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Abstract

In interactive or real-time applicatiors, natually the
compleity of tasks that can be performedon the fly
is limited. For thatreasornit is likely thatevenwith the
current rate of developmentin graphics hardware, the
morecomplkex shades will not befeagdble in this kind
of apdication for sometime to come.

Onesolution to this prodem seemdgo be a precom-
putaion approach,wherethe procaduralshade is eval-
uated(sampled, andthe resuling valuesare stora in
texture maps,which canthen be applied in interactive
rencering. A closerlook, however, revealsseverd tech-
nical difficulties with this apgoach. Thesewill bedis-
cus®din this secton, andhints towards possible solu-
tionswill begiven

1 Introduction and Problem State-
ment

In order to comeup with anapprachfor sampling pro-
cedual shades, we first have to deerminewhich as-
pectsof the shading systemwe would like to alter in
theinteractive application

For example we canevaluak the shade for a num-
berof surfacelocationswith fixedillumination(all light
source postions and parametes arefixed),anda fixed
camerapostion. This is the modein which a normal
procedural shadirg sysem would evaluae the shackr
for a surface in ary given frame. If the shade is ap-
plied to aparanetricsurface F(u,v), thenwe caneval-
uatethe shade at a numbe of discrete points (u, v),
andstoretherestuting color valuesin atexture map.

In aninteractive applcation, however, this particular
exampleis of limited usesinceboththe viewer andthe
illuminationis fixed. As aresut the texture canonly
be usedfor exadly one frame, unlessthe materialis
compldely diffuse.ln amoreinterestirg scerario, only

theilluminationis fixed, but the cameras freeto move
arourd in the scene In this case the shade needsto
beevaluaedfor mary different referenceviewing posk
tions,andduringreakime rendeing the texture for any
given viewing direction can be interpolated from the
referenceimages. This four-dimensioal datastrudure
(2 dimersionsfor v andwv, and 2 dimensons for the
cameraposition) is called a light field, andis briefly
descrbedin Section4.

If wewantto goonestepfurther, andkeep theillu mi-
nationflexible aswell, we endup with aevenhigherdi-
mensioral datastrudure. Thereareseveralwaysto do
this, but one of the more promisingis probably the use
of aspacevariantBRDF, i.e. areflecticn modelwhose
parametes can change over a surface. This yields an
apprachwith asix-dimensiomal datastrudurethatwill
beoutlinedin Sectio 5.

No matterwhich of theseapproache is to be taken,
there are someissies that have to be resohed for all
of them. Oneof themis the choiceof an appopriat
resoluion for the sampling process. The bestresolu
tion dependson mary differentfactas, someof which
depen onthesysem(i.e. theamountof memoryavail-
able,or therangeof viewing distarcesunde which the
shadel objectwill be seen)andsomeof which depend
ontheshade (i.e. theamountof detal generdedby the
shade).

In the caseof a 2D texture with fixed cameraand
lighting, a sampleresdution canstill be chosn rela
tively easily, for example, by letting the use malke a
decisbn. With comple view-dependent effects this is
much harde becaiseit is hard to detemine apprqri-
ateresoultionsfor sampling specuar highlights whose
sharmessmay vary over the surface. An automatic
methodfor estimding the resolution would be highly
desirdle.

Anotherproblemis the she@ number of sampesthat
we may have to acqure. For example to samplea
shade as a space variant BRDF with a resoluion of



2562256 for the surface paraméersu andwv, aswell as
322 sampledor boththelight directon andtheviewing
diredion requresover 68 billion sample, whichis un-
feasble bothin termsof memoryconaimptionandthe
time requred to acqure these samples On the other
hand it is to be expededthatthe shade functionis rel-
atively smooth with thehigh-frequeng detal locdized
in certan combindions of viewing andlight directions
(spewlar highlights, for example). Thus,a hierarchicl
samplirg schameis desimablewhich allows usto refine
the samping in area that are more complex without
havingto doahigh-densty samplirgin all areas At the
samdimethehierarchial methodshoud make surewe
do not missout on arny important features. Suchanap-
proachis desribedin the next sectian.

2 Area Sampling of Procedural
Shaders

In this section we introduce the concept of area sam-
pling aprocaduralshalerusing aacertainkind of arith-
metic that replacesthe stardard floating point arith-
metic. This affine arithmetic allows us to evaluate a
shaderoverawholeareayieldinganuppe andalower
bourd for all the values that the shader takes on over
thisarea.This bourd canthenbeusedhierarchially to
refinethe samplirg in area in which the upper andthe
lowerbourd arefarapart(i.e. areaswith alot of detal).
Thefull detdls of themethal canbefoundin [10].

We will discuss the geneal apgoachin terms of
samplirg a 2D texture by evaluding a shaler with
a fixed cameraposiion and illumination. The same
method can however be applied to adatively adjust
the samplirg ratesfor cameraandlight position.

2.1 Affine Arithmetic

Affine arithmetic (AA), first introduced in [4], is an
extension of interval arithmetic [16]. It hasbee suc-
cesstilly applied to severalprobemsfor whichinterval
arithmetic had beenusedbefore [17, 20, 21]. Thisin-
cludes reliable intersectian testsof rays with implicit
surfaces, and recursve enumeratiors of implicit sur
facesin quadtreelik e structures|5, 6].

Like interval arithmetic, AA canbe usedto manip-
ulate imprecike values, and to evaluak functions over
intervals. It is alsopossble to keeptrack of truncation
andround-off errors In contrastto interval arithmetic,
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AA also maintairs dependerrties betwee the souces
of error, and thus manags to comput significantly
tighter errar bounds. Detailed comparsonsbetweerin-
tenal arithmeic and affine arithmetc canbe foundin
[4], [5], and[6].

Affine arithmetic opemteson quantties known as
affine forms given as polynomialsof degreeonein a
setof noisesymbds ;.

T=x0+z1€1 + 2262 + - + Tpey

Thecoeficientsz; areknown realvalues while theval-
uesof the noisesymbds are unknown, but limited to
theinterval U := [—1,1]. Thus,if all noise symbok
canindependatly vary betwea —1 and1, therange of
possble valuesof anaffine form % is

(@ =[oo —&a0 48], €= lail.
=1

Computingwith affine forms is a matterof replac
ing eachelementay operdion f(z) on real numbes
with an andogous operdion f*(e1,...,€,) = f(&)
on affine forms.

If fis itself anaffine function of its aguments,we
canapgy normalpolynomial arithmetc to find thecor-
respading operation f*. For examplewe get

T+9= (mo+uyo)+(z1+y1)er+ -+ (Tn+ yn)en
TH+a= (zo+a)+zier+- + Tpep
a = oaxg+ arier+ -+ axpe,

for affine forms z, § andrealvaluesa.

3 Non-Affine Operations

If fis notanaffine opertion,the correpondng func-
tion f*(e1,...,€,) canrot be exactly repregentedasa
linear polynomialin thee;. In this caseit is necesary
to find anaffine function f®(ey,...,€,) = 20 + z1€61 +

-+ -+ zpe, ApPraimating f*(e1, - . . , €n,) aswell aspos

sible over U™. An addiional new noisesymbole¢, has
to beaddedo representtheerrorintroduce by this ap-
proximation. This yields the following affine form for
theopeationz = f(z):

.é':fa(el,...,

with & ¢ {1,...,n}. The codficient z; of the new
noise symbd hasto be an upper bound for the error
introducedby the approiimation of f* with f¢:

J€n)—f€er, ..., €n)| s € € Ul

€n) = 20 + z1€1 + - - + zZnen + 2xex,

2 > max{|f*(ey, ..



For exampk it turns out (see[4] for detaik) thata
goodappraimationfor the multiplication of two affine
formsz andy is

Z = zoyo+(2oy1+yoz1 )€1+ - - H(ZoYn+YoTn ) en+uvey,

withwu =37, |z;| andv = >, |y;|. In gereral,the
bestappoximation f¢ of f* minimizes the Chebyslev
errorbetwea thetwo functions.

The geneation of affine approximationsfor mostof
the functionsin the standad mathlibrary is relatvely
straghtforward. For aunivariatefunction f (z), theiso-
surfacesof f*(e1,...,e,) = f(xo+T161+ -+ Tpey)
arehypeiplanesof U™ thatareperpendiailarto thevec-
tor (z1,...,z,). Sincetheiso-surfacesof every affine
function f*(e1,...,en) = 20 + z1€1 + -+ - + 2pe, are
also hypeplanres of this spae, it is clearthatthe iso-
surfacesof the bestaffine approaimation f* of f* are
alsoperpendiailarto (z;, . . ., z,). Thus,we have

fer,...,en) = ai+P = a(zotzie1+ - +Tpey)+8

for someconsantsa andgs. As aconseguene,themin-
imum of max,cy |f* — f*| is obtainedby minimizing
max, ey |f(2) —ad—p| = max,epey |f (z) —az—pl,
where[a, b] is theinterval []. Thus,appoximatng f*
hasbeenreduedto finding alinear Cheby$ev appro-
imation for a univariatefunction, which is a well un-
dersbod problem [3]. For a more detdle discussion
see[10].

Most multivariatefunctionscanhardled by redwcing
themto a composiion of univariatefunctions. For ex-
ample,the maximumof two numberscanbe rewritten
asmax(z,y) = maxy(z — y) + y, with maxy(z) :=
max(z, 0). Fortheunivariatefunction maxy(z) we can
usetheabove scheme.

3.1 Application to Procedural Shaders

In orde to apply AA to procalural shackrs, it is nec-
essay to invedigatewhich addtional featuresare pro-
vided by shadng languages in comparson to stan-
dard mathlibraries. In the following, we will restrict
ourselvesto the functionality of the RenderMa shal-
ing language[9, 18, 22, which is gererally agred to
be one of the most flexible languagesfor procedural
shackrs. Sinceits featuesarea supergt of mostother
shadng languages(for example[2] and[15]), the de-
scribedconaptsapfy to theseotherlanguagesaswell.
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Shadinglanguagesusudly introduce a set of spe-
cific datatypesandfunctionsexceedng the functional
ity of gereral purmposelanguagesandlibraries. Most of
theseadditional functions can easily be appioximated
by affine formsusingtecmiques similarto theonesout-
linedin the previoussectian. Exampledor this kind of
domainspedfic functions are contiruousand discon-
tinuous trarsitions betweentwo values, like stepfunc-
tions,clampirg of avalueto aninterval,or smoothHer-
mite interpolation betwea two values.

The more compicated featues include splines,
pseud-rardom noise and derivatives of expressiors.
For an in-depth disaussia of thes functions we refer
thereackrto theoriginal pape [10].

New datatypes in the RenderMa shadng language
are points and color values, both simply being vectors
of scahr values. Affine appioximations of the typicd
operdionson thesedatatypes(sum,difference,scalar-
, dot- and crossproduct, aswell asthe vecta norm)
caneasly beimplemente basedn the primitive oper-
ationson affine forms.

Every shacrin the RenderMarshadng languageis
suppled with a setof explicit, shade specfic parane-
tersthat may be lineaily interpolated over the surface,
aswell asfixed setof implicit paramegrs(global vari-
ables) Theimplicit parametes include the locaion of
the samplepoint, the normd andtangentsin this point,
aswell asvectas pointing towardsthe eye andthelight
sour@s. For parametricsurfaces,thes valuesarefunc-
tions of the surface parameg¢rs« andwv, aswell asthe
sizeof the sampek region in the parame¢r doman: du
anddv.

For parametic surfaces including all geametric
primitives defined by the RenderManstandard, the
explicit and implicit shader paraneterscan therdore
be computal by evaluating the correspondng function
over the affine forms for u, v, du, anddv. Theaffine
forms of thesefour values have to be compued from
the sampleregion in parametespace.For mary appli
catiors,du anddv will actually berealvalues onwhich
the affine forms of v andv depend: 4 = uy + du - €
andd = vg + dv - €3.

With this information, we can setup a hierachicd
samplirg schene asfollows. The shaleris first evalu-
atedover thewhole paraneterdomain(u = 0.5 + 0.5 -
€1,v = 0.5 4 0.5 - €2). If theresuting uppe andlower
boundof the shade aretoo different,the paraméer do-
mainis hierarchially suldivided into four regions,and
areasample for theseregions arecompued. The re-



cursion stopswhen the differencebetwee upper and
lower bourd (error) is below a certain limit, or if the
maximumsutdivision level is reated. Resultsof this
appoachtogetherwith an error plot aregivenin Fig-
urel.

3.2 Analysis

In our desciption we usesaffine arithmetic to obtan
congervative bourds for shadkr valuesover a param-
eterrange. In principle, we could alsouseary other
range analysis methodfor this purpose.lt is, however,
important thatthe methodgeneatestight, consevative
bourdsfor theshade. Consevative bourdsareimpor-
tant to not miss ary small detal, while tight bourds
redwe the numbe of subdivisiors, andtherefore save
both compuationtime andmemory

We have perfaomed teststo compareinterval arith-
meticto affine arithmetic for the spedfic appication of
proceduralshades. Our resuts shav that the bourds
producedby interval arithmetic are significantly wider
than the bourds producedby affine arithmetic. Fig-
ure 2 shavs thewood shade sampledat aresdution of
512 x 512. Theerrar plotsshaw thatinterval arithmetc
yieldserrarsupto 50% in areasvhereaffine arithmetc
produceserrars below 1/256. As a consguene, the
texturesgereratedrom this databy assgningthemean
values of the compued range to eachpixel, reved se-
vereartifactsin the caseof interval arithmetc.

Thecorrepondng errar histogramin Figure3 shows
that, while the most of the perpixel errors for affine
arithmetic are arelessthan 3%, mostof the errars for
interval arithmetc arein the rangeof 5%-10%,anda
significantnumbe is evenhighe thanthis (upto 50%).

Theseresuls arenot surgising. All the expressons
computdby a procedurd shadkr dependon four input
paraméers: u, v, du, anddv. Affine arithmetc keegps
track of mostof thes sultle depemencis,while inter-
val arithmeticignoresthemcompletly. Themorecom-
plicated functions get, the moredepemendes between
the soucesof errar exist, andthe bigger the advantage
of AA. Theseresuts are consstentwith prior studies
publishedin [4], [5], and[6].

Thebounds of both affine andintervalarithmeticcan
befurtherimprovedby finding optimal approcimations
for larger blocks of code instead of just library func-
tions. This process,however, requreshumaninterven-
tion andcanrot be doneautanatically.

This leaves us with the method preseited here as
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the only practical chace, as long as consevative er
ror bourds arerequred. Otherappications, for which
an estimateof the bourds is sufiicient, could alsouse
Monte Carlo samping. In this caseit is interesting to
analyzethenumberof Monte Carlosamplesandthere-
sulting quaity of the estimde that can be obtaned in
the sametime as a single areasampleusing AA. Ta-
ble 1 shavs a comparsonof thesenumbes in termsof
floating point operations (FLOPS and executian time
(on a 100MHz R4000Indigo) for the various shaders
usedthroughott this paper

For more complicated shades the relative perfor-
manceof AA decresessince moreerror variablesare
introduced due to the increasedamountof non-dfine
operdions. The table shavs that, depending on the
shade, 5 to 10 point sample areasexpensive asa sin-
gle AA areasample To seewhat this meansfor the
quality of thebounds, consderthe scree shade with a
densty of 0.5. Thedensty of 0.5 meanghat75 percent
of the shalerwill be opague,while 25 perentwill be
translicent If we take 7 point samples of this shade,
whichis aboutasexpensive asasingleAA samplethe
probability thatall samplescomputethe sameopecity
i50.75" +0.257 ~ 13.4 percen. Evenwith 10 sample
the probability is still 5.6 percer.

For the exampke of usingareasamplesasa suldivi-
sioncriterionin hierarchicd radiosty, thismeanghata
wall coveredwith the screenshacderwould have aprob-
ability of 13.4(or 5.6) percent of not being suldivided
atall. Thesameprobability appliesto ead level in the
subdivisionhierachy independently. Thesenumbes
indicae that AA is superor to point samplirg even if
only coar® estimaesof theerror bounds aredesireal.

4 Light Fields

Let us now condgder how the metha canbe usedin a
scenaio with avarying camerdocation, but fixedillu -
mination This is someavhatspeculative, becaiseit has
never actualy beentried. It is therdore to be expected
thatin practical implementations somenew issweswill

arisethatwill haveto beresdvedin future reseach.

Beforewe outline anapprachfor adagtively acauir-
ing light fields from procedurad shades, we will first
review the coneptof alight field itself.
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Figure 1: Several examples of RendeManshalers sampeswith affine arithmetic. Left: perpixel error bounds,
centa: generdedtexture, right: texture appliedto 3D geomety.

Figure 2: The wood shactr samplel at a resolution of 512 x 512. From left to right: error plot using interval
arithmetic, resuting texture, error plot using affine arithmetic,resuting texture.
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Figure3: Error histogramsfor thewood shade for interval arithmetic(left) andaffine arithmetc (right).

Shader FLOPS(ps) FLOPS(aa) | ratio Time (ps) Time (aa) | ratio

screen 24 214 | 1.8.2 4.57 33.8 | 1:7.32
wood 803 6738 | 1.8.3 8.34 86.33 | 1:10.38
marbe 438 28812 | 1:6.57 9.46 88.2 | 1:9.36
bumpmap 59 487 | 1.8.5 3.76 20.43 | 1:5.43
erocd 29% 2634 | 1:.9.a 18.% 193.38 | 1:10.7

Tablel: FLOPSpersampleandtimingsfor 4096samplesfor stochastc point samplirg (ps)andAA areasamplirg

(aa).

4.1 Definition

A light field[13] is a 5-dimensioral function descrbing
the radiarce at every point in spacein eachdirection.
It is closely relatedto the plenoptic fundion introduced
by Adelsan[1], which in addtion to location and ori-
entaton also descibesthe wavelergth dependery of
light.

In the caseof a scenethatis only to be viewed from
outdde a corvex hull, it is sufficient to know whatra-
diance leaves eachpoint on the surface of this con-
vex hull in any given direction. Sincethe spaceout-
sidethe corvex is assumd to be empty andradance
doesnot chang along a ray in empty space,the di-
mensimality of the light field canbe reducel by one
if an appr@riate paraneterizaion is found. The so-
called two-plane parameerizaion fulfills this require-
ment. It representsaray via its intersection points with
two paralkel planes. Several of thesepairs of plares
(alsocalled slabs) areregured to representa complee
hull of the object. Sinceeachof thesepoints is cha-
acteizedby two parametersin the plane,thisresuts in
a 4-dimensioral function that canbe den®ly sampéd
through aregulargrid on eachplane(seeFigure4).

Oneusetll property of the two-plane parametaza-

/

\(u,v) plane

aSahy
[ [N/

AT
[ [t

\

(s,t) plane

Figure4: A light field is a 2-dimersiond array of im-
agestaken from a regular grid of eye points on the
(s, t)-planethrouch awindow onthe (u, v)-plane. The
two planes areparalel, andthe window is the samefor
all eye points.

tion is thatall therayspas$ng through asingle point on
the (s, t)-plane form a persgective imageof the scere,
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with the (s,¢) point being the cener of projection.
Thus, a light field canbe consideral a 2-dimensioral
array of perspetive projections with eye points regu-
larly spa@donthe (s, t)-plane. Otherpropertiesof this
paraméerizaion have been disaussedn detailby Gu et
al.[g].

Sincewe assume that the samplingis dens, the ra-
diance along an arbitrary ray passng through the two
plarescanbeinterpolatedfrom theknown radiarceval-
uesin nearbygrid points. Eachsuchray passethrough
oneof thegrid cellson the (s, t)-planeandoneon the
(u,v)-plane Thesearebourdedby four grid pointson
the respetive plane andthe radiarce from ary of the
(u,v)-points to ary of the (s, t)-pointsis storedin the
datastrudure. Thismakesfor atotal of 16 radianceval-
ues,from whichtheradiancealong theray canbeinter-
polated quadi-lin early As shownin by Gortleretal[7]
andSloanetal.[19], this algoiithm canbe consderalty
spedup by the useof texture mappinghardvare. Sloan
etal.[19) alsopropcseagereralizedversian of thetwo-
plare parametdzation, in which the eye points canbe
distributed uneenly onthe (s, t)-plane,while the sam-
plesonthe (u, v)-planeremainon aregular grid.

A related datastrudureis the surfacelight field [14,
23], in which two of the four parametes of the light
field areattacked to the surfaceparametrs. Thatis, u
andwv correspom to the parameterof a parametic sur
face,while s andt spedfy the viewing direction. The
detals of thedifferentvarians of surfacelight fieldsare
beyond the scopeof this documem, andwe refer thein-
teresedreacerto theoriginal papes[14, 23].

4.2 Sampling of Light Fields

The samplirg methodfrom Section3.1 canbe adapéed
to theadapive sampling of light fieldsfrom procedural
shacers.In addtion to compuing bounds for theshader
over alarge paraneterdomainthat we thenadagively
refine,we now alsocomput bourds over a continuum
of camen positions. For examplke, we canstat with a
large bourding box spedfying all possble camerapo-
sitions, andthenadaptively refineit. Or, in the caseof
a two-plane parameterizel light field, we could define
therangeof camergositionsasarectangular region on
the camergplare.

It is not clear at this point how the acqured hier
archical light field canbe useddiredly for rencering
in interactive applicatiors. However, a regularly sam-
pledtwo-planeparaneterizedight field is easyto gen-
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eratefrom the hierarchicd oneby interpolaion. This
apprachdoesnot resohe the relatively large memory
requirementsof light fields, but it shauld dramatially
redue theacaquisitiontime.

5 Space Variant BRDFs

The situation gets even more complex when we also
want to allow for changs in the illumination. The
most reasmable apprach for dealing with this situa
tion seemgo be stoiing a reflecion model(BRDF) for
every point ontheobject. Thatis, insteadof precanput-
ing theshackrfor all possble lighting situaions (which
would require evenmaorespace),we only deteminethe
BRDF at every surface location (i.e. a spa@-varant
BRDF by consideringthe effect of a singe directiond
light sour@ which canbe pointing at the objed from
ary direction.

As mentiored in the introduction, a spacevariart
BRDFis asix-dimensiaal function, andkegoing a six-
dimensonal table is prohibitive in size. Therefae, a
different representdion hasto be found. Again, we
shoul beableto useAAto genegatearelatively spase,
adaptve samping of theshade, whichis, however, not
well suited for interactive rencering

Onthe other hard, the graphcs hardware is beam-
ing more and moreflexible, sothatit is now possble
to rende certain simple reflecticn modek where the
parametes of the model canbe varied acrossthe sur-
face[11]. This yields a limited form of spacevariart
BRDF, wherethe BRDF actudly confarmsto a single
analytical reflection model, but its paramegrs can be
texture-mappedand cantherebre vary acrossthe sur-
face.

Unfortunately, the reflecticm modek consdered
in [11] are not yet complex enowgh to capure all the
effects that a procediral shade may produce. Other
modelsthat provide a gereral purpcse bask for arbi-
trary effects do exist [12], but it is currently no possble
to rencerthemin hardware with spa@-variant parane-
ters.

Oncewe have found a reflectionmodel that is ex-
pressie enaugh for our purposesandcanbe rendered
in hardvare,westill haveto detemineits paramegrsin
every point of the objed from the hierarchical sample
acqured with the adagive samplirg appioach. This,
again,is anopen reseach problem.



6 Conclusion

In this secton we have raised someissuesregardirg
the samplirg of comple procedurd shades asa pre-
processingstepfor interective rendering. We wereable
to descibe a hierarchial samplirg schemethat adap-
tively determires an appr@riate sampling resoluion
for different parts of the shadr. The apdication of
this methal to determinng view-dependet informa-
tion from a shadkr in sucha way thatit is efficient to
usein interactive apdicationsis an openproblem. We
wereableto idenify someissues arisng with this sub-
ject, and hinted towards somepossble solutions, but
moreresearb will have to be dore for a complkete so-
lution.
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