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Abstract 
 
This course will impart a working knowledge of several techniques for simulating 
natural phenomena. The course will cover practical aspects, as well as research 
issues, for simulating natural phenomena. The course presenters will provide 
both a research and production perspective to the difficult task of photo-realistic 
modeling, rendering, and animation of natural phenomena. Physics-based 
approaches for modeling and animating water, waves, and oceanscapes, rapid, 
stable dynamics for water and gas animation, procedural and physics-based 
approaches for modeling smoke and steam, procedural volumetric techniques for 
modeling and animating clouds, grammar-based techniques for modeling plants 
and plant ecosystems, and fractal techniques for simulating mountainous 
landscapes will be presented. The course will also feature a panel session at the 
end where the speakers will discuss research directions, unsolved problems, and 
discuss new trends in simulating natural phenomena. 
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Course Introduction 
 
The subject of this course is one of the challenging open problems in computer graphics: 
the photorealistic simulation of nature. In 1994, there was a SIGGRAPH course on 
natural phenomena, discussing this problem purely from a research perspective. There 
have been tremendous advances in modeling nature since 1994. This course will 
highlight the state-of-the-art in several areas of natural phenomena: gases/clouds, water, 
organic environments, plant ecosystems, fractal landscapes and planet models.  
 
This course also offers a new perspective on the problem of simulating natural 
phenomena. The course speakers come from both the academic research community 
and from the commercial production industry, providing opportunities for contrasting and 
comparing techniques used by both groups. Research issues as well as practical 
considerations will be presented to show how to tractably simulate complex natural 
environments.  
 
We have now entered a new era in computer graphics: hardware accelerated 
programmable rendering and shading at interactive rates on desktop PCs and game 
consoles. With the programmability of the graphics processing unit (GPU) that has 
recently become available, combined with the increased performance of PC CPUs, we 
can now start to simulate natural phenomena and other complex effects at interactive or 
near interactive rates. PC board such as the Nvidia GeForce3 and the ATI Radeon are 
beginning to enable complex, programmable graphics at interactive rates. Throughout 
this course and these notes, you notice that all of the speakers / authors present 
techniques for simulating aspects of nature at interactive or near interactive rates.  
 
Ken Musgrave will describe techniques for simulating fractal landscape and entire 
planets both from a fractal research perspective and from a commercial software 
perspective. Two speakers will discuss different aspects of modeling and animation 
water. Jerry Tessendorf will describe ocean wave models, water wave optics, and 
volume optics aspects of water simulation. Jos Stam will discuss his work for rapid 
stable fluid solvers for both water and gases. Ron Fedkiw will then talk about 3D Navier 
Stokes solutions for simulating gases and fluids.  David Ebert will describe volumetric 
techniques for simulating clouds and other types of gaseous phenomena from a 
procedural perspective, as well as issues related to adapting these techniques to 
interactive modeling.  
 
The final course speaker, Przemek Prusinkiewicz, will describe plants, ecosystems, and 
organic environments. Przemek will discuss techniques from modeling individual plants 
to entire ecosystems. 
 
From attending this course or reading these notes, you should get a fundamental 
understanding of the important research approaches, practical considerations, and 
design strategies for simulating nature. 
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 Fractal Models of Natural Phenomena 
SIGGRAPH 01 "Simulating Nature" Course 

F. Kenton "Doc Mojo" Musgrave 

Introduction 
Nature is visually complex.  Capturing and reproducing that complexity in synthetic 
imagery is one of the principal research problems in computer graphics.  In recent years 
we have made impressive progress, but nevertheless, most computer graphics are still 
considerably less complex and varied than the average scene you see in Nature.  
Personally, I don't expect computer graphics to be able match the visual richness of 
Nature in my own lifetime—there's just too much complexity and variety to be seen in 
our universe.  But that certainly doesn't mean we shouldn't try—only that we can keep at 
it for a long time to come. 

So how do we make a first stab at creating visual complexity in synthetic imagery?  
Fractals, in a word.  Fractal geometry is a potent language of complex visual form.  It is 
wonderful in that it reduces much of the staggering complexity we see in Nature to some 
very simple mathematics.  I'm going to try to convey, as simply as I can, the intuition 
behind fractals in this chapter.  I know it's a little confusing the first time around.  It took 
me several re-readings of the standard texts when I was a graduate student, to get it 
straight in my head.  But after I “got it,” it was clear that the important parts are very 
simple. I'm going to try to convey that simple view of fractals in this chapter.  First a little 
motivation, though. 

Building Mountains 
One of the most common fractals we see in Nature is the Earth we walk on.  Mountains 
are fractal, and we can make very convincing synthetic mountains with some pretty 
simple fractal computer programs.  Benoit Mandelbrot, the inventor/discoverer of fractals 
and fractal geometry calls such things “fractal forgeries” of Nature.  My own career in 
fractals began with making some new kinds of fractal terrains through novel computer 
programs, to create fractal forgeries the likes of which had not been seen before.  

When I began to crank out some very realistic images, people immediately started asking 
me “why don’t you animate them?”  I thought, well, there aren’t many moving parts in a 
landscape.  Landscapes tend to just sit there, rather peacefully.  What is free to roam 
about is the camera, or your point of view.  This in turn begs the questions: Where do you 
come from?  Where do you go?  If the point of view is free to roam, the landscapes need 
to be in a proper global context.  What’s the global context for a landscape?  A globe, of 
course! 

Building Planets 
Naturally, the next thing to do was to build a planet, so that these realistic landscapes 
would have a geometrically correct context in which to reside.  Fortunately planets, being 
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 covered with terrains that are fractal, are themselves fractal.  So we just need to 
build bigger fractal terrains, to cover a planet.  There are some other interesting 

points about the planet model, too. 

 

Figure 1.  A preliminary Earth-like planet model. 

 

Figure 2.  Gaea: a multifractal model of an Earth-like planet. 

When I set out to build my first planet, seen here in Figure 1, it was apparent that we 
needed better fractal terrains.  The kind of fractals we had all been so pleased with up to 
that time weren’t really up to the job of modeling a whole planet—they were just too 
monotonous.  So I created some new fractals—multifractals—that had a little more 
variety, as seen in Figure 2.  Here’s the difference: See how the coastline in Figure 1 is 
has pretty much the same “wiggliness” everywhere on the planet?  You can see that it’s 
pretty smooth and uncomplicated in some places on the planet in Figure 2, and pretty 
“rough” or “wiggly” in other places.  That’s the pretty much all you need to know about 
multifractals—no kidding!  They’re another step towards the true richness and 
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 complexity we see in Nature.  The cool thing is that they don’t complicate the math 
much at all, which is a Very Good Thing, if you ask me. 

Ah, but I said there are other interesting points, plural, about a planet model.  One that is 
not so obvious is the atmosphere.  Landscape painters have known for hundreds of years 
that the atmosphere gives the only visual indication of truly large scale in a rendering.  
Leonardo wrote about it in his journal.  Computer graphics have used atmospheric effects 
for as long as we’ve been making realistic renderings of fractal mountains.   But it turns 
out that, in order to get the atmospherics to work really well, even on a local scale, you 
simply can’t use the simplest and easiest atmospheric model—a flatland model.  You 
have to use an atmosphere that curves around a planet.  You’ve seen the sun lighting 
clouds from underneath well after it’s set—you can’t get that with a flatland model!  So 
for practical reasons of getting things just so, you end up having to model the Earth’s 
atmosphere quite accurately, just to get sunsets to look right.  Heck, go look up the word 
“atmosphere”—it literally means, “sphere of vapor.”  Another connection like “global 
context.” 

Is the atmosphere fractal?  Not in any obvious way, even though clouds certainly are.  
When I was a graduate student working under Mandelbrot, who was basically paying me 
to invent new fractal terrain models and make beautiful images of them, I worried that I 
was spending too much time on my atmosphere models.  When I asked him about it he, 
in true form, quipped mysteriously, “Well, many things that do not appear to be fractal 
are, in fact, fractal.”  It turns out that global circulation and the distributions of pollutants 
and density layers are fractal.  Someday we’ll have the power to model these things in 
MojoWorld, but not yet in this, the first year of the third millennium AD.  Also, the path 
of photons as they are scattered by the atmosphere is fractal (not that it’s of any 
consequence to us in making our pictures).  Fractals are, indeed, everywhere. 

Building a Virtual Universe 
If landscapes need a global context, well then, so do planets.  Planets orbit suns in solar 
systems, stars tend to live in clusters which in turn live in and around galaxies, which live 
in clusters and superclusters, right up the largest-scale features of our universe, which are 
in turn attributable to quantum fluctuations in the early universe, according to current 
cosmological theory.  (If you want an explanation of that, you’d better ask Jim Bardeen, 
who wrote the part of MojoWorld that gives us continents with rivers and lakes.  Jim is 
an astrophysicist who helped Stephen Hawking work out the original theory of black 
holes, and now works on exactly that aspect of cosmology.  He does rivers for us on the 
side, in his spare time.)  Fortunately, the distribution of stars and galaxies, and the 
beautiful shapes of the stellar and interstellar nebulae that we’re constantly getting ever-
better pictures of, are all quite fractal.  In coming years, we here at Pandromeda have 
every intention of generating an entire synthetic universe that lives inside your computer.  
The path is clear, as for how to do it.  It will just take time to develop it and a lot of 
computer power to make it so.  I, for one, am anxious for the future to arrive already! 

Okay, so there’s the Big Picture.  Now how are we going to build this universe?  What 
does it take?  Fractals.  Lots of fractals. 
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 What is a Fractal? 
Let's get to first things first: what exactly is a fractal?  Let me offer this definition: 

fractal: a complex object, the complexity of which arises from the repetition of a given 
shape at a variety of scales 

Here’s another definition, from www.dictionary.com: 

fractal (noun): A geometric pattern that is repeated at ever smaller scales to produce 
irregular shapes and surfaces that cannot be represented by classical geometry. Fractals are 
used especially in computer modeling of irregular patterns and structures in nature. 
[French from Latin fractus, past participle of frangere, to break; see fraction.]  

It's really that simple.  One of the easiest examples of a fractal is the Koch snowflake.   

 

Figure 3.  The Koch snowflake: a canonical fractal. 

In the Koch snowflake the repeated shape is an equilateral triangle.  Each time it is 
repeated on a smaller scale, it is reduced in size by exactly 1/3.  This repetition can be 
repeated at smaller scales ad infinitum, leading to a curve—the edge of the snowflake—
that is wonderfully complex (and also exhibits some bizarre mathematical properties, but 
we won’t go into that here). 

There's lots of math we could go into about fractals, but perhaps the neatest thing about 
fractal geometry is that you don't need to learn any math at all to understand and use it.  
You can think of it as an artist, entirely in terms of visual form.  Let me describe a few 
easy ways to think of fractals. 

Self-Similarity 
The repetition of form over a variety of scales is called self-similarity: A fractal looks 
similar to itself on a variety of scales.  A little piece of a mountain looks a lot like a 
bigger piece of a mountain, and vice-versa.  The bigger eddies in a turbulent flow look 
much the same as the smaller ones, and vice-versa (see Figure 4).  Small rocks look the 
same as big rocks.  In fact, in geology textbooks, you’ll always see a rock hammer or a 
ruler in photographs of rock formations, something to give you sense of scale in the 
picture.  Why?  Because rock formations are fractal: They have no inherent scale; you 
simply cannot tell how big a rock formation is unless you’re told.  Hence another 
synonym for the adjective “fractal” is “scaling:” a fractal is an object that is invariant 
under change of scale. 
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Figure 4.  A fractal on a truly grand scale: jets of gas from an active galactic nucleus.  
VLA radio image of Cygnus A at 6 cm courtesy NRAO. 

Figure 4 shows my favorite example of a fractal in Nature.  Looks kind of like a puff of 
smoke from a smoker’s mouth at arm’s length, or a drop of milk in water, doesn’t it?  
Guess how big it is.  It’s about 400,000 light years wide—that’s roughly four thousand 
trillion kilometers or twenty four hundred trillion miles from one end to the other.  Too 
big for me to imagine!  In the 1970’s when I first saw this picture, taken at radio 
wavelengths by the Very Large Array radio telescope, I considered it the most mind-
blowing image I’d ever seen.  I don’t think Benoit had even coined the term “fractal” yet; 
if he had, I certainly hadn’t heard it yet.  But I found it stunning that this 
incomprehensibly large object looked so ordinary, even small.  That’s a fractal for you.  
You can recognize one immediately, even if you don’t know it’s called a “fractal.” 

Dilation Symmetry 
My favorite, easy way to grasp the idea of  “fractal” is as a new form of symmetry: 
dilation symmetry.  You're probably already familiar with symmetries such as the mirror 
symmetry by which the human body is pretty much the same on both sides when 
mirrored across a line down the middle, and perhaps the rotational symmetry whereby a 
square remains unchanged by a rotation of 90°.  Dilation symmetry is when an object is 
unchanged by zooming in and out.  Turbulence is like that; hence we can’t tell how big 
that turbulent puff of gas in Figure 4 is until we’re told. 
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Figure 5.  A fractal river drainage network for a MojoWorld continent. 

Imagine, if you will for a moment, a tree branch.  A smaller branch looks pretty much 
like a larger branch, right down to the level of the twigs.  This is dilation symmetry.  The 
same goes for river networks: smaller tributaries and their networks look much like the 
larger river networks.  Figure 5 shows this in some of Jim Bardeen’s river networks on a 
MojoWorld continent.  Clouds, mountains, coastlines and lightning are like that, too: 
smaller parts look just like larger parts.  There is a catch: unlike the Koch snowflake, they 
aren't exactly the same at different scales, only qualitatively so.  This leads to our next 
distinction in fractals: random fractals. 

Random Fractals 
Random fractals may be loosely defined as fractals that incorporate random variables in 
their construction.  The random variable may be some quantum process, like the 
probability of a given air molecule scattering a passing photon, or a pseudo-random 
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 variable in a computer program, as we might use to determine the altitude of a point 
on a fractal terrain.  Computers are always deterministic, so we don’t have truly 

random variables in computer programs, only ones that are designed to look random 
while being in fact deterministic.  “Deterministic” means that a given input always 
generates the same output.  This determinism is a good thing: It is why we always get the 
same MojoWorld from a given scene file, even though what is found there is 
unpredictable.  If the computer were producing truly random variables, we might get 
slightly better MojoWorlds (for very obscure mathematical reasons), but we wouldn’t be 
able to roam around and come back to the same place again. 

The point is that self-similarity comes in at least two flavors: exact self-similarity, as in 
the Koch snowflake where every part is exactly the same as every other, if you rotate it 
properly, and statistical self-similarity, as in all the natural phenomena I’ve mentioned.  
In Nature, self-similarity is usually of the statistical sort, where the statistics of random 
behaviors don’t change with scale.  But you needn’t worry any about statistics—to the 
human eye these fractals look similar at different scales, no doubt about it, without any 
reference to numbers, statistics or any other fancy mathematics. 

A Bit of History of Fractal Terrains 
Like all intellectual revolutions fractal geometry did not happen overnight; rather, it was 
an extension of the work and observations of many people working in many different 
fields.  But let me perform the standard practice of historians and make a complex story 
simple.   

The Mathematics 
Fractals were noticed by mathematicians around the turn of the twentieth century.  They 
noted their mathematically bizarre behavior, labeled them “monsters,” and left them for 
posterity.   

Benoit Mandelbrot had an uncle who was a famous mathematician.  He assured the 
young Benoit that the person cracked this mathematical case could make a name for 
himself.  Benoit was not immediately interested, but the ideas festered (my word, not 
his!) in his mind, and he eventually came to work on such things as a researcher at IBM.  
In 1982 he published his classic book “The Fractal Geometry of Nature” which 
introduced the world to fractals.  In 1987, I was fortunate to be hired to be Benoit's 
programmer in the Yale math department.  I was to work on fractal terrain models that 
included river networks, a research project that ultimately failed.  In 1988 “The Science 
of Fractal Images,” edited by Heinz-Otto Peitgen and Dietmar Saupe—whom I had 
gotten to know at UC Santa Cruz in 1986—was published.  In it Mandelbrot issued a 
challenge to the world to succeed at the difficult task of creating fractal terrains with 
rivers.  In 1989 I published a paper, with Craig Kolb and Rob Mace, titled “The Synthesis 
and Rendering of Eroded Fractal Terrains” the described one way to create rivers in 
fractal terrains, though that method remains mathematically and computationally 
intractable to this day.  In 1993 I completed my doctoral dissertation “Methods for 
Realistic Landscape Imaging” which was pretty much a compilation of the various papers 
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 and course notes that I had published over the last six years on various aspects of 
modeling and rendering realistic forgeries of Nature.  In it I described my 

multifractal terrain models.  That’s a very brief sketch of the mathematical academic 
history of fractal terrains.  Now for the mathematical imaging track. 

The Mathematical Imaging 
Mandelbrot divides the history of computer images of fractal terrains into three eras: the 
Heroic, the Classical and the Romantic.  The Heroic era is characterized by the work of 
Sig Handelman who made the first wireframe renderings of Benoit’s terrain models.  
According to Benoit, it was a heroic effort in the 1970’s to get even a wireframe image 
out of the computer, hence the name of that era.  Handelman’s images are mostly lost in 
the mists of time, alas, though one or two appear in “The Fractal Geometry of Nature.”  
Next came the work of Richard Voss who made the realistic (at least, for that time) 
images such as the classic “Fractal Planetrise” that graces the back cover of “The Fractal 
Geometry of Nature.”  Voss’ work comprises the Classical Era.  Richard fleshed out the 
mathematics and rendering algorithms required to make beautiful and convincing 
forgeries of Nature.  Next came my work, in which I brought various artistic subtleties to 
the forefront.  As I went on at length about artistic self-expression, Benoit calls my work 
the Romantic Era.  Benoit has generously credited me with being “the first true fractal-
based artist.”  Figures 6, 7, and 8 are a few of my personal favorites from my own body 
of work of that era. 

 

Figure 6.  “Blessed State,” 1988. 
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Figure 7.  “Zabriskie Point,” 1990. 

 

Figure 8.  “Pleiades,” 1996. 

You may notice my fixation on planets right from the start.  ;-) 

The Computer Graphics Community 
Then there’s the computer graphics track.  In 1979 Loren Carpenter, then at Boeing, 
made the groundbreaking computer animation “Vol Libre,” the first animated flyby of a 
synthetic fractal terrain.  In 1982 Loren, now Senior Scientist at Pixar and a member of 
Pandromeda’s distinguished Board of Advisors, published with Alain Fournier and 
Donald Fussell the paper “Computer Rendering of Stochastic Models” which introduced 
the commonly used polygon subdivision method for generating fractal terrains.  That 
precipitated a bit of a feud with Mandelbrot, but it was before my time in the field, so I’ll 
say no more about that.  Also in 1982, Loren and the rest of the distinguished crew at 
Pixar showed us the first MojoWorld (if I may be so presumptuous) on the big screen in 
the Genesis Sequence in “Star Trek II: The Wrath of Kahn.”  That blew our minds.  In 
1985 Alain Fournier came to UC Santa Cruz to teach a course “Modeling Natural 
Phenomena” that changed my life, and set the course of my career.  Alain mentored me in 
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 the area and advised me in my Masters research.  Later in 1985 Ken Perlin and 
Darwyn Peachey published twin papers that introduced the procedural methods that 

have pretty much driven my entire career.  Thanks, guys!  They had some really cool 
pictures in those papers; I saw a world of possibility (so to speak) in their methods and 
the rest is, well, “history.”  In 1986 Dietmar Saupe and Heinz-Otto Peitgen came to the 
UC Santa Cruz math department, and I took Dietmar’s course “Fractals in Computer 
Graphics.”  In 1987 Dietmar recommended me to Mandelbrot for the job at Yale.  (I 
always tell my students: “there’s no substitute for dumb luck.”)  In 1993 I finally 
graduate from Yale with a terminal degree—a PhD, but I prefer that other term for it!—at 
the ripe old age of 33.  Can you say “professional student?”  In 1994 Matt Pharr, Rob 
Cook and I created the “Gaea Zoom” computer animation that was, I think, the first 
MojoWorld with adaptive level of detail; that is, a synthetic fractal planet that you could 
zoom in and out from, without nasty artifacts described by obscure mathematics that I 
won’t go into here.  Suffice it to say, it’s not so easy to make a planet that looks good 
from both near and far, doesn’t overload your computer’s memory, and renders in a 
reasonable amount of time.  The Gaea Zoom took two weeks to render on four 
supercomputers, so we weren’t quite there yet in 1994.  Finally, in 2001, we are.  Hence 
MojoWorld, which really couldn’t have been launched even a year earlier. 

The Literature 
And then there’s the track of explanations of fractal terrains.  First came the technical 
papers that even I never could really understand.  Then came “The Science of Fractal 
Images” in 1988 (which I even wrote a tiny part of), in which Richard Voss and Dietmar 
Saupe cover everything you’d ever want to know about the mathematics of these and 
other kinds of fractals.  Next came our book: David Ebert, Darwyn Peachey, Ken Perlin, 
Steve Worley and me, “Texturing and Modeling: A Procedural Approach,” first edition in 
1994, second in 1998.  In it I explain how to build fractal terrains from a programming 
perspective.  Still pretty technical, that book, but the standard reference on how to 
program up fractal terrains and even entire MojoWorlds.  And now there’s this little 
exposition, in which I’m trying to explain it all to the non-technical reader 

Software 
Last but not least, there’s the software track of the history of fractal terrains.  For some 
time there existed only the various experimental programs created by we academics.  
They couldn’t be used by the average person or on the average computer.  The first 
commercial software that addressed fractal terrains was high-end stuff like Alias.  I’m 
afraid I must plead ignorance of that high-end stuff, because I was just a lowly graduate 
student at the time and, while I had access to some mighty fancy computers to run my 
own programs on, we certainly couldn’t afford such top-of-the-line commercial software, 
and they weren’t giving it away to university types like us despite our constant and 
pathetic pleas of poverty and need.  The first affordable commercial fractal terrain 
program that came to my attention was Vistapro, around 1992.  With its flight-simulator 
interface for making animations, it was really cool.  You can still buy Vistapro, though 
it’s a bit quaint by today’s technological standards.  Next, I believe, came Bryce 1.0, in 
1994, written primarily by Eric Wenger and Kai Krause for what was then HSC 
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 Software, then MetaTools, then MetaCreations, now defunct.  (Corel now owns the 
Bryce name and is carrying the product forward.)  Bryce 1.0 was Macintosh-only 

software, and mighty cool.  It put a user-friendly interface on all the procedural methods 
that my colleagues and I had been going on about in the academic literature for years, and 
made it all accessible to Average Joe with a home computer.  Since then, Animatek’s 
World Builder and 3D Nature’s World Construction Set have released powerful, semi-
high end products priced around $1,000 US.  Natural Graphics’ Natural Scene Designer, 
E-on Software’s Vue d’Esprit and Mathew Fairclough’s Terragen shareware program 
have filled out the low end at $200 US and less.  Each product has its specialty; each can 
create and render fractal terrains.  Meanwhile, Bryce is up to version 5.0.  I worked on 
Bryce 4.0 for MetaCreations until the greedy management decided to change coats to do 
another dot-com IPO, and sacked the lot of us.  The next day FractalWorlds, now 
Pandromeda, was launched to make MojoWorld a reality.  We’re the first to come to 
market with entire planets with level of detail, thus opening the door to cyberspace. 

Disclaimers and Apologies 
So there’s Doc Mojo’s Close Cover Before Striking History of Fractal Terrains.  Sure, 
it’s biased.  I worked for Mandelbrot.  I come from the academic side, and was camped 
more with the mathematicians than with my real colleagues, the computer 
science/computer graphics people.  I’ve left out a lot of important contributions by 
friends and colleagues like Gavin Miller, Jim Kajiya and many, many more.  I’m keeping 
it brief here; if you want the exhaustive listing of who’s done what in the field, see the 
bibliography of my dissertation.  And I must state that, though many people think so, I 
am not a mathematician.  Believe me, having a faculty office in the Yale math 
department for six years drove that point home.  My degrees are in computer science.  
But I’m really a computer artist, more than a computer scientist.  My contribution has 
been mostly to the artistic methods, ways to make our images of fractal terrains more 
beautiful and realistic.  I’m mathematical lightweight; I just do what I have to do to get 
what I want.  And all my reasoning is visual: I think terms of shape and proportion, even 
if I do translate it into math in order to make my pictures.  To me all the equations just 
provide shapes and way to combine them. 

The Present and Future 
The abstract of my 1993 doctoral dissertation ends with this sentence:  

Procedural textures are developed as models of mountains and clouds, 
culminating in a procedural model of an Earth-like planet that in the future may 
be explored interactively in a virtual reality setting. 

In MojoWorld we finally have that planet, and a whole lot of others as well.  It’s 
not quite yet what I’d call “virtual reality”—the real-time part is just not that 
realistic.  Yet.  Getting there is just a matter of a lot of hardware and software 
engineering.   

Gertrude Stein once said of Oakland, California, “there’s no ‘there’ there.”  If 
that’s true for Oakland, I say it’s way more true (to put it in the California 
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 vernacular) of all implementations of synthetic environments up to now.  
MojoWorld puts the “there” there.  In MojoWorld, as Buckaroo Bonzai said, 

“everywhere you go, there you are.”  You never run out of detail, and there’s 
always someplace new and interesting to visit.  I think of MojoWorld as a 
window on a parallel universe, a universe that already exists, always has and 
always will exist, in the timeless truth of mathematical logic.  All we’ve done is 
create the machinery that reveals it, and the beauty to be found there.  It’s been 
my great privilege to play a part in discovery/creation of this possibility.  It’s been 
my vision for years now to make this experience accessible to everyone.  With 
MojoWorld, we’re on our way, and I, for one, am very excited about that.  I hope 
you enjoy it half as much as I will! 

Now let’s get on to explaining how we build a MojoWorld, so that you 
understand the controls that you’ll be using. 

Building Random Fractals 
The construction of fractal terrains is remarkably simple: It is an iterative loop involving 
only four important factors, and one of those generally a non-issue.  First we have the 
basis function, or the shape that we build the fractal out of.  Next there’s the fractal 
dimension, which controls the roughness of the fractal by simply modulating the vertical 
size of the basis function in each iteration (i.e., each time you go through the loop).  Then 
there’s the octaves, or the number of times that we iterate in building the fractal.  Finally, 
we have the lacunarity, or the factor by which we change the horizontal size of the basis 
function in each iteration.  Usually we leave the lacunarity at 2.0 and never think about it.   

Let’s see what the effect of each of these four factors is, and how all they fit together. 

The Basis Function 
The basis function is perhaps the most interesting choice you get to make when building 
a random fractal, whether for creating terrain, clouds, water, nebulae or surface textures.  
The shape of the basis function largely determines the visual qualities of the resulting 
fractal, so “choose wisely.”  It’s fun to experiment and see the subtle and not-so-subtle 
effects the choice of basis function has, visually, in the result.  I have certainly gotten a 
lot of artistic mileage over the years through careful choice and modulation of basis 
functions.  And MojoWorld has plenty of basis functions, that’s for sure. 

For obscure but important mathematical reasons, basis functions should (A) have shapes 
that are not too complicated, (B) never return values smaller than –1.0 or larger than 
+1.0, and (C) have an average value of 0.0.  As Mick once said, “you can’t always get 
what you want,” but the basis functions in MojoWorld are designed to obey these 
constraints in most cases. 

The thing to keep in mind about the basis function is that its shape will show through 
clearly in the fractal you’re building.  So your choice of basis function is the most 
significant decision you make when building a fractal. 
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 Fractal Dimension: "Roughness" 
Fractal dimension is a cool, if slippery, beast.  I’ll leave mathematical explanations 

to the other texts.  In MojoWorld we call it “roughness.”  For our purposes, just think of 
the Roughness control as a slider that controls visual complexity.  It does this by varying 
the roughness of terrain, the wiggliness of coastlines, the raggedness of clouds, and the 
busy-ness of textures.  The Roughness control in MojoWorld is an extremely potent 
control.∗  Use it a lot!  You’ll find it a powerful and subtle way to affect the aesthetics of 
your fractals.  And don’t be surprised if you find yourself setting its value via text entry, 
down the third digit after the decimal point.  It’s that sensitive and powerful.  Play with it 
and see. 

 

Figure 9.  Planets with fractal roughness of –0.5, 0.0, 0.5, 1.0 and 1.5. 

Larger values make for rougher, busier, more detailed fractals.  They tend to get visually 
“noisy” at values over about 0.5.  I generally prefer to use smaller values than most 
people, but hey, it’s strictly a matter of taste. 

Octaves: Limits to Detail 
We call the number of times we iterate, adding in more detail, the octaves.  Fractals can 
have potentially unlimited detail.  But that detail has to be built by the computer, so it has 
to have limits if you want your computation to finish.  In Nature, fractals are always band 
limited: There is a scale above which the fractal behavior vanishes (this is even true of the 
largest structures in the universe) and a scale below which it also goes away (as when we 
get to the scale of quantum physics).  For imaging purposes, MojoWorld has to be in 
control of the number of times each sample of a fractal goes through the construction 
loop.  The explanation for why this is so is way beyond the scope of this presentation.  
Suffice it to say that controlling the number of times we go through the loop controls the 
amount if detail, and the amount of detail required at a given point in the image depends 
on its distance from the camera, the screen resolution, field of view and more subtle 
factors as well.  Furthermore, too much detail not only wastes computation time, but also 
causes aliasing—nasty visual artifacts that we go to great lengths to eliminate in 
MojoWorld.  So, bottom line, MojoWorld has to control the number of octaves in the 
fractals.  That’s just the way it is. 

                                                 
∗ The way we’ve implemented it in MojoWorld, the Roughness control doesn’t 
necessarily have an accurate relationship to the numerical value of the fractal dimension 
in the fractal you’re building, but who cares?  That number isn’t important to us, only the 
qualitative effect we’re getting. 
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 We can, however, play games with the octaves.  The Detail control can reduce or 
increase the number of octaves, and hence the fine detail, in fractals.  Its effects can 

look pretty strange in animations and when you change the rendering resolution, but it 
can keep your fractals from being annoyingly “busy,” visually, all the time.  The Largest 
Feature Size and Smallest Feature Size controls set the band limits to the fractal.  You’ll 
get no more fractal details above and below these scales.  You have to set the Largest 
Feature Size to something reasonable.  Keep in mind that it shouldn’t be any larger than 
the planet, or you’re just wasting computation time.  The Smallest Feature Size can be 
left at zero.  MojoWorld will eventually decide that “enough is enough,” but you’ll 
probably get tired of zooming in long before that. 

Lacunarity: The Gap Between Successive Frequencies 
This one is usually a non-issue, but we’ve made it an input parameter in MojoWorld “just 
to be thorough.”  When you’re going through the iterative loop that builds the fractal, you 
have to change the scale of features at each iteration, because that’s how we get features 
at a variety of scales.  The lacunarity determines how much the scale is changed at each 
iteration.  Since “scale” is in this case synonymous with “spatial frequency” (of the 
features in the basis function), it’s easiest to think of the lacunarity as the gap between 
successive spatial frequencies in the construction of the fractal.  Indeed, “lacuna” is Latin 
for “gap.”   

Usually we double the frequency at each iteration, corresponding to a lacunarity of 2.0.  
Musically, this corresponds to raising the frequency by one octave, hence the term 
“octaves” for the number of scales at which we create detail.  Why the value of 2.0, and 
not something else?  Well, it has to be bigger than 1.0, or you go nowhere or even 
backward.  On the other hand, the bigger you make it, the faster you can cover a given 
range of scales, because you’re taking a bigger step at each iteration.  Each iteration takes 
time, and when you’re building a planet, you have big range of scales to cover.  So a 
clever person might think “well, then, just crank up the lacunarity!”  Not so fast, Bucko.  
It turns out that for lacunarity values much over 2.0, you start to see the individual 
frequencies of the basis function.  It just looks bad—try, say, 5.0 and see.  We’ve gone 
with a default lacunarity just over 2.2, to eek out a little more speed.  If you want images 
that are as good as they can be, I’d recommend a value more like 1.9.∗  My best advice: 
Don’t mess with lacunarity until you really know what you’re doing. 

                                                 
∗ For pointy-headed technical reasons, it’s best not to use a lacunarity of exactly 2.0, but 
something close to it, like 1.9 or 2.1.  Transcendental numbers are best.  MojoWorld’s 
default is the natural logarithm e minus one half, or 2.718… - 0.5 = 2.218…  You might 
try changing the 2 after the decimal point to 1.  Keep in mind you should set your 
lacunarity permanently before you use your fractal, because changing it will change all 
the features except those on the largest scale, and this could completely disrupt some 
specific feature in your MojoWorld that you’ve become interested in. 
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 Advanced Topics 

Dimensions: Domain and Range 
The various functions used to create textures and geometry (for example, mountains) in 
MojoWorld are implemented in several dimensions.  What does this mean?  Pay close 
attention, as this can be a little confusing and counterintuitive.  A function is an entity that 
maps some input, called the domain of the function, to some arbitrary output, called the 
range.  Inside the MojoWorld program, the domain and range are all a bunch of numbers.  
As users, we usually think of the output as color, the height of mountains, the density of 
the atmosphere, and other such things.   We also think of the input as things like position 
in space, altitude and color, too, or as numbers like the ones we can type in in the UI. 

Both the domain and range of functions have dimensions.  One dimension corresponds to 
a line, two to a plane, three to space, and four to space plus time.  When you’re creating a 
new function in MojoWorld, you’ll sometimes have to choose the dimensionality of the 
domain of the function.  This seems a little backward, as what you’re really interested in 
is the dimensionality of the output, or the range of the function.  Here’s the catch: You 
can’t have meaningful output of dimensionality greater than that of the input.  There’s 
just no way to make up the difference in information content. 

Usually we’re working in three dimensions in MojoWorld, so that’s the correct default 
choice to make when you’re confronted with this decision.  But every added dimension 
doubles the time required to compute the function, in general.  So you want to use as few 
dimensions as you can get away with.  You might also want to do some special effects 
using lower dimensions, like determining the climate zones of your planet (implemented 
as a three-dimensional texture) by latitude (a one-dimensional variable).  Figures 10, 11 
and 12 illustrate MojoWorlds made from the same function, with domains of one, two 
and three dimensions, respectively. 

 

Figures 10, 11 & 12.  Planet made from a sine function with a one-, two- and three-dimensional domains. 

The fact is MojoWorld also has a full compliment of functions with four-dimensional 
domains “under the hood.”  These will be useful for animating three-dimensional models 
over time to simulate things like continental drift and billowing volumetric clouds.  The 
user interface for animation is a complicated thing, though, so we decided to leave it for a 
future version of MojoWorld, when we’ve had time to do it right. 



 

2-16

 Hyperspace 
You may have noticed that we go on about hyperspace a lot in our MojoWorld 

propaganda.  Hyperspace is whenever you go up one dimension: a plane is a hyperspace 
to a line, and three dimensions is a hyperspace to a plane.  Add time to space, and you 
have a hyperspace to the three dimensions we’re most familiar with.  Well, it’s really 
easy to keep adding more dimensions.  Take the three dimensions of space and add a 
color, for example.  Because the human eye has three different color receptors in the 
retina, one each for red, green and blue light, human vision has three color dimensions—
hence the rgb color space used in computer graphics.  (Some birds have six; they live is a 
world with of far richer color than we monkeys.)  It takes three values to specify a color 
for the human eye: one each for red, green and blue.  Each is independent—part of the 
definition of a dimension.  From www.dictionary.com: 

dimension: … 4. Mathematics. a. One of the least number of independent coordinates 
required to specify a point in space or in space and time. 

In our example we have three dimensions for space and three for color, for a total of six 
dimensions.  Presto—a hyperspace!  Not hard to do at all, eh? 

Now think for a minute of all the values you may assign to make a MojoWorld—things 
like planet radius, sea level, color, atmospheric density, fractal dimension, etc., etc., etc.  
For an interesting planet, there’ll be hundreds, even thousands of variables involved.  
From a mathematical standpoint, each independent variable adds another dimension to 
the space that the planet resides in.  The more complicated the MojoWorld, the higher the 
dimensionality of the space it resides in.  Each lower dimensional space, as for the same 
MojoWorld with one less color specified, is a called a subspace in mathematics.  And, of 
course, each higher dimensional space is a hyperspace.  There’s no limit to the amount of 
complication you can add to a MojoWorld, and so, there’s no limit to the dimensionality 
of the master MojoWorld hyperspace.  Pretty mind-bending, ain’t it?  I certainly think so! 

The various variables used to specify a MojoWorld are called parameters.  So the master 
hyperspace spanned by the possible parameters is rightly called Parametric 
Hyperspace™.  We took out a trademark on the name, because that’s what pink-boy 
corporations do.  “Stay off our turf.”  >;^)  Or, to paraphrase Mick: “Hey!  You!  Get off 
of my hypercloud!”  Anyway, it sounds like more hyper-hype from the dweebs in the 
Marketing Department, but it’s not.  It’s simply the most succinct and accurate way to 
think and talk about how MojoWorld works.  A pure MojoWorld scene file, 
uncomplicated by content such as plants, cities, monkeys and the like, needs only encode 
the numbers that specify the parameter settings.  Everything else is generated at run time 
from these values.  The set of parameter values specifies the point in Parametric 
Hyperspace™ where the MojoWorld resides.  Load them into MojoWorld, and 
MojoWorld “beams” you there—hence we call them transporter coordinates.  Very sci-
fi, but very scientifically and mathematically accurate.  MojoWorld Transporter™, our 
free software, let’s you beam yourself to these places and explore them in three 
dimensions.  If you want access to all of Parametric Hyperspace™—have the ability to 
mess with all of the parameters—you have to pony up for MojoWorld Generator™.  I’m 
an old hippie at heart, so we’re giving the Transporter away for free.  But we have to 
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 support our habit, so I got in touch with my inner Pink Boy and we’re charging $249 
for the Generator.  But hey, where else can you get so many dimensions for so few 

dollars? 

The Various Basis Functions 
MojoWorld has by far the richest set of basis functions ever seen in a random fractal 
engine, so don’t be surprised to find the choices a bit bewildering for a while.  They’re all 
based on methods from the academic literature in computer graphics.  If you’re an 
advanced graduate student in the field, they should all be familiar.  If you’re not, don’t 
worry—not everyone needs a PhD in computer graphics!  (Very few do, indeed.)  You 
can familiarize yourself with the choices by least two routes: one, you can plunge into the 
lists of basis functions and their controlling parameters in the MojoWorld Texture Editor, 
or, if you’re less patient and intrepid (like myself), you can keep examining the way 
various MojoWorlds that you like have been built and note the basis functions used in 
fractals that you particularly like.  The variety of basis functions available in MojoWorld 
far surpasses anything I, personally, have ever had before, and it will be a long time—
probably never—before I get around to trying every basis function that’s possible in 
there.  (In fact, once you get to filtering the basis functions, the possibilities are basically 
infinite, so no one will ever try them all.) 

Because there are so many, I’m not going to try to describe all of MojoWorld’s basis 
functions here.  Rather, I’ll describe the basic classes into which they fall, and the 
fundamental visual qualities of each. 

Perlin 
The best and fastest basis function, in general, is a Perlin “noise.”  Ken Perlin introduced 
this famous basis function in his classic 1985 SIGGRAPH paper “An Image 
Synthesizer,” and it’s the basis function that launched a thousand pictures (and my own 
career).  Ken—and everybody else—calls it a “noise function.”  In the context of fractal 
mathematics this term is quite misleading, so in MojoWorld we call “Perlin noise” a 
“Perlin basis.”  At any rate, there are several flavors of the Perlin basis, and we have them 
all in MojoWorld, plus a new one.   
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 Figure 13.  A planet with relief from a Perlin basis. 

The Perlin basis consists of nice, smooth, random lumps of a very limited range of sizes.  
Its output values range between –1.0 and 1.0.  It’s ideal for building smooth, rounded 
fractals, such as ancient, heavily eroded terrains as seen in Figure 14.  One of everyone’s 
favorite terrain models is the so-called “ridged multifractal” seen in Figure 16.  It looks 
completely unlike an ordinary Perlin fractal, but is closely related: It’s made by taking the 
absolute value of the Perlin basis—that is, by changing the sign of all negative values to 
positive—and turning that upside down.  Figure 17 shows visually how this process 
works.  The result is a basis that has sharp ridges.  You can use it in a monofractal 
function to get terrain as seen in Figure 15, or a multifractal to get terrain as in Figure 16. 

 

Figure 14.  “Carolina” is a rendition of the ancient Blue Ridge Mountains, using a subtle 
multifractal made from a Perlin basis function. 
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Figures 15 & 16.  “Slickrock” is a monofractal built from a ridged Perlin basis.  “Emil” is a 
terrain made from a ridged multifractal, a variety of Perlin fractal. 

 

Figure 17.  Building a ridged basis function from a Perlin basis: the Perlin basis, its 
absolute value, and one minus the absolute value. 

Voronoi 
The Voronoi basis functions are cool and useful, but slow.  Steve Worley introduced the 
Voronoi basis in his 1996 SIGGRAPH paper.  It has a cell-like character kind of like mud 
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 cracks, with pits drilled into the middle of each tile of the mud (See Figure 18.)  The 
pits are conical when you use the “distance” Voronoi and rounded (actually, 

parabolic) when you use the “distance squared” Voronoi.  The value of the Voronoi basis 
is based on the distance from a random point in space.  It has a ridge at the perpendicular 
bisector of the line between the random point and one of its neighbors.  You can choose 
that neighbor to be the first, second, third or fourth closest neighbor to the point.  You 
don’t have to worry about which number you choose; rather, just look at the quality of 
the resulting texture and choose one you like.  You can also choose the differences 
between the first and second, second and third, or third and fourth neighbors.  Again, 
figure out what that means only if you want to; otherwise, just examine the quality of the 
texture you get and choose one you like for aesthetic reasons. 

 

Figure 18.  Planets made from the Voronoi basis, 1st neighbor.  “Distance” Voronoi on the left, 
“distance squared” on the right.  “Distance” has conical pits; “distance squared” has smooth pits. 

Voronoi basis functions have ridges like the ridged Perlin basis, only they’re all straight 
lines.  Usually, you’ll want to apply a fractal domain distortion to Voronoi fractals, to 
make those straight lines more natural—read: wiggly. 

Sparse Convolution 
In 1989 John Lewis introduced the sparse convolution basis: the slowest, technically 
“best” and most flexible of all.  I’d say its time has not yet come—we simply need faster 
computers before this basis is going to be practical.  But I’m personally obsessed with 
basis functions and I wanted it in there, so I put it in there.  “So sue me.”  ;-) 
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Figure 19.  A planet made from the sparse convolution basis, using a cone for the kernel. 

The sparse convolution basis generates random points in space and splats down a 
convolution kernel around those points.  (That funny name comes from some more 
pointy-headed math terminology.)  The kernel can be literally anything.  In MojoWorld 
version 1.0 it can be a simple, radially symmetric shape that you choose from a list of 
options or building the curve editor.  In later versions, we’ll get into some bizarre and 
powerful kernels like bitmaps.  Personally, I look forward to building planets out of 
Dobbsheads. 

Various 
Then there are the various other basis functions that I’ve thrown in for fun.  See if you 
can find a creative use for them!  Some of you may wonder why I haven’t included some 
of the ones found in other texture engines such as that in Corel’s Bryce 5.0 (which was 
written by Eric Wenger and myself).  Well, some of those “noises” are really textures, not 
basis functions.  You can obtain similar results, with far more flexibility, using 
MojoWorld’s function fractals, which will build a fractal from whatever function you 
pass to them—and probably alias like a mother while they’re at it.  Such aliasing is why 
many things that are used as basis functions in Bryce, shouldn’t be used for that.  Others, 
like Eric’s “techno noise,” don’t lend themselves to the level of detail schemes used in 
MojoWorld.  As a rule, for deep mathematical reasons that I won’t go into here, basis 
functions should be visually simple.  So, with the exception of sparse convolution when 
using a complex kernel, all of MojoWorld’s basis functions are.  Keeping to this 
constraint of simplicity, here are a few more basis functions. 

Sine 

First there’s the venerable sine wave.  It’s a little ambiguous what a sine wave should be, 
as a function of more than one variable.  In MojoWorld we multiply sine waves along the 
various dimensions.  As the sine function is periodic, anything built using the sine basis 
will be periodic.  Periodic phenomena are quite common in Nature, but they tend to look 
unnatural in synthetic images.  Nature can get away with things that we can’t.  >:-| 
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Figure 20.  A planet made from a 3D sine basis. 

Linear 

The “linear” basis function is a simpler version of the simplest Perlin basis.  It uses linear 
interpolation of random offsets, rather than the smooth cubic spline used in the Perlin 
bases.  It will give you straight, sharp creases.  Not very natural looking, but I’m sure 
someone will find a use for it. 

 

Figure 21.  A planet made from the linear basis function. 

Steps 

The “steps” basis is simpler still: it’s just a bunch of random levels in a cubic lattice.  
Turned to the correct angle and evaluated on a two-dimensional plane, it can yield 
hexagonal tiles.  “We leave that as an exercise for the reader.”  (Don’t you just hate that?  
I do!) 
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Figure 22.  A planet made from the steps basis function. 

Checkerboard 

And then there’s the procedural texture that any student of computer graphics programs 
first: the common checkerboard.  In MojoWorld, the checkerboard basis alternates 
between 1.0 and –1.0.  The little saw tooth artifacts you see on the cliff faces in the steps 
and checkerboard planets are the micropolygons that compose them.  They can be made 
smaller, at the expense of longer render times, but they’ll never go away completely.  
Discontinuous basis functions like these are Mathematically Evil. And so they really 
shouldn’t be used, but what the heck, MojoWorld is for play as well as serious work, so 
not everything has to be perfect. 

 

Figure 23.  A planet made from the checkerboard basis function. 

The Seed Tables 
Here’s another MojoWorld first.  Call me a Noise Dweeb, a Basis Function Junkie, or 
just plain ill advised, but…“I just had to.”  <8^)  The Voronoi and sparse convolution 
basis functions are built from tables of random points in space.  Well, there are many 
forms “random” can take.  (Take a class in Probability or Statistics and learn to hate 
them.)  I won’t try to describe the ramifications of various random distributions, but 
suffice it to say, they don’t all look the same.  So I implemented a mess of different ones 



 

2-24

 and whacked ‘em into MojoWorld.  Play with them and try to suss out the subtle 
visual differences between them.  In general, the ones with larger numbers have a 

denser spatial distribution.  The ones with a ‘v’ (for “variable”) are more dense some 
areas and less dense in others—more heterogeneous, in a word.  Ones with a “g” (for 
“Gaussian”) have heterogeneous heterogeneity (see why I don’t want to explain it here?)  
Again, just evaluate them visually and use ‘em if you like, or just ignore them—they are 
a very advanced feature for very subtle effects.  Figure 24 illustrates some of the extremes 
in the visual consequences available with different random seed tables.  Note that even 
these “extremes” are only subtly different; there are other tables with intermediate values 
to make the possible transitions all but imperceptible.  A few Perfect Masters of 
MojoWorld will someday find these subtle differences useful, I predict. 

 

Figure 24.  Planets made from Voronoi 1st neighbor with, going clockwise from upper 
left, seed table 1, 4, 4v and 4g. 

Monofractals 
Much like the various possible distributions of random numbers I just glossed over so 
quickly, there are even more complicated mathematical measures that characterize the 
randomness in random fractals.  I’ll do my best to simplify and clarify the complicated 
and obscure here, so please bear with me. 
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 Early fractal terrains were derived from a mathematical function called fractional 
Brownian motion, or fBm for short.  FBm is a generalization of Brownian motion, 

which you may remember from your high school science classes: Brownian motion is the 
random walk of a very small particle being jostled about by the thermal motions of the 
much smaller particles comprising the fluid in which it is suspended.  It’s a lot like the 
random walk of an aimless drunk staggering about on a desert plain.  (Don’t you hate it 
when that happens to you at Burning Man?)  FBm has a bunch of specific properties, and 
foremost among them are its uniformity: It’s designed to look the same at all places and 
in all directions.*  You can think of it as “statistically monotonous;” hence the name 
monofractal. 

 

Figure 25.  A planet made from monofractal fBm, a Perlin basis and roughness of 0.3, with 
and without “oceans.” 

This was a good start, and variations on fBm, generated from a variety of different basis 
functions, remains the standard random fractal used in MojoWorld and other fractal 
programs that create models of natural phenomena like mountains, clouds, fire and water.   

Multifractals 
Real terrains are not the same everywhere.  Alpine mountains can rise out of flat plains—
the eastern margin of America’s Rocky Mountains being a conspicuous example.  Early 
in my work with Mandelbrot, I wanted to capture some more of that kind of variety in 
fractal terrains, without complicating the very simple mathematical model that gives us 
fBm.  As usual, I was reasoning as an artist, not a mathematician.  I had some ideas about 
how the fractal dimension, or roughness, of terrain should vary with altitude and slope.  
For example, I knew that lakes fill in with sediment and become meadows as geologic 
time passes, so I thought “low areas should remain smooth, while peaks should be 
rough.”  Interestingly, the opposite appears to be more common in Nature, but what the 
heck, I was working in a dark closet (no kidding) on a landing on a staircase in the Yale 
math department at the time, so I was just working from memory, not active field work.  I 
putzed about with my math—more at, my programs that implemented the math—and one 

                                                 
* If you care, this property is called statistical stationarity, in math-lingo. 
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 day Benoit came in, saw a picture of what I had wrought and exclaimed “Oh!  A 
multifractal!”  I astutely replied, “What’s a multifractal?” and proceeded on my 

merry way. 

In order to escape Yale with my PhD and not get roasted like a pig on spit at my thesis 
defense, I tightened up my descriptions of these multifractal functions and did some 
interesting experiments that lead to dead ends, from the standpoint of making 
MojoWorlds (my ultimate goal).  I did get a little attention from some physicists 
interested in multifractals, which I thought was cool, as an artist.  At any rate, I’ve 
packaged up the two best-behaved multifractals I’ve devised and stuck ‘em in 
MojoWorld.   

 “What do I care?” you ask.  Well, monofractals get pretty boring pretty fast, because 
they’re the same everywhere, all the time.  Multifractals are a little more interesting, 
visually: they’re not the same everywhere.  They’re smoother in some places and rougher 
in others.  Nature, of course, is far more complex than this, but hey, it’s a second step in 
the right direction. 

In general, I always use multifractals for my terrains and usually use monofractals for 
clouds and textures. 

The Heterofractal Function 

The first of the two multifractal functions in MojoWorld I call heterofractal.  Its 
roughness is a function of how far it is above or below “sea level” (where it tends to be 
quite smooth and boring).  You can add in another function to a heterofractal terrain to 
move the terrain around vertically, so that the smooth areas don’t always occur at the 
same altitude.   

 

Figure 26.  Planets made from heterofractal 3 with a Perlin basis and a smooth sphere at sea level.  
Straight heterofractal on the left, heterofractal plus a random vertical displacement on the right. 

The Multifractal Function 

The second of the two multifractal functions in MojoWorld is simply named multifractal.  
Back when I was still trying to figure out the Byzantine mathematics of multifractals, as 
in my dissertation and our book “Texturing and Modeling: A Procedural Approach,” I 
called this function a “hybrid multifractal,” for technical reasons.  What I was then 
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 calling “multifractal” turned out to be a dead end, for practical purposes, so I’ve 
since promoted “hybrid multifractal” to “multifractal” in my personal lexicon, and in 

MojoWorld’s, by transitivity.  ;-)  It’s a good workhorse, and my first choice for terrains 
on a planetary scale, most every time. 

 

Figure 27.  Planets made from multifractal 3 with a Perlin basis and a smooth sphere at sea level.  
Straight multifractal on the left, multifractal plus a random vertical displacement on the right. 

Function Fractals 
A fractal consists of some form repeated of a range of scales.  There is no inherent 
restriction on what that form might be.  In good, safe practice of image synthesis, though, 
there are.  More math being glossed right over: There is a highest spatial frequency that 
can be used when synthesizing images on the computer.  There are mathematics that tell 
us what that frequency is—the Nyquist sampling theorem.  Frequencies higher than that 
limit, the Nyquist limit, will alias (read: turn to crap) in our images.  The upshot: You 
don’t want to go building fractals out of just anything; you really want to know what the 
highest spatial frequency is in your basis function.  But alas, we all have a little Curious 
George in us, and we don’t really give a damn about all that stupid math stuff when we’re 
just making pictures, so GIVE US WHAT WE WANT AND PUT A CORK IN IT.  “We 
hear you.”  Hence we have function fractals in MojoWorld.  Rather than limiting you to 
using the carefully crafted basis functions built by well-informed professional engineers, 
with function fractals you can build ‘em out of whatever ill-informed, ill-advised basis 
function you can come up with.  >8-) 

But be advised: There are two predictable consequences of using function fractals.  First, 
they may be slow.  The arbitrary basis function you put in may already be a fractal that 
requires thousands of CPU cycles to evaluate.  Repeat that at a hundred different scales, 
and watch your fingernails grow as your image renders.  Second, such fractals will almost 
certainly alias badly.  This looks kind of like sandpaper in a still image; not too evil.  But 
when you animate it, it can sizzle in a most annoying way.   

Don’t say we didn’t warn you.  But then, we have a motto here at Pandromeda: “Give 
‘em enough rope.”  >;^) 
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Figure 28.   A planet made from a 3D function fractal. 

Domain Distortion 
One of the first things I tried when I started playing with procedural textures like we’re 
using in MojoWorld is distorting one texture with another.  Because we accomplish this 
by adding the output of one fractal function to the input of another, we call it domain 
distortion.  Imagine a function with a one-dimensional domain, say the sine wave.  
Undistorted, it looks like this: 

 

Figure 29.  An undistorted sine wave: y = sine(x). 

Imagine adding the cosine to x before we pass x to the sine function.  What we’re 
computing is then not the sine of x, but the sine of x plus the cosine of x.  As the value of 
the cosine function varies from –1.0 to 1.0 and is added to x, it has the effect of 
displacing the x value that gets passed to the sine function, moving it back and forth from 
its undistorted value. 
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Figure 30.  The undistorted domain y = x; a distortion function: y = cosine(x), and the 
distorted domain y = x + cosine(x). 

Distorting the input of a function has the effect of distorting the output.  We see such a 
result in Figure 30. 

 

Figure 30.  A distorted sine wave y = sine( x + cosine(x) ). 

Of course, that example is what mathematicians call “trivial.”  It’s just to illustrate the 
process simply and clearly.  Domain distortion in MojoWorld will generally involve 
more complex functions and take place in higher dimensions, but the way it’s done is 
exactly the same.  Figure 31 shows planets made from an undistorted fractal, and the 
same fractal with domain distortion.  The domain distortion has the effect of stretching 
the distorted texture out in some places, and pinching it together in others. 

 

Figure 31.  A planet with undistorted and distorted fractal relief. 

MojoWorld’s Texture Editor allows domain distortion both to the basis functions and to 
the aggregate fractal.  For efficiency and to avoid severe aliasing, basis functions can 
only be distorted with other basis functions.  On the other hand, fractal functions can be 
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 distorted with other fractals; indeed, with any function.  There are at least two 
reasons for them being treated differently.  The first is that, for three-dimensional 

functions, the distortion function is three times as expensive to evaluate as the distorted 
function, as it has to be evaluated once for each of the three dimensions.  The second is 
that the distortion function has to be evaluated once per octave of the distorted function, 
in the case of distortion applied to the basis function, but only once for distorting the 
aggregate fractal.  As MojoWorld is churning through around 25 to 30 octaves—and 
potentially many more—when you’re down close to the surface of a planet, performing 
anything other than simple distortion on a per-octave basis is simply not computationally 
practical, yet.  No doubt it will become so in years to come, with faster computers, but it 
will still present aliasing problems. 

Distorted Fractal Functions 
You can use domain distortion to make long, linear mountain ranges in the areas where 
the distorted texture stretched in one direction and pinched in the other.  But when you 
zoom in to those mountains, it’s not very realistic to have all the little details all stretched 
and pinched in the same way—real mountains just don’t look like that.  So I borrowed an 
idea from turbulent flow, viscous damping, to get around that.   Turbulent flow is 
damped, or slowed, by viscosity in the fluid at small scales.*  Since domain distortion is 
kind of like turbulence, I thought “why not do the same thing with the domain 
distortion—taper it off at smaller scales.”  So MojoWorld has what I call distorted fractal 
functions available in the Graph Editor, or Pro UI.  These are complicated little beasts; 
definitely a very advanced feature.  Beginners will find them hopelessly confusing, I fear.  
But they have two fields, onset and viscosity, where you can specify where the viscous 
damping begins and is total (no distortion), respectively.  The scales are specified in 
meters, the default unit of scale in MojoWorld. 

Crossover Scales 
This idea of scales for the onset of viscosity and where viscous damping is complete, 
leads to our next and last advanced feature in MojoWorld fractals: crossover scales.  A 
crossover scale is simply a scale where the behavior of a fractal changes.  The simplest 
examples are the upper crossover scale and lower crossover scale, above and below 
which fractal behavior vanishes.  Mandelbrot makes the striking observation that the 
fractal dimension—the roughness—of the Himalayas and the runway at JFK airport are 
about the same; it’s in their crossover scales that they differ.   

MojoWorld has such crossover scales.  There’s always a largest feature size for any 
MojoWorld fractal, and if you don’t explicitly set a lower crossover scale, MojoWorld 
will eventually say “enough” and quit adding detail.  (That limit is up to the MojoWorld 
programmers.)  In the distorted fractal functions we employ another kind of crossover 
scale, in another very advanced MojoWorld feature.  I figured that zooming in and in on a 

                                                 
* “Small” is a relative term here; the scales at which viscosity damps turbulence depends on the viscosity of 
the turbulent fluid, which can be anything from molten rock, as in plumes in the Earth’s mantle, to the 
tenuous gas in a near-perfect vacuum that we see in Figure 4. 
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 single fractal, from the scale of continents to that of dirt, is neither very interesting 
nor realistic.  In Nature, the character of terrain is different at different scales.  So, in 

MojoWorld’s distorted fractals, I included the ability to use different basis functions at 
different scales.  You can use up to three different basis function in these fractals.  When 
you use more than one, you have to specify the scale, in meters, where the crossover 
between basis functions begins and ends.  It’s not easy to show how this works, other 
than in an animated zoom.  So no illustration here.  :-) 

Driving Function Parameters with Functions 
One of the most powerful features of the MojoWorld Graph Editor, or Pro UI, is the 
ability to drive the value of almost any parameter of any function with the output of any 
other function.  This can give some really wild and complicated results!  Once you’ve 
become and advanced MojoWorld user, I recommend going into the Pro UI and playing 
with this.  (It will probably be hopelessly confusing until you learn to think in the new, 
purely procedural MojoWorld paradigm.) 

For example, using a “blend” node you can easily make a texture whose color is white 
above a certain altitude—the snow line.  But a straight, horizontal snow line is not very 
natural looking.  So you might create an “add” node, with “altitude” as one input and a 
fractal as the other.  The add node is then a function with inputs and an output.  You can 
hook the output of the add node to the parameter that controls where the blend node 
makes the transition to white.  Now the snow line will be fractal and quite natural 
looking!  See the tutorials in the MojoWorld manual for explicit examples of how to put 
together such function graphs. 

A potent hidden aspect of the MojoWorld Graph Editor is that each node knows the 
dimensionality of the input it needs.  All nodes will automatically provide output of the 
dimensionality requested by the parameter they are hooked into.  Note that this doesn’t 
free the user from having to make the right choice of dimensionality for certain function 
modes, as MojoWorld can’t know what kind of effect you’re out to create, and so it can’t 
always make the choice for you. 

Using Fractals 
I’ve talked a lot about fractals and all their wonderful complexities in MojoWorld.  Now 
let me talk a little about the specific uses for fractals. 

Textures 
Perhaps the main use for fractals in MojoWorld is in surface textures.  Sure, MojoWorld 
can create some very complex geometry, but you can still get most of your interesting 
visual information from textures applied to surfaces.  The procedural methods used in 
MojoWorld were originally used by Peachey and Perlin for creating such surface 
textures.  You can create some really beautiful effects in color alone, using fractal 
procedural textures.   
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 The development and artful use of fractal textures has pretty much made my career.  
Such texture functions can be used to control surface color, shininess, displacement, 

transparency, you name it.  Pretty much everything that makes a MojoWorld interesting 
and beautiful is some form of a fractal procedure, or procedural texture.  That’s why the 
Texture Editor is the very heart of MojoWorld.  Doc Mojo’s advice: Spend time 
mastering the Texture Editor.  It is by far the most powerful tool in MojoWorld. 

Terrains 
Even the terrains that comprise a MojoWorld’s planetary landscape are just procedural 
textures, used in this case to determine elevation.  For consistency, that texture is 
evaluated on the surface of a sphere of constant radius, and the result is used to raise or 
lower the planet’s terrain surface.  The multifractal functions in MojoWorld were 
originally designed for modeling terrain, so I recommend using them when you’re 
creating the terrain for a MojoWorld. 

Displacement Maps 
MojoWorld also features displacement maps: textures that can actually displace the 
surfaces they’re applied to.  Yes, a MojoWorld is just a displacement-mapped sphere.  
But the algorithm used to displace the planet’s surface is a special one, designed for 
speed (at the expense of memory).  There are two consequences to this: First, you can 
make displacement-mapped spheres for moons, but you can’t zoom into them like you 
can a MojoWorld.  (Well, you could, but the renderer would crawl to a halt, as you got 
close.)  Second, you can’t do lateral displacements on the MojoWorld terrain to get 
overhangs.  “We’ll fix both those things in a future version.” 

Clouds 
MojoWorld 1.0 only has two-dimensional clouds, mapped onto spheres concentric with 
the planet.  You can put any texture you like on those spheres, to represent your clouds.  
(You can do some really wild clouds—go for it!)  Future versions will have full 
volumetric three-dimensional clouds.  “We have the technology.”  See the “Great Balls of 
Fire” section of my web site—www.pandromeda.com/musgrave—for some animated 
examples of what I’ve done in the past. 

More exciting still, in a future version we’ll put in four-dimensional clouds.  This will 
allow you to animate volumetric clouds over time.  Woo-hoo! 

Planets 
Obviously, MojoWorld is an exercise in modeling entire planets with fractals.  The 
possibilities are endless.  I’m looking forward with great anticipation to seeing what 
people create and find in Parametric Hyperspace™.  They’re all out there, virtually, just 
waiting to be discovered. 
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 Nebulae 
Figure 4 illustrates rather convincingly that astrophysical nebulae are fractal in 

nature.  Figure 32 illustrates an early experiment of mine in modeling with a multifractal 
texture, interstellar dust clouds like we see in the dark lanes in the Milky Way. 

 

Figure 32.  A multifractal texture as a model of the Milky Way. 

Planets reside in solar systems, solar systems in galaxies, and galaxies in clusters.  In 
future versions of MojoWorld we plan to model all these things.  Volumetric nebulae are 
something we’re all looking forward to seeing, playing with, and zipping through! 

The Expressive Vocabulary of Random Fractals 
People often ask me, “can you do people with fractals?”  The answer is “no.”  Not 
everything is fractal.  People don’t look the same on a variety of scales (though parts of 
us, like our lungs and vascular systems, do).  There is a limit to what can be done with 
fractals.  We can do a lot, but certainly far from everything.  MojoWorld is designed to do 
most of what can be done with random fractals today. 

Perhaps the most fascinating aspect of MojoWorld is that all pure MojoWorlds—those 
without added content such as cities, monkeys, etc.—already exist in Parametric 
Hyperspace™.  They are inherent in the timeless truth of mathematical logic.  This is 
mind-boggling.  So, do you create MojoWorlds, or do you merely find them?  An 
interesting question indeed.  I’ve had this conversation with Mandelbrot: did he invent 
fractal geometry, or did he discover it?  He’s not comfortable with either title, the 
“inventor of” or the “creator of” fractal geometry.  How can you invent what’s true?  If 
it’s true now, it’s always been true and always will be.  You can’t “invent” what already 
exists! 

But you don’t just stumble across fractal geometry like a dollar bill on the sidewalk.  Nor 
will you just stumble across any really great MojoWorlds in Parametric Hyperspace™—
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 it’s way too big.  It takes a very intelligent search to find great MojoWorlds in the 
vastness of Parametric Hyperspace™.  So once you’ve isolated a set of transporter 

coordinates that really rock, did you find them or did you create them?  It seems to be 
one of those conundrums in life: both are kind of true, neither is really true.   

I’ve made a career of finding beauty in this hyperspace.  I call myself an artist.  I know it 
took creativity to…bring them home.  The question of discovery versus creation is an 
interesting academic exercise, but on this I am clear: We’ve created MojoWorld to 
empower your creativity and to pique your imagination, your sense of adventure, and 
your sense of wonder.  If you make great images/places/animations in MojoWorld, I will 
call you an “artist,” without hesitation. 

Experiment! 
Get in there and experiment.  Although Parametric Hyperspace™ as spanned by 
MojoWorld version 1.0 certainly doesn’t include every world we’d ever like to see and 
explore, it is an infinitely vast virtual universe, much larger in fact than the one we 
inhabit, simply because it has so many dimensions.  Get in there and find/create cool 
images/places and share them with the rest of us!  That’s part of why we’re giving the 
Transporter away for free—so that everyone (with a fast enough computer) can go there 
and check it out.  And you never know: Planets are big places, someone might find a 
more beautiful view on a planet you’ve created, than any you’ve yet found.  That’s one 
great thing about MojoWorld—it comes with a built-in audience, all the people who’ve 
downloaded the Transporter. 

The Future 
I’ve put into MojoWorld everything I can think of that’s practical, and even a few 
things—like the sparse convolution basis—that probably aren’t.  Yet.  What’s practically 
doable on your home computer is a fast-moving target; they get faster at an amazing rate.  
We’ve designed MojoWorld to push the state of the art.  And we can bring any processor 
in the world to its knees quite easily.  Of course, we have other algorithms like radiosity 
(super-accurate illumination), physically-based erosion and fluid dynamics that we could 
stick in there, just in case we need to slow things down some more.  >;^) 

The Holy Grail we seek is virtual reality.  Not the lame anything-but-real stuff we’ve 
seen called “VR” to date, but believable virtual reality—interactive MojoWorlds as 
beautiful and realistic as those we can render currently in non-real time.  It will happen.  
And not too long from now.  It’s only a matter of engineering.  So buy MojoWorld 
Generator™ and help power the cause!  ;^) 

 



Simulating Ocean Water

Jerry Tessendorf∗

1 Introduction and Goals

These notes are intended to give computer graphics programmers
and artists an introduction to methods of simulating, animating,
and rendering ocean water environments. CG water has become a
common tool in visual effects work at all levels of computer graph-
ics, from print media to feature films. Several commercial products
are now available for nearly any computer platform and work envi-
ronment, in addition to proprietary tools held by a few companies,
which generate high quality geometry and images. In order for an
artist to exploit the tools to maximum benefit, it is important that he
or she become familiar with concepts, terminology, a little oceanog-
raphy, and the present state of the art.

As demonstrated by the pioneering efforts in the filmsWater-
world andTitanic, as well as several other films made since about
1995, images of cg water can be generated with a high degree of
realism. However, this level of realism is limited to relatively calm,
nice ocean conditions. Conditions with large amounts of spray,
breaking waves, foam, splashing, and wakes are approaching the
same realistic look.

Broadly, the reader should come away from this material with
(1) an understanding of some algorithms that generate/animate wa-
ter surface height fields suitable for modeling waves as big as storm
surges and as small as tiny capillaries; (2) an understanding of the
basic optical processes of reflection and refraction from a water sur-
face; (3) an introduction to the color filtering behavior of ocean wa-
ter; (4) an introduction to complex lighting effects known as caus-
tics and godrays, produced when sunlight passes through the rough
surface into the water volume underneath; and (5) some rules of
thumb for which choices make nice looking images and what are
the tradeoffs of quality versus computational resources. Some ex-
ample shaders are provided, and example renderings demonstrate
the content of the discussion.

Before diving into it, I first want to be more concrete about what
aspect of the ocean environment we cover (or not cover) in these
notes. Figure 1 is a rendering of an oceanscape produced from mod-
els of water, air, and clouds. Light from the clouds is reflected from
the surface. On the extreme left, sun glitter is also present. The
generally bluish color of the water is due to the reflection of blue
skylight, and to light coming out of the water after scattering from
the volume. Although these notes do not tackle the modeling and
rendering of clouds and air, there is a discussion of how skylight
from the clouds and air is reflected from, or refracted through, the
water surface. These notes will tell you how to make a height-field
displacement-mapped surface for the ocean waves with the detail
and quality shown in the figure. The notes also discuss several ef-
fects of the underwater environment and how to model/render them.
The primary four effects are sunbeams (also called godrays), caus-
tics on underwater surfaces, blurring by the scattering of light, and
color filtering.

There are also many other complex and interesting aspects of the
ocean environment that will not be covered. These include break-
ing waves, spray, foam, wakes around objects in the water, splashes
from bodies that impact the surface, and global illumination of the
entire ocean-atmosphere environment. There is substantial research
underway on these topics, and so it is possible that future versions

∗Copyright c©1999 – 2001, Jerry Tessendorf

Figure 1: Rendered image of an oceanscape.

of this or other lecture notes will include them. I have included a
brief section on advanced modifications to the basic wave height al-
gorithm that produce choppy waves. The modification could feasi-
bly lead to a complete description of the surface portion of breaking
waves, and possibly serve to drive the spray and foam dynamics as
well.

There is, of course, a substantial body of literature on ocean sur-
face simulation and animation, both in computer graphics circles
and in oceanography. One of the first descriptions of water waves
in computer graphics was by Fournier and Reeves[8] , who modeled
a shoreline with waves coming up on it using a water surface model
calledGerstner waves. In that same issue, Darwin Peachey[9] pre-
sented a variation on this approach using basis shapes other than
sinusoids.

In the oceanographic literature, ocean optics became an inten-
sive topic of research in the 1940s. S.Q. Duntley published[13] in
1963 papers containing optical data of relevance to computer graph-
ics. Work continues today. The field of optical oceanography has
grown into a mature quantitative science with subdisciplines and
many different applications. One excellent review of the state of
the science was written by Curtis Mobley[14].

In these lectures the approach we take to creating surface waves
is close to the one outlined by Masten, Watterberg, and Mareda[7],
although the technique had been in use for many years prior to
their paper in the optical oceanography community. This approach
synthesizes a patch of ocean waves from a Fast Fourier Transform
(FFT) prescription, with user-controllable size and resolution, and
which can be tiled seamlessly over a larger domain. The patch con-
tains many octaves of sinusoidal waves that all add up at each point
to produce the synthesized height. The mixture of sinusoidal am-
plitudes and phases however, comes from statistical, emperically-
based models of the ocean. What makes these sinusoids look like
waves and not just a bunch of sine waves is the large collection of
sinusoids that are used, the relative amplitudes of the sinusoids, and
their animation using the dispersion relation. We examine the im-
pact of the number of sinusoids and resolution on the quality of the
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rendered image.
In the next section we begin the discussion of the ocean environ-

ment with a broad introduction to the global illumination problem.
The radiosity equations for this environment look much like those
of any other radiosity problem, although the volumetric character of
some of the environmental components complicate a general imple-
mentation considerably. However, we simplify the issues by ignor-
ing some interactions and replacing others with models generated
by remote sensing data.

Practical methods are presented in section 3 for creating realiza-
tions of ocean surfaces. We present two methods, one based on a
simple model of water structure and movement, and one based on
summing up large numbers of sine waves with amplitudes that are
related to each other based on experimental evidence. This sec-
ond method carries out the sum using the technique of Fast Fourier
Transformation (fft), and has been used effectively in projects for
commercials, television, and motion pictures.

After the discussion of the structure and animation of the water
surface, we focus on the optical properties of water relevant to the
graphics problem. First, we discuss the interaction at the air-water
interface: reflection and refraction. This leaves us with a simple
but effective Renderman-style shader suitable for rendering water
surfaces in BMRT, for example. Next, the optical characteristics of
the underwater environment are explored.

2 Radiosity of the Ocean Environment

The ocean environment, for our purposes, consists of only four
components: The water surface, the air, the sun, and the water be-
low the surface. In this section we trace the flow of light through the
environment, both mathematically and schematically, from the light
source to the camera. In general, the radiosity equations here are as
coupled as any other radiosity problem. To a reasonable degree,
however, the coupling can be truncated and the simplified radiosity
problem has a relatively fast solution .

The light seen by a camera is dependent on the flow of light en-
ergy from the source(s) (i.e. the sun and sky) to the surface and
into the camera. In addition to specular reflection of direct sunlight
and skylight from the surface, some fraction of the incident light
is transmitted through the surface. Ultimately, some fraction of the
transmitted light is scattered by the water volume back up into the
air. Some of the light that is reflected or refracted at the surface
may strike the surface a second time, producing more reflection and
refraction events. Under some viewing conditions, multiple reflec-
tions and refractions can have a noticeable impact on images. For
our part however, we will ignore more than one reflection or refrac-
tion from the surface at a time. This not only makes the algorithms
and computation easier and faster, but also is reasonably accurate
most of the time.

At any point in the environment above the surface, including at
the camera, the total light intensity (radiance) coming from any di-
rection has three contributions:

LABOVE = rLS + rLA + tULU , (1)

with the following definitions of the terms:

r is the Fresnel reflectivity for reflection from a spot on the surface
of the ocean to the camera.

tU is the transmission coefficient for the lightLU coming up from
the ocean volume, refracted at the surface into the camera.

LS is the amount of light coming directly from the sun, through
the atmosphere, to the spot on the ocean surface where it is
reflected by the surface to the camera.

LA is the (diffuse) atmospheric skylight

LU is the light just below the surface that is transmitted through
the surface into the air.

Equation 1 has intentionally been written in a shorthand way that
hides the dependences on position in space and the direction the
light is traveling.

While equation 1 appears to have a relatively simple structure,
the termsLS , LA, andLU can in principle have complex depen-
dencies on each other, as well on the reflectivity and transmissivity.
There is a large body of research literature investigating these de-
pendencies in detail [15], but we will not at this point pursue these
quantitative methods. But we can elaborate further on the coupling
while continuing with the same shorthand notation. The direct light
from the sunLS is

LS = LTOA exp{−τ} , (2)

whereLTOA is the intensity of the direct sunlight at the top of the
atmosphere, andτ is the “optical thickness” of the atmosphere for
the direction of the sunlight and the point on the earth. Both the
diffuse atmospheric skylightLA and the upwelling lightLU can be
written as the sum of two terms:

LA = L0
A(LS) + L1

A(LU ) (3)

LU = L0
U (LS) + L1

U (LA) (4)

These equations reveal the potential complexity of the problem.
While bothLA andLU depend on the direct sunlight, they also
depend on each other. For example, the total amount of light pene-
trating into the ocean comes from the direct sunlight and from the
atmospheric sunlight. Some of the light coming into the ocean is
scattered by particulates and molecules in the ocean, back up into
the atmosphere. Some of that upwelling light in turn is scattered in
the atmosphere and becomes a part of the skylight shining on the
surface, and on and on. This is a classic problem in radiosity. It
is not particularly special for this case, as opposed to other radios-
ity problems, except perhaps for the fact that the upwelling light
is difficult to compute because it comes from volumetric multiple
scattering.

Our approach, for the purposes of these notes, to solving this
radiosity problem is straightforward: take the skylight to depend
only on the light from the sun, since the upwelling contribution
represents a “tertiary” dependence on the sunlight; and completely
replace the equation forLU with an empirical formula, based on
scientific observations of the oceans, that depends only on the di-
rect sunlight and a few other parameters that dictate water type and
clarity.

Under the water surface, the radiosity equation has the schematic
form

LBELOW = tLD + tLI + LSS + LM , (5)

with the meaning

t is the Fresnel transmissivity for transmission through the water
surface at each point and angle on the surface.

LD The “direct” light from the sun that penetrates into the water.

LI The “indirect” light from the atmosphere that penetrates into
the water.

LSS The single-scattered light, from both the sun and the atmo-
sphere, that is scattered once in the water volume before ar-
riving at any point.

LM The multiply-scattered light. This is the single-scattered light
that undergoes more scattering events in the volume.
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Just as for the above water case, these terms are all related to each
other is relative complex ways. For example, the single scattered
light depends on the direct and indirect light:

LSS = P (tLI) + P (tLD) (6)

with the quantityP being a linear functional operator of its argu-
ment, containing information about the single scattering event and
the attenuation of the scattered light as it passes from the scatter
point to the camera. Similarly, the multiply-scattered light is de-
pendent on the single scattered:

LM = G(tLI) +G(tLD) . (7)

The functional schematic quantitiesP andG are related, since mul-
tiple scattering is just a series of single scatters. Formally, the two
have an operator dependence that has the form

G ∼ P ⊗ P ⊗
{

1 + P +
1

2!
P ⊗ P +

1

3!
P ⊗ P ⊗ P + . . .

}
∼ P ⊗ P ⊗ exp(P ) . (8)

At this point, the schematic representation may have outlived its
usefullness because of the complex (and not here defined) meaning
of the convolution-like operator⊗, and because the expression for
G in terms ofP has created an even more schematic view in terms
of an exponentiatedP . So for now we will leave the schematic
representation, and journey on with more concrete quantities the
rest of the way through.

The formal schematic discussion put forward here does have a
mathematically and physically precise counterpart. The field of
study in Radiative Transfer has been applied for some time to wa-
ter optics, by a large number researchers. The references cited are
excellent reading for further information.

As mentioned, there is one additional radiosity scenario that can
be important to ocean rendering under certain circumstances, but
which we will not consider. The situation is illustrated in figure 2.
Following the trail of the arrows, which track the direction light
is travelling, we see that sometimes light coming to the surface
(from above or below), can reflect and/or transmit through the sur-
face more than once. The conditions which produce this behavior
in significant amounts are: the wave heights must be fairly high,
and the direction of viewing the waves, or the direction of the light
source must be nearly grazing the surface. The higher the waves
are, the less grazing the light source or camera need to be. This
phenonmenon has been examined experimentally and in computer
simulations. It is reasonably well understood, and we will ignore it
from this point on.

3 Practical Ocean Wave Algorithms

In this section we focus on algorithms and practical steps to build-
ing height fields for ocean waves. Although we will be occupied
mostly by a method based on Fast Fourier Transforms (FFTs), we
begin by introducing a simpler description called Gerstner Waves.
This is a good starting point for several reasons: the mathematics is
relatively light compared to FFTs, several important oceanographic
concepts can be introduced, and they give us a chance to discuss
wave animation. After this discussion of Gerstner waves, we go
after the more complex FFT method, which produces wave height
fields that are more realistic. These waves, called “linear waves” or
“gravity waves” are a fairly realistic representation of typical waves
on the ocean when the weather is not too stormy. Linear waves are
certainly not the whole story, and so we discuss also some meth-
ods by which oceanographers expand the description to “nonlinear
waves”, waves passing over a shallow bottom, and very tiny waves
about one millimeter across called capillary waves.

Figure 2: Illustration of multiple reflections and transmission
through the air-water interface.

In the course of this discussion, we will see how quantities like
windspeed, surface tension, and gravitational acceleration come
into the practical implementation of the algorithms.

3.1 Gerstner Waves

Gerstner waves were first found as an approximate solution to the
fluid dynamic equations almost 200 years ago. There first appli-
cation in computer graphics seems to be the work by Fournier and
Reeves in 1986 (cited previously). The physical model is to de-
scribe the surface in terms of the motion of individual points on the
surface. To a good approximation, points on the surface of the water
go through a circular motion as a wave passes by. If a point on the
undisturbed surface is labelledx0 = (x0, z0) and the undisturbed
height isy0 = 0, then as a single wave with amplitudeA passes by,
the point on the surface is displaced at time t to

x = x0 − (k/k)A sin(k · x0 − ωt) (9)

y = A cos(k · x0 − ωt) . (10)

In these expressions, the vectork, called the wavevector, is a
horizontal vector that points in the direction of travel of the wave,
and has magnitudek related to the length of the wave (λ) by

k = 2π/λ (11)

The frequencyw is related to the wavevector, as discussed later.
Figure 3 shows two example wave profiles, each with a different

value of the dimensionless amplitude kA. For valueskA < 1, the
wave is periodic and shows a steepening at the tops of the waves as
kA approaches 1. ForkA > 1, a loop forms at the tops of the wave,
and the “insides of the wave surface are outside”, not a particularly
desirable or realistic effect.

As presented so far, Gerstner waves are rather limited because
they are a single sine wave horizontally and vertically. However,
this can be generalized to a more complex profile by summing a
set of sine waves. One picks a set of wavevectorski, amplitudes
Ai, frequenciesωi, and phasesφi, for i = 1, . . . , N , to get the
expressions

x = x0 −
N∑
i=1

(ki/ki)Ai sin(ki · x0 − ωit+ φi) (12)

y =

N∑
i=1

Ai cos(ki · x0 − ωit+ φi) . (13)

Figure 4 shows an example with three waves in the set. Interest-
ing and complex shapes can be obtained in this way.
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Figure 3: Profiles of two single-mode Gerstner waves, with differ-
ent relative amplitudes and wavelengths.
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Figure 4: Profile of a 3-mode Gerstner wave.

3.2 Animating Waves: The Dispersion Relation

The animated behavior of Gerstner waves is determined by the set
of frequenciesωi chosen for each component. For water waves,
there is a well-known relationship between these frequencies and
the magnitude of their corresponding wavevectors,ki. In deep wa-
ter, where the bottom may be ignored, that relationship is

ω2(k) = gk . (14)

The parameterg is the gravitational constant, nominally
9.8m/sec2. This dispersion relationship holds for Gerstner waves,
and also for the FFT-based waves introduced next.

There are several conditions in which the dispersion relationship
is modified. When the bottom is relatively shallow compared to
the length of the waves, the bottom has a retarding affect on the
waves. For a bottom at a depthD below the mean water level, the
dispersion relation is

ω2(k) = gk tanh(kD) (15)

Notice that if the bottom is very deep, the behavior of thetanh
function reduces this dispersion relation to the previous one.

A second situation which modifies the dispersion relation is sur-
face tension. Very small waves, with a wavelength of about 1 cm or
less, have an additional term:

ω2(k) = gk(1 + k2L2) , (16)

and the parameterL has units of length. Its magnitude is the scale
for the surface tension to have effect.

Using these dispersion relationships, it is very difficult to create
a sequence of frames of water surface which for a continuous loop.
In order to have the sequence repeat after a certain amount of time
T for example, it is necessary that all frequencies be multiples of
the basic frequence

ω0 ≡
2π

T
. (17)

However, when the wavevectorsk are distributed on a regular lat-
tice, itis impossible to arrange the dispersion-generated frequencies
to also be on a uniform lattce with spacingω0.

The solution to that is to not use the dispersion frequences, but
instead a set that is close to them. For a given wavenumberk, we
use the frequency

ω̄(k) =

[[
ω(k)

ω0

]]
ω0 , (18)

where[[a]] means take the integer part of the value ofa, andω(k) is
any dispersion relationship of interest. The frequenciesω̄(k) are a
quantizationof the dispersion surface, and the animation of the wa-
ter surface loops after a timeT because the quantized frequencies
are all integer multiples ofω0. Figure 5 plots the original disper-
sion curve, along with quantized dispersion curves for two choices
of the repeat timeT .

3.3 Statistical Wave Models and the Fourier Trans-
form

Oceanographic literature tends to downplay Gerstner waves as a re-
alistic model of the ocean. Instead, statistical models are used, in
combination with experimental observations. In the statistical mod-
els, the wave height is considered a random variable of horizontal
position and time,h(x, t).

Statistical models are also based on the ability to decompose
the wave height field as a sum of sine and cosine waves. The
value of this decomposition is that the amplitudes of the waves
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have nice mathematical and statistical properties, making it sim-
pler to build models. Computationally, the decomposition uses Fast
Fourier Transforms (ffts), which are a rapid method of evaluating
the sums.

The fft-based representation of a wave height field expresses the
wave heighth(x, t) at the horizontal positionx = (x, z) as the sum
of sinusoids with complex, time-dependent amplitudes:

h(x, t) =
∑

k

h̃(k, t) exp (ik · x) (19)

wheret is the time andk is a two-dimensional vector with com-
ponentsk = (kx, kz), kx = 2πn/Lx, kz = 2πm/Lz, and
n and m are integers with bounds−N/2 ≤ n < N/2 and
−M/2 ≤ m < M/2. The fft process generates the height field
at discrete pointsx = (nLx/N,mLz/M). The value at other
points can also be obtained by switching to adiscretefourier trans-
form, but under many circumstances this is unnecessary and is not
applied here. The height amplitude Fourier components,h̃(k, t),
determine the structure of the surface. The remainder of this sub-
section is concerned with generating random sets of amplitudes in
a way that is consistent with oceanographic phenomenology.

For computer graphics purposes, the slope vector of the wave-
height field is also needed in order to find the surface normal, angles
of incidence, and other aspects of optical modeling as well. One
way to compute the slope is though a finite difference between fft
grid points, separated horizontally by some 2D vector∆x. While
a finite difference is efficient in terms of memory requirements, it
can be a poor approximation to the slope of waves with small wave-
length. An exact computation of the slope vector can be obtained
by using more ffts:

ε(x, t) = ∇h(x, t) =
∑

k

ik h̃(k, t) exp (ik · x) . (20)

In terms of this fft representation, the finite difference approach
would replace the termik with terms proportional to

exp (ik ·∆x)− 1 (21)

which, for small wavelength waves, does not well approximate the
gradient of the wave height. Whenever possible, slope computation
via the fft in equation 20 is the prefered method.

The fft representation produces waves on a patch with horizontal
dimensionsLx×Lz, outside of which the surface is perfectly peri-
odic. In practical applications, patch sizes vary from 10 meters to 2
kilometers on a side, with the number of discrete sample points as
high as 2048 in each direction (i.e. grids that are2048 × 2048, or
over 4 million waves). The patch can be tiled seamlessly as desired
over an area. The consequence of such a tiled extension, however, is
that an artificial periodicity in the wave field is present. As long as
the patch size is large compared to the field of view, this periodicity
is unnoticeable. Also, if the camera is near the surface so that the
effective horizon is one or two patch lengths away, the periodicity
will not be noticeable in the look-direction, but it may be apparent
as repeated structures across the field of view.

Oceanographic research has demonstrated that equation 19 is a
reasonable representation of naturally occurring wind-waves in the
open ocean. Statistical analysis of a number of wave-buoy, photo-
graphic, and radar measurements of the ocean surface demonstrates
that the wave height amplitudesh̃(k, t) are nearly statistically sta-
tionary, independent, gaussian fluctuations with a spatial spectrum
denoted by

Ph(k) =
〈∣∣h̃∗(k, t)∣∣2〉 (22)

for data-estimated ensemble averages denoted by the brackets〈 〉.
There are several analytical semi-empirical models for the wave

spectrumPh(k). A useful model for wind-driven waves larger than
capillary waves in a fully developed sea is thePhillips spectrum

Ph(k) = A
exp
(
−1/(kL)2

)
k4

|k̂ · ŵ|2 , (23)

whereL = V 2/g is the largest possible waves arising from a con-
tinuous wind of speedV , g is the gravitational constant, and̂w is
the direction of the wind.A is a numeric constant. The cosine factor
|k̂·ŵ|2 in the Phillips spectrum eliminates waves that move perpen-
dicular to the wind direction. This model, while relatively simple,
has poor convergence properties at high values of the wavenumber
|k|. A simple fix is to suppress waves smaller that a small length
`� L, and modify the Phillips spectrum by the multiplicative fac-
tor

exp
(
−k2`2

)
. (24)

Of course, you are free to “roll your own” spectrum to try out
various effects.

3.4 Building a Random Ocean Wave Height Field

Realizations of water wave height fields are created from the prin-
ciples elaborated up to this point: gaussian random numbers with
spatial spectra of a prescribed form. This is most efficiently accom-
plished directly in the fourier domain. The fourier amplitudes of a
wave height field can be produced as

h̃0(k) =
1√
2

(ξr + iξi)
√
Ph(k) , (25)

whereξr andξi are ordinary independent draws from a gaussian
random number generator, with mean 0 and standard deviation 1.
Gaussian distributed random numbers tend to follow the experi-
mental data on ocean waves, but of course other random number
distributions could be used. For example, log-normal distributions
could be used to produce height fields that are vary “intermittent”,
i.e. the waves are very high or nearly flat, with relatively little in
between.
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Given a dispersion relationω(k), the Fourier amplitudes of the
wave field realization at timet are

h̃(k, t) = h̃0(k) exp {iω(k)t}
+ h̃∗0(−k) exp {−iω(k)t} (26)

This form preserves the complex conjugation propertyh̃∗(k, t) =

h̃(−k, t) by propagating waves “to the left” and “to the right”. In
addition to being simple to implement, this expression is also effi-
cient for computingh(x, t), since it relies on ffts, and because the
wave field at any chosen time can be computed without computing
the field at any other time.

In practice, how big does the Fourier grid need to be? What
range of scales is reasonable to choose? If you want to generate
wave heights faster, what do you do? Lets take a look at these
questions.

How big should the Fourier grid be?The values ofN andM
can be between 16 and 2048, in powers of two. For many
situations, values in the range 128 to 512 are sufficient. For
extremely detailed surfaces, 1024 and 2048 can be used. For
example, the wave fields used in the motion picturesWater-
world andTitanic were 2048×2048 in size, with the spacing
between grid points at about 3 cm. Above a value of 2048, one
should be careful because the limits of numerical accuracy for
floating point calculations can become noticeable.

What range of scales is reasonable to choose?The answer to this
question comes down to choosing values forLx, Lz, M , and
N . The smallest facet in either direction isdx ≡ Lx/M or
dz ≡ Lz/N . Generally,dx and dz need never go below
2 cm or so. Below this scale, the amount of wave action is
small compared to the rest of the waves. Also, the physics
of wave behavior below 2 cm begins to take on a very differ-
ent character, involving surface tension and “nonlinear” pro-
cesses. From the form of the spectrum, waves with a wave-
length larger thanV 2/g are suppressed. So make sure thatdx
anddz are smaller thanV 2/g by a substantial amount (10 -
1000) or most of the interesting waves will be lost. The secret
to realistic looking waves (e.g. figure 9 (a) compared to figure
9 (c)) is to haveM andN as large as reasonable.

How do you generate wave height fields in the fastest time?The
time consuming part of the computation is the fast fourier
transform. Running on a 180 MHz PowerPC 603e proces-
sor (under LinuxPPC r4), a 1024x1024 fft takes less than a
minute. However, faster times are achieved by settingM and
N to smaller powers of 2.

3.5 Examples: Height Fields and Renderings

We now turn to some examples of waves created using the fft ap-
proach discussed above. We will show waves in two formats: as
greyscale images in which the grey level is proportional to wave
height; and renderings of oceanscapes using several different ren-
dering packages to illustrate what is possible.

In the first set of examples, the grid size is set toM = N = 512,
with Lx = Lz = 1000 meters. The wind speed is a gale force at
V = 31 meters/second, moving in the x-direction. The small-wave
cutoff of ` = 1 meter was also used. Figure 6 is a greyscale rep-
resentation of the wave height: brighter means higher and darker
means lower height. Although produced by the fft algorithms de-
scribed here, figure 6 is not obviously a water height field. It may
help to examine figure 7, which is a greyscale depiction of the x-
component of the slope. This looks more like water waves that
figure 6. What is going on?

Figure 6: A surface wave height realization, displayed in greyscale.

Figure 7: The x-component of the slope for the wave height real-
ization in figure 6.
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Figure 8: Wave height realization with increased directional depen-
dence.

Figures 6 and 7 demonstrate a consequence of water surface op-
tics, discussed in the next section: the visible qualities of the sur-
face structure tend to be strongly influenced by the slope of the
waves. We will discuss this in quantitative detail, but for now we
willl summarize it by saying that the reflectivity of the water is a
strong function of the slope of the waves, as well as the directions
of the light(s) and camera.

To illustrate a simple effect of customizing the spectrum model,
figure 8 is the greyscale display of a height field identical to figure
6, with the exception that the directional factor|k̂ · ŵ|2 in equation
23 has been changed to|k̂ ·ŵ|6. The surface is clearly more aligned
with the direction of the wind.

The next example of a height field uses a relatively simple shader
in BMRT, the Renderman-compliant raytracer. The shader is shown
in the next section. Figure 9 shows three renderings of water sur-
faces, varying the size of the grid numbersM andN and making
the facet sizesdx anddz proportional to1/M and1/N . So as we
go from the top image to the bottom, the facet sizes become smaller,
and we see the effect of increasing amount of detail in the render-
ings. Clearly, more wave detail helps to build a realistic-looking
surface.

As a final example, figure 10 is an image rendered in the com-
mercial package RenderWorld by Arete Entertainment. This ren-
dering includes the effect of an atmosphere, and water volume scat-
tered light. These are discussed in the next section. But clearly,
wave height fields generated from random numbers using an fft pre-
scription can produce some nice images.

3.6 Experimental Evidence

This subsection is a diversion away from the main graphics thrust
of these notes. It is an account of a relatively simple remote sensing
experiment that demonstrates that the algorithms discussed in this
section are grounded (wetted ?) in reality. Figure 11 is a frame
from a video segment showing water coming into the beach near
Zuma Beach, California. The video camera was located on hill
overlooking the beach, in 1986. In 1993, the region of video frames
indicated in the figure was digitized, to produce a time series of

Figure 9: Rendering of waves with (top) a fairly low number of
waves (facet size = 10 cm), with little detail; (middle) a reasonably
good number of waves (facet size = 5 cm); (bottom) a high number
of waves with the most detail (facet size = 2.5 cm).

Figure 10: An image of a wave height field rendered in a commer-
cial package with a model atmosphere and sophisticated shading.
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Figure 11: Site at which video data was collected in 1986, near
Zuma Beach, California.

frames containing just water surface.
The analysis of the image data has a statistical character. Recall

that the Fourier Transform method of creating surface simulations
arises from statistical arguments about the averaged structure of the
surface. Recall also that, to some degree, the grayscale display of
the slope field is reminiscent of an overhead view of a water sur-
face. Our data analysis here attempts to use these assumptions to
compute statistical quantities of the images, that should be related
to the wave statistical properties.

From the multiple frames, a three dimensional Power Spectral
Density (PSD) was created. The PSD is computed from the images
by a two step processes (1) Fourier Transform the images in space
and time to create the quantity

h̃(k, ω) =

∫
d2x dt h(x, t) exp {−ik · x + iωt} , (27)

and (2) form the estimated PSD by smoothing the absolute square
of h̃. In mathematical notation, this is

PSD(k, ω) =
∣∣h̃(k, ω)

∣∣2 (28)

There is a good reason for creating the 3D PSD as defined here.
If the waves animate in time as prescribed in equation 26, that is,
with the dispersion relationshipω = ω(k), then the PSD will have
a large value in the regions wherek andω satisfy that dispersion
relationship, and a smaller value anywhere else.

Figure 12 shows a plot of the dispersion relationship in equation
14. There are two branches, for+

√
gk and−

√
gk. If the waves

in the image data are animating with that dispersion relation, then
the PSD will show most of its strength along these two branches,
although the actual magnitude of the PSD should vary from point
to point. Figure 13 shows the actual 3D PSD from the image data.
There are two clear branches along the dispersion relationship we
have discussed, with no apparent modification by shallow water af-
fects. There is also a third branch that is approximately a straight
line lying between the first two. Examination of the video shows
that this branch comes from a surfactant layer floating on the water
in part of the video frame, and moving with a constant speed. Ex-
cluding the surface layer, this data clearly demonstrates the validity
of the dispersion relationship, and demonstrates the usefulness of
the statistical, Fourier Transform oriented model of ocean waves.
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Figure 12: The theoretical dispersion relationship for deep water
gravity waves.

Figure 13: Slice from a 3D Power Spectral Density grayscale plot,
from processed video data.
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3.7 Choppy Waves

We turn briefly in this section to the subject of creating choppy
looking waves. The waves produced by the fft methods presented
up to this point have rounded peaks and troughs that give them the
appearance of fair-weather conditions. Even in fairly good weather,
and particularly in a good wind or storm, the waves are sharply
peaked at their tops, and flattened at the bottoms. The extent of this
chopping of the wave profile depends on the environmental condi-
tions, the wavelengths and heights of the waves. Waves that are
sufficiently high (e.g. with a slope greater than about 1/6) eventu-
ally break at the top, generating a new set of physical phenonema
in foam, splash, bubbles, and spray.

The starting point for this method is the fundamental fluid dy-
namic equations of motion for the surface. These equations are ex-
pressed in terms of two dynamical fields: the surface elevation and
the velocity potential on the surface, and derive from the Navier-
Stokes description of the fluid throughout the volume of the water
and air, including both above and below the interface. Creamer
et al[12] set out to apply a mathematical approach called the ”Lie
Transform technique” to generate a sequence of ”canonical trans-
formations” of the elevation and velocity potential. The benefit of
this complex mathematical procedure is to convert the elevation and
velocity potential into new dynamical fields that have a simpler
dynamics. The transformed case is in fact just the simple ocean
height field we have been discussing, including evolution with the
same dispersion relation we have been using in this paper. Start-
ing from there, the inverse Lie Transform in principle converts our
phenomenological solution into a dynamically more accurate one.
However, the Lie Transform is difficult to manipulate in 3 dimen-
sions, while in two dimensions exact results have been obtained.
Based on those exact results in two dimensions, an extrapolation
for the form of the 3D solution has been proposed: a horizontal dis-
placement of the waves, with the displacement locally varying with
the waves.

In the fft representation, the 2D displacement vector field is com-
puted using the Fourier amplitudes of the height field, as

D(x, t) =
∑

k

−ik
k
h̃(k, t) exp (ik · x) (29)

Using this vector field, the horizontal position of a grid point of
the surface is nowx + λD(x, t), with heighth(x) as before. The
parameterλ is not part of the original conjecture, but is a conve-
nient method of scaling the importance of the displacement vector.
This conjectured solution does not alter the wave heights directly,
but instead warps the horizontal positions of the surface points in
a way that depends on the spatial structure of the height field. The
particular form of this warping however, actually sharpens peaks in
the height field and broadens valleys, which is the kind of nonlin-
ear behavior that should make the fft representation more realistic.
Figure 14 shows a profile of the wave height along one direction
in a simulated surface. This clearly shows that the “displacement
conjecture” can dramatically alter the surface.

The displacment form of the this solution is similar to the algo-
rithm for building Gerstner waves [8] discussed in section 3. In
that case however, the displacement behavior, applied to sinusoid
shapes, was the principle method of characterizing the water sur-
face structure, and here it is a modifier to an already useful wave
height representation.

Figure 15 illustrates how these choppy waves behave as they
evolve. The tops of waves form a sharp cusp, which rounds out
and disappears shortly afterward.

One ”problem” with this method of generating choppy waves
can be seen in figure 14. Near the tops of some of the waves, the
surface actally passes through itself and inverts, so that the outward
normal to the surface points inward. This is because the amplitudes
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Figure 14: A comparison of a wave height profile with and without
the displacement. The dashed curve is the wave height produced by
the fft representation. The solid curve is the height field displaced
using equation 29.
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Figure 16: Wave height profile with and without the displacement.
Also plotted is the Jacobian map for choppy wave profile.

of the wave components can be large enough to create large dis-
placements that overlap. This is easily defeated simply by reducing
the magnitude of the scaling factorλ. For the purposes of computer
graphics, this might actually be a useful effect to signal the pro-
duction of spray, foam and/or breaking waves. We will not discuss
here how to carry out such an extension, except to note that in order
to use this region of overlap, a simple and quick test is needed for
deciding that the effect is taking place. Fortunately, there is such a
simple test in the form of the Jacobian of the transformation from
x to x + λD(x, t). The Jacobian is a measure of the uniqueness of
the transformation. When the displacement is zero, the Jacobian is
1. When there is displacement, the Jacobian has the form

J(x) = JxxJyy − JxyJyx , (30)

with individual terms

Jxx(x) = 1 + λ
∂Dx(x)

∂x

Jyy(x) = 1 + λ
∂Dy(x)

∂y

Jyx(x) = λ
∂Dy(x)

∂x

Jxy(x) = λ
∂Dx(x)

∂y
= Jyx

andD = (Dx, Dy). The Jacobian signals the presence of the over-
lapping wave bacause its value is less than zero in the overlap re-
gion. For example, figure 16 plots a profile of a basic wave without
displacement, the wave with displacement, and the value ofJ for
the choppy wave (labeled ”Folding Map”). The ”folds” or overlaps
in the choppy surface are clearly visible, and align with the regions
in whichJ < 0. With this information, it should be relatively easy
to extract the overlapping region and use it for other purposes if
desired.

But there is more that can be learned from these folded waves
from a closer examination of this folding criterion. The Jacobian
derives from a2 × 2 matrix which measures the local uniqueness

of the choppy wave mapx→ x + λD. This matrix can in general
be written in terms of eigenvectors and eigenvalues as:

Jab = J−ê
−
a ê
−
b + J+ê

+
a ê

+
b , (a, b = x, y) (31)

whereJ− andJ+ are the two eigenvalues of the matrix, ordered
so thatJ− ≤ J+. The corresponding orthonormal eigenvectors are
ê− andê+ respectively. From this expression, the Jacobian is just
J = J−J+.

The criterion for folding thatJ < 0 means thatJ− < 0 and
J+ > 0. So the minimum eigenvalue is the actual signal of the on-
set of folding. Further, the eigenvectorê− points in the horizontal
direction in which the folding is taking place. So, the prescrip-
tion now is to watch the minimum eigenvalue for when it becomes
negative, and the alignment of the folded wave is parallel to the
minimum eigenvector.

We can illustrate this phenomenon with an example. Figures 17
and 18 show two images of an ocean surface, one without choppy
waves, and the other with the choppy waves strongly applied. These
two surfaces are identical except for the choppy wave algorithm.
Figure 19 shows the wave profiles of both surfaces along a slice
through the surfaces. Finally, the profile of the choppy wave is
plotted together with the value of the minimum eigenvalue in figure
20, showing the clear connection between folding and the negative
value ofJ−.

Incidentally, computing the eigenvalues and eigenvectors of this
matrix is fast because they have analytic expressions as

J± =
1

2
(Jxx + Jyy)± 1

2

{
(Jxx − Jyy)2 + 4J2

xy

}1/2
(32)

for the eigenvalues and

ê± =
(1, q±)√
1 + q2

±
(33)

with

q± =
J± − Jxx
Jxy

(34)

for the eigenvectors.

4 Surface Wave Optics

The optical behavior of the ocean surface is fairly well understood,
at least for the kinds of quiescent wave structure that we consider
in these notes. Fundamentally, the ocean surface is a near perfect
specular reflector, with well-understand relectivity and transmis-
sity functions. In this section these properties are summarized, and
combined into a simple shader for Renderman. There are circum-
stances when the surface does not appear to be a specular reflector.
In particular, direct sunlight reflected from waves at a large distance
from the camera appear to be spread out and made diffuse. This
is due to the collection of waves that are smaller than the camera
can resolve at large distances. The mechanism is somewhat similar
to the underlying microscopic reflection mechnanisms in solid sur-
faces that lead to the Torrance-Sparrow model of BRDFs. Although
the study of glitter patterns in the ocean was pioneered by Cox and
Munk many years ago, the first models of this BRDF behavior that
I am aware of were developed in the early 1980’s. At the end of this
section, we introduce the concepts and conditions, state the results,
and ignore the in-between analysis and derivation.

Throughout these notes, and particularly in this section, we ig-
nore one optical phenomenon completely: polarization. Polariza-
tion effects can be strong at a boundary interface like a water sur-
face. However, since most of computer graphics under considera-
tion ignores polarization, we will continue in that long tradition. Of
course, interested readers can find literature on polarization effects
at the air-water interface.
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Figure 17: Simulated wave surface without the choppy algorithm
applied. Rendered in BMRT with a generic plastic shader.

Figure 18: Same wave surface with strong chop applied. Rendered
in BMRT with a generic plastic shader.



4 SURFACE WAVE OPTICS 3-12

-2

-1

0

1

2

0 5 10 15 20

He
igh

t

Position

Water Surface Profiles

Basic Surface
Choppy Surface

Figure 19: Profiles of the two surfaces, showing the effect of the
choppy mapping.
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Figure 20: Plot of the choppy surface profile and the minimum
eigenvalue. The locations of folds of the surface are clearly the
same as where the eigenvalue is negative.

4.1 Specular Reflection and Transmission

Rays of light incident from above or below at the air-water interface
are split into two components: a transmitted ray continuing through
the interface at a refracted angle, and a reflected ray. The intensity
of each of these two rays is diminished by reflectivity and trans-
missivity coefficients. Here we discussed the directions of the two
outgoing rays. In the next subsection the coefficients are discussed.

4.1.1 Reflection

As is well known, in a perfect specular reflection the reflected ray
and the incident ray have the same angle with respect to the surface
normal. This is true for all specular reflections (ignoring roughen-
ing effects), regardless of the material. We build here a compact
expression for the outgoing reflected ray. First, we need to build up
some notation and geometric quantities.

The three-dimensional points on the ocean surface can be la-
belled by the horizontal positionx and the waveheighth(x, t) as

r(x, t) = x + ŷh(x, t) , (35)

whereŷ is the unit vector pointing straight up. At the pointr, the
normal to the surface is computed directly from the surface slope
ε(x, t) ≡ ∇h(x, t) as

n̂S(x, t) =
ŷ − ε(x, t)√
1 + ε2(x, t)

(36)

For a ray intersecting the surface atr from directionn̂i, the direc-
tion of the reflected ray can depend only on the incident direction
and the surface normal. Also, as mentioned before, the angle be-
tween the surface normal and the reflected ray must be the same
as the angle between incident ray and the surface normal. You can
verify for yourself that the reflected direction̂nr is

n̂r(x, t) = n̂i − 2n̂S(x, t) (n̂S(x, t) · n̂i) . (37)

Note that this expression is valid for incident ray directions on either
side of the surface.

4.1.2 Transmission

Unfortunately, the direction of the transmitted ray is not expressed
as simply as for the reflected ray. In this case we have two guid-
ing principles: the transmitted direction is dependent only on the
surface normal and incident directions, and Snell’s Law relating the
sines of the angles of the incident and transmitted angles to the in-
dices of refraction of the two materials.

Suppose the incident ray is coming from one of the two media
with index of refractionni (for air, n = 1, for water,n = 4/3
approximately), and the transmitted ray is in the medium with index
of refractionnr. For the incident ray at angleθi to the normal,

sin θi =
√

1− (n̂i · n̂S)2 = |n̂i × n̂S | (38)

the transmitted ray will be at an angleθt with

sin θt = |n̂t × n̂S | . (39)

Snell’s Law states that these two angles are related by

ni sin θi = nt sin θt . (40)

We now have all the pieces needed to derive the direction of trans-
mission. The direction vector can only be a linear combination of
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Figure 21: Reflectivity for light coming from the air down to the
water surface, as a function of the angle of incidence of the light.

n̂i andn̂S . It must satisfy Snell’s Law, and it must be a unit vector
(by definition). This is adequate to obtain the expression

n̂t(x, t) =
ni
nt

n̂i + Γ(x, t) n̂S(x, t) (41)

with the functionΓ defined as

Γ(x, t) ≡ ni
nt

n̂i · n̂S(x, t)

±
{

1−
(
ni
nt

)2

|n̂i × n̂S(x, t)|2
}1/2

. (42)

The plus sign is used inΓ whenn̂i · n̂S < 0, and the minus sign is
used when̂ni · n̂S > 0 .

4.2 Fresnel Reflectivity and Transmissivity

Accompanying the process of reflection and transmission through
the interface is a pair of coefficients that describe their efficiency.
The reflectivityR and transmissivityT are related by the constraint
that no light is lost at the interface. This leads to the relationship

R+ T = 1 . (43)

The derivation of the expressions forR andT is based on the elec-
tromagnetic theory of dielectrics. We will not carry out the deriva-
tions, but merely write down the solution

R(n̂i, n̂r) =
1

2

{
sin2(θt − θi)
sin2(θt + θi)

+
tan2(θt − θi)
tan2(θt + θi)

}
(44)

Figure 21 is a plot of the reflectivity for rays of light traveling down
onto a water surface as a function of the angle of incidence to the
surface. The plot extends from a grazing angle of 0 degrees to per-
pendicular incidence at 90 degrees. As should be clear, variation of
the reflectivity across an image is an important source of the “tex-
ture” or feel of water. Notice that reflectivity is a function of the
angle of incidence relative to the wave normal, which in turn is di-
rectly related to the slope of the surface. So we can expect that a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90

 

Incidence Angle (degrees)

Reflectivity from Below

Incident from Above

Figure 22: Reflectivity for light coming from below the water sur-
face, as a function of the angle of incidence of the light.

strong contributor to the texture of water surface is the pattern of
slope, while variation of the wave height serves primarily as a wave
hiding mechanism. This is the quantitative explanation of why the
surface slope more closely resembles rendered water than the wave
height does, as we saw in the previous section when discussing fig-
ure 7.

When the incident ray comes from below the water surface, there
are important differences in the reflectivity and transmissivity. Fig-
ure 22 shows the reflectivity as a function of incidence angle again,
but this time for incident light from below. In this case, the re-
flectivity reaches unity at a fairly large angle, near 41 degrees. At
incidence angles below that, the reflectivity is one and so there is no
transmission of light through the interface. This phenomenon isto-
tal internal reflection, and can be seen just by swimming around in
a pool. The angle at which total internal reflection begins is called
Brewster’s angle, and is given by, from Snell’s Law,

sin θBi =
nt
ni

= 0.75 (45)

or θBi = 48.6 deg. In our plots, this angle is90− θBi = 41.1 deg.

4.3 Building a Shader for Renderman

From the discussion so far, one of the most important features a ren-
dering must emulate is the textures of the surface due to the strong
slope-dependence of reflectivity and transmissivity. In this section
we construct a simple Renderman-compliant shader using just these
features. Readers who have experience with shaders will know how
to extend this one immediately.

The shader exploits that fact that the Renderman interface al-
ready provides a built-in Fresnel quantity calculator, which pro-
videsR, T , n̂r, andn̂t using the surface normal, incident direction
vector, and index of refraction. The shader for the air-to-water case
is as follows:

surface watercolorshader(
color upwelling = color(0, 0.2, 0.3);
color sky = color(0.69,0.84,1);
color air = color(0.1,0.1,0.1);
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float nSnell = 1.34;
float Kdiffuse = 0.91;
string envmap = "";

)
{

float reflectivity;
vector nI = normalize(I);
vector nN = normalize(Ng);
float costhetai = abs(nI . nN);
float thetai = acos(costhetai);
float sinthetat = sin(thetai)/nSnell;
float thetat = asin(sinthetat);
if(thetai == 0.0)
{

reflectivity = (nSnell - 1)/(nSnell + 1);
reflectivity = reflectivity * reflectivity;

}
else
{

float fs = sin(thetat - thetai)
/ sin(thetat + thetai);

float ts = tan(thetat - thetai)
/ tan(thetat + thetai);

reflectivity = 0.5 * ( fs*fs + ts*ts );
}
vector dPE = P-E;
float dist = length(dPE) * Kdiffuse;
dist = exp(-dist);

if(envmap != "")
{

sky = color environment(envmap, nN);
}
Ci = dist * ( reflectivity * sky

+ (1-reflectivity) * upwelling )
+ (1-dist)* air;

}

There are two contributions to the color: light coming downward
onto the surface with the default color of the sky, and light coming
upward from the depths with a default color. This second term will
be discussed in the next section. It is important for incidence angles
that are high in the sky, because the reflectivity is low and transmis-
sivity is high.

This shader was used to render the image in figure 24 using the
BMRT raytrace renderer. For reference, the exact same image has
been rendered in 23 with a generic plastic shader. Note that the
realistic water shader tends to highlight the tops of the the waves,
where the angle of incidence is nearly 90 degrees grazing and the
reflectivity is high, while the sides of the waves are dark, where
angle of incidence is nearly 0 that the reflectivity is low.

5 Water Volume Effects

The previous section was devoted to a discussion of the optical be-
havior of the surface of the ocean. In this section we focus on the
optical behavior of the water volume below the surface. We begin
with a discussion of the major optical effects the water volume has
on light, followed by an introduction to color models researchers
have built to try to connect the ocean color on any given day to un-
derlying biological and physical processes. These models are built
upon many years of in-situ measures off of ships and peers. Fi-
nally, we discuss two important effects, caustics and sunbeams, that
sometimes are hard to grasp, and which produce beautiful images
when properly simulated.

Figure 23: Simulated water surface with a generic plastic surface
shader. Rendered with BMRT.
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Figure 24: Simulated water surface with a realistic surface shader.
Rendered with BMRT.
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Figure 25: Dependence of the Diffuse Extinction Coefficient on the
Single Scatter Albedo, normalized to the extinction.

5.1 Scattering, Transmission, and Reflection by
the Water Volume

In the open ocean, light is both scattering and absorbed by the vol-
ume of the water. The sources for these events are of three types:
water molecules, living and dead organic matter, and non-organic
matter. In most oceans around the world, away from the shore lines,
absorption is a fairly even mixture of water molecules and organic
matter. Scattering is dominated by organic matter however.

To simulate the processes of volumetric absorption and scatter-
ing, there are five quantities that are of interest: absorption coef-
ficient, scattering coefficient, extinction coefficient, diffuse extinc-
tion coefficient, and bulk reflectivity. All of these coefficients have
units of inverse length, and represent the exponential rate of atten-
uation of light with distance through the medium. The absorption
coefficienta is the rate of absorption of light with distance, the
scattering coefficientb is the rate of scattering with length, the ex-
tinction coefficientc is the sum of the two previous onesc = a+ b,
and the diffuse extinction coefficientK describes the rate of loss
of intensity of light with distance after taking into account both ab-
sorption and scattering processes. The connection betweenK and
the other parameters is not completely understood, in part because
there are a variety of ways to defineK in terms of operational mea-
surements. Different ways change the details of the dependence.
However, there is a condition called theasymptoticlimit at very
deep depths in the water, at which all operational definitions ofK
converge to a single value. This asymptotic value ofK has been
modeled in a variety of ways. There is a mathematically precise
result that the ratioK/c depends only onb/c, the single scatter
albedo, and some details of the angular distribution of individual
scattering distributions. Figure 25 is an example of a model of
K/c for reasonable water conditions. Models have been gener-
ated for the color dependence ofK, most notably by Jerlov. In
1990, Austin and Petzold performed a revised analysis of spectral
models, including new data, to produce refined models ofK as a
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function of color. For typical visible light conditions in the ocean,
K ranges in value from 0.03/meter to 0.1/meter. It is generally true
thata < K < c.

One way to interpret these quantities for a simulation of water
volume effects is as follows:

1. A ray of sunlight enters the water with intensityI (after los-
ing some intensity to Fresnel transmission). Along a path un-
derwater of a lengths, the intensity at the end of the path is
I exp(−cs), i.e. the ray of direct sunlight is attenuated as fast
a possible.

2. Along the path through the water, a fraction of the ray is scat-
tered into a distribution of directions. The strength of the scat-
tering per unit length of the ray isb, so the intensity is propor-
tional tobI exp(−cs).

3. The light that is scattered out of the ray goes through poten-
tially many more scattering events. It would be nearly im-
possible to track all of them. However, the sum whole out-
come of this process is to attenuate the ray along the path from
the original path to the camera asbI exp(−cs) exp(−Ksc),
wheresc is the distance from the scatter point in the ocean to
the camera.

A fifth quantity of interest for simulation is the bulk reflectivity
of the water volume. This is a quantity that is intended to allow
us to ignore the details of what is going on, treat the volume as a
Lambertian reflector, and compute a value for bulk reflectivity. That
number is sensitive to many factors, including wave surface condi-
tions, sun angle, water optical properties, and details of the angular
spread. Nevertheless, values of reflectivity around 0.04 seem to
agree well with data.

5.2 The Underwater POV: Refracted Skylight,
Caustics, and Sunbeams

Now that we have underwater optical properties at hand, we can
look at two important phenomena in the ocean: caustics and sun-
beams.

5.2.1 Caustics

Caustics, in this context, are a light pattern that is formed on sur-
faces underwater. Because the water surface is not flat, groups of
light rays incident on the surface are either focussed or defocussed.
As a result, a point on a fictitious plane some depth below the ocean
surface receives direct sunlight from several different positions on
the surface. The intensity of light varies due to the depth, orig-
inal contrast, and other factors. For now, lets write the intensity
of the pattern asI = Ref I0, with I0 as the light intensity just
above the water surface. The quantityRef is the scaling factor that
varies with position on the fictitious plane due to focussing and de-
focussing of waves, and is called acaustic pattern. Figure 26 shows
an example of the caustic patternRef . Notice that the caustic pat-
tern exhibits filaments and ring-like structure. At a very deep depth,
the caustic pattern is even more striking, as shown in figure 27.

One of the important properties of underwater light that produce
caustic patterns is conservation of flux. This is actually a simple
idea: suppose a small area on the ocean surface has sunlight passing
through it into the water, with intensityI at the surface. As we
map that area to greater depths, the amount of area within it grows
or shrinks, but most likely grows depending on whether the area
is focussed or defocussed. The intensity at any depth within the
water is proportional to inverse of the area of the projected region.
Another way of saying this is that if a bundle of light rays diverges,
their intensities are reduced to keep the product of intensity time
area fixed.

Figure 26: Rendering of a caustic pattern at a shallow depth (5
meters) below the surface.

Figure 27: Rendering of a caustic pattern at great depth (100 me-
ters) below the surface.
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Figure 28: PDF’s as measured by Dera in reference [17].

Simulated caustic patterns can actually be compared (roughly)
with real-world data. In a series of papers published throughout the
1970’s, 1980’s, and into the 1990’s, Dera and others collected high-
speed time series of light intensity[17]. As part of this data collec-
tion and analysis project, the data was used to generate a probability
distribution function (PDF) for the light intensity. Figure 28 shows
two PDFs taken from one of Dera’s papers. The two PDF’s were
collected for different surface roughness conditions: rougher wa-
ter tended to suppress more of the high magnitude fluctuations in
intensity.

Figure 29 shows the pdf at two depths from a simulation of the
ocean surface. These two sets do not match Dera’s measurements
because of many factors, but most importantly because we have
not simulated the environmental conditions and instrumentation in
Dera’s experiments. Nevertheless, the similarity of figure 29 with
Dera’s data is an encouraging point of information for the realism
of the simulation.

5.2.2 Godrays

Underwater sunbeams, also called godrays, have a very similar ori-
gin to caustics. Direct sunlight passes into the water volume, fo-
cussed and defocussed at different points across the surface. As the
rays of light pass down through the volume, some of the light is
scattered in other directions, and a fraction arrives at the camera.
The accumulated pattern of scattered light apparent to the camera
are the godrays. So, while caustics are the pattern of direct sun-
light that penetrates down to the floor of a water volume, sunbeams
are scattered light coming from those shafts of direct sunlight in
the water volume. Figure 30 demonstrates sunbeams as seen by a
camera looking up at it.
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Figure 29: Computed Probability Density Function for light inten-
sity fluctuations in caustics. (upper curve) shallow depth of 2 me-
ters; (lower curve) deep depth of 10 meters.

Figure 30: Rendering of sunbeams, or godrays, as seen looking
straight up at the light source.
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Objectives
3-24

• Oceanography concepts

• Random wave math

• Hints for realistic look

• Advanced things

h(x, z, t) =

∫ ∞
−∞

dkx dkz h̃(k, t) exp {i(kxx + kzz)}

h̃(k, t) = h̃0(k) exp {−iω0(k)t}+h̃∗0(−k) exp {iω0(k)t}
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Waterworld 13th Warrior Fifth Element
Truman Show Titanic Double Jeopardy
Hard Rain Deep Blue Sea Devil’s Advocate
Contact Virus 20k Leagues Under the Sea
Cast Away World Is Not Enough 13 Days
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Navier-Stokes Fluid Dynamics
3-26

Force Equation

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) +∇p(x, t)/ρ = −gŷ + F

Mass Conservation

∇ · u(x, t) = 0

Solve for functions of space and time:


• 3 velocity components

• pressurep

• densityρ distribution


Boundary conditions are important constraints

Very hard - Many scientitic careers built on this
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Potential Flow
3-27

Special Substitution u = ∇φ(x, t)

Transforms the equations into

∂φ(x, t)

∂t
+

1

2
|∇φ(x, t)|2 +

p(x, t)

ρ
+ gx · ŷ = 0

∇2φ(x, t) = 0

This problem is MUCH simpler computationally and mathematically.
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Free Surface Potential Flow
3-28

In the water volume, mass conservation is enforced via

φ(x) =

∫
∂V

dA′
{
∂φ(x′)

∂n′
G(x,x′)− φ(x′)

∂G(x,x′)

∂n′

}

At points r on the surface

∂φ(r, t)

∂t
+

1

2
|∇φ(r, t)|2 +

p(r, t)

ρ
+ gr · ŷ = 0

Dynamics of surface points:

dr(t)

dt
= ∇φ(r, t)
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Numerical Wave Tank Simulation
3-29

Grilli, Guyenne, Dias (2000)
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Plunging Break and Splash Simulation
3-30

Tulin (1999)
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Simplifying the Problem
3-31

Road to practicality - ocean surface:

• Simplify equations for relatively mild conditions

• Fill in gaps with oceanography.

Original dynamical equation at 3D points in volume

∂φ(r, t)

∂t
+

1

2
|∇φ(r, t)|2 +

p(r, t)

ρ
+ gr · ŷ = 0

Equation at 2D points (x, z) on surface with height h

∂φ(x, z, t)

∂t
= −gh(x, z, t)
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Simplifying the Problem: Mass Conservation
3-32

Vertical component of velocity

∂h(x, z, t)

∂t
= ŷ · ∇φ(x, z, t)

Use mass conservation condition

ŷ · ∇φ(x, z, t) ∼
(√
−∇2

H

)
φ =

(√
− ∂2

∂x2
− ∂2

∂z2

)
φ
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Linearized Surface Waves
3-33

∂h(x, z, t)

∂t
=

(√
−∇2

H

)
φ(x, z, t)

∂φ(x, z, t)

∂t
= −gh(x, z, t)

General solution easily computed in
terms of Fourier Transforms
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Solution for Linearized Surface Waves
3-34

General solution in terms of Fourier Transform

h(x, z, t) =

∫ ∞
−∞

dkx dkz h̃(k, t) exp {i(kxx + kzz)}

with the amplitude depending on the dispersion relationship

ω0(k) =
√
g |k|

h̃(k, t) = h̃0(k) exp {−iω0(k)t} + h̃∗0(−k) exp {iω0(k)t}

The complex amplitude h̃0(k) is arbitrary.

3-34



ddhead

Oceanography
3-35

• Think of the heights of the waves as a kind of random
process

• Decades of detailed measurements support a statistical
description of ocean waves.

• The wave height has a spectrum〈∣∣∣h̃0(k)
∣∣∣2〉 = P0(k)

• Oceanographic models tie P0 to environmental parame-
ters like wind velocity, temperature, salinity, etc.

3-35



ddhead

Models of Spectrum
3-36

•Wind speed V

•Wind direction vector V̂ (horizontal only)

• Length scale of biggest waves L = V 2/g
(g=gravitational constant)

Phillips Spectrum

P0(k) =
∣∣∣k̂ · V̂∣∣∣2 exp(−1/k2L2)

k4

JONSWAP Frequency Spectrum

P0(ω) =
exp
{
−5

4

(
ω
Ω

)−4
+ e−(ω−Ω)2/2(σΩ)2

ln γ
}

ω5

3-36



ddhead

Variation in Wave Height Field
3-37

Pure Phillips Spectrum Modified Phillips Spectrum
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Simulation of a Random Surface
3-38

Generate a set of “random” amplitudes on a grid

h̃0(k) = ξeiθ
√
P0(k)

ξ = Gaussian random number, mean 0 & std dev 1

θ = Uniform random number [0,2π].

kx =
2π

∆x

n

N
(n = −N/2, . . . , (N − 1)/2)

kz =
2π

∆z

m

M
(m = −M/2, . . . , (M − 1)/2)
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FFT of Random Amplitudes
3-39

Use the Fast Fourier Transform (FFT) on the amplitudes to
obtain the wave height realization h(x, z, t)

Wave height realization exists on a regular, periodic grid of
points.

x = n∆x (n = −N/2, . . . , (N − 1)/2)

z = m∆z (m = −M/2, . . . , (M − 1)/2)

The realization tiles seamlessly. This can sometimes show
up as repetitive waves in a render.
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High Resolution Rendering
Sky reflection, upwelling light, sun glitter

1 inch facets, 1 kilometer range
3-41
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Effect of Resolution 3-42

Low : 100 cm facets

Medium : 10 cm facets

High : 1 cm facets
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Simple Demonstration of Dispersion
3-45

256 frames, 256×128 region

3-45



ddhead

Data Processing
3-46

• Fourier transform in both time and space:h̃(k, ω)

• Form Power Spectral DensityP (k, ω) =

〈∣∣∣h̃(k, ω)
∣∣∣2〉

• If the waves follow dispersion relationship, thenP is strongest
at frequenciesω = ω(k).
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Processing Results
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Looping in Time – Continuous Loops
3-48

• Continuous loops can’t be made because dispersion doesn’t
have a fundamental frequency.

• Loops can be made by modifying the dispersion relationship.

Repeat time T

Fundamental Frequencyω0 = 2π
T

New dispersion relationω̃ = integer
(
ω(k)
ω0

)
ω0
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Quantized Dispersion Relation
3-49
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Hamiltonian Approach for Surface Waves
Miles, Milder, Henyey, . . .

3-50

• If a crazy-looking surface operator like
√
−∇2

H is ok, the
exact problem can be recast as a canonical problem with
momentum φ and coordinate h in 2D.

•Milder has demonstrated numerically:

– The onset of wave breaking
– Accurate capillary wave interaction

• Henyey et al. introduced Canonical Lie Transformations:

– Start with the solution of the linearized problem - (φ0, h0)

– Introduce a continuous set of transformed fields - (φq, hq)

– The exact solution for surface waves is for q = 1.
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Surface Wave Simulation (Milder, 1990)
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Choppy, Near-Breaking Waves
3-52

Horizontal velocity becomes important for distorting wave.

Wave at x morphs horizontally to the position x + D(x, t)

D(x, t) = −λ
∫
d2k

ik

|k|
h̃(k, t) exp {i(kxx + kzz)}

The factor λ allows artistic control over the magnitude of the
morph.
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Time Sequence of Choppy Waves
3-55
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Choppy Waves: Detecting Overlap
3-56

x→ X(x, t) = x + D(x, t)

is unique and invertible as long as the surface does not
intersect itself.

When the mapping intersects itself, it is not unique. The
quantitative measure of this is the Jacobian matrix

J(x, t) =

[
∂Xx/∂x ∂Xx/∂z
∂Xz/∂x ∂Xz/∂z

]

The signal that the surface intersects itself is

det(J) ≤ 0
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Learning More About Overlap
3-58

Two eigenvalues, J− ≤ J+, and eigenvectors ê−, ê+

J = J−ê−ê− + J+ê+ê+

det(J) = J−J+

For no chop, J− = J+ = 1. As the displacement magnitude
increases, J+ stays positive while J− becomes negative at
the location of overlap.

At overlap, J− < 0, the alignment of the overlap is parallel
to the eigenvalue ê−.
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Summary
3-60

• FFT-based random ocean surfaces are fast to build, realistic,
and flexible.

• Based on a mixture of theory and experimental
phenomenology.

• Used alot in professional productions.

• Real-time capable for games

• Lots of room for more complex behaviors.

Latest version of course notes and slides:

http://home1.gte.net/tssndrf/index.html
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Stable Fluids
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Abstract

Building animation tools for fluid-like motions is an important and
challenging problem with many applications in computer graphics.
The use of physics-based models for fluid flow can greatly assist
in creating such tools. Physical models, unlike key frame or pro-
cedural based techniques, permit an animator to almost effortlessly
create interesting, swirling fluid-like behaviors. Also, the interac-
tion of flows with objects and virtual forces is handled elegantly.
Until recently, it was believed that physical fluid models were too
expensive to allow real-time interaction. This was largely due to the
fact that previous models used unstable schemes to solve the phys-
ical equations governing a fluid. In this paper, for the first time,
we propose an unconditionally stable model which still produces
complex fluid-like flows. As well, our method is very easy to im-
plement. The stability of our model allows us to take larger time
steps and therefore achieve faster simulations. We have used our
model in conjuction with advecting solid textures to create many
fluid-like animations interactively in two- and three-dimensions.

Keywords: Fluid dynamics, Navier-Stokes equations, stable
solvers, implicit methods, physics-based modeling, gaseous phe-
nomena, volume rendering.

1 Introduction

One of the most intriguing problems in computer graphics is the
simulation of fluid-like behavior. A good fluid solver is of great
importance in many different areas. In the special effects industry
there is a high demand to convincingly mimic the appearance and
behavior of fluids such as smoke, water and fire. Paint programs
can also benefit from fluid solvers to emulate traditional techniques
such as watercolor and oil paint. Texture synthesis is another pos-
sible application. Indeed, many textures result from fluid-like pro-
cesses, such as erosion. The modeling and simulation of fluids is,
of course, also of prime importance in most scientific disciplines
and in engineering. Fluid mechanics is used as the standard math-
ematical framework on which these simulations are based. There
is a consensus among scientists that the Navier-Stokes equations
are a very good model for fluid flow. Thousands of books and
articles have been published in various areas on how to compute
these equations numerically. Which solver to use in practice de-
pends largely on the problem at hand and on the computing power

�

Alias wavefront, 1218 Third Ave, 8th Floor, Seattle, WA 98101, U.S.A.
jstam@aw.sgi.com

available. Most engineering tasks require that the simulation pro-
vide accurate bounds on the physical quantities involved to answer
questions related to safety, performance, etc. The visual appearance
(shape) of the flow is of secondary importance in these applications.
In computer graphics, on the other hand, the shape and the behav-
ior of the fluid are of primary interest, while physical accuracy is
secondary or in some cases irrelevant. Fluid solvers, for computer
graphics, should ideally provide a user with a tool that enables her
to achieve fluid-like effects in real-time. These factors are more im-
portant than strict physical accuracy, which would require too much
computational power.

In fact, most previous models in computer graphics were driven
by visual appearance and not by physical accuracy. Early flow
models were built from simple primitives. Various combinations of
these primitives allowed the animation of particles systems [17, 19]
or simple geometries such as leaves [25]. The complexity of the
flows was greatly improved with the introduction of random tur-
bulences [18, 22]. These turbulences are mass conserving and,
therefore, automatically exhibit rotational motion. Also the tur-
bulence is periodic in space and time, which is ideal for motion
“texture mapping” [21]. Flows built up from a superposition of
flow primitives all have the disadvantage that they do not respond
dynamically to user-applied external forces. Dynamical models
of fluids based on the Navier-Stokes equations were first imple-
mented in two-dimensions. Both Yaeger and Upson and Gamito
et al. used a vortex method coupled with a Poisson solver to cre-
ate two-dimensional animations of fluids [26, 10]. Later, Chen et
al. animated water surfaces from the pressure term given by a two-
dimensional simulation of the Navier-Stokes equations [3]. Their
method unlike ours is both limited to two-dimensions and is un-
stable. Kass and Miller linearize the shallow water equations to
simulate liquids [14]. The simplifications do not, however, cap-
ture the interesting rotational motions characteristic of fluids. More
recently, Foster and Metaxas clearly show the advantages of us-
ing the full three-dimensional Navier-Stokes equations in creating
fluid-like animations [9]. Many effects which are hard to key frame
manually such as swirling motion and flows past objects are ob-
tained automatically. Their algorithm is based mainly on the work
of Harlow and Welch in computational fluid dynamics, which dates
back to 1965 [13]. Since then many other techniques which Fos-
ter and Metaxas could have used have been developed. However,
their model has the advantage of being simple to code, since it is
based on a finite differencing of the Navier-Stokes equations and
an explicit time solver. Similar solvers and their source code are
also available from the book of Griebel et al. [11]. The main prob-
lem with explicit solvers is that the numerical scheme can become
unstable for large time-steps. Instability leads to numerical sim-
ulations that “blow-up” and therefore have to be restarted with a
smaller time-step. The instability of these explicit algorithms sets
serious limits on speed and interactivity. Ideally, a user should be
able to interact in real-time with a fluid solver without having to
worry about possible “blow ups”.

Our algorithm is very easy to implement and allows a user to in-
teract in real-time with three-dimensional fluids on a graphics work-
station. We achieve this by using time-steps much larger than the
ones used by Foster and Metaxas. To obtain a stable solver we
depart from Foster and Metaxas’ method of solution. Instead of
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their explicit Eulerian schemes, we use both Lagrangian and im-
plicit methods to solve the Navier-Stokes equations. Our approach
falls into the class of so-called Semi-Lagrangian schemes that were
first introduced in the early fifties [5]. These schemes are rarely
used in engineering applications because they suffer from too much
numerical dissipation: the simulated fluid tends to dampen more
rapidly than an actual fluid. This shortcoming is less of a problem in
computer graphics applications, especially in an interactive system
where the flow is “kept alive” by an actor applying external forces.
In fact, a flow that does not dampen at all might be too chaotic and
difficult to control. As our results demonstrate, we were able to
produce nice swirling flows despite the numerical dissipation. We
have successfully integrated our solvers into an environment where
a user can apply forces to a virtual fluid at interactive rates — an
effect that has never before been achieved.

In this paper we apply our flows mainly to the simulation of
gaseous-like phenomena. We employ our solver to update both
the flow and the motion of densities within the flow. To further
increase the complexity of our animations we advect texture co-
ordinates along with the density [15]. In this manner we are able
to synthesize highly detailed “wispy” gaseous flows even with low
resolution grids. We believe that the combination of physics-based
fluid solvers and solid textures is the most promising method of
achieving highly complex flows in computer graphics.

The next section presents the Navier-Stokes equations and the
derivation which leads to our method of solution. That section con-
tains all the fundamental ideas and techniques needed to obtain a
stable fluids solver. Since it relies on sophisticated mathematical
techniques, it is written in a mathematical physics jargon which
should be familiar to most computer graphics researchers working
in physics-based modeling. The application oriented reader who
wishes only to implement our solver can skip Section 2 entirely and
go straight to Section 3. There we describe our implementation of
the solver, providing sufficient information to code our technique.
Section 4 is devoted to several applications that demonstrate the
power of our new solver. Finally, in Section 5 we conclude and
discuss future research. To keep this within the confines of a short
paper, we have decided not to include a “tutorial-type” section on
fluid dynamics, since there are many excellent textbooks which pro-
vide the necessary background and intuition. Readers who do not
have a background in fluid dynamics and who wish to fully under-
stand the method in this paper should therefore consult such a text.
Mathematically inclined readers may wish to start with the excel-
lent book by Chorin and Marsden [4]. Readers with an engineering
bent on the other hand can consult the didactic book by Abbott [2].
Also, Foster and Metaxas’ paper does a good job of introducing the
concepts from fluid dynamics to the computer graphics community.

2 Stable Navier-Stokes

2.1 Basic Equations

In this section we present the Navier-Stokes equations along with
the manipulations that lead to our stable solver. A fluid whose den-
sity and temperature are nearly constant is described by a velocity
field � and a pressure field � . These quantities generally vary both
in space and in time and depend on the boundaries surrounding the
fluid. We will denote the spatial coordinate by � , which for two-
dimensional fluids is �������
	���
 and three-dimensional fluids is
equal to ���
	���	���
 . We have decided not to specialize our results
for a particular dimension. All results are thus valid for both two-
dimensional and three-dimensional flows unless stated otherwise.
Given that the velocity and the pressure are known for some initial
time ����� , then the evolution of these quantities over time is given

by the Navier-Stokes equations [4]:��� � ��� (1)� �� � ����� � ��� 
 � � � � �"!$# �&% � !(')	 (2)

where # is the kinematic viscosity of the fluid,  is its density and' is an external force. Some readers might be unfamiliar with this
compact version of the Navier-Stokes equations. Eq. 2 is a vec-
tor equation for the three (two in two-dimensions) components of
the velocity field. The “

�
” denotes a dot product between vec-

tors, while the symbol
�

is the vector of spatial partial deriva-
tives. More precisely,

� �*� �,+�� �
	 �,+�� ��
 in two-dimensions and� �-� �,+�� �
	 �,+�� ��	 �,+�� ��
 in three-dimensions. We have also used
the shorthand notation

� % � �-�.� . The Navier-Stokes equations
are obtained by imposing that the fluid conserves both mass (Eq. 1)
and momentum (Eq. 2). We refer the reader to any standard text
on fluid mechanics for the actual derivation. These equations also
have to be supplemented with boundary conditions. In this paper
we will consider two types of boundary conditions which are use-
ful in practical applications: periodic boundary conditions and fixed
boundary conditions. In the case of periodic boundaries the fluid is
defined on an / -dimensional torus ( /��10�	32 ). In this case there
are no walls, just a fluid which wraps around. Although such flu-
ids are not encountered in practice, they are very useful in creating
evolving texture maps. Also, these boundary conditions lead to a
very elegant implementation that uses the fast Fourier transform as
shown below. The second type of boundary condition that we con-
sider is when the fluid lies in some bounded domain 4 . In that case,
the boundary conditions are given by a function �65 defined on the
boundary

� 4 of the domain. See Foster and Metaxas’ work for a
good discussion of these boundary conditions in the case of a hot
fluid [9]. In any case, the boundary conditions should be such that
the normal component of the velocity field is zero at the boundary;
no matter should traverse walls.

The pressure and the velocity fields which appear in the Navier-
Stokes equations are in fact related. A single equation for the ve-
locity can be obtained by combining Eq. 1 and Eq. 2. We briefly
outline the steps that lead to that equation, since it is fundamen-
tal to our algorithm. We follow Chorin and Marsden’s treatment
of the subject (p. 36ff, [4]). A mathematical result, known as the
Helmholtz-Hodge Decomposition, states that any vector field 7 can
uniquely be decomposed into the form:

78� � ! �"9 	 (3)

where � has zero divergence:
�:� � �;� and

9
is a scalar field. Any

vector field is the sum of a mass conserving field and a gradient
field. This result allows us to define an operator < which projects
any vector field 7 onto its divergence free part � �=<>7 . The
operator is in fact defined implicitly by multiplying both sides of
Eq. 3 by “

�
”: ��� 78� �&%39@? (4)

This is a Poisson equation for the scalar field
9

with the Neumann
boundary condition A�BADC �E� on

� 4 . A solution to this equation is
used to compute the projection � :

� ��<>78�F7G� �"9@?
If we apply this projection operator on both sides of Eq. 2 we obtain
a single equation for the velocity:� �� � ��<�HI��� � ��� 
 � !$# �&% � !J'DKL	 (5)

where we have used the fact that < � � � and < � �M�E� . This is
our fundamental equation from which we will develop a stable fluid
solver.
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Figure 1: One simulation step of our solver is composed of steps.
The first three steps may take the field out of the space of divergent
free fields. The last projection step ensures that the field is divergent
free after the entire simulation step.

x
p(x,s)

p(x,−∆t)

s0 −∆t

Figure 2: To solve for the advection part, we trace each point of
the field backward in time. The new velocity at � is therefore
the velocity that the particle had a time ��� ago at the old location� ���6	 ������
 .
2.2 Method of Solution

Eq. 5 is solved from an initial state ��� � � ���6	I�)
 by marching
through time with a time step ��� . Let us assume that the field has
been resolved at a time � and that we wish to compute the field at a
later time � !���� . We resolve Eq. 5 over the time span ��� in four
steps. We start from the solution 7 � ��� 
L� � ���6	 �I
 of the previous
time step and then sequentially resolve each term on the right hand
side of Eq. 5, followed by a projection onto the divergent free fields.
The general procedure is illustrated in Figure 1. The steps are:

7 � ��� 

	�
�
�
 �������
���������� 7������ 


	�
 �!���#"
��������$� 7 % ��� 



�% &('�)��
��������$� 7+*)��� 


, ���.- ���#"
���������� 7+/.��� 
 ?

The solution at time �
!���� is then given by the last velocity field:� ���6	 ��!0����
��F7+/.��� 
 . A simulation is obtained by iterating these
steps. We now explain how each step is computed in more detail.

The easiest term to solve is the addition of the external force ' .
If we assume that the force does not vary considerably during the
time step, then

7�� ��� 
6�F7 � ��� 
 !1��� '����6	 �I

is a good approximation of the effect of the force on the field over
the time step ��� . In an interactive system this is a good approxi-
mation, since forces are only applied at the beginning of each time
step.

The next step accounts for the effect of advection (or convec-
tion) of the fluid on itself. A disturbance somewhere in the fluid
propagates according to the expression ��� � �
� 
 � . This term
makes the Navier-Stokes equations non-linear. Foster and Metaxas
resolved this component using finite differencing. Their method
is stable only when the time step is sufficiently small such that

���023�54 +76 � 6 , where �54 is the spacing of their computational
grid. Therefore, for small separations and/or large velocities, very
small time steps have to be taken. On the other hand, we use a to-
tally different approach which results in an unconditionally stable
solver. No matter how big the time step is, our simulations will
never “blow up”. Our method is based on a technique to solve par-
tial differential equations known as the method of characteristics.
Since this method is of crucial importance in obtaining our stable
solver, we provide all the mathematical details in Appendix A. The
method, however, can be understood intuitively. At each time step
all the fluid particles are moved by the velocity of the fluid itself.
Therefore, to obtain the velocity at a point � at the new time �.!���� ,
we backtrace the point � through the velocity field 78� over a time
��� . This defines a path � ���6	!9�
 corresponding to a partial stream-
line of the velocity field. The new velocity at the point � is then
set to the velocity that the particle, now at � , had at its previous
location a time ��� ago:

7 % ��� 
6�F7���� � ���6	 �����I
�
 ?
Figure 2 illustrates the above. This method has several advantages.
Most importantly it is unconditionally stable. Indeed, from the
above equation we observe that the maximum value of the new
field is never larger than the largest value of the previous field.
Secondly, the method is very easy to implement. All that is re-
quired in practice is a particle tracer and a linear interpolator (see
next Section). This method is therefore both stable and simple to
implement, two highly desirable properties of any computer graph-
ics fluid solver. We employed a similar scheme to move densities
through user-defined velocity fields [21]. Versions of the method of
characteristics were also used by other researchers. The application
was either employed in visualizing flow fields [15, 20] or improv-
ing the rendering of gas simulations [23, 7]. Our application of
the technique is fundamentally different, since we use it to update
the velocity field, which previous researchers did not dynamically
animate.

The third step solves for the effect of viscosity and is equivalent
to a diffusion equation: � 7 %� � ��# �&% 7 % ?
This is a standard equation for which many numerical procedures
have been developed. The most straightforward way of solving this
equation is to discretize the diffusion operator

� %
and then to do

an explicit time step as Foster and Metaxas did [9]. However, this
method is unstable when the viscosity is large. We prefer, therefore,
to use an implicit method:

H;: �J#���� �&% K 7+*.��� 
6�F7 % ��� 
3	
where : is the identity operator. When the diffusion operator is
discretized, this leads to a sparse linear system for the unknown
field 7+* . Solving such a system can be done efficiently, however
(see below).

The fourth step involves the projection step, which makes the
resulting field divergence free. As pointed out in the previous sub-
section this involves the resolution of the Poisson problem defined
by Eq. 4: �&%39 � ��� 7+* 7+/ �F7+* � �"9@?
The projection step, therefore, requires a good Poisson solver.
Foster and Metaxas solved a similar equation using a relaxation
scheme. Relaxation schemes, though, have poor convergence and
usually require many iterations. Foster and Metaxas reported that
they obtained good results even after a very small number of re-
laxation steps. However, since we are using a different method to
resolve for the advection step, we must use a more accurate method.
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Indeed, the method of characteristics is more precise when the field
is close to divergent free. More importantly from a visual point of
view, the projection step forces the fields to have vortices which re-
sult in more swirling-like motions. For these reasons we have used
a more accurate solver for the projection step.

The Poisson equation, when spatially discretized, becomes a
sparse linear system. Therefore, both the projection and the viscos-
ity steps involve the solution of a large sparse system of equations.
Multigrid methods, for example, can solve sparse linear systems in
linear time [12]. Since our advection solver is also linear in time,
the complexity of our proposed algorithm is of complexity �&��� 
 .
Foster and Metaxas’ solver has the same complexity. This perfor-
mance is theoretically optimal since for a complicated fluid, any
algorithm has to consult at least each cell of the computational grid.

2.3 Periodic Boundaries and the FFT

When we consider a domain with periodic boundary conditions, our
algorithm takes a particularly simple form. The periodicity allows
us to transform the velocity into the Fourier domain:

� ���6	 �I
 �$���� ��� 	 �I
 ?
In the Fourier domain the gradient operator “

�
” is equivalent to

the multiplication by ��� , where �L�	� � � . Consequently, both the
diffusion step and the projection step are much simpler to solve.
Indeed the diffusion operator and the projection operators in the
Fourier domain are

:L� #���� � % �$� � !$#�����
 %
�����
<>7*�$� �<��7 ���

 ���7 ���


� �


 % ��� � �7 ���

�
�� 	
where 
 � 6 � 6 . The operator �< projects the vector �7 ���

 onto the
plane which is normal to the wave number � . The Fourier transform
of the velocity of a divergent free field is therefore always perpen-
dicular to its wavenumbers. The diffusion can be interpreted as a
low pass filter whose decay is proportional to both the time step
and the viscosity. These simple results demonstrate the power of
the Fourier transform. Indeed, we are able to completely transcribe
our solver in only a couple of lines. All that is required is a particle
tracer and a fast Fourier transform (FFT).

FourierStep( 7 � , 7+/ , ��� ):
add force: 7��L�F7 � !1��� '
advect: 7 % ��� 
 �F7���� � ���6	 ������
�

transform: �7 % ��������� 7 %��
diffuse: �7+*.���

6���7 % ���

 + � � !$#�����
 % 

project: �7+/ � �<��7+*
transform: 7+/ ��������� � ���7+/ �

Since the Fourier transform is of complexity �&���! "$#%� 
 , this
method is theoretically slightly more expensive than a method of
solution relying on multi-grid solvers. However, this method is
very easy to implement. We have used this algorithm to generate
the “liquid textures” of Section 4.

2.4 Moving Substances through the Fluid

A non-reactive substance which is injected into the fluid will be ad-
vected by it while diffusing at the same time. Common examples of
this phenomenon include the patterns created by milk stirred in cof-
fee or the smoke rising from a cigarette. Let & be any scalar quantity
which is moved through the fluid. Examples of this quantity include
the density of dust, smoke or cloud droplets, the temperature of a

Figure 3: The values of the discretized fields are defined at the cen-
ter of the grid cells.

fluid and a texture coordinate. The evolution of this scalar field is
conveniently described by an advection diffusion type equation:� &� � ��� � �D� &>!('*) �&% �,+-)$&>!/.0) 	
where '*) is a diffusion constant, +�) is a dissipation rate and .1) is
a source term. This equation is very similar in form to the Navier-
Stokes equation. Indeed, it includes an advection term, a diffusion
term and a “force term” .0) . All these terms can be resolved exactly
in the same way as the velocity of the fluid. The dissipation term
not present in the Navier-Stokes equation is solved as follows over
a time-step:

� � !1����+-)�
2& ���6	 �
!1����
6��& ���6	 �I
 ?
Similar equations were used by Stam and Fiume to simulate fire
and other gaseous phenomena [23]. However, their velocity fields
were not computed dynamically.

We hope that the material in this section has convinced the reader
that our stable solver is indeed based on the full Navier-Stokes
equations. Also, we have pointed to the numerical techniques
which should be used at each step of our solver. We now proceed
to describe the implementation of our model in more detail.

3 Our Solver

3.1 Setup

Our implementation handles both the motion of fluids and the prop-
agation by the fluid of any number of substances like mass-density,
temperature or texture coordinates. Each quantity is defined on ei-
ther a two-dimensional (NDIM=2) or three-dimensional (NDIM=3)
grid, depending on the application. The grid is defined by its phys-
ical dimensions: origin O[NDIM] and length L[NDIM] of each
side, and by its number of cells N[NDIM] in each coordinate. This
in turn determines the size of each voxel D[i]=L[i]/N[i]. The
definition of the grid is an input to our program which is speci-
fied by the animator. The velocity field is defined at the center of
each cell as shown in Figure 3. Notice that previous researchers,
e.g., [9], defined the velocity at the boundaries of the cells. We
prefer the cell-centered grid since it is more straightforward to im-
plement. We allocate two grids for each component of the velocity:
U0[NDIM] and U1[NDIM]. At each time step of our simulation
one grid corresponds to the solution obtained in the previous step.
We store the new solution in the second grid. After each step, the
grids are swapped. We also allocate two grids to hold a scalar field
corresponding to a substance transported by the flow. Although our
implementation can handle any number of substances, for the sake
of clarity we present only the algorithm for one field in this section.
This scalar quantity is stored in the grids S0 and S1. The speed of
interactivity is controlled by a single time step dt, which can be as
large as the animator wishes, since our algorithm is stable.
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The physical properties of the fluid are a function of its viscosity
visc alone. By varying the viscosity, an animator can simulate a
wide range of substances ranging from glue-like matter to highly
turbulent flows. The properties of the substance are modeled by a
diffusion constant kS and a dissipation rate aS. Along with these
parameters, the animator also must specify the values of these fields
on the boundary of the grid. There are basically two types: peri-
odic or fixed. The boundary conditions can be of a different type
for each coordinate. When periodic boundary conditions are cho-
sen, the fluid wraps around. This means that a piece of fluid which
leaves the grid on one side reenters the grid on the opposite side.
In the case of fixed boundaries, the value of each physical quantity
must be specified at the boundary of the grid. The simplest method
is to set the field to zero at the boundary. We refer the reader to
Foster and Metaxas’ paper for an excellent description of different
boundary conditions and their resulting effects [9]. In the results
section we describe the boundary conditions chosen for each an-
imation. For the special case when the boundary conditions are
periodic in each coordinate, a very elegant solver based on the fast
Fourier transform can be employed. This algorithm is described in
Section 2.3. We do not repeat it here since the solver in this section
is more general and can handle both types of boundary conditions.

The fluid is set into motion by applying external forces to it.
We have written an animation system in which an animator with
a mouse can apply directional forces to the fluid. The forces can
also be a function of other substances in the fluid. For example,
a temperature field moving through the fluid can produce buoyant
and turbulent forces. In our system we allow the user to create
all sorts of dependencies between the various fields, some of which
are described in the results section of this paper. We do not describe
our animation system in great detail since its functionality should
be evident from the examples of the next section. Instead we focus
on our simulator, which takes the forces and parameters set by the
animator as an input.

3.2 The Simulator

Once we worked out the mathematics underlying the Navier-Stokes
equations in Section 2, our implementation became straightfor-
ward. We wish to emphasize that the theoretical developments of
Section 2 are in no way gratuitous but are immensely useful in cod-
ing compact solvers. In particular, casting the problem into a math-
ematical setting has allowed us to take advantage of the large body
of work done in the numerical analysis of partial differential equa-
tions. We have written the solver as a separate library of routines
that are called by the interactive animation system. The entire li-
brary consists of only roughly 500 lines of C code. The two main
routines of this library update either the velocity field Vstep or
a scalar field Sstep over a given time step. We assume that the
external force is given by an array of vectors F[NDIM] and that
the source is given by an array Ssource for the scalar field. The
general structure of our simulator looks like

while ( simulating ) �
/* handle display and user interaction */
/* get forces F and sources Ssource from the UI */
Swap(U1,U0); Swap(S1,S0);
Vstep ( U1, U0, visc, F, dt );
Sstep ( S1, S0, kS, aS, U1, Ssource, dt );�

The velocity solver is composed of four steps: the forces are added
to the field, the field is advected by itself, the field diffuses due to
viscous friction within the fluid, and in the final step the velocity is
forced to conserve mass. The general structure of this routine is:

Vstep ( U1, U0, visc, F, dt )

for(i=0;i<NDIM;i++)
addForce ( U0[i], F[i], dt );

for(i=0;i<NDIM;i++)
Transport ( U1[i], U0[i], U0, dt );

for(i=0;i<NDIM;i++)
Diffuse ( U0[i], U1[i], visc, dt );

Project ( U1, U0, dt );

The general structure of the scalar field solver is very similar to the
above. It involves four steps: add the source, transport the field by
the velocity, diffuse and finally dissipate the field. The scalar field
solver shares some of the routines called by the velocity solver:

Sstep ( S1, S0, kS, aS, U, source, dt )
addForce ( S0, source, dt );
Transport ( S1, S0, U, dt );
Diffuse ( S0, S1, kS, dt );
Dissipate ( S1, S0, aS, dt );

The addForce routine adds the force field multiplied by the time
step to each value of the field. The dissipation routine Dissipate
divides each element of the first array by 1+dt*aS and stores it
in the new array. The Transport routine is a key step in our
simulation. It accounts for the movement of the substance due to
the velocity field. More importantly it is used to resolve the non-
linearity of the Navier-Stokes equations. The general structure of
this routine (in three-dimensions) is

Transport ( S1, S0, U, dt )
for each cell (i,j,k) do
X = O+(i+0.5,j+0.5,k+0.5)*D;
TraceParticle ( X, U, -dt, X0 );
S1[i,j,k] = LinInterp ( X0, S0 );

end

The routine TraceParticle traces a path starting at X through
the field U over a time -dt. The endpoint of this path is the new
point X0. We use both a simple second order Runge-Kutta (RK2)
method for the particle trace [16] and an adaptive particle tracer,
which subsamples the time step only in regions of high velocity gra-
dients, such as near object boundaries. The routine LinInterp
linearly interpolates the value of the scalar field S at the location
X0. We note that we did not use a higher order interpolation, since
this might lead to instabilities due to the oscillations and overshoots
inherent in such interpolants. On the other hand, higher order spline
approximants may be used, though these tend to smooth out the re-
sulting flows.

To solve for the diffusion (Diffuse) and to perform the projec-
tion (Project) we need a sparse linear solver SolveLin. The
best theoretical choice is the multi-grid algorithm [12]. However,
we used a solver from the FISHPAK library since it was very easy to
incorporate into our code and gave good results [24]1. In practice,
it turned out to be faster than our implementation of the multi-grid
algorithm. In Appendix B, we show exactly how these routines are
used to perform both the Diffuse step and the Project step.
These routines are ideal for domains with no internal boundaries.
When complex boundaries or objects are within the flow, one can
either use a sophisticated multi-grid solver or a good relaxation rou-
tine [11]. In any case, our simulator can easily accomodate new
solvers.

1FISHPAK is available from http://www.netlib.org.
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4 Results

Our Navier-Stokes solver can be used in many applications requir-
ing fluid-like motions. We have implemented both the two- and the
three-dimensional solvers in an interactive modeler that allows a
user to interact with the fluids in real-time. The motion is modeled
by either adding density into the fluid or by applying forces. The
evolution of the velocity and the density is then computed using our
solver. To further increase the visual complexity of the flows, we
add textural detail to the density. By moving the texture coordinates
using the scalar solver as well, we achieve highly detailed flows. To
compensate for the high distortions that the texture maps undergo,
we use three sets of texture coordinates which are periodically reset
to their initial (unperturbed) values. At every moment the resulting
texture map is the superposition of these three texture maps. This
idea was first suggested by Max et al. [15].

Figure 4.(a)-(d) shows a sequence of frames from an animation
where the user interacts with one of our liquid textures. The fig-
ure on the backcover of the SIGGRAPH’99 proceedings is another
frame of a similar sequence with a larger grid size (

� �.� % ).
Figures 4.(e) through 4.(j) show frames from various animations

that we generated using our three-dimensional solver. In each case
the animations were created by allowing the animator to place den-
sity and apply forces in real-time. The gases are volume rendered
using the three-dimensional hardware texture mapping capabilities
of our SGI Octane workstation. We also added a single pass that
computes self-shadowing effects from a directional light source in
a fixed position. It should be evident that the quality of the render-
ings could be further improved using more sophisticated rendering
hardware or software. Our grid sizes ranged from

��� * to 2.� * with
frame rates fast enough to monitor the animations while being able
to control their behavior. In most of these animations we added a
“noise” term which is proportional to the amount of density (the
factor of proportionality being a user defined parameter). This pro-
duced nice billowing motions in some of our animations. In Figures
4.(e)-(i) we used a fractal texture map, while in Figure 4.(j) we used
a texture map consisting of evenly spaced lines. All of our anima-
tions were created interactively on a SGI Octane workstation with
a R10K processor and 192 Mbytes of memory.

In Figures 4.(k)-(m) we demonstrate an ongoing collaboration
with 3dvSystems, an israeli company that has developed a new
camera, the Zcam that records both image and depth simultane-
ously in real time [1]. We used the closest point to the camera as
the moving location of sources in a fluid simulation. Figures 4.(l)-
(m) show an actor interacting with our fluid solver, using the tip of
his finger to add densities and stir up the fluid.

5 Conclusions

The motivation of this paper was to create a general software sys-
tem that allows an animator to design fluid-like motions in real time.
Our initial intention was to base our system on Foster and Metaxas’
work. However, the instabilities inherent in their method forced us
to develop a new algorithm. Our solver has the property of being
unconditionally stable and it can handle a wide variety of fluids in
both two- and three-dimensions. The results that accompany this
paper clearly demonstrate that our solver is powerful enough to al-
low an animator to achieve many fluid-like effects. We therefore
believe that our solver is a substantial improvement over previous
work in this area. The work presented here does not, however, dis-
credit previous, more visually oriented models. In particular, we
believe that the combination of our fluid solvers with solid textures,
for example, may be a promising area of future research [6]. Our
fluid solvers can be used to generate the overall motion, while the
solid texture can add additional detail for higher quality animations.

Also we have not addressed the problem of simulating fluids with
free boundaries, such as water [8]. This problem is considerably
more difficult, since the geometry of the boundary evolves dynam-
ically over time. We hope, however, that our stable solvers may
be applied to this problem as well. Also, we wish to extend our
solver to finite element boundary-fitted meshes. We are currently
investigating such extensions.
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A Method of Characteristics

The method of characteristics can be used to solve advection equa-
tions of the type� & ���6	 �I
� � ����� ��� 
 ��� & ���6	 �I
 ����� & ���6	��)
���& � ��� 
3	
where & is a scalar field, � is a steady vector field and & � is the field
at time �L�;� . Let � ��� � 	 �I
 denote the characteristics of the vector
field � which flow through the point � � at ����� :

�
� � � ��� � 	 �I
6��� � � ��� � 	 �I
�
 ����� � ��� � 	I�)
��F� � ?

Now let �& ��� � 	 �I
6��& � � ��� � 	 �I
3	 �I
 be the value of the field along the
characteristic passing through the point � � at � ��� . The variation
of this quantity over time can be computed using the chain rule of
differentiation: � �&� � �

� &� � !�� ��� &&��� ?
This shows that the value of the scalar does not vary along the
streamlines. In particular, we have �& ��� � 	 �I
 ���& ��� � 	I�)
L� & � ��� � 
 .
Therefore, the initial field and the characteristics entirely define the
solution to the advection problem. The field for a given time � and
location � is computed by first tracing the location � back in time
along the characteristic to get the point � � , and then evaluating the
initial field at that point:

& � � ��� � 	��I
3	 �I
6��& � ��� � 
 ?
We use this method to solve the advection equation over a time
interval 	 � 	�� ! ����
 for the fluid. In this case, �M� � ���6	 �I
 and & � is
any of the components of the fluid’s velocity at time � .
B FISHPAK Routines

The linear solver POIS3D from FISHPAK is designed to solve a
general system of finite difference equations of the type:

K1*(S[i-1,j,k]-2*S[i,j,k]+S[i+1,j,k]) +
K2*(S[i,j-1,k]-2*S[i,j,k]+S[i,j+1,k]) +
A[k]*S[i,j,k-1]+B[k]*S[i,j,k]+ .

For the diffusion solver, the values of the constants on the left hand
side are:

K1 = -dt*kS/(D[0]*D[0]),
K2 = -dt*kS/(D[1]*D[1]),
A[k] = C[k] = -dt*kS/(D[2]*D[2]) and
B[k] = 1+2*dt*kS/(D[2]*D[2]),
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while the right hand side is equal to the grid containing the previous
solution: F=S0. In the projection step these constants are equal to

K1 = 1/(D[0]*D[0]), K2 = 1/(D[1]*D[1]),
A[k] = C[k] = 1/(D[2]*D[2]) and
B[k] = -2/(D[2]*D[2]),

while the right hand side is equal to the divergence of the velocity
field:

F[i,j,k] = (
(U0[0][i+1,j,k]-U0[0][i-1,j,k])/D[0]+
(U0[1][i,j+1,k]-U0[1][i,j-1,k])/D[1]+
(U0[2][i,j,k+1]-U0[2][i,j,k-1])/D[2])/2.

The gradient of the solution is then subtracted from the previous
solution:

U1[0][i,j,k] = U0[0][i,j,k] -
0.5*(S[i+1,j,k]-S[i-1,j,k])/D[0],

U1[1][i,j,k] = U0[1][i,j,k] -
0.5*(S[i,j+1,k]-S[i,j-1,k])/D[1],

U1[2][i,j,k] = U0[2][i,j,k] -
0.5*(S[i,j,k+1]-S[i,j,k-1])/D[2].

The FISHPAK routine is also able to handle different types of
boundary conditions, both periodic and fixed.
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Figure 4: Snapshots from our interactive fluid solver.
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Abstract

In this paper, we propose a new approach to numerical smoke
simulation for computer graphics applications. The method pro-
posed here exploits physics unique to smoke in order to design a
numerical method that is both fast and efficient on the relatively
coarse grids traditionally used in computer graphics applications
(as compared to the much finer grids used in the computational
fluid dynamics literature). We use the inviscid Euler equations in
our model, since they are usually more appropriate for gas mod-
eling and less computationally intensive than the viscous Navier-
Stokes equations used by others. In addition, we introduce a physi-
cally consistent vorticity confinement term to model the small scale
rolling features characteristic of smoke that are absent on most
coarse grid simulations. Our model also correctly handles the inter-
action of smoke with moving objects.

1 Introduction

The modeling of natural phenomena such as smoke remains a chal-
lenging problem in computer graphics (CG). This is not surprising
since the motion of gases such as smoke is highly complex and tur-
bulent. Visual smoke models have many obvious applications in the
industry, including special effects and interactive games. Ideally, a
good CG smoke model should both be easy to use and produce
highly realistic results.

Obviously the modeling of smoke and gases is of importance
to other engineering fields as well. More generally, the field of
computational fluid dynamics (CFD) is devoted to the simulation of
gases and other fluids such as water. Only recently have researchers
in computer graphics started to excavate the abundant CFD litera-
ture for algorithms that can be adopted and modified for computer
graphics applications. Unfortunately, current CG smoke models are
either too slow or suffer from too much numerical dissipation. In
this paper we adapt techniques from the CFD literature specific to
the animation of gases such as smoke. We propose a model which
is stable, rapid and doesn’t suffer from excessive numerical dis-
sipation. This allows us to produce animations of complex rolling
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smoke even on relatively coarse grids (as compared to the ones used
in CFD).

1.1 Previous Work

The modeling of smoke and other gaseous phenomena has received
a lot of attention from the computer graphics community over the
last two decades. Early models focused on a particular phenomenon
and animated the smoke’s density directly without modeling its ve-
locity [10, 15, 5, 16]. Additional detail was added using solid tex-
tures whose parameters were animated over time. Subsequently,
random velocity fields based on a Kolmogoroff spectrum were used
to model the complex motion characteristic of smoke [18]. A com-
mon trait shared by all of these early models is that they lack any
dynamical feedback. Creating a convincing dynamic smoke simu-
lation is a time consuming task if left to the animator.

A more natural way to model the motion of smoke is to simulate
the equations of fluid dynamics directly. Kajiya and Von Herzen
were the first in CG to do this [13]. Unfortunately, the computer
power available at the time (1984) only allowed them to produce
results on very coarse grids. Except for some models specific to
two-dimensions [21, 9] no progress was made in this direction until
the work of Foster and Metaxas [7, 6]. Their simulations used rel-
atively coarse grids but produced nice swirling smoke motions in
three-dimensions. Because their model uses an explicit integration
scheme, their simulations are only stable if the time step is chosen
small enough. This makes their simulations relatively slow, espe-
cially when the fluid velocity is large anywhere in the domain of in-
terest. To alleviate this problem Stam introduced a model which is
unconditionally stable and consequently could be run at any speed
[17]. This was achieved using a combination of a semi-Lagrangian
advection schemes and implicit solvers. Because a first order inte-
gration scheme was used, the simulations suffered from too much
numerical dissipation. Although the overall motion looks fluid-like,
small scale vortices typical of smoke vanish too rapidly.

Recently, Yngve et. al. proposed solving the compressible ver-
sion of the equations of fluid flow to model explosions [22]. While
the compressible equations are useful for modeling shock waves
and other compressible phenomena, they introduce a very strict
time step restriction associated with the acoustic waves. Most CFD
practitioners avoid this strict condition by using the incompressible
equations whenever possible. For that reason, we do not consider
the compressible flow equations. Another interesting alternative
which we do not pursue in this paper is the use of lattice gas solvers
based on cellular automata [4].

1.2 Our Model

Our model was designed specifically to simulate gases such as
smoke. We model the smoke’s velocity with the incompressible Eu-
ler equations. These equations are solved using a semi-Lagrangian
integration scheme followed by a pressure-Poisson equation as in
[17]. This guarantees that our model is stable for any choice of the
time step. However, one of our main contributions is a method
to reduce the numerical dissipation inherent in semi-Lagrangian
schemes. We achieve this by using a technique from the CFD lit-
erature known as ”vorticity confinement” [20]. The basic idea is

4-9



to inject the energy lost due to numerical dissipation back into the
fluid using a forcing term. This force is designed specifically to in-
crease the vorticity of the flow. Visually this keeps the smoke alive
over time. This forcing term is completely consistent with the Eu-
ler equations in the sense that it disappears as the number of grid
cells is increased. In CFD this technique was applied to the numeri-
cal computation of complex turbulent flow fields around helicopters
where it is not possible to add enough grid points to accurately re-
solve the flow field. The computation of the force only adds a small
computational overhead. Consequently our simulations are almost
as fast as the one’s obtained from the basic Stable Fluids algorithm
[17].

Semi-Lagrangian schemes are very popular in the atmospheric
sciences community for modeling large scale flows dominated by
constant advection where large time steps are desired, see e.g. [19]
for a review. We borrow from this literature a higher order inter-
polation technique that further increases the quality of the flows.
This technique is especially effective when moving densities and
temperatures through the velocity field.

Finally our model, like Foster and Metaxas’ [6], is able to han-
dle boundaries inside the computational domain. Therefore, we are
able to simulate smoke swirling around objects such as a virtual
actor.

The rest of the paper is organized as follows. In the next section
we derive our model from the equations of fluid flow, and in section
3 we discuss vorticity confinement. In section 4, we outline our
implementation. In section 5, we present both an interactive and a
high quality photon map based renderer to depict our smoke simu-
lations. Subsequently, in section 6, we present some results, while
section 7 concludes and discusses future work.

2 The Equations of Fluid Flow

At the outset, we assume that our gases can be modeled as inviscid,
incompressible, constant density fluids. The effects of viscosity
are negligible in gases especially on coarse grids where numerical
dissipation dominates physical viscosity and molecular diffusion.
When the smoke’s velocity is well below the speed of sound the
compressibility effects are negligible as well, and the assumption of
incompressibility greatly simplifies the numerical methods. Conse-
quently, the equations that model the smoke’s velocity, denoted by���������
	��
��
 , are given by the incompressible Euler equations
[14] �

� ����� (1)� ���� ������� �
� 
���� � ��� �"! (2)

These two equations state that the velocity should conserve both
mass (equation 1) and momentum (equation 2). The quantity � is
the pressure of the gas and � accounts for external forces. Also we
have arbitrarily set the constant density of the fluid to one.

As in [7, 6, 17] we solve these equations in two steps. First we
compute an intermediate velocity field � �

by solving equation 2
over a time step # � without the pressure term� � �$�

# � �%����� �
� 
��&�$�"! (3)

After this step we force the field � �
to be incompressible using a

projection method [3]. This is equivalent to computing the pressure
from the following Poisson equation�(' �&�*)# �

�
� � �

(4)

with pure Neumann boundary condition, i.e., +-,+/. �0� at a bound-
ary point with normal 1 . (Note that it is also straightforward to im-
pose Dirichlet boundary conditions where the pressure is specified

directly as opposed to specifying its normal derivative.) The inter-
mediate velocity field is then made incompressible by subtracting
the gradient of the pressure from it

�2�3� � � # �
� ��! (5)

We also need equations for the evolution of both the tempera-
ture 4 and the smoke’s density 5 . We assume that these two scalar
quantities are simply moved (advected) along the smoke’s velocity� 4��� ������� �

� 
 4 � (6)� 5��� ������� �
� 
 5 ! (7)

Both the density and the temperature affect the fluid’s velocity.
Heavy smoke tends to fall downwards due to gravity while hot gases
tend to rise due to buoyancy. We use a simple model to account for
these effects by defining external forces that are directly propor-
tional to the density and the temperature

�76-8-9;:<�%�>= 5@? �$AB� 4 � 4DC
E 6F
 ? � (8)

where ? �G���@�H�@� ) 
 points in the upward vertical direction, 4�C
E 6
is the ambient temperature of the air and = and A are two positive
constants with appropriate units such that equation 8 is physically
meaningful. Note that when 5 �I� and 4 � 4�C
E 6 , this force is
zero.

Equations 2, 6 and 7 all contain the advection operator ����� �
� 
 .

As in [17] we solve this term using a semi-Lagrangian method [19].
We solve the Poisson equation (equation 4) for the pressure using
an iterative solver. We show in Section 4 how these solvers can also
handle bodies immersed in the fluid.

3 Vorticity Confinement

Usually smoke and air mixtures contain velocity fields with large
spatial deviations accompanied by a significant amount of rotational
and turbulent structure on a variety of scales. Nonphysical nu-
merical dissipation damps out these interesting flow features, and
the goal of our new approach is to add them back on the coarse
grid. One way of adding them back would be to create a random or
pseudo-random small scale perturbation of the flow field using ei-
ther a heuristic or physically based model. For example, one could
generate a divergence free velocity field using a Kolmogorov spec-
trum and add this to the computed flow field to represent the miss-
ing small scale structure (see [18] for some CG applications of the
Kolmogorov spectrum). While this provides small scale detail to
the flow, it does not place the small scale details in the physically
correct locations within the flow field where the small scale details
are missing. Instead, the details are added in a haphazard fashion
and the smoke can appear to be “alive”, rolling and curling in a
nonphysical fashion. The key to realistic animation of smoke is to
make it look like a passive natural phenomena as opposed to some
“living” creature made out of smoke.

Our method looks for the locations within the flow field where
small scale features should be generated and adds the small scale
features in these locations in a physically based fashion that pro-
motes the passive rolling of smoke that gives it the realistic turbu-
lent look on a coarse CG grid. With unlimited computing power,
any consistent numerical method could be used to obtain accept-
able results simply by increasing the number of grid points until
the desired limiting behavior is observed. However, in practice,
computational resources are limited, grids are fairly coarse (even
coarser in CG than in CFD), and the discrete difference equations
may not be asymptotically close enough to the continuous equa-
tions for a particular simulation to behave in the desired physically
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Figure 1: Discretization of the computational domain into identical
voxels (left). The components of the velocity are defined on the
faces of each voxel (right).

correct fashion. Our key idea is to design a consistent numerical
method that behaves in an interesting and physically plausible fash-
ion on a coarse grid. In general, this is very difficult to do, but
luckily a vorticity confinement method was recently invented by
Steinhoff, see e.g. [20], for the numerical computation of complex
turbulent flow fields around helicopters where it is not possible to
add enough grid points to accurately resolve the flow.

The first step in generating the small scale detail is to identify
where it comes from. In incompressible flow, the vorticity

��� � � � � (9)

provides the small scale structure. Each small piece of vorticity can
be thought of as a paddle wheel trying to spin the flow field in a
particular direction. Artificial numerical dissipation damps out the
effect of these paddle wheels, and the key idea is to simply add it
back. First normalized vorticity location vectors

� ������
���
� � ��� �

�
� ��� � 
 (10)

that point from lower vorticity concentrations to higher vorticity
concentrations are computed. Then the magnitude and direction of
the paddle wheel force is computed as

���;9	��
 �
��� � � � ��� 
 (11)

where ��� � is used to control the amount of small scale detail
added back into the flow field and the dependence on the spatial
discretization � guarantees that as the mesh is refined the physically
correct solution is still obtained.

This technique was invented by Steinhoff about 10 years ago
with a form similar to equation 11 without the dependence on � ,
see for example [20]. This method has been used successfully as an
engineering model for very complex flow fields, such as those asso-
ciated with rotorcraft, where one cannot computationally afford to
add enough grid points to resolve the important small scale features
of the flow.

4 Implementation

We use a finite volume spatial discretization to numerically solve
the equations of fluid flow. As shown in figure 1 we dice up the
computational domain into identical voxels. The temperature, the
smoke’s density and the external forces are defined at the center
of each voxel while the velocity is defined on the appropriate voxel
faces (see figure 1 right). Notice that this arrangement is identical to
that of Foster and Metaxas [6] but differs from the one used by Stam

Figure 2: Semi-Lagrangian paths that end up in a boundary voxel
are clipped against the boundaries’ face.

[17] where the velocity was defined at the voxel centers as well.
Our staggered grid arrangement of the velocity field gives improved
results for numerical methods with less artificial dissipation. See
appendix A for more details on our discretization.

To handle boundaries immersed in the fluid we tag all voxels
that intersect an object as being occupied. All occupied voxel cell
faces have their velocity set to that of the object. Similarly, the
temperature at the center of the occupied voxels is set to the object’s
temperature. Consequently an animator can create many interesting
effects by simply moving or heating up an object. The smoke’s
density is of course equal to zero inside the object. However, to
avoid a sudden drop-off of the density near the object’s boundary
we set the density at boundary voxels equal to the density of the
closest unoccupied voxel.

Our solver requires two voxel grids for all physical quantities.
We advance our simulation by updating one grid from the other
over a fixed time step # � . At the end of each time step we swap
these grids. The grid may initially contain some user provided data,
but in most cases the grids are simply empty. We first update the
velocity components of the fluid. This is done in three steps. First,
we add the force fields to the velocity grid. The forces include user
supplied fields, the buoyancy force defined by equation 8 and the
new confinement force defined by equation 11. This is done by
simply multiplying each force by the time step and adding it to the
velocity (see appendix A). Next we solve for the advection term in
equation 3. We do this using a semi-Lagrangian scheme, see [19]
for a review and [17] for its first application in computer graphics.

The semi-Lagrangian algorithm builds a new grid of velocities
from the ones already computed by tracing the midpoints of each
voxel face through the velocity field. New velocities are then in-
terpolated at these points and their values are transferred to the face
cells they originated from. It is possible that the point ends up in one
of the occupied voxels. In this case we simply clip the path against
the voxel boundary as shown in figure 2. This guarantees that the
point always lies in the unoccupied fluid. Simple linear interpola-
tion is easy to implement and combined with our new confinement
force gives satisfactory results. It is also unconditionally stable.
Higher order interpolation schemes are, however, desirable in some
cases for high quality animations. The tricky part with higher or-
der schemes is that they usually overshoot the data which results in
instabilities. In appendix B we provide a cubic interpolator which
does not overshoot the data.

Finally we force the velocity field to conserve mass. As already
stated in section 2, this involves the solution of a Poisson equation
for the pressure (equation 4). The discretization of this equation
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results in a sparse linear system of equations. We impose free Neu-
mann boundary conditions at the occupied voxels by setting the nor-
mal pressure gradient equal to zero at the occupied boundary faces.
The system of equations is symmetric, and the most natural linear
solver in this case is the conjugate gradient method. This method
is easy to implement and has much better convergence properties
than simple relaxation methods. To improve the convergence we
used an incomplete Choleski preconditioner. These techniques are
all quite standard and we refer the reader to the standard text [11]
for more details. In practice we found that only about 20 iterations
of this solver gave us visually acceptable results. After the pres-
sure is computed we subtract its gradient from the velocity. See
appendix A for the exact discretization of the operators involved.

After the velocity is updated we advect both the temperature and
the smoke’s density. We solve these equations using again a semi-
Lagrangian scheme. In this case, however, we trace back the centers
of each voxel. The interpolation scheme is similar to the velocity
case.

5 Rendering

For every time step our simulator outputs a grid that contains the
smoke’s density 5 . In this section we present algorithms to realisti-
cally render the smoke under various lighting conditions. We have
implemented both a rapid hardware based renderer as in [17] and a
high quality global illumination renderer based on the photon map
[12]. The hardware based renderer provides rapid feedback and
allows an animator to get the smoke to “look right”. The more ex-
pensive physics-based renderer is used at the end of the animation
pipeline to get production quality animations of smoke.

We first briefly recall the additional physical quantities needed
to characterize the interaction of light with smoke. The amount of
interaction is modeled by the inverse of the mean free path of a
photon before it collides with the smoke and is called the extinc-
tion coefficient ��� . The extinction coefficient is directly related to
the density of the smoke through an extinction cross-section

�����	�
:�
� � �����	� 5 . At each interaction with the smoke a photon is either

scattered or absorbed. The probability of scattering is called the
albedo � . A value of the albedo near zero corresponds to very dark
smoke, while a value near unity models bright gases such as steam
and clouds.

In general the scattering of light in smoke is mostly focused in
the forward direction. The distribution of scattered light is modeled
through a phase function � ��
"
 which gives the probability that an
incident photon is deflected by an angle 
 . A convenient model for
the phase function is the Henyey-Greenstein function

� ��
"
 � ) ��� '
� ) ��� ' ������������
"
���� ' � (12)

where the dimensionless parameter ��� ) models the anisotropy
of the scattering. Values near unity of this parameter correspond to
gases which scatter mostly in the forward direction. We mention
that this phase function is quite arbitrary and that other choices are
possible [1].

5.1 Hardware-Based Renderer

In our implementation of the hardware-based renderer we follow
the algorithm outlined in [17]. In a first pass we compute the
amount of light that directly reaches each voxel of the grid. This
is achieved using a fast Bresenham line drawing voxel traversal al-
gorithm [8]. Initially the transparencies of each ray are set to one
( 4 � C : � ) ). Then, each time a voxel is hit the transparency is com-
puted from the voxel’s density: 4 ! 9 � �#"%$'&D��� �����	� � 
 , where � is

the grid spacing. Then the voxel’s radiance is set to( ! 9 � � � (*) + ,.- � � ) � 4�! 9 � 
 4 � C : �
while the transparency of the ray is simply multiplied by the voxel’s
transparency: 4 � C : � 4 � C : 4�! 9 � . Since the transparency of the ray
diminishes as it traverses the smoke’s density this pass correctly
mimics the effects of self-shadowing.

In a second pass we render the voxel grid from front to back. We
decompose the voxel grid into a set of two-dimensional grid-slices
along the coordinate axis most aligned with the viewing direction.
The vertices of this grid-slice correspond to the voxel centers. Each
slice is then rendered as a set of transparent quads. The color and
opacity at each vertex of a quad correspond to the radiance

( ! 9 �
and the opacity ) � 4�! 9 � , respectively, of the corresponding voxel.
The blending between the different grid slices when rendered from
front to back is handled by the graphics hardware.

5.2 Photon Map Renderer

Realistic rendering of smoke with a high albedo (such as water va-
por) requires a full simulation of multiple scattering of light inside
the smoke. This involves solving the full volume rendering equa-
tion [2] describing the steady-state of light in the presence of par-
ticipating media. For this purpose we use the photon mapping al-
gorithm for participating media as introduced in [12]. This is a two
pass algorithm in which the first pass consists of building a volume
photon map by emitting photons towards the medium and storing
these as they interact with the medium. We only store the photons
corresponding to indirect illumination.

In the rendering pass we use a forward ray marching algorithm.
We have found this to be superior to the backward ray marching
algorithm proposed in [12]. The forward ray marching algorithm
allows for a more efficient culling of computations in smoke that is
obscured by other smoke. In addition it enables a more efficient use
of the photon map by allowing us to use less photons in the query
as the ray marcher gets deeper into the smoke. Our forward ray
marcher has the form(*/ �10 / �'2� 
 � (*/4365 �10 /4365 �'2� 
 �87 3
9�: ;�<4= # 0 /'(*> �10�?/ �'2� 
 (13)

where @ �10 / 
 �BA ;�<;�C �
�ED 0 is the optical depth,
(F>

is the fraction of
the inscattered radiance that is scattered in direction 2� , # 0 / � � is
the size of the G th step, 0 /EHI5 �J0 / � # 0 / and 0 ? / is a randomly
chosen location in the G th segment. The factor 7 3
9�: ;�<4= can be
considered the weight of the G th segment, and we use this value to
adjust the required accuracy of the computation.(*>

is given by(*> �10��'2� 
 � �8�
� �10 
LK�M.N (*O �10��'2�F?> 
 � �10�?/ �'2�F?��'2� 
 D �F? (14)

where
(*O

is the inscattered radiance, and � is the phase function
describing the local distribution of the scattered light. We split the
inscattered radiance into a single scattering term,

(*P
, and a mul-

tiple scattering term,
(FQ

. The single scattering term is computed
using standard ray tracing, and the multiple scattering term is com-
puted using the volume radiance estimate from the photon map by
locating the G , nearest photons from which we get

(*Q �10��'2� 
 � )� >
/SRT 5VU , �W2� ? 
 � �10��42� ? �L2� 
M�EX Y � ! (15)

Here U , is the power of the � th photon and Y is the smallest sphere
enclosing the G , photons.
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Figure 6: Two stills from the rotor animation. A box is rotating inside the smoke cloud causing it to disperse. Notice how the smoke is sucked
in vertically towards the box as it is pushed outwards horizontally. The simulation time for a 120x60x120 grid was roughly 60 seconds/frame.

Figure 3: Rising smoke. Notice how the vorticies are preserved in
the smoke. The simulation time for a 100x100x40 grid was roughly
30 seconds/frame.

Figure 4: Low albedo smoke passing through several objects. Each
object interacts with the smoke and causes local turbulence and vor-
ticity. The simulation time for a 160x80x80 grid was roughly 75
seconds/frame.

Figure 5: Rising smoke swirling around a sphere. Notice how the
smoke correctly moves around the sphere. The simulation time for
a 90x135x90 grid was roughly 75 seconds/frame.

Figure 7: Six frames rendered using our interactive hardware ren-
derer of the smoke. The simulation time for a 40x40x40 grid was
roughly 1 second/frame.
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Figure 8: Comparison of linear interpolation (top) and our new
monotonic cubic interpolation (bottom). The simulation time for a
20x20x40 grid was roughly 0.1 second/frame (linear) and 1.8 sec-
onds/frame (third order).

6 Results

This section contains several examples of smoke simulations. We
have run most of the simulations including the rendering on a dual-
Pentium3-800 or comparable machine. The images in figures 3-6
have been rendered at a width of 1024 pixels using 4 samples per
pixel. These photon map renderings were done using 1-2 million
photons in the volume photon map and the rendering times for all
the photon map images are 20-45 minutes.

Figure 3 is a simple demonstration of smoke rising. The only
external force on the smoke is the natural boyancy of the smoke
causing it to rise. Notice how even this simple case is enough to
create a realistic and swirly apperance of the smoke. Figures 4
and 5 demonstrates that our solver correctly handles the interaction
with objects immersed in the smoke. These objects need not be at
rest. Figure 6 shows two stills from an animation where a rotating
cube is inside a smoke cloud. The rotation of the cube causes the
smoke to be pushed out horizontally and sucked in vertically. The
grid resolutions and the cost of each time step are reported in the
figure captions.

Figure 7 shows six frames of an animation rendered using our
interactive renderer. The rendering time for each frame was less
than a second on a nVidia Quadro graphics card. The speed, while
not real-time, allowed an animator to interactively place densities
and heat sources in the scene and watch the smoke raise and billow.

Finally figure 8 demonstrates the benefits of using a higher or-
der interpolant in the semi-Lagrangian scheme. The three pictures
on the top show the appearance of falling smoke using a linear in-
terpolant, while the pictures on the bottom show the same smoke
using our new monotonic cubic interpolant. Clearly the new inter-
polation reduces the amount of numerical dissipation and produces
smoke simulations with more fine detail.

7 Conclusions

In this paper we proposed a new smoke model which is both stable
and does not suffer from numerical dissipation. We achieved this
through the use of a new forcing term that adds the lost energy
back exactly where it is needed. We also included the interaction
of objects with our fluid. We believe that our model is ideal for CG
applications where visual detail and speed are crucial.

We think that vorticity confinement is a very elegant and power-
ful technique. We are investigating variants of this technique cus-
tom tailored for other phenomena such as fire. We are also inves-
tigating techniques to improve the interaction of the fluid with ob-
jects. In our current model objects may sometimes be too coarsely
sampled on the grid.
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A Discretization

We assume a uniform discretization of space into � � voxels with
uniform spacing � . The temperature and the smoke’s density are
both defined at the voxel centers and denoted by

4 O�� ��� ���	��
 5 O�� ��� � �
�
���/��� � ) � �-�-� � � �
respectively. The velocity on the other hand is defined at the cell
faces. It is usual in the CFD literature to use half-way index notation
for this

� O HI5 � ' � ��� � ��� �3�@� �-�-� � � ���/��� � ) � �-� � � � �	 O�� �%HI5 � ' � � ��� �3�@� �-�-� � � ���
��� � ) � �-� � � � �� O�� ��� ��HI5 � ' ��� �3�@� �-� � � � ���
��� � ) � �-�-� � � !
Using these notations we can now define some discrete operators.
The divergence is defined as

� � � � 
 O�� ��� � � ��� O HI5 � ' � ��� � � � O1365 � ' � ��� � �	 O�� �%HI5 � ' � � � 	 O�� ��365 � ' � � �� O�� ��� ��HI5 � ' � � O�� ��� �S365 � ' 
�� �
while the discrete gradients are (note

� �&� � � ; �����F����� 



� � ; 
 O HI5 � ' � ��� � ��� � O HI5�� ��� � � � O�� ��� � 
�� �D�
� ���/
 O�� �%HI5 � ' � � ��� � O�� �%HI5�� � � � O�� ��� � 
�� �D�
� ��� 
 O�� ��� ��HI5 � ' ��� � O�� ��� ��HI5 � � O�� ��� � 
�� �D!

The discrete Laplacian is simply the combination of the divergence
and the gradient operators. The discrete version of the vorticity��� � � � 5 ��� ' ��� � 
 is defined as follows. First we compute the cell-
centered velocities through averaging

�� O�� ��� � � ��� O1365 � ' � ��� � � � O HI5 � ' � ��� � 
����F��	 O�� ��� � � ��	 O�� ��365 � ' � � �$	 O�� �%HI5 � ' � � 
����F��� O�� ��� � � ��� O�� ��� �S365 � ' �$� O�� ��� ��HI5 � ' 
����F!
Then
�
5O�� ��� � � � �� O�� �%HI5�� � � �� O�� ��365�� � � �	 O�� ��� ��HI5 � �	 O�� ��� �S365 
���� �D�
�
'O�� ��� � � � �� O�� ��� ��HI5 � �� O�� ��� �S365 � �� O HI5�� ��� � � �� O1365�� ��� � 
���� �D�
� �O�� ��� � � � �	 O HI5�� ��� � � �	 O1365�� ��� � � �� O�� �%HI5�� � � �� O�� �%HI5�� � 
���� �D!

All of our force fields are defined at the center of the grid voxels.
To get values at the faces we simply average again. If the force field� � ��� 5 ��� ' ��� � 
 , then the velocity is updated as

� O HI5 � ' � ��� � � � # � ��� 5O�� ��� � ��� 5O HI5�� ��� � 
����F�	 O�� �%HI5 � ' � � � � # � ���
'O�� ��� � ��� 'O�� �%HI5�� � 
����F�

� O�� ��� ��HI5 � ' � � # � ��� �O�� ��� � ��� �O�� ��� ��HI5 
����F!
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Figure 9: Standard cubic Hermite interpolation (left) produces
overshoots while our modified interpolation scheme (right) guar-
antees that no overshoots occur.

B Monotonic Cubic Interpolation

In this appendix we present a cubic interpolation scheme which
does not overshoot the data. Since our voxel grids are regular
the three-dimensional interpolation can be broken down into a se-
quence of one-dimensional interpolations along each coordinate
axis. Therefore, it is sufficient to describe the one-dimensional case
only. The data consists of a set of values � � defined at the locations� �3�@� �-�-� � � . A value at a point

����� � � � � ��HI5�� can be interpolated
using a Hermite interpolant as follows [8]

��� � 
 ��� � � � � � � 
 � ��� ' � � � � � 
 ' �	� 5 � � � � � 
D�	��
 �
where

� � � D � � D ��HI5 � # �� ' �
� # � ��� D � � D ��HI5� 5 � D ���
 � � �

and D � � ��� ��HI5 � � �S365 
����F� # � � � ��HI5 � � � !
However, this interpolant usually overshoots the data as we show on
the left hand side of figure 9. We want to avoid this, since monotone
interpolation guarantees stability. One solution is to simply clip the
interpolation against the data, but this results in sharp discontinu-
ities. Another remedy is to force the interpolant to be monotonic
over each interval

� � � � � ��HI5�� . A necessary condition for this to be
the case is that��� �1� G � D � 
 � � �1� G � D ��HI5 
 � � �1� G � # � 
 # ����3�D � � D ��HI5 �3� # � �3� !

In our implementation we first compute # � and then set the slopes
to zero whenever they have a sign different from # � . On the right
hand side of figure 9, we show the our new interpolant applied to
the same data. Clearly the overshooting problem is fixed.
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Abstract 
We present a general method for modeling and animating liquids. 
The system is specifically designed for computer animation and 
handles viscous liquids as they move in a 3D environment and 
interact with graphics primitives such as parametric curves and 
moving polygons. We combine an appropriately modified semi-
Lagrangian method with a new approach to calculating fluid flow 
around objects. This allows us to efficiently solve the equations of 
motion for a liquid while retaining enough detail to obtain 
realistic looking behavior. The object interaction mechanism is 
extended to provide control over the liquid’s 3D motion. A high 
quality surface is obtained from the resulting velocity field using a 
novel adaptive technique for evolving an implicit surface.  
Keywords: animation, Computational Fluid Dynamics, implicit 
surface, level set, liquids, natural phenomena, Navier-Stokes, 
particles, semi-Lagrangian. 

1. Introduction 
The desire for improved physics-based animation tools has grown 
hand in hand with the advances made in computer animation on 
the whole. It is natural then, that established engineering 
techniques for simulating and modeling the real world have been 
modified and applied to computer graphics more frequently over 
the last few years. One group of methods that have resisted this 
transition are those used to model the behavior of liquids from the 
field of Computational Fluid Dynamics (CFD). Not only are such 
techniques generally complex and computationally intensive, but 
they are also not readily adaptable to what could be considered 
the basic requirements of a computer animation system. 
One of the key difficulties encountered when using these methods 
for animation directly characterizes the trade off between 
simulation and control. Physics-based animations usually rely on 
direct numerical simulation (DNS) to achieve realism. In 
engineering terms, this means that initial conditions and boundary 
conditions are specified and the process is left to run freely with 
only minor influence on the part of the animator. The majority of 
engineering techniques for liquid simulation assume this model.  
From an animation viewpoint, we are interested in using 
numerical techniques to obtain behaviors that would be 
prohibitive to model by hand. At the same time we want control 

over the global, low frequency motion, so we can match it to the 
behavior we are trying to create. This then becomes the goal when 
transitioning between engineering and computer animation; 
preserve as much of the realistic behavior as feasible, while 
allowing for control over motion on both a local and global scale. 
This has to be achieved without compromising the overall 
requirement of a visually coherent and realistic look.  
This paper specifically addresses these issues for liquid animation. 
The method presented is for animating viscous liquids ranging 
from water to thick mud. These liquids can freely mix, move 
arbitrarily within a fixed three-dimensional grid, and interact 
realistically with stationary or moving polygonal objects. This is 
achieved for animation by trading off engineering correctness for 
computational efficiency. 
We start with the Navier-Stokes equations for incompressible 
flow, and solve for liquid motion using an adaptation of a semi-
Lagrangian method, introduced recently to graphics for solving 
fluid flows [25]. These methods usually result in mass dissipation. 
While not an issue for gas or smoke, this is visually unacceptable 
for modeling liquids. We correct for this by tracking the motion of 
the liquid surface using a novel hybrid combination of inertialess 
particles and an implicit surface called a level set. The level set 
prevents mass dissipation while the particles allow the liquid to 
still splash freely. A useful consequence is that this combined 
surface can be rendered in a highly believable way.   
The next innovation involves taking account of the effects of 
moving polygonal objects within the liquid. We develop a new 
technique that, while not accurate in an engineering sense, 
satisfies the physics of object/liquid interactions and looks 
visually realistic. This method is efficient and robust, and we 
show that it can be adapted to provide general low frequency 
directional control over the liquid volume. This allows us to 
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Figure 1: A ball splashes into a tank of water. 



 4-18

efficiently calculate liquid behavior that would be impossible to 
get by hand, while at the same time allowing us to “dial-in” 
specific motion components. 
When the techniques described above are applied together, the 
result is a comprehensive system for modeling and animating 
liquids for computer graphics. The main contributions of the 
system are a numerical method that takes the minimal 
computational effort required for visual realism combined with 
tailor-made methods for handling moving objects and for 
maintaining a smooth, temporally coherent liquid surface. 

2. Previous Work 
The behavior of a volume of liquid can be described by a set of 
equations that were jointly developed by Navier and Stokes in the 
early eighteen hundreds (see next section). The last fifty years has 
seen an enormous amount of research by the CFD community into 
solving these equations for a variety of engineering applications. 
We direct the interested reader to Abbot and Basco [1], which 
covers some of the important principles without being too 
mathematically dense.  
Early graphics work concentrated on modeling just the surface of 
a body of water as a parametric function that could be animated 
over time to simulate wave transport [12, 22, 23]. Kass and Miller 
[17] approximated the 2D shallow water equations to get a 
dynamic height field surface that interacted with a static ground 
“object”. Chen and Lobo [4] extended the height field approach 
by using the pressure arising from a 2D solution of the Navier-
Stokes equations to modulate surface elevation. O’Brien and 
Hodgins [20] simulated splashing liquids by combining a particle 
system and height field, while Miller and Pearce [19] used 
viscous springs between particles to achieve dynamic flow in 3D. 
Terzopoulos, Platt and Fleischer [27] simulated melting 
deformable solids using a molecular dynamics approach to 
simulate the particles in the liquid phase.  
Surface or particle based methods are relatively fast, especially in 
the case of large bodies of water, but they don’t address the full 
range of motion exhibited by liquids. Specifically, they don’t take 
advantage of the realism inherent in a full solution to the Navier-
Stokes equations. The also are not easily adapted to include 
interaction with moving objects. Foster and Metaxas [11] 
modified an original method by Harlow and Welch [15] (later 
improved by others, see e.g. [5]) to solve the full equations in 3D 
with arbitrary static objects, and extended it to include simple 
control mechanisms [9]. Foster and Metaxas also applied a similar 
technique to model hot gases [10]. Stam [25] replaced their finite 
difference scheme with a semi-Lagrangian method to achieve 
significant performance improvements at the cost of increased 
rotational damping. Yngve et al. used a finite difference scheme to 
solve the compressible Navier-Stokes equations to model shock 
wave and convection effects generated by an explosion [28]. 

3. Method Outline 
The Navier-Stokes equations for describing the motion of a liquid 
consist of two parts. The first, enforces incompressibility by 
saying that mass should always be conserved, i.e., 

0∇ ⋅ =u ,      (3.1)   

where u  is the liquid velocity field, and 

( )/ x, / y, / z∇ = ∂ ∂ ∂ ∂ ∂ ∂  

is the gradient operator. The second equation couples the velocity 
and pressure fields and relates them through the conservation of 
momentum, i.e., 

( ) ( )t
1

p + = ν∇ ⋅ ∇ − ⋅ ∇ − ∇
ρ

u u u u g . (3.2) 

This equation models the changes in the velocity field over time 
due to the effects of viscosity (ν), convection, density (ρ), 
pressure (p), and gravity (g). By solving (3.1) and (3.2) over time, 
we can model the behavior of a volume of liquid. The new 
algorithm we are proposing to do this consists of six 
straightforward steps. 

I. Model the static environment as a voxel grid. 
II. Model the liquid volume using a combination of 

particles and an implicit surface. 
Then, for each simulation time step 
III. Update the velocity field by solving (3.2) using finite 

differences combined with a semi-Lagrangian method. 
IV. Apply velocity constraints due to moving objects. 
V. Enforce incompressibility by solving a linear system 

built from (3.1). 
VI. Update the position of the liquid volume (particles and 

implicit surface) using the new velocity field. 
These steps are described in detail in the following sections. Steps 
IV and V are presented in reverse order for clarity.  

4. Static Environment 
Equations (3.1) and (3.2) model a liquid as two coupled dynamic 
fields, velocity and pressure. The motion of the liquid we are 
modeling will be determined by evolving these fields over time. 
We start by representing the environment that we want the liquid 
to move in as a rectangular grid of voxels with side length ∆τ. The 
grid does not have to be rectangular, but the overhead of unused 
(non-liquid containing) cells will be low and so it is convenient. 
Each cell has a pressure variable at its center and shares a velocity 
variable with each of its adjacent neighbors (see figure 2). This 
velocity is defined at the center of the face shared by the two 
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Figure 2: A single grid cell with three of its six face velocities 
shown. 
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neighboring cells and represents the magnitude of the flow normal 
to that face. This is the classic “staggered” MAC grid [15]. Each 
cell is then either tagged as being empty (available to be filled 
with liquid), or filled completely with an impermeable static 
object. Despite the crude voxelized approximation of both objects 
and the liquid volume itself, we’ll show that we can still obtain 
and track a smooth, temporally coherent liquid surface.  

5. Liquid Representation 
The actual distribution of liquid in the environment is represented 
using an implicit surface. The implicit function is derived from a 
combination of inertialess particles and a dynamic isocontour. The 
isocontour provides a smooth surface to regions of liquid that are 
well resolved compared to our grid, whereas the particles provide 
detail where the surface starts to splash.  

5.1 Particles 
Particles are placed (or introduced via a source) into the grid 
according to some initial liquid distribution. Their positions then 
evolve over time by simple convection. Particle velocity is 
computed directly from the velocity grid using tri-linear 
interpolation and each particle is moved according to the 
inertialess equation dxp/dt = vx, where vx is the fluid velocity at 
xp. Particles have a low computational overhead and smoothly 
integrate the changing liquid velocity field over time.  The 
obvious drawback to using them, however, is that there is no 
straightforward way to extract a smooth polygonal (or parametric) 
description of the actual liquid surface. This surface is preferred 
because we want to render the liquid realistically using traditional 
computer graphics techniques. It is possible to identify it by 
connecting all the particles together into triangles, although 
deducing both the connectivity and set of surface triangles is 
difficult. In addition, since the particles do not generally form a 
smooth surface, the resulting polygonal mesh suffers from 
temporal aliasing as triangles “pop” in or out.  

5.2 Isocontour 
An alternative technique for representing the liquid surface is to 
generate it from an isocontour of an implicit function. The 
function is defined on a high resolution Eulerian sub-grid that sits 
inside the Navier-Stokes grid. Let each particle represent the 
center of an implicitly defined volumetric object (see Bloomenthal 
et al. [3] for a survey of implicit surfaces). Specifically, an 
implicit function centered at the particle location xp with radius r 
is given by  

          2 2 2
p i pi j pj k pk( ) = (x x ) +(x x ) +(x x ) rφ − − − −x  

The surface of that particle is defined as the spherical shell around 
xp where φp(x)=0. An implicit function, φ(x), is then defined over 
all the particles by taking the value of φp(x) from the particle 
closest to x. If we sample φ(x) at each sub-grid point we can use a 
marching cubes algorithm [18] to tessellate the φ(x)=0 isocontour 
with polygons. More sophisticated blend functions could be used 
to create an implicit function from the φp(x), however, we are 
going to temporally and spatially smooth φ(x), so it isn’t 
necessary. We refer those interested in wrapping implicit surfaces 
around particles to the work of Desbrun and Cani-Gascuel [7]. 
 

The first step towards smoothing the surface is to normalize φ  so 
that |φ(x)| equals the distance from x to the closest point on the 
zero isocontour. The sign of φ is set negative inside the liquid and 
positive outside. This signed distance function can be created 
quickly using the Fast Marching Method [24] starting from the 
initial guess of φ(x) defined by the particles as outlined above.  

In order to smooth out φ to reduce unnatural “folds” or “corners” 
in the surface (see figure 3), a smoothing equation of the form 

( )( )=0 1S η
ηφ = − φ ∇φ −    (5.1) 

is used to modify values of φ close to the φ(x)=0 isocontour. S(φ) 
is a smoothed sign function given by  

( )
2 2

S
φ

φ =
φ + ∆τ

. 

If applied for a few relaxation steps in fictitious time η 
(everything else remains constant) (5.1) smooths out the φ(x)=0 
isocontour while maintaining overall shape. Once smoothed, the 
isocontour can be ray traced directly using a root finding 
algorithm to identify the zero values of φ. A fast root finder can be 
built easily because at any sub-grid point the value of φ explicitly 
gives the minimum step to take to get closer to the surface. Note 
that the normal is defined as N φ φ= ∇ ∇

�

. 

By creating a smooth isocontour for each frame of animation we 
get an improved surface representation compared to using 
particles alone. There are still drawbacks however. A high density 
of particles is required at the φ(x)=0 isocontour before the surface 
looks believably flat. Particles are also required throughout the 
entire liquid volume even when it’s clear that they make no 
contribution to the visible surface. The solution is to create φ once 
using the particles and then track how it moves directly using the 
same velocity field that we’re using to move the particles. This 
leads to a temporally smoothed dynamic isosurface, known in the 
CFD literature as a level set.  

5.3 Dynamic Level Set 
An obvious way to track the evolution of the surface of a volume 
of liquid would be to attach particles directly to the surface in its 
initial position and then just move them around in the velocity 
field. This would require adding extra particles when the surface 
becomes too sparsely resolved, and removing them as the surface 
folds, or “splashes” back over itself. An alternative method, which 
is intuitively similar, but that doesn’t use particles was developed 
by Osher and Sethian [21], and is called the level set method.  

Figure 3: The isocontour due to the implicit function around 
the particles, interpolated φ values, and smoothed φ values 
respectively. 
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We want to evolve φ directly over time, using the liquid velocity 
field u. We have a smooth surface but need to conform, visually at 
least, to the physics of liquids. It has been shown [21] that the 
equation to update φ under these circumstances has the following 
structure, 

t 0φ + ⋅ ∇φ =u .    (5.2) 

Using (5.2) the surface position is evolved over time by tracking 
φ(x)=0. The (u ⋅∇ φ) term is a convection term similar to the (u 
⋅∇ )u term in (3.2) implying that we could use a semi-Lagrangian 
method to solve this equation. However, since this equation 
represents the mass evolution of our liquid, the semi-Lagrangian 
method tends to be too inaccurate. Instead we use a higher order 
upwind differencing procedure [1] on the (u ⋅∇ φ) term. Fedkiw et 
al. [8] used this methodology to track a fluid surface and give 
explicit details on solving (5.2). This method can suffer from 
severe volume loss especially on the relatively coarse grids 
commonly used in computer graphics. This is clearly visible when 
regions of liquid break away during splashing and then disappear 
because they are too small to be resolved by the level set. We 
require visual coherency for this to be a useful graphics technique 
and so the level set method needs to be modified to preserve 
volume. 

5.4 Hybrid Surface Model 
Particle evolution is a fully Lagrangian approach to the mass 
motion, while level set evolution is a fully Eulerian approach. 
Since they tend to have complementary strengths and weakness, a 
combined approach gives superior results under a wider variety of 
situations. Level set evolution suffers from volume loss near 
detailed features, while particle evolution suffers from visual 
artifacts in the surface when the number of particles is small. 
Conversely, the level set is always smooth, and particles retain 
detail regardless of flow complexity. Therefore we suggest a novel 
combination of the two approaches. 

At each time step we evolve the particles and the level set φ, 
forward in time. Next, we use the updated value of the level set 
function to decide how to treat each particle. If a particle is more 
than a few grid cells away from, and inside, the surface, as 
indicated by the locally interpolated value of φ, then that particle 
is deleted. This increases efficiency since particles are only 
needed locally near the surface of the liquid as opposed to 
throughout the entire liquid volume.  In addition, for cells close to 
φ(x)=0 that are sparsely populated, extra particles can be 
introduced “within” the isocontour. Thus, for a bounded number 
of particles, we get improved surface resolution. 
Next, for each particle near the surface, the locally interpolated 
curvature of the interface, calculated as  

( )k = ∇ ⋅ ∇φ ∇φ , 

is used to indicate whether or not the surface is smooth. Smooth 
regions have low curvature and the particles are ignored allowing 
the level set function to give a very smooth representation of the 
liquid surface. On the other hand, regions of high curvature 
indicate splashing. In these regions, the particles are a better 
indicator of the rough surface topology. Particles in these regions 
are allowed to modify the local values of φ. At grid points where 
the implicit basis function for the particle would give a smaller 
value of φ (i.e. a particle is “poking” out of the zero level set), this 

smaller value is used to replace the value obtained from the time 
evolution of φ.  
Even with the tight coupling between the particles and the level 
set, some particles will escape the inside of the liquid layer since 
the grid is too coarse to represent them individually. These 
particles can be rendered directly as small liquid drops. In 
addition, these stray particles could be used as control particles to 
indicate the presence of fine spray or mist.  

6. Updating the Velocity Field  
We have a representation of the graphics environment and a way 
of tracking the surface of a volume of liquid. We can now apply 
(3.2) to the existing velocity field to advance it through an Euler-
integration time step ∆t. The equation is solved in three stages. 
First we compute ∆t using the CFL condition (see Appendix A). 
Next, we update the convective component, i.e., (u ⋅∇ )u, using a 
first order semi-Lagrangian method, as per Courant et al.  [6] and 
by Stam [25]. We use the same formulation as Stam and refer 
readers to his description. Standard central differencing is then 
used on the viscous terms of (3.2) as described by Foster and 
Metaxas [11]. The results from this and the preceding calculation 
are added together to get an updated (though not mass conserving) 
velocity field for time t+∆t. 
Semi-Lagrangian methods allow us to take large time steps 
without regard for the sometimes overly restrictive CFL condition 
[26]. Unfortunately, these large time steps come at the cost of 
added dissipation. This is visually acceptable for gases such as 
smoke where it appears realistic. For liquids however, mass 
dissipation ruins the visual effect. Therefore, even though we use 
a semi-Lagrangian method to update (3.2), the time step for 
evolving the particles and the level set still needs to be limited 
according to a plausible CFL condition. Updating the surface 
position isn’t particularly expensive computationally, and so we 
alternate between a large time step for updating the Navier-Stokes 
equations and a series of small time steps (that add up to the large 
time step) for the particles and the level set. Our experience 
suggests that the velocity field time step can only be a few 
(around five) times bigger than that dictated by the usual CFL 
criterion. However, even this gives tremendous computational 

Figure 4: Water pours into a container causing a complex 
surface to develop. 
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savings, since enforcing incompressibility (step V, discussed in 
section 8) is the most expensive part of the algorithm.  
We caution the reader that using a particle only evolution with the 
semi-Lagrangian method introduces noise into the surface, and 
that using a level set only evolution with the semi-Lagrangian 
method gives noticeable volume loss. The key to making the 
semi-Lagrangian method work for liquids is the mixed Eulerian-
Lagrangian formulation that uses both particles and level sets to 
evolve the surface position over time.  

7. Boundary Conditions 
When solving (3.2) within the grid we need to specify pressure 
and velocity values for certain cells. We want stationary object 
cells to resist liquid motion and cells that represent the boundary 
between air and liquid to behave appropriately. 

7.1.1 Non-liquid Cells 
Cells in the grid that don't contain particles and aren’t contained 
within the isosurface are either considered empty (open air) or are 
part of an object. If a cell is empty, its pressure is set to 
atmospheric pressure, and the velocity on each of its faces shared 
with another empty cell is set to zero. This assumes that air 
dynamics has a negligible effect. An object cell, on the other 
hand, can have velocities and pressures set using many different 
combinations to approximate liquid flowing into or out of the 
environment, or to approximate different object material 
properties. Foster and Metaxas [10] summarize and discuss 
methods to do this.  

7.1.2 Liquid Surface 
Other grid cells that require special attention are those that 
contain part of the φ(x)=0 isocontour. Such cells represent what 
we know about the location of the liquid surface within the grid. 
The movement of the isocontour will determine how the surface 
evolves, but we need to set velocities on faces between empty and 
liquid cells so that normal and tangential stresses are zero.  
Intuitively, we need to make sure that the "air" doesn't mix with or 
inhibit the motion of the liquid, while allowing it to flow freely 
into empty cells. This is done by explicitly enforcing 
incompressibility within each cell that contains part of the liquid 
surface. Velocities adjacent to a liquid filled cell are left alone, 
whereas the others are set directly so (3.1) is satisfied for that cell. 
The pressure in a surface cell is set to atmospheric pressure.  

8. Conservation of Mass 
The velocity field generated after evolving the Navier-Stokes 
equations (step IV) has rotation and convection components that 
are governed by (3.2) (excluding the pressure term). However, 
(3.1), conservation of mass, is only satisfied in surface cells where 
we have explicitly enforced it. The best we can do to preserve 
mass within our grid is to ensure that the incompressibility 
condition is satisfied for every grid cell (at least to some 
tolerance). Foster and Metaxas [11] achieved this using a 
technique called Successive Over Relaxation.  
A more efficient method for enforcing incompressibility comes 
from solving the linear system of equations given by using the 
Laplacian operator to couple local pressure changes to the 
divergence in each cell. Specifically, this gives 

2p= t∇ ρ∇ ⋅ ∆u ,    (8.1) 

where 2∇ p is the spatial variation (Laplacian) of the pressure and 
u is the velocity field obtained after solving (3.2). Applied at the 
center of a cell, (8.1) can be discretized as 

          ( )
{ }

( )
{ }n+1 n-1 n+1 n

n ijk n ijk
p +p 6p u u

t= =

∆τ
∑ ∑− = ρ −

∆
,  (8.2) 

where pn ± 1 is the pressure from the cell ahead (+) or behind (-) in 
the n direction, and the u values are taken directly from the grid 
cell faces. Using (8.2), we form a linear system, AP = b where P is 
the vector of unknown pressures needed to make the velocity field 
divergence free, b is the RHS of (8.2), and A has a regular but 
sparse structure. The diagonal coefficients of A, aii, are equal to 
the negative number of liquid cells adjacent to celli (e.g., -6 for a 
fully “submerged” cell) while the off diagonal elements are simply 
aij=aji=1 for all liquid cellsj adjacent to celli.  
Conveniently, the system described above is symmetric and 
positive definite (as long as there is at least one surface cell as part 
of each volume). Static object and empty cells don’t disrupt this 
structure. In that case pressure and velocity terms can disappear 
from both sides of (8.2), but the system remains symmetric. 
Because of this, it can be solved quickly and efficiently using a 
Preconditioned Conjugate Gradient (PCG) method.  Further 
efficiency gains can be made by using an Incomplete Choleski 
preconditioner to accelerate convergence. There is a wealth of 
literature available regarding PCG techniques and we recommend 
any of the standard implementations, see Barret et al.  [2] for 
some basic templates. Once the new pressures have been 
determined, the velocities in each cell are updated according to 

( )t t
{ijk} {ijk} n n-1

t
u = u p p+∆ ∆

− −
ρ∆τ

   

The resulting velocity field conserves mass (is divergence free) 
and satisfies the Navier-Stokes equations. 

9. Moving Objects 
Previous techniques proposed for liquid animation could deal 
with static objects that have roughly the same resolution as the 
grid, but they have difficulty dealing with moving objects. 
Unfortunately, the CFD literature has little to offer to help resolve 
the effects of moving objects on a liquid in terms of animation. 
There are sophisticated methods available for handling such 
interactions, but they typically require highly resolved 
computational grids or a grid mechanism that can itself adapt to 
the moving object surface. Neither approach is particularly well 
suited to animation because of the additional time complexity 
involved. Therefore, we propose the following method for 
handling interactions between moving objects and the liquid. 
Consider an object (or part of an object) moving within a cell that 
contains liquid. There are two basic conditions that we want to 
enforce with respect to the computational grid, and an additional 
condition with respect to the surface tracking method. These are 

1. Liquid should not flow into the object. At any point of 
contact, the relative velocity between the liquid and 
object along the object’s surface normal should be 
greater than or equal to zero. 

2. Tangential to the surface, the liquid should flow freely 
without interference. 
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3. Neither the particles nor the level set surface should pass 
through any part of the surface of the object. 

The last of these is relatively straightforward. We know where the 
polygons that comprise the object surface are, and in what 
direction they are moving. We simply move the particles so that 
they are always outside the surface of the object. As long as we 
accurately take account of the velocity field within the grid then 
the isocontour will remain in the correct position relative to the 
object.   
To prevent liquid from flowing into the object we directly set the 
component of liquid velocity normal to the object. We know the 
object surface normal, ns, and can calculate the liquid velocity 
relative to that surface, vr, in a given cell. If vr.ns < 0 then liquid is 
flowing through the surface. In such cases we manipulate u in the 
cell so that vr.ns = 0, leaving the tangential (“slip”) part of the 
velocity unchanged. 
These velocities need to be applied without introducing visual 
artifacts into the flow. The following method solves for both 
normal and tangential velocity components. It’s relatively 
intuitive, and it seems to work well in practice. The steps are 

1. As a boundary condition, any cell within a solid object has 
its velocities set to that of the moving object. 

2. The velocity field is updated using (3.2). No special 
consideration is given to cells containing an object, i.e., 
they are all allowed to change freely as if they contain 
liquid. 

3. Each cell that intersects an object surface gets the 
component of the object velocity along its normal set 
explicitly as outlined above.  

4. Cells internal to the object have their velocities set back to 
the object velocity. 

5. During the mass conservation step (section 8) the velocity 
for any grid cell that intersects the object is held fixed.  

The result of this approach is that liquid is both pushed along by 
an object while being allowed to flow freely around it, causing 
realistic-looking behavior in the mean time. Obviously it’s only 
possible to accurately account for one polygon face per grid cell. 
Objects that are more detailed with respect to the grid can still be 
handled by determining an average object surface normal and 
velocity for each intersecting cell, but grid resolution remains the 
limiting factor. 

10. Control 
Animation is all about control. Having things behave according to 
some arbitrary aesthetic is the goal of most production software. 
The difficulty is in providing this level of control over a physics-
based animation while still maintaining a realistic behavioral 
component. The nature of the governing equations of motion of 
liquids means that they will always swirl, mix, and splash unless 
the applied forces are identical everywhere. This necessarily limits 
the level of control that we can have over the final motion, and 
comes with the territory of non-linear simulation. 
Gates [13] has shown that mass conserving flow fields can be 
blended with calculated fields to get good non-dynamic results. 
The Navier-Stokes equations allow for the body force term, g, to 
be manipulated directly [9] much like a traditional particle system. 
Forces aren't always a very intuitive way of getting motion that we 

want however. The moving object mechanism on the other hand, 
is well suited to this. Instead of moving polygons, we can 
explicitly set velocities anywhere in the grid by introducing “fake” 
surfaces (a single point even) that have normals and velocities 
pointing in the direction that we want the liquid to go. Setting the 
normal and tangential velocities in individual cells is also possible 
if it is done before the mass conservation calculation. This allows 
the solver to smooth out any lack of physical correctness in 
applied velocities before passing them into (3.2).  
As a brief example, consider a set of 3D parametric space curves 
that define the desired path for the liquid to follow. We instance a 
set of points along each curve giving each point a parametric 
coordinate ϕp. A point’s spatial position is then given simply by 
the curve definition, i.e., xp=F(ϕp). The velocity of the point can 
then be described as 

( )p p p(t) d ( ) dC F= ϕ ϕv ,    

where C(t) is a monotonic key framed scaling function. C(t) is 
also used to update ϕp over time according to dϕp/dt = C(t). The 
“fake” surface normal of the point is then simply np = vp/|vp|. By 
manipulating xp, vp, and np over time, we can “trap” small pockets 
of liquid and control them directly. The governing equations then 
make sure that neighboring liquid attempts to follow along. 
This basic approach can be adapted to surfaces or even volumetric 
functions as long as they vary smoothly.  While still not giving 
perfect direct control over the liquid motion, when combined with 
force fields it is good enough to make it a useful animation tool. 

11. Results 
The animation system described in the preceding sections was 
used to generate all of the examples in this paper. The basic 
Navier-Stokes solver and implicit surface are demonstrated by the 
container filling example in figure 4. The combination of particles 
and level set make sure that the resulting surface stays smooth and 
behaves in a physically believable way. The splashing object 
examples in figures 1, 5, and 6 show close interaction between the 
liquid and moving objects. They also show how the hybrid surface 
can handle extreme splashing without either the particles or level 
set being apparent. The particles play a large role in both cases by 
allowing the liquid to “splash” at a higher resolution than would 
be possible with the level set alone. All of these images were 
rendered using a ray tracing algorithm that marches through the 
implicit surface grid as outlined in section 5.  
The final example, figure 7, makes use of just a spherical implicit 
function around each particle.  It shows the interaction between a 
thick (high viscosity) liquid and a hand animated character. The 
character surface is sampled at each grid cell and the mechanisms 
described in section 9 take account of all the motion in the scene. 
This includes the character filling his mouth with mud. The mud 
is later ejected using a 3D space curve as a controller as outlined 
in section 10. The captions to each figure give the static grid size 
used during calculation, along with computation times per frame 
(for motion, not rendering) on a PentiumII 500MHz. 

12. Conclusion 
We have presented a method for modeling and animating liquids 
that is a pragmatic compromise between the numerical care that 
needs to be taken when simulating non-linear physics and the 
interaction and control animators require. Where appropriate we 
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have drawn on techniques from Computational Fluid Dynamics 
and combined them with recent Computer Graphics advances as 
well as new methods for free surface evolution and interaction 
between moving objects and the liquid volume. The result is a 
technique that is very general, efficient, and offers flexible control 
mechanisms for specifying how the liquid should behave. 
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A. Courant-Friedrichs-Levy (CFL) Condition 
The CFL condition is a restriction on the size of the time step, ∆t, 
that can be used together with a time-marching numerical 
simulation. It says that ∆t must be less than the minimum time 
over which “something significant” can occur in the system for 
the simulation to remain numerically stable. The CFL condition 
depends both on the physical system being modeled as well as the 
specifics of the discretization method employed. In the context of 
the system described in this paper a good CFL condition is that a 
discrete element of liquid cannot “jump over” a cell in the 
computational grid, i.e. ∆t < ∆τ / |u|. 
Note that the viscosity related terms also impose a CFL type 
restriction. This can be avoided by locally adjusting the 
magnitude of the viscosity in cells where the viscous terms would 
dictate the necessity for a smaller time step. 
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Figure 5: An ellipsoid slips along through shallow water. The combination of particle and level set tracking allows water to flow over the 
object without any visual loss of volume. The environment for this example was 250x75x90 cells. It took approximately seven minutes to 
calculate the liquid motion (including surface evolution) per frame. 
 

 
Figure 6: A close up of the ellipsoid from figure 5 showing the implicit surface derived from combining the particle basis functions and 
level set (top), and with the addition of the freely splashing particles raytraced as small spheres (bottom). The environment for this 
example was 150x75x90 cells. Calculation times were approximately four minutes per frame. 
 

 
Figure 7: A fully articulated animated character interacts with viscous mud. The environment surrounding the character is 150x200x150 
cells. That resolution is sufficient to accurately model the character filling his mouth with mud. A 3D control curve is used to eject (spit) 
the mouthful of mud later in the sequence. This example runs at three minutes per frame. 
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1 An Introduction to Procedural Modeling and Animation 

As mentioned in the course introduction, we are working in a very exciting time. The combination 

of increased CPU power with powerful, and now programmable graphics processors (GPUs) 

available on affordable PCs has started an age where we can envision and realize interactive 

complex procedural models.  

This chapter presents a framework for procedural modeling and animation of gaseous phenomena 

using volumetric procedural models: a general class of procedural techniques for modeling natural 

phenomena.  Volumetric procedural models use three-dimensional volume density functions 
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(vdf(x,y,z)) that define the density of a continuous three-dimensional space. Volume density 

functions (vdf's) are the natural extension of solid texturing [Perlin1985] to describe the actual 

geometry of objects. Volume density functions are used extensively in computer graphics for 

modeling and animating gases, fire, fur, liquids, and other "soft'' objects.  Hypertextures  

[Perlin1989] and Inakage's flames  [Inakage1991] are other examples of the use of volume density 

functions.     

Many advanced geometric modeling techniques are inherently procedural. L-systems, fractals, 

particle systems, and implicit surfaces [Bloomenthal1997] (also called blobs and metaballs), are, to 

some extent, procedural and can be combined nicely into the framework of volumetric procedural 

models. This chapter will concentrate on the development and animation of several volume density 

functions for creating realistic images and animations of clouds.  The inclusion of fractal 

techniques into vdf's is presented in most of the examples because they rely on a statistical 

simulation of turbulence that is fractal in nature. This chapter will also briefly discuss the inclusion 

of implicit function techniques into vdf's. A more complete discussion of the simulation of noise 

and turbulence functions, as well as a thorough presentation of procedural modeling and texturing 

techniques, can be found in Texturing and Modeling: A Procedural Approach, 2nd edition, 

[Ebert1998]1. This text also contains a thorough discussion of the detailed development of 

volumetric procedural modeling, which forms a good basis to this chapter. 

1.1 Procedural Techniques and Computer Graphics 

Procedural techniques have been used throughout the history of computer graphics. Many early 

modeling and texturing techniques included procedural definitions of geometry and surface color. 

From these early beginnings, procedural techniques have exploded into an important, powerful 

modeling, texturing, and animation paradigm. During the mid- to late 1980s, procedural techniques 

for creating realistic textures, such as marble, wood, stone, and other natural material gained 

widespread use. These techniques were extended to procedural modeling, including models of 

                                                 

1 As of March 1999, two of the co-authors of this book have won Academy Awards for their computer graphics 

contributions used in motion pictures: Darwyn Peachey and Ken Perlin. 



5-3 

water, smoke, steam, fire, planets, and even tribbles. The development of the RenderMan2 shading 

language [Pixar1989] in 1989 greatly expanded the use of procedural techniques. Currently, most 

commercial rendering and animation systems even provide a procedural interface. Procedural 

techniques have become an exciting, vital aspect of creating realistic computer generated images 

and animations. As the field continues to evolve, the importance and significance of procedural 

techniques will continue to grow. 

1.2 Definition and Power of Procedural Techniques 

Procedural techniques are code segments or algorithms that specify some characteristic of a 

computer generated model or effect. For example, a procedural texture for a marble surface does 

not use a scanned-in image to define the color values.  Instead, it uses algorithms and mathematical 

functions to determine the color.   

One of the most important features of procedural techniques is abstraction. In a procedural 

approach, rather than explicitly specifying and storing all the complex details of a scene or 

sequence, we abstract them into a function or an algorithm (i.e., a procedure) and evaluate that 

procedure when and where needed.  We gain a storage savings, as the details are no longer 

explicitly specified but rather implicit in the procedure, and shift the time requirements for 

specification of details from the programmer to the computer. This allows us to create inherently 

multi-resolution models and textures that we can evaluate to the resolution needed.    

We also gain the power of parametric control, allowing us to assign to a parameter a meaningful 

concept (e.g., a number that makes mountains "rougher'' or "smoother''). Parametric control also 

provides amplification of the modeler/animator's efforts: a few parameters yield large amounts of 

detail (Smith [Smith1984] referred to this as database amplification). This parametric control 

unburdens the user from the low-level control and specification of detail. We also gain the 

serendipity inherent in procedural techniques: we are often pleasantly surprised by the unexpected 

behaviors of procedures, particularly stochastic procedures. Procedural models also offer flexibility. 

The designer of the procedures can capture the essence of the object, phenomenon, or motion 

                                                 

2 RenderMan is a registered trademark of Pixar. 
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without being constrained by the complex laws of physics. Procedural techniques allow the 

inclusion of any amount of physical accuracy into the model that is desired. The designer may 

produce a wide range of effects, from accurately simulating natural laws to purely artistic effects.   

1.3 Background 

The techniques described in this chapter use procedurally defined volume density functions for 

modeling, texturing, and animating gases. There have been numerous previous approaches to 

modeling gases in computer graphics, including Kajiya's simple physical approximation 

[Kajiya1984], Gardner's solid textured ellipsoids  [Gardner1985, Gardner1990], Max's height fields  

[Max1986], constant density media  [Klassen1987, Nishita1987], and fractals [Voss1983]. I have 

developed several approaches for modeling and controlling the animation of gases  [Ebert 1989, 

Ebert1990a, Ebert1990b, Ebert1991, Ebert1992]. Stam has used "fuzzy blobbies'' as a three-

dimensional model for animating gases  [Stam1993] and has extended their use to modeling fire  

[Stam1995].   

Volume rendering is essential for realistic images and animations of gases. Any procedure-based 

volume rendering system, such as Perlin's  [Perlin1989], or my system  [Ebert1990a, Ebert1991], 

can be used for rendering volumetric procedural models.  A volume ray-tracer is also very easy to 

extend to allow the support of procedural volumetric modeling. My system is a hybrid rendering 

system that uses a fast scanline a-buffer rendering algorithm for the surface-defined objects in the 

scene, while volume modeled objects are volume rendered.  This rendering system features a 

physically-based low-albedo illumination and atmospheric attenuation model for the gases. 

Volumetric shadows are also efficiently combined into the system through the use of three-

dimensional shadow tables  [Ebert1990a, Ebert1998].  Precomputing these procedures at a fixed 

resolution 3D grid defeats many of the advantages of the procedural model, but allows these to be 

loaded as 3D textures into the latest PC and workstation boards and enables interactive rendering 

and exploration of these procedural models. As of the writing of these notes, PC graphics boards 

are available with 3D texture mapping hardware, which enables interactive or even real-time 

volume rendering with precomputed volumetric models. Additionally, 3D texture mapping is part 

of the DirectX 8.0 standard and the OpenGL 1.2 standard, so we should expect to find this feature 

on all high-end PC graphics boards shortly. 
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2 Volumetric Cloud Modeling with Implicit Functions 

Modeling clouds is a very difficult task because of their complex, amorphous structure and because 

even an untrained eye can judge the realism of a cloud model. Their ubiquitous nature makes them 

an important modeling and animation task. This chapter describes a new volumetric procedural 

approach for cloud modeling and animation that allows easy, natural specification and animation of 

the clouds, flexibility to include as much physics or art as desired into the model, unburdens the 

user from detailed geometry specification, and produces realistic volumetric cloud models. This 

technique combines the flexibility of volumetric procedural modeling with the smooth blending 

and ease of control of primitive-based implicit functions (metaballs, blobs) to create a powerful 

new modeling technique. This technique also demonstrates the advantages of primitive-based 

implicit functions for modeling semi-transparent volumetric objects. 

2.1 Background 

Modeling clouds in computer graphics has been a challenge for over twenty years [Dungan1979] 

and major advances in cloud modeling still warrant presentation in the SIGGRAPH Papers 

Program (e.g., [Dobashi2000]). Many previous approaches have used semi-transparent surfaces to 

produce convincing images of clouds [Gardner1984, Gardner1985, Gardner1990, Voss1983]. 

Although these techniques can produce realistic images of clouds viewed from a distance, these 

cloud models are hollow and do not allow the user to seamlessly enter, travel through, and inspect 

the interior of the cloud model. To capture the three-dimensional structure of a cloud, volumetric 

density-based models must be used.  Kajiya [Kajiya1984] produced the first volumetric cloud 

model in computer graphics, but the results are not photo-realistic. Stam [Stam1995], Foster 

[Foster1997], and Ebert [Ebert1994] have produced convincing volumetric models of smoke and 

steam, but have not done substantial work on modeling clouds.  Neyret [Neyret1997] has recently 

produced some preliminary results of a convective cloud model based on general physical 

characteristics. This model may be promising for simulating convective clouds; however, it 

currently uses surfaces (large particles) to model the cloud structure. A general, flexible, easy-to-

use, realistic volumetric cloud model is still needed in computer graphics.  

In developing this new cloud modeling and animation system, I have chosen to build upon the 

recent work in advanced modeling techniques and volumetric procedural modeling. Many 
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advanced geometric modeling techniques, such as fractals [Peitgen1992], implicit surfaces 

[Blinn1982, Wyvill1986, Nishimura1985], grammar-based modeling [Smith1984, 

Prusinkiewicz1990], and volumetric procedural models/hypertextures [Perlin1985, Ebert1994] use 

procedural abstraction of detail to allow the designer to control and animate objects at a high level. 

Their inherent procedural nature provides flexibility, data amplification, abstraction of detail, and 

ease of parametric control.  When modeling complex volumetric phenomena, such as clouds, this 

abstraction of detail and data amplification are necessary to make the modeling and animation 

tractable. It would be impractical for an animator to specify and control the detailed three-

dimensional density of a cloud model.   This system does not use a physics-based approach because 

it is computationally prohibitive and non-intuitive to use for many animators and modelers. Setting 

and animating correct physics parameters for dew point, particulate distributions, temperature and 

pressure gradients, etc. is a time-consuming, detailed task. This model was developed to allow the 

modeler and animator to work at a much higher level. I also didn't want to restrict the results by the 

laws of physics, but to allow for artistic expression.     

Volumetric procedural models have all of the advantages of procedural techniques and are a natural 

choice for cloud modeling because they are the most flexible advanced modeling technique. Since a 

procedure is evaluated to determine the object's density, any advanced modeling technique, simple 

physics simulation, mathematical function or artistic algorithm can be included in the model.  

Combining traditional volumetric procedural models with implicit functions creates a model that 

has the advantages of both techniques. Implicit functions have been used for many years as a 

modeling tool for creating solid objects and smoothly blended surfaces [Bloomenthal1997]. 

However, little work has been done to explore their potential for modeling volumetric density 

distributions of semi-transparent volumes.  Nishita [Nishita1996] has used volume rendered 

implicits as a basic cloud model in his work on multiple scattering illumination models; however, 

this work has concentrated on illumination effects and not on realistic modeling of the cloud 

geometry. Stam has also used volumetric blobbies to create his models of smoke and clouds 

[Stam1991, Stam1993, Stam1995]. His work is related to the approach described in this chapter. 

My early work on using volume rendered implicit spheres to produce a fly-through of a volumetric 

cloud was described in [Ebert1997a].   This work has been developed further to use implicits to 

provide a natural way of specifying and animating the global structure of the cloud, while using 
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more traditional procedural techniques to model the detailed structure.  

2.2 Volumetric Procedural Modeling With Implicit Functions 

The volumetric cloud model uses a two-level: the cloud macrostructure and the cloud 

microstructure. These are modeled by implicit functions and turbulent volume densities, 

respectively. The basic structure of the cloud model combines these two components to determine 

the final density of the cloud.  

The cloud's microstructure is created by using procedural turbulence and noise functions, in a 

manner similar to my basic_gas function (see [Ebert1998]). This allows the procedural simulation 

of natural detail to the level needed. Simple mathematical functions are added to allow shaping of 

the density distributions and control over the sharpness of the density falloff.  

Implicit functions were chosen to model the cloud macrostructure because of their ease of 

specification and smoothly blending density distributions. The user simply specifies the location, 

type, and weight of the implicit primitives to create the overall cloud shape. Any implicit primitive, 

including spheres, cylinders, ellipsoids, and skeletal implicits can be used to model the cloud 

macrostructure.  Since these are volume rendered as a semi-transparent medium, the whole 

volumetric field function is being rendered, as compared to implicit surface rendering where only a 

small range of values of the field are used to create the objects. The implicit density functions are 

primitive-based density functions: they are defined by summed, weighted, parameterized, primitive 

implicit surfaces.  A simple example of the implicit formulation of a sphere centered at the point 

center with radius r is the following: 

F(x,y,z):  (x - center.x)2 + (y-center.y) 2 + (z-center.z) 2 - r2 = 0.  

The real power of implicit functions is the smooth blending of the density fields from separate 

primitive sources. I chose to use Wyvill's standard cubic function  [Wyvill1986] as the density 

(blending) function for the implicit primitives:  
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distance squared and its value ranges from 1 when r=0 (within the primitive) to 0 at r=R.  This 

density function has several advantages. First, its value drops off quickly to zero (at the distance 

R), reducing the number of primitives that must be considered in creating the final surface. Second, 

it has zero derivatives at r=0 and r=R and is symmetrical about the contour value 0.5, providing for 

smooth blends between primitives. The final implicit density value is then the weighted sum of the 

density field values of each primitive:  

))(()( qpFwpDensity
icub

i
iimplicit −=  

where wi is the weight of the ith primitive and q is the closest point on element i from p. 

To create non-solid implicit primitives, the location of the point is procedurally altered before the 

evaluation of the blending functions. This alteration can be the product of the procedure and the 

implicit function and/or a warping of the implicit space.   

These techniques are combined into a simple cloud model as shown below:  

volumetric_procedural_implicit_function(pnt, blend%, pixel_size)

perturbed_point = procedurally alter pnt using noise and turbulence

density1 = implicit_function(perturbed_point)

density2 = turbulence(pnt, pixel_size)

blend = blend% * density1 +(1 - blend%) * density2

density = shape resulting density based on user controls for

wispiness and denseness(e.g., use pow & exponential

function)

return(density)

The density from the implicit primitives is combined with a pure turbulence based density using a 

user specified blend%  (60% to 80% gives good results). The blending of the two densities allows 

the creation of clouds that range from entirely determined by the implicit function density to 

entirely determined by the procedural turbulence function. When the clouds are completely 

determined by the implicit functions, they will tend to look more like cotton balls. The addition of 

the procedural alteration and turbulence is what gives them their naturalistic look. 
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2.3 Volumetric Cloud Modeling 

The volumetric procedural implicit algorithm given above forms the basis of a flexible system for 

the modeling of volumetric objects. This chapter focuses on the use of these techniques for 

modeling and animating realistic clouds. The volume rendering of the clouds is not discussed in 

detail. For a description of the volume rendering system that was used to make my images of 

clouds in this book, please see [Ebert1990a, Ebert1998]. Any volume rendering system can be used 

with these volumetric cloud procedures; however, to get realistic effects, the system should 

accumulate densities using atmospheric attenuation, and a physics-based illumination algorithm 

should be used. For accurate images of cumulus clouds, a high-albedo illumination algorithm (e.g., 

[Max1994, Nishita1996]) is needed.   

2.3.1 Cumulus Clouds 

Cumulus clouds are very common in nature and can be easily simulated using spherical or elliptical 

implicit primitives. Figure 1 shows the type of result that can be achieved by using nine implicit 

spheres to model a cumulus cloud. The animator/modeler simply positions the implicit spheres to 

produce the general cloud structure. Procedural modification then alters the density distribution to 

create the detailed wisps. The algorithm used to create the clouds in Figure 1 and Figure 2 is the 

following: 

cumulus(pnt,density,parms, pnt_w, vol)
xyz_td pnt; /* location of point in cloud space */
xyz_td pnt_w; /* location of point in world space */
float *density,*parms;
vol_td vol;

{
float new_turbulence(); /* my turbulence function */
float peachey_noise(); /* Darwyn Peachey's noise function */
float metaball_evaluate(); /* function for evaluating the metaball primitives*/
float mdens, /* metaball density value */

turb, /* turbulence amount */
peach; /* Peachey noise value */

xyz_td path; /* path for swirling the point */
extern int frame_num;
static int ncalcd=1;
static float sin_theta_cloud, cos_theta_cloud, theta,

path_x, path_y, path_z, scalar_x, scalar_y, scalar_z;

/* calculate values that only depend on the frame number once per frame
*/
if(ncalcd)
{
ncalcd=0;
/* create gentle swirling in the cloud */
theta =(frame_num%600)*01047196; /* swirling effect */
cos_theta_cloud = cos(theta);
sin_theta_cloud = sin(theta);
path_x = sin_theta_cloud*.005*frame_num;



5-10 

path_y = .01215*(float)frame_num;
path_z= sin_theta_cloud*.0035*frame_num;
scalar_x = (.5+(float)frame_num*0.010);
scalar_z = (float)frame_num*.0073;

}

/* Add some noise to the point's location
*/
peach = peachey_noise(pnt); /* Use Darwyn Peachey's noise function */
pnt.x -= path_x -peach*scalar_x;
pnt.y = pnt.y - path_y +.5*peach;
pnt.z += path_z - peach*scalar_z;

/* Perturb the location of the point before evaluating the implicit primitives.
*/
turb=fast_turbulence(pnt);
turb_amount=parms[4]*turb;
pnt_w.x += turb_amount;
pnt_w.y -= turb_amount;
pnt_w.z += turb_amount;

mdens=(float)metaball_evaluate((double)pnt_w.x, (double)pnt_w.y,
(double)pnt_w.z, (vol.metaball));

*density= parms[1]*(parms[3]*mdens + (1.0 - parms[3])*turb*mdens);
*density= pow(*density,(double)parms[2]);

}

Parms[3] is the blending function value between implicit (metaball) density and the product of the 

turbulence density and the implicit density.  This method of blending ensures that the entire cloud 

density is a product of the implicit field values, preventing cloud pieces from occurring outside the 

Figure 1: An example of a cumulus cloud. Copyright 2001 David S. Ebert 
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defining primitives. Using a large parms[3] generates clouds that are mainly defined by their 

implicit primitives and are, therefore, ``smoother'' and less turbulent. Parms[1] is a density scaling 

factor, parms[2] is the exponent for the pow() function, and parms[4] controls the amount of 

turbulence to use in displacing the point before evaluation of the implicit primitives. For good 

images of cumulus clouds, useful values are the following: 0.2 < parms[1] < 0.4, parms[2] = 0.5, 

parms[3]=0.4,  and parms[4] = 0.7 .  

   

2.3.2 Cirrus and Stratus Clouds 

Cirrus clouds differ greatly from cumulus clouds in their density, thickness, and falloff. In general, 

cirrus clouds are thinner, less dense, and wispier. These effects can be created by altering the 

parameters to the cumulus cloud procedure and also by changing the implicit primitives. The 

density value parameter for a cirrus cloud is normally chosen as a smaller value and the exponent is 

chosen larger, producing larger areas of no clouds and a greater number of individual clouds.  To 

create cirrus clouds, the user can simply specify the global shape (envelope) of the clouds with a 

few implicit primitives or specify implicit primitives to determine the location and shape of each 

cloud.  In the former case, the shape of each cloud is mainly controlled by the volumetric 

 

Figure 2: Example cloud creatures: Copyright 1998 David S. Ebert 
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procedural function and turbulence simulation, as opposed to cumulus clouds where the implicit 

functions are the main shape control. It is also useful to modulate the densities along the direction 

of the jet stream to produce more natural wisps. This can be created by the user specifying a 

predominant direction of wind flow and using a turbulent version of this vector in controlling the 

densities as follows:   

Cirrus(pnt,density,parms, pnt_w, vol, jet_stream)
xyz_td pnt; /* location of point in cloud space */
xyz_td pnt_w; /* location of point in world space */
xyz_td jet_stream;
float *density,*parms;
vol_td vol;

{
float new_turbulence(); /* my turbulence function */
float peachey_noise(); /* Darwyn Peachey's noise function */
float metaball_evaluate(); /* function for evaluating the metaball primitives*/
float mdens, /* metaball density value */

turb, /* turbulence amount */
peach; /* Peachey noise value */

xyz_td path; /* path for swirling the point */
extern int frame_num;
static int ncalcd=1;
static float sin_theta_cloud, cos_theta_cloud, theta,

path_x, path_y, path_z, scalar_x, scalar_y, scalar_z;

/* calculate values that only depend on the frame number once per frame */
if(ncalcd)
{ ncalcd=0;
/* create gentle swirling in the cloud */
theta =(frame_num%600)*01047196; /* swirling effect */
cos_theta_cloud = cos(theta);
sin_theta_cloud = sin(theta);
path_x = sin_theta_cloud*.005*frame_num;
path_y = .01215*(float)frame_num;
path_z= sin_theta_cloud*.0035*frame_num;
scalar_x = (.5+(float)frame_num*0.010);
scalar_z = (float)frame_num*.0073;

}

/* Add some noise to the point's location */
peach = peachey_noise(pnt); /* Use Darwyn Peachey's noise function */
pnt.x -= path_x -peach*scalar_x;
pnt.y = pnt.y - path_y +.5*peach;
pnt.z += path_z - peach*scalar_z;

/* Perturb the location of the point before evaluating the implicit
* primitives.*/
turb=fast_turbulence(pnt);
turb_amount=parms[4]*turb;
pnt_w.x += turb_amount;
pnt_w.y -= turb_amount;
pnt_w.z += turb_amount;

/* make the jet stream turbulent */
jet_stream.x + =.2*turb;
jet_stream.y + =.3*turb;
jet_stream.z + =.25*turb;

/* warp point along the jet stream vector */
pnt_w = warp(jet_stream, pnt_w);
mdens=(float)metaball_evaluate((double)pnt_w.x, (double)pnt_w.y,

(double)pnt_w.z, (vol.metaball));
*density= parms[1]*(parms[3]*mdens + (1.0 - parms[3])*turb*mdens);
*density= pow(*density,(double)parms[2]);

}
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Several examples of cirrus cloud formations created using these techniques can be seen in Figure 3 

and Figure 4.  Figure 4 shows a higher cirrostratus layer created by a large elliptical primitive and a 

few individual lower cirrus clouds created with cylindrical primitives.  

Figure 3: Cirrus Clouds. Copyright 1998 David S. Ebert 

 

Figure 4: Another example of cirrostratus clouds. Copyright 1998 David S. Ebert 
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Stratus clouds can also be modeled by using a few implicits to create the global shape or extent of 

the stratus layer, while using volumetric procedural functions to define the detailed structure of all 

of the clouds within this layer. Stratus cloud layers are normally thicker and less wispy, as 

compared with cirrus clouds. This effect can be created by adjusting the size of the turbulent space 

(smaller/fewer wisps), using a smaller exponent value (creates more of a cloud layer effect), and 

increasing the density of the cloud.  Using simple mathematical functions to shape the densities can 

create some of the more interesting stratus effects, such as a mackerel sky. The mackerel stratus 

cloud layer in Figure 5 was created by modulating the densities with turbulent sine waves in the x 

and y directions.  

 

2.3.3 Cloud Creatures 

The combination of implicit functions with volumetric procedural models provides an easy to use 

system for creating realistic clouds, artistic clouds, and cloud creatures. Some examples of cloud  

 

Figure 5: A mackerel stratus cloud layer. Copyright 1998 David S. Ebert 
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creatures created using a simple graphical user interface (GUI) to position nine implicit spheres can 

be seen in Figure 2. They were designed in less than 15 minutes each, and a straw poll shows that 

viewers have seen many different objects in them (similar to real cloud shapes).  Currently, the 

simple GUI only allows access to a small portion of the system. The rest of the controls are 

available through a text-based interface.  More complex shapes, time-based deformations, and 

animations can be created by allowing the user access to more of the controls, implicit primitives, 

and parameters of the full cloud modeling system.  These cloud creatures are easily designed and 

animated by controlling the implicit primitives and procedural parameters. The implicit primitives 

blend and deform smoothly, allowing the specification and animation of skeletal structures, and 

provide an intuitive interface to modeling amorphous volumetric creatures.  

2.3.4 User Specification and Control 

Since the system uses implicit primitives for the cloud macrostructure, the user creates the 

general cloud structure by specifying the location, type, and weight of each implicit primitive. For 

the image in Figure 1, nine implicit spheres were positioned to create the cumulus cloud. Figure 2 

shows the wide range of cloud shapes and creatures that can be created by simply adjusting the 

location of each primitive and the overall density of the model through a simple GUI. The use of 

implicit primitives makes this a much more natural interface than with traditional procedural 

techniques. Each of the cloud models in this chapter was created in less than 30 minutes of design 

time.   

The user of the system also specifies a density scaling factor, a power exponent for the density 

distribution (controls amount of wispiness), any warping procedures to apply to the cloud, and the 

name of the volumetric procedural function so that special effects can be programmed into the 

system.    

2.4 Animating Volumetric Procedural Clouds 

The volumetric cloud models described above produce nice still images of clouds and also clouds 

that gently evolve over time. The models can be animated using the procedural animation 

techniques described in [Ebert1991, Ebert1998] or by animating the implicit primitives. Procedural 

animation is the most flexible and powerful technique since any deformation, warp or physical 
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simulation can be added to the procedure. An animator ca use key frames or dynamics simulations 

to animate the implicit primitives. Several examples of applying these two animation techniques for 

various effects are described below.  

2.4.1 Procedural Animation 

Both the implicit primitives and the procedural cloud space can be animated algorithmically. One 

of most useful forms of implicit primitive animation is warping. A time varying warp function can 

be used to gradually warp the shape of the cloud over time to simulate the formation of clouds, 

their movement, and their deformation by wind and other forces. Cloud formations are usually 

altered based on the jet stream. To simulate this effect, all that is needed is to warp the primitives 

along a vector representing the jet stream. This can be done by warping the points before 

evaluating the implicit functions.  The amount of warping can be controlled by the wind velocity, 

or gradually added in over time to simulate the initial cloud development. Implicits can be warped 

along the jet stream as follows: 

perturb_pnt = procedurally alter pnt using noise and turbulence

height = relative height of perturb_pnt

vector = jet_stream + turbulence(pnt)

perturb_pnt = warp(perturb_pnt, vector, height)

density1 = implicit_function(perturbed_pnt)

...

To get more natural effects, it is useful to alter each point by a small amount of turbulence before 

warping it.  Several frames from an animation of a cumulus cloud warping along the jet stream can 

be seen in Figure 6. To create this effect, ease-in and ease-out based on the frame number was used 

to animate the warp amount. The implicit primitives' locations do not move in this animation, but 

the warping function animates the space to move and distort the cloud along the jet stream vector.  

Other warping functions to simulate squash and stretch [Bloomenthal1997] and other effects can 

also be used.  Instead of a single vector and velocity, a vector field is input into the program to 

define more complex weather patterns. The current system allows the specification of vector flow 

tables and tables of functional primitives (attractors, vortices) to control the motion and 

deformation of the clouds. This procedural warping technique was used successfully by Stam in 

animating gases [Stam1995].  
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2.4.2 Implicit Primitive Animation 

The implicit primitives can be animated in the same manner as implicit surfaces: each primitive's 

location, parameters (e.g., radii), and weight can be animated over time. This provides an easy to 

use high-level animation interface for cloud animation.  This technique was used in the animation, 

"A Cloud is Born,'' [Ebert1997b] showing the birth of a cumulus cloud followed by a fly-through of 

it. Several stills from the formation sequence can be seen Figure 7. For this animation, the centers 

of the implicit spheres were moved over time to simulate three separate cloud elements merging 

and growing into a full cumulus cloud. The radii of the spheres were also increased over time. 

Finally, to create animation in the detailed cloud structure, each point was moved along a turbulent 

path over time before evaluation of the turbulence function, as illustrated in the cumulus procedure. 

A powerful animation tool for volumetric procedural implicit functions is the use of dynamics and 

physics-based simulations to control the movement of the implicits and the deformation of space. 

Since the implicits are modeling the macro-structure of the cloud while procedural techniques are 

modeling the microstructure, fewer primitives are needed to achieve complex cloud models. 

Dynamics simulations can be applied to the clouds by using particle system techniques, with each 

 
Figure 6: Example cloud warping. Copyright 1998 David S. Ebert 
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particle representing a volumetric implicit primitive.  The smooth blending and procedurally 

generated detail allow complex results with less than a few hundred primitives, a factor of 100 to 

1000 less than needed with traditional particle systems.  I have implemented a simple particle 

system for volumetric procedural implicit particles. The user specifies a few initial implicit 

primitives, dynamics information, such as speed, initial velocity, force function, and lifetime, and 

the system generates the location, number, size, and type of implicit for each frame. In our initial 

tests, it took less than 1 minute to generate and animate the implicit particles for 200 frames. 

Unlike traditional particle systems, cloud implicit particles never die, they just become dormant.  

 
Cumulus clouds created through this volumetric procedural implicit particle system can be seen in 

Figure 8. The stills in Figure 8 show a cloud created by an upward turbulent force. The number of 

children created from a particle was also controlled by the turbulence of the particle's location.   For 

the animations in this figure, the initial number of implicit primitives was 12 and the final number 

was approximately 50.   

Figure 7: Several stills from "A Cloud is Born." Copyright 1997 David S. Ebert 
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The animation and formation of cirrus and stratus clouds can also be controlled by the use of a 

volumetric procedural implicit particle system. For the formation of a large area of cirrus or 

cirrostratus clouds, the particle system can randomly seed space and then use turbulence to grow 

the clouds from the creation of new implicit primitives, as can be seen in Figure 9. The cirrostratus 

layer in this image contains 150 implicit primitives, which were generated from the user specifying 

5 seed primitives.  

To control the dynamics of the cloud particle system, any commercial particle animation program 

can also be used. A useful approach for cloud dynamics is to use qualitative dynamics: simple 

simulations of the observed properties and formation of clouds. The underlying physical forces that 

create a wide range of cloud formations are extremely complex to simulate, computationally 

expensive, and very restrictive. The incorporation of simple, parameterized rules that simulate 

observable cloud behavior will produce a powerful cloud animation system.  

 
Figure 8: Formation of a cumulus cloud using a volumetric procedural implicit 

particle system. Copyright 1998 David S. Ebert
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3 Interactivity and Clouds 

3.1 Simple Interactive Cloud Models 

There are several physical processes that govern the formation of clouds. Simple visual 

simulations of these techniques with particle systems can be used to get more convincing cloud 

formation animations. Neyret [Neyret97] suggested that the following physical processes are 

important to cloud formation simulations:  

•= Rayleigh Taylor instability: Rayleigh-Taylor instabilities result when a heavy fluid is  

supported by a less dense fluid against the force of gravity. Any perturbation along the 

 
Figure 9: Cirrostratus cloud layer formation using a volumetric procedural 

implicit particle system. Copyright 1998 David S. Ebert 
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interface between the two fluids will grow.  

•= Bubbles: a small globule of gas in a thin liquid envelope.  

•= Rate variation of Temperature.  

•= Kelvin -Helmholtz instability: instability associated with airflows having marked 

vertical shear and weak thermal stratification. The common name for this instability is 

Kelvin-Helmholtz instability. These instabilities are often visualized as a row of 

horizontal eddies aligned within this layer of vertical shear.  

•= Vortices: A measure of the local rotation in a fluid flow. In weather analysis and 

forecasting, it usually refers to the vertical component of rotation.  

•= Bernard Cells: the hexagonal shaped convection eddies that can form in a solution that 

is being heated. 

Neyret's model takes into account three phenomena at various scales: hot spot generation on the 

ground, simulation of bubbles rising bubble and reaching their dew point, bubble creation and 

evolution inside the cloud and their emergence as turrets on the borders. His proposed model 

incorporates:  

•= Bubble Generation - rising of hot air parcels due to buoyancy force caused by difference 

in density. Compute attraction force among parcels. Threshold of energy required for 

rising. Once it rises, fresh air takes its place and its probability to rise again decreases - 

emulates "Bernard Cell" behavior.  

•= Cloud evolution - the cloud is composed of static bubbles. The birth of a bubble inside 

the cloud is due to the local temperature gradient (Rayleigh Taylor instability). 

•= Direction of bubble depends on the local heat gradient.  

•= Small scale shape - it assumes a recursive structure for the small scale shape of the 

cloud. A bubble is considered as a sphere onto which are convected the main vortices, 

which were initially waves. The vortices are also assumed to be spherical and sub 

vortices are advected upon their parent vortex surface in a recursive fashion.  
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Results from an implementation of these techniques by Ruchigartha using MEL scripts in Maya 

can be found at http://www.cs.umbc.edu/~ebert/ruchi1 . An example of the output from her system 

and the GUI cloud control can be seen in Figure 10. 

3.2 Rendering Clouds in Commercial Packages 

The main component needed to effectively render clouds is volume rendering support in your 

renderer. Volumetric shadows, low- or high-albedo illumination and correct atmospheric 

attenuation are needed to get realistic looking clouds.  An example of a volume rendering plug-in 

for Maya that can used to created volume rendered clouds can be found on the Maya Conductor 

 

Figure 10: MEL GUI and sample images from Maya based cloud particle system 

generator. 
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CD from 1999 and on the HighEnd3D web page http://www.highend3d.com/maya/plugins . The 

plug-in, volumeGas, by Marlin Rowley and Vlad Korolov, implements a simplified version of my 

volume renderer (which was used to produce the images in these notes).  

3.3 Interactive Rendering and Interaction with Procedural Clouds on PC Hardware 

With the advent of programmable hardware graphics pipelines, what are the important 

factors for generating true, interactive procedural models of natural phenomena? The following are 

several important factors that must be considered: 

1. How much programmability is needed and available at the following levels: 

•= Vertex 

•= Fragment 

2. Precision of the programmable operations:  

•= Are these 8-bit quantities?  9-bit? 12-bit? 

•= Are they fixed range (e.g, 0 to 1)? 

•= What precision is needed to not produce artifacts? 

•= Are they signed quantities (e.g., 8-bit plus sign bit)? 

3. What mathematical operations are available? 

•= Addition and Subtraction? (some new boards don’t allow fragment subtraction) 

•= Multiplication and Division? 

•= More advanced operations (sqrt, sin, cos, etc.)? 

4. Are dependent operations allowed (can the results of one operation change the next 

computation)? 

All of the above factors greatly affect the type of procedural models that can be implemented at 

interactive rates. Current hardware finally allows some programmability of the GPU and we can 
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start to create interactive procedural models. However, the operations that are available at the 

fragment level are still limited and the limited precision is a serious limiting factor. The ability to 

compute a result at the fragment level and use this to change a texture coordinate used in the next 

texture look-up is a basic capability that is now available and enables basic procedural solid 

texturing, etc. Unfortunately, to create amazing, complex procedural models in real-time we need 

the ability to generate new geometry at the fragment level. We could then download to the GPU a 

small procedural model that creates geometry representing our procedural model in real-time. This 

is a feature that probably won’t be available for several years. But, with clever programming, we 

can create some very interesting, advanced procedural effects with the programmability available in 

the latest graphics boards.  
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Procedural Volumetric Cloud Modeling, 
Animation, and Real-time Techniques

David S. Ebert
School of Electrical and Computer Engineering

Purdue University
ebertd@purdue.edu

Overview
Proceduralism
Background
Modeling Gases

Overview
Cloud Modeling
Examples Using 

Commercial Systems
Hardware Issues and   

Real-Time Gases
Conclusion
Future Directions 

for Research

Proceduralism: Advantages of 
Procedural Techniques
Flexibility
Parametric Control
Data Amplification
Procedural Abstraction - High Level Control
Complexity on Demand
•• Inherently multiInherently multi--resolution modelresolution model
•• Computational savingsComputational savings
•• Ease of antiEase of anti--aliasingaliasing

Background

Why Model Gases ?
Important Visual Characteristics
Rendering System Considerations 

Why Model Gases ?

Visual Realism

Artistic Effects
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Important Visual Characteristics
Amorphous
Swirling
Attenuation of Light
Shadowing
Illumination



5- 29

Example: Fog
Rendering System Considerations:

Issues My System
Volume Rendering Support
Illumination Issues
•• Participating media Participating media -- scatters, reflects, scatters, reflects, 

absorbs lightabsorbs light

•• LowLow--albedo models albedo models (single scattering)(single scattering)

•• HighHigh--albedo modelsalbedo models (multiple scattering)(multiple scattering)

Volume Shadowing

Modeling Capability

Scanline a-buffer w/ Volume 
Tracing

Low-albedo Illumination 
Model

3D Table-based Shadowing
•• Fast, efficientFast, efficient
•• 10 to 15 times faster than 10 to 15 times faster than 

rayray--traced shadowstraced shadows

Procedural volume density 
functions

Modeling Gases: 
Previous Approaches
Surface Approaches
•• Hollow/flat objectsHollow/flat objects

•• Interaction problemsInteraction problems

•• FastFast

Volume Approaches
•• Greater realism, flexibilityGreater realism, flexibility

•• SlowerSlower

Volumetric Modeling Advantages
Accurate Shadowing
Realistic Illumination
Realistic Simulation of Natural Volumetric 
Phenomena (Clouds, Gases, Water, Fire)

Volumetric Procedural Modeling 
(VPM)

Basic VPM Primitives
•• Any Function of ThreeAny Function of Three--DimensionsDimensions

•• Stochastic:Stochastic:

–– Noise, turbulence, fBmNoise, turbulence, fBm

•• Regular: Implicit FunctionsRegular: Implicit Functions

–– Smooth blending Smooth blending 

–– Useful primitives (spheres, cylinders, Useful primitives (spheres, cylinders, 
ellipsoids, skeletons)ellipsoids, skeletons)

Volumetric Procedural Gas 
Modeling
Turbulence-based Procedures
•• Perlin’s noise and turbulence functionsPerlin’s noise and turbulence functions

Shape Resulting Gas
•• Simple mathematical functionsSimple mathematical functions

Defines Volume Density
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Basic Gas Procedure

Density = 
(turbulence(pnt)*density_scaling)exponent 

•• Exponent typically 1.0 to 10.0Exponent typically 1.0 to 10.0

Gas Shaping Primitives

Power Function

Sine Function

Exponential 
Function

Steam Rising From a Teacup

Volume of Gas Over the
Teacup
Basic Gas Procedure Used 
for Density

Steam Rising ...

Shape Gas Spherically

Shape Gas Vertically

Final Steam Rising Image
Volumetric Cloud Modeling: 
Volumetric Procedural Implicits
Previous Volumetric Procedural Implicit Modeling

–– Perlin: hypertextures Perlin: hypertextures 

–– Stam: fire modeling, cloudsStam: fire modeling, clouds

–– KisacikogluKisacikoglu: gas plasma : gas plasma -- SphereSphere

Previous Cloud Modeling
–– SurfaceSurface--based (Gardner)based (Gardner)

–– FractalFractal--based (Voss)based (Voss)

–– VolumeVolume--based (Kajiya, Stam)based (Kajiya, Stam)
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Volumetric Procedural Implicit 
Modeling
Two Tiered Approach
•• Cloud MacrostructureCloud Macrostructure

–– Volumetrically rendered implicit primitivesVolumetrically rendered implicit primitives

•• Cloud MicrostructureCloud Microstructure

–– Procedurally defined natural detailProcedurally defined natural detail

–– Procedural volumetric density Procedural volumetric density 
functionsfunctions

Cloud Macrostructure
Primitive-Based Implicit Models
•• Currently: spheres, cylinders, ellipsoidsCurrently: spheres, cylinders, ellipsoids

•• Wyvill’s blending functionWyvill’s blending function

Ease of Specification, Animation, Global 
Deformation
•• Easily controlled by particle system dynamicsEasily controlled by particle system dynamics

Example Implicit Cloud Cloud Microstructure
Volumetric Procedural Model
Built-in Multiresolution Model
Features:
•• Main primitives: noise and turbulenceMain primitives: noise and turbulence

•• Mathematical functions for shapingMathematical functions for shaping

•• Natural controlsNatural controls

Simple Volumetric Procedural 
Model (VPM)

vpm(pnt)
•• pnt = map pnt to procedural turbulence spacepnt = map pnt to procedural turbulence space

•• turb = turbulence (pnt)turb = turbulence (pnt)

•• density = pow(denseness*turb, wispiness)density = pow(denseness*turb, wispiness)

•• return(density)return(density)

Combined Model
Use Procedural Techniques to Perturb 

Sample Point
Calculate Implicit Density for Point
Calculate Procedural Density for Point
Blend These Densities

•• blend = blend% * imp_density +blend = blend% * imp_density +
(1(1--blend%)*proc_density*imp_densityblend%)*proc_density*imp_density

Shape With Math Functions
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Results - Volumetric Cloud Results: Volumetric Cumulus Cloud
Volumetric  Cumulus Cloud

Stratus And Cirrus Cloud Effects
Stratus Clouds
•• Use a few  implicits to specify extent of layerUse a few  implicits to specify extent of layer
•• Use procedural techniques for detailsUse procedural techniques for details
•• Denser and less wispy Denser and less wispy 

Cirrus Clouds
•• Use implicits for each cloud or Use implicits for each cloud or 

for global shapefor global shape
•• Thinner, less dense, wispierThinner, less dense, wispier
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Another Example (Henrik Wann Jensen)

Procedural Cloud Model Based on the Techniques 
Presented
•• Generates a large number of points describing cloud densityGenerates a large number of points describing cloud density

Realistic Cloud and Environmental Illumination 
Using Photon Maps

Animation: Little Fluffy Clouds
•• Cloud density is increased procedurallyCloud density is increased procedurally
•• Sun rises, cloud layer forms, sun setsSun rises, cloud layer forms, sun sets

Examples Using Commercial 
Systems: A/W Maya

Rendering:
•• Volumetric Cloud PlugVolumetric Cloud Plug--inin

Animation
•• Cloud Formation Dynamics in MELCloud Formation Dynamics in MEL

Volumetric Cloud Plug-in 
(Marlin Rowley, Vlad Korolev, David Ebert)

Prototype Volume Rendering Plug-in

Attached to Volume Light Shape

Cloud Shape: 3 Spherical Primitives

4 Cloud Types:
•• MistyMisty

•• CumulusCumulus

•• CirrusCirrus

•• ImplicitImplicit
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Volumetric Cloud Plug-in: Examples
Plug-in Available 

- SGI Conductor CD

- Queen Maya Web Page

Cloud Dynamics in MEL
(Ruchigartha)

Specialized Particle System 

Dynamics Simulates
•• Buoyant bubblesBuoyant bubbles

•• Temperature gradients Temperature gradients -- controls controls 
velocityvelocity

•• VorticesVortices

•• GravityGravity

•• Wind fieldsWind fields

Cloud Dynamics in MEL: Simulation
Particle Emitter

•• Numerous settable Numerous settable 
attributesattributes

Evaluate Forces on 
Particles

Create Children -
Split Particles

Particle Death -
Stabilize

Issues for Real-time Volumetric 
Gases: Rendering
Volume Accumulation:  

•• Need exponential accumulation of gas Need exponential accumulation of gas 
densities:densities:

Illumination: How to Simulate Bi-directional 
Reflection Function for Low-albedo Illumination
•• 2D texture maps indexed by eye angle and light angle?2D texture maps indexed by eye angle and light angle?

e
t

t

dppdensity−
2

1

)(τ

Issues for Real-time Volumetric 
Gases: Static Modeling
3D Textures for Gas Density

•• Need 3D texture mappingNeed 3D texture mapping

•• Limited by resolution of 3D texture Limited by resolution of 3D texture 

–– 2562563 3 (64Mb)?(64Mb)?

Global Density Model + Volume Detail Texture 
(Noise Texture)
•• Need dependent texture readsNeed dependent texture reads
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Issues for Real-time Volumetric 
Gases: Dynamic Models
Dynamically Change 3D Texture Densities

•• Need ability to update portions of 3D textures at 30 fpsNeed ability to update portions of 3D textures at 30 fps

Change 3D Texture Indices Algorithmically 
Could Generate Geometry on the Fly 

(Micropolygons)
•• Need capability to generate new  triangles at the vertex or Need capability to generate new  triangles at the vertex or 

fragment processing levelfragment processing level

What’s on the Horizon for PC 
Graphics?
3D Textures - (ATI, 3dfx, Nvidia (X-box) )
Programmable Vertex Shading (e.g., GeForce2)
Dependent Texture Reads (e.g., ATI Radeon)
Stanford Real-Time Programmable Shading 

Language (Mark, Proudfoot,  Hanrahan)
•• Great for realGreat for real--time programmable time programmable shader shader development and development and 

volume shading designvolume shading design

Conclusion
Procedural Modeling and Animation is : 

Powerful
Flexible

Extensible 

Conclusion
Important  Aspects
•• Flexible volume modeling systemFlexible volume modeling system

•• Accurate illumination and shadowingAccurate illumination and shadowing

Procedural Modeling
•• Particle systems, LParticle systems, L--systems, blobs can be includedsystems, blobs can be included

•• Flexible, turbulent volume modelingFlexible, turbulent volume modeling

Conclusion
Volumetric Procedural Implicit Cloud 
Modeling
•• Ease of control and specification of implicitsEase of control and specification of implicits

•• Smooth blendingSmooth blending

•• Natural appearance from turbulence simulationNatural appearance from turbulence simulation

•• Procedural abstractionProcedural abstraction

•• Parametric controlParametric control

Future Directions
Other Forms of Volumetric Procedural Modeling
•• Procedural grass Procedural grass 

(Butler and Ebert)(Butler and Ebert)
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Future Directions

Future Directions: Combinations of 
Procedural Techniques
•• Artificial Evolution of Implicit Models Artificial Evolution of Implicit Models 

(Bedwell and Ebert)(Bedwell and Ebert)
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The Science and Art of Plant Modeling 
 

Przemyslaw Prusinkiewicz 
Department of Computer Science, University of Calgary 

2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4 
pwp@cpsc.ucalgary.ca 

This talk will present an overview of approaches to the modeling of plants and plant ecosystems, 
with an emphasis on: 

• recent results, 
• generality of the mathematical techniques used, 
• biological foundation and visual realism of the models. 

The talk will be illustrated using interactive simulations and demonstrations of interactive 
modeling techniques. 
 
1. Classification of plant modeling techniques 
2. Simulation-based modeling  

• Abstractions and formalisms 
• "Expanding canvas" and "dynamic platform" as metaphors for a growing plant  
• Modularity of plant architecture 
• L-systems: the concept, applications, and limitations 

• Simulating physiological processes affecting plant development: lineage, signaling, and 
interaction with the environment 

• Simulating mechanical and biomechanical factors (e.g., gravity and  tropisms) 
• Examples and applications of simulation-based plant models, from the level of cells to 

the level of plant ecosystems 
• Interaction with plant models 

3. Inverse modeling of plants 
• The essence of inverse modeling 
• Abstractions and formalisms 

• Positional information and global-to-local information flow 
• Organized and random variation 
• Structural invariants and constraints 

• Symmetry 
• Allometry 
• Branch mapping  
• Self-similarity 
• Close packing of organs and phyllotactic patterns 
• Organ orientation 

• Techniques for model construction 
• Recursive structure of inverse models 
• The use of architectural measurements 
• Interactive modeling techniques 

• Examples and applications of inverse modeling 
• Artistic modeling of plants 
• Biological applications 
• Multi-level modeling and visualization of landscapes 



A Collision-based Model of Spiral Phyllotaxis
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ABSTRACT

Plant organs are often arranged in spiral patterns. This effect
is termed spiral phyllotaxis. Well known examples include
the layout of seeds in a sunflower head and the arrangement
of scales on a pineapple. This paper presents a method for
modeling spiral phyllotaxis based on detecting and elimi-
nating collisions between the organs while optimizing their
packing. In contrast to geometric models previously used
for computer graphics purposes, the new method arranges
organs of varying sizes on arbitrary surfaces of revolution.
Consequently, it can be applied to synthesize a wide range
of natural plant structures.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling: Curve, surface, solid
and object representation. I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism. J.3 [Life and
Medical Sciences]: Biology.

Keywords: realistic image synthesis, modeling of plants,
spiral phyllotaxis, flower head, cactus.

1 INTRODUCTION

Phyllotaxis, or a regular arrangement of organs such as
leaves, flowers, or scales, can be observed in many plants.
The pattern of seeds in a sunflower head and the arrange-
ment of scales on a pineapple are good examples of this
phenomenon. It is characterized by conspicuous spirals,

Published in the Proceedings of SIGGRAPH ’92 (Chicago, Illinois,
July 26–31, 1992), in Computer Graphics, 26, 2, (July 1992), ACM
SIGGRAPH, New York, pp. 361–368.

or parastichies, formed by sequences of adjacent organs
composing the structure. The numbers of parastichies run-
ning in opposite directions usually are two consecutive Fi-
bonacci numbers. The divergence angle between consecu-
tively formed organs (measured from the center of the struc-
ture) is close to the Fibonacci angle of 360���2 � 137:5�,
where � = (1+

p
5)=2 [3]. Computer simulation has shown

that the quality of the pattern depends in a crucial way on
this angle value [10, Chapter 4]. The intriguing mathematical
properties have led to many models of phyllotaxis, which can
be broadly categorized as descriptive and explanatory [9].

Descriptive models attempt to capture the geometry of phyl-
lotactic patterns. Two models in this group, proposed by
Vogel [12] and van Iterson [5, 8], characterize spiral ar-
rangements of equally-sized organs on the surface of a disk
or a cylinder, and have been applied to synthesize images of
plant structures with predominantly flat or elongated geom-
etry [7, 10]. Unfortunately, the assumptions that simplified
the mathematical analysis of these models limited the range
of their applications. In nature, the individual organs of-
ten vary in size, and the surfaces on which they are placed
diverge significantly from ideal disks and cylinders. Spher-
ically shaped cactus bodies provide a striking example, but
even elongated structures, such as spruce cones, are not ad-
equately described by the cylindrical model, which fails to
characterize pattern changes observed near the base and the
top of a cone.

A larger variety of organ sizes and surface shapes can be ac-
commodated using explanatory models, which focus on the
dynamic processes controlling the formation of phyllotactic
patterns in nature. It is usually postulated that the spirals
result from local interactions between developing organs,
mechanically pushing each other or communicating through
the exchange of chemical substances. Unfortunately, no uni-
versally accepted explanatory model has yet emerged from
the large number of competing theories [9].

In this paper we propose a collision-based model of phyl-
lotaxis, combining descriptive and explanatory components.

6-2



Figure 1: Microphotograph of a developing capitulum of
Microseris pygmaea. Numbers indicate the order in which
the primordia are formed. The scale bar represents 50�m.

Section 2 presents the principle of this model and places it in
the context of biological observations. Section 3 applies it
to realistic image synthesis, using compound inflorescences
(clusters of flowers) and cacti as examples. Section 4 con-
cludes the paper with an analysis of the results and a list of
open problems.

2 THE COLLISION-BASED MODEL

2.1 Morphology of a Developing Bud

Although phyllotactic patterns can be observed with the
naked eye in many mature plant structures, they are initi-
ated at an early stage of bud development. Consequently,
microscopic observations are needed to analyze the process
of pattern formation.

Figure 1 depicts a developing bud of Microseris pygmaea,
a wild plant similar to the dandelion. The numbered pro-
trusions, called primordia, are undeveloped organs that will
transform into small flowers or florets as the plant grows.
The primordia are embedded in the top portion of the stalk,
called the receptacle, which determines the overall shape of
the flower head ( capitulum). The numbers in Figure 1 indi-
cate the order in which the primordia are formed. The oldest
primordium differentiates at the base of the receptacle, then
the differentiation progresses gradually up towards the cen-
ter, until the entire receptacle is filled. The divergence angle
between position vectors of consecutive primordia approxi-
mates 137:5�.

2.2 Biological Origin of the Model

The collision-based model originates from a study of numer-
ical canalization [13]. This term describes the phenomenon
that in capitula of many plants, organs such as petals or
bracts are more likely to occur in certain quantities than in

137.5°

16

3

8

5 7
2

4r1

r9 9

Figure 2: The collision-based model of phyllotaxis. Pri-
mordia are distributed on the receptacle using a fixed diver-
gence angle of 137:5� and are displaced along the generating
curves to become tangent to their closest neighbors. In the
case shown, primordium 9 collided with primordium 1.

others. Fibonacci numbers of organs, relating canalization
to phyllotaxis, are found with a particularly high frequency.

We developed the computer model to simulate the effect of
canalization in Microseris [2], and observed that it provides
a flexible model of phyllotaxis, free of restrictions present in
the previous geometric models. Specifically, it operates on
receptacles of arbitrary shapes, and accommodates organs
of varying sizes. In this paper, we extrapolate this collision-
based model beyond its strict observational basis, to visualize
phyllotactic patterns in a variety of plants.

2.3 The Proposed Model

The purpose of the model is to distribute primordia on the
surface of the receptacle. The principle of its operation is
shown in Figure 2. The receptacle is viewed as a surface
of revolution, generated by a curve rotated around a vertical
axis. Primordia are represented by spheres, with the centers
constrained to the receptacle, and are added to the structure
sequentially, using the divergence angle of 137:5�. The first
group of primordia forms a horizontal ring at the base of the
receptacle. The addition of primordia to this ring stops when
a newly added primordium collides with an existing one. The
colliding primordium is then moved along the generating
curve towards the tip of the receptacle, so that it becomes
tangent to its closest neighbor. The subsequent primordia
are placed in a similar way — they lie on generating curves
determined by the divergence angle, and are tangent to their
closest neighbors. The placement of primordia terminates
when there is no room to add another primordium near the
tip of the receptacle.
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t = tmin

C

P(ϕ,ρ,h)

ρ

h

t = tmax

Figure 3: Variables used in the description of the collision-
based model

2.4 Formalization

In order to calculate positions of consecutive primordia, we
assume that the model is placed in a cylindrical coordinate
system '; �; h (Figure 3). The receptacle is described by
the parametric equation � = �(t), h = h(t), and can be
conceptualized as the result of the rotation of a generating
curve C(' = 0; �(t); h(t)) around the axis h. In our imple-
mentation, C is specified as one or more B́ezier curves [6].
Parameter t changes from tmin, corresponding to the base
of the receptacle, to tmax, corresponding to the tip. Thus,
a point P on the receptacle can be represented by a pair of
numbers: ' 2 [0; 360) and t 2 [tmin; tmax]. Assuming that
the radii of consecutive primordia form a given sequence
fr0; r1; r2; : : :g, the pattern generated by the collision-based
model satisfies the following recursive formulae:

�
'0 = 0;
t0 = tmin;

8<
:

'n+1 = 'n + 137:5� = (n+ 1) � 137:5�;
tn+1 = minft 2 [tmin; tmax] : (8i = 0; 1; : : : ; n)

k P ('i; ti)� P ('n+1; t) k� ri + rn+1g:

The expression k P ('i; ti)� P ('n+1; t) k denotes the Eu-
clidean distance between the points ('i; �(ti); h(ti)) and
('n+1; �(t); h(t)). The formula for tn+1 has a simple inter-
pretation — it specifies tn+1 as the smallest value of param-
eter t, for which the center of the newly added primordium
P ('n+1; t) will be separated by at least ri + rn+1 from the
center of any previously placed primordium P ('i; t). The
angle 'n+1 at which the new primordium will be placed is
fixed at(n+ 1) � 137:5�.

In practice, the value tn+1 is computed using a binary search

of the interval [tmin; tmax]. The recursion ends when no
value t 2 [tmin; tmax] satisfies the inequality:

(8i = 0; 1; : : : ; n) k P ('i; ti)�P ('n+1; t) k � ri+rn+1:

A modification of the formula fortn+1 is useful when con-
secutive primordia decrease in size (r0 > r1 > r2 : : :). In
this case, small primordium that should be positioned near
the top of the receptacle may accidentally fit in a gap between
much larger primordia near the base. This undesirable effect,
distorting the phyllotactic pattern, can be avoided by limiting
the maximum decrease of parameter t between consecutive
primordia to a heuristically selected value �. The change in
the formula for tn+1 consists of replacing the constant value
tmin by t0

min
= maxftmin; tn � �g: We have found � cor-

responding to the radius of the new primordium satisfactory
in most cases.

2.5 Model Validation

The collision-based model describes the formation of a ca-
pitulum in a simplified way. The crudest assumption is
that primordia emerge on an already developed receptacle,
while in nature the differentiation is concurrent with the re-
ceptacle’s growth. Despite this simplifying assumption, the
placement of primordia resulting from the collision-based
model corresponds closely to the microscopic observations.

3 APPLICATION TO COMPUTER GRAPHICS

3.1 Principles

Once the phyllotactic pattern has been formed in the early
stages of bud development, the bud grows and develops into
a mature flower head. The actual organs — florets or seeds
— may have totally different shapes from the primordia, yet
the original spiral arrangement will be retained.

The collision-based model is applied to image synthesis fol-
lowing a similar scheme: first the phyllotactic pattern is gen-
erated by placing spheres on a receptacle, then the spheres
are replaced by realistic models of specific organs. In our
implementation, the organs are constructed from Bézier sur-
faces.

For placement purposes, each organ is represented by a con-
tact point and a pair of orthogonal vectors ~v and ~w. The
organ is translated to make its contact point match the center
of the sphere that it will replace, then rotated to align the
vectors ~v and ~w with the normal vector to the receptacle
and the vector tangent to the generating curve. The radius
of the sphere representing the primordium may be used to
determine the final size of the mature organ.
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Figure 4: Green coneflower

3.2 Results

The first example, a model of green coneflower (Rudbeckia
laciniata), is shown in Figure 4. The receptacle is approx-
imately conical. The flower head includes three different
types of organs: ray florets (with petals), and open and
closed disk florets. The size of disk florets decreases lin-
early towards the tip of the cone.

Almost flat receptacles have been used to synthesize the
composite flower heads shown in Figure 5, yielding similar
results to the geometric models based on Vogel’s formula [7,
10, 12].

The operation of the collision-based model on a spherical re-
ceptacle is illustrated in Figure 6, where individual berries of
the multi-berry fruits are represented as intersecting spheres.
A change of organs and proportions yields the flowers of
buttonbush (Cephalanthus occidentalis), shown in Figure 7.
In this case, the spherical receptacle is confined to the center
of the inflorescence. The individual flowers, at the ends of
long pedicels, form a ball with a much larger radius.

Figure 5: Daisies and chrysanthemums

Figure 6: Raspberry-os

Figure 7: Flowers of buttonbush
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Figure 8: Seed head of goatsbeard

In goatsbeard (Tragopogon dubius), presented in Figure 8,
the collision-based phyllotaxis model is used in a compound
way, to capture the distribution of the seeds (achenes) on the
receptacle, and to construct their parachute-like attachments.
The same technique has been applied to model cactus Mam-
millaria geminispina, with a spiral arrangement of spine clus-
ters on the cactus stem (Figure 9). The compound application
of the phyllotaxis model has been exploited even further in
the models of cauliflowers and broccoli (Figure 10). In this
case, the receptacle carries clusters of compound flowers,
which are themselves clusters of simple flowers approxi-
mated by spheres. Thus, the collision-based model has been
applied here at two levels of recursion. In Figure 11, the
model governs the positions of spine clusters and flowers, as
well as the arrangement of spines in each cluster and petals
in each flower.

Since the collision-based model provides a mechanism for
filling an area with smaller components, it can be applied
to other purposes than the simulation of phyllotaxis. For
example, in Figure 12 it was used to place many single-
stem plants in each pot. The soil surface was considered
as a large, almost flat “receptacle", and the distribution of
spherical “primordia" on its surface determined the position
of each stem. As a result, the flower heads form dense
clusters without colliding with each other.

Figure 9: A model of Mammillaria geminispina

Figure 10: Cauliflowers and broccoli

3.3 Implementation

The modeling environment consists of two programs de-
signed for Silicon Graphics workstations. An interactive ed-
itor of Bézier curves and surfaces is used to specify the shape
of the receptacle and the organs. A generator of phyllotactic
patterns distributes the organs on the receptacle according to
the collision-based model.

The arrangement and display of primordia on the receptacle
takes one to two seconds, making it possible to manipulate
parameters interactively. After the desired pattern has been
found, the generator outputs a set of transformation matrices
that specify the position of each organ. The organs are in-
corporated into the final image by the renderer (the ray tracer
rayshade) as instances of predefined objects. Instantia-
tion makes it possible to visualize complex plant models,
consisting of millions of polygons, using relatively small
data files.
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Figure 11: Table of cacti, including realistic models of the
elongated Mammillaria spinosissima

From the user’s perspective, the reproduction of a specific
structure begins with the design of the receptacle. This
is followed by the interactive manipulation of the primordia
sizes, leading to the correct arrangement of parastichies. The
total time needed to develop a complete structure is usually
dominated by organ design.

4 CONCLUSIONS

This paper presents a biologically motivated collision-based
model of phyllotaxis and applies it to the synthesis of images
of different plants. The model employs local interactions
between organs to adjust their positions on the underlying
surface and can operate without modification on surfaces
of diverse shapes. In contrast, purely geometric models
of phyllotaxis used previously for computer graphics pur-
poses [7, 10] have been limited to the surface of a disk or a
cylinder.

Below we list several open problems, the solution of which
could result in more robust and varied models.

Figure 12: Flower shop. The collision-based model controls
the arrangement of plants in each pot.

� Formal characterization of patterns generated by the
collision-based model. While most models of phyl-
lotaxis were constructed to describe or explain the con-
spicuous spirals, the collision-based model originated
from research on canalization. Consequently, it does
not provide ready-to-use formulae relating the arrange-
ment of parastichies to the geometry of the receptacle
and the sizes of primordia. Such formulae would im-
prove our understanding of the phenomenon of phyl-
lotaxis, and provide additional assistance in building
models of specific plants.

� Analysis of the validity range. Although the model op-
erates correctly for various combinations of receptacle
shapes and primordia sizes occurring in nature, one can
easily produce input data for which it does not generate
phyllotactic patterns. For example, this may happen if
the receptacle has zones with a small radius of curva-
ture, compared to the size of primordia, or if consec-
utive primordia vary greatly in size. The model could
be therefore complemented by a characterization of the
range of input data for which it produces nondistorted
phyllotactic patterns.
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Figure 13: Grape hyacinths

� Simulation of collisions between mature organs. This is
an important problem in the visualization of structures
with densely packed organs, such as the inflorescences
shown in Figures 13 and 14. In nature, individual flow-
ers touch each other, which modifies their positions and
shapes. This effect is not captured by the present model,
since collisions are detected only for primordia. Con-
sequently, the mature organs must be carefully modeled
and sized to avoid intersections. This is feasible while
modeling still structures, but proper simulation of col-
lisions would become crucial in the realistic animation
of plant development.

� Comparison with related models. Mechanical interac-
tions between neighboring primordia were also postu-
lated in other models of phyllotaxis. Adler [1] proposed
a contact-pressure model which, in a sense, is opposite
to ours: it uses constant vertical displacement of pri-
mordia and allows the divergence angle to vary, while
we fix the divergence angle and let collisions control the
displacement along the generating curves. Two other
models explaining phyllotaxis in terms of mechanical
interactions have been proposed recently by Van der
Linden [11], and Douady and Couder [4]. A compari-
son and synthesis of these results is an open problem.
Specifically, the incorporation of a mechanism for the
adjustment of the divergence angle into the collision-
based model may lead to structures better corresponding
to reality, and provide a causal explanation for the di-
vergence angle used. The comparison of phyllotactic
models can be put in an even wider perspective by con-
sidering non-mechanical models, such as those based
on reaction-diffusion [9].

Figure 14: Inflorescences of water smartweed

Figure 15: Window sill — various phyllotactic patterns
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In spite of its simplicity, the collision-based model captures
a wide range of plant structures with phyllotactic patterns
(Figure 15). It also illustrates one of the most stimulating
aspects of the modeling of natural phenomena — the close
coupling of visualization with ongoing research in a funda-
mental science.
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Visual Models of Plants
Interacting with Their Environment

Radomı́r M̌ech and Przemyslaw Prusinkiewicz1

University of Calgary

ABSTRACT

Interaction with the environment is a key factor affecting the devel-
opment of plants and plant ecosystems. In this paper we introduce a
modeling framework that makes it possible to simulate and visualize
a wide range of interactions at the level of plant architecture. This
framework extends the formalism of Lindenmayer systems with
constructs needed to model bi-directional information exchange be-
tween plants and their environment. We illustrate the proposed
framework with models and simulations that capture the develop-
ment of tree branches limited by collisions, the colonizing growth of
clonal plants competing for space in favorable areas, the interaction
between roots competing for water in the soil, and the competition
within and between trees for access to light. Computer animation
and visualization techniques make it possible to better understand
the modeled processes and lead to realistic images of plants within
their environmental context.

CR categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems: Parallel rewrit-
ing systems, I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, I.6.3 [Simulation and Modeling]: Appli-
cations, J.3 [Life and Medical Sciences]: Biology.

Keywords: scientific visualization, realistic image synthesis, soft-
ware design, L-system, modeling, simulation, ecosystem, plant de-
velopment, clonal plant, root, tree.

1 INTRODUCTION

Computer modeling and visualization of plant development can be
traced back to 1962, when Ulam applied cellular automata to sim-
ulate the development of branching patterns, thought of as an ab-
stract representation of plants [53]. Subsequently, Cohen presented
a more realistic model operating in continuous space [13], Linden-

1Department of Computer Science, University of Calgary, Cal-
gary, Alberta, Canada T2N 1N4 (mechjpwp@cpsc.ucalgary.ca)

Published in the Proceedings of SIGGRAPH ’96 (New Orleans, LA,
August 4–9, 1996). In Computer Graphics Proceedings, Annual
Conference Series, 1996, ACM SIGGRAPH, New York, pp. 397–
410.

mayer proposed the formalism of L-systems as a general framework
for plant modeling [38, 39], and Honda introduced the first computer
model of tree structures [32]. From these origins, plant modeling
emerged as a vibrant area of interdisciplinary research, attracting the
efforts of biologists, applied plant scientists, mathematicians, and
computer scientists. Computer graphics, in particular, contributed
a wide range of models and methods for synthesizing images of
plants. See [18, 48, 54] for recent reviews of the main results.

One aspect of plant structure and behavior neglected by most models
is the interaction between plants and their environment (including
other plants). Indeed, the incorporation of interactions has been
identified as one of the main outstanding problems in the domain of
plant modeling [48] (see also [15, 18, 50]). Its solution is needed to
construct predictive models suitable for applications ranging from
computer-assisted landscape and garden design to the determination
of crop and lumber yields in agriculture and forestry.

Using the information flow between a plant and its environment as
the classification key, we can distinguish three forms of interaction
and the associated models of plant-environment systems devised to
date:

1. The plant is affected by global properties of the environment,
such as day length controlling the initiation of flowering [23]
and daily minimum and maximum temperatures modulating the
growth rate [28].

2. The plant is affected by local properties of the environment, such
as the presence of obstacles controlling the spread of grass [2]
and directing the growth of tree roots [26], geometry of support
for climbing plants [2, 25], soil resistance and temperature in
various soil layers [16], and predefined geometry of surfaces to
which plant branches are pruned [45].

3. The plant interacts with the environment in an information feed-
back loop, where the environment affects the plant and the plant
reciprocally affects the environment. This type of interaction is
related to sighted [4] or exogenous [42] mechanisms controlling
plant development, in which parts of a plant influence the devel-
opment of other parts of the same or a different plant through the
space in which they grow. Specific models capture:

� competition for space (including collision detection and ac-
cess to light) between segments of essentially two-dimensional
schematic branching structures [4, 13, 21, 22, 33, 34, 36];

� competition between root tips for nutrients and water trans-
ported in soil [12, 37] (this mechanism is related to competition
between growing branches of corals and sponges for nutrients
diffusing in water [34]);
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� competition for light between three-dimensional shoots of
herbaceous plants [25] and branches of trees [9, 10, 11, 15,
33, 35, 52].

Models of exogenous phenomena require a comprehensive repre-
sentation of both the developing plant and the environment. Con-
sequently, they are the most difficult to formulate, implement, and
document. Programs addressed to the biological audience are often
limited to narrow groups of plants (for example, poplars [9] or trees
in the pine family [21]), and present the results in a rudimentary
graphical form. On the other hand, models addressed to the com-
puter graphics audience use more advanced techniques for realistic
image synthesis, but put little emphasis on the faithful reproduction
of physiological mechanisms characteristic to specific plants.

In this paper we propose a general framework (defined as a mod-
eling methodology supported by appropriate software) for mod-
eling, simulating, and visualizing the development of plants that
bi-directionally interact with their environment. The usefulness of
modeling frameworks for simulation studies of models with com-
plex (emergent) behavior is manifested by previous work in the-
oretical biology, artificial life, and computer graphics. Examples
include cellular automata [51], systems for simulating behavior of
cellular structures in discrete [1] and continuous [20] spaces, and
L-system-based frameworks for modeling plants [36, 46]. Frame-
works may have the form of a general-purpose simulation program
that accepts models described in a suitable mini-language as in-
put, e.g. [36, 46], or a set of library programs [27]. Compared to
special-purpose programs, they offer the following benefits:

� At the conceptual level, they facilitate the design, specification,
documentation, and comparison of models.

� At the level of model implementation, they make it possible to de-
velop software that can be reused in various models. Specifically,
graphical capabilities needed to visualize the models become a
part of the modeling framework, and do not have to be reimple-
mented.

� Finally, flexible conceptual and software frameworks facilitate
interactive experimentation with the models [46, Appendix A].

Our framework is intended both for purpose of image synthesis and
as a research and visualization tool for model studies in plant mor-
phogenesis and ecology. These goals are addressed at the levels of
the simulation system and the modeling language design. The un-
derlying paradigm of plant-environment interaction is described in
Section 2. The resulting design of the simulation software is outlined
in Section 3. The language for specifying plant models is presented
in Section 4. It extends the concept of environmentally-sensitive L-
systems [45] with constructs for bi-directional communication with
the environment. The following sections illustrate the proposed
framework with concrete models of plants interacting with their
environment. The examples include: the development of planar
branching systems controlled by the crowding of apices (Section 5),
the development of clonal plants controlled by both the crowding
of ramets and the quality of terrain (Section 6), the development
of roots controlled by the concentration of water transported in the
soil (Section 7), and the development of tree crowns affected by the
local distribution of light (Section 8) The paper concludes with an
evaluation of the results and a list of open problems (Section 9).

Plant Environment

Internal processes

Reception

Response

Internal processes

Reception

Response

Figure 1: Conceptual model of plant and environment treated as
communicating concurrent processes

2 CONCEPTUAL MODEL

As described by Hart [30], every environmentally controlled phe-
nomenon can be considered as a chain of causally linked events.
After a stimulus is perceived by the plant, information in some form
is transported through the plant body (unless the site of stimulus
perception coincides with the site of response), and the plant re-
acts. This reaction reciprocally affects the environment, causing
its modification that in turn affects the plant. For example, roots
growing in the soil can absorb or extract water (depending on the
water concentration in their vicinity). This initiates a flow of water
in the soil towards the depleted areas, which in turn affects further
growth of the roots [12, 24].

According to this description, the interaction of a plant with the
environment can be conceptualized as two concurrent processes
that communicate with each other, thus forming a feedback loop
of information flow (Figure 1). The plant process performs the
following functions:

� reception of information about the environment in the form of
scalar or vector values representing the stimuli perceived by spe-
cific organs;

� transport and processing of information inside the plant;

� generation of the response in the form of growth changes (e.g.
development of new branches) and direct output of information
to the environment (e.g. uptake and excretion of substances by a
root tip).

Similarly, the environmental process includes mechanisms for
the:

� perception of the plant’s actions;

� simulation of internal processes in the environment (e.g. the
diffusion of substances or propagation of light);

� presentation of the modified environment in a form perceivable
by the plant.

The design of a simulation system based on this conceptual model
is presented next.

3 SYSTEM DESIGN

The goal is to create a framework, in which a wide range of plant
structures and environments can be easily created, modified, and

6-11



used for experimentation. This requirement led us to the following
design decisions:

� The plant and the environment should be modeled by separate
programs and run as two communicating processes. This design
is:

� compatible with the assumed conceptual model of plant-envi-
ronment interaction (Figure 1);

� consistent with the principles of structured design (modules
with clearly specified functions jointly contribute to the solu-
tion of a problem by communicating through a well defined
interface; information local to each module is hidden from
other modules);

� appropriate for interactive experimentation with the models;
in particular, changes in the plant program can be implemented
without affecting the environmental program, and vice versa;

� extensible to distributed computing environments, where dif-
ferent components of a large ecosystem may be simulated
using separate computers.

� The user should have control over the type and amount of infor-
mation exchanged between the processes representing the plant
and the environment, so that all the needed but no superfluous
information is transferred.

� Plant models should be specified in a language based on L-
systems, equipped with constructs for bi-directional communi-
cation between the plant and the environment. This decision has
the following rationale:

� A succinct description of the models in an interpreted lan-
guage facilitates experimentation involving modifications to
the models;

� L-systems capture two fundamental mechanisms that control
development, namely flow of information from a mother mod-
ule to its offspring (cellular descent) and flow of information
between coexisting modules (endogenous interaction) [38].
The latter mechanism plays an essential role in transmitting
information from the site of stimulus perception to the site
of the response. Moreover, L-systems have been extended
to allow for input of information from the environment (see
Section 4);

� Modeling of plants using L-systems has reached a relatively
advanced state, manifested by models ranging from algae to
herbaceous plants and trees [43, 46].

� Given the variety of processes that may take place in the environ-
ment, they should be modeled using special-purpose programs.

� Generic aspects of modeling, not specific to particular models,
should be supported by the modeling system. This includes:

� an L-system-based plant modeling program, which interprets
L-systems supplied as its input and visualizes the results, and

� the support for communication and synchronization of pro-
cesses simulating the modeled plant and the environment.

A system architecture stemming from this design is shown in Fig-
ure 2. We will describe it from the perspective of extensions to the
formalism of L-systems.

Plant
model
(L−system)

Plant
simulator

Model of 
the environment

Interface
plant−
environment

Environ−
mental data

C
O
M
M
U
N
I
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A
T
I
O
N

C
O
M
M
U
N
I
C
A
T
I
O
N

Communication
specification

Figure 2: Organization of the software for modeling plants interact-
ing with their environment. Shaded rectangles indicate components
of the modeling framework, clear rectangles indicate programs and
data that must be created by a user specifying a new model of a plant
or environment. Shaded arrows indicate information exchanged in
a standardized format.

4 OPEN L-SYSTEMS

Historically, L-systems were conceived as closed cybernetic sys-
tems, incapable of simulating any form of communication between
the modeled plant and its environment. In the first step towards
the inclusion of environmental factors, Rozenberg definedtable L-
systems, which allow for a change in the set of developmental rules
(the production set of the L-system) in response to a change in
the environment [31, 49]. Table L-systems were applied, for ex-
ample, to capture the switch from the production of leaves to the
production of flowers by the apex of a plant due to a change in day
length [23]. Parametric L-systems [29, 46], introduced later, made
it possible to implement a variant of this technique, with the envi-
ronment affecting the model in a quantitative rather than qualitative
manner. In a case study illustrating this possibility, weather data
containing daily minimum and maximum temperatures were used
to control the rate of growth in a bean model [28]. Environmentally-
sensitive L-systems [45] represented the next step in the inclusion of
environmental factors, in which local rather than global properties
of the environment affected the model. The new concept was the
introduction of query symbols, returning current position or ori-
entation of the turtle in the underlying coordinate system. These
parameters could be passed as arguments to user-defined functions,
returning local properties of the environment at the queried location.
Environmentally-sensitive L-systems were illustrated by models of
topiary scenes. The environmental functions defined geometric
shapes, to which trees were pruned.

Open L-systems, introduced in this paper, augment the functionality
of environmentally-sensitive L-systems using a reserved symbol for
bilateral communication with the environment. In short, parameters
associated with an occurrence of the communication symbol can
be set by the environment and transferred to the plant model, or
set by the plant model and transferred to the environment. The
environment is no longer represented by a simple function, but
becomes an active process that may react to the information from the
plant. Thus, plants are modeled as open cybernetic systems, sending
information to and receiving information from the environment.

In order to describe open L-systems in more detail, we need to
recall the rudiments of L-systems with turtle interpretation. Our
presentation is reproduced from [45].
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An L-system is a parallel rewriting system operating on branching
structures represented as bracketed strings of symbols with asso-
ciated numerical parameters, called modules. Matching pairs of
square brackets enclose branches. Simulation begins with an ini-
tial string called the axiom, and proceeds in a sequence of discrete
derivation steps. In each step, rewriting rules or productions replace
all modules in the predecessor string by successor modules. The
applicability of a production depends on a predecessor’s context
(in context-sensitive L-systems), values of parameters (in produc-
tions guarded by conditions), and on random factors (in stochastic
L-systems). Typically, a production has the format:

id : lc < pred > rc : cond! succ : prob

where id is the production identifier (label), lc, pred, and rc are
the left context, the strict predecessor, and the right context, cond is
the condition, succ is the successor, and prob is the probability of
production application. The strict predecessor and the successor are
the only mandatory fields. For example, the L-system given below
consists of axiom ! and three productions p1, p2, and p3.

!: A(1)B(3)A(5)
p1: A(x) !A(x+1) : 0.4
p2: A(x) !B(x–1) : 0.6
p3: A(x) < B(y) > A(z) : y < 4 !B(x+z)[A(y)]

The stochastic productions p1 and p2 replace module A(x) by ei-
ther A(x + 1) or B(x � 1), with probabilities equal to 0.4 and
0.6, respectively. The context-sensitive production p3 replaces a
module B(y) with left context A(x) and right context A(z) by
module B(x+ z) supporting branch A(y). The application of this
production is guarded by condition y < 4. Consequently, the first
derivation step may have the form:

A(1)B(3)A(5) ) A(2)B(6)[A(3)]B(4)

It was assumed that, as a result of random choice, production p1

was applied to the module A(1), and production p2 to the module
A(5). Production p3 was applied to the module B(3), because it
occurred with the required left and right context, and the condition
3 < 4 was true.

In the L-systems presented as examples we also use several addi-
tional constructs (cf. [29, 44]):

� Productions may include statements assigning values to local
variables. These statements are enclosed in curly braces and
separated by semicolons.

� The L-systems may also include arrays. References to array
elements follow the syntax of C; for example, MaxLen[order].

� The list of productions is ordered. In the deterministic case, the
first matching production applies. In the stochastic case, the set
of all matching productions is established, and one of them is
chosen according to the specified probabilities.

For details of the L-system syntax see [29, 43, 46].

H\
→

/
L

−+

U
→

→

^

&

Figure 3: Controlling the
turtle in three dimensions

In contrast to the parallel applica-
tion of productions in each deriva-
tion step, the interpretation of the
resulting strings proceeds sequen-
tially, with reserved modules act-
ing as commands to a LOGO-style
turtle [46]. At any point of the
string, the turtle state is charac-
terized by a position vector ~P and

derive 

env. step

interpret

         ... A(a1,...,ak) ?E(x1,...,xm) B(b1,...,bn) ...

... A(a1,...,ak) ?E(y1,...,ym) B(b1,...,bn) ...

environment

Figure 4: Information flow during the simulation of a plant inter-
acting with the environment, implemented using an open L-system

three mutually perpendicular orientation vectors ~H, ~U , and ~L, indi-
cating the turtle’s heading, the up direction, and the direction to the
left (Figure 3). Module F causes the turtle to draw a line in the cur-
rent direction. Modules +,�, &, ^, = and n rotate the turtle around
one of the vectors ~H; ~U , or ~L, as shown in Figure 3. The length
of the line and the magnitude of the rotation angle can be given
globally or specified as parameters of individual modules. During
the interpretation of branches, the opening square bracket pushes
the current position and orientation of the turtle on a stack, and the
closing bracket restores the turtle to the position and orientation
popped from the stack. A special interpretation is reserved for the
module %, which cuts a branch by erasing all symbols in the string
from the point of its occurrence to the end of the branch [29]. The
meaning of many symbols depends on the context in which they
occur; for example, + and � denote arithmetic operators as well as
modules that rotate the turtle.

The turtle interpretation of L-systems described above was de-
signed to visualize models in a postprocessing step, with no effect
on the L-system operation. Position and orientation of the turtle
are important, however, while considering environmental phenom-
ena, such as collisions with obstacles and exposure to light. The
environmentally-sensitive extension of L-systems makes these at-
tributes accessible during the rewriting process [45]. The generated
string is interpreted after each derivation step, and turtle attributes
found during the interpretation are returned as parameters to re-
served query modules. Syntactically, the query modules have the
form ?X(x; y; z), where X = P;H;U; or L. Depending on the
actual symbol X , the values of parameters x, y, and z represent a
position or an orientation vector.

Open L-systems are a generalization of this concept. Communi-
cation modules of the form ?E(x1; : : : ; xm) are used both to send
and receive environmental information represented by the values of
parameters x1; : : : ; xm (Figure 4). To this end, the string resulting
from a derivation step is scanned from left to right to determine
the state of the turtle associated with each symbol. This phase is
similar to the graphical interpretation of the string, except that the
results need not be visualized. Upon encountering a communica-
tion symbol, the plant process creates and sends a message to the
environment including all or a part of the following information:

� the address (position in the string) of the communication module
(mandatory field needed to identify this module when a reply
comes from the environment),

� values of parameters xi,

� the state of the turtle (coordinates of the position and orientation
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vector, as well as some other attributes, such as current line
width),

� the type and parameters of the module following the communi-
cation module in the string (not used in the examples discussed
in this paper).

The exact message format is defined in a communication specifi-
cation file, shared between the programs modeling the plant and
the environment (Figure 2). Consequently, it is possible to include
only the information needed in a particular model in the messages
sent to the environment. Transfer of the last message corresponding
to the current scan of the string is signaled by a reserved end-of-
transmission message, which may be used by the environmental
process to start its operation.

The messages output by the plant modeling program are transferred
to the process that simulates the environment using an interprocess
communication mechanism provided by the underlying operating
system (a pair of UNIX pipes or shared memory with access syn-
chronized using semaphores, for example). The environment pro-
cesses that information and returns the results to the plant model
using messages in the following format:

� the address of the target communication module,

� values of parameters yi carrying the output from the environment.

The plant process uses the received information to set parameter val-
ues in the communication modules (Figure 4). The use of addresses
makes it possible to send replies only to selected communication
modules. Details of the mapping of messages received by the plant
process to the parameters of the communication modules are defined
in the communication specification file.

After all replies generated by the environment have been received
(a fact indicated by an end-of-transmission message sent by the
environment), the resulting string may be interpreted and visualized,
and the next derivation step may be performed, initiating another
cycle of the simulation.

Note that, by preceding every symbol in the string with a communi-
cation module it is possible to pass complete information about the
model to the environment. Usually, however, only partial informa-
tion about the state of a plant is needed as input to the environment.
Proper placement of communication modules in the model, com-
bined with careful selection of the information to be exchanged,
provide a means for keeping the amount of transferred information
at a manageable level.

We will illustrate the operation of open L-systems within the con-
text of complete models of plant-environment interactions, using
examples motivated by actual biological problems.

5 A MODEL OF BRANCH TIERS

Background. Apical meristems, located at the endpoints of
branches, are engines of plant development. The apices grow, con-
tributing to the elongation of branch segments, and from time to time
divide, spawning the development of new branches. If all apices
divided periodically, the number of apices and branch segments
would increase exponentially. Observations of real branching struc-
tures show, however, that the increase in the number of segments
is less than exponential [8]. Honda and his collaborators mod-
eled several hypothetical mechanisms that may control the extent of

branching in order to prevent overcrowding [7, 33] (see also [4]).
One of the models [33], supported by measurements and earlier
simulations of the tropical tree Terminalia catappa [19], assumes
an exogenous interaction mechanism. Terminalia branches form
horizontal tiers, and the model is limited to a single tier, treated
as a two-dimensional structure. In this case, the competition for
light effectively amounts to collision detection between the apices
and leaf clusters. We reproduce this model as the simplest example
illustrating the methodology proposed in this paper.

Communication specification. The plant communicates with the
environment using communication modules of the form ?E(x).
Messages sent to the environment include the turtle position and the
value of parameter x, interpreted as the vigor of the corresponding
apex. On this basis, the environmental process determines the fate
of each apex. A parameter value of x = 0 returned to the plant
indicates that the development of the corresponding branch will be
terminated. A value of x = 1 allows for further branching.

The model of the environment. The environmental process con-
siders each apex or non-terminal node of the developing tier as the
center of a circular leaf cluster, and maintains a list of all clusters
present. New clusters are added in response to messages received
from the plant. All clusters have the same radius �, specified in the
environmental data file (cf. Figure 2). In order to determine the fate
of the apices, the environment compares apex positions with leaf
cluster positions, and authorizes an apex to grow if it does not fall
into an existing leaf cluster, or if it falls into a cluster surrounding
an apex with a smaller vigor value.

The plant model. The plant model is expressed as an open L-
system. The values of constants are taken from [33].

#define r1 0.94 /* contraction ratio and vigor 1 */
#define r2 0.87 /* contraction ratio and vigor 2 */
#define�1 24.4 /* branching angle 1 */
#define�2 36.9 /* branching angle 2 */
#define' 138.5 /* divergence angle */
!: –(90)[F(1)?E(1)A(1)]+(')[F(1)/?E(1)A(1)]

+(')[F(1)?E(1)A(1)]+(')[F(1)/?E(1)A(1)]
+(')[F(1)?E(1)A(1)]

p1: ?E(x) < A(v) : x == 1 !
[+(�2)F(v*r2)?E(r2)A(v*r2)] –(�1)F(v*r1)/?E(r1)A(v*r1)

p2: ?E(x) ! "

The axiom ! specifies the initial structure as a whorl of five branch
segmentsF . The divergence angle' between consecutive segments
is equal to 138:5�. Each segment is terminated by a communication
symbol ?E followed by an apex A. In addition, two branches
include module =, which changes the directions at which subsequent
branches will be issued (left vs. right) by rotating the apex 180�

around the segment axis.

Production p1 describes the operation of the apices. If the value of
parameter x returned by a communication module ?E is not 1, the
associated apex will remain inactive (do nothing). Otherwise the
apex will produce a pair of new branch segments at angles�1 and�2

with respect to the mother segment. Constants r1 and r2 determine
the lengths of the daughter segments as fractions of the length of
their mother segment. The values r1 and r2 are also passed to the
process simulating the environment using communication modules
?E. Communication modules created in the previous derivation
step are no longer needed and are removed by production p2.
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Figure 5: Competition for space between two tiers of branches
simulated using the Honda model

Simulation. Figure 5 illustrates the competition for space between
two tiers developing next to each other. The extent of branching
in each tier is limited by collisions between its apices and its own
or the neighbor’s leaf clusters. The limited growth of each struc-
ture in the direction of its neighbor illustrates the phenomenon of
morphological plasticity, or adaptation of the form of plants to their
environment [17].

6 A MODEL OF FORAGING IN CLONAL PLANTS

Background. Foraging (propagation) patterns in clonal plants pro-
vide another excellent example of response to crowding. A clonal
plant spreads by means of horizontal stem segments (spacers),
which form a branching structure that grows along the ground and
connects individual plants (ramets) [3]. Each ramet consists of a
leaf supported by an upright stem and one or more buds, which may
give rise to further spacers and ramets. Their gradual death, after
a certain amount of time, causes gradual separation of the whole
structure (the clone) into independent parts.

Following the surface of the soil, clonal plants can be captured using
models operating in two dimensions [5], and in that respect resem-
ble Terminalia tiers. We propose a model of a hypothetical plant
that responds to favorable environmental conditions (high local in-
tensity of light) by more extensive branching and reduced size of
leaves (allowing for more dense packing of ramets). It has been
inspired by a computer model of clover outlined by Bell [4], the
analysis of responses of clonal plants to the environment presented
by Dong [17], and the computer models and descriptions of veg-
etative multiplication of plants involving the death of intervening
connections by Room [47].

Communication specification. The plant sends messages to the en-
vironment that include turtle position and two parameters associated
with the communications symbol, ?E(type; x). The first param-
eter is equal to 0, 1, or 2, and determines the type of exchanged
information as follows:

� The message ?E(0; x) represents a request for the light intensity
(irradiance [14]) at the position of the communication module.

The environment responds by setting x to the intensity of incom-
ing light, ranging from 0 (no light) to 1 (full light).

� The message ?E(1; x) notifies the environment about the creation
of a ramet with a leaf of radius x at the position of the commu-
nication module. No output is generated by the environment in
response to this message.

� The message ?E(2; x) notifies the environment about the death of
a ramet with a leaf of radius x at the position of the communica-
tion module. Again, no output is generated by the environment.

The model of the environment. The purpose of the environment
process is to determine light intensity at the locations requested
by the plant. The ground is divided into patches (specified as a
raster image using a paint program), with different light intensities
assigned to each patch. In the absence of shading, these intensities
are returned by the environmental process in response to messages
of type 0. To consider shading, the environment keeps track of the
set of ramets, adding new ramets in response to a messages of type
1, and deleting dead ramets in response to messages of type 2. If
a sampling point falls in an area occupied by a ramet, the returned
light intensity is equal to 0 (leaves are assumed to be opaque, and
located above the sampling points).

The plant model. The essential features of the plant model are
specified by the following open L-system.

#define� 45 /* branching angle */
#define MinLight 0.1 /* light intensity threshold */
#define MaxAge 20 /* lifetime of ramets and spacers */
#define Len 2.0 /* length of spacers */
#define ProbB (x) (0.12+x*0.42)
#define ProbR(x) (0.03+x*0.54)
#define Radius(x) (sqrt(15–x*5)/�)

!: A(1)?E(0,0)

p1: A(dir) > ?E(0,x) : x >= MinLight
! R(x)B(x,dir)F(Len,0)A(–dir)?E(0,0)

p2: A(dir) > ?E(0,x) : x < MinLight ! "

p3: B(x,dir) ! [+(�*dir)F(Len,0)A(–dir)?E(0,0)] : ProbB (x)
p4: B(x,dir) ! " : 1–ProbB (x)

p5: R(x) ! [@o(Radius(x),0)?E(1,Radius(x))] : ProbR(x)
p6: R(x) ! " : 1–ProbR(x)

p7: @o(radius,age): age < MaxAge !@o(radius,age+1)
p8: @o(radius,age): age == MaxAge ! ?E(2,radius)

p9: F(len,age): age < MaxAge ! F(len,age+1)
p10: F(len,age): age == MaxAge ! f(len)

p11: ?E(type,x) ! "

The initial structure specified by the axiom! consists of an apex A
followed by the communication module ?E. If the intensity of light
x reaching an apex is insufficient (below the thresholdMinLight),
the apex dies (production p2). Otherwise, the apex creates a ramet
initial R (i.e., a module that will yield a ramet), a branch initial
B, a spacer F , and a new apex A terminated by communication
module ?E (production p1). The parameter dir, valued either 1 or
-1, controls the direction of branching. Parameters of the spacer
module specify its length and age.
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A branch initial B may create a lateral branch with its own apex
A and communication module ?E (production p3), or it may die
and disappear from the system (production p4). The probability of
survival is an increasing linear function ProbB of the light intensity
x that has reached the mother apex A in the previous derivation
step. A similar stochastic mechanism describes the production of
a ramet by the ramet initial R (productions p5 and p6), with the
probability of ramet formation controlled by an increasing linear
function ProbR. The ramet is represented as a circle @o; its radius
is a decreasing function Radius of the light intensity x. As in the
case of spacers, the second parameter of a ramet indicates its age,
initially set to 0. The environment is notified about the creation of
the ramet using a communication module ?E.

The subsequent productions describe the aging of spacers (p7) and
ramets (p9). Upon reaching the maximum age MaxAge, a ramet is
removed from the system and a message notifying the environment
about this fact is sent by the plant (p8). The death of the spacers
is simulated by replacing spacer modules F with invisible line seg-
ments f of the same length. This replacement maintains the relative
position of the remaining elements of the structure. Finally, produc-
tion p11 removes communication modules after they have performed
their tasks.
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Figure 6: Division of
the ground into patches

Simulations. Division of the
ground into patches used in the sim-
ulations is shown in Figure 6. Ara-
bic numerals indicate the intensity
of incoming light, and Roman nu-
merals identify each patch. The de-
velopment of a clonal plant assum-
ing this division is illustrated in Fig-
ure 7. As an extension of the basic
model discussed above, the length
of the spacers and the magnitude of
the branching angle have been var-

ied using random functions with a normal distribution. Ramets have
been represented as trifoliate leaves.

The development begins with a single ramet located in relatively
good (light intensity 0.6) patch II at the top right corner of the growth
area (Figure 7, step 9 of the simulation). The plant propagates
through the unfavorable patch III without producing many branches
and leaves (step 26), and reaches the best patch I at the bottom left
corner (step 39). After quickly spreading over this patch (step 51),
the plant searches for further favorable areas (step 62). The first
attempt to reach patch II fails (step 82). The plant tries again, and
this time succeeds (steps 101 and 116). Light conditions in patch II
are not sufficient, however, to sustain the continuous presence of the
plant (step 134). The colony disappears (step 153) until the patch is
reached again by a new wave of propagation (steps 161 and 182).

The sustained occupation of patch I and the repetitive invasion of
patch II represent an emerging behavior of the model, difficult to
predict without running simulations. Variants of this model, includ-
ing other branching architectures, responses to the environment,
and layouts of patches in the environment, would make it possible
to analyze different foraging strategies of clonal plants. A further
extension could replace the empirical assumptions regarding plant
responses with a more detailed simulation of plant physiology (for
example, including production of photosynthates and their trans-
port and partition between ramets). Such physiological models
could provide insight into the extent to which the foraging patterns
optimize plants’ access to resources [17].

Figure 7: Development of a hypothetical clonal plant simulated
using an extension of L-system 3. The individual images represent
structures generated in 9, 26, 39, 51, 62, and 82 derivation steps
(top), followed by structures generated in 101, 116, 134, 153, 161,
and 182 steps (bottom).

7 A MODEL OF ROOT DEVELOPMENT

Background. The development of roots provides many examples
of complex interactions with the environment, which involve me-
chanical properties, chemical reactions, and transport mechanisms
in the soil. In particular, the main root and the rootlets absorb water
from the soil, locally changing its concentration (volume of water
per unit volume of soil) and causing water motion from water-rich to
depleted regions [24]. The tips of the roots, in turn, follow the gra-
dient of water concentration [12], thus adapting to the environment
modified by their own activities.

Below we present a simplified implementation of the model of root
development originally proposed by Clausnitzer and Hopmans [12].
We assume a more rudimentary mechanism of water transport,
namely diffusion in a uniform medium, as suggested by Liddell
and Hansen [37]. The underlying model of root architecture is sim-
ilar to that proposed by Diggle [16]. For simplicity, we focus on
model operation in two-dimensions.

Communication specification. The plant interacts with the en-
vironment using communication modules ?E(c; �) located at the
apices of the root system. A message sent to the environment in-
cludes the turtle position ~P , the heading vector ~H, the value of
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parameter c representing the requested (optimal) water uptake, and
the value of parameter � representing the tendency of the apex to
follow the gradient of water concentration. A message returned to
the plant specifies the amount of water actually received by the apex
as the value of parameter c, and the angle biasing direction of further
growth as the value of �.

H

θin∇C

∇C

θout

 →

T
 →

Figure 8: Definition of
the biasing angle �out

The model of the environment.
The environment maintains a field
C of water concentrations, repre-
sented as an array of the amounts
of water in square sampling areas.
Water is transported by diffusion,
simulated numerically using finite
differencing [41]. The environ-
ment responds to a request for wa-
ter from an apex located in an area
(i; j) by granting the lesser of the

values requested and available at that location. The amount of water
in the sampled area is then decreased by the amount received by the
apex. The environment also calculates a linear combination ~T of
the turtle heading vector ~H and the gradient of water concentration
rC (estimated numerically from the water concentrations in the
sampled area and its neighbors), and returns an angle � between the
vectors ~T and ~H (Figure 8). This angle is used by the plant model
to bias turtle heading in the direction of high water concentration.

The root model. The open L-system representing the root model
makes use of arrays that specify parameters for each branching order
(main axis, its daughter axes, etc.). The parameter values are loosely
based on those reported by Clausnitzer and Hopmans [12].

#define N 3 /* max. branching order + 1 */
Define: f array
Req[N] = f0.1, 0.4, 0.05g, /* requested nutrient intake */
MinReq[N] = f0.01, 0.06, 0.01g, /* minimum nutrient intake */
ElRate[N] = f0.55, 0.25, 0.55g, /* maximum elongation rate */
MaxLen[N] = f200, 5, 0.8g, /* maximum branch length */
Sens[N] = f10, 0, 0g, /* sensitivity to gradient */
Dev[N] = f30, 75, 75g, /* deviation in heading */
Del[N–1] = f30, 60g, /* delay in branch growth */
BrAngle[N–1] = f90, 90g, /* branching angle */
BrSpace[N–1] = f1, 0.5g /* distance between branches */
g

!: A(0,0,0)?E(Req[0],Sens[0])

p1: A(n,s,b) > ?E(c,�) : (s > MaxLen[n]) || (c < MinReq[n]) ! "

p2: A(n,s,b) > ?E(c,�) :
(n >= N–1) || (b < BrSpace[n]) fh=c/Req[n]*ElRate[n];g
! +(nran(�,Dev[n]))F(h) A(n,s+h,b+h)?E(Req[n],Sens[n])

p3: A(n,s,b) > ?E(c,�) :
(n < N–1) && (b >= BrSpace[n]) fh=c/Req[n]*ElRate[n];g
! +(nran(�,Dev[n]))B(n,0)F(h)

/(180)A(n,s+h,h)?E(Req[n],Sens[n])

p4: B(n,t) : t < Del[n] ! B(n,t+1)
p5: B(n,t) : t >= Del[n]

! [+(BrAngle[n])A(n+1,0,0)?E(Req[n+1],Sens[n+1])]
p6: ?E(c,�) ! "

The development starts with an apex A followed by a communica-
tion module ?E. The parameters of the apex represent the branch
order (0 for the main axis, 1 for its daughter axes, etc.), current axis
length, and distance (along the axis) to the nearest branching point.

Figure 9: A two-dimensional model of a root interacting with water
in soil. Background colors represent concentrations of water diffus-
ing in soil (blue: high, black: low). The initial and boundary values
have been set using a paint program.

Figure 10: A three-dimensional extension of the root model. Water
concentration is visualized by semi-transparent iso-surfaces [55]
surrounding the roots. As a result of competition for water, the
roots grow away from each other. The divergence between their
main axes depends on the spread of the rootlets, which grow faster
on the left then on the right.

Productions p1 to p3 describe possible fates of the apex as described
below.

If the length s of a branch axis exceeds a predefined maximum value
MaxLen[n] characteristic to the branch order n, or the amount
of water c received by the apex is below the required minimum
MinReq[n], the apex dies, terminating the growth of the axis (pro-
duction p1).

If the branch order n is equal to the maximum value assumed in the
model (N � 1), or the distance b to the closest branching point on
the axis is less than the threshold value BrSpace[n], the apex adds
a new segment F to the axis (production p2). The length h of F
is the product of the nominal growth increment ElRate[n] and the
ratio of the amount of water received by the apex c to the amount
requested Req[n]. The new segment is rotated with respect to its
predecessor by an angle nran(�;Dev[n]), where nran is a random
function with a normal distribution. The mean value �, returned by
the environment, biases the direction of growth towards regions of
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higher water concentration. The standard deviation Dev[n] char-
acterizes the tendency of the root apex to change direction due to
various factors not included explicitly in the model.

If the branch order n is less than the maximum value assumed in the
model (N � 1), and the distance b to the closest branching point on
the axis is equal to or exceeds the threshold value BrSpace[n], the
apex creates a new branch initial B (production p3). Other aspects
of apex behavior are the same as those described by production p2.

After the delay of Del[n] steps (production p4), the branch initial B
is transformed into an apex A followed by the communication mod-
ule ?E (production p5), giving rise to a new root branch. Production
p6 removes communication modules that are no longer needed.

Simulations. A sample two-dimensional structure obtained using
the described model is shown in Figure 9. The apex of the main axis
follows the gradient of water concentration, with small deviations
due to random factors. The apices of higher-order axes are not
sensitive to the gradient and change direction at random, with a
larger standard deviation. The absorption of water by the root and
the rootlets decreases water concentration in their neighborhood;
an effect that is not fully compensated by water diffusion from the
water-rich areas. Low water concentration stops the development
of some rootlets before they have reached their potential full length.

Figure 10 presents a three-dimensional extension of the previous
model. As a result of competition for water, the main axes of the
roots diverge from each other (left). If their rootlets grow more
slowly, the area of influence of each root system is smaller and
the main axes are closer to each other (right). This behavior is
an emergent property of interactions between the root modules,
mediated by the environment.

8 MODELS OF TREES CONTROLLED BY LIGHT

Background. Light is one of the most important factors affect-
ing the development of plants. In the essentially two-dimensional
structures discussed in Section 5, competition for light could be
considered in a manner similar to collision detection between leaves
and apices. In contrast, competition for light in three-dimensional
structures must be viewed as long-range interaction. Specifically,
shadows cast by one branch may affect other branches at significant
distances.

The first simulations of plant development that take the local light
environment into account are due to Greene [25]. He considered
the entire sky hemisphere as a source of illumination and computed
the amount of light reaching specific points of the structure by
casting rays towards a number of points on the hemisphere. Another
approach was implemented by Kanamaru et al. [35], who computed
the amount of light reaching a given sampling point by considering
it a center of projection, from which all leaf clusters in a tree were
projected on a surrounding hemisphere. The degree to which the
hemisphere was covered by the projected clusters indicated the
amount of light received by the sampling point. In both cases,
the models of plants responded to the amount and the direction
of light by simulating heliotropism, which biased the direction of
growth towards the vector of the highest intensity of incoming light.
Subsequently, Chiba et al. extended the models by Kanamaru et
al. using more involved tree models that included a mechanism
simulating the flow of hypothetical endogenous information within
the tree [10, 11]. A biologically better justified model, formulated
in terms of production and use of photosynthates by a tree, was

proposed by Takenaka [52]. The amount of light reaching leaf
clusters was calculated by sampling a sky hemisphere, as in the work
by Greene. Below we reproduce the main features of the Takenaka’s
model using the formalism of open L-systems. Depending on the
underlying tree architecture, it can be applied to synthesize images
of deciduous and coniferous trees. We focus on a deciduous tree,
which requires a slightly smaller number of productions.

Communication specification. The plant interacts with the envi-
ronment using communication modules ?E(r). A message sent by
the plant includes turtle position ~P , which represents the center of a
spherical leaf cluster, and the value of parameter r, which represents
the cluster’s radius. The environment responds by setting r to the
flux [14] of light from the sky hemisphere, reaching the cluster.

The model of the environment. Once all messages describing
the current distribution of leaves on a tree have been received, the
environmental process computes the extent of the tree in the x, y,
and z directions, encompasses the tree in a tight grid (32 � 32 �
32 voxels in our simulations), and allocates leaf clusters to voxels
to speed up further computations. The environmental process then
estimates the light flux Φ from the sky hemisphere reaching each
cluster (shadows cast by the branches are ignored). To this end,
the hemisphere is represented by a set of directional light sources
S (9 in the simulations). The flux densities (radiosities) B of the
sources approximate the non-uniform distribution of light from the
sky (cf. [52]). For each leaf cluster Li and each light source S, the
environment determines the set of leaf clusters Lj that may shade
Li. This is achieved by casting a ray from the center of Li in the
direction of S and testing for intersections with other clusters (the
grid accelerates this process). In order not to miss any clusters that
may partially occlude Li, the radius of each cluster Lj is increased
by the maximum value of cluster radius rmax.

To calculate the flux reaching cluster Li, this cluster and all clusters
Lj that may shade it according to the described tests are projected
on a plane P perpendicular to the direction of light from the source
S. The impact of a cluster Lj on the flux Φ reaching cluster Li is
then computed according to the formula:

Φ = (Ai �Aij)B +Aij�B

where Ai is the area of the projection of Li on P , Aij is the area
of the intersection between projections of Li and Lj , and � is the
light transmittance through leaf cluster Lj (equal to 0.25 in the
simulations). If several clusters Lj shade Li, their influences are
multiplied. The total flux reaching cluster Li is calculated as the
sum of the fluxes received from each light source S.

The plant model. In addition to the communication module ?E,
the plant model includes the following types of modules:

� Apex A(vig; del). Parameter vig represents vigor, which deter-
mines the length of branch segments (internodes) and the diam-
eter of leaf clusters produced by the apex. Parameter del is used
to introduce a delay, needed for propagating products of photo-
synthesis through the tree structure between consecutive stages
of development (years).

� Leaf L(vig; p; age; del). Parameters denote the leaf radius vig,
the amount of photosynthates produced in unit time according
to the leaf’s exposure to light p, the number of years for which
a leaf has appeared at a given location age, and the delay del,
which plays the same role as in the apices.

� Internode F (vig). Consistent with the turtle interpretation, the
parameter vig indicates the internode length.
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� Branch width symbol !(w; p; n), also used to carry the endoge-
nous information flow. The parameters determine: the width of
the following internode w, the amount of photosynthates reach-
ing the symbol’s location p, and the number of terminal branch
segments above this location n.

The corresponding L-system is given below.

#define' 137.5 /* divergence angle */
#define�0 5 /* direction change - no branching */
#define�1 20 /* branching angle - main axis */
#define�2 32 /* branching angle - lateral axis */
#define W 0.02 /* initial branch width */
#define VD 0.95 /* apex vigor decrement */
#define Del 30 /* delay */
#define LS 5 /* how long a leaf stays */
#define LP 8 /* full photosynthate production */
#define LM 2 /* leaf maintenance */
#define PB 0.8 /* photosynthates needed for branching */
#define PG 0.4 /* photosynthates needed for growth */
#define BM 0.32 /* branch maintenance coefficient */
#define BE 1.5 /* branch maintenance exponent */
#define Nmin 25 /* threshold for shedding */
Consider: ?E[]!L /* for context matching */

!: !(W,1,1)F(2)L(1,LP,0,0)A(1,0)[!(0,0,0)]!(W,0,1)

p1: A(vig,del) : del<Del ! A(vig,del+1)
p2: L(vig,p,age,del) : (age<LS)&&(del<Del–1) ! L(vig,p,age,del+1)
p3: L(vig,p,age,del) : (age<LS)&&(del==Del–1)

! L(vig,p,age,del+1)?E(vig*0.5)
p4: L(vig,p,age,del) > ?E(r) : (age<LS) && (r*LP>=LM)

&& (del == Del)! L(vig,LP*r–LM,age+1,0)
p5: L(vig,p,age,del) > ?E(r) : ((age == LS)||(r*LP<=LM))

&& (del == Del) ! L(0,0,LS,0)

p6: ?E(r) < A(vig,del) : r*LP–LM>PB fvig=vig*VD;g
! /(')[+(�2)!(W,–PB,1)F(vig)L(vig,LP,0,0)A(vig,0)

[!(0,0,0)]!(W,0,1)]
–(�1)!(W,0,1)F(vig)L(vig,LP,0,0)/A(vig,0)

p7: ?E(r) < A(vig,del) : r*LP–LM > PG fvig=vig*VD;g
! /(')–(�0)[!(0,0,0)]

!(W,–PG,1)F(vig)L(vig,LP,0,0)A(vig,0)
p8: ?E(r) < A(vig,del) : r*LP–LM <= PG ! A(vig,0)
p9: ?E(r) ! "

p10: !(w0,p0,n0) > L(vig,pL,age,del) [!(w1,p1,n1)]!(w2,p2,n2) :
fw=(w1ˆ2+w2ˆ2)ˆ0.5; p=p1+p2+pL–BM*(w/W)ˆBE;g
(p>0) || (n1+n2 >=Nmin) ! !(w,p,n1+n2)

p11: !(w0,p0,n0) > L(vig,pL,age,del) [!(w1,p1,n1)]!(w2,p2,n2)
! !(w0,0,0)L%

The simulation starts with a structure consisting of a branch segment
F , supporting a leaf L and an apex A (axiom !). The first branch
width symbol ! defines the segment width. Two additional symbols
! following the apex create “virtual branches," needed to provide
proper context for productions p10 and p11. The tree grows in stages,
with the delay of Del + 1 derivation steps between consecutive
stages introduced by production p1 for the apices and p2 for the
leaves. Immediately before each new growth stage, communication
symbols are introduced to inform the environment about the location
and size of the leaf clusters (p3). If the flux r returned by the
environment results in the production of photosynthates r � LP

exceeding the amount LM needed to maintain a cluster, it remains
in the structure (p4). Otherwise it becomes a liability to the tree and
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Figure 11: The number of terminal branch segments resulting from
unrestricted bifurcation of apices (continuous line), compared to the
number of segments generated in a simulation (isolated points)

dies (p5). Another condition to production p5 prevents a leaf from
occupying the same location for more than LS years.

The flux r also determines the fate of the apex, captured by pro-
ductions p6 to p8. If the amount of photosynthates r � LP � LM

transported from the nearby leaf exceeds a threshold value PB, the
apex produces two new branches (p6). The second parameter in
the first branch symbol ! is set to�PB, to subtract the amount
of photosynthates used for branching from the amount that will be
transported further down. The length of branch segments vig is
reduced with respect to the mother segment by a predefined factor
V D, reflecting a gradual decrease in the vigor of apices with age.
The branch width modules ! following the first apexA are intro-
duced to provide context required by productions p10 and p11, as in
the axiom.

If the amount of photosynthates r �LP �LM transported from the
leaf is insufficient to produce new branches, but above the threshold
PG, the apex adds a new segment F to the current branch axis
without creating a lateral branch (p7). Again, a virtual branch
containing the branch width symbol ! is being added to provide
context for productions p10 and p11.

If the amount of photosynthates is below PG, the apex remains dor-
mant (p8). Communication modules no longer needed are removed
from the structure (p9).

Production p10 captures the endogenous information flow from
leaves and terminal branch segments to the base of the tree. First, it
determines the radius w of the mother branch segment as a function
of the radii w1 and w2 of the supported branches:

w =
p
w2

1 + w2
2:

Thus, a cross section of the mother segment has an area equal to the
sum of cross sections of the supported segments, as postulated in
the literature [40, 46]. Next, production p10 calculates the flow p of
photosynthates into the mother segment. It is defined as the sum of
the flows pL, p1 and p2 received from the associated leafL and from
both daughter branches, decreased by the amountBM �(w=W )BE

representing the cost of maintaining the mother segment. Finally,
production p10 calculates the number of terminal branch segments
n supported by the mother segment as the sum of the numbers of
terminal segments supported by the daughter branches, n1 and n2.

Production p10 takes effect if the flow p is positive (the branch is
not a liability to the tree), or if the number n of supported terminals
is above a threshold Nmin. If these conditions are not satisfied,
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Figure 12: A tree model with branches competing for access to
light, shown without the leaves

Figure 13: A climbing plant growing on the tree from the previous
figure

production p11 removes (sheds) the branch from the tree using the
cut symbol %.

Simulations. The competition for light between tree branches is
manifested by two phenomena: reduced branching or dormancy
of apices in unfavorable local light conditions, and shedding of

Figure 14: A model of deciduous trees competing for light. The
trees are shown in the position of growth (top) and moved apart
(bottom) to reveal the adaptation of crown geometry to the presence
of the neighbor tree.

branches which do not receive enough light to contribute to the
whole tree. Both phenomena limit the extent of branching, thus
controlling the density of the crown. This property of the model
is supported by the simulation results shown in Figure 11. If the
growth was unlimited (production p6 was always chosen over p7

and p8), the number of terminal branch segments would double
every year. Due to the competition for light, however, the number
of terminal segments observed in an actual simulation increases
more slowly. For related statistics using a different tree architecture
see [52].

A tree image synthesized using an extension of the presented model
is shown in Figure 12. The key additional feature is a gradual
reduction of the branching angle of a young branch whose sister
branch has been shed. As the result, the remaining branch assumes
the role of the leading shoot, following the general growth direction
of its supporting segment. Branch segments are represented as
texture-mapped generalized cylinders, smoothly connected at the
branching points (cf. [6]). The bark texture was created using a
paint program.

As an illustration of the flexibility of the modeling framework pre-
sented in this paper, Figure 13 shows the effect of seeding a hypo-
thetical climbing plant near the same tree. The plant follows the
surface of the tree trunk and branches, and avoids excessively dense
colonization of any particular area. Thus, the model integrates sev-
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Figure 15: A model of coniferous trees competing for light. The
trees are shown in the position of growth (top) and moved apart
(bottom).

eral environmentally-controlled phenomena: the competition of tree
branches for light, the following of surfaces by a climbing plant, and
the prevention of crowding as discussed in Section 6. Leaves were
modeled using cubic patches (cf. [46]).

In the simulations shown in Figure 14 two trees described by the
same set of rules (younger specimens of the tree from Figure 12)
compete for light from the sky hemisphere. Moving the trees apart
after they have grown reveals the adaptation of their crowns to the
presence of the neighbor tree. This simulation illustrates both the
necessity and the possibility of incorporating the adaptive behavior
into tree models used for landscape design purposes.

The same phenomenon applies to coniferous trees, as illustrated
in Figure 15. The tree model is similar to the original model by
Takenaka [52] and can be viewed as consisting of approximately
horizontal tiers (as discussed in Section 5) produced in sequence
by the apex of the tree stem. The lower tiers are created first and
therefore potentially can spread more widely then the younger tiers
higher up (the phase effect [46]). This pattern of development is
affected by the presence of the neighboring tree: the competition
for light prevents the crowns from growing into each other.

The trees in Figure 15 retain branches that do not receive enough
light. In contrast, the trees in the stand presented in Figure 16 shed
branches that do not contribute photosynthates to the entire tree,

Figure 16: Relationship between tree form and its position in a
stand.

using the same mechanism as described for the deciduous trees.
The resulting simulation reveals essential differences between the
shape of the tree crown in the middle of a stand, at the edge, or
at the corner. In particular, the tree in the middle retains only
the upper part of its crown. In lumber industry, the loss of lower
branches is usually a desirable phenomenon, as it reduces knots
in the wood and the amount of cleaning that trees require before
transport. Simulations may assist in choosing an optimal distance
for planting trees, where self-pruning is maximized, yet there is
sufficient space between trees too allow for unimpeded growth of
trunks in height and diameter.

9 CONCLUSIONS

In this paper, we introduced a framework for the modeling and visu-
alization of plants interacting with their environment. The essential
elements of this framework are:

� a system design, in which the plant and the environment are
treated as two separate processes, communicating using a stan-
dard interface, and

� the language of open L-systems, used to specify plant models
that can exchange information with the environment.

We demonstrated the operation of this framework by implementing
models that capture collisions between branches, the propagation of
clonal plants, the development of roots in soil, and the development
of tree crowns competing for light. We found that the proposed
framework makes it possible to easily create and modify models
spanning a wide range of plant structures and environmental pro-
cesses. Simulations of the presented phenomena were fast enough
to allow interactive experimentation with the models (Table 1).

There are many research topics that may be addressed using the
simulation and visualization capabilities of the proposed framework.
They include, for instance:

� Fundamental analysis of the role of different forms of informa-
tion flow in plant morphogenesis (in particular, the relationship
between endogenous and exogenous flow). This is a continuation
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Number of Derivation Timea

Fig. branch leaf steps yrs sim. render.
segments clusters

5 138 140 5 5 1 s 1 s
7 786 229 182 NA 50 s 2 s
9 4194 34b 186 NA 67 s 3 s

10 37228 448b 301 NA 15 min 70 s
12 22462 19195 744 24 22 min 13 sc

15 13502 3448 194 15 4 min 8 sd

aSimulation and rendering using OpenGL on a 200MHz/64MB Indigo2 Extreme
bactive apices
cwithout generalized cylinders and texture mapping
dbranching structure without needles

Table 1: Numbers of primitives and simulation/rendering times for
generating and visualizing selected models

of the research pioneered by Bell [4] and Honda et al. [7, 33].

� Development of a comprehensive plant model describing the
cycling of nutrients from the soil through the roots and branches
to the leaves, then back to the soil in the form of substances
released by fallen leaves.

� Development of models of specific plants for research, crop and
forest management, and for landscape design purposes. The
models may include environmental phenomena not discussed in
this paper, such as the global distribution of radiative energy in
the tree crowns, which affects the amount of light reaching the
leaves and the local temperature of plant organs.

The presented framework itself is also open to further research. To
begin, the precise functional specification of the environment, im-
plied by the design of the modeling framework, is suitable for a
formal analysis of algorithms that capture various environmental
processes. This analysis may highlight tradeoffs between time,
memory, and communication complexity, and lead to programs
matching the needs of the model to available system resources in an
optimal manner.

A deeper understanding of the spectrum of processes taking place in
the environment may lead to the design of a mini-language for envi-
ronment specification. Analogous to the language of L-systems for
plant specification, this mini-language would simplify the modeling
of various environments, relieving the modeler from the burden of
low-level programming in a general-purpose language. Fleischer
and Barr’s work on the specification of environments supporting
collisions and reaction-diffusion processes [20] is an inspiring step
in this direction.

Complexity issues are not limited to the environment, but also arise
in plant models. They become particularly relevant as the scope of
modeling increases from individual plants to groups of plants and,
eventually, entire plant communities. This raises the problem of
selecting the proper level of abstraction for designing plant models,
including careful selection of physiological processes incorporated
into the model and the spatial resolution of the resulting structures.

The complexity of the modeling task can be also addressed at the
level of system design, by assigning various components of the
model (individual plants and aspects of the environment) to different
components of a distributed computing system. The communication
structure should then be redesigned to accommodate information

transfers between numerous processes within the system.

In summary, we believe that the proposed modeling methodology
and its extensions will prove useful in many applications of plant
modeling, from research in plant development and ecology to land-
scape design and realistic image synthesis.
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Abstract

Modeling and rendering of natural scenes with thousands of plants
poses a number of problems. The terrain must be modeled and plants
must be distributed throughout it in a realistic manner, reflecting the
interactions of plants with each other and with their environment.
Geometric models of individual plants, consistent with their po-
sitions within the ecosystem, must be synthesized to populate the
scene. The scene, which may consist of billions of primitives, must
be rendered efficiently while incorporating the subtleties of lighting
in a natural environment.

We have developed a system built around a pipeline of tools that
address these tasks. The terrain is designed using an interactive
graphical editor. Plant distribution is determined by hand (as one
would do when designing a garden), by ecosystem simulation, or by
a combination of both techniques. Given parametrized procedural
models of individual plants, the geometric complexity of the scene is
reduced byapproximate instancing, in which similar plants, groups
of plants, or plant organs are replaced by instances of representative
objects before the scene is rendered. The paper includes examples
of visually rich scenes synthesized using the system.

CR categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, I.6.3[Simulation and Modeling]: Appli-
cations, J.3[Life and Medical Sciences]: Biology.

Keywords: realistic image synthesis, modeling of natural phenom-
ena, ecosystem simulation, self-thinning, plant model, vector quan-
tization, approximate instancing.

1 INTRODUCTION

Synthesis of realistic images of terrains covered with vegetation is
a challenging and important problem in computer graphics. The
challenge stems from the visual complexity and diversity of the
modeled scenes. They include natural ecosystems such as forests or
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grasslands, human-made environments, for instance parks and gar-
dens, and intermediate environments, such as lands recolonized by
vegetation after forest fires or logging. Models of these ecosystems
have a wide range of existing and potential applications, including
computer-assisted landscape and garden design, prediction and vi-
sualization of the effects of logging on the landscape, visualization
of models of ecosystems for research and educational purposes,
and synthesis of scenes for computer animations, drive and flight
simulators, games, and computer art.

Beautiful images of forests and meadows were created as early
as 1985 by Reeves and Blau [50] and featured in the computer
animationThe Adventures of André and Wally B.[34]. Reeves and
Blau organized scene modeling as a sequence of steps: specification
of a terrain map that provides the elevation of points in the scene,
interactive or procedural placement of vegetation in this terrain,
modeling of individual plants (grass and trees), and rendering of the
models. This general scheme was recently followed by Chibaet
al. [8] in their work on forest rendering, and provides the basis for
commercial programs devoted to the synthesis of landscapes [2, 49].

The complexity of nature makes it necessary to carefully allot com-
puting resources — CPU time, memory, and disk space — when
recreating natural scenes with computer graphics. The size of the
database representing a scene during the rendering is a particularly
critical item, since the amount of geometric data needed to represent
a detailed outdoor scene is more than can be represented on modern
computers. Consequently, a survey of previous approaches to the
synthesis of natural scenes reflects the quest for a good tradeoff be-
tween the realism of the images and the amount of resources needed
to generate them.

The scenes synthesized by Reeves and Blau were obtained using
(structured) particle systems, with the order of one million particles
per tree [50]. To handle large numbers of primitive elements con-
tributing to the scene, the particle models of individual trees were
generated procedurally and rendered sequentially, each model dis-
carded as soon as a tree has been rendered. Consequently, the size
of memory needed to generate the scene was proportional to the
number of particles in a single tree, rather than the total number of
particles in the scene. This approach required approximate shading
calculations, since the detailed information about the neighborhood
trees was not available. Approximate shading also reduced the time
needed to render the scenes.

Another approach to controlling the size of scene representation
is the reduction of visually unimportant detail. General methods
for achieving this reduction have been the subject of intense re-
search (for a recent example and further references see [24]), but
the results do not easily apply to highly branching plant structures.
Consequently, Weber and Penn [63] introduced a heuristic multires-
olution representation specific to trees, which allows for reducing
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the number of geometric primitives in the models that occupy only
a small portion on the screen. A multiresolution representation of
botanical scenes was also explored by Marshallet al. [35], who in-
tegrated polygonal representations of larger objects with tetrahedral
approximations of the less relevant parts of a scene.

A different strategy for creating visually complex natural scenes
was proposed by Gardner [17]. In this case, the terrain and the
trees were modeled using a relatively small number of geometric
primitives (quadric surfaces). Their perceived complexity resulted
from procedural textures controlling the color and the transparency
of tree crowns. In a related approach, trees and other plants were
represented as texture-mapped flat polygons (for example, see [49]).
This approach produced visible artifacts when the position of the
viewpoint was changed. A more accurate image-based representa-
tion was introduced by Max [37], who developed an algorithm for
interpolating between precomputed views of trees. A multiresolu-
tion extension of this method, taking advantage of the hierarchical
structure of the modeled trees, was presented in [36]. Shadeet al.
described a hybrid system for walkthroughs that uses a combination
of geometry and textured polygons [53].

Kajiya and Kay [26] introduced volumetric textures as an alter-
native paradigm for overcoming the limitations of texture-mapped
polygons. A method for generating terrains with volumetric textures
representing grass and trees was proposed by Neyret [40, 41]. Chiba
et al. [8] removed the deformations of plants caused by curvatures
of the underlying terrain by allowing texels to intersect.

The use of volumetric textures limits the memory or disk space
needed to represent a scene, because the same texel can be re-applied
to multiple areas. The same idea underlies the oldest approach to
harnessing visually complex scenes, object instancing [59]. Ac-
cording to the paradigm of instancing, an object that appears sev-
eral times in a scene (possibly resized or deformed by an affine
transformation) is defined only once, and its different occurrences
(instances) are specified by affine transformations of the prototype.
Since the space needed to represent the transformations is small,
the space needed to represent an entire scene depends primarily
on the number and complexity ofdifferentobjects, rather than the
number of their instances. Plants are particularly appealing objects
of instancing, because repetitive occurrences can be found not only
at the level of plant species, but also at the level of plant organs
and branching structures. This leads to compact hierarchical data
structures conducive to fast ray tracing, as discussed by Kay and
Kajiya [27], and Snyder and Barr [56]. Hart and DeFanti [20, 21]
further extended the paradigm of instancing from hierarchical to
recursive (self-similar) structures. All the above papers contain
examples of botanical scenes generated using instancing.

The complexity of natural scenes makes them not only difficult to
render, but also to specify. Interactive modeling techniques, avail-
able in commercial packages such as Alias/Wavefront Studio 8 [1],
focus on the direct manipulation of a relatively small number of
surfaces. In contrast, a landscape with plants may include many
millions of individual surfaces — representing stems, leaves, flow-
ers, and fruits — arranged into complex branching structures, and
further organized in an ecosystem. In order to model and render
such scenes, we employ the techniques summarized below.

Multilevel modeling and rendering pipeline. Following the ap-
proach initiated by Reeves and Blau [50], we decompose the process
of image synthesis into stages: modeling of the terrain, specifica-
tion of plant distribution, modeling of the individual plants, and
rendering of the entire scene. Each of these stages operates at a
different level of abstraction, and provides a relatively high-level
input for the next stage. Thus, the modeler is not concerned with

plant distribution when specifying the terrain, and plant distribution
is determined (interactively or algorithmically) without considering
details of the individual plants. This is reminiscent of the simu-
lations of flocks of birds [51], models of flower heads with phyl-
lotactic patterns [16], and models of organic structures based on
morphogenetic processes [14], where simulations were performed
using geometrically simpler objects than those used for visualiza-
tion. Blumberg and Galyean extended this paradigm tomulti-level
direction of autonomous animated agents [5]. In an analogous way,
we apply it to multi-level modeling.

Open system architecture. By clearly specifying the formats of
inputs and outputs for each stage of the pipeline, we provide a
framework for incorporating independently developed modules into
our system. This open architecture makes it possible to augment
the complexity of the modeled scenes by increasing the range of
the available modules, and facilitates experimentation with various
approaches and algorithms.

Procedural models. As observed by Smith [55], procedural models
are often characterized by a significantdata-base amplification,
which means that they can generate complex geometric structures
from small input data sets. We benefit from this phenomenon by
employing procedural models in all stages of the modeling pipeline.

Approximate instancing. We use object instancing as the primary
paradigm for reducing the size of the geometric representation of
the rendered scenes. To increase the degree of instancing, we cluster
scene components (plants and their parts) in their parameter spaces,
and approximate all objects within a given cluster with instances of
a single representative object. This idea was initially investigated by
Brownbill [7]; we extend it further by applying vector quantization
(c.f. [18]) to find the representative objects in multidimensional
parameter spaces.

Efficient rendering. We use memory- and time-efficient render-
ing techniques: decomposition of the scenes into subscenes that
are later composited [12], ray tracing with instancing and a sup-
port for rendering many polygons [56], and memory-coherent ray
tracing [43] with instancing.

By employing these techniques, we have generated scenes with up
to 100,000 detailed plant models. This number could be increased
even further, since none of the scenes required more than 150MB
to store. However, with 100,000 plants, each plant is visible on
average only in 10 pixels of a 1K� 1K image. Consequently, we
seem to have reached the limits of useful scene complexity, because
the level of visible detail is curbed by the size and resolution of the
output device.

2 SYSTEM ARCHITECTURE

The considerations presented in the previous section led us to the
modular design of our modeling and rendering systemEcoSys,
shown schematically in Figure 1.

The modeling process begins with the specification of a terrain. For
this purpose, we developed an interactive editorTerEdit, which
integrates a number of terrain modeling techniques (Section 3). Its
output, aterrain datafile, includes the altitudes of a grid of points su-
perimposed on the terrain, normal vectors indicating the local slope
of the terrain, and optional information describing environmental
conditions, such as soil humidity.

The next task is to determine plant distribution on a given terrain. We
developed two techniques for this purpose: visual editing of plant
densities and simulation of plant interactions within an ecosystem
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Figure 1: Architecture of the scene synthesis system. Bold frames
indicate interactive programs and input files specified by the user.

(Section 4). The editing approach is particularly well suited to model
environments designed by people, for example orchards, gardens,
or parks. The user specifies the distribution of plant densities using
a paint program. To convert this information into positions of
individual plants, we developed the programdensedis based on
a half-toning algorithm: each dot becomes a plant. We can also
specify positions of individual plants explicitly; this is particularly
important in the synthesis of scenes that include detailed views of
individual plants in the foreground.

To define plant distribution in natural environments, such as forests
or meadows, we apply an ecosystem simulation model. Its input
consists of terrain data, ecological characteristics of plant species
(for example, annual or perennial growth and reproduction cycle,
preference for wet or dry soil, and shade tolerance) and, optionally,
the initial distribution of plants. The growth of plants is simu-
lated accounting for competition for space, sunlight, resources in
the soil, aging and death, seed distribution patterns,etc. We per-
form these simulations using the L-system-based plant modeling
programcpfg [47], extended with capabilities for simulating in-
teractions between plants and their environments [39]. To allow for
simulations involving thousands of plants, we use their simplified
geometrical representations, which are subsequently replaced by
detailed plant models for visualization purposes.

Specification of a plant distribution may involve a combination of
interactive and simulation techniques. For example, a model of an
orchard may consist of trees with explicitly specified positions and
weeds with positions determined by a simulation. Conversely, the
designer of a scene may wish to change its aspects after an ecological
simulation for aesthetic reasons. To allow for these operations, both
densedis andcpfg can take a given plant distribution as input
for further processing.

Plant distribution, whether determined interactively or by ecosystem
simulation, is represented in anecosystemfile. It contains the
information about the type, position and orientation of each plant

(which is needed to assemble the final scene), and parameters of
individual plants (which are needed to synthesize their geometric
models).

Since we wish to render scenes that may include thousands of plants,
each possibly with many thousands of polygons, the creation and
storage of a separate geometric plant model for each plant listed in
the ecosystem file is not practical. Consequently, we developed a
programquantv that clusters plants in their parameter space and
determines a representative plant for each cluster (Section 6). The
algorithm performs quantization adaptively, thus the result depends
on the characteristics of plants in the ecosystem. The quantization
process produces two outputs: aplant parameterfile, needed to
create geometric models of the representative plants, and aquantized
ecosystemfile, which specifies positions and orientations of the
instances of representative plants throughout the scene.

We employ two modeling programs to create the representative
plants: the interactive plant modelerxfrog [10, 32, 33] and the
L-system-based simulatorcpfg [39, 47]. These programs input
parametrizedprocedural plant modelsand generate specificgeo-
metric plant modelsaccording to the values in the plant parameter
file (Section 5). To reduce the amount of geometric data, we ex-
tended the concept of instancing and quantization to components
of plants. Thus, if a particular plant or group of plants has several
parts (such as branches, leaves, or flowers) that are similar in their
respective parameter spaces, we replace all occurrences of these
parts with instances of a representative part.

Finally, the ecosystem is rendered. The input for rendering con-
sists of the quantized ecosystem file and the representative plant
models. Additional information may include geometry of the ter-
rain and human-made objects, such as houses or fences. In spite
of the quantization and instancing, the resulting scene descriptions
may still be large. We experimented with three renderers to handle
this complexity (Section 7). One renderer, calledfshade, de-
composes the scene into sub-scenes that are rendered individually
and composited to form final images. Unfortunately, separating
the scene into sub-scenes makes it impossible to properly capture
global illumination effects. To alleviate this problem, we use the
ray-tracerrayshade [29], which offers support for instancing and
time-efficient rendering of scenes with many polygons, as long as
the scene description fits in memory. When the scene description
exceeds the available memory, we employ the memory-efficient
ray-tracertoro [43], extended with a support for instancing.

In the following sections we describe the components of the
EcoSysmodeling pipeline in more detail. In Section 8, we present
examples that illustrate the operation of the system as a whole.

3 TERRAIN SPECIFICATION

We begin the modeling of a scene with the specification of a terrain.
The goal of this step is to determine elevation data, local orienta-
tions of the terrain, and additional characteristics, such as the water
content in the soil, which may affect the type and vigor of plants at
different locations.

Terrain data may have several sources. Representations of real
terrains are available, for example, from the U.S. Geological Sur-
vey [30]. Several techniques have also been developed for creating
synthetic terrains. They include: hand-painted height maps [65],
methods for generating fractal terrains (reviewed in [38]), and mod-
els based on the simulation of soil erosion [28, 38].

In order to provide detailed control over the modeled terrain while
taking advantage of the data amplification of fractal methods [55],
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Figure 2: Three stages in creating a terrain: after loading a height map painted by hand (left), with hills added using noise synthesis (middle),
and with a stream cut using the stream mask (right).

we designed and implemented an interactive terrain editing sys-
temTerEdit, which combines various techniques in a procedural
manner. Terrain editing consists ofoperations, which modify the
terrain geometry and have the spatial scope limited bymasks. A
similar paradigm is used in Adobe Photoshop [9], whereselections
can be used to choose an arbitrary subset of an image to edit.

We assume that masks have values between zero and one, allowing
for smooth blending of the effects of operations. Both masks and
operations can depend on the horizontal coordinates and the altitude
of the points computed so far. Thus, it is possible to have masks that
select terrain above some altitude or operations that are functions
of the current altitude. The user’s editing actions create a pipeline
of operations with associated masks; to compute the terrain altitude
at a point, the stages of this pipeline are evaluated in order. Undo
and redo operations are easily supported by removing and re-adding
operations from the pipeline and re-evaluating the terrain.

Examples of editing operations include translation, scaling, non-
linear scaling, and algorithmic synthesis of the terrain. The syn-
thesis algorithm is based on noise synthesis [38], which generates
realistic terrains by adding multiple scales of Perlin’s noise func-
tion [42]. The user can adjust a small number of parameters that
control the overall roughness of the terrain, the rate of change in
roughness across the surface of the terrain, and the frequency of
the noise functions used. Noise synthesis allows terrain to be eas-
ily evaluated at a single point, without considering the neighboring
points; this makes it possible to have operations that act locally.
Another advantage of noise synthesis is efficiency of evaluation;
updating the wireframe terrain view (based on 256� 256 samples
of the region of interest) after applying an operation typically takes
under a second. On a multiprocessor machine, where terrain evalu-
ation is multi-threaded, the update time is not noticeable.

The editor provides a variety of masks, including ones that select
rectangular regions of terrain from a top view, masks that select
regions based on their altitude, and masks defined by image files.
One of the most useful masks is designed for cutting streams through
terrain. The user draws a set of connected line segments over the
terrain, and the influence of the mask is based on the minimum
distance from a sample point to any of these segments. A spline is
applied to smoothly increase the influence of the mask close to the
segments. When used with a scaling operation, the terrain inside
and near the stream is scaled towards the water level, and nearby
terrain is ramped down, while the rest of the terrain is unchanged.

The specification of a terrain usingTerEdit is illustrated in Fig-
ure 2. In the first snapshot, the hill in the far corner was defined by
loading in a height map that had been painted by hand. Next, small
hills were added to the entire terrain using noise synthesis. The last
image shows the final terrain, after the stream mask was used to cut
the path of a stream. A total of five operators were applied to make
this terrain, and the total time to model it was approximately fifteen
minutes.

Once the elevations have been created, additional parameters of
the terrain can be computed as input for ecosystem simulations
or a direct source of parameters for plant models. Although the
user can interactively paint parameters on the terrain, simulation
provides a more sound basis for the modeling of natural ecosystems.
Consequently,TerEdit incorporates a simulator of rain water flow
and distribution in the soil, related to both the erosion algorithm by
Musgraveet al. [38] and the particle system simulation of water on
building facades by Dorseyet al. [11]. Water is dropped onto the
terrain from above; some is absorbed immediately while the rest
flows downhill and is absorbed by the soil that it passes through.
A sample terrain with the water distribution generated using this
approach is shown in Figure 3.

Figure 3: A sample terrain with the water concentration ranging
from high (blue) to low (yellow)

4 SPECIFICATION OF PLANT POPULATIONS

The task of populating a terrain with plants can be addressed using
methods that offer different tradeoffs between the degree of user
control, time needed to specify plant distribution, and biological
validity of the results. The underlying techniques can be divided
into space-occupancyor individual-basedtechniques. This clas-
sification is related to paradigms of spatially-explicit modeling in
ecology [3, 19], and parallels the distinction between space-based
and structure-based models of morphogenesis [44].

The space-occupancy techniques describe the distribution of the
densitiesof given plant species over a terrain. In the image synthesis
context, this distribution can be be obtained using two approaches:

Explicit specification. The distribution of plant densities is mea-
sured in the field (by counting plants that occupy sample plots) or
created interactively, for example using a paint program.

Procedural generation. The distributions of plant densities is ob-
tained by simulating interactions between plant populations using
an ecological model. The models described in the literature are
commonly expressed in terms ofcellular automata[19] or reaction-
diffusionprocesses [23].

The individual-based techniques provide the location and attributes
of individual plants. Again, we distinguish two approaches:

6-27



Explicit specification. Plant positions and attributes represent field
data, for example obtained by surveying a real forest [25], or speci-
fied interactively by the user.

Procedural generation. Plant positions and attributes are obtained
using apoint pattern generation model, which creates a distribu-
tion of points with desired statistical properties [66], or using an
individual-based population model[13, 58], which is applied to
simulate interactions between plants within an ecosystem.

Below we describe two methods for specifying plant distribution that
we have developed and implemented as components ofEcoSys.
The first method combines interactive editing of plant densities
with a point pattern generation of the distribution of individual
plants. The second method employs individual-based ecological
simulations.

4.1 Interactive specification of plant populations

To specify a plant population in a terrain, the user creates a set
of gray-level images with a standard paint program. These im-
ages define the spatial distributions of plant densities and of plant
characteristics such as the age and vigor.

Given an image that specifies the distribution of densities of a plant
species, positions of individual plants are generated using a half-
toning algorithm. We have used the Floyd-Steinberg algorithm [15]
for this purpose. Each black pixel describes the position of a plant
in the raster representing the terrain. We also have implemented a
relaxation method that iteratively moves each plant position towards
the center of mass of its Voronoi polygon [6]. This reduces the
variance of distances between neighboring plants, which sometimes
produces visually pleasing effects.

Once the position of a plant has been determined, its parameters are
obtained by referring to the values of appropriate raster images at
the same point. These values may control the plant model directly
or provide arguments to user-specified mathematical expressions,
which in turn control the models. This provides the user with an
additional means for flexibly manipulating the plant population.

Operations on raster images make it possible to capture some inter-
actions between plants. For example, if the radius of a tree crown
is known, the image representing the projection of the crown on
the ground may be combined with user-specified raster images to
decrease the density or vigor of plants growing underneath.

4.2 Simulation of ecosystems

Individual-based models of plant ecosystems operate at various lev-
els of abstraction, depending on the accuracy of the representation
of individual plants [58]. Since our goal is to simulate complex
scenes with thousands of plants, we follow the approach of Firbank
and Watkinson [13], and represent plants coarsely as circles posi-
tioned in a continuous landscape. Each circle defines theecological
neighborhoodof the plant in its center, that is the area within which
the plant interacts with it neighbors. Biologically motivated rules
govern the outcomes of interactions between the intersecting circles.
Global behavior of the ecosystem model is an emergent property of
a system of many circles.

We implemented the individual-based ecosystem models using the
framework ofopen L-systems[39]. Since L-systems operate on
branching structures, we represent each plant as a circle located at
the end of an invisible positioning line. All lines are connected into
a branching structure that spreads over the terrain.

Figure 4: Steps 99, 134, and 164 of a sample simulation of the
self-thinning process. Colors represents states of the plants: not
dominated (green), dominated (red), and old (yellow). The simula-
tion began with 62,500 plants, placed at random in a square field.
Due to the large number of plants, only a part of the field is shown.
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Figure 5: The average area of plants as a function of their density.
Small dots represent the results of every tenth simulation step. Large
dots correspond to the states of simulation shown in Figure 4.

For example, let us consider a model of plant distribution due to
a fundamental phenomenon in plant population dynamics,self-
thinning. This phenomenon is described by Ricklefs as follows [52,
page 339]: “If one plots the logarithm of average plant weight as a
function of the logarithm of density, data points fall on a line with
a slope of approximately�3

2 [called the self-thinning curve]. [...]
When seeds are planted at a moderate density, so that the begin-
ning combination of density and average dry weight lies below the
self-thinning curve, plants grow without appreciable mortality until
the population reaches its self-thinning curve. After that point, the
intense crowding associated with further increase in average plant
size causes the death of smaller individuals.”

Our model of self-thinning is a simplified version of that by Firbank
and Watkinson [13]. The simulation starts with an initial set of
circles, distributed at random in a square field, and assigned random
initial radii from a given interval. If the circles representing two
plants intersect, the smaller plant dies and its corresponding circle
is removed from the scene. Plants that have reached a limit size are
considered old and die as well.

Figure 4 shows three snapshots of the simulation. The correspond-
ing plot shows the average area of the circles as a function of their
density (Figure 5). The slope of the self-thinning curve is equal to
�1; assuming that mass is proportional to volume, which in turn
is proportional to area raised to the power of�

3
2, the self-thinning

curve in the density-mass coordinates would have the slope of�
3
2.

Thus, in spite of its simplicity, our model captures the essential
characteristic of plant distribution before and after it has reached
the self-thinning curve.
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Figure 6: Simulated distribution of eight plant species in a ter-
rain from Figure 3. Colors indicate plant species. Plants with a
preference for wet areas are shown in blue.

A slightly more complicated model describes plant distribution in
a population of different plant species. Each species is defined
by a set of values that determine: (i) the number of new plants
added to the field per simulation step, (ii) the maximum size of
the plants, (iii) their average growth rate, (iv) the probability of
surviving the domination by a plant with a competitive advantage,
and (v) a preference for wet or dry areas. An individual plant
is characterized by: (i) the species to which it belongs, (ii) its
size, and (iii) its vigor. The vigor is a number in the range from
0 to 1, assigned to each plant as a randomized function of water
concentration at the plant’s location and the plant’s preference for
wet or dry areas. The competitive ability of a plant is determined
as a product of its vigor and its relative size (the ratio between the
actual and maximum size). When the circles representing two plants
intersect, their competitive abilities are compared. The plant with a
smaller competitive ability is dominated by the other plant and may
die with the defined probability.

Figure 6 presents the result of a simulation involving a mix of eight
plant species growing in a terrain shown in Figure 3. Plants with a
preference for wet areas are represented by blue circles. Plants with
a preference for dry areas have been assigned other colors. Through
the competition between the species, a segregation of plants between
the wet and dry areas has emerged.

Similar models can be developed to capture other phenomena that
govern the development of plant populations.

5 MODELING OF PLANTS

Interactive editing of plant populations and the simulation of ecosys-
tems determine positions and high-level characteristics of all plants
in the modeled scene. On this basis, geometric models of individual
plants must now be found.

Recent advances in plant measuring techniques have made it possi-
ble to construct a geometric model of a specific plant according to
detailed measurements of its structure [54]. Nevertheless, for the
purpose of visualizing plants differing by age, vigor, and possibly
other parameters, it is preferable to treat geometric models as a
product of the underlying procedural models. Construction of such
models for computer graphics and biological purposes has been a
field of active study, recently reviewed in [45]. Consequently, below
we discuss only the issue of model parametrization, that is the incor-
poration of high-level parameters returned by the population model

into the plant models. We consider two different approaches, which
reflect different predictive values ofmechanisticand descriptive
models [60].

Mechanistic models operate by simulating the processes that control
the development of plants over time. They inherently capture how
the resulting structure changes with age [46, 47]. If a mechanistic
model incorporates environmental inputs, the dependence of the
resulting structure on the corresponding environmental parameters
is an emergent feature of the model [39]. The model predicts the
effect of various combinations of environmental parameters on the
structure, and no explicit parametrization is needed. L-systems [47]
and their extensions [39] provide a convenient tool for expressing
mechanistic models. WithinEcoSys, mechanistic models have
been generated usingcpfg.

Descriptive models capture plant architecture without simulating
the underlying developmental processes. Consequently, they do
not have an inherent predictive value. Nevertheless, if a family of
geometric models is constructed to capture the key “postures” of a
plant at different ages and with different high-level characteristics,
we can obtain the in-between geometries by interpolation. This is
equivalent to fitting functions that map the set of high-level param-
eters to the set of lower-level variables present in the model, and
can be accomplished by regression [57] (see [48] for an application
example). In the special case of plant postures characterized by a
single parameter, the interpolation between key postures is analo-
gous to key-framing [62], and can be accomplished using similar
techniques. We applied interpolation to parametrize models created
using bothxfrog andcpfg.

6 APPROXIMATE INSTANCING

Geometric plant models are often large. A detailed polygonal rep-
resentation of a herbaceous plant may require over 10MB to store; a
scene with one thousand plants (a relatively small number in ecosys-
tem simulations) would require 10GB. One approach for reducing
such space requirements is to simplify geometric representations
of objects that have a small size on the screen. We incorporated
a version of this technique into our system by parameterizing the
procedural plant models so that they can produce geometries with
different polygonizations of surfaces. However, this technique alone
was not sufficient to reduce the amount of data to manageable levels.

Instancing was used successfully in the past for compactly rep-
resenting complex outdoor scenes (e.g. [56]). According to the
paradigm of instancing [59], geometric objects that are identical
up to affine transformations become instances of one object. To
achieve a further reduction in the size of geometric descriptions, we
extended the paradigm of instancing to objects that resemble each
other, but are not exactly the same. Thus, sets of similar plants
are represented by instances of a single representative plant. Fur-
thermore, the hierarchical structure of plant scenes, which may be
decomposed into groups of plants, individual plants, branches of
different order, plant organs such as leaves and flowers,etc., lends
itself to instancing at different levels of the hierarchy. We create
hierarchies of instances by quantizing model components in their
respective parameter spaces, and reusing them.

Automatic generation of instance hierarchies for plant models ex-
pressed using a limited class of L-systems was considered by
Hart [20, 21]. His approach dealt only with exact instancing.
Brownbill [7] considered special cases of approximate instancing
of plants, and analyzed tradeoffs between the size of the geometric
models and their perceived distortion (departure from the original
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geometry caused by the reduction of diversity between the compo-
nents). He achieved reductions of the database size ranging from 5:1
to 50:1 with a negligible visual impact on the generated images (a
tree and a field of grass). This result is reminiscent of the observation
by Smith [55] that the set of random numbers used in stochastic al-
gorithms for generating fractal mountains and particle-system trees
can be reduced to a few representative values without significantly
affecting the perceived complexity of the resulting images.

We generalize Brownbill’s approach by relating it to clustering.
Assuming that the characteristics of each plant are described by a
vector of real numbers, we apply a clustering algorithm to the set
of these vectors in order to find representative vectors. Thus, we
reduce the problem of finding representative plants and instancing
them to the problem of finding a set of representative points in the
parameter space and mapping each point to its representative. We
assume that plants with a similar appearance are described by close
points in their parameter space; if this is not the case (for example,
because the size of a plant is a nonlinear function of its age), we
transform the parameter space to become perceptually more linear.
We cluster and map plant parts in the same manner as the entire
plants.

This clustering and remapping can be stated also in terms of vector
quantization [18]: we store a code book of plants and plant parts and,
for each input plant, we store a mapping to an object in the code book
rather than the plant geometry itself. In computer graphics, vector
quantization has been widely used for color image quantization [22];
more recent applications include reduction of memory needs for
texture mapping [4] and representing light fields [31].

We use a multi-dimensional clustering algorithm developed by Wan
et al.[61], which subdivides the hyperbox containing data points by
choosing splitting planes to minimize the variance of the resulting
clusters of data. We extended this algorithm to include an “impor-
tance weight” with each input vector. The weights make it possible
to further optimize the plant quantization process, for example by
allocating more representative vectors to the plants that occupy a
large area of the screen.

7 RENDERING

Rendering natural scenes raises two important questions: (i) dealing
with scene complexity, and (ii) simulating illumination, materials
and atmospheric effects. WithinEcoSys, we addressed these ques-
tions using two different strategies.

The first strategy is to to split the scene into sub-scenes of man-
ageable complexity, render each of them independently using ray-
casting, and composite the resulting RGB�Z images into the final
image [12]. The separation of the scene into sub-scenes is a byprod-
uct of the modeling process: bothdensedis andcpfg can output
the distribution of a single plant species to form a sub-scene. The
ray-casting algorithm is implemented infshade, which creates the
scene geometry procedurally by invoking thexfrog plant modeler
at run time. This reduces file I/O and saves disk space compared to
storing all of the geometric information for the scene on disk and
reading it in while rendering. For example, the poplar tree shown
in Figure 16 is 16 KB as a procedural model (plant template), but
6.7 MB in a standard text geometry format.

A number of operations can be applied to the RGB�Z images before
they are combined. Image processing operations, such as saturation
and brightness adjustments, are often useful. Atmospheric effects
can be introduced in a post process, by modifying colors according
to the pixel depth. Shadows are computed using shadow maps [64].

The scene separation makes it possible to render the scene quickly
and re-render its individual sub-scenes as needed to improve the
image. However, complex lighting effects cannot be easily included,
since the renderer doesn’t have access to the entire scene description
at once.

The second rendering strategy is ray tracing. It lacks the capability
to easily re-render parts of scenes that have been changed, but makes
it possible to include more complex illumination effects. In both
ray-tracers that we have used,rayshade [29] andtoro [43], pro-
cedural geometry descriptions are expanded into triangle meshes,
complemented with a hierarchy of grids and bounding boxes needed
to speed up rendering [56].Rayshade requires the entire scene
description (object prototypes with their bounding boxes and a hier-
archy of instancing transformations) to be kept in memory, otherwise
page swapping significantly decreases the efficiency of rendering.
In the case oftoro, meshes are stored on disk; these are read in
parts to a memory cache as needed for rendering computations and
removed from memory when a prescribed limit amount of memory
has been used. Consequently, the decrease in performance when the
memory size has been reached is much slower [43]. We have made
the straightforward extension of memory-coherent ray-tracing al-
gorithms to manage instanced geometry: along with non-instanced
geometry, the instances in the scene are also managed by the geom-
etry cache.

Because rays can be traced that access the entire scene, more com-
plex lighting effects can be included. For example, we have found
that attenuating shadow rays as they pass through translucent leaves
of tree crowns greatly improves their realism and visual richness.

8 EXAMPLES

We evaluated our system by applying it to create a number of scenes.
In the examples presented below, we used two combinations of
the modules: (i) ecosystem simulation and plant modeling using
cpfg followed by rendering usingrayshade or toro, and (ii)
interactive specification of plant distribution usingdensedis in
conjunction with plant generation usingxfrog and rendering using
fshade.

Figure 7 presents visualizations of two stages of the self-thinning
process, based on distributions shown in Figure 4. The plants
represent hypothetical varieties ofLychnis coronaria[47] with red,
blue, and white flowers. Plant size values returned by the ecosystem
simulation were quantized to seven representative values for each
plant variety. The quantized values were mapped to the age of the
modeled plants. The scene obtained after 99 simulation steps had
16,354 plants. Therayshade file representing this scene without
instancing would be 3.5 GB (estimated); with instancing it was 6.7
MB, resulting in the compression ratio of approximately 500:1. For
the scene after 164 steps, the corresponding values were: 441 plants,
125 MB, 5.8 MB, compression 21:1.

The mountain meadow (Figure 8 top) was generated by simulating
an ecosystem of eight species of herbaceous plants, as discussed in
Section 5. The distribution of plants is qualitatively similar to that
shown schematically in Figure 6, but it includes a larger number of
smaller plants. The individual plants were modeled with a high level
of detail, which made it possible to zoom in on this scene and view
individual plants. The complete scene has approximately 102,522
plants, comprising approximately 2� 109 primitives (polygons and
cylinders). Therayshade file representing this scene without
instancing would be 200 GB (estimated), with the instancing it was
151 MB, resulting in a compression ratio of approximately 1,300:1.
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Figure 7: ALychnis coronariafield after 99 and 164 simulation
steps

The time needed to model this scene on a 150 MHz R5000 Silicon
Graphics Indy with 96 MB RAM was divided as follows: simulation
of the ecosystem (25 steps): 35 min, quantization (two-dimensional
parameter space, each of the 8 plant species quantized to 7 levels):
5 min, generation of the 56 representative plants usingcpfg: 9
min. The rendering time usingrayshade on a 180 MHz R10000
Silicon Graphics Origin 200 with 256 MB RAM (1024�756 pixels,
4 samples per pixel) was approximately 8 hours. (It was longer using
toro, but in that case the rendering time did not depend critically
on the amount of RAM.)

In the next example, the paradigm of parameterizing, quantizing,
and instancing was applied to entire groups of plants: tufts of grass
with daisies. The number of daisies was controlled by a parameter
(Figure 9). The resulting lawn is shown in Figure 10. For this
image, ten different sets of grass tufts were generated, each instanced
twenty times on average. The total reduction in geometry due to
quantization and instancing (including instancing of grass blades
and daisies within the tufts) was by a factor of 130:1. In Figure 11,
a model parameter was used to control the size of the heaps of
leaves. The heap around the stick and the stick itself were modeled
manually.

Interactive creation of complex scenes requires the proper use of
techniques to achieve an aesthetically pleasing result. To illustrate
the process that we followed, we retrace the steps that resulted in
the stream scene shown in Figure 15.

We began with the definition of a hilly terrain crossed by a little
stream (Figure 2). To cover it with plants, we first created procedural
models of plant species fitting this environment (Figure 12). Next,
we extracted images representing the terrain altitudes and the stream
position (Figures 13a and 13b) from the original terrain data. This

Figure 8: Zooming in on a mountain meadow

provided visual cues needed while painting plant distributions, for
example, to prevent plants from being placed in the stream.

After that, we interactively chose a viewpoint, approximately at hu-
man height. With the resulting perspective view of the terrain as
a reference, we painted a gray scale image for each plant species
to define its distribution. We placed vegetation only in the areas
visible from the selected viewpoint to speed up the rendering later
on. For example, Figure 13c shows the image that defines the den-
sity distribution of stinging nettles. Since the stinging nettles grow
on wet ground, we specified high density values along the stream.
The density image served as input todensedis, which deter-
mined positions of individual plants. The dot diagram produced by
densedis (Figure 13d) provided visual feedback that was used to
refine the density image step by step until the desired distribution
was found.
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Figure 9: Grass tufts with varying daisy concentrations

Figure 10: Lawn with daisies

Figure 11: Leaves on grass

Figure 12: Sample plant models used in the stream scene. Top
row: apple, stinging nettle, dandelion; bottom row: grass tuft, reed,
yellow flower.

a b c d

Figure 13: Creating distribution of stinging nettle: the heightmap of
the covered area (a), the river image (b), the plant density distribution
painted by the user (c), and the resulting plant positions (d).

Once the position of plants was established, we employed additional
parameters to control the appearance of the plants. The vigor of
stinging nettle plants, which affects the length of their stems and the
number of leaves, was controlled using the density image for the
nettles. To control the vigor of grass we used the height map: as a
result, grass tufts have a slightly less saturated color on top of the
hill than in the lower areas. Each tuft was oriented along a weighted
sum of the terrain’s surface normal vector and the up vector.

At this point, the scene was previewed and further changes in the
density image were made until a satisfying result was obtained.

Figure 14: OpenGL preview of the stream scene including stinging
nettle and yellow flowers
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Figure 15: Stream scene

Figure 14 shows the preview of the distribution of stinging nettles
and yellow flowers. To prevent intersections between these plants,
the painted density image for the yellow flowers was multiplied by
the inverted density image for the nettles.

The apple trees were placed by painting black dots on a white image.
The final scene (Figure 15) was rendered usingfshade. Images
representing each species were rendered separately, and the result-
ing sub-scenes were composited as described in Section 7. The
clouds were then added using a real photograph as a texture map.
To increase the impression of depth in the scene, color saturation and
contrast were decreased with increasing depth in a postprocessing
step, and colors were shifted towards blue. Table 1 provides statis-
tics about the instancing and geometric compression for this scene.
The creation of this image took two days plus one day for defining
the plant models. The actual compute time needed to synthesize this
scene on a 195 MHz R10000 8-processor Silicon Graphics Onyx
with 768MB RAM (1024�756 pixels, 9 samples per pixel) was 75
min.

Figures 16 and 17 present further examples of scenes with interac-
tively created plant distributions. To simulate the effect of shad-
owing on the distribution of the yellow flowers in Figure 16, we
rendered a top view of the spheres that approximate the shape of the
apple trees, and multiplied the resulting image (further modified in-
teractively) with the initial density image for the yellow flowers. We
followed a similar strategy in creating Figure 17: the most impor-

tant trees were positioned first, then rendered from above to provide
visual cues for the further placements. Table 2 contains statistics
about the geometry quantization in Figure 17.

plant obj. inst. plant obj. inst.
apple 1 4 grass tuft 15 2577
reed 140 140 stinging nettle 10 430
dandelion 10 55 yellow flower 10 2751

Table 1: Number of prototype objects and their instances in the
stream scene (Figure 15). Number of polygons without instancing:
16,547,728, with instancing: 992,216. Compression rate: 16.7:1.

plant obj. inst. plant obj. inst.
weeping willow 16 16 reed 15 35
birch 43 43 poppy 20 128
distant tree 20 119 cornflower 72 20
St. John’s wort 20 226 dandelion 20 75
grass tuft 15 824

Table 2: Number of prototype objects and their instances in the
Dutch scene (Figure 17). Number of polygons without instancing:
40,553,029, with instancing: 6,737,036. Compression rate: 6.0:1
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Figure 16: Forest scene

9 CONCLUSIONS

We presented the design and experimental implementation of a sys-
tem for modeling and rendering scenes with many plants. The cen-
tral issue of managing the complexity of these scenes was addressed
with a combination of techniques: the use of different levels of ab-
straction at different stages of the modeling and rendering pipeline,
procedural modeling, approximate instancing, and the employment
of space- and time-efficient rendering methods. We tested our sys-
tem by generating a number of visually complex scenes. Conse-
quently, we are confident that the presented approach is operational
and can be found useful in many practical applications.

Our work is but an early step in the development of techniques for
creating and visualizing complex scenes with plants, and the pre-
sented concepts require further research. A fundamental problem
is the evaluation of the impact of quantization and approximate in-
stancing on the generated scenes. The difficulty in studying this
problem stems from: (i) the difficulty in generating non-instanced
reference images for visual comparison purposes (the scenes are too
large), (ii) the lack of a formally defined error metric needed to eval-
uate the artifacts of approximate instancing in an objective manner,
and (iii) the difficulty in generalizing results that were obtained by
the analysis of specific scenes. A (partial) solution to this prob-
lem would set the stage for the design and analysis of methods that
may be more suitable for quantizing plants than the general-purpose
variance-based algorithm used in our implementation.

Other research problems exposed by our experience withEcoSys
include: (i) improvement of the terrain model through its coupling
with the plant population model (in nature vegetation affects terrain,
for example by preventing erosion); (ii) design of algorithms for
converting plant densities to positions, taking into account statistical
properties of plant distributions found in natural ecosystems [66]);
(iii) incorporation of morphogenetic plasticity (dependence of the
plant shape on its neighbors [58]) into the multi-level modeling
framework; this requires transfer of information about plant shapes
between the population model and the procedural plant models; (iv)
extension of the modeling method presented in this paper to ani-
mated scenes (with growing plants and plants moving in the wind);
(v) design of methods for conveniently previewing scenes with bil-
lions of geometric primitives (for example, to select close views
of details); and (vi) application of more faithful local and global
illumination models to the rendering of plant scenes (in particular,
consideration of the distribution of diffuse light in the canopy).

Figure 17: Dutch landscape

Acknowledgements

We would like to acknowledge Craig Kolb for his implementation
of the variance-based quantization algorithm, which we adapted
to the needs of our system, and Christain Jacob for his experi-
mental implementations and discussions pertinent to the individual-
based ecosystem modeling. We also thank: Stefania Bertazzon, Jim
Hanan, Richard Levy, and Peter Room for discussions and point-
ers to the relevant literature, the referees for helpful comments on
the manuscript, Chris Prusinkiewicz for editorial help, and Darcy
Grant for system support in Calgary. This research was sponsored
in part by the National Science Foundation grant CCR-9508579-
001 to Pat Hanrahan, and by the Natural Sciences and Engineering
Research Council of Canada grant OGP0130084 to Przemyslaw
Prusinkiewicz.

REFERENCES

[1] Alias/Wavefront; a division of Silicon Graphics Ltd. Studio V8. SGI
program, 1996.

[2] AnimaTek, Inc. AnimatTek’s World Builder. PC program, 1996.
[3] R. A. Armstrong. A comparison of index-based and pixel-based neigh-

borhood simulations of forest growth.Ecology, 74(6):1707–1712,
1993.

[4] A. C. Beers, M. Agrawala, and N. Chaddha. Rendering from com-
pressed textures. InSIGGRAPH 96 Conference Proceedings, pages
373–378, August 1996.

[5] B. M. Blumberg and T. A. Galyean. Multi-level direction of au-
tonomous creatures for real-time virtual environments. InSIGGRAPH
95 Conference Proceedings, pages 47–54, August 1995.

[6] B.N. Boots.Spatial tesselations: concepts and applications of Voronoi
diagrams. John Wiley, 1992.

[7] A. Brownbill. Reducing the storage required to render L-system based
models. Master’s thesis, University of Calgary, October 1996.

[8] N. Chiba, K. Muraoka, A. Doi, and J. Hosokawa. Rendering of forest
scenery using 3D textures.The Journal of Visualization and Computer
Animation, 8:191–199, 1997.

[9] Adobe Corporation. Adobe Photoshop.
[10] O. Deussen and B. Lintermann. A modelling method and user interface

for creating plants. InProceedings of Graphics Interface 97, pages
189–197, May 1997.

[11] J. Dorsey, H. Køhling Pedersen, and P. Hanrahan. Flow and changes in
appearance. InSIGGRAPH 96 Conference Proceedings, pages 411–
420, August 1996.

[12] T. Duff. Compositing 3-D rendered images.Computer Graphics
(SIGGRAPH 85 Proceedings), 19(3):41–44, 1985.

6-34



[13] F. G. Firbank and A. R. Watkinson. A model of interference within
plant monocultures.Journal of Theoretical Biology, 116:291–311,
1985.

[14] K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H. Barr. Cellular
texture generation. InSIGGRAPH 95 Conference Proceedings, pages
239–248, August 1995.

[15] R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial gray
scale. InSID 75, Int. Symp. Dig. Tech. Papers, pages 36–37, 1975.

[16] D. R. Fowler, P. Prusinkiewicz, and J. Battjes. A collision-based model
of spiral phyllotaxis. Computer Graphics (SIGGRAPH 92 Proceed-
ings), 26(2):361–368, 1992.

[17] G. Y. Gardner. Simulation of natural scenes using textured quadric
surfaces.Computer Graphics (SIGGRAPH 84 Proceedings), 18(3):11–
20, 1984.

[18] A. Gersho and R. M. Gray.Vector quantization and signal compres-
sion. Kluwer Academic Publishers, 1991.

[19] D. G. Green. Modelling plants in landscapes. In M. T. Michalewicz,
editor,Plants to ecosystems. Advances in computational life sciences
I, pages 85–96. CSIRO Publishing, Melbourne, 1997.

[20] J. C. Hart and T. A. DeFanti. Efficient anti-aliased rendering of 3D
linear fractals. Computer Graphics (SIGGRAPH 91 Proceedings),
25:91–100, 1991.

[21] J.C. Hart. The object instancing paradigm for linear fractal modeling.
In Proceedings of Graphics Interface 92, pages 224–231, 1992.

[22] P. Heckbert. Color image quantization for frame buffer display.Com-
puter Graphics (SIGGRAPH 82 Proceedings), 16:297–307, 1982.

[23] S. I. Higgins and D. M. Richardson. A review of models of alien plant
spread.Ecological Modelling, 87:249–265, 1996.

[24] H. Hoppe. View-dependent refinement of progressive meshes. InSIG-
GRAPH 97 Conference Proceedings, pages 189–198, August 1997.

[25] D. H. House, G. S. Schmidt, S. A. Arvin, and M. Kitagawa-DeLeon.
Visualizing a real forest.IEEE Computer Graphics and Applications,
18(1):12–15, 1998.

[26] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional tex-
tures.Computer Graphics (SIGGRAPH 89 Proceedings), 23(3):271–
289, 1989.

[27] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes.Computer
Graphics (SIGGRAPH 86 Proceedings), 20(4):269–278, 1986.

[28] A. D. Kelley, M. C. Malin, and G. M. Nielson. Terrain simulation
using a model of stream erosion.Computer Graphics (SIGGRAPH 88
Proceedings), 22(4):263–268, 1988.

[29] C. Kolb. Rayshade. http://graphics.stanford.edu/�cek/rayshade.
[30] M. P. Kumler. An intensive comparison of triangulated irregular net-

works (TINs) and digital elevation models (DEMs).Cartographica,
31(2), 1994.

[31] M. Levoy and P. Hanrahan. Light field rendering. InSIGGRAPH 96
Conference Proceedings, pages 31–42, August 1996.

[32] B. Lintermann and O. Deussen. Interactive structural and geometrical
modeling of plants. To appear in theIEEE Computer Graphics and
Applications.

[33] B. Lintermann and O. Deussen. Interactive modelling and animation
of natural branching structures. In R. Boulic and G. Hégron, editors,
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Abstract

We integrate into plant models three elements of plant representa-
tion identified as important by artists: posture (manifested in curved
stems and elongated leaves), gradual variation of features, and the
progression of the drawing process from overall silhouette to local
details. The resulting algorithms increase the visual realism of plant
models by offering an intuitive control over plant form and support-
ing an interactive modeling process. The algorithms are united by
the concept of expressing local attributes of plant architecture as
functions of their location along the stems.

CR categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems, I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling,
J.3 [Life and Medical Sciences]: Biology.

Keywords: realistic image synthesis, interactive procedural model-
ing, plant, positional information, phyllotaxis, Chomsky grammar,
L-system, differential turtle geometry, generalized cylinder.

1 Introduction

Forward simulation of development is a well established paradigm
for modeling plants. It underlies, for example, the AMAP simula-
tion software [9] and modeling methods based on L-systems [28].
In both cases, a plant is modeled using a set of rules that describe
the emergence and growth of individual plant components. The
simulation program traces their fate over time, and integrates them
into the structure of the whole plant.

Over the years, the simulation paradigm has been extended to in-
clude a wide range of interactions between plants and their envi-
ronments [15, 21]. The resulting models have gained acceptance
as a research tool in biology and have led to increasingly convinc-
ing visualizations. In image synthesis applications, however, the
simulation-based approach has several drawbacks:

� Visual realism of the models is linked to the biological and
physical accuracy of simulations. This requires the modeler
to have a good understanding of the underlying processes,
makes comprehensive models complicated, and results in
long simulation times.

To appear in the Proceedings of SIGGRAPH 2001 (Los Angeles, California,
August 12–17, 2001)

Figure 1: Selected elements of the artistic representation of plants:
(a) posture, (b) regular arrangement and gradual variation of organs
along an axis, and (c) progression from silhouette to detail in the
drawing process. Figure (a) is based on [37, page 41], (b) is redrawn
from [38, page 68], and (c) is redrawn from [24, page 13].

� Global characteristics of plant appearance, such as the curva-
ture of plant axes, the density of organ distribution, and the
overall silhouette of the plant, are emergent properties of the
models and therefore are difficult to control.

Methods for creating visually realistic representations of plants
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have long been understood by artists (Figure 1). Important ele-
ments include plant posture, defined by the angles of insertion and
curvature of organs, and the arrangement and gradual variation
of organs on their supporting stems. The drawing process pro-
gresses in a global-to-local fashion, from silhouette to detail. In-
spired by the quality of botanical illustrations, we have developed
a plant modeling method that supports similar elements and pro-
cesses. The proposed method inverts the local-to-global operation
of simulation-based models by progressing from global plant char-
acteristics specified by the user to algorithmically generated details.
The algorithms are united by their use of positional information,
which we define as the position of plant components along the axes
of their supporting stems or branches. User-defined functions map
this information to morphogenetic gradients [2], which describe the
distributions of features along the axes.

The notions of positional information and morphogenetic gradients
unify and generalize several plant-modeling concepts that have al-
ready appeared in botanical and computer graphics literature. Fol-
lowing their review (Section 2), we outline our modeling software
environment, focusing on the language that we use to formally de-
scribe the algorithms and models (Section 3). We then develop the
mathematical foundations of plant modeling based on positional in-
formation: the modeling and framing of individual axes (Section 4),
and their partitioning into internodes (Section 5). In Section 6, we
present the resulting modeling method from the modeler’s perspec-
tive, and illustrate its applications using plants and plant structures
organized along a single axis. In Section 7, we address the im-
portant special case of organ arrangement in closely packed spiral
phyllotactic patterns. Finally, in Section 8, we extend the proposed
modeling method to plants with higher-order branches, including
trees. We conclude the paper with a discussion of the results, appli-
cations, and problems open for further research (Section 9). Proofs
of selected mathematical results pertinent to the use of positional
information in the modeling of plants are presented in the Appen-
dices.

2 Previous work

Applications of positional information have their origins in early
descriptive plant models created by biologists: the poplar model by
Burk et al. [7] and the larch sapling model by Remphrey and Pow-
ell [30]. In both cases, the length of lateral branches was expressed
as a function of their position on the main stem. The models were
visualized as two-dimensional line drawings.

In computer graphics, a related concept was first applied to model
trees by Reeves and Blau [29], who expressed the length of first-
order branches as the distance from the branching point to a user-
specified surface defining the silhouette of the tree. Higher-order
branches were generated algorithmically, with “many parameters
inherited from the parent.”

A more elaborated model was introduced by Weber and Penn [36].
They characterized a tree using several positional functions, and
pointed to an advantage of this technique: “Since our parameters
can address the character of an entire stem and not just its segment-
to-segment nature, we allow users to make changes on a level they
can more easily understand and visualize.”

Lintermann and Deussen incorporated positional information into
their interactive plant modeling program xfrog [18, 19]. The po-
sition of a sample point along an axis may affect the length of an in-
ternode, the length of a branch, the magnitude of a branching angle,
and other attributes. Functions that map positions to attribute values

Figure 2: A snapshot of the L-studio/cpfg screen. The model can
be manipulated using textual and graphical editors displayed on the
right side of the screen. In this example, the outline of the fishbone
water fern leaf (Blechnum nudum) is being defined using a graph-
ical function editor. A gallery under the editor’s window provides
access to various functions used in this model. The second row of
tabs near the top of the screen makes it possible to select other ed-
itors, such as the textual editor of the L-system that has been used
to specify the algorithmic structure of this model.

can be specified graphically, by editing function plots, or textually,
by editing algebraic expressions. The authors did not describe in
detail the algorithms underlying their software, but experience with
xfrog was an inspiration for our work. From the user interface
perspective, the editing of function plots is an extension of the in-
teractive manipulation of plant parameters using sliders [23, 28].

3 The modeling environment

We have adapted the L-system-based modeling software L-
studio/cpfg [27] to the needs of modeling using positional in-
formation. A screenshot of the system in operation is shown in
Figure 2.

An L-studio model consists of two basic components: a description
of a generative algorithm in the cpfg modeling language [25], and
a set of graphically defined entities. These entities can be defined
and manipulated using the L-studio function, curve, surface and
material editors [27], or imported from external sources.

The fundamental constructs of the cpfg language are rewriting
rules, or productions. The program supports both parallel applica-
tion of productions, characteristic of L-systems [28], and sequen-
tial application of productions, characteristic of Chomsky gram-
mars [8]. In the context of plant modeling, these formalisms com-
pare as follows.

L-system productions capture the development of plant compo-
nents over time. For example, the division of a mother cell A
into two daughter cells B and C can be described by the produc-
tion A �! BC. In the case of multicellular organisms, L-system
productions are applied in parallel to advance time consistently in
all cells. The simulation is completed when the organism reaches
a predefined terminal age, corresponding to a given number of
derivation steps.
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Chomsky grammars, in contrast, characterize the structure of
plants, that is, the distribution of their features and components in
space. The fact that organismA consists of partsB and C can again
be expressed by a production, for example A ; BC, but such a
decomposition rule has a different meaning and functions in a dif-
ferent way than its L-system counterpart. Since non-overlapping
substructures can be partitioned independently from each other, the
decomposition rules may be applied sequentially. Furthermore, the
appropriate condition for terminating a decomposition process is
the reaching of terminal symbols, which represent components that
cannot be divided further.

Our intended use of positional information is to capture the distribu-
tion of plant features and components in space. Consequently, the
meaning and formal properties of productions used in this paper
correspond with the definition of Chomsky grammars. In the big
picture of a complete plant modeling software design, the switch
from L-systems to Chomsky grammars amounts to a relatively mi-
nor modification of the code. Consequently, our modeling lan-
guage, outlined below, expands, rather than replaces, features of the
earlier purely L-system-based implementations of the cpfg mod-
eling language [13, 28].

As in the case of L-systems, a branching structure is represented
by a bracketed string of modules (symbols with associated pa-
rameters). Matching pairs of brackets enclose branches. Deriva-
tion begins with an initial string identified by the keyword axiom.
Context-free productions are specified using the syntax

pred : fblock1g cond fblock2g; succ; (1)

where pred is the predecessor (a single module), and succ is the
successor (a bracketed string of modules) [25]. The optional field
cond is the condition (logical expression) that guards production
application. Fields block1 and block2 are sequences of C state-
ments. The first block is executed before the evaluation of the con-
dition. If the condition is true, the second block is also evaluated
and the production is applied. For example, the rule

A(x) : fy = x+2; g y � 5 fz = y=3; g; B(z)C(z+1) (2)

can be applied to module A(4), subdividing it into modules
B(2)C(3) .

The cpfg language also supports context-sensitive productions, in
which the strict predecessor (module being replaced) pred may
be preceded by one or more modules constituting the left context,
and/or followed by modules constituting the right context. These
contexts are separated from the strict predecessor by symbols <
and > respectively. For example, production

A(x) < B(y) > C(z) : x+ z > 0;M(y=2)N(y=2) (3)

decomposes module B into a pair of modules M and N , provided
that module B appears in the context of modules A and C, and the
sum of their parameters is greater then 0. In the scope of this paper,
context is limited to query symbols, discussed later on.

In order to conveniently specify morphogenetic gradients inherent
in the use of positional information, we have extended the cpfg
modeling language with function calls of the form func(id ; x). The
integer number id is the identifier of a planar B-spline curve and the
real number x is the function argument. Function plots are manip-
ulated using the interactive function editor (Figure 2). It constrains
the motion of the control points that define the function plots to
guarantee that they assign a unique value y to each argument x.

The modeling language also supports function calls of the form
curveX(id ; s), curveY(id ; s), curveZ(id ; s), and tanX(id ; s),

tanY(id ; s), tanZ(id ; s), where id is the identifier of an arbitrary
B-spline curve. These calls return coordinates of a point on the
curve id and of the tangent vector at this point, given the arc-length
distance s from the curve origin. The call curveLen(id) returns the
total length of the curve.

H\
→

/
L

−+

U
→

→

^

&

Figure 3: Controlling
the turtle in three dimen-
sions.

To create a graphical model, the
derived string is scanned sequen-
tially and reserved modules are
interpreted as commands to a
LOGO-style turtle [28]. At any
point within the string, the turtle
state is characterized by a posi-
tion vector ~P and three mutually
perpendicular orientation vectors
~H, ~L, and ~U that indicate the tur-
tle’s heading, the direction to the

left, and the up direction (Figure 3). The coordinates of these vec-
tors can be accessed using query modules of the form ?X(x; y; z),
where X is the vector to be accessed, one of P , H , L, or U [26].
Module F causes the turtle to draw a line in the current direction,
while modules f causes the turtle to move without drawing a line.
Modules +, �, &, ^, =, and n rotate the turtle around one of the
vectors ~H; ~L, or ~U , as shown in Figure 3. Many symbols are over-
loaded; for example, + and � denote the modules that rotate the
turtle as well as the usual arithmetic operations. The length of the
line and the magnitude of the rotation angle can be given globally
or specified as parameters of individual modules. Branches are cre-
ated using a stack mechanism: the opening square bracket pushes
the current state of the turtle on the stack, and the closing bracket
restores it to the last saved state. Other interpreted symbols will be
introduced with the sample models.

4 Modeling curved limbs

The shape of curved limbs, such as stems and elongated leaves, is
“vital in capturing the character of a species” [37]. In computer
graphics, this was first recognized by Bloomenthal [5], who ap-
plied generalized cylinders to model tree branches. A generalized
cylinder is obtained by sweeping a planar generating curve, which
determines the organ’s cross section, along a carrier curve [16] that
defines the organ’s axis. The generating curve may be closed, as
is typically the case for stems, or open, as for thin leaves, and it
may change size and shape while being swept [33]. It also must
be properly oriented with respect to the carrier curve. The Frenet
frame [34], which is frequently used for this purpose, creates well
known problems along straight sections of the carrier curve and at
inflection points, where it is not defined. It also twists 180Æ in the
proximity of the inflection points [6]. To avoid these problems, we
propose an alternative solution based on the use of turtle geome-
try. This solution subsumes the Frenet frame, as well as the twist-
minimizing parallel transport frame [3, 6, 14], as special cases. The
turtle frame was previously used by Jirasek et al. [15] in the context
of biomechanical modeling of plant branches.

The carrier curve is defined as a sequence of infinitesimal turtle
movements. Let s denote the arc-length distance of the turtle from
the origin of this curve. To define a smooth curve, we specify func-
tions !H(s), !L(s) and !U(s) that characterize the rates of tur-
tle’s rotations around the axes ~H~L~U as the turtle moves (we use
the term “rate of rotation” although s is a spatial coordinate and
not time). The infinitesimal rotations d
H , d
L and d
U between
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curve points ~P (s) and ~P (s+ ds) are then given by the equations:

d
H = !H(s)ds; d
L = !L(s)ds; d
U = !U (s)ds: (4)

This specification yields a uniquely defined curve and moving refer-
ence frame (Appendix A.1). After replacing the infinitesimal incre-
ments ds by finite increments �s, we obtain the following straight-
forward algorithm for modeling elongated plant organs:

Algorithm 1

1 #define ` 1.0 /* total axis length */
2 #define G 7 /* cross section ID */
3 #define �s 0.02 /* turtle step */
4
5 #define !L(s) func(1,s)
6 #define !U(s) func(2,s)
7 #define !H(s) func(3,s)
8 #define �(s) func(4,s)
9 #define width(s) func(5,s)
10
11 Axiom: @#(G) A(0,0)
12
13 A(s,'): s � `
14 f�
L = !L(s)�s;
15 �
H= !H(s)�s;
16 �
U = !U(s)�s;
17 ' = '+ �(s)�s; g;
18 +(�
L) &(�
U ) /(�
H )
19 /(') #(width(s)) F(�s) n(')
20 A(s+�s,')
21
22 A(s,�): s > `; �

Following the implementation of generalized cylinders in the cpfg
program [20], the generating curve is selected by expression @#(G)
in the axiom (line 11). The generalized cylinder is created recur-
sively by the first production (lines 13-20) as a sequence of slices
of length �s. The cross section size is defined by module # with the
parameter width(s) (line 19), and is linearly interpolated between
points s and s + �s. The angles of turtle rotation are calculated
according to Equation 4 in lines 14–16, and applied to the turtle
in line 18. The order of rotations represented by the symbols +,
& and = in line 18 is arbitrary, since infinitesimal rotations com-
mute. Function �(s) (line 17) rotates the generating curve around
the cylinder axis without affecting the shape of the axis. This is
convenient when defining twisted organs. The second production
(line 22) removes the apex A at the end of cylinder generation, by
replacing it with the empty symbol �. Figure 4 shows sample leaves
and stems generated by this Algorithm, with all functions specified
using the interactive function editor (Section 3).

From the user’s perspective, functions !L, !U , !H , � and width,
control bending, twist, and tapering of a generalized cylinder. Our
experience confirms Barr’s observation that such deformations are
intuitive operations for modeling three-dimensional objects [1]. On
the other hand, the user may prefer to specify the shape of an axis
directly, for example as a spline curve. If this is the case, we frame
it (i.e., compute turtle’s rotations d
U , d
L and d
H ) as follows.

Let ~P (s); s 2 [0; `], be a given smooth curve. Assume that it has
been framed by a moving turtle; the turtle’s heading vector ~H thus
coincides with the tangent vector ~T to the curve for all s 2 [0; `].
Denote by ~H~L~U the turtle orientation at point ~P (s) of this curve

Figure 4: Leaves and stems of a herb lily (left) and tulip (right),
modeled using Algorithm 1. The models are based on drawings
in [38, pp. 56 and 58].

and by ~H 0 = ~H + d ~H the direction of the heading vector at
point ~P (s+ ds). Following [12], the infinitesimal rotation d~
 that
changes vector ~H to ~H 0 satisfies the equation d ~H = d~
 � ~H,
hence:

d ~H = d~
� ~H = (~Ud
U + ~Ld
L + ~Hd
H)� ~H (5)

= (~U � ~H)d
U + (~L� ~H)d
L + ( ~H � ~H)d
H (6)

= ~Ld
U � ~Ud
L + 0d
H : (7)

By taking dot products of the first and last expression with vectors
~L and ~U , we obtain:

d ~H � ~L = ( ~H 0 � ~H) � ~L = ~H 0 � ~L = d
U ; (8)

d ~H � ~U = ( ~H 0 � ~H) � ~U = ~H 0 � ~U = �d
L: (9)

By substituting ~T 0 for ~H 0 to emphasize that ~T 0 is a given tangent
vector to the curve being framed, we obtain finally:

d
U = ~T 0 � ~L and d
L = �~T 0 � ~U: (10)

Equations 10 constrain two rotational degrees of freedom. The third
angle d
H remains unconstrained, because it is multiplied by 0 in
Equation 7. This implies that a moving turtle frame can be assigned
to a given curve in different ways. In particular, if we set !H(s) in
such a way that vector ~L (or ~U ) always lies in the osculating plane,
we obtain the Frenet frame, and if !H(s) � 0, we obtain the par-
allel transport frame. We commonly use the latter, because it min-
imizes rotations of the reference frame around the axis of the gen-
eralized cylinder. The resulting algorithm for approximating and
framing a given curve ~P (s) using a sequence of turtle motions is
given below.

Algorithm 2
1 #define P 1 /* curve ID */
2 #define K 57.29 /* radians to degrees */
3
4 Axiom: A(0) ?U(0,0,0) ?L(0,0,0)
5
6 A(s) > ?U(ux,uy ,uz) ?L(lx,ly,lz) : f s0 = s+�s g s0 � `
7 f t0x = tanX(P ,s0); t0y = tanY(P ,s0); t0z = tanZ(P ,s0);
8 �
L =K � (t0xlx + t0yly + t0zlz);
9 �
U = �K � (t0xux + t0yuy + t0zuz); g;
10 +(�
U ) &(�
L) F(�s) A(s0)

The initial structure consists of apex A followed by query modules
?U and ?L (line 4). The parameter of the apex represents the cur-
rent position of the turtle, measured as its arc-length distance from
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the origin of curve P . The production (lines 6 to 10) creates an or-
gan axis as a sequence of generalized cylinder slices of length �s,
as in Algorithm 1 (functions controlling the orientation and size of
the generating curve have been omitted here for simplicity). Specif-
ically, rotations �
U and �
L are calculated by multiplying (dot
product) the vectors ~U and ~L (lines 8 and 9) returned by the query
modules ?U and ?L (line 6) with the tangent vector to the curve P
returned by the tanX, tanY and tanZ function calls (line 7). The
values �
U and �
L orient the next segment of the curve, rep-
resented by module F(�s) in line 10. House-keeping productions
that erase modules A, ?U and ?L at the end of the derivation have
been omitted from this listing.

Figure 5: Allum vineale
(field garlic), modeled
using Algorithm 2 after
the photograph in [4].

A sample application of Al-
gorithm 2 is shown in Fig-
ure 5. Stems of a dry gar-
lic plant have been modeled
interactively, then framed us-
ing Algorithm 2 to orient the
generating curve. Although
the generating curve is circu-
lar in this case, its orienta-
tion is important for proper
polygonization of the result-
ing generalized cylinders.

The turtle frame also plays an
important role in orienting the
organs and branches that are
attached to an axis. Before
discussing this in detail, we
will consider the spacing of
organs along an axis.

5 Organ spacing

We call points at which organs are attached to an axis the nodes,
and the axis segments delimited by them the internodes. Let
fsig; i = 0; 1; : : : , be a sequence of node positions on an axis, and
fli = si+1 � sig be the associated sequence of internode lengths
(Figure 6a). It is straightforward to define the internode lengths us-
ing a function � of the position of one of its incident nodes, for
instance using the formula li = si+1 � si = �(si). Unfortunately,
with this definition function � does not provide a robust control
over the node distribution, because a small change in the position
of the initial node s0 may result in a totally different sequence of
the nodes that follow. For example, if s0 = 0, the function � shown
in Figure 6b will yield the sequence of node positions fsig =
0; 1; 2; 3; : : : (internode length equal to 1), but if s00 = 0:25, the se-
quence of node positions will be fs0ig = 0:25; 0:75; 1:25; 1:75; : : :
(internode length 0.5).

To achieve a more stable behavior, we observe that 1=�(s) can be
interpreted as the local density of nodes, in the sense that the integer
part of the integral

N(so; s) =

Z s

s0

ds

�(s)
(11)

represents the number of internodes between node s0 and point s on
the axis. Thus, given the initial node s0, positions of the subsequent
nodes correspond to the integer increments of the value of function
N , that is, N(so; si+1) = N(so; si)+1 (Figure 6c). The sequence
of nodes fsig defined this way is no longer critically sensitive to
the initial node position s0. Specifically, in Appendix A.2 we prove

s0
l0

s1

l1

s2
l2

s3
l3

s4
a

0

1

1 2 3 4

λ(s)

s

b

1 2 3 4
0

1

2
1/λ(s)

s

c

Figure 6: Partitioning an axis into segments. (a) The labeling of
nodes and internodes. (b) Positional information represents the in-
ternode length. The same function �(s) generates very different
node sequences (filled and empty circles), depending on the posi-
tion of the initial node. (c) Positional information represents node
density. Nodes are placed at the locations corresponding to the unit
areas under the curve 1=�(s). This definition leads to a more stable
node spacing than (b).

that for any two node sequences fsig, fs0ig such that s0 < s00 < s1,
the elements of both sequences interleave: si < s0i < si+1 for all
i = 0; 1; 2; : : : .

Specification of node spacing based on Equation 11 also has other
useful properties. First, if �(s) has a constant value l between nodes
si and si+1, then l is equal to the internode length:

Z si+1

si

ds

l
= 1 implies si+1 � si = l: (12)

Second, if �(s) is a linear function, �(s) = as + b, the length of
consecutive internodes changes in a geometric sequence, li+1 =
eali (proof in Appendix A.3). The ease of defining geometric se-
quences is important, because their approximations are often ob-
served in nature (according to Niklas, they form the “null hypothe-
sis” [22]).

The algorithm for placing nodes according to a given function �(s)
is presented below.

Algorithm 3

1 Axiom: A(0,0)
2
3 A(s,a) : f s0 = s+�s g s0 � `
4 f a0 = a+�s=�(s) ;
5 if (a0 < 1) f flag = 0; g
6 else f a0 = a0 � 1; flag = 1; g g;
7 F(�s) B(flag) A(s0,a0)
8
9 B(flag) : flag == 0; �
10 B(flag) : flag == 1; @o

The initial structure consists of apex A (line 1). The first parameter
represents the distance of the current point on the axis from the axis
base, as in Algorithms 1 and 2. The second parameter represents
the fractional part of the integral N(0; s) given by Equation 11.
The production in lines 3 to 7 creates the axis as a sequence of
segments F of length �s, separated by markers of potential node
locations B. If the flag is zero, module B is subsequently erased
(line 9). When a exceeds 1, the flag is set (line 6) to produce a
node marked by symbols @o (line 10).

6-40



0.5

1.0

002

0.5

1.0

0 -20020

0.5

1.0

0012

10

20

 x

y    -20  2

Leaflet length [cm]    Internode  length [cm]      Branching angle [deg]            Stem shape [cm]

       a                  b                           c                        d                           e                               f                g

Given image Model

s /l s /l s /l

Figure 7: Using positional information to model a Pellaea falcata (sickle fern) leaf.

6 Modeling single-compound plant struc-
tures

We have combined the methods for framing and partitioning an axis
into the following algorithm, which makes it possible to model a va-
riety of single-compound structures (sequences of organs supported
by a single stem). Definitions of graphical functions and constants
used in previous algorithms have not been included. Secondary
features, such as the randomization of values returned by functions,
have also been omitted.

Algorithm 4

1 #define � 0 /* phyllotactic angle */
2
3 Axiom: A(0,0,0) ?U(0,0,0) ?L(0,0,0)
4
5 A(s,a,') > ?U(ux,uy,uz) ?L(lx,ly,lz) :
6 f s0 = s+�s g s0 � `
7 f t0x = tanX(P ,s0); t0y = tanY(P ,s0); t0z = tanZ(P ,s0);
8 �
L =K � (t0xlx + t0yly + t0zlz);
9 �
U = �K � (t0xux + t0yuy + t0zuz);
10 a = a+�s=�(s)
11 if (a < 1) f flag = 0; g
12 else f a = a� 1; flag = 1; ' = '+�; g g;
13 +(�
U ) &(�
L) #(stem width(s))
14 F(�s)B(s,',flag) A(s0,a,')
15
16 B(s,',flag) : flag == 0; �
17 B(s,',flag) : flag == 1
18 f l = length(s); w = width(s); g;
19 [ /(') [ +(brangle(s)) ˜L(l,w) ]
20 [ �(brangle(s)) ˜L(l,w) ] ]

The key new element is the third production (lines 17 to 20), which
inserts a pair of organs at the node. The organs are defined as in-
stances of a predefined surface L, with the length, width and angle
of insertion determined by functions of position s.

In order to present the operation of Algorithm 4 from a user’s per-
spective, let us consider the process of modeling a Pellaea falcata
(sickle fern) leaf. The photograph of the target structure is shown
in Figure 7a. Construction begins with a generic single-compound

(pinnate) leaf (b), which is generated when all graphically defined
functions are set to their default constant values. The length of the
leaflets is then modified as a function of their position on the stem
(c). Since the leaf silhouette is determined by the extent of its com-
ponent leaflets, this function controls the overall leaf shape. The
next two functions define the lengths of the internodes (d) and the
values of the branching angles between the stem and the leaflets
(e). The stem shape is then established by manipulating a paramet-
ric curve (f). Finally, the branching angles and the leaflet lengths
are randomized to capture the unorganized variation present in the
original leaf (g). The model also makes use of functions that have
not been shown in Figure 7, which define the taper of the stem and
the width of the leaflets.

In the above example, the individual leaflets have been modeled
as predefined surfaces L, scaled in length and width using func-
tions of their position on the stem (lines 18 to 20 in Algorithm 4).
Leaves, petals and similar organs can also be modeled as gener-
alized cylinders with Algorithm 1. We use this technique in most

Figure 8: Plants and plant organs with different phyllotactic pat-
terns: (a) Blechnum gibbum leaf with the distichous arrangement of
leaflets, (b) Antirrhinum majus (snapdragon) plant with a decussate
arrangement of leaves, (c,d) Casilleja coccinea (Indian paintbrush)
plant and Pinus strobus (white pine) cone with spiral arrangements
of leaves and scales.
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models, because it allows us to define and manipulate organ shapes
more easily. For example, the rippled surface of the Blechnum gib-
bum leaflets (Figure 8a) was obtained by randomly changing the
shape, size and orientation of the generating curve.

Constant � in Algorithm 4 controls phyllotaxis, or the arrangement
of organs around the stem [28]. If � = 0, organs are arranged in a
planar distichous pattern, as in Figures 7 and 8a. If � = 90Æ, con-
secutive pairs of organs are issued in mutually perpendicular planes,
forming a decussate pattern (Figure 8b). Finally, if � = 137:5Æ

(the golden angle), and only one organ is attached to each node
(line 20 of Algorithm 4 is removed), a spiral phyllotactic pattern
results (Figure 8c and d). Thus, a change in a single constant ex-
tends Algorithm 4 to three dimensions.

Figure 9: Helichrysum
bracteatum (strawflower).

A distinctive feature
of Helichrysum bracteatum
(a strawflower, Figure 9) is
the posture of petals (ray flo-
rets), which are more curved
near the center of the flower
head than on the outside. To
capture this gradient, the po-
sition of the petals on the
main axis of the flower head
was used to interpolate be-
tween two curves that de-
scribe the extreme postures
of the petals. A similar
technique made it possible to

control the shape of leaves and petals in the beargrass model (Fig-
ure 10). Photographs of the inflorescences that we used as a refer-
ence to construct this model are shown in Figure 11.

7 Compact phyllotactic patterns

In spiral phyllotactic patterns, the individual organs, e.g. petals, flo-
rets, or scales, are often densely packed on their supporting surface
(the receptacle), as illustrated by the model of beargrass. Model-
ing such patterns using Algorithm 4 requires a coordinated manip-
ulation of the radius of the receptacle, the size of the organs being
placed, and their vertical displacement (corresponding to the intern-
ode length). In this section we facilitate the modeling process by re-
lating the vertical displacement to the radius of the supporting sur-
face and the size of organs. Both the radius and the organ size can
be defined as functions of organ position on the receptacle, making
it possible to capture a wide range of forms and patterns. The pro-
posed model has the same generative power as the collision-based
model of phyllotaxis introduced by Fowler et al. [11], but operates
faster because it avoids the explicit detection of collisions between
organs.

Vogel [35] provided the first mathematical description of phyllotac-
tic patterns used for computer graphics purposes [28]. His model
places equally sized organs on the surface of a flat disk, stating that
the n-th organ will have polar coordinates:

� = n � 137:5Æ; r = c
p
n; n = 1; 2; : : : (13)

where c is a constant. The angular displacement of 137:5Æ between
consecutive organs is treated as empirical data, reproduced but not
explained by the model. The formula for the radial displacement
r is justified by two observations: (a) since organs are placed from
the disk center outwards, the ordering number n of the organ placed
at a distance r from the center is equal to the total number of organs

Figure 10: Model of Xerophyllum tenax (beargrass).

Figure 11: Photographs of Xerophyllum tenax inflorescences.

that occupy a disk of radius r, and (b) if all organs occupy the same
area, the total number n of organs in a disk of radius r will be
proportional to r2, hence r = c

p
n.

Vogel’s model abstracts from the shape of organs and places them in
a disk according to the area they occupy. Lintermann and Deussen
proposed a similar approximation to derive a formula for placing
organs on the surface of a sphere [19]. Both approaches are sub-
sumed by the model of Ridley [31], which operates on arbitrary
surfaces of revolution. Our algorithm is based on Ridley’s analysis.
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dA=2πfx(s)ds

fx(s)

ds

Figure 12: A receptacle.

Let (fx(s); fy(s)); s 2
[0; L] be a parametric def-
inition of a planar curve C
that generates the recepta-
cle when rotated around the
y axis of the coordinate sys-
tem (Figure 12). We as-
sume natural parameteriza-
tion of the curve C, which
means that parameter s is
the arc-length distance of
point (fx(s); fy(s)) from
the origin of this curve. The
area dA of the infinitesimal

slice of the receptacle generated by the arc [s; s+ ds] is then equal
to 2�fx(s)ds (Figure 12). We denote by ��2(s) the area occupied
by an organ placed on the receptacle at a distance s from the origin
of the generating curve C. As in the case of partitioning an axis
into internodes (Section 5), we can interpret 1=��2(s) as the organ
density at s. The integer part of the integral

N(0; s) =

Z s

0

2�fx(s)

��2(s)
ds =

Z s

0

2fx(s)

�2(s)
ds (14)

is then equal to the total number of organs placed in the portion
[0; s] of the receptacle. Consecutive organs are placed at locations
that increment N(0; s) by one. This leads to the following algo-
rithm:

Algorithm 5

1 #define C 1 /* generating curve ID */
2 #define ` curveLen(C) /* length of curve C */
3 #define �(s) func(2,s) /* density function */
4 #define �s 0.001 /* integration step */
5
6 Axiom: A(0,0)
7
8 A(s,a) : s < `
9 f while( a < 1 && s < `)
10 f x = curveX(C; s);
11 a = a+ (2x=�2(s))�s;
12 s = s+�s;
13 g
14 a = a� 1; y = curveY(C; s);
15 g
16 ; [f(y)-(90)f(x)˜O(�(s))] n(137.5) A(s,a)

Figure 13: Example of a
compact phyllotactic pat-
tern generated using Algo-
rithm 5.

The first parameter of module
A represents the arc-length dis-
tance s of the current point
from the base of the recepta-
cle. The second parameter is
the fractional part a of the inte-
gral N(0; s) (Equation 14). The
integration is performed incre-
mentally by the while loop in-
side the production (lines 9 to
13). When the integral reaches
1, an organ O of radius �(s) is
placed at height y and distance x
from the receptacle axis y (line
16). Consecutive organs are ro-

tated with respect to each other by the golden angle 137:5Æ mea-

Figure 14: Inflorescences of Kniphofia sp. (red-hot poker plant)
generated using Algorithm 5: models of two developmental stages
(top) and the photographs used as a reference (bottom).

sured around this axis. A sample pattern generated by Algorithm 5
is shown in Figure 13.

Figure 15: A Pinus
banksiana (Jack pine)
cone.

In realistic models, we replace
spheres O by models of plant or-
gans, as in [11]. For example,
Figure 14 shows two developmen-
tal stages of the inflorescence of
Kniphofia sp. (red-hot poker plant),
in which florets have been modeled
using generalized cylinders. In Fig-
ure 15 the algorithm has been ad-
ditionally modified to allow for a
curved cone axis. This modification
is equivalent to the deformation of a
straight cone, performed as a post-
processing step.

8 Modeling multiple-compound structures

Algorithms 4 and 5, introduced in the previous sections, have been
illustrated using examples of single-compound monopodial struc-
tures, each consisting of a sequence of organs placed along an axis
or on a receptacle. The same algorithms can also be used, how-
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Figure 16: A photograph and a model of a Spiraea sp. twig. The
arrangement of shoots on the twig and the arrangement of leaves
and flowers in each shoot follow the spiral phyllotactic pattern.
The approximately vertical posture of all shoots reflects strong or-
thotropism, which has been simulated by biasing the turtle’s head-
ing vector in the vertical direction as described in [28, page 58].

ever, to generate structures in which the main axis supports entire
substructures. For example, the Spiraea sp. twig shown in Fig-
ure 16 was constructed using Algorithm 4 twice: first to place the
flower-bearing shoots along the main stem, then to place the leaves
and the flowers within each shoot. In this case, all shoots have been
assumed equal, except for the different shoot axis shapes caused by
their orthotropism (tendency to grow vertically). In general, how-
ever, the supported structures may vary in a systematic manner, re-
flecting a morphogenetic gradient along the main stem.

To capture this gradient, we assume that, given two branches of
the same order, the shorter branch is identical (up to the effects
of tropisms and random variation) to the top portion of the longer
branch. This concept of branch mapping is supported by both bio-
logical arguments and simulation results.

Biologically, it is related to the fact that apical meristems, the main
engines of plant development, are located at the distal ends of

Figure 17: The effect of branch mapping. (a) An inflorescence of
common lilac Syringa vulgaris. (b) Reconstruction of this inflo-
rescence based on the measurements of all branches and flowers.
(c) The same structure, all flowers assumed to be identical. (d) An
approximate reconstruction based on branch mapping.

branches. Thus, if branch B develops over a shorter time or at a
slower rate than an otherwise equivalent branch A, branch B will
resemble the top portion of A.

A modeling example supporting the use of branch mapping is
shown in Figure 17. An inflorescence of common lilac Syringa
vulgaris (a) has been measured and reconstructed at three levels of
accuracy: with all architectural information present (b), using the
assumption that all flowers are identical (c), and using the assump-
tion that shorter branches are identical to the top portions of the
longer branches of the same order (d). Although reconstruction (d)
is visually the least accurate, it still matches the real structure well.

Branch mapping makes it possible to define all branches of the same
order using one set of functions. This concept is captured by the
following algorithm.

Algorithm 6

1 Axiom: A(0,0)
2
3 A(o,s) : o <MAX && s < max len[o]
4 f rel = s=max len[o]; g;
5 #(int width(o,rel)) F(int len(o,rel))
6 [+(branch ang(o,rel))
7 A(o+ 1,max len[o+ 1] - branch len(o,rel)) ]
8 [�(branch ang(o,rel))
9 A(o+ 1,max len[o+ 1] - branch len(o,rel)) ]
10 /(90) A(o,s+int len(o; rel))
11
12 A(o,s) : s � max len[o]; ˜K

Algorithm 6 can be viewed as a recursive version of Algorithm 4,
with the mechanism for creating curved axes removed for simplic-
ity, and the internode length determined using point-sampled posi-
tional information as in Figure 6b for the same reason. Parameters o
and s of the apicesA represent the axis order and position along this
axis, respectively. The array max len[o] specifies the length `max
of the longest axis of each order o < MAX. This value is used to
represent positional information in relative terms, as a fraction rel
of `max (line 4). This facilitates the specification of all functions,
since they have fixed domain [0; 1]. Functions int width(o; rel),
int len(o; rel), branch ang(o; rel) and branch len(o; rel) character-
ize morphogenetic gradients: the width and length of internodes,
the branching angles at which the child branches are inserted, and
the length of these child branches. All axes of the same order share
the same set of functions. Within an axis of length `, parameter s
ranges from the initial value of `max � ` (assigned to the newly
created apices A in lines 7 and 9) to the maximum value of `max
(condition in line 3). Thus, morphogenetic gradients along shorter
axes are aligned with the distal portion of the longest axis of the
same order, as required for branch mapping. Predefined flowers K
are placed at the ends of the branches (line 12).

Examples of lilac inflorescences generated by Algorithm 6 are
shown in Figure 18. Lilac inflorescences have decussate phyl-
lotaxis. As was the case for Algorithm 4, a small modification
of Algorithm 6 makes it possible to generate structures with spiral
phyllotaxis. An example of the resulting structure — the inflores-
cence of an Astilbe plant — is shown in Figure 19.

Algorithm 6 can also be applied to approximate trees with clearly
delineated branch axes (many young trees satisfy this criterion).
If the axes of first-order branches are approximately straight and
higher-order branches are relatively short, the outline of the tree
crown is determined by the extent of the first-order branches and
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Figure 18: Inflorescences of two lilac species modeled using Algo-
rithm 6: (a) Syringa chinensis CV. Rubra and (b) Syringa reticulata.

Figure 19: A photograph and a model of an Astilbe x arendsii CV.
Diamant plant.

can easily be controlled by function branch len(0; rel) (Figure 20).
In this sense, the use of positional information addresses the prob-
lem of progressing from silhouette to detail in the modeling process,
exemplified by Figure 1c.

Figure 20: A generic
tree model and its sil-
houette specifciation.

The problem of generating trees
given their silhouettes occurs in
several applications. One of them
is the modeling and rendering of
plant ecosystems. According to the
approach proposed by Deussen et
al. [10], the complexity of ecosys-
tem modeling can be addressed
by performing an individual-based
simulation of the whole ecosys-
tem, then replacing the coarse
plant models used in this simu-
lation with their detailed counter-
parts. The modeling method de-
scribed in the present paper pro-
vides a means of creating plant
models that match silhouettes de-
termined at the ecosystem level
(Figure 21).

9 Conclusions

We have explored the idea of plant modeling with functions that
relate features of a plant to their positions along plant axes. Our ex-
perience confirms previous observations that this use of positional
information is intuitive and well suited to the interactive model-
ing of plants. Visually important aspects of plant appearance —
posture, the arrangement of components, and the overall silhouette
— can easily be captured and controlled, while the procedural ap-
proach removes the tedium of specifying and placing each plant
component individually. The algorithms are sufficiently fast to sup-
port interactive plant modeling on current personal computers.

We demonstrated the power of the modeling with positional infor-
mation by recreating the form of several plants found in nature,
presented on photographs, or depicted in drawings. The modeled
structures range from individual leaves to compound herbaceous
plants and trees.

The use of positional information is not limited to interactive mod-
eling applications. We showed this by incorporating detailed tree
models into a plant ecosystem model that only provided coarse
characteristics of tree silhouettes. A related potential application
is the automatic generation of plant models that match silhouettes
of real trees, given their photographs [32].

At the technical level, our paper contributes: (a) a conceptual
distinction between L-systems and Chomsky grammars as formal
bases of developmental and structural plant models; (b) a general-
ized method for framing plant axes, free of the artifacts of the Frenet
frame; (c) a robust method for spacing organs along plant axes; (d)
an analytic method for generating phyllotactic patterns on arbitrary
surfaces of revolution, based on Ridley’s model; (e) the notion of
branch mapping and its application to the modeling of compound
plant structures; and (f) an example of the modeling system that
integrates all of these concepts.

One open research problem is the use of constraints. In Algorithm
5 we introduced a relation between organ size and available space
to constrain organ position in phyllotactic patterns. Many other re-
lations have also been identified by biologists and can be applied
to plant modeling [17]. By incorporating them into the algorithms
we may further facilitate the modeling process. Specifically, con-
straints may reduce the number of parameters and functions that
must be specified explicitly, while enforcing biological plausibility
of the resulting structures.

Another interesting problem falls in the domain of interactive mod-
eling techniques. In the present implementation, the user manip-
ulates function plots, curves, and surfaces that are displayed sepa-
rately from the model. A direct manipulation interface, in which
the user would interact with the modeled structure itself, may lead
to an even more intuitive modeling process.

A Appendices

A.1 Fundamental theorem of differential turtle
geometry

The method for modeling curved limbs presented in Section 4 is
based on the following extension of the fundamental theorem of
differential geometry for three-dimensional curves [34, page 61] to
the turtle reference frame.

Theorem. Let ~H(s)~L(s)~U(s) denote a moving reference frame de-
fined on an interval [0; `]. Furthermore, let ~H(0)~L(0)~U(0) be the
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Figure 21: Visualization of an ecosystem simulation. Top: direct visualization. Bottom: realistic visualization. Tree silhouettes match the
shapes coarsely defined at the ecosystem level.

initial orientation of this frame, and differentiable functions !H(s),
!L(s) and !U (s) be its rates of rotation around the axes ~H(s),
~L(s) and ~U(s). The orientation of this frame is then uniquely de-
fined for all s 2 [0; `]. Moreover, given the initial frame position
~P (0), there is a unique differentiable curve ~P (s) for which s is the
natural (arc-length) parameter, such that ~H(s) is tangent to ~P (s)
for all s 2 [0; `].

Proof. Following [12], an infinitesimal rotation vector d~
 acting on
an arbitrary vector ~A changes it by d ~A = d~
� ~A. Thus, changes
of the ~H~L~U reference frame due to the rotation rate vector ~! =
!H ~H + !L~L+ !U ~U satisfy the system of equations:

d ~H

ds
= ~! � ~H;

d~L

ds
= ~! � ~L;

d~U

ds
= ~! � ~U: (15)

Given the initial frame orientation ~H(0)~L(0)~U(0), vectors ~H(s),
~L(s) and ~U(s) are thus the unique solution to the initial value prob-
lem for the system of differential equations (15) in the interval [0; `].
Moreover, curve ~P (s) is given by the integral:

~P (s) = ~P (0) +

Z s

0

~H(s)ds: 2 (16)

A.2 Stability of node distribution

The fact that the distribution of nodes defined by integer values of
Equation 11 does not depend critically on the choice of the initial
node can be formally stated as follows.

Theorem. Consider a function � such that �(s) > 0 for all s > 0,
and let so; s00 > 0 be two numbers. Using function N specified
by Equation 11, define sequences fsig and fs0ig such that si+1 =
N(s0; si)+ 1 and s0i+1 = N(s00; s

0

i)+ 1 for all i = 0; 1; 2; : : : : If
s0 < s00 < s1 then si < s0i < si+1 for all i = 0; 1; 2; : : : :

Proof by induction on i. The assumption �(s) > 0 implies that
F (s) � N(s0; s) is an increasing function of the argument s. Thus,
si < s0i < si+1 implies F (si) < F (s0i) < F (si+1), and therefore
F (si)+1 < F (s0i)+1 < F (si+1)+1. By substituting F (si)+1 =
F (si+1), F (s0i) + 1 = F (s0i+1), and F (si+1) + 1 = F (si+2), we
obtain F (si+1) < F (s0i+1) < F (si+2), hence si+1 < s0i+1 <
si+2: 2

A.3 Distribution of nodes defined by a linear
function �.

Theorem. Consider the sequence of nodes si defined by integer
values of Equation 11, and let �(s) = as + b. The length of con-
secutive internodes li = si+1�si satisfies the equation li+1 = eali
for i = 0; 1; 2; : : : :
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Proof. From Equation 11 we obtain:

1 = N(s0; si+1)�N(s0; si) (17)

=

Z si+1

si

ds

as+ b
=

1

a
ln
asi+1 + b

asi + b
: (18)

Thus, asi+1 + b = ea(asi + b) and, similarly, asi+2 + b =
ea(asi+1+b). By subtracting these equations sidewise and dividing
by a we obtain si+2 � si+1 = ea(si+1 � si), or li+1 = eali: 2.
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