-
mogeneous parameter space of the eigenvectors corresponding
to the largest eigenvalues, now choosing a larger number
of eigenvectors than on the coarse level. Due to the full
incorporation of the parameters of the similarity transform
into the eigendeformations, the fine tuning of the model pose
can be performed within the variability determined by the
training set. Figure 8 shows the results of the modified

Figure 7. The first four eigenmodes of the deformations of the 30 Segmentation procedure, which achieved perfect results in
objects in the training set. The calculations are based on contoursg|most all cases.

represented by Fourier descriptors, which are normalized only with One should mention that in some applications, the iden-

respect to the choice of the starting point. The deformation range tification of the small individual variations of the contour
amounts tat+/2 eigenvalues. . L
outline, which is not represented even by the whole set of
the eigenmodes, is desirable. In this case our strategy can
be extended with an additional finer level by applying an

pose of the training samples in the external coordinate system,nrestricted deformation of the parametrized snake using the
Atthe same time, much more characteristic shape features argegsyt of the previous two levels as initialization.

retained in the average outline if no normalization is performed

before the training. , . 4. 3-D FOURIER MODELS OF HUMAN BRAIN
Figure 7 illustrates the deformations according to the first STRUCTURES

four eigenmodes, with deformations in the rangezo§/2

eigenvalues. It shows how the pose and elastic deformationgyy goal is the generalization of the improved 2-D procedure
parameters are mixed together in the dominant eigendeformayg 3.p. The newtool should allowaell reproduciblesegmen-

tions. tation of objects in volume data withinimal human interac-
tion. This section describes the first steps in this direction, the
3.3. Segmentation generation of 3-D Fourier models from manually segmented

The determination of the AC/PC line now becomes part of training data, and the use of unrestricted 3-D Fourier snakes

the segmentation, since the model is built based on a normal-for elastic matching in grey-valued volume images. As in the

ization to these landmarks. The AC/PC line is determined previous section, we first summarize the basic mathematics of

manually for the image under analysis. The flexible model, the 3-D Fourier snakes, and then show first results on some

characterized by the mean contour and the eigenmodes, nowMRI brain data. The major problem, findinghamogeneous

incorporateshanges of the position and local deformations parametrizationof surfaces ofarbitrarily shaped objectsis

of the generic model, which makes the initialization step solved by applying averyrecently developed new parametriza-

obsolete. In order to make the optimization robust against tiontechnique. It overcomes limitations given by other surface

local extrema we appliedtavo-step coarse to fingtrategy. parametrization schemes, e.g. the torus topology presented
In the first step on the coarse level we use a procedurein Staib and Duncan (1992b). The following description

similar to template matching, as previously described. How- is guided by the example of segmenting deep grey matter

ever, we now use a small set of a few dominant modes andstructures of the human brain from MR volume data.

calculate the best match in this linear subspace of major

deformations by equidistantly sampling the eigenvalues of the 4.1. Description of surfaces by spherical harmonic

selected deformation modes in a reasonable range. This way functions

the complete parameter space is explored, and the result ofThe description of the surfaces of simply connected 3-D

this coarse segmentation can be used as a reliable initializatiorobjects in an arbitrary basis can be performed similarly to the
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Figure 8. Segmentation of the corpus callosum using the manually determined AC/PC line as a reference coordinate system for model building
and segmentation.a) Shows the initialization, resulting from a coarse match in the subspace of the largest four deformation imedjes. (
lllustrate single steps of the optimization in the subspace of the largest 12 deformation modes (allowing fine adjustments) and the final result.

2-D case. The surface will be parametrized by two variables, degreé and ordem, see Greiner and Diehl (1964)) as a basis,
the & and¢ polar parameters, and will be defined by three the coordinate functions can be written as
explicit functions K

k
X©. $) [0.6.m=> Y V6,9,
10,0 = | y©. om
2(6, ¢) where om
We emphasize that this is not a radial function. If we select q = c);:zm
the spherical harmonic function¥,T denotes the function of e
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Figure 9. A simple functionU — R2, visualized by facetting the surfaces in triangles.

We again restricted the expansion to the fi¢st- 1 terms.

In the following we summarize the surface parametrization
When the free variablesand¢ run over the whole sphere  procedure which is described in detail in Breohler et al.
(e.g.0 =0...7,¢ =0...2r—see Figure 9, left), the point (1992, 1995).

r(6, ¢) runs over the whole surface of our object (Figure 9,

right). The sphereQs is considered a perfectly symmetric 4.2. The surface data structure
surface without any singular points or preferred directions.

Medical CT or MRI images are examples of volumetric
The surface is then described by the parameters

data. For each cuboidal cell (volume element or voxel)
in a certain volume we have one or more measurements.
When segmentation succeeds, one anatomical unit can be
characterized by a binary data volume, in which every voxel
contains either 1, which means it belongs to the unit, or O,
One has to realize that the Fourier parametrization is just M&@ning itis in the background. The object is then the set of
one possibility for the parametric description of contours. L Voxels and can be pictured as a collection of small cubes,
Alternative methods, for example deformable superquadrics,

adopting thecuberille notion (Hermanret al, 1979). The
have also been proposed in the literature (Terzopoulos angsurface of a voxel object is a set of unit squares, all parallel

0 ~0 .0 -1 0 1 -1 0 1
p = (Cxoy Cygs Cz0> Cxg s Cx1, Cx1s Cyq 75 Cyq, Cy7,s

-1 0 1 —K KNT
Cz1 7 C29s Czps - - - Cxg -+ C2i) |

Metaxas, 1991). We would like to emphasize that any reason-t© 0ne of the three coordinate planeg xzor xy. The edges

able parametric shape model can be used within the presente@nd vertices that bound the faces are also parts of the surface,
formalism. We preferred to use Fourier parametrization as

which is represented as a data structure that reflects geometry
it, in contrast to superquadrics, imposes no predetermined®S Well as neighbourhood relations.
symmetries upon the object surface and has no preferred

directions in space. Itis complete; no additional formalisms 4.3. Parametrization of closed surfaces

are needed to rotate, translate, taper, bend, twist or locallyA key step in the shape description of a surface is its mapping
deform the model, as the surface of any simply connectedtothe parameter space, the sphiege Any pointonthe surface
object can be represented to any degree of detail in the simplemust map to exactly one point on the sphere, and vice versa.
yet comprehensive formalism.

The location on the sphere corresponding to a surface point
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defines theparameterof the point. It can be represented as 4.3.3. Objective function
two polar or three Cartesian coordinates, related through theThegoalis to minimize the distortion of the surface netin the

bijection mapping. It must tend to make the shape of all the mapped
faces as similar to their original square form as possible. To
sing cosg fulfil this goal perfectly, a facet should map to a ‘spherical
v = sing sing | . square’ (see Figure 10). This can in general not be reached
cosh for all faces, and we need to trade off between the distortions

made at different vertices. We observe that the ideal shape

Mapping a surface to the sphere assigns parameters to everggny face, a spherical square, minimizes the circumference
surface point; therefore we call jtarametrization The i—o S ofany spherical quadrilateral with a given area. Atthe
mapping must be continuous, i.e. neighbouring points in one same time it maximize¥";_; coss.. These two measures are
space must map to neighbours in the other space. Itis possiblegimilar, but not equivalent if summed over the whole net, as
and desirable to construct a mapping that preserves areaghey trade off distortions differently. The second measure pun-
Narrowing to the cuberille notion, Figure 10 symbolically ishestoo-long sides more and honours too-short sides less than
illustrates this mapping of a selected facet from the object the first one, which is a desirable effect. It is also simpler to
surface to a portion a. It is not possible in generalto map ~ calculate; the cosine of a side isthe dot product of its endpoints.
every surface facet to a spherical square: distortions cannot
be avoided, but they should be minimal. 4.3.4. Starting values

It emerges that the parametrization, i.e. the embedding of The variables in our optimization are the positions on the unit
the object surface graph into the surface of the unit sphere, is asphere to which the vertices are mapped, anitial values
constrained optimization problem. The following paragraphs mean a first rough mapping of the object’s surface to the
define the meaning ofariables objective(goal function), sphere. It is important for the optimization algorithm that
constraintsandstarting valuesn this context. the sphere be completely covered with faces and none of them
overlap, even in the beginning.

Arbitrarily, two vertices are chosen as poles and a surface
i ) . o path connecting them as a date line. Discretizing and
The coordinates of all vertices vary in the optimization. solving the Poisson equations) — 0 andA¢ = O—uwith

Using two (e.g. spherical) coordinates per vertex would be o, qhrate boundary conditions for the poles and the date
the most economic representation with respect to storagejine_vields valuesé. ¢) for each vertex. Figure 11 shows

space, but it would make the equal treatment of all spatial y,q initia| parametrization thus defined for the small object
directions difficult and pose the problem of discontinuity and ¢4, Figure 10.

singularities in the parameter space. We prefer Cartesian  1q gptimization moves the vertices around on the sphere.
coordinatesu, v, w) for representing alocation on the sphere, The poles lose their special meanings, and all faces get
introducing one virtual degree of freedom per vertex. The equal area. The mapping converges to a state minimizing
number of variables is three times the number of vertices. overall distortions. The same result is reached from all

pole assignments (modulo rotations). Figure 12 presents the

4.3.1. Variables

4.3.2. Constraints parametrization result for the same small object.
Two kinds of equalities and one kind of inequality constrain
the values that the variables can take. 4.4, Elastically deformable Fourier surface models

Using the parametric surface description previously presented,

(i) Every vertex must lie on the unit sphere in parameter the parametrized Fourier snake concept can be generalized

space, i.aJ2~|—U2+w2 — 1. This constraint Compensates from 2-D to 3-D. The Concept is is similar to the teChnique

for the virtual degree of freedom and forces. proposed by Staib and Duncan (1992b). However, a surface
can be arbitrarily sampled based on the varialbleend ¢
(there is no distinguished orientation or position of poles),
and the surface energy function can similarly be defined and
evaluated as in the 2-D case. The image potential can still use
the complete (vector-valued) gradient information

(i) We ask forarea preservationany object surface region
must map to a region of proportional area on the sphere.
We include one constraint for each elementary facet: the
area of the spherical quadrilateral must bedivided by
the total number of faces.

(iii) All guadrilaterals on the sphere must remain convex; no
anglea, may become negative or exceed Ei(r®,¢,p) == //A VI (@, ¢,p) n(r@, ¢, p)dA
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Figure 10. Every facet on the object surface maps to a spherical quadrilateral. Its sides are geodesic arcs on the sphere. On the unit sphere, a
sides is equal to the corresponding centre angle. The quadrilateral in this illustration is special in that its sidgsare equal and its angles
ap. ..z are equal: itis a spherical square.

el

Figure 11. Optimization starts in this state, which is plotted in three wagsThe surface net is plotted in thick lines on the spherical parameter
space. if) ¢ and co® are interpreted as Cartesian coordinates, giving a true-area cylinder projection. The horizontaltiheseathe poles.
(c) Conversely, the globe coordinate grid is drawn over the object. For comparison, one vertex is marked with a black dot in all diagrams.

where dA is the surface element amdis the surface normal  resulting in the regularization term
vector. Usinga = dr/d¢ x ar/96 = ndA/d¢ do, we derive

T 2w
. Ep(r) = / / IVk(9,6. ) - a(, 6, p)I|* dg do.
JoJsT VI®. ¢.p) - a0 ®, ¢, p)) dp do o Jo P P
ST IZ 1ar®, ¢, ) dp do After the definition of the total energy, the problem is
completely analogous to the 2-D case: we have to determine
the parameters that generate a surface which minimizes this
fenergy. We used exactly the same minimization procedures
as in the 2-D case.

Ei(r) ==+

We use the internal energy terBn(r(9, ¢, p)) to avoid
sharp discontinuities in the surface normals. The curvature o
the surface can be described by the principal curvaiyraad

x>, which are combined to For the_ average surface before ano_l after the deformatl_on,
the mapping will not meet the constraint of constant density

exactly, nor will it exactly minimize distortions. However, the

— [e2 .2 ; N .
Kk = /K] + K3, mapping has been individually adapted to each of the training

objects, which are chosen to span the whole range of expected
creating a measure for the curvature at every point on thebiological variability. A smooth interpolation between them
surface. As in the 2-D case we want to limit its derivative, can be expected to reproduce close to uniform and optimal
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Figure 12. The parametrization achieved by the optimization, visualized as in Figure 11.

Figure 13. Manual segmentation of the putamen, the caudate nucleus and the globus pallidus. The images show a coronal slice from a 3-D data
set @) with overlay of the contours of segmented objetis (

parametrization for the fitted surface. Exact uniformity and allow their segmentation, which clearly demonstrates the need
optimality is a means to establish correspondence among thefor model-based 3-D segmentation procedures.
objects of the training set, but it is not crucial for the success  The modules for 3-D surface parametrization and Fourier

of the segmentation. description, for the calculation of eigenmodes and for 3-
) D segmentation by restricted elastic deformations, are im-
4.5. 3-D segmentation of deep grey matter structures plemented and ready for tests and validation. Preliminary

The training set consists of a collection of 30 3-D MRI data. resyits demonstrate two different procedures of the complete
volumes of the human brain, where deep grey matter structuressegmentation system:

(putamen, caudate nucleus and globus pallidus) have been

manually segmented. Figure 13 shows a coronal slice through e Figure 14 illustrates the generation of parametric surface
one of the volumes and the outlines of the manually segmented descriptions from binary segmentations. The surfaces of
objects. Inthe case of the putamen and globus pallidusonecan  the putamen (left) and the caudate nucleus (right) use a
see that there is practically no grey-level evidence to separate  spherical harmonic approximation up to degree 6 and 8,
the two objects. Onlya priori anatomical knowledge will respectively.
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Figure 14. Parametrized description by spherical harmonics up to degree 8 of the surface of deep grey matter organs. The putamen is shown
on the left, the caudate nucleus on the right. The original voxel object is overlaid as a wire-frame structure of the voxel edges.

imi i hi Iel

Figure 15. Segmentation of the left caudate nucleus by 3-D Fourier snakes. Images iapepedsent the initial placement of the 3-D model
as axial (top) and coronal (bottom) cuts (with spherical harmonics up to degree 3 with 48 parameterd). sRanel the final segmentation
result. A graphical display of the elastically deformed model representing the result of the 3-D segmentation is shown togheTitghfirgal
optimization was based on spherical harmonics up to degree 5 (108 parameters).

e Figure 15 demonstrates the segmentation of the caudate We are currently calculating the surface parametrization
nucleus from original grey-valued volume data by the and the description by spherical harmonics of all the 30
3-D Fourier snake procedure. Here, the initial placement segmentations. Based on these results, the deformation
of the model surface was performed automatically by eigenmodes for these objects can be determined. The
calculating an initial placement of a spherical harmonic segmentation itself, i.e. the initial placement and restricted
surface of low degree (degrees 0-3). The images in elastic deformation, will be carried out with the Fourier snake
panels a and b show the initialization and final result procedure as shown in Figure 15. However, optimization
after elastic deformation in axial and coronal cuts. For is performed in the subspace of a small set of eigenmodes
the elastic fit we used spherical harmonics up to degree 5.rather than the original space of the parameters, as discussed
Panel cillustrates a surface rendering of the segmentationin section 3 for the 2-D case.
result. 15—20 minutes were needed for the elastic fit of
the models on a Sparc 10/41 processor.
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5. CONCLUSIONS restricted by prior knowledge about the deformation range
would also find applications iracking problems, where

Automated, robust segmentation of medical images most oftenobjects once defined with a relatively high expense could be

needsa priori anatomical knowledge. Typical cases are automatically tracked in dynamic image sequences.

the segmentation of healthy organs, which present restricted

anatomical variability, or the segmentation of organs if only ACKNOWLEDGEMENTS
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Abstract

This paper presents procedures for the explicit parametric representation and global description of surfaces
of simply connected 3-D objects. The novel techniques overcome severe limitations of earlier methods
(restriction to star-shaped objects [1], constraints on positioning and shape of cross-sections [2, 3], and
nonhomogeneous distribution of parameter space).

We parametrize the surface by defining a continuous, one-to-one mapping from the surface of the original
object to the surface of a unit sphere. The parametrization is formulated as a constrained optimization
problem. Practicable starting values are obtained by an initial mapping based on a heat conduction model.

The parametrization enables us to expand the object surface into a series of spherical harmonic functions,
extending the concept of elliptical Fourier descriptors for 2-D closed curves [4, 5]. Invariant, object-centered
descriptors are obtained by rotating the parameter net and the object into standard positions.

The new methods are illustrated with simple 3-D test objects. Potential applications are recognition,
classification and comparison of convoluted surfaces or parts of surfaces of 3-D shapes.

1 Introduction

With the proliferation of high quality volumetric image data, especially for the medical community, and new
segientation methods for multidimensional image data, 3-D objects become available and are ready for
structural analysis. Most often, volumetric objects are represented by a binary voxel representation or by
a triangulation of the surface. Although these representations allow a 3-D rendering for visually capturing
the object properties, both lack descriptive power as they are based on huge lists of voxels or surface
elements. Characterizing and understanding shape properties, however, requires a representation which
captures global and local shape features with a small number of parameters. Such a concise description
could be useful for a comparison of various objects, for finding dissimilarities, for matching objects to
predefined models and for an efficient reconstruction and manipulation of objects.

A shape descriptor must be general enough to handle very different shapes, but should be capable of
accurately representing global as well as local features of objects. Shape analysis favors object-centered
volume- or surface descriptions, e.g. using polynomials, triangulation meshes, generalized cylinders, medial
manifolds or spherical harmonics. Furthermore, the resulting description should be independent of the
object position and orientation.

Some shape description methods based on mesh-like surface models rely on a robust and reproducible
surface parametrization in a two-coordinate space. While tracking a contour in 2-D images is easily done,
the extension to higher dimensions is non-trivial and requires the development of new concepts. So far,
representation methods for mapping an object surface onto a sphere have been limited to represent only
star-shaped or convex objects, as they start from an initial radial surface function (6, ¢) [1] [6]. Staib and
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Duncan [3] discuss the use of a parameter space with torus topology, which can be deformed into a tube
by squeezing the torus cross-section to a thin ribbon. Closed surfaces are obtained by counsidering tubes
whose ends close up to a point. This approach clearly illustrates some principal difficulties which can also
be found in other parametrization techniques.

¢ The idea of warping a torus to a closed surface poses the problem that the parameters have different
functions. One parameter defines a kind of spine along which cross-sections are stacked up. The
choice of the end-points of this spine decisively determines the solution and even determines whether
an object can be parametrized or not.

e Squeezing a circle to a line (as done with the tubular torus cross-section) results in a nonhomogeneous
distribution of parameters on the object surface. Although continuous, the representation of a line by
harmonic functions results in a clustering of parameters near the edges where the tracing direction
changes. Furthermore, closing a cylinder at both open ends causes further distortion to the parameter
net.

e Warping a torus to a tube and finally to a closed surface shows that the parametrization does not
result in a one-to-one mapping of surface points to parameters. The walls of the tube are traced up
and down in order to avoid discontinuities at the open edges, visiting each surface point twice.

Our new approach tries to overcome these limitations. We present a new method that allows a uni-
form mapping of an object surface into a two-coordinate space with spherical topology. Our aim is the
parametrization of arbitrarily shaped simply connected objects containing inclusions and protrusions. As a
mapping of convoluted surface structures onto the surface of a sphere introduces distortions, optimization
of the distribution of nodes in parameter space becomes necessary. This problem is solved by nonlinear
optimization.

Parametrized surfaces can be expanded into spherical harmonics, hierarchically describing global and
local shape properties by spatial frequency constituents [7]. A new method for the generation of descriptors
which are invariant to translation, rotation and scaling is developed. Invariance is crucial for a comparative
analysis of different structures.

This paper is organized as follows: section 2 describes the generation of a relational surface data
structure, important both for the initial mapping by a diffusion algorithm and for the optimization step.
In the section, 3 we present the new parametrization technique including an initial mapping to obtain good
starting values and nonlinear optimization. Section 4 discusses the expansion of a 3-D shape into a set of
spherical harmonics and the generation of invariant descriptors.

2 Surface data structure

A 3-D binary image containing a single simply 6-connected object represents our input data. We adopt
the cuberille notion [8]. To allow working with the surface of the object, it must be represented as a data
structure that reflects the geometry as well as topological relations. This data structure stores information
about all the square faces separating object and background voxels and all the edges and vertices bounding
these faces. This initial data structure represents a complete description of the object surface; similar
structures are often used for 3-D display purposes [9].

For a n, by ny by n, data volume, the voxel coordinates have the ranges 0 <z < n,, 0 <y < n, and
0 < z < n,. We interpret each voxel as a cube extending from z to z+1, from y to y+1 and from z to z+1,
where (z,y, z) are the nominal coordinates of the voxel. The voxel center is placed at (z + %,y + %, z+ %)
to retain integer coordinates for the corners.

The surface data structure is organized around the vertices. Each surface vertex is listed once in the
structure, which gives it a unique identifying (id) number. The entry of a vertex specifies its Cartesian
coordinates (z,y,z) and a list of its direct and diagonal neighbors. The neighbors are given in counter-
clockwise sequence around the vertex when viewed from outside the object; therefore, direct and diagonal
neighbors alternate (see Figure 1).

The following algorithm generates the surface data structure. Object voxels touching the border of the
data volume would require a special treatment. Therefore, we make sure that all border voxels belong to
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Figure 1: A two-voxel example object illustrating the surface data structure centered on the vertices.
The numbers of the vertices are shown in circles (vertices 3 and 4 are hidden). The data structure entry
for a vertex represents its Cartesian coordinates and a list of neighboring nodes. The entry for vertex 7
is {{z=10, y=14, 2=7}, neighbors={6, 0, 1, 2, 8, 11, 10, 9}}. Appendix A lists the complete
surface data structure of this object.

the background. We define an interior vertex as the common corner of eight voxels of the data volume. In
three nested loops — varying the coordinates = from 1 to n; — 1, y from 1 to n, — 1, and z from 1 to n, — 1,
respectively — we visit all the interior vertices. Let the z-loop be the outermost, so that z varies the slowest
and numbers the current plane. If the eight incident voxels of a vertex are homogeneous, i.e. all in the
object or all in the background, the vertex is ignored. Otherwise (if the incident voxels are mixed), a new
surface vertex has to be entered in the data structure. A surface vertex in plane z may have neighboring
surface vertices in the planes 2 — 1, z and 2z + 1. Therefore, surface vertices must be detected and assigned
identifying numbers one plane ahead of time, and the id numbers of the current (z) and previous (z — 1)
plane must be kept at hand as well. For each surface vertex in the current plane, the Cartesian coordinates
are put into the entry of the vertex. Starting at a 6-neighbor surface vertex, we cycle around the central
vertex, going over all incident faces until we are back at the starting neighbor vertex. The list of the id
numbers of all visited direct and diagonal neighbor vertices completes the entry of the central vertex.

Only vertices are stored in the data structure, but information about edges and faces of the surface is
also present in the neighbor lists. For instance, vertex 7 in Figure 1 has the neighbor list {6, 0, 1, 2,
8, 11, 10, 9}. Taking every second number in this list — 6, 1, 8, 10 — reveals that edges to nodes 6, 1,
8 and 10 emanate from node 7. Overlapping triples of neighbors — {6, 0, 1}, {1, 2, 8}, {8, 11, 10} and
{10, 9, 6} (by wrapping around to the first neighbor) — give the four faces {7, 6, 0, 1}, {7, 1, 2, 8}, {7, 8,
11, 10} and {7, 10, 9, 6}, all written counterclockwise. In this way, every face of the surface is mentioned
four times, once by each corner. Our algorithm, however, requires an additional table that lists every face
exactly once. We generate it by visiting all vertices, putting a face in the table only when it is defined from
the corner with the smallest id number, i.e. when it is mentioned for the first time.

The data structure generalizes in a very natural way to the case of open surfaces, or surface patches,
where vertices on the border of the surface have an odd number of neighbors. All surface vertices that
are not part of a border of the surface are called inner vertices. Their characteristic is an even number of
neighbors.

The possibility of representing surface patches is not exploited here: as the object lies completely within
our data volume, we always find a closed surface. All vertices in the list are inner vertices of the surface,
and therefore, they all have an even number of neighbors.

The correspondence between the surface net and a graph becomes clear when a vertex is interpreted
as a node in the graph, an edge as an arc and a face as a mesh (four-cycle)[10]. For a simply connected
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object we get a planar graph with the following topological properties: Four edges bound each face, and
each edge bounds two faces and is bounded by two vertices. Depending on the local connectivity, each
vertex bounds three to six edges. There are exactly two more vertices than faces; this follows from Euler’s
relation: nNyert = Npace + 2.

A surface with its two degrees of freedom is characterized by a polygonal description based on vertex
coordinates with three spatial coordinates. Seeking for an appropriate parametrization, however, would
require a description based on two parameters.

3 Surface parametrization

The parametrization, i.e., the embedding of the object surface graph in the surface of the unit sphere, can
be posed as a constrained optimization problem. The following paragraphs define the meaning of variables,
objective (goal function), constraints and starting values.

Figure 2: Every single face on the object’s surface is mapped to a spherical quadrilateral. The sides of a
spherical polygon are geodesic arcs on the sphere surface. As the sphere has unity radius, the length of
a side s; is equal to the corresponding center angle (in radian). The quadrilateral in this illustration is
special in that its four sides sp - s3 are equal and its four angles g - a3 are equal: it is the spherical
analogue of a square.

The variables of the optimization problem are the coordinates of all vertices. Using two (e.g. spherical)
coordinates per vertex would be the most economic representation with respect to storage space, but this
would make the equal treatment of all spatial directions difficult and pose the problem of discontinuity and
singularities in the parameter space. Therefore, we prefer Cartesian coordinates (u, v, w) for representing
a location on the sphere, introducing one virtual degree of freedom per vertex.

There are three kinds of constraints on the variables. First, the Euclidean norm of the coordinates of
any vertex must be 1. This constraint compensates for the virtual degree of freedom and forces every vertex
to lie on the unit sphere in parameter space. Second, we ask for area preservation, which in our context
means that any object surface region must map to a region of proportional area on the sphere. To satisfy
this requirement, we include one constraint for each spherical quadrilateral (see Figure 2) that corresponds
to an elementary face: its area must be 47 divided by the total number of faces. Third, no angle of any
spherical quadrilateral must become negative or exceed 7. In contrast to the first two kinds of constraints,
these are inequalities. They can be stated as sina; > 0, Vi. This adds four inequality constraints for each
face.

The objective is to minimize the distortion of the surface net in the mapping. It is conceptually similar
to angle preservation, and it must tend to make the shape of all the mapped faces as similar to their
original square form as possible. To fulfill this goal perfectly, a facet should map to a “spherical square”
(see Figure 2). This can never be reached exactly for all faces except when the object has a very special
form, e.g., consists of one single voxel. There are several ways to trade off between the distortions made at
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different vertices. We observe that the ideal shape of any face, a spherical square, minimizes circumference
Z?:o s; of any spherical quadrilateral with a given area. At the same time it maximizes Z?:o COS ;.
These two measures are similar, but not equivalent if summed over the whole net, as they trade off among
distortions differently. The second measure punishes too long sides more and honors too short sides less
than the first one, which is a desirable effect. It is also simpler to calculate; the cosine of a side - and of the
respective central angle - is the dotproduct of the vectors from the sphere center to the endpoints of the
side. In a sum over all four sides of all faces, each edge of the graph appears twice. We define the objective
function as half that sum, which is the same as the sum of the cosines of the lengths of all edges.

The variables in our optimization are the positions on the unit sphere to which the vertices are mapped.
Therefore, starting values in this context means an initial mapping of the object’s surface to the sphere. It
is important for the optimization algorithm that the sphere be completely covered with faces and none of
them overlap. The following subsection describes the construction of an initial parametrization satisfying
this requirement. An earlier version of the procedure is described in [11].

3.1 Initial parametrization

The first mapping or parametrization, respectively, is done in polar coordinates. The two polar coordinates
0 and ¢ are determined for all vertices in two separate steps. Two vertices have to be selected as the
poles for this process. The choice of these poles is not critical, as the optimization process removes all
its influences except a rotation in parameter space. Selecting two poles which lie close together, however,
results in a poor initial parametrization. The optimization will converge to the same solution, but it takes
more iteration steps. We select the two vertices with maximal and minimal z coordinate in object space,
respectively; the y and x coordinates are used to break ties. In our ordering of the surface vertices, they
are the first and the last vertex.

A fully worked example with the “two-voxel” object of Figure 1 is presented in appendix A. It serves
as a concrete and detailed illustration of the general concepts exposed below.

Latitude from diffusion. Latitude 6 should grow smoothly from 0 at the north pole to 7 at the
south pole. In this context, # is not a free variable but rather an unknown function (of the location on
the object) that we are looking for. To assign a latitude value with the desired property to every node, we
formulate the corresponding continuous problem as Laplace’s equation V26 = 0 (except at the poles), with
Dirichlet conditions @50t = 0, 850utn, = 7 for latitude #[12]. A physical analogy is heat conduction: we
heat the south pole up to temperature 7w , cool the north pole to temperature 0 and ask for the stationary
temperature distribution on the heat-conducting surface. As usual in the discrete case, the Laplacian is
approximated by finite second differences of the available direct neighbors, which in our case implies that
every node’s latitude (except the poles’) must equal the average of its neighbors’ latitudes. These conditions
form a sparse set of linear equations, which can be written in the form A'e' = b’, where A’ is a nyert X Nyert
matrix, 8’ = (60,0, ...On,m,t,l)T and b’ is an n,e.¢ vector of constants. The border conditions supply
two equations and the average property defines n := n,..+ — 2 equations. Applying the border conditions
00 = Onortn and b, ., 1 = @souen, results in the reduced n x n system A6 = b, where A = (ay,1,a12 ... nn)
is symmetric and 6:= (6, ...On)T

The algorithms used to set up the matrix A and the right hand side vector b make use of the well-
organized surface data structure, as illustrated below in pseudo-code notation. The sparsity of the matrix
is exploited; only the few non-zero entries (4 to 7 per row) are stored. This saving is essential for the
treatability of larger objects.

Set up matrix A:
for wvertex = 1...n
Gyertes,verter - = number of direct neighbors;
for the direct neighbors of wertex
if the mneighbor is not a pole

Quertex,neighbor * = -1;

Set up constant vector b:
set all entries of b to 0;
for the direct neighbors of south_pole

bncighbor =T
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This sparse symmetric linear system of equations is solved with the PiLs package [13]. The solution
has the important property that latitude # varies monotonically between the poles, since there can be no
local extremum by virtue of the maximum principle [14]. Figure 3a shows the resulting 6 for a simple test
object, “duck”.

(a)

Figure 3: The simple object “duck” consisting of nine voxels is used for illustrating the initial parame-
trization. The north pole is at the lower left, the south pole at the upper right. Latitude is mapped on
the object’s surface as a grey value in g; iso-latitude lines are drawn every 7z. Longitude is shown in b;
iso-longitude lines (“meridians”) are § apart.

Longitude from diffusion. Unlike latitude, longitude is a cyclic parameter: When we walk around
a sphere counterclockwise (seen from the north), longitude keeps increasing monotonically all the time,
but there must be a place where longitude leaps back by 27. A global longitude parameter always has a
discontinuous line running from pole to pole, and the step height is 2. Consider, as an analogy, local time
on every spot of the globe; the date line is a 24 hour discontinuity, but not a meridian. In our problem, the
choice of the date line is immaterial: it just has to connect the two poles. The date line is chosen as a path
with steepest latitude ascent in each of its nodes. The values crossing the date line from west to east are
decremented by 27, values propagated to the west are incremented by 27. The poles and all links to them
are removed from the net, making the topology of the net that of a tube. Longitude remains undefined for
the poles. The cyclic Laplace equation V2¢ = 0 (with date line) again corresponds to a system of linear
equations in the discrete case.

The new system of linear equations is structurally identical to the one for latitude. Typically, only a
small part of the equations is different. The matrix for longitude ¢ differs from the one for latitude 6 only
by the values of six diagonal entries, corresponding to the three neighbors of each pole. This similarity
simplifies setting up and solving the new systemn.

Due to the cyclic boundary conditions, the solution ¢ is defined only up to an additive constant. The
linear equations are dependent, and the system is singular. To make it regular, we have to specify the
longitude of one vertex. We arbitrarily set 2¢p; = 0. This equation can be added to any row of the system.
We add it to the first row.

The following portions of pseudo-code update the matrix and generate a new right hand side vector.

Modify matrix A:
for both poles

for the direct neighbors of pole cut link to pole
Uneighbor,neighbor ~= 1;
o0 += 25 for ¢p1 =0

Set up constant vector b:
for row:= 1...n do

brow:= 0;
previous := north pole;
here := 1; any neighbor of north pole
mazximum := 0.0;
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while (here '= south pole) walk on date-line
for the direct mneighbors of here
if Oheighbor > maximum then
maximum = Opeighbor ;

nextpos := position of mneighbor;
if neighbor == previous then
prevpos := position of neighbor;

for the direct neighbors clockwise between prevpos and nextpos do

add 27w to bneighbor;

subtract 27 from bpere; totally: 27 - # west_neighbors
previous := here;
here := neighbor of here indicated by mnextpos;

In spherical coordinates, longitude is undefined at the poles. We arbitrarily set ¢pnomh = @south = 0.
Figure 3b illustrates the resulting ¢ for the “duck” test object.

For every node of the net, we now have computed a latitude # and a longitude ¢. This defines a
continuous, unique mapping from the surface of the original object to the surface of a sphere. The spherical
parameters ¢ and € can also be used in a flat Cartesian coordinate system as shown in Figure 4b, which gives
an overview of the whole unfolded net. The right border wraps around to the left border, and vice versa.
The top and bottom borders stand for the poles. The # axis points up to produce the same orientation as
in the other figures; the south pole is at the top. The polar coordinates are transformed to Cartesian and
yield starting values for the optimization.
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(a) (b)
Figure 4: Diffusion yields the initial parametrization, which is visualized in three different ways. (a) The
surface net is plotted on the spherical parameter space. The thick lines depict the edges of the original square

faces. The equidistance for both § and ¢ is §. (b) ¢ and cos6 are interpreted as Cartesian coordinates.

The monotonic cosine function is applied to give a true-area cylindrical projection. The horizontal lines at
+1 are the poles. (¢) Conversely, the globe coordinate grid is drawn over the object. For comparison, one

vertex is marked with a black dot in all diagrams.

3.2 Optimization method

Powerful methods for nonlinear constrained minimization exist[15]. The commonly available optimization
routines can not be used for larger objects because they are not suited for such a large problem, as they
do not exploit its sparsity and information available about the constraints. A Newton-Lagrange algorithm
[15] based on the sparse linear solver package PILs [13] is used to find the constrained maximum of the
goal function. An active set strategy enforces the inequality constraints. A detailed discussion of the
optimization algorithm would exceed the scope of this paper. In fact, any other constrained optimizer that
could handle the size of the problem could be substituted.
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Figure 5: The result of the optimization, plotted in the same ways as in the previous figure. The areas of
elementary facets in parameter space are now equal, and local distortions are minimized. The rotational
position of the net on the sphere is arbitrary. (¢) After the optimization, the former poles have lost their
prominent role. They have now the same importance as any other point in parameter space and could
lie anywhere on the surface. Only the use of polar coordinates for visualization gives them a conspicuous
appeararice.

The question arises if a solution exists at all and if it is unique. The goal function is a sum of cosines,
which cannot exceed one. Thus the goal function is bounded by the number of edges in the graph, 2naces.
Any constraints can only lower the attainable maximum, but never make the goal function unbounded.
Another problem could arise from incompatible constraints. From their definition - vector length, area
content, angle - they are not inherently incompatible. There are 3n,q.: degrees of freedom but only
Nyert + Nface — 1 = 2Nyere — 3 equations to satisfy. At the solution, only few (typically less than five)
inequalities are active. We have no indications that there might be any local maxima. Of course any
rotated version of the solution yields the same values for the goal function and for all constraints, but this
is not considered an essentially different solution.

Constraining all angles to the range [0, 7] makes sure none of the quadrilaterals can fold over. Thus the
neighborhood relations are preserved during the optimization process.

As the goal function, the constraints, and their derivatives have to be calculated repeatedly, it is
important that we can use an efficient data structure that holds information about adjacency (for the goal
function and matrix sparsity) and surface facets (for the area constraints).

The solution of the nonlinear program defines the optimal parametrization of our object’s surface.
Figure 4 shows the starting point for the optimization; the right diagram is a combination of those in
Figure 3. Figure 5 visualizes the result of the optimization in different ways. The same vertex as in
Figure 4 is marked. Figure 6 shows several stages of the optimization process. The starting configuration,
“0”, corresponds to Fig. 4a. The final result is obtained after 64 iterations; it has the label “64” and is the
same as Fig. ba.

4 Spherical harmonic shape descriptors

Let x, y and z denote Cartesian object space coordinates and 6 and ¢ polar parameter space coordinates.
The parametrization gives us three explicit functions defining the object surface as follows:

z(0. )
x(0,¢)=| (0, 9)
z(0,¢)

When the free variables 6 and ¢ run over the whole sphere (e.g. # =0...7,¢=0...27), x(8, ) runs over
the whole surface of our object. As our shape description method, we use the surface net representation to
expand a 3-D shape into a complete set of basis functions. We use the spherical harmonics; ¥, denotes

255



Figure 6: Stages from an optimization run. The labels indicate the number of iterations. “0” marks the
starting configuration, where the areas of the facets vary considerably. “64” is the final result; all facets
have now equal area, and distortions are minimized.

the function of degree ! and order m [16]. Definitions are given in the appendix. The coefficients

m
Col
m __ m
¢ = Cyq
. m
Cz
in this series are three-dimensional vectors. Their components, c;}"

numbers; they are real numbers for m = 0. The series takes the following form.

, ¢yy' and c,1", are usually complex

o]

l
x(0,0)=>_ > <" V"(0.9) (1)

=0 m=—1

The coeflicients of the spherical harmonic functions of different degrees provide a measure of the spatial
frequency constituents that comprise the structure. Partial sums of the series (1) are plotted in Figure 7.
The sums are truncated by limiting ! to 0 <1 < nj, where n; = 2,4,8. As higher frequency components
are included, more detailed features of the object appear.

The use of orthogonal basis functions is convenient for the calculation of the expansion coefficients.
Formally, the coeflicients are calculated by forming the inner product of x with the basis function in
question:

T p27T
G = (x(0.4).Y(60.4) = /0 /0 x(0. 9) Y7 (6, ) desin 019 (2)

Note that the parametrization defines the function x(8, ¢) only for the parameter coordinates of the vertices.
Let nyeprt denote the number of vertices and 4 be the index of a vertex, 0 < ¢ < nyert. Only x(0;,¢;) = x;
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(a) (b) ()

Figure 7: Global shape description by expansion into spherical harmonics: The figures illustrate the recon-
struction of the partial spherical harmonic series, using coefficients up to degree 1 (a), to degree 3 (b) and

7 (¢).

is defined. For the evaluation of the integral (2) we would have to define an interpolating function between
these sample points; an adaptation of bilinear interpolation could be used for this purpose. But this would
introduce an artificial sub-voxel resolution that has no base in the input data. On the other hand, the
straightforward discretization of the integral,

A Nyert—1
o' - f > xi Y (0 ) (3)
rvert Z:O

does not give the precise coefficients of a series representing our object. The reason is that although the
functions ¥;™ are orthonormal, their values evaluated at some set of parameter pairs (6;, ¢;) will generally
not form an orthonormal set of vectors. We adopt some indexing scheme j(I,m) that assigns a unique
index j to every pair l,m, like e.g. j(I,m) := (% + 1 +m. When the degree of the spherical harmonics is
limited, i.e. 0 <1 < ny, j is also limited by j < nj; = n?. We can arrange all needed values of our basis
functions in a nye,¢ X n; matrix B where bw(l’m) = Yl"”(G,,;, d),) In the usual case where n; is significantly
smaller than 7,e,¢, the columns of B are approximately orthogonal. We further arrange the object space
coordinates of all vertices in an nyer+ X 3 matrix X = (xo, Xy, . .- xnvm,l)T and all coefficients in the n; x 3
matrix C' = (cg,cl_l,c(l’ ...)T. The equations (3) for all [ and m take the compact form C = %BTX.
But what we really want is a spherical harmonic series that passes near the real positions of our vertices,
i.e. X = BC + E where the error matrix E should be small. These so-called normal equations are solved

with least square sums over the columns of E by
C = (BTB)'BTX . (4)

The global approximation error is the square of the Frobenius norm of £ = BC'— X, which is also minimized.
This is not too different from (3) because the symmetric n; x n; matrix 4z - BT B is close to the identity

Nve

matrix.

4.1 Rotation independent descriptors

The coefficients obtained so far still depend on the relative position of the parameter net of the object
surface and on the orientation of the object in space (Figure 5). We can get rid of these dependencies by
rotating the object to canonical positions in parameter space and object space. This needs three rotations
in parameter space and three rotations in object space, when rotations are described by Euler angles. All
rotations result in new linear combinations of the components of the harmonic descriptors.

The relations between the Cartesian and the spherical coordinates of the parameter space are u =
sinf cos¢, v = sinf sin¢ and w = cosf. To define a standard position we consider only the contribution

10
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of the spherical harmonics of degree [ =1 in equation (1), an ellipsoid (see Figure 7).

1
xi1(6,4)= > <" V["(6,9) (5)
m=—1
. . . . 1 B 0 _ V3 1_ 3 )
This sum involves the basis functions Y, = Wz (uw—1v), Y] = pyr W and Y; = 2\/ﬁ(“ +iv). Any
three real valued linear combinations of these (i. e. (Cmfl)* = —¢;1 and ¢,? € R and similarly for y and

z), interpreted as Cartesian coordinates in the object space, will always describe an ellipsoid. We rotate
the parameter space so that the north pole (¢ = 0, on the w axis) will be at one end of the shortest main
axis of this first order ellipsoid and the point where the Greenwich meridian (¢ = 0) crosses the equator
(6 = %. on the u axis) is at one end of the longest main axis.

At the three main axes, the length of the vector x; (6, ¢) is stationary: it reaches a maximum, a saddle
point, and a minimuim, respectively. Measuring Euclidean lengths becomes simpler when we transform the

component vectors to a Euclidean, real valued form. A short calculation yields

u
x1(u) = Au = A| v = ajutavtaw , (6)
w

where

3

A= (81,82783) = 2\\;—% (Cl_l —Ci,i(cl_l _1_(:})\/5(??) - (7)
We are looking for the unit vectors iy, @iy and i3 that maximize or minimize the length of the vector.
The solutions are the eigenvectors of AT A, with nonnegative eigenvalues [? > [2 > 2. Their roots I, I»
and !5 represent half the lengths of the main axes of the ellipsoid. At the middle eigenvector, @iz, ||x1|| has
a saddle-point rather than an extremum. The normalized eigenvectors form the rotation matrix RL =~ =
(@1, Gz, G3), which is applied to the parameters u; associated with each vertex ¢: uj = R;‘TM, u;. This new
parametrization, results in new coefficients c}n' and hence in the new coefficient matrix A" = A Rypw. Its
three column vectors a’y, a’s and a’s are the main axes of the first order ellipsoid in object space.

All rotations are determined based on the values of ¢i (i = —1...1) of the ellipsoid only, but they
are applied to all components of the descriptor {c¢]*}. The parameter space rotations result in a different
description of the same object in the same position, just parametrized in a standard way.

Now, the ellipsoid is rotated in the object space to make its main axes coincide with the coordinate
axes, putting the longest ellipsoid axis along z and the shortest one along z. The object space rotations

require only the matrix multiplication ¢*” = Rg,.c™. The object space rotation matrix is Ry,

diagonal(%, %, i) . AT, Tt rotates the main axes of the ellipsoid into an axis-parallel position and makes

the coefficient matrix A" = Ry A = Ry A Rypy diagonal. The elements of the diagonal are the
lengths of the main axes of the ellipsoid.

The descriptors ¢ are now invariant under rotation of the object, except mirrorings (rotations by ).
Including information from higher degree coefficients could eventually disambiguate these cases. Ignoring
c)) results in translation invariance. Scaling invariance can be achieved by dividing all descriptors by Iy,
the length of the longest main axis.

4.2 Importance of uniform parametrization

The report so far presumed that a homogeneous density and a minimal distortion of the parameter net
would be important for shape characterization, especially for obtaining an invariant description. Similarly,
the 2-D expansion of contours s(t) into series of harmonics [5] was based on the model of tracing a curve
with constant velocity, i.e. assigning same lengths AL to equivalent parameter steps At. A non-uniform
distribution of parameters on an object surface, e.g. by clustering at certain locations, seems to be subopti-
mal with respect to a uniform representation of the whole surface. One would expect an over-representation
of some parts to the disadvantage of others, resulting in distorted shape descriptions.

The importance of a parametrization with minimal distortion can be demonstrated with an experiment.
The expansion into a series of spherical harmonics is calculated for both the non-uniform initial parame-
trization (bypassing the optimization step for this part of the experiment) and the result after optimization.

11
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Figure 8: Two different parametrizations of the “E” object. Left: The initial parametrization is the starting
point of the optimization. Right: The optimized parametrization.

A manifestly non-star-shaped form was chosen: the original object consists of 11 voxels and is shaped like
the character E. Its initial and optimized parametrizations are given in Figure 8 for comparison. The
diagrams correspond to Figures 4a and 5a.

Figure 9 illustrates the expansion in a spherical harmonic series up to degree ten and the truncated
reconstruction up to degree one (top), four (middle) and ten (bottom) for the initial (left) and optimized
(right) parametrization. (A five-fold oversampling was applied to the surface to represent it accurately.
This may be viewed as a rough form of numerical integration.) Comparing the expressive difference, one
can conclude that a uniform parametrization is absolutely essential to obtain useful spherical harmonic
descriptors. Even from the distorted initial parametrization, descriptors can be derived that are “optimal”
in the least squares sense, but the series of harmonics does not reflect the shape properties of the surface.
Using the optimized parametrization, the reconstructed objects demonstrate the most desirable behavior
that coefficients of higher degree add information about details of higher spatial frequency. The first degree
harmonic approximation (Figure 9b) covers the whole object and comprises information about the major
size and elongation, whereas the three “legs” of the E-shape appear in the reconstruction using harmonics
up to degree four (Figure 9d.f).

12
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Figure 9: Experiment demonstrating the importance of a homogeneous parameter distribution for shape
description. The original E-shaped object surface, indicated by a wireframe, is expanded into a series of
spherical harmonics once starting from a non-uniform parametrization and second from an optimized para-
metrization. The series are truncated at degree one (a,b), four (c,d), and ten (e.f). Shaded surfaces depict
the reconstructions. The images in the left column (a,c,e) clearly illustrate the poor shape representation
based on non-uniform parametrization. A significant improvement is achieved by using the optimized para-
metrization (b,d.f), reflecting the hierarchical nature of a harmonic approximation regarding shape details
at different scales. Quantitatively, ||E||z measures the error, which is divided by the square root of the
number of rows of E to give the RMS distance in pixel units. The values for the individual reconstructions
are 1.143 (a), 0.884 (b), 0.729 (c), 0.250 (d), 0.313 (e), and 0.102 (f).
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4.3 Experimental results

The surfaces of the following test objects are parametrized, and their shapes are expressed through spherical
harmonic descriptors.

e ¢/ A “¢”-shaped polyhedron made up from five 4x4x4 voxel cubes.

¢ ¢§8 The same object, magnified by a factor of two in all coordinate directions.

e bor A The voxels fill a rectangular box, which is not aligned with the coordinate axes.
e box B Rotating the box A results in a completely different sampling.

¢ patella The patella was extracted from a segmented CT scan data set of a human knee.

o ventricle The ventricular system has been segmented from a MRI data set of a hydrocephalus patient®.
We selected one lateral ventricle. The data has been interpolated to compensate for the aspect ratio
of 1:1:6.4 of the original data.

For each object, Figure 10 presents the cuberille interpretation of the input data, a spread-out graph
of the parametrization, and the reconstruction from spherical harmonic descriptors. The cylindrical pro-
jection we chose for drawing the parametrization shows the true area ratios. The smooth surface of the
reconstruction is shaded in a pattern that allows the estimation of the parameter values. These latter
parameter values do not coincide with the ones in the middle diagram. They rather differ by the rotation
in parameter space that makes the descriptors rotation invariant. The object space rotation is suppressed
in the diagrams to show the spatial relation of the original data shown as a wireframe with the recon-
struction from the descriptor, up to degree 8. In the case of the ventricle, this shows an insufficient degree
of detail, but the same value was chosen for comparability.

Table 1 summarizes the sizes and differences of the various test objects. Virtually all of the processing
time for an object is spent in the optimization. The figure for computation time must be interpreted with
caution; it qualifies only the optimization program, which is not necessarily as efficient as possible, and
which might be substituted with an out-of-the box optimizer. Times are measured on a HP 9000/735.
The number of vertices, 1.+ indicates the size of the problem: the optimization has 3 nye.: variables,
2 Nyert — 3 equality constraints and 4 ng,e-: — 8 inequality constraints.

The distance between the descriptors appears to be a valid rough measure of shape dissimilarity. The
matrix of distances is symmetric by definition. The two “c”s are most similar to each other. The two boxes
are also quite similar. Both these examples illustrate the translation, rotation and scale invariance of the
descriptors. The patella is more similar to a box than to a “c”, whereas the ventricle is more similar to a
“c” than to any of the other objects.

distance to

naine Nyert  time | box A box B cd c8 patella  ventricle
box A 628 33 s 0 0.0241 0.2370 0.2378 0.0673 0.3850
box B 902 267 s | 0.0241 0 0.2796  0.2808 0.0859 0.4555
cd 354 26 s | 0.2370 0.2796 0 0.0002  0.2309 0.2175
c8 1410 338 s | 0.2378 0.2808 0.0002 0 0.2299 0.2143
patella 2182 536 s | 0.0673 0.0859 0.2309 0.2299 0 0.2623
ventricle 37654 28 h | 0.3850 0.4555 0.2175 0.2143 0.2623 0

Table 1: Comparison of the six test objects, including the squared Euclidean distances between their
descriptors.

IData courtesy Ron Kikinis, M. D., Surgical Planning Lab, Department of Radiology, Brigham and Women’s hospital and
Harvard Medical School, Boston
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5 Conclusions

This paper presents new techniques to generate explicit parametric representations of convoluted object
surfaces with minimal distortion and to characterize 3-D surfaces by énvariant spherical harmonic shape
descriptors. We intended to overcome traditional limitations of expressing an object surface by explicit
parametric representations, which are the restriction to star-shaped objects, the non-uniform spacing of
parameters on the object surface, and often a specific choice of the new coordinate system with respect to
the object geometry. The parametrization technique is described for closed surfaces of simply connected
objects, but it generalizes naturally to the unfolding or flattening of complex surface patches (open surfaces
with one edge). Other classes of simple 3-D surfaces with different topology, for example tori and tubes,
are not considered.

The following paragraphs summarize the properties of the novel surface analysis techniques.

Parametrization: The unfolding and optimization procedure maps nodes onto a sphere, each of
which can be expressed by two parameters and is associated with a voxel vertex. The procedure imposes no
restrictions regarding the geometry of objects and is suitable for surfaces of arbitrary complexity. An initial
diffusion of “temperature” on the object’s surface achieves a continuous mapping by assigning latitude and
longitude to each surface vertex. The position of poles and the geometry of the object produce a clustering
of parameters at certain regions of the object surface. This non-uniform distribution of parameter density
on the object surface is corrected by a nonlinear optimization technique, which preserves the area of original
surface elements in parameter space and minimizes their distortion. The latter is formulated as the goal
function of the nonlinear optimization problem and the former as its constraints. The resulting arrangement,
of the vertex nodes on the sphere (parameter space) reflects the geometry of the original shape and achieves
similar parametrizations for similar shapes, but is free to rotate around any axis as no surface points are
kept fixed. It must be pointed out that the polar coordinate system for spherical surfaces is only used for
the sake of visualization. This coordinate system itself determines a non-uniform tessellation of the sphere
and may give a misleading visual impression of parameter densities (see e.g. Figure 5). Alternative display
techniques could be found by tessellating the sphere into small cells, for example by regular or semiregular
polyhedra.

The parametrization of object surfaces forms an intermediate representation with the following proper-
ties:

o The surface of arbitrarily shaped (but simply connected) objects can be parametrized. Objects are
not restricted to a limited family of shapes; even protrusions and intrusions are appropriately dealt
with.

e The surface is explicitly represented by the variation of two parameters, expressing the properties of
local surface neighborhoods as well as of the global shape.

e The parametrization results in a continuous (no overlap of elements), one-to-one mapping of surface
vertices to a sphere. While varying the two parameters # and ¢ over the parameter range, each point
of the surface is visited exactly once.

e The optimization results in a unique, reproducible solution (except for rotation).

e The parametrization preserves areas exactly and minimizes local distortions which cannot be avoided
when mapping an object with corners to a sphere (see location marked by a black dot in Figures 5 a,
b and ¢). The uniformity of the parametrization is important for a subsequent shape description, as
illustrated in Figure 9.

The parametrization technique is potentially interesting for applications where a mapping of convoluted
object surfaces to a simple surface like the sphere is required. The unfolding, or flattening, process with
minimization of distortions generates a representation which could serve as a useful intermediate surface
description for many structure analysis processes. The only restriction, i.e. the presence of the closed
surface of a simply connected object, highlights the generality of the approach.

As discussed previously, the unfolding is in principle not restricted to closed surfaces. Ongoing devel-
opments focus on a similar technique for flattening parts of surfaces onto planar charts. This procedure
could be interesting for the comparative analysis and description of convoluted surface patches. Practical
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applications can be found in brain research, for example, where regional cortical patterns of the human
brain are qualitatively and quantitatively analyzed.

Applications are still constrained by the efficiency of the nonlinear optimization. Although the method
itself poses no restriction on the maximum number of object vertices, the commonly available optimization
routines cannot be applied for a large number of vertices (exceeding several hundreds). In real applications,
e.g. the analysis of volume data in medicine, one can expect to deal with object surfaces with up to one
million voxel vertices. We have recently developed an optimization technique which takes into account the
sparsity of the problem and the specific nature of the local constraints.

Shape description: The new parametrization allows representation of object surfaces of arbitrary
complexity. As one possible approach to global shape analysis, it enables us to expand an object surface
into a series of spherical harmonic functions. The numerical coefficients in the Fourier series represent
an object-centered, surface-oriented descriptor of the object’s form. Surface description with harmonic
descriptors is no longer restricted to star-shaped objects but can now be applied to a broad class of shapes.
Invariance has to be considered as one of the most important properties of shape description, as it only
allows a comparative analysis between different objects or a match between objects and models. With the
development of new scale and rotation independent descriptors we obtain a global, object-centered shape
description which is invariant to standard transformations (rotation, translation and scaling). The invariant
positioning of the object and of the parameter net are based on the analysis of harmonic descriptors up
to the first degree, defining the three main axes of the ellipsoid. The symmetry of this low frequency
representation determines a general 3-D object only up to four different positions. Including coefficients of
higher degree, for example at the extremal points of the description up to degree one, could disambiguate
the different cases and avoid a matching using four different object descriptions.

Applications of global object representation and description in computer vision and image analysis
are imminent. Generality with respect to object complexity, invariance to standard transformations, and
descriptive power in terms of object geometry are the critical issues for shape-based categorization and
comparison of 3-D objects. Robot vision and medical image analysis, e.g. are dealing with recovering
the global shape characteristics of objects. Whereas the former most often deals with a small number of
views of objects and hence only a partial surface description, modern scanning techniques in medicine can
provide full 3-D images. Mapping of convoluted surface structures and high level 3-D shape descriptions
of anatomical objects (e.g. the heart cavities, the ventricular system or cortical substructures of the
brain) will play a significant role in the analysis of shape dissimilarities, morphological deformations and
in the comparison of malformed with “normal” shape structures. The overall shape is captured by a
small number of parameters, expressing structural details at various scales with coefficients of different
degrees. The continuous analytical description of the approximated surface permits to compute local
differential characteristics, e.g. principal curvature [17]. Inferring the differential structure would result in
a characterization of important landmarks, e.g., for registration of different 3-D objects.

Appendix A: An example of the initial parametrization

The “two-voxel” object (cf. Figure 1) is used throughout the example. The surface data structure of this
object and a flat diagram of the surface net are given below for reference.

node number x Yy oz neighbors @ @
{{{ 9, 14, 6}, {1,7,6,9,3,4}},

0

1 {{ 10, 14, 6}, {0.3.4.5.2.8,7.6}},

2 {{ 11, 14, 6}, {1,4,5,11,8,7}}, o °
9 ({ 9. 15 6} {41.0.6910}. (1) )

J {{ 10, 15, 6}, {3.9,10,11,5.2,1,0}},

5 {{ 11, 15, 6}, {4,10,11,8,2,1}},

6 {{ 9. 14, 7}, {7.10,9.3.0,1}},

7 {{ 10, 14, 7}, {6,0,1,2,8,11,10,9}}, ° e

8 {{ 11, 14, 7V, {7,1,2,5,11,10}}, (3) (11)
9 {{ 9. 15, 7}, {10.4,3,0.6,7}},

10 {{ 10, 15, 7}, {9.6.7,8,11.5,4,3}},

11 {{ 11, 15, 7}, {10,7.8,2,5,4}}} (o) (10)
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Determining latitude

The border conditions

0o
011
and the average properties
40, =
30, =
30; =
40, =
4010 =
can be arranged in matrix notation.
1 0 0 0
-1 4 -1 -1 -1
-1 3 -1
-1 3 -1
-1 -1 4 -1
-1 -1 3
-1 3 -1
-1 -1 4
-1 -1
-1 -1
-1 -1
0

anor‘th =0

Qsouth =T

0o + 04+ 05 + 07
01+ 05 + 0
0+ 6y + 0Oy
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Applying the first and the last row (boundary conditions) leads to the following reduced, symmetric system.

4 -1 -1 -1
-1 3 -1 -1
3 -1
-1 -1 4 -1
-1 -1 3
3 -1
-1 -1 4 —1
-1 -1 3
-1 -1
-1 -1

01
2
03
t4
05
06
B
Os
Oq

. . 9
The solutionis @ = (27",37” 3 x Tm 3w m Tm 4}%’)71., or 6 = (0,

2

where the first and last value correspond to the poles.
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Determining longitude

The path 0, 1, 2, 5, 11 is used as the date line;

it is indicated by a row of small black triangles.
Links extending from the date line to the west
are 1 — 4 and 5 — 4; they are marked with
white triangles. The poles, “N” (vertex 0) and
“S” (vertex 11), are no longer part of the net.
The following equations result.

3p1 = (fa—2m)+ b2+ ¢r

3 = 1+ s+ s

2035 = ¢a+ o

dds = 3+ d10 + (Ps +27) + (¢1 + 27)

30 = o+ b7+ s

These equations, together with 2¢y = 0, can be put into matrix notation as follows.

5 —1 ~1 ~1 b1
-1 3 —1 -1 b2
2 —1 -1 b3
—1 -1 4 -1 —1 b4
~1 -1 2 s _
2 -1 ~1 e -
—1 -1 4 -1 —1 b7
-1 -1 2 s
—1 —1 3 -1 bo
-1 —1 -1 3 P10

The solution is ¢= (0,0, %F, 3%, =% 3% 2 % 7 )T

Appendix B: Spherical harmonic functions

The following definitions are used in this paper [12].
Legendre polynomials

1 d
Associated Legendre polynomials
- - % dm _1)771, ™ dm,—H
P = (~0na-a P p = S0 L
Spherical harmonic functions
, 204+ 1 (I —m)! ,
E’”(ay(b) — + ( 771) PI"L(C()S 0) e”n(/)

4 (I4+m)

Y, (0, 9) (=1)™Y™7(0. )
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A spherical harmonic function of degree [ can be written as a homogeneous polynomial of degree ! in

u = sinf cos¢, v =sinf sin¢ and w = cosb.

References

[1]

[2]

[3]

(8]
[9]

[10]

[11]

[12]

[13]

D. H. Ballard and Ch. M. Brown, Computer Vision, Prentice-Hall Inc, Englewood Cliffs, New Jersey,
1981.

F. Solina and R. Bajcsy, Recovery of parametric models from range images: The case for su-
perquadrics with global deformations, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 12(2):131-147, February 1990.

Lawrence H. Staib and James S. Duncan, Deformable fourier models for surface finding in 3d images,
In Richard A. Robb, editor, Visualization in biomedical computing 1992, volume Proc. SPIE 1808, pp.
90-104, 1992.

E. Persoon and K.S. Fu, Shape discrimination using fourier descriptors, IEEE Trans. Systems, Man

and Cybernetics SMC, 7(3):388-397, May 1977.

F. P. Kuhl and Ch. R. Giardina, Elliptic fourier features of a closed contour, Computer Graphics and
Image Processing, 18(3):236-258, March 1982.

D. N. Kennedy, J. Sacks, P. A. Filipek, and V. S. Caviness, Three-dimensional fourier shape analysis
in magnetic resonance imaging, In Peder C. Pedersen and Banu Onaral, editors, Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society, volume 12/1, pp. 78-79,
Philadelphia, PA, USA, October 1990.

Christian Brechbiihler, Guido Gerig, and Olaf Kiibler, Surface parametrization and shape description,
In Richard A. Robb, editor, Visualization in biomedical computing 1992, volume Proc. SPIE 1808, pp.
80-89, 1992.

Gabor T. Herman and Hsun Kao Liu, Three-dimensional display of human organs from computer
tomograms, Computer Graphics and Image Processing, 9(1):1-21, January 1979.

D. Gordon and J. K. Udupa, Fast surface tracking in three-dimensional binary images, Computer
Vision, Graphics, and Image Processing, 45(2):196-214, February 1989.

Jayaram K. Udupa and Venkatramana G. Ajjangadde, Boundary and object labelling in three-
dimensional images, Computer Vision, Graphics, and Image Processing, 51(3):355-369, September
1990.

Christian Brechbtihler, Guido Gerig, and Olaf Kiibler, Towards representation of 3d shape: Global
surface parametrization, In C. Arcelli, L. P. Cordella, and G. Sanniti di Baya, editors, Visual Form:
Analysis and Recognition, pp. 79-88, New York and London, 1992. Plenum Press.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. Vetterling, Numerical recipes in C - The art of
scientific computing, Cambridge University Press, Cambridge, 1988.

C. Pommerell and W. Fichtner, PiLs: An iterative linear solver package for ill-conditioned systems,
In Proceedings of the Supercomputing ‘91, Albuquerque, New Mezxico, November 18-22, pp. 588-599,
1991.

L. Nirenbarg, A strong maximum principle for parabolic equations, Commun. Pure Appl. Math., vol.

VI, pp. 167 177, 1953.
P. E. Gill, W. Murray, and M. H. Wright, Practical optimization, Academic Press, London a.o., 1981.

W. Greiner and H. Diehl, Theoretische Physik - Ein Lehr- und Ubungsbuch fiir Anfangssemester,
volume 3: Elektrodynamik, Verlag Harri Deutsch, Zurich und Frankfurt am Main, 1986.

P. T. Sander and S. W. Zucker, Inferring surface trace and differential structure from 3-d images,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):833-854, September 1990.

20

267



Isosurfacesand Level-SetSurface Models

RossT. Whitak er
Scientific Computing and Imaging Institute

Schoolof Computing
University of Utah

1 Intr oduction

1.1 Motivation

This chapteraddressemechanismdor analyzingand processingzolumesin a way that dealsspecificallywith iso-
surfaces The underlyingphilosophyis to useisosurficesasa modelingtechnologythat cansene asan alternatve
to parameterizednodelsfor a variety of importantapplicationsin visualizationand computergraphics. This paper
presentshe mathematicendnumericaltechniquedor describingthe geometryof isosuricesandmanipulatingtheir
shapesn prescribedvays. We startwith a basicintroductioninto the notationandfundamentatonceptsandthen
presentghe geometryof isosurbices.We describethe methodof level sets,i.e., moving isosuraices,andpresenthe
mathematicahndnumericalmethodshey entail. This paperconcludesvith someapplicationexamplesanddescribes
VISRACK, a C++ object-orientedibrary the performsvolumeprocessing@ndlevel-setmodeling.

1.2 Isosurfaces
1.2.1 Modeling SurfacesWith Volumes

When consideringsurfacemodelsfor graphicsand visualization,oneis facedwith a staggeringvariety of options
including meshesspline-basegatches,constructve solid geometry implicit blobs, and particle systems. These
optionscanbedividedinto two basicclasses— explicit (parameterizednodelsandimplicit models.With animplicit
model,onespecifieshe modelasalevel setof ascalarfunction,

¢: U —~R
T,Y, 2 k> (1)

whereU c IR? is the domainof the volume(andtherange of the surfacemodel). Thus,a surfaces is
S ={z|¢(z) = k}. )

Thechoiceof k is arbitrary and¢ is sometimesalledthe embeddingNotice thatsurfacesdefinedin this way divide
U into aclearinsideandoutside—suclsurfacesarealwaysclosedwhereverthey do notintersecthe boundaryof the
domain.

Choosingthis implicit strateyy begs the questionof how to represent. Historically, implicit modelsarerepre-
sentedusinglinearcombination®f basisfunctions.Thesebasisor potentialfunctionsusuallyhave several degreesof
freedomincluding 3D position,size,andorientation.By combiningthesefunctions,onecancreatecomplec objects.
Typical modelsmight containseveralhundredo severalthousand®f suchprimitives. This is the stratgy behindthe
“blobby” modelsproposedy Blinn [1].

While suchan implicit modeling stratayy offers a variety of new modelingtools, it hassomelimitations. In
particular the globalnatureof thepotentialfunctionslimits onesability to modellocal surfacedeformationsConsider
apointz € S whereS isthelevel surfaceassociatesvith amodelp = 3. a;, anda; is oneof theindividual potential
functionsthat comprisethat model. Supposeonewishesto move the surfaceat the point z in a way that maintains
continuity with the surroundingneighborhood.With multiple, global basisfunctionsone mustdecidewhich basis
function or combinationof basisfunctionsto alter and at the sametime control the effects on other parts of the
surface.Theproblemis generallyill posed— therearemary waysto adjustthe basisfunctionssothata will movein
the desireddirectionandyet it maybeimpossibleto eliminatethe effectsof thosemovementson otherdisjoint parts
of the surface. Theseproblemscanbe overcome however they usually entail heuristicsthat tie the behavior of the
surfacedeformatiornto the choiceof representatiof2].
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4 T Basis function

Figurel: A volumecanbeconsiderecisanimplicit modelwith alargenumberof local basisfunctions.

An alternatve to usinga small numberof global basisfunctionsis to usea relatively large numberof local basis
functions. This is the principle behindusinga volumeasanimplicit model. A volumeis a discretesamplingof the
embeddingp. It is alsoanimplicit modelwith a verylarge numberof basisfunctions,asshovn in Figurel. Thetotal
numberof basisfunctionsis fixed,asaretheir positiong(grid points)andextent. Onecanchangeonly themagnitudeof
eachbasisfunction,i.e.,eachbasisfunctionhasonly onedegreeof freedom.A typical volumeof size128 x 128 x 128
containsover a million suchbasisfunctions. The shapeof eachbasisfunctionis opento interpretation— it depends
on how one interpolateshe valuesbetweenthe grid points. A trilinear interpolation,for instance,mplies a basis
functionthatis a piece-wisecubicpolynomialwith avalueof oneatthegrid pointandzeroat neighboringgrid points.
Anotheradvantageof usingvolumesasimplicit models,is thatfor the purpose®f analysiswe cantreatthe volume
asa continuousfunction whosevaluescan be setat eachpoint accordingto the application. Oncethe continuous
analysiss completewe canmapthealgorithminto the discretedomainusingstandaranethodsof numericalanalysis.
Thesectionghatfollow discusshow to computethe geometryof surfacesthatarerepresentedsvolumesandhow to
manipulatehe shape®f thosesurfacesby changinghe gray-scalesaluesin thevolume.

1.2.2 IsosurfaceExtraction and Visualization

This paperaddressethe questionof how to usevolumesassurfacemodels.Dependingon the application,however,
a 3D grid of data(i.e. a volume)may not be a suitablemodel representation.For instance,if the goal is make
measurementsf an objector visualizeits shapean explicit modelmight be necessaryin suchcasest is beneficial
to convertbetweenvolumesandothermodelingtechnologies.

For instancetheliteratureproposeseveral methodsor scancornvertingpolygonalmesher solid models[3, 4].
Likewiseavariety of methodsexist for extractingparametrianodelsof isosuraicesrom volumes. Themostprevalent
methodis to locateisosurbcecrossingsalonggrid linesin avolume(betweernvoxelsalongthe 3 cardinaldirections)
andthento link thesepointstogetherto form trianglesandmeshesThis is the stratgy of “marchingcubes”[5] and
otherrelatedapproachesHowever, extractinga parametricsurfaceis not essentiafor visualization,anda variety of
directmethodq6, 7] arenow computationallyfeasibleandarguablysuperiorin quality. This chapterdoesnotaddress
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theissueof extractingor renderingsosurfices put ratherstudiesthe geometryof isosurficesandhow to manipulate
themdirectly by changinghegrey-scalevaluesin theunderlyingvolume. Thus,we proposevolumesasa mechanism
for studyinganddeformingsurfacesyegardlesof the ultimateform of the output. Their aremary waysof rendering
or visualizingthemandandthesetechniquesrebeyondthe scopeof this discussion.

2 SurfaceNormals

Thesurfacenormalof anisosurfceis givenby thenormalizedgradientvector Typically, we identify a surfacenormal
with apointin thevolumedomainD. Thatis
Vo(x)

") = @)

The corventionregardingthe directionof this vectoris arbitrary;the negative of the normalizedgradientmagnitude
is alsonormalto theisosurfice. Thegradientvectorpointstowardthatsideof theisosurficewhich hasgreatewalues
(i.e. brighter). Whenrenderingthe cornventionis to useoutward pointingnormals andthesignof thegradientmustbe
adjustechccordingly However, for mostapplicationsany consistenthoiceof normalvectorwill sufiice. Onadiscrete
grid, onemustalsodecidehow to approximatehe gradientvector(i.e., first partialderivatives).In mary casesentral
differenceswill suffice. However, in the presencef noise,especiallywhenvolumerenderingjt is sometimeselpful
to computefirst derivativesusingsomesmoothingfilter (e.g.,corvolution with a Gaussian) Whenusingthe normal
vectorto solve certainkinds of partial differentialequationsjt is sometimesecessaryo approximatethe gradient
vectorwith discrete pne-sidedlifferencesasdiscussedn successie sections.

Notethata single volume containsfamiliesnestedsosurfices arrangedik e the layersof anonion. We specific
thenormalto anisosurficeasa functionof the positionwithin thevolume. Thatis, n(z) is thenormalof the (single)
isosurficethatpasseshroughthe pointz. The k valueassociatedavith thatisosurficeis ¢(x).

wherex € D. 3)

3 Second-OrderStructure

In differentialgeometriderms thesecond-ordestructureof a surfaceis characterizethy a quadratigpatchthatshares
first- and second-ordecontactwith the surfaceat a point (i.e., tangentplaneand osculatingcircles). The principal
directionsof the surfacearethoseassociateavith the quadraticapproximationandthe principal curvatues ki, ks,
arethecurvaturesin thosedirections.

The second-structuref the isosurficecanbe computedrom thefirst- andsecond-ordestructureof the embed-
ding, ¢. All of theisosurficeshapeinformationis containedfield of normalsgivenby n(x). The 3 x 3 matrix of
derivativesof this vector,

N =—[n, ny n,] (4)

describeghe second-ordestructureof the surface. This matrix has(typically) rank two, andthe two nonzeroeigen-
valuesof this matrix give the principle curvatures.Thatis,

er = ky,es = ka,e3 = 0. (5)
Themeancurvatute is the meanof thetwo principal curvatureswhich is onehalf of thetraceof N () [8]:
_ k1 + ks _ 1
H = 5 = 2Tr(N)

¢§ (¢yy + ¢zz) + (Z%(stzw + d)zz) + ¢§ (¢ww + ¢yy) - 2¢z¢y¢wy - 2¢w¢z¢zz - 2¢y¢z¢yz

— 6
262+ 43+ )P ©
The Gaussiarcurvature is the productof the principal curvatures:
1
K = kiky=e1es+er1e3+ese3 = 2TI‘(N)2 — §||N|| @)

¢§ (¢m¢yy - ¢my¢xy) + (ﬁz (¢zx¢zz - ¢zz¢xz) + ¢§ (¢yy¢zz - ¢yz¢yz)
+ 2(¢w¢y(¢wz¢yz - ¢zy¢zz) + ¢z¢z (¢wy¢yz - ¢zz¢yy) + ¢y¢z (¢wy¢wz - ¢yz¢ww))
(93 + ¢} +43)? '
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Thetotal curvature alsocalledthedeviationfrom flatness D, is theroot sumof square®f thetwo principalcurvatures,
whichis the Euclideannormof thematrix N.

Notice, thesemeasuregxist at every pointin U, andat eachpoint they describethe geometryof the particular
isosurficethat passeshroughthat point. All of thesequantitiescanbe computedon a discretevolume usingfinite
differencesasdescribedn successie sections.

4 Deformable Surfaces

This sectionbegins with mathematicsor describingsurface deformationson parametricmodels. The resultis an
evolution equationfor a surface. Eachof the termsin this evolution equationcanbe re-expressedn a way thatis
independentf the parameterizationkinally, the evolution equationfor a parametricsurfacegivesriseto anevolution
equation(differentialequation)on a volume,which encodeshe shapeof thatsurfaceasa level set.

4.1 SurfaceDeformation

A regularsurfaceS ¢ IR? is a collectionof pointsin 3D thatcanbe berepresentetbcally asa continuousfunction.
In geometricmodelinga surfaceis typically representedsa two-parameteobjectin athree-dimensionapacej.e.,
asurfaceis localamappings':

S:VxVe R 8)

r S T,Y,z

whereV x VIR?, andthe bold notationrefersspecificallyto a parameterizegurface (vectorvaluedfunction). A
deformablesurface exhibits somemotion over time. Thus S = S(r,s,t), wheret € IR*. We assumesecond-
ordercontinuous,orientablesurfaces;thereforeat every point on the surface(andin time) thereis surfacenormal
N = N(r,s,t). We useS; to referto theentiresetof pointsonthesurface.

Local deformationsof S canbe describedby an evolution equation;i.e., a differentialequationon S thatincor-
poratesthe positionof the surface,local andglobal shapepropertiesandresponseso otherforcing functions. That
is,

oS

E:G(SJS’I’7SSJS'I‘T‘JS’I"S7SSSJ‘“)7 (9)

wherethesubscriptsepresenpartialderivativeswith respecto thoseparametersTheevolutionof S canbedescribed
by a sumof termsthatdepend®n boththe geometryof S andtheinfluenceof otherfunctionsor data.

Thereare a variety of differentialexpressionghat canbe combinedfor differentapplications.For instance the
modelcould movein responséo somedirectional“forcing” function[9, 10], F : U — IR?, thatis

08

Alternatively, the surfacecould expandandcontractwith a spatially-\aryingspeed For instance,

oS
= = N

5 G(S) (11)
whereG : R® — IR is asignedspeedunction. The evolution might alsodependon the surfacegeometryitself. For

instance,
oS

ot
describes surfacethat movesin way thatis becomesnore smoothwith respectto its own parameterizationThis
motion canbe combinedwith the motion of Equation10 to producea modelthatis pushedby a forcing function but
maintainsa certainsmoothnes its shapeand parameterizationThereare myriad termsthat dependon both the
differentialgeometryof the surfaceandoutsideforcesor functionsto controlthe evolution of asurface.

= Srr + Sss (12)
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Figure2: Level-setmodelsrepresenturvesandsurfacesmplicitly usinggreyscaleimages:a)anellipseis represented
asthelevel setof animage,b) to changethe shapewe modify the greyscalevaluesof theimage.

5 Deformation: The Level SetApproach

The methodof level-sets proposedy Osherand Sethian[11] anddescribedextensiely in [8], providesthe mathe-
maticalandnumericalmechanismgor computingsurfacedeformationsastime-varyingiso-valuesof ¢ by solvinga
partial differentialequationon the 3D grid. Thatis, thelevel-setformulationprovidesa setof numericalmethodghat
describehow to manipulatehegreyscalevaluesin avolume,sothattheisosurficesof ¢ movein aprescribednanner
(shovnin Figure2).

We denotethe movementof a point on a surfaceasit deformsasdz /dt, andwe assumehatthis motioncanbe
expressedn termsof the positionof x € U andthe geometryof the surfaceat that point. In this case thereare
generallytwo optionsfor representinguchsurfacemovementamplicitly:

Static: A single,staticé(x) containsa family of level setscorrespondindo surfacesasdifferenttimest. Thatis,

Oz dk(t)
tdt

To solvethis staticmethodrequiresconstructinga ¢ thatsatisfiesquationl 3. Thisis aboundaryalueproblem,

which can be solved someavhat efficiently startingwith a single surface using the fast marchingmethodof

Sethian[12]. This representatiomassomesignificantlimitations, however, because€by definition) a surface
cannotpassbackoveritself overtime, i.e., motionsmustbe strictly monotonic— inward or outward.

P(x(t)) = k() = V() (13)

Dynamic: Theapproachs to usea one-parametdamily of embeddings.e., ¢(x,t) change®vertime, x remains
onthek level setof ¢ asit moves,andk remainsconstant.The behaior of ¢ is obtainedby settingthe total
derivative of ¢(x(t),t) = k to zero.Thus,

ol dz
t),t) =k —=-V¢ - —. 14
da),t) =k = - =-Vo- o (14)
This approactcanaccommodatenodelsthatmove forward andbackward andcrossbackover their own paths
(overtime). However, to solve this requiressolving the initial valueproblem(usingfinite forward differences)
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on¢(x,t) — apotentiallylargecomputationaburden.Theremaindepf this discussiorfocusen thedynamic
casepecausef its superiorflexibility .

All surfacemovementsdependon positionandgeometryandthe level-setgeometryis expressedn termsof the
differential structureof ¢. Thereforethe dynamicformulationfrom equation14 givesa generalform of the partial
differentialequationon ¢:

2 = V9% = Yy Fla,D, D%, ), (15
whereD"¢ is the setof ordern derivativesof ¢ evaluatedat . Becausehis relationshipappliesto every level-setof
¢, i.e. all valuesof £, this equationcanbeappliedto all of U, andthereforethe movementsof all thelevel-setsurfaces
embeddedh ¢ canbecalculatedrom Equationl5.

Thelevel-setrepresentatiohasa numberof practicalandtheoreticabhdvantagesverconventionalsurfacemodels,
especiallyin the context of deformationandsegmentation First, level-setmodelsaretopologicallyflexible, they can
easily representomplicatedsurface shapeghat can, in turn, form holes, split to form multiple objects,or mege
with otherobjectsto form a single structure. Thesemodelscanincorporatemary (millions) of degreesof freedom,
andthereforethey canaccommodateomplex shapesindeed,the shapegormedby thelevel setsof ¢ arerestricted
only by theresolutionof the sampling.Thus,thereis no needto reparameterizéhe modelasit undegoessignificant
deformations.

Suchlevel-setmethodsare well documentedn the literature[11, 13] for applicationssuchas computational
physics[14], imageprocessind15, 16], computervision [17, 18], medicalimageanalysis[19, 18], and3D recon-
struction[20, 21]. For instancejn computationaphysicdevel-setmethodsarea a powerful tool for modelingmaving
interfacesbetweerdifferentmaterialgseeOsherandFedkiw[14] for aniceoverview of recentresults).Examplesare
waterair andwateroil. In suchcases|evel-setmethodscanbe usedto computedeformationghat minimize surface
areawhile preservingvolumesfor materialsthat split and meige in arbitraryways. The methodcanbe extendedto
multiple, non-overlappingobjects.

Level-setmethodshave alsobeenshavn to beeffectivein extractingsurfacestructuregrom biologicalandmedical
data. For instanceMalladi etal. [18] proposea methodin which the level-setsform an expandingor contracting
contourwhichtendsto “cling” to interestingieaturesn 2D angiogramsAt thesametimethecontouris alsoinfluenced
by its own cunature,andthereforeremainssmooth. Whitaker etal. [19, 22] have shavn that level setscanbe
usedto simulateconventionaldeformablesurfacemodels,anddemonstratethis by extractingskin andtumorsfrom
thick-sliced (e.g. clinical) MR data,and by reconstructinga fetal facefrom 3D ultrasound. A variety of authors
[23, 24, 16, 25] have presentedrariationson the methodandpresentedesultsfor 2D and3D data. Sethian[8] gives
severalexamplesof level-setcurvesandsurfacefor sggmentingCT andMR data.

5.1 Deformation Modes

In the caseof parametricsurfaces,one canchoosefrom a variety of differentexpressiongo constructan evolution
equatiorthatis appropriatdor aparticularapplication.For eachof thoseparametri@xpressionsthereis acorrespond-
ing expressiorthat canbe formulatedon ¢, the volumein which thelevel-setmodelsareembeddedIn constructing
evolutionson levels sets,therecanbe no referenceto the underlyingsurfaceparameterizatioftermsdependingon
r ands in Equations8 through12). This hastwo importantimplications: 1) only thosesurfacemovementghatare
normalto the surfacearerepresented—anothermovementis equivalentto a reparameterizatiof) all of the deriva-
tiveswith respecto surfaceparameterg ands mustbe expressedn termsof invariantsurfacepropertieghatcanbe
derivedwithout a parameterization.

ConsidethetermS,.,. + S, from equationl2. If r, s is anorthonormaparameterizatiorthe effect of thattermis
basedourelyonsurfaceshapenotonthe parameterizatiorandtheexpressionS.. + S is twice themeancurvatue,
H, of the surface.The correspondindevel-setformulationis givenby Equation6.

Tablel shavsalist of expressionsisedn theevolution of parameterizedurfacesandtheirequivalentsor level-set
representationgilso givenarethe assumptiongsboutthe parameterizatiothatgive rise to the level-setexpressions.

6 Numerical Methods

By takingthe stratgy of embeddingurfacemodelsin volumeswe have corvertedequationghatdescribehe move-
mentof surfacepointsto nonlinear partial differentialequationsiefinedon a volume,whichis generallyarectilinear
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Effect Parametric Evolution Level-Set Parameter
Evolution Assumptions
1 | Externalforce F F-Vo None
Expansion/

2| contraction G(z)N G(z)|Vo(z,1)| None
Mean

31 cunature Srr + Sss H|V¢| Orthonormal
Gauss

41 cunature Srr X Ses K|V Orthonormal

Principal
5 | Secondorder Spr O Sss (H + VH? —K) |V¢| e

Tablel: A list of evolution termsfor parametrianodelshasa correspondingxpressioron theembeddingg, associ-
atedwith thelevel-setmodels.

grid. The expressionu; , refersto the nth time stepat positions, j, k, which hasan associatedvaluein the 3D
domainof the contmuouevolumeqﬁ(m,, yj, zk). Thegoalis to solve the differentialequationconsistingof termsfrom
Table5.1onthediscretegrid u}’; ;..

The discretizationof theseequationsaisestwo importantissues.First is the availability of accuratestablenu-
mericalschemedgor solvingtheseequationsSeconds the problemof computationatomplexity andthe factthatwe
have corverteda surfaceproblemto a volumeproblem,increasinghe dimensionalityof the domainover which the
evolution equationsnustbe solved.

Thelevel-settermsin Table 1 arecombined basedon the needsof the application,to createa partial differential
equationon ¢(x,t). The solutionsto theseequationsare computedusing finite differences. Along the time axis
solutionsare obtainedusingfinite forward differencespeginning with aninitial model(i.e., volume) and stepping
sequentiallythrougha seriesof discreteimesstepgwhicharedenotedassuperscripten«). Thustheupdateequation
is:

u:’j}s =uj ;i + AtAu (16)

Theterm Au7; . is a discreteapproximatiorto 0¢/0t, which consistsof a weightedsumof termssuchasthosein
Table5.1. Thosetermsmust,in turn, be approximatedisingfinite differencesonthevolumegrid.

1,7,k

6.1 Up-wind Schemes

Thetermsin Table1 fall into two basiccatayories: the first-orderterms(items1 and?2 in Table1) andthe second-
orderterms(items 3 through5). The first-ordertermsdescribea moving wave front with a space-arying velocity
(expressiorl) or speedexpressior?). Equationf this form cannotbe solvedwith a simplefinite forwarddifference
scheme.Suchschemegendto overshootandthey areunstable.To addresghis issueOsherand Sethian[26] have
proposedanup-windschemeTheup-windmethodrelieson aone-sidedierivative thatlooksin the up-winddirection
of themoving wave front, andtherebyavoidsthe over-shootingassociatedvith finite forwarddifferences.
We denotethe type of discretedifferenceusingsuperscript®n a differenceoperatori.e., §(*) for forward differ-

encesg(—) for backward differencesandé for centraldifferences.For instancedifferencesn the z directionon a
discretegrid, u; ;,x, with domainX anduniformspacingh aredefinedas

AN
S uije = (g1 gk — vije)/h, (17)
_ A
(5;(3 )ui,j,k = (u,’,j,k — ui,l,j,k)/h, and (18)
A
Sruijhe = (Uit1gk — Ui-1,5,k)/(2h), (19)
(20)

wherewe have left off thetime superscripfor concisenessSecond-ordetermsarecomputedusingthetightest-fitting
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Figure3: The up-wind numericalschemausesone-sidedlerivativesto preventovershootingandthe creationof nen
level sets.

centraldifferenceoperatorsFor example,

A

Soattijh = (Wi1jk + Uic1,jk — 2ui k) [h7, (21)
A

5zzui,j’k = (ui’j7k+1 + Uj jk—1 — 2Ui,j,k) /h2, and (22)
A

OoyUijk = OalyUijk (23)

The discreteapproximatiorto the first-ordertermsof in Table5.1 arecomputedusingthe up-wind proposedoy
Osherand Sethian[11]. This stratgyy avoids overshootingby approximatingthe gradientof ¢ usinga one-sided
differencesn the directionthatis up-wind of the moving level-settherebyensuringthatno new contoursarecreated
in the procesof updatingu?’; , (asdepictedn Figure3). Theschemes separabla@longeachaxis(i.e., z, y, andz).

ConsidefTerm1 in Table5.1. If we usesuperscript$o denotethe vectorcomponentsi.e.,

F(z,y,2) = (F@(z,y,2), F¥ (z,y,2), F?) (2,9, 2)), (24)

the up-wind calculationfor a grid pointug’; ;. is

Stur. . FO(z; y:,2) >0
s ) . s ~ E N q i,gk isYi> Zi
F(xz,y“zz) V(ﬁ(m“y]’Zk,t) ge{z,y z}F (m“y"zz) { 6’zlu2j,k F(q) (mi;yiyzi) <0 (25)

Thetime stepsarelimited—thefastesimoving wave front canmaove only onegrid unit periteration. Thatis
1
qu{w,y,z} Supi,j,keXﬂvF(q) (xia Yj» Zk)|} ‘

Atp < (26)

For Term2in Table5.1thedirectionof themoving surfacedepend®nthenormal,andthereforethe sameup-wind
stratgyy is appliedin aslightly differentform.

G(xz',yj,Zk)|V¢($i,yj,Zk,t)| ~

max? (5wl ., 0) + min® (6 u?; 1, 0) Gz, yi,2i) >0
GIL", i Zi ) q 7,5,k 7 i,k iy iy #1 27
qe{zzy 2} (i:91 20 { min® (éjqu,k’O) + max? ((sq uzn,j,k70) G(q)(wi,yi, 2:) <0 27)

Thetime stepsare,again,limited by thefastesimoving wave front:

1
Atg <
3sup; j kex 1IVG (i, 5, 21) |}

(28)

275



Figure4: A level curve of a 2D scalarfield passeshrougha finite setof cells. Only thosegrid pointsnearesto the
level curve arerelevantto the evolution of thatcurve.

To computeapproximationthe updateto the second-ordetermsin Table 5.1 requiresonly centraldifferences
Thus,the meancurvatureis approximateds:

Hz’?j,k = ((6 uz] k) (6 uz] k) (6 uz] k)2)_ [((6 uz] k) (6 uz]k) )61'9””1] k (29)
(Ot ) + (Gl )) Spgty + (G ) + (Gyuly)”) dely

—205u7j 1Oy uf; kOay il j g, — 20yuf s 10T Oyl — 20:uT 5 L Opul; 1 Ozpul k]

Suchcurvaturetermscanbe computingby usinga combinationof forward andbackward differencesasdescribedn
[27]. In somecaseghisis advantageous—iit the detailsarebeyondthe scopeof this paper

Thetime stepsarelimited, for stability, to

Aty < é (30)

When combiningterms,the maximumtime stepsfor eachtermsis scaledby one over the weighting coeficient for
thatterm.

6.2 Narrow-Band Methods

If oneis interestedn only a singlelevel set the formulationdescribedpreviously is not efficient. This is because
solutionsare usuallycomputedover the entiredomainof ¢. The solutions,¢(z, v, z,t) describethe evolution of an
embeddedamily of contours. While this densefamily of solutionsmight be advantageougor certainapplications,
thereareotherapplicationghatrequireonly a singlesurfacemodel. In suchapplicationghe calculationof solutions
over a densefield is an unnecessargomputationaburden,andthe presencef contourfamiliescanbe a nuisance
becausdurtherprocessingnight berequiredto extractthelevel setthatis of interest.

Fortunately the evolution of a singlelevel set, ¢(x,t) = k, is not affectedby the choiceof embedding. The
evolution of thelevel setsis suchthatthey evolve independentlyto within the errorintroducedby the discretegrid).
Furthermoretheevolutionof ¢ isimportantonly in thevicinity of thatlevel set. Thus,oneshouldperformcalculations
for the evolution of ¢ only in a neighborhoodf the surfaceS = {z|¢(x) = k}. In the discretesetting,thereis a
particularsubsetof grid pointswhosevaluescontrol a particularlevel set(seeFigure4). Of course,asthe surface
moves,thatsubsebf grid pointsmustchangeo accounffor its new position.

AdalsteinsorandSethian 28] proposea harrow-bandapproactwhich followsthisline of reasoningThenarrow-
bandtechniqueconstructanembeddingf theevolving curve or surfacevia asigneddistanceransform.Thedistance
transformis truncatedij.e, computedverafinite width of only m pointsthatlie within aspecifieddistancdo thelevel
set. Theremainingpointsare setto constantvaluesto indicatethatthey do not lie within the narrov band,or tube
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Figure5: The narrov bandschemdimits computatiorto thevicinity of the specificlevel set. As the level-setmoves
nearthe edgeof thebandthe processs stoppedandthe bandrecomputed.

asthey call it. The evolution of the surface(they demonstratét for curvesin the plane)is computedby calculating
the evolution of w only on the setof grid pointsthatarewithin afixed distanceto theinitial level set,i.e. within the
narrav band.Whentheevolving level setapproachetheedgeof theband(seeFigureb), they calculateanew distance
transformanda nev embeddingandthey repeathe process.This algorithmrelieson the factthatthe embeddings
not a critical aspecbf the evolution of thelevel set. Thatis, the embeddingcanbe transformedbr recomputedat ary
pointin time, solong assuchatransformatiordoesnot changethe positionof the kth level set,andthe evolution will
be unafectedby this changan theembedding.

Despitetheimprovementsn computatiortime, the narrov-bandapproachis not optimalfor severalreasonsFirst
it requiresa bandof significantwidth (m = 12 in the examplesof [28]) whereonewould like to have a bandthatis
only aswide asnecessaryo calculatethe derivativesof u nearthelevel set(e.g.m = 2). Thewiderbandis necessary
becausehe narrav-bandalgorithmtradesoff two competingcomputationakosts. Oneis the costof stoppingthe
evolution andcomputingthe positionof the curve anddistanceransform(to sub-cellaccurag) anddeterminingthe
domainof theband. The otheris the costof computingthe evolution processover the entireband. The narrov-band
methodalsorequiresadditionaltechniquessuchassmoothingto maintainthe stability atthe boundarie®f theband,
wheresomegrid pointsareundegoingthe evolution andnearbyneighborsarestatic.

6.3 The Sparse-FieldMethod

Thebasicpremiseof the narrav bandalgorithmis thatcomputingthe distancdransformis socostlythatit cannotbe
doneat every iterationof the evolution processThe stratgy proposecdhereis to useanapproximatiorto thedistance
transformthatmalesit feasibleto recomputehe neighborhoof the level-setmodelat eachtime step.Computation
of the evolution equationis computedon a bandof grid pointsthatis only on pointwide. Theembeddings extended
from the active pointsto a neighborhoodaroundthosepointsthatis preciselythe width neededat eachtime. This
extensionis donevia afastdistanceransformapproximation.

This approachhasseveral advantages.First, the algorithm doespreciselythe numberof calculationsneededo
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computethe next positionof thelevel curve. It doesnot requireexplicitly recalculatinghe positionsof level setsand
theirdistanceransforms Becausehe numberof pointsbeingcomputeds sosmall, it is feasibleto usealinked-listto
keeptrackof them. Thus,ateachiterationthealgorithmvisits only thosepointsadjacento thek-level curve. For large
3D datasets thevery procesf incrementinga counterandcheckingthe statusof all of thegrid pointsis prohibitive.

The sparse-fieldalgorithmis analogoudo a locomotie enginethatlays down tracksbeforeit andpicksthemup
from behind. In this way the numberof computationgncreasewith the surfaceareaof the modelratherthanthe
resolutionof the embedding.Also, the sparse-fieldapproachidentifiesa singlelevel setwith a specificsetof points
whosevaluescontrolthe positionof thatlevel set. This allows oneto computeexternalforcesto anaccurag thatis
betterthanthe grid spacingof the model, resultingin a modelingsystemthat is more accuratefor variouskinds of
“modelfitting” applications.

The sparse-fieldalgorithm takes advantageof the fact that a k-level surface, S, of a discreteimagewu (of ary
dimension)hasa set of cells throughwhich it passesas shavn in Figure 4. The setof grid points adjacentto
the level setis calledthe active set andthe individual elementsof this setare calledactive points As a first-order
approximationthedistanceof thelevel setfrom the centerof ary active pointis proportionalto thevalueof « divided
thegradientmagnitudeat that point. Becausall of thederivatives(up to secondbrder)in this approackarecomputed
usingnearesheighbordifferencespnly theactive pointsandtheir neighborsarerelevantto the evolution of thelevel-
setatary particulartime in theevolutionprocessThestratay is to computethe evolution givenby equationl5onthe
active setandthenupdateneighborhoodaroundthe active setusinga fastdistancetransform. Becauseactive points
mustbe adjacento the level-setmodel,their positionslie within a fixed distanceto the model. Thereforethe values
of u for locationsin the active setmustlie within a certainrange. Whenactive-pointvaluesmove out of this active
range they arenolongeradjacento themodel. They mustberemovedfrom the setandothergrid points,thosewhose
valuesaremoving into theactive range mustbeaddedo take their place.The preciseorderingandexecutionof these
operationgs importantto the operationof the algorithm.

Thevaluesof the pointsin theactive setcanbe updatedisingthe up-wind schemeor first-ordertermsandcentral
differencedor the mean-curatureflow, asdescribedn the previoussectionsIn orderto maintainstability, onemust
updatetheneighborhoodsf active grid pointsin away thatallows grid pointsto enterandleave theactive setwithout
thosechangesn statusaffecting their values. Grid points shouldbe removed from the active setwhenthey areno
longerthe nearesgrid point to the zerocrossing.If we assumedhatthe embedding: is a discreteapproximatiorto
thedistanceransformof the model,thenthedistanceof a particulargrid point, z,,, = (i, j, k), to thelevel setis given
by thevalueof v atthatgrid point. If the distancebetweergrid pointsis definedto be unity, thenwe shouldremove
apointfrom the active setwhenthevalueof u atthatpointnolongerliesin theinterval [—%, %] (seeFigure6). If the
neighborsof that point maintaintheir distanceof 1, thenthoseneighborswill move into the active rangejust z,,, is
readyto beremoved.

Therearetwo operationghataresignificantto the evolution of the active set. First, the valuesof « at active points
changefrom oneiterationto the next. Secondasthe valuesof active points passout of the active rangethey are
removedfrom the active setandother, neighboringgrid pointsareaddedto the active setto take their place. In [21]
theauthorgivessomeformal definitionsof active setsandthe operationghataffectthem,which show thatactive sets
will alwaysform aboundarybetweernpositive andnegative regionsin theimage evenascontrolof thelevel setpasses
from onesetoff active pointsto another

Becausayrid pointsthat are nearthe active setare keptat a fixed value differencefrom the active points,actve
pointssene to control the behaior of non-actve grid pointsto which they areadjacent. The neighborhood®f the
actvesetaredefinedn layers, L1, ... LyyandL_q, ... L_ N, wherethes indicateghedistancecity blockdistance)
from the nearestctive grid point, andnegative numbersareusedfor the outsidelayers. For notationalcorvenience
the active setis denotedL.

Thenumberof layersshouldcoincidewith the sizeof the footprint or neighborhoodisedto calculatederivatives.
In this way, the insideandoutsidegrid pointsundego no changesn their valuesthat affect or distortthe evolution
of the zeroset. Most of the level-setwork relieson surfacenormalsand curvature,which requireonly second-order
derivativesof ¢. Second-ordederivativesarecalculatedusinga3 x 3 x 3 kernel(city-block distance? to thecorners).
Thereforeonly five layersarenecessary? insidelayers,2 outsidelayers,andtheactive set). Thesdayersaredenoted
Ly, Lo, L_q,L_5, andLo.

Theactive sethasgrid pointvaluesin therange[—%, %]. The valuesof thegrid pointsin eachneighborhoodayer
arekept 1 unit from the next layer closestto the active set(asin Figure6). Thusthe valuesof layer L; fall in the
interval [ — %,i + %]. For 2N + 1 layers,the valuesof the grid pointsthataretotally insideandoutsideare N + %
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Figure6: Thestatusof grid pointsandtheir valuesattwo differentpointsin time show thatasthezerocrossingmoves,
activity is passeanegrid pointto another

and—N — % respectiely. The procedurdor updatingtheimageandthe active setbasedn surfacemovementss as
follows:

1. For eachactive grid point, z,,, = (4, j, k), dothefollowing:

(a) Calculatethelocal geometryof thelevel set.

(b) Computethe netchangeof u,, , basedon the internaland externalforces,using somestable(e.g., up-
wind) numericalschemevherenecessary

2. For eachactlve grid point z; addthe changeto the grid point value and decideif the new valueu?t* falls
outsidethe [—1 3 2] interval. If so,putz,, onlists of grid pointsthatarechangingstatus;, calledthestatushst
SyorS_y, foru?tl > 1orult! < —1, respectiely.

3. Visit thegrid pointsin thelayersL; in theorderi = +1, ...+ N, andupdatethe grid pointvaluesbasecon the
values(by addingor subtractingoneunit) of the next innerlayer, L;+;. If morethanone L;; neighborexists
thenusetheneighborthatindicatesalevel curve closesto thatgrid point,i.e., usethe maximumfor the outside
layersandminimumfor theinsidelayers.If agrid pointin layer L; hasno L;+; neighborsthenit getsdemoted
to L;+1, thenext level avay from theactive set.

4. For eachstatudist S11, S+2,...,S+n dothefollowing:

(a) For eachelementr; onthestatudist S;, remave z; from thelist L;+;, andaddit to the L; list, or, in the
caseof i = £(N + 1), removeit from all lists.

b) Add all L;+; neighbordo the S; 1 list.
:F

This algorithmcanbe implementecefficiently usinglinked-list datastructurescombinedwith arraysto storethe
valuesof the grid pointsandtheir statesas shovn in Figure 7. This requiresonly thosegrid points whosevalues
arechanging,the active pointsandtheir neighborsto be visited at eachtime step. The computationtime grows as
m™~1, wherem is thenumberof grid pointsalongonedimensionof u (sometimegalledtheresolutionof thediscrete
sampling). Computatiortime for dense-fieldapproactincreasessm™. Them™~! growth in computatiorntime for
the sparse-fieldnodelsis consistentvith corventional(parameterizednodels for which computatiortimesincrease
with theresolutionof thedomain,ratherthantherange.

Anotherimportantaspecbf theperformancef the sparse-fieldilgorithmis thelargertime stepshatarepossible.
Thetime stepsarelimited by the speedof the “f astest’moving level curwe, i.e., the maximumof the force function.
Becausethe sparse-fieldnethodcalculatesthe movementof level setsover a subsetof the image, time stepsare
boundedrom below by thoseof thedense-fieldtasej.e.,

sup (g(x)) < sup(g(x)), (31)
rz€ACX Tz€EX
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updated.

whereg(z) is thespacevaryingspeedunctionand.A is the active set.

Resultsfrom previouswork [21] have demonstratedeseralimportantaspect®of the sparse-fieldalgorithm. First,
the manipulationof the active setandsurroundindayersallow the active setto “track” the deformablesurfaceasit
moves. The active setalwaysdividestheinsideandoutsideof the objectsit describegi.e., it staysclosed).Empirical
resultsshawv significantincreasedn performanceelative to boththe computatiorof full domainandthe narronv-band
method,as proposedn the literature. Empirical resultsalsoshow thatthe sparse-fieldnethodis aboutasaccurate
as both the full, discretesolution, and the narrov-bandmethod. Finally, because¢he methodpositionslevel sets
to sub-woxel accurag it avoids aliasingproblemsandis more accuratehentheseothermethodswhenit comesto
fitting level-setmodelsto othersurfaces.This sub-woxel accuray is importantaspecof theimplementationandwill
significantlyimpactthe quality of theresultsfor the applicationghatfollow.

7 Applications

This sectiondescribeseveral examplesof how level-setsurfacemodelscanbe usedto addressgroblemsin graphics,
visualization,and computervision. Theseexamplesare a small selectionof thoseavailablein the literature. All of

theseexampleswvhereimplementedisingthe sparse-fieldilgorithmandthe VISPacklibrary, whichis describedn the
sectionthatfollows.

7.1 SurfaceMor phing

This sectionsummarizeshe work of [29], which describeghe useof level-setsurfacemodelsto perform3D shape
metamorphosisThe morphingof 3D surfacesis the processof constructinga seriesof 3D modelsthat constitutea
smoothtransitionfrom oneshapeo another(i.e.,ahomotoy). Suchacapabilityis interestingfor creatinganimations
andasatool for geometrianodeling.Thereis notyeta single,generaimethodfor generatinguchtransitionalshapes.
However, thereareseveraldesirableaspect®f morphingalgorithmsthatallow usto comparegheadequay of different
approacheo surfacemorphing.Severaldesirablepropertiesof 3D surfacemorphingare:

1. Thetransitionprocesshouldbegin with aninitial surfaceandendwith a specifiedtarget surface.

2. Themorphingalgorithmshouldapplyto a wide rangeof shapesndtopologies.
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3. Intermediatesurfacesshouldundego continuous3D transitiongratherthancontinuityonly in theimagespace).
4. A 3D morphingalgorithmshouldincorporatauserinput easilybut shoulddegradegracefullywithoutit.
5. Transitionalshapeshoulddependnly on the surfacegeometryof thetwo input shapesanduserinput.

Theserequirementarenot exhaustve, but they capturemary of the practicalaspect®f 3D morphing.

In this sectionwe shav how level-setmodelsprovide analgorithmfor 3D morphingwhich meetsmostof these
criteria and comparefavorably with existing algorithms. Furthermore this algorithmis a naturalextensionof the
mathematicaprinciplesdiscussedh previoussections.Thestratey is to allow afree-formdeformatiorof onesurface
(calledtheinitial surface)usingthe signeddistanceransformof a secondsurface(thetarget surface).This free-form
deformationis combinedwith anunderlyingcoordinateransformatiorthat giveseithera roughglobal alignmentof
thetwo surfacesor one-to-oneaelationshipdetweena finite setof landmarkson boththeinitial andtargetsurfaces.
The coordinatgransformatiorcanbe computedautomaticallyor usinguserinput (asin [30]).

Much of the previous 3D morphingwork hasfocusedon morphingparametricmodels[31, 32] and appliesto
only very limited classef shapesaandtopologies. Several authorshave describedvolumetrictechniques.Hughes
[33] demonstratekow volumescan provide topologicalflexibility in surfacemorphing. Lerios et al. [30] followed
up with a volume-baseagchemewhich incorporatesuserinput via underlyingcoordinatetransformationga known
generalizatiorthe imagewarpingtechniquehatis often usedin imagemorphing). Neitherof theseapproachebave
dealtwith the deepetissueof deformingthelevel setsof a volume,but ratherrely onthe propertiesof theembedding.
PayneandToga[34] aswell asCohen-Oretal. [35] fix theembeddingroblemby usinga signeddistanceransform
to createvolumesfrom surfaces. However, interpolatingdistancetransformscanintroduceartifactsthat violate the
previously statedproperties,and both of thesemethodsusea discretedistancetransformwhich introducesvolume
aliasing.

7.1.1 Free-Form Deformations

Thedistanceransformgivesthe nearestuclideandistanceo a setof points,curve, or surface.For closedsurfacesn
3D, the signeddistancetransformgivesa positive distancefor pointsinsideandnegative for pointsoutside(one can
alsochoosehe oppositesigncorvention).

If two connecteghapeoverlapthentheinitial surfacecanexpandor contractusingthe distanceransformof the
target. The steadystateof sucha deformationprocesss a shapeconsistingof the zerosetof the distancetransformof
thetarget. Thatis, theinitial objectbecomeghetarget. Thisis the basisof the proposedD morphingalgorithm.

Let D(x) bethesigneddistancetransformof thetametsurface,B, andlet A betheinitial surface.The evolution
procesavhichtakesamodelS from A to B is definedby

X~ N D), (32)
wherez(t) € S; andS;—o = A. The free-form deformationscan be combinedwith an underlying coordinate
transformation.The strateyy is to usea coordinatedransformatior(for instancea translationandrotation)to position
thetwo surfacesneareachother Thesetransformationgancapturegrosssimilaritiesin shapeaswell asuserinput.
A coordinateransformations givenby

' =T(z,a), (33)

where0 < a < 1 parameterizesa continuousfamily of thesetransformationghat begins with identity, i.e. = =
T(z,0). Theevolution equatiorfor a parametricsurfaceis

Oz

andthe correspondindevel-setequationis
0% (x,t)
ot
This processproducesa seriesof transitionshapegparameterizedy ¢). The coordinatetransformationcanbe
a global rotation, translation,or scaling,or it might be a warping of the underlying3D spaceaswas usedby [30].

= [Vo(z,t)| D(T(,1)). (35)
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Figure8: A 3D modelof ajet thatwasbuilt usingClockworks,a CSGmodelingsystem.

Incorporatinguserinput is importantfor any surfacemorphingtechnique becauseén mary casedinding the best
setof transitionsurfacesdependn contet. Only userscanapply semantiaconsiderationso the transformatiorof
oneobjectto another However, this underlyingcoordinatetransformatiorcan,in general,achieve only somefinite
similarity betweerthe “warped”initial modelandthe target,andeventhis mayrequirea greatdealof userinput. In
the eventthata useris notableor willing to defineevery importantcorrespondencieetweerntwo objects,someother
methodmust“fill in” the gapsremainingbetweerthe initial andtargetsurface. In [30] they proposealphablending
to achieve that smoothtransition—reallyjust a fadingfrom onesurfaceto the other We areproposingthe useof the
free-formdeformationsimplementedvith level-setmodelsto achieve acontinuoudransitionbetweertheshapeshat
resultfrom theunderlyingcoordinatdransformationWe have alsoexperimentedvith waysof automaticallyorienting
andscalingobjects,using3D momentsjn orderto achieve a significantcorrespondenceetweerntwo objects.

Figure 8 shavs a 3D model of a jet that was built using Clockworks [36], a CSG modelingsystem. Lerios et
al. [30] demonstrat¢hetransitionof a jet to a dart,which wasaccomplishedising37 userdefinedcorrespondences,
roughlyahundreduserdefinedparameterskigure9 showns the useof level-setmodelsto constructa setof transition
surfacesbetweera jet anda dart. Thetrianglemeshis extractedfrom thevolumeusingthe methodof marchingcubes
[5]. Theseresultsareobtainedwithoutarny userinput. Distancetransformsonthe CSGmodelsarecomputechearthe
level surfaceusingananalyticaldescriptiorandextendednto the volumeusinga level-setmethod[37].

The applicationin this sectionshavs how level-setmodelsmaoving accordingto the first-orderterm given in
expressior? in Tablel can“fit” otherobjectsby moving with a speedhatdepend®n the signeddistancetransform
of the target object. The applicationin the next sectionrelies on expressions of Table 1, a second-ordeflow that
depend®n the principal curvaturesof the surfaceitself.

7.2 Filleting and Blending Solid Objects

The constructionof blendingsurfacesis an importanttool in solid modeling. Geometricsolid primitivesandtheir
intersectionoften producesharpcornersor creaseshatareoften not consistentvith the real-world objectsthatthey
areintendedo representThis sectionshovs how blendingcanbe describedisa deformationprocessywheresurfaces
move undera geometricflow that canaddor remove materialbasedon local curvatureinformation. The resultis a
methodfor solid objectblendingthat doesnot dependon ary particularmodelrepresentationThusthis methodis
not restrictedto a specificclassof shapesr topologies. Additionally, the resultsare invariant; they do not depend
on arbitrarychoicesof coordinatesystemsr bases.The only requirements thatthe blendedobjectsmustbe closed
surfaceswith someknown inside-outsiddunction.

Surfaceblendingtechniquesare typically tied very closelyto the choiceof geometricprimitives. For instance,
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Figure 9: The deformationof the jet to a dart using a level-setmodel moving with a speeddefinedby the signed
distanceransformof thetargetobject.
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Middleditch and Sears[38] proposea set-theoretianethodfor blendingsolids which relieson low-orderalgebraic
primitives.A fillet atthejoint of two tori requireshesolutionof adegree32 polynomial. BloomenthabndShoemak
[39] proposea modelingsystembasedon cornvolutions,which relieson a skeletonizedrepresentationf objects. In
generalhe useof convolutionto achieve deformationn implicit shapesesultsin shapeghatreflectboththe shape
of themodelandtheembedding®.

Theblendingmethodproposedn this sectionmplementsaninterative smoothingschemehatsmoothsonly along
thelevel set;thefinal resultis independendf theembedding Considerthe caseof fillets. We proposehatafillet can
be constructedrom a processf “filling in” materialin placesof high curvature. The curvatureof a level-setmodel
canbe calculatedrom the embeddingandthe deformationof the level setis well definedby the curvaturetermsin
Tablel.

Thestratey is to construct curvatureterm, k,,, thatconsistof only positve curvatures?! Theprincipalcurvatures
of the level setsof ® arefunctionsof ® andits derivatives. For a specific® the principal curvaturesarefunctionsof
3-spacek; (z) andks (x). For addingmaterialthe joint betweertwo objects,we consideronly the positive curvature

componentsi.e.,

%—T = |V®|k, = |[VO|kS + |[VO|KS, (36)
wherek™ consist®f only thepositive partsof k£ andis definedaszeroelsavhere.Becaus¢heuseof separateurvature
termscancauseover-shooting theup-windschemdtreatingk, asa space-aryingvelocityin thenormaldirection)is
usedfor this evolution.

Figure10 shavs how the positive-cunatureflow canbe usedto construcffillets. No knowledgeof the underlying
modelsis necessaryThefillets grow largerasmoretime passesThe physicalextentor positionof thefillet canbe
controlledby eitherspecifyinga region of actionor by placinga small blob of deformablematerialin thejoint that
requiresafillet. Figure 11 shavs how sucha blendingcapability canbe usefulin animation. In this casea pair of
superquadricsindego a rigid transformatiorthat controlstheir relative positions. Level-setmodelswith a positive-
cunatureflow are usedto createa smoothjoint betweenthesetwo primitives. Notice that the positive curvature
methoddoesnot suffer from the growth or expansionartifactsthatareoften associatedvith distance-baseblending
methodq40].

Thus,asecond-ordeflow cancreatesmoothblendsbetweerobjectsin away thatdoesnotrequirespecificknowl-
edgeof the shapesr topologiesof the objectinvolved. The applicationin the next section,3D scenereconstruction,
shavs how acombinatiorof first-orderandsecond-ordetermsfrom Table1 arecombinedo createechniquehatfits
modelsto datawhile maintainingcertainsmoothnessonstraintsandtherebyoffsettingthe effectsof noise.

7.3 3D Reconstructionfrom Multiple RangeMaps

Level-setmodelsareusefulfor problemsrelatedto 3D reconstruction.Previous work haspresentedevel-setresults
derivedfrom noisy 3D datasuchasMRI [19] andultrasound41]. In [42] we have shavn how thereconstructiorof
objectsfrom multiple rangemapscanbe formulatedasa problemof finding the surfacethat optimizesthe posterior
probability given a setof measurementéoisy rangemaps)and someinformation aboutthe a-priori probability of
differentkindsof surfaces.Thatoptimizationproblemcanbeexpressedsavolumeintegralwhich canbe solvedwith
level-setmodels.This sectionpresentshe mathematicaéxpressionghatresultfrom thoseformulationsandpresents
somenew results:the reconstructiorof entirescenedy fitting level-setmodelsto the datafrom a scanning.ADAR
(laserranginganddetection)system.

A rangemapis acollectionof rangemeasurementakenalongdifferentdirectionlinesof sight)but from asingle
pointof view. Rangemapscouldcomefrom ary numberof differentsourcesncludinglaserscannersstructuredight
depthsystemsshapefrom stereo,or shapefrom motion. We assumehat suchrangemapsare noisy anduncertain.
Thegoalis to combinea numberof rangemapsfrom differentpointsof view to createa 3D structurethatreflectsthe
collective confidenceanddepthmeasures.

Severalexamplesin theliteraturehave appliedparametrianodelsto this task. Turk andLevoy [43], for instance,
“zip” togethertriangle meshesn orderto construct3D objectsfrom sequencesf rangemapsfrom a laserrange
finder They performminor adjustmentdo the surfacepositionin orderaccountfor ambiguityin the rangemaps.
Their approachassumesery little noisein theinput, which is reasonablgiventhe high quality of their rangemaps.
Chenand Medioni [44] usea parametric(triangle mesh)model which expandsinside a sequencef rangemaps.

1Thesignof cunatureis definedby thedirectionof the normals—in this work normalspointinto thevolumeenclosedy the object.
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Figure10: Two rectangulasolid modelsarejoined by avolumetricfillet thatis createdrom a positive curvatureflow.
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(e) (f)

Figurell: A shortanimationis createdy specifyingtherelative motionbetweertwo superquadricomponentsf an
object. A positive-cunatureflow (appliedframeby frameto the joint betweerthe two 3D models)createsa smooth,
flexible object.
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CurlessandLevoy [45] describea volume-basedechniquefor combiningrangedata. They usethe signeddistance
transformto encodevolume elementswith datathat representhe averages(with someallowancefor outliers) of

multiple measurementsSurfacesof objectsarethe level setsof volumes. Relatedapproachegaregivenin [46, 47).

Bajaj et. al. [48] usea Delaunaytriangulationto imposea topology on a setof unordered3D points and then fit

trivariate Bernstein-Beziepatches—i.e. a higherorder implicit model—tothe data. Muraki [2] usesimplicit or

blobby modelsto reconstrucbbjectsfrom rangedata. The individual blobsare sphericallysymmetric3D potentials
thatare combinedinearly sothatthey blendtogether The resultingmodels,with approximately400 primitivesare
quitecoarse.

This work differs from previous work in two ways. First, ratherthan heuristics,our reconstructiorstratgy is
basedon a stratgy that solvesfor the optimal surfaceestimate. This optimal estimateincludesinformation about
one’s expectationsof the likelihood of differentsurfaces. The resultis not a closed-formsolution, but an iterative
procesghatseekgo fit alevel-setmodelto the datawhile enforcingakind of smoothnessnthedata.

7.3.1 Objectivefunction for multiple range maps

The evolution equationfor the estimationof optimalsurfacess shavn in [42] to consistof two parts:

oz
ot
Thisfirst part,—G(x) N, is thedataterm,which is amovementwith variablespeedasin expressior2 from Table1)

thatis the cumulative effect from all of theindividual rangemaps. The secondpartis the prior, which describeghe
likelihoodof the surfaceindependentf thedata. Thedatatermis

Z @) (2) DO (&) w (DU)(m)) A9 (), (38)

= —G(z)N + p(S). (37)

whereD; is the signeddistancealongtheline of sightfrom arangemeasuremerih rangemap; associategassing
throughz. Thefunctionw : IR — IR is awindowing functionthatlimits the penaltyof ary onerangemeasurement,
and¢(+) is a confidencefunction, which is inversely proportionalto the level of noisein the rangemeasurement
associateavith the sameline of sight. Theterm~(-) is anintegrationconstanthattakesinto accounthe curvilinear
coordinatesystemof therangescanner

Thus, a setof rangemapscreatesa scalarfunction of 3D, which describeghe movementof a surfacemodel
asit seeksthe optimal surfaceposition. In the absenceof a prior, p = 0, the zerosetof this function is the final
position(steadystate)of thatevolving surface. Thus,in the absencef a prior, onecould sampleg(z) andobtainan
approximatiorto the optimalsurfaceestimate This strateyy resultsin analgorithmthatis very muchlik e thatof [45].

Thereareseveralreasondor goingto aniteratve schemefor finding optimal solutions.Firstis the useof a prior.
In surfacereconstructionevena very low level of noisecandegradethe quality of therenderedsurfacesin thefinal
result,andin suchcasesetterreconstructionsanbeobtainedoy introducingaprior. Seconds aliasing.Discretizing
g(x) andfinding the zerocrossingswill causealiasingin thoseplaceswherethe transitionfrom positive to negative
is particularlysteep.A deformablemodelcanplacethe surfacemuchmoreprecisely Thethird reasorfor goingto
aniterative schemes that despitethe windowing functionw(z) thereis interferencebetweendifferentrangemaps
at placesof high curvature. This problemis addressedby introducinga nonlinearitywhich is solved in aniterative
schemeagivenby equation37. In thework describedn [21], the solutionof the linear problem,the zerosetof g(x),
senesastheinitial estimatefor the nonlinear iterative optimizationstrategyy thatresultsfrom the inclusionof a prior
andanonlineartermthatcompensatefor lack of any explicit modelof self occlusions.

Equation37 includesa prior, whichis alikelihoodfunctionon surfaceshape A reasonablehoiceof prioris one
thatmodelsobjectswith lesssurfaceareaasmorelik ely thanobjectswith moresurfacearea.Alternatively, onecould
saythatgivena setof surfaceshatarenearthe data,the algorithmshouldchoosea surfacethathaslessarea.Often,
but notalways,thiswill bethesmoothesurface.Thep(S) thatresultsirom this prior is themeancurvature. Therefore
the evolution of the surface,usingthe level-setformulation,that seeksto maximizethe posteriorprobability (givena
setof rangemapsanda prior thatpenalizesurfacearea)is

(Ve -nl) (IE))+

0%(z,t) _ = |Vd(z |Z (D(J) (D(")(m)) x 79 () C(j)(w)m

o ) +BH,  (39)
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Figure12: Rangemaps:Syntheticrangedata200x 200 pixelswith 20% Gaussiarwhite noiseof atorusend(a) and
side(b).

(@) (b) (©

Figure13: (a) An analytically-definednodelof a torus. (b) An initial model(80x 80x40 voxels)is constructedy
combiningsix pointsof view of atorusandsolvingfor g(x) = 0. (c) Themodel,whichis attractedo therangedata
but subjectto internalforces,evolvesandsettlesinto a smoothersteadystate.

wheren(?) (z) is theline of sightfrom arangefinderto a 3D point, z, 4 is a free parametethatcontrolsthe level of
smoothingn themodel,and H is the expressiorfor the meancurvaturegivenin equationb.

Figure 12 shows a pair of simulatedrangemapsconstructedrom an analyticaldescriptionof a torus. These
200x 200 pixel rangemapsare corruptedwith additve Gaussiamoisethat hasa standarddeviation of 20% (asa
function of the smallerof thetwo radii). Six syntheticnoise-corruptediewpointsof atorusarecombinedto createa
level-setreconstructiorof atorus. Figure13(a)shavstheinitial model(80x 80x 40 voxels)usedfor fitting alevel-set
modelsto the rangedata. Figure 13(b) shavs the resultof the level-setmodelsthatusesl3(a)asaninitial stateand
hasavalueof g equalto 0.5. Theresultis a reasonableeconstructiorof the noiselessnodel(Figure 13(c)) which
combineghesix pointsof view andthe smoothingfunction.

Figure 14(a)shavs a rangemaptakenwith the Perceptrormodel P5000,an infra-red, time-of-flight laserrange
finderwith a pan-tilt mechanismFigure 14(b) showvs the amplitudesassociatedvith the returnsignal(anintensity),
and 14(c) shows a surfaceplot of the rangemapto demonstratehe degreeof noise (additive and outliers). Figure
14(d) shaws the confidencevaluesassociatedvith thoserangemeasurementsTheseconfidencevaluesarederived
from empirical dataaboutthe level of noisein the rangefinder (which dependon the returnamplitude),and some
analysisfrom first principles,aboutthe effectsof uncertaintyin the 3D positionsof the scansandthemodel— which
resultsin thelower confidenceat edgesasdescribedn [42]. We combinedwelve suchviews from differentlocations
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Figure 14: (a) One of twelve rangemaps(b) The associateamplitudemap(c) A surfaceplot of the rangedatato
shaw thelevel of noise.(d) The confidencaneasureassociatedavith thoserangevalues.
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in theroomto generataheresultsthatfollow.

Figure 15(a) shaws the initial estimatebasedon the zero crossingsof g(x), and 15(b) shows the resultof 32
iterationswith the prior term andthe correctionfor the surfacenormaldirection. The size of the volumeis 300 x
150 x 180 voxels,andtheresolutionis 1.8 cm/voxel. Theseresultsshav theability of the statistically-basedpproach
to overcomethe noisein the scannerandthey shav thatthe inclusionof iterative, model-fittingschemehelpscreate
moreaccurataeconstructionsTheresolutionof the modelfalls below thatof thescanshecausé waslimited by the
random-access-memoayailableon ourworkstation.Somesmallfeaturessuchasthearmrestsof thechairs,arelost
becaus®f theinaccuraciedn theregistrationof theindividual rangemaps.

8 VISPACK

8.1 Intr oduction

VISPACK is a setof C++, object-orientedibrariesfor image processingyolume processingandlevel-setsurface
modeling. It consistsof five libraries: Matrix, Image, Volume, Util, and Voxmodel(level-setmodeling). These
librariescanbe usedseparatelyr togethemwhencreatingapplications.

VISPACK incorporate®ightbasicdesignattributes. Theseare

Data Handles/Copyon Write:  VISPackis an object-orientedibrary, andassuchwe allow the objectsto handle
memorymanagementgndrelieve the programmel(in mostcases)rom having to worry pointersandthe cor-
respondingnemoryallocation/deallocatioproblems. For this we usethe datahandleswith a copy on write
protocol Copy constructorperforma shallov copy with referencecountinguntil a non constoperationon the
underlyingbuffersforcesa deepcopy. Thusdeepcopiesareperformedonly whennecessarybut all memoryis
maintaineddy the objectsandobjectsbehae as“variables’ratherthanpointers.

Modified Data Hiding: Accesgo datain objectsis generallythroughaccessnethodshowever, pointersto buffers
for fastimplementationsreavailable.

Templates: VISPackutilizesthetemplatingconstructof C++ virtually throughout.Many of the objects,including
images,volumes,lists, and arrays,are intendedto supporta wide rangeof datatypes. Thus, via templating
programmersandefinethe pixelsof differentimagesof differenttypes,suchasfloatingpoint, 24-bit color, and
16-bitgreyscale.

Useof Standard File Formats: Whenappropriate/ISPack usesstandardile formats.We choosdormatsthatare
well known andhave publicly availablelibrariesthat canbe distributedwith our libraries. The matrix library
usesasimpletext format. Theimagelibrary usesTIFF andFITS file formats.Becausao standardormatexists
for saving volumesof datawe do usearaw file format.

Operator Overloading: Properuseof operatoroverloadinggives usersa corvenientway to executeoperations
on an object. Whencompinedwith the copy-on-write corvention, operatoroverloadingallows programmers
to treatmary heary-weight objects(e.g. imagesandvolumes)asvariables. For instance the following code
computesion-maximakdgesn aon afilteredvolume.

Vol une<f| oat > dx, dy, dz;
Vol une<f| oat > vol _gauss = vol . gauss(0.5);
Vol une<fl oat > vol out = (((dx = vol _gauss. dx()). power (2)
*vol _gauss. dx(2)
((dy = vol _gauss. dy()). power(2)*vol gauss. dy(2)
((dz = vol _gauss. dz()). power(2)*vol gauss. dz(2)
dx*dy*(dx).dy() + dx*dz*(dx).dz())
dy*dz*(dy).dz()) )).zeroCrossings()
&& ((dx. power(2) + dy.power(2)) > T*T));

+ + + +
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Figure15: (top) The 3D reconstructiorresultingfrom the zerocrossingof g(x) givessomeaveraging but includes
no prior. (bottom) Theresultof 32 iterationswith the iterative schemencludesthe prior andexcludesinfluencesof
dataon surfaceshatfaceaway from the scanner
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8.2 Level-SetSurface-ModelingLibrary

ThelLevel-SetSurface-ModelingLSSM) Library is animplementatiorof thelevel-settechniqueg11, 13] specifically
for deformingsurfacemodelsembeddedn volumes. The implementatiorusesthe sparse-fieldnethoddescribedn
[20]. Thelibrary implementsall of the basichnumericalalgorithmsandhandlesall of the datastructuresequiredto
performLSSM. The stratey for usingthis library is to subclasghe objectVoxMbdel , setsomeparametersdefine
a setof simplevirtual functionsthat control the deformationprocessinitialize the model,andthendirectthe model
to iteratively deformaccordingto thoseequations.This sectiondescribeghe relationshipbetweenthe mathematics
of previous sectionsandthe VISPacklibrary. Its alsopresentsanexampleof usingVISPacklibararyto do 3D shape
metamorphosiasdescribedn Section7.1.

8.2.1 SurfaceDeformation

The LSSM library allows oneto solve for surfacedeformationsasa function of time, for generallevel-setsurface
movementsf theform:

0

a—f =aF(z, N(z)) + fG(z, N(z))N(z) + vN(x) + nE (ki (2), k2(2))) , (40)
wherez is apointonthesurface.This equations solved by representinghe surfaceasthe kth level setof animplicit
functiong(z,t) : R® x R' s R. Thisgives

0¢
ot
whereD¢ andD?2 ¢ arecollectionsfirst andsecondierivativesof ¢, respectiely. This equationis solvedon adiscrete
grid usinganup-windschemegradientcalculationscentraldifferencedor thecurvature andforwardfinite differences

in time. The LSSM library usesthe spaise-fieldmethoddescribedn Section6.3andin [21].
Thus,the LSSM library offersthefollowing capabilities:

aF(z,V9)) - Vo + BG(x, V)|Vl +7|Ve| +nE(D¢,D*¢), (41)

1. Createsaninitial model(with associatedctive set)from avolume.

2. CalculatesAu? ik andAt usingvirtual functions(definedby subclasseghatdescribeF’ andG, andparameters

2

(valuessetby thésubclass)x, 3, v, andn.

3. Performsanupdateonthevaluesof 7', ;.

4. Maintainsthe list of active grid pointsandupdateghe layers aroundthosepointsin orderto maintaina neigh-
borhoodfrom which to calculatesubsequentpdates.

5. Providesaccesso thevolumethatdefinesu?; , andthelinkedlist of active grid points.

Giventhevolumedefiningu?; ., onecanthenrely on thefunctionality of the volumelibrary for subsequernprocess-
ing, file 1/0, or surfaceextraction.

8.2.2 Structur e and Philosophy of the LSSM Library

Thelibrary is organized(mostly for easeof development)into a baseclass,Level Set Model , andaderivedclass,
VoxMbdel . The baseclassdoesall of the book keepingassociatedvith the active setand surroundingayers, the
link lists associatedavith thosesets,andinitializing the model. Thusit addsandremovesvoxels from the active set
(andsurroundingayers)in responseo an updateoperation. The baseclassassumeshat the subclasseknow how
to updateindividual voxels. Applicationsare built by subclassing/oxModel andredefininga small setof virtual
functionsthatcontrolthe movementof themodel.

The subclassVoxModel , performsupdateon the grid pointsin the active setof the form givenin Equationl16,
usingfunctionsF' andG andparameters, 3, v, ands. It alsocalculateshemaximumAt thatensurestability. Thus
auserwhowishesto performa surfacedeformationusingthe LSSMlibrary, would createsubclas®f VoxMbdel and
definethe appropriatevirtual functionsandsetthe parameterso achiese the desiredbehaior.
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8.2.3 Thelevel Set Model Object

TheLevel Set Model containsavolumeof valuesavolumeof statuslags, five lists (oneactivelist, two insidelists,
andtwo outsidelists), andthreeparametershatdeterminethe origin of the coordinatesystemform which the model
performsits calculations.

There are two constructorsLevel Set Model () and Level Set Model ( const VI SVol ume<f| oat >
&) . Thefirst simply initializesthe datastructure andthe secondalsosetthe valuesof the modelvolume(_val ues)
to the input. Oncethe valueshave beenset, one can createan initial volume from thosevaluesby calling con-
st ruct Li st s(), which canalsotake a floating-pointargumentthat controlsthe scalingof the input relative to a
local distanceransformnearthe zeroset.

Thelist thatkeepstrack of the active set,called_act i ve_l i st , keepstrack of thelocationof thosegrid points
anda singlefloating-pointvalue,which storesthe changen their valuesfrom oneiterationto the next.

Anotherimportantmethodsfor usersof this objectis updat e( f | oat ) , which changeshe grey-scalevaluesof
thegrid for the active setaccordingto thevaluesstoredin _act i ve_l i st , andupdateghe statusof elementonthe
active list aswell asthe valuesandstatusof nearbylayers(2 insideand?2 outside).Thefloating pointargumentis the
valueof At from Equationl16, andthe returnvalueis the maximumchangethat occurredon the active set. Finally,
the methodi t er at e() callsthe virtual methodcal cul at e_change, a virtual function which setsthe values
of Au; g andreturnsthe maximumvalue of At for stability, andthencallsupdat e. For this objectthe function
cal cul at e_.change performssometrivial (i.e., uselesspperation.

8.2.4 TheVoxMbodel Object

TheVoxModel objectis asubclas®f Level Set Model , andit addthreethingsto the baseclass.

1. cal cul at e_change() isredefinedo implementthe surfacedeformationdescribedn Equation41.

2. Thevirtual functionsaredeclaredor F' (calledf or ce) andG (calledgr ow). Thesefunctionsaredefinedto
returnzerofor this object.

3. The parameterghat control the relative influence of the various terms are read from file by a routine
| oad_par ans.

4. A methodr escal e(f | oat) is definedwhichresampleshevolumeof grid-pointvaluesinto a new volume
with differentresolutionandredefineghelists (andtherebythe model)in this new volume. This methodis for
performingcoarse-to-fineleformationprocedures.

8.3 Example: 3D ShapeMetamorphasis

TheMor ph objectallowsoneto constructsequencef volumesor surfacemeshesisingthe3D shapanetamorphasis
techniquedescribedin Section7.1, which was first proposedby Whitaker and Breen[20]. This techniquerelies
distanceransformsfor boththe sourceandtarget objectsandusesa LSSMsto manipulatethe shapeof the sourceso
thatit coincideswith thetarget. The surfacedeformationthatdescribeghis behaior is

X = 56 (T(x) N(@) (42

whereG(x) is simply thedistanceransform(or somemonotonicfunctionthereof)of thetarget,andT is a coordinate
transformatiorthatalignsthe sourceandtargetobjects.Thelevel-setformulationof thisis

9¢(, 1)
ot

Themorphingprocessonsistof several steps:

= pG (T(2))[V4l. (43)

1. Readin distanceransformgin theform of volumes)for both sourceandtarget.

2. Initialize the LSSM by fitting it to the zerosetof the sourcedistanceransform.
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3. Updatethe LSSM accordingto Equation43.
4. Saveintermediaterolumes/surdicesat regularintervals.

The remainderof this sectionlists the codeand commentsfor threefiles, morph.h(which declareshe Mor ph
object),morph.C(which definesthe methodsyandmain.C(which performsall of thel/O andusesthe Mor ph object
to constructa sequencef shapes.

8.4 Morph.h
/1

/1 norph.h
/1

/1

#i fndef iris_norph_h
#define iris_nmorph_h

#i ncl ude "voxnodel / voxnodel . h"
#i nclude "matrix/ matri x. h"

#define | NI T_STATE O
#def i ne MORPH_STATE 1

/1
/1 This is the nmorph object. It uses all of the machinery of the base
/1 class to manipulate |l evel sets. It needs to have an initial volume

/1 and a final volume (which would typically be the distance transform
/1 it mght need a 3D transformation, and it needs to redefine the

/1 virtual function "grow', which takes 6 floats as input, the position
/1 followed by the normal vectors (all will calculated and passed into

/1 this nethod by the base class). It mght also have a state, that
/1 indicates whether or not it’s been initialized.
/1

/1 Functions not defined here should be defined in "norph. C
/1
cl ass Morph: public VoxModel

{
pr ot ect ed:
VI SVol unme<f | oat > _di st_source;
VI SVol unme<fl oat> _di st _target;
VISMatrix _transform
/1

/1 This is the function that is used by the base class to mani pul ate the
| evel

/1 set. You can define it to by anything you want. For this object, it
wi | |

/1 return a value fromthe distance transform of the target.

/1
virtual float grow(float x, float y, float z,
float nx, float ny, float nz);
/1l There are two states. 1In the first state, the nbodel is trying to fit
/1l to the input data. 1In this way the nodels starts by | ooking just like
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/1 the input data
int _state;

public:

Mor ph(const Mor ph& ot her)

{
_dist_target = other._dist_target;
_initial = other. initial;
_state = MORPH_STATE;
_transform= VISVISMatri x(3, 3);
_transformidentity();
[l initialize();

}

Mor ph( VI SVol unme<fl oat> init, VISVol une<float> d)
: VoxModel ()
{
_dist_target = d;
_initial = init;
_state = MORPH_STATE;
_transform= VISVISMatri x(3, 3);
_transformidentity();
/[l initialize();

}

void initialize();

/1 for this object | assune that the transformis just a matrix.

/1 but it could be anything
void transformconst VISVISMatrix& t)
{ _transform=1t;}

const VISVISMatri x& transform)
{ return(_transform;}

voi d di stance(const VI SVol une<f| oat > d)
{ _dist _target = d;}

VI SVol unme<f | oat > di st ance()

{ return(_dist_target);}

b
#endi f
8.5 Morph.C

#i ncl ude "nor ph. h"
#i nclude "util/geonetry. h"
#include "util/mathutil.h"

/1
/1 this is the virtual function, that is the guts of it all.
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/1

float Morph::growmfloat x, float y, float z,
float nx, float ny, float nz)

{

/1 this says you are in the norph state (things have been initialized)
if (_state == MORPH_STATE)

{

float xx, yy, zz;
VI SPoi nt p(4u);

p.at(0) = x;
p.at(1l) =y;
p.at(2) = z;
p.at(3) = 1;

VI SPoi nt p_tnp;
/1 this is where you could put sone other transform
p_tnmp = _transforntp;

XX = p_tnp.x();
yy = p_tm.y();
zz = p_tnp.z();

/1 make sure you are not out of the bounds
/1 of your distance vol une.
if (_dist_target.checkBounds(xx, yy, zz))
/1 if not, get the distance (use trilinear interpolation).
return(_dist _target.interp(xx, yy, zz));
el se
return(0.0f);
}

el se
{
/1 if you are still initializing, then nove toward the zero set of
/1 your initial case
if (_initial.checkBounds(x, vy, 2))
return(_initial.interp(x, vy, 2));
el se
return(0.0f);

}
}

/1 this makes the nodel |ook |ike the input.
#define | NI T_I TERATI ONS 5
void Morph::initialize()
{

_values = _initial;

int state tnp = _state;

_state = | NI T_STATE;

construct |ists(D FFERENCE FACTOR);
/1 these couple of iterations are required to make sure that the zero
/1 sets of the nodel match the zero sets of the
/1
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for (int i =0; i < INT_ITERATIONS; i++)
{
// limt the dt to 1.0 so that the nbdel settles in to a solution
updat e(:: mn(cal cul ate_change(), 1.0f));
}

_state = state_tnp;

8.6 Main.C

#i ncl ude "vol /vol une. h"

#i ncl ude "vol /vol unefile.h"
#i ncl ude "image/ i nagefile.h"
#i ncl ude "nor ph. h"

#i ncl ude <string. h>

const int V_HEIGHT = (40);
const int V_WDTH (40);
const int V_DEPTH (40);

#define XY_RADIUS (12) // this matches the 2.5D data generated in
torus.C

#define T_ RADIUS (4) // this matches the 2.5D data generated in torus.
#define S RADIUS (12) // radius of a sphere

#define B_WDTH (20. 0f)
#def i ne B_HEI GHT (60. 0f)
#defi ne B_DEPTH (20. 0f)

#define B_CENTER X (12.0f)
#define B_CENTER Y (32.0f)
#define B_CENTER Z (12.0f)

fl oat sphere(unsigned x, unsigned y, unsigned z);
float torus(unsigned x, unsigned y, unsigned z);
fl oat cube(unsigned x, unsigned y, unsigned z);

/1 This is a programthat does the norph. |If you give it two

/1 argunments, it reads the initial nodel and the dist trans for the
/1 final npdel fromthe two file nanmes given, otherwise, it nmakes a
sphere

/1 and deforms it into a torus

mai n(int argc, char** argv)

{

VI SVol une<f| oat > vol _source, vol _target;
VI SVol uneFil e vol _file;

int i;

char fname[ 80];
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vol _source = VI SVol une<f| oat >(25, 65, 25);
vol _source. eval uat e( cube) ;

if (argc > 2)

/1 read in the sourceing nodel
vol _source = VI SVol une<fl oat>(vol _file.read float(argv[1]));
/1 read in the dist trans of the final node
vol _target = VI SVol une<float>(vol _file.read float(argv[2]));

}

el se

/1 make up sone vol unes
{

vol _source = VI SVol une<fl oat >(V_WDTH, V_HElI GHT, V_DEPTH);
vol _source. eval uat e( sphere);
vol target = VISVol une<float>(V_WDTH, V_HElI GHT, V_DEPTH);
vol target. eval uate(torus);

/1 create norph object

Mor ph nor ph(vol _source, vol target);

/1 loads in sone paraneters (for norphing these are all zero but one)
/1l i.e.

/1

/1

/1

/1

nor ph. | oad_par anet er s(" nor ph_parans") ;
nmorph.initialize();

vol _file.wite_float(norph.values(), "nmorphO.flt");

float dt;

/1 do 150 iterations for your nodel to get fromstart to finish
/1 probably don't need this nany iterations

for (i =0; i < 150; i++)
{
dt = norph. cal cul ate_change();
/1 limt dt to 0.5 so that nodel never overshoots goa
dt = mn(dt, 0.5f);
mor ph. updat e(dt) ;

printf("iteration % dt %\n", i, dt);
if (((i +1)%0) == 0)
{
/1 save every tenth vol unme
sprintf(fnanme, "norph_out.%.dat", i + 1);
vol _file.wite_float(norph.values(), fnane);
}
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/1l save a surface nodel (i.e. marching cubes).
vol _file.march(0.0f, norph.values(), ‘‘norph_final.iv'");

printf("done\n");

}
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|IsosuracesandLevel-Setsfor Volume
Processing

RossT. Whitaker
SClInstitute Schoolof Computing
University of Utah

For Consideration
“There are two kindsof peoplein thisworld...
Thosewholike to solvepartial differential
equationsandthosewhodon't”
—anorymous
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Overvien

Introduction

Geometry

DeformableSurfaces

Level-SetSurfaceModels

NumericalMethods

Applications
The VISPackLibrary

Introduction
Motivation

e Framavork for VolumeProcessing/Filtering

e Surface-ModelingTechnology
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Introduction
Isosurfaces
¢ An Implicit Representation

¢: U —IR
X7y7Z k

e U C IR? — domainof the volume/rangef surface
model.

e A surfaceSis asetof ponts

S= {X(X) = k}

How Do We Represenip

¢ Linearcombinationof globalbasisfunctions

Linearcombinationof local local basisfunctions
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| ocal BasisFunctions

T Basis function

Local BasisFunctions
e Geometrydefinedby local operations
e Continuousmathematic®n ¢

¢ Voxel manipulationgleterminedy well-defined
numericalmethods
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IsosurficeVisualization

e Triangulation(meshextraction)
— E.g. marching cubeg(Lorenseret. al. 87)
— Otherrelatedapproaches

e “Direct” visualization
— E.g.volumerendering

e Note: notthedomainof thistalk

The Geometryof Isosurbices
e Surfacenormals
e Cunvature

e Goal: expressthegeometryof theisosurfcein termsof
derwvativesof ¢
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SurfaceNormals

Existsfor every pointin D.

_ . Ho(X)
") = How)]

where x € D.

Givesnormalto level setpassinghroughthatpoint
Covention— insideor out (be consistent)

How to compute?e.g.centraldifferences)

Second-OrdeBtructure

=

Parabolic (cylinder)

EIW\
W Planar E
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Differential Geometry
Thingsto Remember
e Surfaceshapas locally quadratic
e Principaldirections— e, e,
e Principalcurvatures— Ky, k;
e Meancurvature—H = lezkz
o Gaussiarturvature— K = k; x k;

e Total cunvature— D? = k& + k3 = 4H? — 2K

Second-Orde$Btructureof The Level Sets

o Gradientof thenormal— matrix:

N = [ fy %)

e Second-ordegeometryof level set— invariantsof N

e Eigervalues:

- & =k
- &=k
_es:O
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Second-Orde$Btructureof The Level Sets

MeanCurvature

Cktk, 1 1 He

& ( By + P + G (Bt P+
H(X) = & (Gt By) — 20 Poy—
200z — 20 Qe Pz

2(¢2 + @+ @2)¥?

Second-Orde$Btructureof The Level Sets

Total Curvature

D*(x) = ki + k3 = [IN||
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Second-Orde$Btructureof The Level Sets

GaussiarCurvature

K(X) = kyk, = €16, + € 5+ e,85 = 2H*(X) - %Dz(i)

(pzz((»@(xqajy — GyPy) + (R/Z(@(xQDzz— Guziz)
K@= TEBP BeBe) + 2 BB BB Do)
+ %@ By Bz — BeaPBry) + B Qe ByBez— Bz2ix)]
(& + @+ ¢@)?

Example:Total Curvatureof An
|Isosurfice

’ A
T

Isosuriceof greyscalevolume  Total curvature(lighteris greater)
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DeformableModels

e Basicterminology/mathematics
e Deformationprocesse§.e. types)

o Level-SetSurfaceModels

DeformableModels

e Model only local defor
mation in terms of local
surfacestructure

e Surface— .7 C IR3
e Localmapping

SV xVr IR3
r s XYV,

whereV x V C IR?
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DeformableModels
Regular Surfaces

¢ Locally parametri@ndchangingovertime —
S=gr,st)

e Surfacenormalsn = n(r,st)

e Parameterizatiofs justa placeholder
— Geometrywill bereexpressedvithout
— It will be“forgotten”asthe modeldeforms

DeformableSurfaces

e Pointsonsurface x = S(r,x,t), move in aprescribed
manner

e Dependson positionandlocal surfacestructureof S

0"—)?__

61-_ (Kﬁ§7é7§f7§85§&...),

e Note:independencéom parameterizatior— assume
(r,s) is anorthnormalparameterization.
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SurfaceDeformationExamples

e Forcingfunction
ox =

R

e Expand/Contract
ox _
i G(x)n

Level-SetSurfaceDeformation
¢ Represenasurface/contoumplicit
¢ Changeshapeby modifying greyscalevalues
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Level-SetSurfaceDeformation

Two approaches

e Static:

O(X(1)) =k(t) = Dp(X)- %‘ _ %(t)

Eikonal Equation
e Dynamic:

B o0p dx
o(x(t),) =k = —-=-Up- o

Sethian 1999

Level-SetSurfaceModels
DynamicApproach

e Embedthe surfacemotionin ¢

o0p ax = _ 2
T A O¢-F(x,De,D%g,...),

whereD" @ arenth-orderderivativesof @

e Appliesto all level setsof @
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DeformationModes

. . Level-Set Parameter
Effect Parametric Evolution . .
Evolution Assumptions
Externalforce F F-Ogp None
Expansion/ — _
G(X)N G(X)|Oe(x,t None
contraction ) (1De0c )]
Mean
Sr+Sss H|Og| Orthonormal
cunature
Gauss
St xS K|Og| Orthonormal
cunature
Principal
Secondbrder Sr or S (H +vH?2- K) Dl P
cunatures

Level-SetSurfaceDeformationExamples

e Forcingfunction
oxX —
ot

e Expand/contract

X~ 6@ = ¢ =Gl0g

—=F(X). = @q=—F-Ogp
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NumericalMethods

Finite differences
Up-wind schemes
Narronv-bandandsparse-fieldnethods

Notation

ui”j « — nthtime step,i, j,k ongrid
)?th — 3D positionof i, |, k grid point
u{jj,k discretesamplingof (P(ii,j,katn)
assumev.o.l.g. grid spacings 1 unit

Finite Differences

e Time — forwarddifferences

n+1 __ ,n n
Uijj’k —_— u|,J,k+AtAu|7J,k7

e Spaceg(to approxmiatedu’ ik depends

— Second-ordeterms— centraldifferences

First-orderterms— up-windschemes
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First-OrderOperators

s>
=
<
=
I
—~

Uipgjk— Y

>

~~

Ui ik~ Yz,

1>
NI =

(Ui k= Yimajw)

Second-OrdeOperators

TightestFitting
A s(-)s(+
Bodk e = &S Mg jie= Uiy jaet U juc— 20
A s(=)s(+
Stk = 8T8 = U Y a1 2

1>

5qui,j,k 5><55/Ui,j,k
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Up-Wind Scheme

¢ “Non-oscillatory” scheme
e Useone-sidedlifferenceoperatorsn gradientof ¢

e Avoid overshoot— createno new contours

Up-Wind Scheme

Level-set motion
-——

Down wind Up wind

Up-wind
difference

Down-wind
difference
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Up-Wind Scheme

Overshoot creates
“new” level sets

AtAy, limited by
up-wind difference

Up-Wind Scheme

o Let B
F(%) = (FW(9,F @ (x),F3 (%)
e Then
F_(Xl,j,k) ’ D(p()?u,k?t) ~
2 () ou for F9(x ) >0
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Second-Ordeferms

Example:MeanCurvature

((d/”in,j,k)z +(8ud) 2) S0

2 2 2 2
HY = © ((@”ﬂj,k) + (8 ) ) QU+ ((@”in,j,k) + (&) ) Oz
— 20U K YU KOy k= 200U kO i ByUT i — 282U Ol O

(c&u{"j’k) ’ + (Q,U{jj’k) ’ + (5zui“’j’k)2

Time Steps
Limited For Stability
Up-wind scheme:

1

Bsug’j’kex{|DG(Xi7yj ’ Zk)|}

H 6
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Narrov-BandMethods

Evolution of level set,¢(x,t) = k, notimpactedby choiceof
embedding

Performcalculationdor surfaceevolutiononly in a
neighborhoof thesurface.” = {X¢(x) = k}

‘mBE
|
| A
Narranv-BandAlgorithm

Restablisithe neighborhoodembeddingwhennecessary

Surface model (level set)

( ) ~—

| -= (v S~
- \ ~
\ i \ v S
il \ ) |
‘Outside”— not Time passes 3 \ 1
computed AN ) 1
/ )
S ( ) AL )
Y /o —
A /,s - - /

o

Narrow band/tube

Boundary-interference
Recomputédand
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Sparse-Fieldlgorithm

Maintain a thin bandof
pixels aroundan active
set

Update actve set and
thenconsecutie layers

Sparse-Fieldlgorithm

Fast: executiontime grows with surfaceelements
Accurate:active setavoidsshocks—sulyoxel surfacefitting

Corventional— Shocks Sparse-Field
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Applications

Surfacemorphing

Filleting

3D reconstruction

Antialiasingbinaryvolumes
Other

SurfaceMorphing

Whitaker and Breen,1998: Breenand Whitaker 2000

Two partsof morphing:

1. Warping— coordinateransformation

2. Blending— “filling in” details+—

level-set
surface
models
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SurfaceMorphing
Stratgy

Expansion/contractior- dependingn signed-distance
transformto “target”

%y (<0) AK) VR € S
0
25 = 100(X) e (%)

Example

rrrrrrrrr
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Example

Filleting andBlending
Whitaler andBreen,1998

Modify meancurvatureflow to “filling in” material

20

5 = 00| [max(i, 0) + max(ic, 0)
Canalsolimit to prescibecturvaturek

20

S = 100! [max(iq, ) + maxie, «)]
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Filleting

KI&I&

Blending

N R
I

326




3D Reconstructiolr-rom RangeData
Whitaler, 1998

Estimate3D surfacesrom noisyrangemeasurementsken
from differentpointsof view

A rangeimage Amplitude data Surfacerendering

Model Fitting To RangeData

Combinedatatermwith prior (surfaceareapenalty)
0
= 08IG(X) + H(x]

Thedataterm,G(x), includesinferencefrom a setof
registeredrangemaps
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Initial Model

No prior
No deformation/fitting

Final Estimate

Prior
Deformation/fitting
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AntialiasingBinary Volumes

Treatthe binaryvolumeproblem
asanundercontrainedstimation
problem

Solutionmust:

Resole ambiguityby imposing
someothercondition

AntialiasingBinary Volumes

“Ideal” volume Binaryvolume  SurfaceEstimate
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OtherApplications

e 2D/3Dimagesagmentation\\Vhitaler, 95; Casselle®t
al. 95; Malladi etal., 95; etc.)

e Imageolumefiltering (Osher& Rudin,90; Alvarez&
Morel, 1994; Malladi & Sethian96; etc.)

e Imageblending(\Whitaler, 00)
e Computervision (Kimia & Zudcer, 92,94)
e Physicalsimulation(Osher& Fedkiw 00)

e Seealso: SethianLevel SetMethodsand Fast
Marching Methods CambridgeUniversity Press 1999

VISPack

Volume-lmage-SudcePackage
Capabilities
e Imageprocessing
e \Volumeprocessing
e Level-setsurfacemodeling
Design

e C++— objectoriented

Datahandles/cop onwrite

Templates

Functionalinterface— operatoroverloading

File 1/0 (extensible)}— no GUI
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OperatorOverloading
3D EdgeDetector

Vol ume<f | oat > dx, dy, dz;

Vol unme<f | oat > vol gauss = vol . gauss(0.5);

Vol ume<f | oat > vol _out

(((dx = vol gauss. dx()). power(2)*vol gauss. dx(2)
((dy = vol _gauss. dy()). power (2)*vol gauss. dy(2)
((dz = vol _gauss. dz()). power (2)*vol gauss. dz(2)
dx*dy*(dx).dy() + dx*dz*(dx).dz())
dy*dz*(dy).dz()) )).zeroCrossings()

&& ((dx. power(2) + dy.power(2)) > T*T));

+ o+ o+ +

Level-SetSurfaceModeling

8 — —
d_qt" = aF(x09)- O+ BG(x,Og)|0¢)

+y|0¢| + nE(Dy,D?¢)
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N o o0 bk~ 0 D PRE

VoxModelObject

Createsamodelfrom avolume

Calculates\u}; ., At, etc.

Virtual functions(subclassesjefineF_, G
Parameterga, 3, v, n) setby thesubclass
Performsanupdateonthevaluesof u;
Maintainsactive setandupdateghelayers

Providesaccesdo u'; , andlist of actie grid points.

s

Example:ShapeMorphing Object
Subclas©f VoxModel

. Souceandtargetvolumes

. Inialize to source

. Definevirtual method:
growmfloat x, float y, float z,
float nx, float ny, float nz)

. calli terat e() andsarevolumes/modelatregular
intenals
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Conclusions

Isosurtice— representingndmanipulatingsolid
shapes

Level setsurfacemodels— wide rangeof applications
for processingolumesandsurfaces

Analytical — surfacemotion — pdesonvolume

Lots of potential

Thanks

e Office of Naval Research
e NationallLibrary of Medicine

o NationalScience~oundation
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