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Abstract 
 
 
Advances in image synthesis techniques allow us to simulate the distribution of light 
energy in a scene with great precision.  Unfortunately, this does not ensure that the 
displayed image will have a high fidelity visual appearance. Reasons for this include 
the limited dynamic range of displays, any residual shortcomings of the rendering 
process, and the extent to which human vision encodes such departures from perfect 
physical realism. Conversely, along many parameters, the visual system has strong 
limitations, and ignoring these leads to an over specification of accuracy beyond what 
can be seen on a given display system. This gives rise to unnecessary computational 
expense. 
 
It is increasingly important to provide quantitative data on the fidelity of rendered 
images. This can be done either by developing computational metrics which aim to 
predict the degree of fidelity, or to carry out psychophysical investigations into the 
degree of similarity between the original and rendered images. This course addresses 
techniques to compare real and synthetic images, identify important visual system 
characteristics and thus produce benefits to the graphics community such as being 
able to reduce rendering times significantly. 
 
Case studies involving both static and dynamic images are considered.  Their different 
perception metric requirements are compared and contrasted. 
 
 
This course address the problems associated with creating and evaluating realism in 
static and dynamic images. It covers the fundamentals of perception metric design for 
evaluation by both humans and computational models and discusses the issues of 
fidelity, relevant psychophysics, visual perception, shape and state-of-the-art metrics. 
The use of the techniques are illustrated by applying them to case studies 
investigating image quality between synthetic images and between synthetic images 
and the real world. 
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Introduction

The aim of realistic image synthesis is the creation of accurate, high quality imagery

which faithfully represents a physical environment, the ultimate goal being to create

images which are perceptually indistinguishable from an actual scene. Advances in im-

age synthesis techniques allow us to simulate the distribution of light energy in a scene

with great precision. Unfortunately, this does not ensure that the displayed image will

have a high fidelity visual appearance. Reasons for this include the limited dynamic

range of displays, any residual shortcomings of the rendering process, and the extent

to which human vision encodes such departures from perfect physical realism. Image

quality metrics are paramount to provide quantitative data on the fidelity of rendered

images. Typically the quality of an image synthesis method is evaluated using numer-

ical techniques which attempt to quantify fidelity using image to image comparisons

(often comparisons are made with a photograph of the scene that the image is intended

to depict). Several image quality metrics have been developed whose goals are to pre-

dict the visible differences between a pair of images. It is well established that simple

approaches, such as mean squared error (MSE), do not provide meaningful measures

of image fidelity, more sophisticated techniques are necessary. As image quality assess-

ments should correspond to assessments made by humans, a better understanding of

features of theHumanVisual System (HVS) should lead to more effective comparisons,
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which in turn will steer image synthesis algorithms to produce more realistic, reliable

images. Any feature of an image not visible to a human is not worth computing. Results

from psychophysical experiments can reveal limitations of the HVS. However, problems

arise when trying to incorporate such results into computer graphics algorithms. This

is due to the fact that, often, experiments are designed to explore a single dimension of

the HVS at a time. The HVS comprises many complex mechanisms, which rather than

function independently, often work on conjunction with each other, making it more

sensible to examine the HVS as a whole. Rather than attempting to reuse results from

previous psychophysical experiments, new experiments are needed which examine the

complex response HVS as a whole rather than trying to isolate features for individual

investigations. This course addresses techniques to compare real and synthetic images,

identify important visual system characteristics and help reduce rendering times signif-

icantly. The following topics are covered: fidelity of images; human visual perception

including important characteristics of the human visual system; computational models

of perception including spatial and orientation channels and visual masking; objec-

tive metrics including Visual Difference Predictors, the Sarnoff model and Animation

Quality Metrics; and psychophysics.

I.1 Course Syllabus

Introduction to Image Quality (Chalmers 10 mins)

• some intuitive examples of applications:

• the role of perception

• subjective and objective methods of image quality estimation

• our focus: synthetic images generated using computer graphics methods

Psychophysical Image Quality Metrics (McNamara & Troscianko 50 minutes)

• psychophysics

• fidelity of final image

• working with real subjects

I-2
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• procedures for comparing real and synthetic images

• case studies

Important Issues for Automating Image Quality Estimation (Daly & Troscianko 40

minutess)

• visual perception

• computer models of visual system

Computational Image Quality Metrics (Daly 45 minutes)

• state-of-the-art metrics

• VDP

• Sarnoff model

• Animation Quality Metric

• validation of metrics through experiments with subjects

• customising metrics for specific tasks

Metrics and Geometric Simplification (Rushmeier 20 minutes)

• use of image metrics vs. geometric metrics to guide simplification

• ratings of object quality for different simplification levels

• correlation of image quality metrics with

{naming times

{other object quality metrics

Applications in Rendering and Animation (Myszkowski 35 minutes)

• explicit use: controlling image computation

• implicit use: improving rendering efficiency

• animation and dynamic case studies

Summary, discussion and questions (All 20 mins)
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Seeing is Believing:Seeing is Believing:
Reality perception in modeling, 

rendering and animation"

Alan Chalmers    
Scott Daly
Ann McNamara    
Karol Myszkowski
Tom Troscianko
Holly Rushmeier

Evaluating Quality in Images

?Course Syllabus
?Introduction to Image Quality
?Psychophysical Image Quality Metrics
?Important Issue for Automating Image Quality 

Estimation
?Compuational Image Quality Metrics
?Metrics for Geometric Simplification
?Application in Rendering and Animation
?Summary, Discussion and Questions

Introduction to Image Quality

?Why do we need high fidelity images?
?How do I know this image is real?
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No absolute truths

?For sites which no longer exist or have 
yet been built
?User must have confidence in the image

Photo-Realism versus High 
Fidelity
?What is reality?
?Image synthesis techniques allow us to simulate 

accurately light distribution within a scene ?
does NOT imply high fidelity visual appearance

Problems

?Lack of high fidelity due to:
?problems with modelling the scene
?residual shortcomings of the rendering 

process
?limited dynamic range of displays
?extent to which human vision encodes 

such departures from perfect physical 
realism
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Image Quality Metrics

?Trying to provide quantitative data
?real vs photograph
?real vs synthetic
?photograph vs synthetic

MSE: 
3297.343

Importance
?Image quality metrics can:
?provide user confidence in images
?open substantial application opportunities
?significantly reduce rendering times

Realism in Real-Time



 
 
 
 
 
 
 
 
 

 
II. Psychophysical Image 

Quality Metrics 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Seeing is Believing: 
Reality Perception in 
Modeling, Rendering &  
Animation 
 
 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Alan Chalmers 
Scott Daly 
Ann McNamara 
Karol Myszkowski 
Holly Rushmeier 
Tom Troscianko 

Course #21



Psychophysical Image Quality Metrics Ann McNamara

II-1

Psychophysical Image 
Quality Metrics 

Ann McNamara 
Image Synthesis Group
Trinity College Dublin
Ireland

Subjective Image Quality -
Overview
?Realism
?Psychophysics
?Working with Participants
?Procedures for comparing Real Scenes 

with Synthetic Image
?Case Studies

Need For Accuracy

?Lighting Engineering
?Architecture
?Stage Lighting

?Industry
?Entertainment

?Safety Critical

?Archaeology
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Why Compare Images ?
?Compare and validate lighting 

simulations 
?Use comparisons to guide rendering 

more efficiently
?Can we compute less without altering 

human perception of an image
?While pixel by pixel comparison might be 

> 0, human might not see any difference

Pixel by Pixel Comparison

RMSE 9.5 RMSE 5.2

Visual Psychophysics

?Determine the relationship between 
the physical world and human’s 
subjective experience of that world
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Visual Psychophysics

?Measure the mind
?Without bias
?Systematically
?Repeat Observations
?Relationship between mind & matter

Experimental Design

?Make inferences without ambiguity
?Rule out alternative causes, leaving 

only the actual factor that is the real 
cause

Experimental Design

Variables

Design Participants

Analysis

Plan
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Experimental Design

?Selecting what to study
?Selecting who to study
?Specifying how to study
?Specifying the sequence of 

measurements to be recorded
?What kind of evidence will result

Order Effects

?Order of Presentation
?Good before Bad
?Timing

Randomisation

?Not haphazard
?No event is ever predictable from any 

of the preceding sequence
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Counterbalancing

?Order of Presentation
?Influence Results
?Make Experiment “fair” 
?Reduce Bias

Control of Extraneous 
Variables
?May influence or affect the results of 

the condition
?For Example - Outside illumination

Experimental Design

?The Question to be Answered
?Choice of Task (Measure)
?Choice & Control of Physical Stimuli
?Organisation of Participants
?Sequence of Presentation 
? Instructions to Participants

?Recording, Presenting & Analysing  Results
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Psychophysics for Judging 
Image Quality
?Psychophysical methods allow us to ask 

how close to reality computer images 
are
?Validate progressive global illumination 

solution 

Case Study 1
Comparing a real scene with 
computer generated images 
that represent that scene

A method of comparing real 
scenes with graphics
?Task: Estimate the lightness of various 

regions of a  scene
?Lightness perception is known to 

depend on prior perception of 3-D 
shape and illumination
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A method of comparing real 
scenes with graphics
?Lightness is therefore a useful measure 

of the fidelity of illumination and 3-D 
reconstruction of a graphics scene

Why Lightness ?
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Physical Stimuli:
The Real Scene

?Painted 5-sided Cube
?Objects painted with 

different grey paints

?Complex illumination, 
with secondary 
reflections 

Physical Stimuli:
Graphic Reconstructions

Participants and Sequencing

?How Many Participants 
?Randomisation of Participants
?Randomisation of presentation
?Time of Day Influence
?Training on Physical Stimuli
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Physical Stimuli:
Training on Patches

Physical Stimuli:
Training on Patches

Experiment

Rendered

Real Scene
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Case Study : Results

?Average match in each image is plotted 
along side average match in the real 
scene

Real & Photograph
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Real & Two Ambient Bounce
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Real & Eight Ambient Bounce
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Real & Eight Ambient Bounce 
[Bright]
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Real & Default
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Real & Estimated Materials
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Real & Estimated Illumination
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Real & Tone Mapped
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Real & Raytraced
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Real & Radiosity
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Data Analysis

?Correlation - indication of how closely 
related two sets of data are
?ANOVA - Analysis Of Variance
?T Tests
?Statistics reinforce the evidence from 

the data
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Case Study 2
Validation of progressive
global illumination solution

The atrium model

Model used for global illumination:
951524 polygons

Basic Model:
751639 Polygons

Level of detail
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Luminaires

Goniometric diagram of the main light sourceGoniometric diagram of the main light source

Selection of materials for 
BRDF measurements

Preview of the “blue-tile” material

Photograph

BRDF characteristics

Sampled 
Preview
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Measurement of illumination

Measurement points sampled following a 

grid pattern on the main floor of the atrium.

Measurement of illumination

Measurement points sampled following a 

grid pattern on the main floor of the atrium

Photography of the atrium

Digital camera

Tungsten film

Daylight film
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Renderings of the atrium
An “artistic” approachBRDF measurements

Psychophysical experiment: 
real world versus computer 
images and photographs

Results

?Photograph only slightly better in 
representing real world than graphics
?16 subjects preferred images obtained 

using the “artistic” approach while 9 
subjects selected the BRDF based images
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Results

?Detailed statistics concerning quality of 
shadow reconstruction, highlights and 
reflections rendering, contrast 
reproduction, luminaire appearance, 
texture appearance are under 
preparation.  

Summary

?Experiments should be designed to 
produce accurate results
?Attention must be paid to a number of 

subtle experimental issues such as 
sample size, bias and randomisation
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Important Issues for 
Automating Image Quality 
Estimation 

Tom Troscianko 
School of Cognitive & Computing Sciences
University of Sussex    
United Kingdom

Collaborators

Ann McNamara
Alan Chalmers
David Tolhurst
Alejandro Párraga

Comparison of images
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General Question

Two main techniques are avaliable to quantify 
differences between images:

Computational
Psychophysical

When might these approaches be useful?

Computational approach

?We began by asking whether human 
vision is optimised to the statistics of 
natural scenes
?We developed a model which predicts 

the visibility of differences between 
natural scenes
?This model was validated in two very 

different ways

How can we define a “natural” 
scene

Much of the diversity of visual images is described by 
a  very simple statistical relationship:

Amplitude (f)? f -?

Where Amplitudedenotes amplitude spectra averaged 
across all orientations, f is spatial frequency and ?
(also called the slope parameter) lies within a fairly 
narrow range (0.7 - 2.0).



Important Issues for Automating Image 
Quality Estimation 

Tom Troscianko

III-3

Fo
ur

ie
r t

ra
ns

fo
rm

O
ri

gi
na

l i
m

ag
e 

(b
ul

l)

Fourier amplitude
averaged across all
orientations. 

Spatial frequency (log scale)

Fo
ur

ie
r a

m
pl

itu
de

 (l
og

 s
ca

le
)

3D plot of the original
image (bull) in Fourier
space

Fo
ur

ie
r a

m
pl

itu
de

Experimental method?

?We need a technique which measures visual 
performance

?Task consistent with real-life vision

?Using naturalistic stimuli

?Shape discrimination!
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Morph sequence: 
“Car becomes bull”

Procedure:change slope value of ?

Another set of morphed stimuli

The IDENTITY morph series, courtesy of Phil Benson

Identity series (man turns into woman)
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A Basic Experiment:
You will see three images:

Image 1
Reference
Image 2

Is Image 1 or Image 2 different from the Reference?
Example of 
single 
experimental 
trial

Experimental results and predictions 
from a model of local contrast 
discrimination

Further results and 
predictions...
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What is that dotted line?

?A model based on properties of simple 
cortical neurons
?These neurons discriminate contrast in 

different spatial bands
?No free parameters - model assumes 

individual’s contrast sensitivity 
function and contrast discrimination 
function

Quality of computer 
graphics?
?Our model gives us a metric for 

comparing images
?So we can determine differences 

between a test and reference image
?This allows us to see how much like a 

“real” scene a graphics scene may be, 
and to compare scenes with and 
without a target
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How is the “difference 
number” calculated?

Synthetic image with vehicle                    and without the vehicle
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8 cycles

24 cycles

2. Combine the cues 
from all the bands to 
form a difference map

66.03
3. Add all pixel values to 
obtain a single “difference” 
number

3 cycles

?The last slide showed synthetic images
?Here we show some real images

?More complex difference map from real images
? due to uncontrolled lighting and

atmospheric conditions

What Happens With Real Imagery?

Real Synthetic
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Validation of model?

?Can the computational model predict 
image differences which are above 
threshold?
?How can this be investigated?
?Magnitude estimation???

Magnitude estimation

“Let this difference be 50 units”

Results  for 4 observers
Mean difference ratings, 2 metres
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Agreement with model?
model versus rated differences
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Outliers on graph?
model versus rated differences
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There were display 
range problems 
with these outlier 
images

Model can be “fooled” by lightness differences
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Results of scaling experiment

?Moderately good agreement between 
model and ratings

?Correlation about 0.6
?Image display software tends to include 

lightness artefacts
?Correlation rises to 0.7 if problematic 

images excluded
?The computational approach has problems 

with lightness in pictures

Quality of computer graphics?

?Our model gives us a metric for 
comparing images
?So we can determine differences 

between a test and reference image
?This allows us to see how much like a 

“real” scene a graphics scene may be, 
and to compare scenes with and 
without a target

Predicted perceived 
difference between images
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Another method of comparing 
real scenes with graphics
?Estimation of lightness of parts of a 

scene
?Lightness perception is known to 

depend on prior perception of 3-D 
shape and illumination
?Lightness is therefore a useful measure 

of the fidelity of illumination and 3-D 
reconstruction of a graphics scene

The original scene

?Painted interior of 
tea-chest

?Variety of objects 
painted with 
different grey paints

?Complex 
illumination, with 
secondary reflections 

High quality graphics 
reconstruction

“Radiance” algorithm
Allows for secondary
reflections
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Psychophysical comparison of scenes

Why Lightness

Lightness estimation
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Can this method discriminate between 
graphics of different quality?
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Can this method distinguish 
sharp and blurred images?

Sharp and blurred scenes are 
judged identically
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General conclusions

?Computational methods can predict 
image differences but are susceptible 
to error where human vision uses “high 
level” mechanisms
?Lightness estimation taps into such 

mechanisms
?Psychophysics of lightness therefore 

complements other approaches
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Current State and Assessments of 

Applied Visual Models

Scott DalyScott Daly
Center for Displayed AppearanceCenter for Displayed Appearance
Information Systems TechnologyInformation Systems Technology
Sharp Laboratories of AmericaSharp Laboratories of America

Outline

?? Overview of visual model design and approachesOverview of visual model design and approaches
?? Basic SpatioBasic Spatio--temporal properties of detection by the Visual System temporal properties of detection by the Visual System 
?? StateState--ofof--thethe--art visual distortion metrics:art visual distortion metrics:

• Spatial and Chromatic:

o VDP (Daly)

o Sarnoff (Lubin and Brill) 
o Efficiency Versions

• Spatiotemporal (Motion)

o Animation Quality Metric

?? Validation of metrics:Validation of metrics:
• Modelling published psychophysical data

• Testing with system-based test targets

• Testing in actual applications

Visual Model Design and Approaches
Visual Modeling uses published work from the following fields ofVisual Modeling uses published work from the following fields of basic research:basic research:
?? Anatomical Anatomical 

• Optics of eye
• Sampling structure of retina

• Cellular interconnections of visual pathway

?? PhysiologicalPhysiological
• Functional behavior of individual cells

• Functional behavior of regions in 

• Data from electrophysiology experiments (measurements of electri cal responses of neurons)

• Retina is analog up to ganglion cells

• For remaining visual pathway, information is conveyed with neural spikes (i.e, digital, like PCM) 

?? Psychophysical Psychophysical 
• Experiments using human observer responses
• Used to test theories based on physiology and anatomy

• Signal detection theory and signal processing used to model psychophysical results

• Threshold (can or cannot see signal) vs. Suprathreshold (rank magnitude of signal)
• Empirical results (without theory) also useful for visual optimization of engineering efforts
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Types of Visual Models
?? Mathematical, quantitative descriptions of visual response w/ paMathematical, quantitative descriptions of visual response w/ parametersrameters
Historical Examples:Historical Examples:

• CIELAB  standard lightness response (1976):

L* = 116(Y/YN) 1/3 - 16 ,     Y is luminance,      YN is luminance of white point 

• Contrast Sensitivity Function (CSF) = spatial frequency response (Mannos & Sakrison ‘74)

CSF(u,v) = 2.6*(0.0192 + 0.144*r1/2)*exp(- {0.144*r 1/2 }1.1)      (u, v = H and V freq.)     

r = (u2 + v 2)1/2 (radial frequency)

?? Image processing models of visual thresholds and appearance (simImage processing models of visual thresholds and appearance (simulations)ulations)
Historical Example:Historical Example:

• Visual response in retina (Normann & Baxter ‘83) 

IMAGE

LOG I ?

?

R= I/(I+S)

SIMULATED 
RETINAL 

RESPONSE

Ways to use visual modelsWays to use visual models
?? Visual Analysis:  Visual Analysis:  of complete imaging systems or system components of complete imaging systems or system components 

• provide basic understanding, limitations, and opportunities 

• typically extrema parameters of visual system are used

examples:

• maximum spatial frequencies that can be seen (cut-off frequency) to set needed resolution

• maximum temporal frequencies for setting frame update rates
• minimum gray level changes for setting bit-depth

• minimum noise levels 

?? Visual Optimization:  Visual Optimization:  used to improve existing designsused to improve existing designs
• use visual models of key aspects relevant to application like frequency response, luminance 

response...

• image capture systems: Color Filter Array (CFA) algorithms, field-sequential approaches... 

• image processing algorithms: compression, enhancement, watermarking, halftoning,….

• display design: new triad patterns, subtriad addressing, ….  

?? Visual Metrics:  Visual Metrics:  used to compare visual effects on actual images (vs. test patterused to compare visual effects on actual images (vs. test patter ns)  ns)  
• Image Fidelity: whether any distortions are visible compared to a benchmark system

may vary locally throughout image to help engineers improve system

• Image Quality: a graded scale, may not need benchmark so
it can be absolute assessment  

Properties of the Visual System

?? This talk will proceed through This talk will proceed through 
key properties of the Visual key properties of the Visual 
SystemSystem

?? Properties dissected along Properties dissected along 
these dimensions:these dimensions:
• Luminance Level
• Spatial Frequency
• Local Spatial Content
• Temporal Frequency
• Motion
• Global Color 

• Eccentricity    
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Properties of Visual System: Luminance Nonlinearity

IMAGE

LOG I ?

?

R= I/(I+S)

SIMULATED 
RETINAL 

RESPONSE

?? Luminance proportional to photon flux = “Linear”Luminance proportional to photon flux = “Linear”
?? Pixel and surround effectsPixel and surround effects

• Photoreceptor and neighboring cells 

• Grey-level nonlinearity (instantaneous)

• Light Adaptation

Properties of Visual System: Luminance Nonlinearity

?? Local cone model (ignore PSF and eye movements)Local cone model (ignore PSF and eye movements)
• Visual response in retina close to cube root (~L*)  for practica l video 

light levels

• Cube-root domain is close to gamma-corrected domain ( L 1/3 ~= L1/2.4)

Properties of Visual System: Luminance Nonlinearity: Example

?? Use gammaUse gamma--corrected domain to process images corrected domain to process images 
(or local cone, L*, or cube(or local cone, L*, or cube--root)root)
• For light levels in typical video range (50-200 cd/m 2)

• Technique works well for quantization, compression, watermarking
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Properties of Visual System: Luminance Contrast

?? For AC signals contrast is used  For AC signals contrast is used  
?? Linear Amplitude of signal in luminance units does not match perLinear Amplitude of signal in luminance units does not match perceptionception

?? Contrast of signal is much better matchContrast of signal is much better match
• Takes into account signal relative to its mean level

• Michelson contrast:

C = (LMAX - LMIN) /(L MAX + LMIN )

= (LMAX - LMEAN)/ LMEAN

?? Contrast behaves closer to logContrast behaves closer to log

?? Sensitivity, S, analogous to gainSensitivity, S, analogous to gain
• slope of visual response 

S = 1/ C T

CT = Threshold Contrast
0 1 0 0 200 300 400 5 0 0

0

10

20

30

40

50

60

70

80

90

100
Contrast Definition 

spatial position

lu
m

in
an

ce
 (c

d/
m

^2
)

Lmax

Lmin 

Lmean = 50 

Properties of Visual System: Spatial Frequency
?? Spatial behavior constant with visual angle (degrees)Spatial behavior constant with visual angle (degrees)
?? Spatial frequencies specified in cycles/degree (cpd, cy/deg)Spatial frequencies specified in cycles/degree (cpd, cy/deg)
?? Spatial frequency behavior described with CSF (contrast sensitivSpatial frequency behavior described with CSF (contrast sensitivity function)ity function)

• Similar to OTF of optics, MTF of electrical systems, but it is nonlinear and adaptive

• Measured with psychophysics
?? One of the most useful, and widely used properties of visual sysOne of the most useful, and widely used properties of visual sys temtem

?? CSF changes with light adaptation level CSF changes with light adaptation level 
?? But most practical applications are in But most practical applications are in 

range of top curve  range of top curve  

Properties of Visual System: Spatial Frequency
?? Mapping Mapping visual spatial frequencies to physical or digital frequenciesvisual spatial frequencies to physical or digital frequencies

• Physical frequencies, examples = cy/mm, dpi, etc.  (when display is known)

• Digital frequencies = cy/pix, cy/radian, etc  

?? Since viewing distance used to relate degrees to object size, itSince viewing distance used to relate degrees to object size, it is important is important 
in applying CSFin applying CSF
• For physical frequencies, specify distance in physical units 

• For digital frequencies,  specify distance in units of pixels (old way used multiples of picture 
heights)
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Properties of Visual System: Spatial Frequency
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?? 2D frequencies important for images 2D frequencies important for images 
?? 2D CSF is 2D CSF is notnot rotationally symmetric (isotropic)rotationally symmetric (isotropic)

?? Lack of sensitivity near 45 degrees, called the oblique effectLack of sensitivity near 45 degrees, called the oblique effect

Properties of Visual System: Spatio-Chromatic Frequency

?? Color is captured in retina by LMS cones (Long, Middle, Short waColor is captured in retina by LMS cones (Long, Middle, Short wa velengths ~= velengths ~= 
R,G,B cones)R,G,B cones)

?? But converted by ganglion cells and LGN to But converted by ganglion cells and LGN to opponent coloropponent color representationrepresentation
?? L achromatic channel, RL achromatic channel, R--G channel and BG channel and B--Y channel (difference occurs in Y channel (difference occurs in 

nonlinear domain)nonlinear domain)
• CIELAB A* ~= R-G channel,  B* ~= B-Y channel

?? RR--G and BG and B--Y channels have no luminance (isoluminant) Y channels have no luminance (isoluminant) 
?? RR--G and BG and B--Y spatial frequency bandwidths & sensitivities are lower than L Y spatial frequency bandwidths & sensitivities are lower than L CSF   CSF   
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Properties of Visual System: Local Spatial Content

?? Local spatial content of image affects Local spatial content of image affects 
local visibility within image local visibility within image 

?? Common engineering knowledge: Common engineering knowledge: 
• Busy or complex images hide compression 

or other distortions

• Noisy images hide distortions

?? But effect is complex:But effect is complex:
• High frequencies don’t hide low 

frequencies

• Easy to see orthogonal artifacts on 
edges, such as aliasing artifacts

• Luminance can sometimes hide color 
structure, but sometimes can help 
see it

?? Quantitative description referred Quantitative description referred 
to as “Masking”to as “Masking”

?? This property arises from the This property arises from the 
structure of the visual cortex, structure of the visual cortex, 
shown to right shown to right 
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Properties of Visual System: Local Image Contrast: Masking

Typical result from masking Typical result from masking 
by noiseby noise

Noise is narrowbandNoise is narrowband
• limited radial freq

• limited orientation

Little masking unless Little masking unless 
frequencies of mask frequencies of mask 
are close to those of are close to those of 
signalsignal
• radially 

• orientation

Effect also only occurs Effect also only occurs 
locally, with spatial locally, with spatial 
extent depending on extent depending on 
frequencyfrequency

Properties of Visual System: Masking:Properties of Visual System: Masking: Frequency StructureFrequency Structure

?? Majority of psychophysical masking results consistent with visuaMajority of psychophysical masking results consistent with visual system l system 
modeled as bank of filtermodeled as bank of filter--detectors as shown below to right: detectors as shown below to right: 

?? Electrophysiology measures of Electrophysiology measures of 
common orientation response in common orientation response in 
visual cortex visual cortex 
• gray lines = common orientation

• black lines = orientation boundary

?? Key Features of frequency “channels”: Dyadic radial frequencies,Key Features of frequency “channels”: Dyadic radial frequencies,
orientation selectivity, baseband, space frequency localization orientation selectivity, baseband, space frequency localization 

Properties of Visual System: Masking:Properties of Visual System: Masking: Frequency StructureFrequency Structure

?? Channels overlap, and have the Fourier symmetry of real signalsChannels overlap, and have the Fourier symmetry of real signals
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Properties of Visual System: Masking: Transducer Function
?? Masking within “channel” = band of wavelet Masking within “channel” = band of wavelet 
?? Psychophysical results shown to the right: Psychophysical results shown to the right: 

• Dashed = Noise masking (phase incoherent) 

• Solid     = Sine Masking (phase coherent)

?? Results are ~same for all frequencies once Results are ~same for all frequencies once 
normalized by frequency’s threshold = 1/CSFnormalized by frequency’s threshold = 1/CSF

?? Results modeled as bandpass filter followed Results modeled as bandpass filter followed 
by nonlinear transducer function of contrastby nonlinear transducer function of contrast
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?? Transducer function, f (C), derived from Transducer function, f (C), derived from 
integral of inverse threshold data, T(C):integral of inverse threshold data, T(C):
• Response:  

• Threshold: 

• Transducer function:

?? Transducer functions derived from sine Transducer functions derived from sine 
masking and noise masking data are shown masking and noise masking data are shown 
to the rightto the right
• Note that plot is now with linear axes
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Properties of Visual System: Temporal Frequency

?? CSF for temporal frequencies also has CSF for temporal frequencies also has 
been measured and modeledbeen measured and modeled

?? To right is shown temporal CSF for To right is shown temporal CSF for 
different light adaptation levels for different light adaptation levels for 
luminanceluminance
• Top curve is best for mid-bright display 

applications

?? Opponent Color signals temporal CSF Opponent Color signals temporal CSF 
also has about 1/2 the bandwidth and also has about 1/2 the bandwidth and 
sensitivity of the luminance  sensitivity of the luminance  

Properties of Visual System: Spatiotemporal
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Spatiotemporal CSF

?? Motion occurs in Motion occurs in 
area V5 of visual area V5 of visual 
cortexcortex

?? Most psychophysical Most psychophysical 
data measures data measures 
spatiospatio-- temporal CSFtemporal CSF

?? Test signal is Test signal is 
product of spatial product of spatial 
and temporal and temporal 

frequencyfrequency

• Standing Wave

?? Data shows max Data shows max 
visible temporal visible temporal 
frequency near  50 frequency near  50 
cy/seccy/sec
• Thus 60 fps usually 

causes no visible 
flicker

• Movie film at 24 fps 
causes visible 
flicker, so 
projectors shutter 
each frame 2 or 3 
times to increase 
fundamental 
temporal frequency
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Properties of Visual System: Motion
?? Spatiotemporal CSF measures counterphase flicker (a.k.a Spatiotemporal CSF measures counterphase flicker (a.k.a 

standing wave )standing wave )
?? Counterphase flicker not as relevant to humans viewing motion Counterphase flicker not as relevant to humans viewing motion 

imagery as moving objects, edges imagery as moving objects, edges (except in images with (except in images with 
flickering lights and textures)flickering lights and textures)

?? Travelling waves vs. Standing waves (counterphase)Travelling waves vs. Standing waves (counterphase)
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Properties of Visual System: Motion: Retinal velocity

?Kelly measured CSF as a 
function of retinal velocity (‘79)

? used retinal stabilization to bypass 
observer eye movements
? results help explain perceptual 
‘blanking’ during saccades
? they also explain perceptual 
“blanking” when there is no image 
activity, such as during ganzfelds, I.e, 
at the low retinal velocities

?The spatial CSF as a function of 
retinal velocity will be referred to 
as the Spatiovelocity CSF (SV-
CSF)
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Properties of Visual System: Motion: Eye Movement CSF
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Eye Movement Model Spatiotemporal CSF

?? Smooth tracking eye movements can reduce image velocity on the rSmooth tracking eye movements can reduce image velocity on the retina  etina  
?? Smooth tracking (pursuit) data and model shown belowSmooth tracking (pursuit) data and model shown below
?? Calculate retinal velocity by subtracting eye velocity from dispCalculate retinal velocity by subtracting eye velocity from disp layed image layed image 

velocityvelocity
?? ????vv??
? ? = temporal frequency v = velocity ??= spatial frequency

?? Rotation into spatiotemporal CSF including effects of eye movemeRotation into spatiotemporal CSF including effects of eye movementsnts
• Can be used to assess smoothness of motion, visibility of spatial distortion in moving image 

regions
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Properties of Visual System: Global Color
?? Global color can be primarily handled through the field of colorGlobal color can be primarily handled through the field of color

reproduction…. many standards  reproduction…. many standards  

Properties of Visual System: Eccentricity
?? Eccentricity : Position in visual fieldEccentricity : Position in visual field

• 0 degrees eccentricity refers to where your eyes 
are pointed, corresponds to fovea in retina

• 90 degrees eccentricity is near edges of visual field 
(periphery)

?? Spatial Bandwidth of eye reduces in peripherySpatial Bandwidth of eye reduces in periphery
?? Cones are densely packed in fovea : high Cones are densely packed in fovea : high 

spatial sampling spatial sampling --> high bandwidth> high bandwidth
?? They become more less dense as eccentricity They become more less dense as eccentricity 

increasesincreases
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Properties of Visual System: Eccentricity
?? How eccentricity changes across image as viewing distance How eccentricity changes across image as viewing distance 

changes (left)changes (left)
• Assuming viewer looking at center of image (pixel = 320)

?? Eccentricity model predictions of how visual sensitivity varies Eccentricity model predictions of how visual sensitivity varies 
across image  (right)across image  (right)
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State of the Art Metrics
?? Usage of visual difference (a.k.a discrimination) metrics:Usage of visual difference (a.k.a discrimination) metrics:

Just iterated image:Just iterated image:

Last iterated image: Last iterated image: 

?? Spatial and ChromaticSpatial and Chromatic
• Visible Differences Predictor (VDP)
• Sarnoff model
• Efficiency Versions
?Bradley, Bolin, UCLA

?? SpatiotemporalSpatiotemporal
?Sarnoff
?Watson’s DVQ
?Animation Quality Metric

Visible Differences Predictor (VDP)
?? Models basic visual effects of amplitude variations, spatial varModels basic visual effects of amplitude variations, spatial variations, and signal iations, and signal 

dependent variations sensitivity in three separate stages:dependent variations sensitivity in three separate stages:

?? Amplitude variations:  modeled as local cone model described preAmplitude variations:  modeled as local cone model described previously, entire viously, entire 
image is processed through as pointimage is processed through as point--nonlinearitynonlinearity

?? Intended to be used with display model Intended to be used with display model (problems with impossible conditions, (problems with impossible conditions, 
e.g., if light level = 0) e.g., if light level = 0) 

?? Spatial variations: the 2D CSF is modeled as a global filter, fiSpatial variations: the 2D CSF is modeled as a global filter, filter described lter described 
previouslypreviously

?? Signal dependent variations (masking): described in block diagraSignal dependent variations (masking): described in block diagram below: m below: 

VDP: Channel Design
?? Spatial frequency hierarchy: filter bank of spatial frequency “cSpatial frequency hierarchy: filter bank of spatial frequency “channels” (mechanisms)hannels” (mechanisms)

?? Cascade of isotropic radial filters (DOM filters) with fan filteCascade of isotropic radial filters (DOM filters) with fan filte rsrs

?? Radial filters shown above right , sum of Radial filters shown above right , sum of 
all filters = 1.0 for reversibility in all filters = 1.0 for reversibility in 
applications applications 

?? Resulting dissection of frequency plane:Resulting dissection of frequency plane:
?? FFT’s used to implement filtering, but FFT’s used to implement filtering, but 

subsequent steps occur in spatial subsequent steps occur in spatial 
domain domain 
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VDP: Masking and Detection Probability
?? Although masking is caused by transducer function it is actuallyAlthough masking is caused by transducer function it is actually modeled modeled 

as separate image processing pathway created in addition to signas separate image processing pathway created in addition to signal al 
pathwaypathway

?? Physiologically unrealistic, but makes easier to test and finePhysiologically unrealistic, but makes easier to test and fine --tune tune 
parameters parameters 

?? Masking modeled with possibility to include learning effects: reMasking modeled with possibility to include learning effects: results in sults in 
decreasing masking slopedecreasing masking slope

?? Phase uncertainty modeled with LPF of masking images, otherwise Phase uncertainty modeled with LPF of masking images, otherwise 
detection near zerodetection near zero--crossings is overestimated (omitted in most 2nd party crossings is overestimated (omitted in most 2nd party 
implementations)implementations)

?? Signal difference and Signal difference and 
masking level signals are masking level signals are 
input to Weibull input to Weibull 
psychometric function to psychometric function to 
give a probability detection give a probability detection 
for each position in each for each position in each 
channel channel 

?? Probabilities across Probabilities across 
channels are summed at channels are summed at 
each location with each location with 
probability summationprobability summation

Sarnoff Model

?? Spatial portion originally developed by Jeff Spatial portion originally developed by Jeff 
Lubin Lubin 

?? Color added by Michael BrillColor added by Michael Brill
?? Many similarities to VDPMany similarities to VDP
?? Some advancements:Some advancements:

• Separate Optics Modelling
• Contrast transducer with facilitation
• Suprathreshold capability

?? Possible misstepsPossible missteps
• Local contrast calculation in place of amplitude 

nonlinearity

• Fewer orientation channels

• Attempt to do suprathreshold at expense of 
threshold accuracy

• Resampling of image needed to convert to cy/deg 
space (at 120 pixels/degree) 

* Sarnoff Model figures courtesy of Michael Brill

i n p u t  i m a g e s

o p t i c s

s a m p l i n g

c o n t r a s t
pyramid

t r a n s d u c e r

m a s k i n g

d i s t a n c e

Q n o r m

J N D
Value

Sarnoff Model
Key ComponentsKey Components

• Optical PSF
• steerable filters via convolution for 

channels (stay in spatial domain)
• filters are weighted to get CSF 

normalization
• filtered images go through transducer 

function (point nonlinearity)
• differences taken to get JNDs (per 

position, per channel)
• spatial pooling of JNDs which varies 

with eccentricity (periphery)

?? JND are accumulated with various JND are accumulated with various 
methods (average, peak, methods (average, peak, 
Minkowski) to get single number Minkowski) to get single number 
difference rating or, Visualizationdifference rating or, Visualization
• JNDs only aggregated across 

channels 

• no contrast polarity

• therefore no spatial gauge of 
appearance
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Sarnoff Model: Color

?? Initial Model was B/WInitial Model was B/W
?? Extended to color in ‘97Extended to color in ‘97
?? Interactions between Interactions between 

luminance and chromatic luminance and chromatic 
layers of spatial channels for layers of spatial channels for 
masking masking 

Front End Processing

Pyramid Decomposition

Y u * v *

Normalization

Oriented Contrast Flicker Contrast Chromatic Contrast

Contrast Energy Masking

Luma
JND Map

Chroma
JND Map

Key differences between VDP and Sarnoff Model
?? See paper by Li, Meyer, Klassen (1998) See paper by Li, Meyer, Klassen (1998) (albeit with some misunderstandings)(albeit with some misunderstandings)
?? Scope:Scope:

• VDP is threshold and achromatic

• Channel filters sum to 1.0:  so is reversible for applications such as watermarking, 
lossless compression, graphics rendering

• Sarnoff is supratheshold, and now has color and temporal, meant as metric more than 
as model to place within applications  

?? Physiological SoundnessPhysiological Soundness
• VDP channels are defined in digital frequency domain, engineering approach
• Sarnoff channels defined in cy/deg domain, and image must be resized for mapping 

?? Efficiency in implementationEfficiency in implementation
• VDP least efficient in memory
• Sarnoff least efficient in computations  

?? Accuracy in predicting psychophysical resultsAccuracy in predicting psychophysical results
• VDP most tested on core psychophysical threshold experiments
• Sarnoff most tested on practical distortions at suprathreshold  

?? Visualization StrategyVisualization Strategy
• VDP uses contrast polarity: allows shape of distortion to be simulated, but can’t imply 

suprathreshold distortions (except where proportional to area)

• Sarnoff used JND scale: magnitude only, can do suprathreshold but shapes of 
distortions not simulated 

Key differences between VDP & Sarnoff Models (details)
?? GreyGrey--level nonlinearity and contrastlevel nonlinearity and contrast

• VDP models cone nonlinearity and calculated contrast against global mean 
• Sarnoff models local contrast (recently changed to global)

?? Optics and filterOptics and filter--nonlinearity sandwichnonlinearity sandwich
• VDP consolidates similar visual effects into basic stages (nonlinearities, spatial filtering, masking) 
• Sarnoff has front-end optics to affect LPF before any neural amplitude nonlinearit y (correct 

physiologically)

?? CSF adaptivityCSF adaptivity
• VDP models CSF adaptive to light -level, image size, accommodation, other viewing conditions and 

applies as global filter prior to channel decomposition

• Sarnoff achieves CSF by weighting individual channels making it harder to adapt CSF

?? Spatial phase and phase uncertaintySpatial phase and phase uncertainty
• VDP has all phases combined in each channel (but models phase uncertainty separately by LPF 

filtering masking signal in each cortex band) 

• Sarnoff has Hilbert pair for each channel (a sine and cosine phase, doubles # channels) 

?? Spatial PoolingSpatial Pooling
• VDP has no spatial pooling other than channel filter support
• Sarnoff models spatial pooling: further step of spatial averaging of signal after transducer 

?? CrossCross-- channel masking (Heeger, D’Zmura) channel masking (Heeger, D’Zmura) 
• Neither models this effect since increases memory load and hard to demo
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Efficiency Versions
Due to computational burden of VDP and Sarnoff models, numerous Due to computational burden of VDP and Sarnoff models, numerous versions have been versions have been 

developed that aim to be much more efficient, acknowledging lossdeveloped that aim to be much more efficient, acknowledging loss of accuracyof accuracy
Bradley’s wavelet VDP for compressionBradley’s wavelet VDP for compression

• 2D cartesian-separable wavelet

• explored overcomplete wavelet 

Mark Bolin’s HadamardMark Bolin’s Hadamard --based model for computer graphics based model for computer graphics 
• 2D cartesian-separable wavelet using Hadamard basis functions 

• Applied to direct and Monte Carlo light source sampling

UCLA Hadamard model for signal processingUCLA Hadamard model for signal processing

• Uses oriented 1D Hadamard basis functions

Watson DCTWatson DCT --based DVQ (Digital Video Quality) metricbased DVQ (Digital Video Quality) metric
• Considers gray-scale nonlinearity as a form of masking (at DC)

• Models global CSF by mapping to DCT coefficients
• Models masking by grouping coefficients and applying nonlinearit y

• Models color by a luminance channel, a single opponent color channel (R/G), and an S-cone 
channel

• Models spatial pooling, Minkowski summation 

• Models temporal CSF with IIR so no frame buffers needed (Infinite Impulse Response)

• Performed as well as Sarnoff for MPEG2 distortions in VQEG study

Efficiency Versions: Wavelet problems
? Close in structure to the visual filter bank (H and V dyadic), Cartesian-separable wavelet
? Problems with diagonal oriented band in wavelet due to cartesi an-separable approach  

? Visual System Frequency Decomposition       Wavelet Algorithm Frequency Decomposition
(Cortex Transform)               (JPEG2000) 

Moving Images & Spatiotemporal Issues
?? NonNon--Spatiotemporal separability: cannot use product of spatial CSF aSpatiotemporal separability: cannot use product of spatial CSF and nd 

temporal CSFtemporal CSF
?? Temporal channels as well as spatialTemporal channels as well as spatial

• Sustained and Transient
• Some evidence for 3rd temporal channel at low SFs
• Spatio-temporal covariance: possible spatio and temporal channels configurations 

• Line with slope = 1, 1 deg/sec 

• Solid lines = nondirectional, dashed lines = directional  

• Version 4 is consistent with most amount of data= velocity channels + flicker channel

?? Spatiovelocity separabilitySpatiovelocity separability
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Spatiotemporal: Sarnoff Model

?? Spatial model is basically doubled, each one having different Spatial model is basically doubled, each one having different 
temporal prefiltertemporal prefilter

?? No accounting for eye No accounting for eye 
movementsmovements

?? No temporal masking, such No temporal masking, such 
as is often taken advantage as is often taken advantage 
of in adaptive video of in adaptive video 
compression at scene cuts compression at scene cuts 

??Modeled as spatiotemporal Modeled as spatiotemporal 
separableseparable

?? A buffer of 4 fields is used to A buffer of 4 fields is used to 
implement temporal filter implement temporal filter 

Spatiotemporal : Sarnoff Model: Results

?? Sarnoff model prediction of two slices of the spatiotemporal surSarnoff model prediction of two slices of the spatiotemporal sur face of Van face of Van 
Doorn and Koenderinck:Doorn and Koenderinck:

?? Errors are acknowledged and due to implementation efficiencies sErrors are acknowledged and due to implementation efficiencies s uch as uch as 
number of channelsnumber of channels
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Motion Imagery
?? Animation Quality Metric (AQM): Animation Quality Metric (AQM): advanced model for moving images advanced model for moving images (Myszkowski)(Myszkowski)

?? Key visual effect that must be considered is high spatial frequeKey visual effect that must be considered is high spatial frequencies as ncies as 
velocity increasedvelocity increased

?? Begins with Eriksson’s gumbo of Watson, VDP, Sarnoff, Heeger tecBegins with Eriksson’s gumbo of Watson, VDP, Sarnoff, Heeger techniques hniques 
?? Computer graphics has luxury of knowing object (and pixel) velocComputer graphics has luxury of knowing object (and pixel) velocities on ities on 

displaydisplay

?? CSF implemented as weighting of cortex channels, after global coCSF implemented as weighting of cortex channels, after global contrast ntrast 
calculationcalculation

?? SpatioVelocity CSF placed in same modular position, by using pixSpatioVelocity CSF placed in same modular position, by using pixel flow el flow 
on displayon display

?? SVSV--CSF shifts to lower frequencies & peak sensitivities as velocityCSF shifts to lower frequencies & peak sensitivities as velocity
increasesincreases
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Motion Imagery: Animation Quality Metric

?? AQM  best suited to computer graphics AQM  best suited to computer graphics 
rendering rendering 

?? Used to determine when lower quality will Used to determine when lower quality will 
suffice per frame and per local regionsuffice per frame and per local region

?? Could theoretically be applied to video Could theoretically be applied to video 

compressioncompression

• estimated motion vectors as needed by 
the motion compensation portions of the 
algorithm would replace the 3D warp 
and pixel flow modules

?? Uses higher quality but computation Uses higher quality but computation 
--ally more expensive rendering such ally more expensive rendering such 
as ray tracing for key frames and as ray tracing for key frames and 
selected glossy & transparent selected glossy & transparent 
objects objects 
• higher velocities prevent their selection

• Image Based Rendering used when 
lower quality will not be visually detected

• threshold aspects of visual models are 
more important here 

Validation of Metrics
?? Initial testing of the visual model is best to proceed from finaInitial testing of the visual model is best to proceed from final detection l detection 

stage toward frontstage toward front --end processing (reverse visual pathway)end processing (reverse visual pathway)

• Clever psychophysical experiments attempt to isolate internal pr ocessing stages of 
vision

• These kinds of stimuli can allow fine-tuning of model parameters  

?? Example of testing given for VDP (achromatic and still images)Example of testing given for VDP (achromatic and still images)

• Fit of model to published psychophysical data

• Once model is tested against psychophysical data for key stimuli, it can be tested for 
actual image quality applications

?? Testing of visibility of distortions Testing of visibility of distortions 

(more useful for visually lossless applications)(more useful for visually lossless applications)

?? Testing of image quality Testing of image quality 

Validation of Metrics: Psychometric Function

?? Tests psychometric function componentTests psychometric function component

?? Tests detection of a Tests detection of a 
single frequency on single frequency on 
a uniform surround a uniform surround 

?? No preceding No preceding 
components components 
adversely affect its adversely affect its 
modellingmodelling

?? No cone No cone 
nonlinearity, no nonlinearity, no 
CSF, no masking, CSF, no masking, 
etc. etc. 



Current State and Assessment of Applied 
Visual Models

Scott Daly

IV-16

Validation of Metrics: Masking Function

?? Test masking function and integration of energy within a channelTest masking function and integration of energy within a channel

?? Test masking Test masking 
function and function and 
integration of integration of 
energy within a energy within a 
channelchannel

?? Tests CSF value Tests CSF value 
and amplitude and amplitude 
nonlinearity nonlinearity 
calibrations for 12 calibrations for 12 
cpd single cpd single 

frequencyfrequency

Validation of Metrics: Contrast Masking
?? Tests ability model contrast masking where signal and mask are bTests ability model contrast masking where signal and mask are both oth 

narrowband and phase coherent signals narrowband and phase coherent signals 

?? Special modifications in Special modifications in 
input setinput set--up required: If up required: If 
mask contrast (i.e, mask contrast (i.e, 
reference image) is less reference image) is less 
than threshold, a than threshold, a 
uniform field replaces uniform field replaces 
reference image reference image 

?? Magnitude of facilitation Magnitude of facilitation 
effect predictedeffect predicted

?? Masking slope is too Masking slope is too 
high, closer to 1.0 since high, closer to 1.0 since 
based on noise masking based on noise masking 
results results 

Validation of Metrics: Radial Frequency Channels

?? Test radial frequency channels, i.e, their “tuning”Test radial frequency channels, i.e, their “tuning”

?? Also tests interaction Also tests interaction 
of psychometric of psychometric 
function, probability function, probability 
summation, and CSF summation, and CSF 
effectseffects

?? Note individual Note individual 

variationsvariations
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Validation of Metrics: Orientation Channels

?? Tests shape of fan filters and their overlapTests shape of fan filters and their overlap

?? Also interaction of Also interaction of 
radial fan cascade to radial fan cascade to 
create cortex filtercreate cortex filter

?? Also tests offAlso tests off--
frequency detection, frequency detection, 
and probability and probability 
summation summation 

?? Note errors due to Note errors due to 
model’s discrete model’s discrete 

channelschannels

Validation of Metrics: Orientation Channels

?? Here, the oriented noise has both orientations to minimize offHere, the oriented noise has both orientations to minimize off --frequency frequency 
looking looking 

?? Also tests similar Also tests similar 
model features as model features as 
previous test previous test 

Validation of Metrics: Spatial Frequency Response (CSF)

?? Tests global frequency response (CSF) and its light adaptation Tests global frequency response (CSF) and its light adaptation 
capabilitiescapabilities

?? Also interaction of Also interaction of 
CSF with all postCSF with all post --
CSF model CSF model 
components components 
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Validation of Metrics: CSF, continued

?? Deviations from Deviations from 
CSF model CSF model 
expectationsexpectations

?? Error shows Error shows 
underlying underlying 
discrete channels, discrete channels, 
when true HVS when true HVS 
has more of a has more of a 
continuum of continuum of 
channels channels 

Validation of Metrics: CSF in Noise

?? Tests masking in Tests masking in 
conjunction with conjunction with 
CSFCSF

?? Tests probability Tests probability 
summation since summation since 
some channels some channels 
have higher have higher 
masking due to masking due to 
preceding CSF  preceding CSF  

?? Tests ability to predict the effects of noise on the CSFTests ability to predict the effects of noise on the CSF

Validation of Metrics: Luminance Nonlinearity

?? Tests amplitude nonlinearity in conjunction with rest of modelTests amplitude nonlinearity in conjunction with rest of model

?? Experiment is the Experiment is the 
detection of sharp detection of sharp 
luminance edge at luminance edge at 
different gray different gray 
levelslevels

?? Directly relevant to Directly relevant to 
practical problem practical problem 
of contouring of contouring 
artifacts artifacts 
throughout throughout 
grayscale range grayscale range 
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Validation of Metrics: Blur

?? Tests entire modelTests entire model

?? Note that masking Note that masking 
at edges will affect at edges will affect 
visibility of blur visibility of blur 
signal, which lies signal, which lies 
close to edges  close to edges  

?? Practical test of ability to see blur as a function of contrast Practical test of ability to see blur as a function of contrast 

Validation of Metrics: Vernier Acuity

?? Vernier acuity tests Vernier acuity tests 
entire model, most entire model, most 
important interacting important interacting 
mechanisms are the mechanisms are the 
CSF and the CSF and the 
orientation of orientation of 
channelschannels

?? Practical importance Practical importance 
to visibility of jaggies, to visibility of jaggies, 
form various aliasing/ form various aliasing/ 
antialiasing tradeoffs.antialiasing tradeoffs.

?? HVS acuity initially HVS acuity initially 
seemed better than seemed better than 
that allowed by cone that allowed by cone 
sampling aperture sampling aperture 

?? Vernier Acuity: ability to see lateral offset (break) in thin liVernier Acuity: ability to see lateral offset (break) in thin lines, as a nes, as a 
function of line length function of line length 

Validation of Metrics: Current Status for Spatial Detection

?? Modelfest: from Vision Science Community Modelfest: from Vision Science Community 
• collect data that will challenge present 

models of spatial vision. 

• way to overcome vagaries due to different 

labs, methods, display calibration, 

observers,  & undocumented details

in previous psychophysics literature

?? 1st year result: Spatial luminance detection1st year result: Spatial luminance detection
• key stimuli set shown to right:

• 8 observers

• standardized methods, display calibration,

and display conditions
• Watson has compared 5 basic models,

with Gabor performing best

?? Modelfest data set and modelling activities are example of the mModelfest data set and modelling activities are example of the most rigorous ost rigorous 
building block that can be used for  image qualitybuilding block that can be used for  image quality

?? 2nd year goal:   Masking  2nd year goal:   Masking  
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Validation of Metrics: Image Distortion Demos
?? Testing of Models in actual image applicationsTesting of Models in actual image applications

?? Primarily due to masking aspects, distortions are not present Primarily due to masking aspects, distortions are not present 
uniformly through image; they are localizeduniformly through image; they are localized

?? Visualization of distortion by visual model:Visualization of distortion by visual model:
• Location and Contrast Sign (Daly, since only detection model)

• Location and Magnitude (Lubin, Heeger, most others)

?? Early Approach:Early Approach:

• Rather than observer study of ranking image quality, ask observers where they can see 
distortions in an image. 

• User feedback used to fine-tune model 

• Result is a collection of practical visible distortion localizat ion demos (publication constraints)

?? Quantitative localization approach (Zhang, Setiawan, Wandell ‘97Quantitative localization approach (Zhang, Setiawan, Wandell ‘97): ): 
• Spatially quantize images, 

• Observers click where they can see distortions 

Validation of Metrics: Direct Assessment of Image Quality

?? Distorted image sequences are rated for image quality on a qualiDistorted image sequences are rated for image quality on a quality scale ty scale 
?? Sometimes a reference sequence is shownSometimes a reference sequence is shown
?? ReferenceReference--free rating is referred to as openfree rating is referred to as open--endedended
?? Most techniques obtain single rating across all locations in imaMost techniques obtain single rating across all locations in ima ge and ge and 

across all framesacross all frames
• Difficult for observers to perform well

• Can only look at one location within each image per frame (eccentricity effect)

• Theoretically must know where observer is looking 

• Psychological assessment of varying quality into single number not well understood

?? Continuous quality assessment (observer varies slider throughoutContinuous quality assessment (observer varies slider throughout
sequence)sequence)

• Recency effect  (Hamburg and DeRidder)  

• Minkowski summation pooling methods (Rohaly, et al)
• Minkowski exponent varies (Keelan)

? If large distortion exists, it dominates (exponent large, e.g., >2)
? If image has many different small distortions, 

they sum linearly (exponent = 1)

Validation of Metrics: Direct Assessment of Image Quality: VQEG

?? VQEG (Video quality experts group) recent studyVQEG (Video quality experts group) recent study
• Intention was to form a video image quality standard that could be used in product 

spec sheets

• Well -controlled experiment using mostly MPEG2 compressed video

• Various models predicted overall video image quality observer ratings for various 
sequences

• Models performed well, but little better than weighted MSE

• Key problems:  No viewing distance changes were used

No display characterizations were made (spatial MTF, noise, tone= only ?)

No models could handle localized spatial displacement (via MPEG2)

DCT of MPEG2 agreeable with MSE if frequencies < 10 cy/deg

?? Overly Ambitious?Overly Ambitious?
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Summary
?? Ability to predict:Ability to predict:

• spatial still luminance threshold detection is very well established
• spatial still luminance suprathreshold well tested for key applications, but not tested 

against key psychophysical experiments
• spatiochromatic threshold detection not well tested
• spatiochromatic appearance modeled and simulated for qualitative testing (Ferwerda) 
• spatiotemporal luminance detection tested for a few key psychoph ysical experiments, 

but mostly only tested for applications
• spatiotemporal luminance suprathreshold tested for overall image quality along with 

color

• spatiochromatic temporal appearance not well explored

?? One key problem: patience and fundingOne key problem: patience and funding

• Applied people using visual models have skipped basic psychophysical validation and 
many expect standardization for complete image quality models

• Near- impossible to get funding for key groundwork validation

• Vision science community is moving ahead but consolidation a la Modelfest is slow

?? Areas needing refinement:Areas needing refinement:
• More rigorous testing of spatiochromatic
• Individual variations
• Eye movements and region of interest

?? Complexity of visual models surpasses often neglected display moComplexity of visual models surpasses often neglected display mo delingdeling
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Image fidelity depends on input:

Properties: Reflectance, Transmittance,
                   Emission

Shape

The accuracy of a final image depends on 
input data, discretization error and 
computation errors*. The input data includes 
the properties of how a surface interacts with 
light, and the shape of a surface. Given 
enough time, an image quality metric could be 
use to measure perturbations in the input data, 
as well as their effects on subsequent 
calculations. In practice however, we need 
some measure of what input data will be 
adequate. In this section we consider the 
problem of developing perceptual metrics for 
shape.
*Ref: Arvo, Torrance, Smits "A Framework for 
the Analysis of Error in Global Illumination 
Algorithms, SIGGRAPH 94,pp 75-84.

Geometric 
Simplification

How do we make
highly detailed
models 
"renderable"?

V-1

3D scanning systems have made it possible to 
capture very high spatial resolution models*. 
Many models are obviously hugely 
over-sampled and consume a great deal of 
time and memory to render. Numerous 
methods have been developed to simplify 
geometries.**
*Ref. Bernardnini & Rushmeier "The 3D Model 
Acquisition Pipeline", Eurographics 2000, 
State of the Art Report.
**P. Cignoni, C. Montani and R. Scopigno, "A 
Comparison  of Mesh Simplification 
Algorithms", Computers and Graphics, 2000.
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Levels of Simplification

How can we
measure distances?

To find the best simplification we need a way 
to measure the difference between 
representations of the same object. It is 
possible to simplify all the way down to a near 
symbolic representation of an object. Here we 
focus on representations that attempt to 
maintain the appearance of the original object.

Geometric Measures

e.g. D(A,B) = max (d(vertex, projected vertex))

d AA

BB

Tools have been developed to measure the 
geometric distance between surfaces in a 
variety of ways.*
*Ref: P. Cignoni, C. Rocchini and R. Scopigno 
"Metro: Measuring Error in Simplified 
Surfaces" Computer Graphics Forum, Volume 
17, Number 2, 1998, pp. 167-174.

Geometric Measures = Perceptual Measures

V-2

Geometric measures are not perfect measures 
of how much surfaces will look alike. In this 
example, the original surface is on the far left. 
The RMS distance of the surface in the center 
to the surface at the left is smaller than the 
RMS distance for the surface on the right. 
However, the surface on the right looks more 
like the surface on the far left.

Metrics and Geometric Simplification                                                                                    Holly Rushmeier



What we would like:

P(A,B) where

P(A,B) = 0  => all images generated using
                        B look identical to images generated
                        using A

if P(A,C) = 2P(A,E), any image using C in place of
                                A rather than E in place of A
                                will look twice as bad
     

We don't have and won't get P( )

Why don't we have P( ) from human
 vision or computer vision??

 -- lot's of work in shape perception,
    but it doesn't take this form 

What can we do??

-- so far, use more general insights

An example of work on shape perception in 
computer graphics: R. Browse, J. Rodger and 
R. Adderly "Perception of Object Shape in 
Computer Graphics Displays" Journal of 
Electronic Imaging 10(1) 181-187, January 
2001

Applying insights about perception:

Limit the spatial extent of simplification:

SCROOGE

V-3

Human vision sensitivity varies with spatial 
frequency. Some algorithms try to take 
advantage of this by limiting the spatial 
frequencies that can be impacted by a change 
caused by simplification.
Ref. M. Reddy "SCROOGE: 
Perceptually-Driven Polygon Reduction", 
Computer Graphics Forum, Vol. 15, 1996, No. 
4, pp. 191-203.
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Applying insights about perception:

Texture detail can distract from
simplification artifacts:

Masking, separate geometry and color

"Visual masking" is the phenomenon in which 
one visual pattern affects the detectability of 
another. The content of texture map applied to 
a surface can obscure artifacts of 
simplification.* This is commonly exploited, 
but not with specific metrics, in the 
simplification of colored-point data.**
*Ref:  Ferwerda, Pattanaik, Shirley and 
Greenberg, "A Model of Visual Masking for 
Computer Graphics", SIGGRAPH 97, pp. 
143-152.
**Ref: Soucey, Godin and Rioux, "A 
texture-mapping approach for the compression 
of colored 3D triangulations" The Visual 
Computer, vol 12, pp. 503-513, 1996.

Applying insights about perception:

Only what is visible matters,
and what is close matters most:

View dependent simplification

Many algorithms store hierarchical 
representations of objects and only display 
visible and close portions of the model in 
detail.*
*Ref: J.C. Xia and A. Varshney "Dynamic 
View-Dependent Simplification for Polygonal 
Models", Proceedings of IEEE Visualization 
96, pp. 327-334, 498.
*Ref: R. Klein and A. Schilling "Efficient 
Rendering of Multiresolution Meshes with 
Guaranteed Image Quality", Visual Computer, 
1999, Vol 15, pp. 443-452.

Applying insights about perception:

Only the interaction with light matters:

Normals maps

V-4

Here a simplified geometry at the left is 
represented lit in two different ways with detail 
provided by normals mapped onto the surface 
at a higher resolution. This was originally 
suggested for simplification* and can be used 
to acquire data in simplifed form.**
*Ref. J. Cohen, M. Olano, and D. Manocha, 
"Appearance Preserving Simplification", 
Proceedings of SIGGRAPH 98, pp. 155-122.
**Ref. H. Rushmeier, F. Bernardini, J. 
Mittleman and G. Taubin, "Acquiring Input for 
Rendering at Appropriate Levels of Detail: 
Digitizing a Pieta`" Ninth Eurographics 
Rendering Workshop, June 1998, pp. 81-92. 
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Applying insights about perception:

2D projections matter:
Image driven simplification

measure
the effect of
change in
representative
images

Simplification can be driven by making 
incremental changes that have the smallest 
effect on a small set of representative 
images.*
*Ref. P. Lindstrom and G. Turk, "Image-Driven 
Simplification", ACM Transactions on 
Graphics, Vol. 19, No. 3, July 2000, pp. 
204-241.

Applying insights about perception:

Silhouettes matter:

save silhouettes separately

Since silhouettes are important, it improves 
the representation to save silhouettes 
separately at a higher resolution.*
*Ref. P. Sander, S. Gortler, H. Hoppe and J. 
Snyder, "Silhouette Clipping", Proceedings of 
SIGGRAPH 2000, pp. 327-334.

How can we judge which method
is best for a storage/time budget?

How can we compare the quality
of representation of different objects?

How can we design how to mix
approaches?

How can we tell when a simplification
is adequate?

Methods measure perceptually related parameters,
but not the perceived quality of a representation,
so:

V-5
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Experiments in Measuring Model Quality

Naming Times

Similarity Ratings

Naming TimesNaming Times

Ben Watson*, Alinda Friedman, Aaron McGaffey
Depts. of Comp. and Psych. U. Alberta
*now Northwestern

Time to name an object related to
perceived quality.

Ref: B. Watson, A. Freidman and A. 
McGaffey. "Using naming time to evaluate 
quality predictors for model  simplification,  
Proceedings of ACM CHI 2000, Pages 113 - 
120 

Naming times:

Used simple models as "0%"
Simplified 50% and 80%

Longer naming time => decreased quality

How did naming time difference
between 0% and the two levels of
simplification correlate with geometric
and image measures?

V-6

Naming times can be used as a measure of 
quality, but how to we transfer this evaluation 
in to an automated process? We need to find 
computable metrics that correlate well with the 
naming time data.
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Correlations not significant for 50% models,
with geometric MSE doing best.

Correlations better for 80% models,
with perceptually based image metric
having significant correlation.

Neither geometric or image-based metrics do 
well.

Similarity Measures:

How effective is replacing geometry
with normals?

Ref. H. Rushmeier, B. Rogowitz and C. Piatko, 
"Perceptual Issues in Substituting Texture for 
Geometry", Proceedings of Human Vision and 
Electronic Imaging, SPIE Vol. 3959, pp. 
372-383.

ISSUES

-- what is the limit for 
    replacing geometry for
    texture?
-- is texture replacement always better?
-- are certain types of geometry
    more suitable for texture replacement?
-- are there different rules for 
    different classes of objects, 
    different viewing conditions?

V-7
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A Simple Experiment:

Two simple objects with white matte surface

Two lighting conditions (front, side)

geometry

texture

Two objects: a smooth sphere, and a sphere 
with a crinkled surface were used. The 
appearance of approximations of the object 
with various levels of geometry and texture 
simplification were judge, to get insight into 
the trade-off between representation as pure 
geometry and texture in the form of normals 
maps.

full geometry
simplified (medium)
no texture

An example of the smooth sphere, with no 
texture mapping, front lit.

full geometry
simplified (small)
small texture

V-8

An example of the smooth sphere using 
texturing, front lit.
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full geometry
simplified (medium)
medium texture

An example to examine the effect of lighting 
direction.

full geometry simplified geom (medium)
full texture

The "crinkled" sphere case.

full geom simple geom (small)
full texture

V-9

The effect of lighting in the crinkled sphere 
case.
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The underlying geometry for the three levels of 
the smooth sphere.

The underlying geometry for the three levels of 
the crinkled sphere.

V-10

Various levels of texture simplification -- the 
texture image resolution is just reduced.

Metrics and Geometric Simplification                                                                                    Holly Rushmeier



0
.0122

.197
.787

Texture Resource

0
20
40
60
80

100
120

R
at

in
g 

(n
=8

)

0
.093
4.4

Sphere- front view

Geometry
Resource

Texturing didn't improve the simplified 
geoemetries
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The quality of the approximations depends on 
lighting direction.
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V-11

Applying texture for the crinkled case always 
improves the highly simplified object and the 
detailed texture improves the somewhat 
simplied geometry.
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Light direction also has an impact on the 
appearance of the crinkled surface.

More questions than answers:
Are experiments on static images
adequate for evaluating geometric 
quality? Which image(s)?

A single object can be viewed in many poses, 
under many different lighting conditions. If we 
are going to use image-based metrics, which 
images are important?

Variations in Quality Ratings for
Lighting from Above and from Front

V-12

We asked observers to rate the quality of 
different levels of simplifications for different 
lighting conditions. For the same level of 
simplification, the range of results was always 
different for the two conditions.
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Quality as a Function of Pose

Even for a single observer, the assessment of 
quality varied with the object pose. The quality 
of an animation composed of these poses is 
not the max, min or average of the quality of 
the individual poses.

Conclusion:

Evaluating the quality of a geometric
object representation requires more
than a good image metric.

V-13
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Perceptually-based 
global illumination and 
rendering techniques

Karol Myszkowski 
Max-Planck-Institute for Computer Science
Germany

Outline
?Questions of Appearance Preservation 
?Daly’s Visible Differences Predictor and its 

human psychophysical validation for 
rendering tasks
?Selected applications of the VDP to guide 

global illumination computation
?Animation Quality Metric and its 

applications toward automatic keyframe 
selection in animation rendering

Questions of Appearance Preservation

The concern is not whether images are
the same; rather the concern is whether   
images appear the same.

?How much computation is enough?
How much reduction is too much?

? An objective metric of image quality which takes 
into account basic characteristics of the human 
perception could be of some help to answer these 
questions without human assistance.
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Modeling important characteristics 
of  the Human Visual System

?Temporal and spatial mechanisms (channels) 
which are used to represent the visual 
information at various scales and orientations as 
it is believed that primary visual cortex does.

?Contrast Sensitivity Function which specifies the 
detection threshold for a stimulus as a function 
of its spatial and temporal frequencies.

?Visual masking affecting the detection threshold 
of a stimulus as a function of the interfering 
background stimulus which is closely coupled in 
space and time. 

Spatial and orientation 
mechanisms
The following filter banks are commonly 

used: 
?Gabor functions (Marcelja80), 
?Steerable pyramid transform 

(Simoncelli92), 
?Discrete Cosine Transform (DCT), 
?Difference of Gaussians (Laplacian) 

pyramids (Burt83,Wilson91), 
?Cortex transform (Watson87, Daly93).

Cortex transform: 
organization of the filter bank
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Cortex transform: orientation bandsorientation bands

Input image Input image 

Spatiovelocity Contrast Sensitivity 
Function

?Contrast sensitivity data for traveling gratings of 
various spatial frequencies were derived in 
Kelly’s psychophysical experiments (1960).   

?Daly (1998) extended Kelly’s model to account 
for target tracking by the eye movements.

Temporal 
frequency [Hz]

Visual masking
?Masking is strongest between stimuli located in 

the same perceptual channel, and many vision 
models are limited to this intra-channel masking. 

?The following threshold elevation model is 
commonly used:
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Our choice: 
Daly’s Visible Differences 
Predictor

Daly’s VDP: outstanding 
features
?Predicts local differences between images 
?Takes into account important visual 

characteristics:
?a Weber’s law-like amplitude compression,
?advanced CSF model,
?masking (mutual or unidirectional)

?Uses the Cortex transform, which is a 
pyramid-style, invertible, and 
computationally efficient image 
representation

VDP validation 
in typical global illumination 
and rendering tasks

http://www.mpi-sb.mpg.de/resources/vdp
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Human Psychophysical 
Validation of VDP
?Goal:
?To determine whether VDP -based predictions 

match well with subjective reports of visible 
differences between images under conditions 
mimicking those in VDP applications

?Experiments:
?Perceived quality of shadows cast upon 

textured surfaces for various texture scales 
?Perceived image quality for successive stages 

of global illumination solution

Shadow masking

Visualization of the 
contrast threshold 
elevation due to 
masking. 

Stronger masking 
occurs when the 
target image 
contains a texture 
(top row).

Bright green denotes 
more masking.

Shadow masking vs. texture pattern size (1)

Standard

Comparison

Pixel differences:
Standard - Comparison

The VDP response:
probability of
perceiving
the differences

Pixel differences

VDP response
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Pixel differences:
Standard - Comparison

The VDP response:
probability of
perceiving
the differences

Shadow masking vs. texture pattern size (2)

Standard

Comparison

Pixel differences

VDP response

The VDP response:
probability of
perceiving
differences

No texture

Textures of
various scales

Shadow masking vs. texture pattern size (3)

Shadow masking by texture:the results of 

psychophysical experiment

Rating by the human observers vs. the VDP predictionsRating by the human observers vs. the VDP predictions
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“Perceptual” convergence of the radiosity
solution after 1 minute of computation

Pixel differences:
Standard - Comparison

The VDP response:
probability of
perceiving
the differences

Standard

Comparison Pixel differences

VDP response

Pixel differences:
Standard - Comparison

The VDP response:
probability of
perceiving
the differences

Standard

Comparison

VDP response

Pixel differences

“Perceptual” convergence of the radiosity
solution after 16 minutes of computation

VDP responses at various stages 
of the radiosity solution

1 minute       4 minutes     16 minutes    60 minutes
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Rating by the human observers vs. the VDP predictionsRating by the human observers vs. the VDP predictions

“Perceptual” convergence of the radiosity solution:

the results of psychophysical experiment

A progressive 
global illumination solution 

Algorithm selection 
procedure
?Goal: minimize the perceived differences 

between the intermediate and final images as a 
function of time by selecting the best algorithm 
at every stage of the global illumination solution. 

?Method: use the perception-based Visible 
Differences Predictor (VDP) developed by Daly to 
get quantitative measures of such differences. 
(Currently, VDP is used off-line to select the 
most efficient algorithms in terms of image 
quality progression.)
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Algorithm selection graph

Pool of algorithms

?Deterministic Direct Lighting (DDL).
?Indirect lighting computation using 

Hierarchical Progressive Radiosity with 
clustering (HPR).
?Density Estimation Particle Tracing (DEPT) 

from light sources with lighting function 
filtering performed in 3D space. Photons 
for direct (DDEPT) and indirect (IDEPT) 
lighting are stored separately. 

Illumination maps filtering 
in the DEPT algorithm
?Static, balanced kd-tree with mesh vertices 

is used to search for local illumination 
estimates
?Adaptive selection of density estimation 

filter support based on mathematically -
sound local statistic measures of 
illumination  variation
?As solution converges the local filter 

support shrinks reducing bias.



Applications in Rendering and Animation Karol Myszkowski

VI-10

Filtering example: 
solution after 10 sec. 
of computation

With filteringWithout filtering

Pool of algorithms (2)

?All three algorithms use mesh to store 
lighting simulation results. 
?Graphics hardware can be used to display 

mesh-reconstructed lighting, and 
walkthrough animation is possible at any 
stage of computation.
?The final gather step is not required to 

obtain images of good quality.

Measuring basic algorithms 
performance:test scenes

Spot: 30,000 trg Kitchen: 350,000 trgRoom: 122,000 trg
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Measuring basic algorithms performance:
“perceptual” convergence rather than
“physical” convergence

Kitchen Room Spot 

Our algorithm choice 
supported by the VDP responses
?Use at first a customized DEPT (compromise bias 

of the intermediate solution to get fast image 
feedback upon the user demand and reduce 
excessive noise).

?At T1 switch to deterministic direct lighting 
computations to reconstruct fine details of the 
lighting function.

?At T2 switch back to DEPT to reduce variance of 
the indirect lighting solution. This makes it 
possible to reduce the final solution bias by 
relaxing noise filtering.

Selection of switching points between 
algorithms: T1 and T2    versus  T1 ,...,TN

Spot (old results on slower R10000 processor) 
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Selection of switching points 
between algorithms: selection of T1

Kitchen 

Selection of switching points 
between algorithms: selection of T1

Spot 

Selection of switching points 
between algorithms: selection of T1
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Progressive rendering example (1)

DEPT: 3 seconds DEPT: 20 seconds

Progressive rendering: example (2)

DEPT: 20 s + DDL: 326s Converged solution: 2 hours

Rendering of high quality 
animation sequences

http://www.mpi-sb.mpg.de/resources/aqm
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Motivation
?In the traditional approach to rendering of high 

quality animation sequences every frame is 
considered separately. This precludes accounting 
for the visual sensitivity to temporal detail.

?Our goal is to improve the performance of 
walkthrough sequences rendering by considering 
both the spatial and temporal aspects of human 
perception.

?We want to focus computational efforts on those 
image details that can be readily perceived in the 
animated sequence.

?Our goal is to improve efficiency of rendering of 
walkthrough sequences. 

Experimental findings on the human 
perception of animated sequences

?The requirements imposed on the quality of still 
images must be higher than for images used in an 
animated sequence. The quality requirements 
can usually be relaxed as the velocity of the 
visual pattern increases. 

?The perceived sharpness of blurred visual 
patterns increases with their motion velocity, 
which is attributed to the higher level processing 
in the visual system.

?The human eye is less sensitive to higher spatial 
frequencies than to lower frequencies.

Video quality metrics
?Virtually all state-of-the-art perception-based 

video quality metrics account for the discussed 
HVS characteristics.

?A majority of the existing video quality metrics 
have been developed to evaluate performance of 
digital video coding and compression techniques, 
e.g., Lambrecht (1996), Lubin (1997), and Watson 
(1998).

?The lack of comparative studies make it unclear 
which metric performs best.

?We use our own metric that takes advantage of 
data readily available for synthetic images.
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Deriving pixel flow using
Image-Based Rendering techniques

Animation Quality Metric (AQM)
?Perception-based visible differences predictor for 

still images (Eriksson et al., 1998) was extended.
?Pixel Flow derived via 3D Warping provides 

velocity data as required by Kelly’s SV -CSF model. 

Animation rendering -
objectives
?Use ray tracing to compute all key frames 

and selected glossy and transparent 
objects.
?For inbetween frames, derive as many 

pixels as possible using computationally 
inexpensive Image Based Rendering 
techniques. 
?The animation quality as perceived by 

the human observer must not be 
affected. 
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Selected case study scenes
 atrium                                   room

? Interesting occlusion relationships between 
objects which are challenging for IBR.

?Many specular objects for the atrium scene.
? Animation path causing great variations of the 

pixel flow for the room scene.

Keyframe placement
?The selection of keyframes should be considered 

in the context of the inbeteween frame 
computation technique.

?In IBR techniques reference frames are usually 
placed:
? uniformly in space at the nodes of 2D or 3D grid 

(Chen95), 
?uniformly along the animation path (Mark97), 
?at manually selected locations (Darsa97). 

?A notable exception is work done by Nimeroff et 
al. 1996, who used a simple quality criterion.

Keyframe placement –
our approach
?Our goal is to find inexpensive and automatic 

solution, which reduces animation artifacts which 
can be perceived by the human observer.

?Our solution consists of two stages:
?initial keyframe placement which reduces the number of 

pixels which cannot be properly derived using IBR 
techniques due to occlusion problems,
?further refinement of keyframe placement which takes 

into account perceptual considerations, and is guided by 
AQM predictions.
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In-between 
frame 

generation

Atrium: AQM-guided  keyframe placement 
refinement

 The AQM predictions are expressed as the percentage of 
pixels with  the probability p > 0.75 that the differences 
between warped keyframes can be perceived.

 The AQM predictions are expressed as the percentage of 
pixels with  the probability p > 0.75 that the differences 
between warped keyframes can be perceived.

Atrium: final keyframe placement

Green - the initial keyframes

Yellow - the inserted keyframes

Animation path with marked keyframe locations
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Atrium: Visualization of  the AQM responses

Eye tracking. PF x 1. P(>0.75)=11.4% No eye tracking. PF x 1. P(>0.75)=10.5%

Probability of detecting 
the differences

No eye tracking. PF x 3. P(>0.75)=3.0%

Room: AQM-guided 
keyframe placement refinement

 The AQM predictions are expressed as the percentage of 
pixels with  the probability p > 0.75 that the differences 
between warped keyframes   can be perceived. 

 The AQM predictions are expressed as the percentage of 
pixels with  the probability p > 0.75 that the differences 
between warped keyframes   can be perceived. 

Spatio-temporal antialiasing

?3D low-pass filtering in the spatio-temporal 
domain is performed as a post-process on the 
complete animation sequence.

?Motion-compensated filtering is performed in the 
temporal domain (this is another application of 
the Pixel Flow derived as a by-product of IBR 
computations).

?To our experience, for moving visual patterns a 
single ray-traced sample per pixel is enough to 
produce an animation which is visually 
indistinguishable from its counterpart based on 
supersampled images.
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Examples of final frames
Supersampled frame used 
in traditional animations

Corresponding frame
derived using our approach

In both cases the perceived quality of 
animation appears to be similar!

Pixel Flow separation for occluding objects
e)

f)

a)

b) d)

c)

a) ray-traced frame,
b) ray-traced frame with 
spatiotemporal processing,
c) the AQM prediction of 
visbile differences betweena
and b,  
d) the corresponding Pixel 
Flow velocity,
e) color scales for the AQM 
response, and
f) color scale for the Pixel 
Flow velocity [deg/sec].

IBR-derived pixels to be ray 
traced
?Pixels representing specular objects selected by 

the AQM predictions for recomputation.
?Pixels with occlusion problems inherent to IBR 

techniques.
?Pixels for slowly moving visual patterns, which 

are selected based on the Pixel Flow magnitude. 
The threshold velocity was found experimentally 
using subjective and objective (AQM) judgment 
of the resulting animation quality.



Applications in Rendering and Animation Karol Myszkowski

VI-20

Experimental 
settings for 
estimating the 
upper threshold 
Pixel Flow velocity 
which is used to 
identify image 
regions that 
require ray-traced 
pixels to avoid 
degradation of the 
animation quality 
as perceived by the 
human observer.

Atrium: pixels to ray trace (1)

Atrium: pixels to ray trace (2)
?The atrium scene is a very hard case for our 

technique because a majority of objects exhibits 
some glossy reflectance properties.

?The percentage of pixels to be recalculated by 
ray tracing:

Specular pixels   40.8%
Slow motion         2.4%
IBR occlusions       0.3%
Keyframes            6.0%

--------------------------------
Total                   49.5%
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Room: pixels to ray trace (1)

Room: pixels to ray trace (2)
?The room scene is a hard case for our technique 

because for many frames the camera motion is 
very slow which results in high sensitivity of the 
human visual system. 

?The percentage of pixels to be recalculated by 
ray tracing:

Slow motion      28.1%
IBR occlusions     1.9%
Keyframes          5.1%

------------------------------
Total                  35.1%

Summary
?We investigated the robustness of the VDP 

predictions in typical global illumination and 
rendering tasks.

?Based on good agreement of the VDP predictions with 
the human observer responses we used the VDP to 
tune parameters of global illumination techniques to 
improve their “perceptual” convergence.

?We proposed an Animation Quality Metric suitable for 
estimating quality of sequences of synthetic images.

?We developed a system for animation rendering 
featuring perception-based guidance of inbetween
frames computation which reduces the rendering 
costs.
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Summary

?Course has shown
?Image Quality Metrics are important
?Number of subjective and objective 

approaches

?Rich areas of application in both rendering 
and animation
?Exciting topic for future research

Related Talks

?A number of related events this week
?Wednesday Morning:Human Factors Session
?Katerina Mania
?Carol OSullivan

?Friday Morning : Models of Visual 
Representation Session 
?Kirsten Cater
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Chapter 1

Illumination: Measurement &
Simulation

1

Since its conception, the pursuit of realistic image synthesis has been the creation of representative,
high quality imagery [41, 38, 37, 86]. The production (rendering) of realistic imagery requires a precise
treatment of lighting effects, which involves the simulation of physical phenomena including light emission,
propagation, and re¤ection. To achieve this, the environment under consideration is £rst modelled as a
collection of virtual lights, objects and a camera (or eye) point. Physically-based rendering algorithms
[35, 3, 49, 81] focus on producing realistic images by simulating the light energy, or radiance, that is visible
at every pixel of the image. The computed radiance values must then be mapped to values suitable for
display on some display device [87, 50]. Figure 1.1 illustrates this process.

Figure 1.1: The rendering pipeline

Understanding the natural illumination process, and how to quantify illumination, provides the foun-
dations for designing and controlling physically based image synthesis algorithms. A precise terminology
exists to quantify illumination [12], from this terminology the underlying equations used to build the math-
ematical models for illumination simulation algorithms are derived.

1written by Ann McNamara     ann.mcnamara@tcd.ie

3



Figure 1.2: Mutually orthogonal E and B £elds of an electromagnetic wave propagating in the x axis

1.1 Light and Materials

Light is a form of electro-magnetic energy comprising waves of coupled electric and magnetic £elds per-
pendicular to each other and to the direction of propagation of the wave, Figure 1.2. The portion of light

Figure 1.3: The visible portion of the electromagnetic spectrum

which can be seen by the human eye, visible light, is just a tiny fraction of the electromagnetic spectrum,
which extends from very high frequency of radio waves through to low frequency microwaves, infra red
and ultra violet light to x-ray and gamma rays. The range of visible light, which lies approximately between
380nm and 720nm, is shown in the context of the whole electromagnetic spectrum in Figure 1.3. The scenes
which humans perceive are based on an integration over the visible spectrum of incoming radiation. The
following de£nitions form an introduction to the measurement and perception of light. Most of the follow-
ing de£nitions are taken from the Illumination Engineering Society Lighting Handbook, given by the IES
[47].

Illuminating hemisphere(Ω): The illuminating hemisphere, Figure 1.4, is a convenient notation to
describe the illumination events above or below a surface. These events such as light sources, or other
re¤ecting surfaces, are projected onto this hemisphere, which for convenience is usually of radius 1 (a unit
hemisphere). Integrating over the hemisphere means considering all events above the surface weighted by
the solid angles of their projections onto the hemisphere. Using this form, the illumination at a given point
can be computed by considering all illumination events captured on the illumination hemisphere.

Solid Angle: The solid angle is the three-dimensional “angle” formed by the vertex of a cone. When
this vertex is the centre of a sphere of radius r and the base of the cone cuts out an area A on the surface
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Figure 1.4: The illumination hemisphere

Figure 1.5: Solid Angles

of the sphere, the solid angle in steradians is de£ned as A/r2. The solid angle of the entire sphere is 4π sr,
so solid angle of an entire hemisphere is 2πsr. Figure 1.5 depicts the relationship between angle and solid
angle.

Projected Area: This is the apparent area of an object as seen by an observer from a particular view
direction. Projected area, dAi, is the actual area dA, times the cosine of the angle, θ, which is the angle
between the surface normal and the view direction, Figure 1.6.

dAi = dA cos θ

Clearly projected area varies according to viewing direction.
When simulating the propagation of light through an environment, two related methods of measuring

and characterising light distributions are of interest to the computer graphics practitioner [46, 4]

Radiometry is the science of measuring radiant energy from any part of the electromagnetic spectrum. In
general, the term usually applies to the measurement using optical instruments of light in the visible,
infrared and ultraviolet wavelength regions. Radiometric terms and units have been standardised in
the ANSI publication [44].

Photometry is the science of measuring light within the visible portion of the electromagnetic spectrum
in units weighted in accordance with the sensitivity of the human visual system [92]. Photometry
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Figure 1.6: The greater the angle, the greater the area over which light is distributed, so energy at a given
point will be proportionally less

deals with perceptual issues; if a surface radiates a given amount of energy, then how bright does that
surface appear to an average viewer? In 1924 the Commission Internationale d’Eclairage or CIE,
attempted to standardise the luminous ef£ciency of the human visual system by performing empirical
tests with over one hundred observers [12].

1.1.1 Radiometry

Radiometry is the science of measuring radiant energy, in any portion of the electromagnetic spectrum. As
light is a form of radiometric energy, radiometry is used in graphics to provide the basis for illumination
calculations.

Radiant Energy(Q): measured in Joules (J). Light is radiant energy, photons of a certain frequency have
a speci£c quantum of energy, de£ned by E = hf , where h is Planck’s Constant 2 and f is the
frequency.

Radiant Flux(Φ): Measured in Watts(W). This is simply the radiant energy ¤owing through an area per
unit time, dQ/dt.

Radiant Flux Density (dΦ/dA): Measured in Watts per square metre (Wm−2). The quotient of the radi-
ant ¤ux incident on or emitted by a surface element surrounding the point and area of the element.
Emittance is radiant ¤ux density emitted from a surface, and irradiance is the term for radiant ¤ux
density incident on a surface.

Radiant Exitance(M): Watts per square metre (Wm−2). The radiant ¤ux leaving the surface per unit area
of the surface. (emittance)

Irradiance(E): Measured in Watts per square metre (Wm−2). The radiant ¤ux incident on the receiver
per unit area of the receiver.

2Planck discovered that light energy is carried by photons, he found that the energy of a photon is equal to the frequency of its
electromagnetic wave multiplied by a constant, h, or Planck’s Constant which is equal to 6.626 x 10−20 Joules per second
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Radiant Intensity(I): Measured in watts per steradian (Wsr−1). Radiant Intensity represents the radiant
¤ow from a point source in a particular direction. Thus it is the ¤ux per unit solid angle. dΦ/dω.

Radiance(L): Measured in watts per steradian per metre squared (Wsr1m−2). Radiance is radiant ¤ux
arriving at or leaving from a surface, per unit solid angle per unit projected area. It is de£ned as
L = d−2/(cos θdAdω) for a given direction Θ. Radiance does not attenuate with distance. It is the
quantity to which most light receivers, including the human eye, are sensitive.

1.1.2 Photometry

Photometry is the science of measuring light within the visible portion of the electromagnetic spectrum
in units that are weighted according to the sensitivity of the human eye. It is a quantitative science based
on a statistical model of the human visual response to light. Photometry attempts to measure the subjec-
tive impression produced by stimulating the human visual system with radiant energy. This is a complex
task, nevertheless the subjective impression of a scene can be quanti£ed for “normal” viewing conditions.
In 1924, CIE asked over one hundred observers to visually match the brightness of monochromatic light
sources with different wavelengths, under controlled conditions. The results from those experiments show
the Photopic Luminous Ef£ciency Curve of the Human Visual System as a function of wavelength. It pro-
vides a weighting function that can be used to convert radiometric units into photometric measurements.
Radiant ¤ux is a physical quantity, whereas the light due to radiant ¤ux is not, the amount of light is de-
pendent on the ability of the radiation to stimulate the eye. The conversion of radiant ¤ux to light involves
a factor that depends on the physiological and psychological processes of seeing. Photometric terms are
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Figure 1.7: Luminous Ef£ciency Curve

equivalent to radiometric terms weighted by V (λ), the photopic spectral luminous ef£ciency curve, shown
in Figure 1.7. Radiation outside the visible spectrum does not play a role in photometry. The photopic
quantities relevant to computer graphics imagery are the following:

Light: Light is radiant energy, evaluated according to its capacity to produce a visual sensation.

Luminous Flux (Φυ): Measured in Lumens. The rate of ¤ow of light with respect to time. The lumen is
de£ned as the luminous ¤ux of monochromatic radiation of wavelength of 555nm whose radiant ¤ux
is (1/683)W. As this wavelength generates the maximal sensation in the eye, larger radiant ¤ux at other
visible wavelengths will correspond to 1 lumen of luminous ¤ux. The quantity can be expressed as a
factor f times (1/663)W where f is the reciprocal of the sensitivity of the corresponding wavelength,
relative to the the sensitivity of 555nm.
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Luminous Factor or Luminous Ef£cacy: Measured in lumen/watt. The sensitivity of the human eye to
the visible wavelengths is expressed by luminous ef£cacy. Luminous ef£cacy of a particular wave-
length is the ratio of the luminous ¤ux at that wavelength to the corresponding radiant ¤ux.

Luminous Intensity: Measured in candelas. Luminous intensity, Iυ , is the solid angular ¤ux density of
a point light source in a particular direction, dΦ

dω . The candela is the unit of luminous intensity, one
candela is one lumen per steradian. Since the total solid angle about a point is 4π steradians it follows
that a point source having a uniform intensity of 1 candela has a luminous ¤ux of 4π lumens.

Illuminance (Eυ): Measured in Lux. Illuminance, Eυ , or illumination, is the area density of the luminous
¤ux incident on a surface dΦ

dA .

Luminous Exitance(M): Measured in Lux/Nit. Luminous exitance, M, is the area density of luminous ¤ux
leaving a surface at a point. This is the total luminous ¤ux emitted, re¤ected and transmitted from a
surface independent of direction.

Luminance(Lυ): Measured in Candelas per square metre. Luminance, Lυ , is the radiometric equivalent
of radiance and is hence a useful quantity to represent directional luminous ¤ux for an area light
source. Luminance, Lυ , along a direction (θ, φ), is the luminous ¤ux per projected surface area per
unit solid angle centred around that direction.

Physics Radiometry Radiometric Units

Radiant Energy joules [J = kgm2/s2]
Flux Radiant Power watts[W = joules/s]
Angular Flux Density Radiance [W/m2sr]
Flux Density Irradiance [W/m2]
Flux Density Radiosity [W/m2]

Radiant Intensity [W/sr]

Physics Photometry Photometric Units

Luminous Energy talbot
Flux Luminous Power lumens [talbots/second]
Angular Flux Density Luminance Nit [lumens/m2sr]
Flux Density Illuminance Lux [lumens/m2sr]
Flux Density Luminosity Lux [lumens/m2sr]

Luminous Intensity Candela [lumens/sr]

Table 1.1: Radiometric and Photometric Quantities

Radiometric and corresponding photometric quantities are summarised in Table 1.1, along with their
units.

1.1.3 Characterising Surface Materials

The next key problem to be addressed in the simulation of light distribution involves characterising the
re¤ections of light from surfaces. Various materials re¤ect light in different ways, for example a matt house
paint re¤ects light very differently than the often highly specular paint often used on sports cars. Re¤ection
is the process whereby light of a speci£c wavelength is (at least partially) propagated outward by a material
without change in wavelength, or more precisely, “re¤ection is the process by which electromagnetic ¤ux
(power), incident on a stationary surface or medium, leaves that surface or medium from the incident side
without change in frequency; re¤ectance is the fraction of the incident ¤ux that is re¤ected” [69].

The effect of re¤ection depends on the directional properties of the surface involved. The re¤ective
behaviour of a surface is described by its Bi-Directional Re¤ectance Distribution Function(BRDF). The
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BRDF expresses the probability that the light coming from a given direction will be re¤ected in another
direction [16, 33]. Hence, the BRDF is the ratio of outgoing intensity to incoming energy, Figure 1.8.
Generally we de£ne BRDF as:

Rbd(λi, φi, θi, φν , θν)

where λi = wavelength of the incoming light
φi, θi = incoming direction
φν , θν = outgoing direction

This relates the light in the direction (φi, θi) to outgoing light in the direction (φν , θν). BRDF is a
function of wavelength.

Rbd(λi, φi, θi, φν , θν) =
Iν(φi,θi,φν ,θν)

Ei(φi,θi)

Incoming energy is related to outgoing intensity by

Ei(φi, θi) = Ii(θi, φi) cos θidω

Figure 1.8: Geometry of the BRDF

Figure 1.9 shows different types of material behaviour, which are de£ned as follows [33]:

Specular (mirror): Specular materials re¤ect light in one direction only, the mirror direction. The outgo-
ing direction is in the incident plane and the angle of re¤ection is equal to the angle of incidence.

Diffuse: Diffuse, or Lambertian materials re¤ect light equally in all directions. Re¤ection of light from a
diffuse surface is independent of incoming direction. The re¤ected light is the same in all directions
and does not change with viewing angle.

Mixed: Re¤ection is a combination of specular and diffuse re¤ection. Overall re¤ectance is given by a
weighted combination of diffuse and specular components.

Retro-Re¤ection: Retro-Re¤ection occurs when the light is re¤ected back on itself, that is the outgoing
direction is equal, or close to the incident direction. Retro-re¤ective devices are widely used in the
areas of nighttime transportation and safety.

Gloss: Glossy materials exhibit the property that involves mixed re¤ection and is responsible for a mirror
like appearance of a rough surface.
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Most materials do not fall exactly into one of the idealised material categories described above, but
instead exhibit a combination of specular and diffuse characteristics. Real materials generally have a more
complex behaviour, with a directional character resulting from surface £nish and sub-surface scattering.

Figure 1.9: Types of re¤ection, from left to right, specular, diffuse, mixed, retro-re¤ection, gloss

1.2 Illumination Models

Figure 1.10: Light behaviour in an environment

The purpose of an illumination model is to model the distribution of light in an environment. Typically
this is achieved by using the laws of physics to compute the trajectory of light energy through the scene
being modelled. Local illumination models calculate the distribution of re¤ected light as a function of the
incoming energy from the light source(s). Local is used to emphasise the fact that the illumination of a
surface is determined solely by the characteristics of the surface itself and those of the light source. The
Phong illumination model [74] was one of the earliest local re¤ection models in computer graphics. Light
interaction is considered as re¤ecting in terms of three separate components, a diffuse, a specular and an
ambient term. The linear combination of these three can then be used to model light intensity at each point
on a surface (or at certain points on a surface, then the appearance of the entire surface can be calculated
using interpolation of the values at these points).

I = IaIk +
∑

Ii[kd cos θ + ks cos
n φ]

where I, the intensity leaving a point, is calculated as the accumulation of contributions from N light sources,
each of intensity Ii. The wavelength dependent diffuse re¤ectivity, kd, gives the diffuse term. This is the
fraction of light scattered in all directions. The specular coef£cient, ks is used to model light re¤ected in
the mirror direction. If a surface faces away from the light source it will not receive any light, hence will
appear black. In reality, direct light and re¤ected light combine to give the illumination of each surface in
an environment, so such surfaces would receive light indirectly via interre¤ections from other surfaces, to
account for this, local illumination models include a constant ambient term, Iaka.

However, the interre¤ection of light can account for a high proportion of the total illumination in a
scene. This is especially true for indoor scenes where light cannot “escape” the scene but instead is always
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re¤ected back into the scene by some surface, as in Figure 1.10 [5]. To account for such interre¤ections,
all objects must be considered a potential source of illumination for all other objects in the scene. This
constitutes a global illumination model. Global illumination models endeavour to include all of the light
interaction in a scene, to give rise to effects such as indirect illumination, soft shadows and colour bleeding,
all of which in¤uence the perception of the resulting imagery, and hence the quality of the image. The
complexities of the interaction of light and surfaces in an environment can be neatly described in a compact
form by the rendering equation [45]:

Lr(θr, φr) = Le +
∫

Li(θi, φi)fr(θi, φi, θr, φr)| cos θi| sin θidθidφi

where:

Le = emitted radiation
∫

Li(θi, φi) = The incoming luminance distribution
fr(θi, φi, θr, φr = BRDF

The problem of global illumination can be seen as solving the rendering equation for each point in an
environment. The rendering equation is a complex integral equation 3. In all but the simplest case, there is
no closed form solution for such an equation so it must be solved using numerical techniques. Numerical
techniques imply approximation. For this reason most illumination computations are approximate solutions
to the rendering equation.

Figure 1.11: Illustration of the Rendering Equation which determines radiance by summing self emitting
radiance and re¤ected radiance.

1.2.1 Raytracing

Raytracing is a versatile technique for computing images by tracing individual paths of light through a
scene. Raytracing algorithms attempt to capture view-dependent specular effects as well as re¤ections
and transmissions [2, 91]. Raytracing uni£es the processes of hidden surface removal, shading, re¤ection,
refraction and shadowing. In raytracing, it is recognised that although millions of photons travel through
an environment, only those photons striking the eye are needed to compute the image. Hence, raytracing
proceeds by tracing a number of rays starting at the eye point or camera into the scene, this way only the
necessary information is computed. The disadvantage of this is that the result of raytracing is a single image,
making it a view-dependent technique. Initially one ray is passed through (the centre of) each pixel, this is
called the primary ray. Each primary ray is tested for intersection with all objects in the scene to determine
the object closest to the eye. A shadow ray is then traced toward each light source in the scene. If this ray
does not intersect any other objects, that is there is a clear path from the point of intersection to the light
source, then a local illumination model is applied to determine the contribution of the light source(s) to that
surface point. If the light source(s) is occluded then the point under consideration is in shadow.

In the case of re¤ective or transparent surfaces, the direction in which light arrives by re¤ection or
transmission is also needed. Re¤ected rays are easily computed since the angle of re¤ection is equal to the

3The rendering equation is a linear inhomogeneous Fredholm integral equation of the second kind, which exhibits a recursive
nature making it dif£cult to evaluate.
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Figure 1.12: Raytracing: Rays are traced from the eye into the scene in an attempt to capture specular
re¤ection, transparency effects and shadowing

angle of incidence, Figure 1.13. Transmitted rays are computed according to Snell’s Law, which describes
the relationship between the angle of incidence, θi, and the angle of transmission, θt:

sin θi
sin θt

=
ηi
ηt

where ηi and ηt are the indices of refraction of the materials through which the ray travels. Snell’s Law
states that the ratio of the sine of the angle of the incident ray in one medium to the sine of the angle it
makes in another medium is constant, Figure 1.13.

A recursive evaluation must be employed, at each surface, Figure 1.14 [5]. By recursively tracing rays
through the scene, until no further objects are encountered or some maximum number of levels has been
reached, colour contributions for each pixel are calculated. A weakness of raytracing is the manner in which
diffuse interre¤ections are handled. Surfaces receiving no direct illumination appear black. To overcome
this an indirect illumination term, referred to as ambient light, is accounted for by a constant ambient
term, which is usually assigned an arbitrary value. Figure 2.15 gives pseudo code to illustrate the recursive
raytracing procedure.

Raytracing can model a large range of lighting effects accurately accounting for the global illumination
characteristics of direct illumination, shadows, specular re¤ection and transparency. The main drawback
of raytracing is that it can prove to be computationally expensive and time consuming, even for moderate
environments. Intersection tests dominate the cost of raytracing algorithms. Typically in raytracing several
intersections per pixel are computed. Performing intersection tests with all objects in an environment is
inef£cient. Several algorithms, such as spatial subdivision [23, 32], have been developed which attempt to
minimise the number of ray object intersections. By enclosing a scene in a cube, that cube can be succes-
sively subdivided until each sub-regions (voxel or cell) contains no more than a preset maximum number
of objects. This subdivision can then be stored in an octree to establish a hierarchical description of the
occupancy of voxels. Subdivision can be uniform, the cube is divided into eight equal sized octants at each
step, or adaptive where only regions of the cube containing objects are subdivided. Using such a framework
allows spatial coherence to be exploited. Rays are traced through individual voxels, with intersection tests
performed only for the objects contained within. The ray is then processed through the voxels by determin-
ing the entry and exit points for each voxel traversed by the ray until an object is intersected or the scene
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Figure 1.13: Behaviour of light ray incident on a surface

Figure 1.14: Raytracing

boundary is reached. In a Spatially Enumerated Auxiliary Data Structure (SEADS) space is divided into
equally sized voxels regardless of object position, resulting in more voxels than an octree division. Using
this strategy many rays can be traced with increased speed from region to region using a 3D-DDA (Digital
Differential Analyser), speed can be further augmented by implementing this in hardware.

Aliasing effects, (Figure 1.16), occur when attempting to represent a continuous phenomena (radiance)
with discrete samples (pixel values). Spatial aliasing effects appear as a consequence of the spatial resolu-
tion of the pixels in the image plane. Figure 1.16 illustrates this concept, attempting to represent a curved
surface on a square grid, the resulting “blockiness” is referred to as aliasing, or “jaggies”. Due to the digital
nature of computers, it is not possible to completely eliminate aliasing. Fortunately, many anti-aliasing
techniques exist to minimise the effect. Supersampling takes the average radiance produced by shooting
several rays through each pixel, this reduces aliasing but increases the cost of raytracing. An alternative is
to use adaptive sampling focusing extra rays where they are required. Initially a low number of rays are
traced per pixel, only if there are suf£cient differences in the values returned are subsequent rays traced for
that pixel.

In traditional raytracing only one ray is traced in each of the shadow and re¤ection directions. As a result
the images generated often contain unnaturally sharp shadows and sharp mirror re¤ections. Distributed
Raytracing [17, 18] extends classical recursive raytracing to include stochastic methods to simulate an array
of optical effects including gloss, translucency, shadow penumbrae, depth of £eld and motion blur. This is
achieved by distributing rays over several domains (pixel positions, lens position, area sampling position
etc). In distributed raytracing several shadow or re¤ection rays are cast, each in a slightly different direction
and the result is averaged over the number of rays cast.

Further details of the raytracing method can be found in [33, 22, 34].
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For each pixel, p, in an image
Set I = ray starting at eye though pixel p
rad = Trace(I);
DrawPixel(p, I);
float Trace(Ray I){
radiance = 0;
Intersect I with all objects in the scene
to determine o, the closest object.
Compute P, the point of intersection of I with o
DO LOCAL SHADING
for each light source in the scene {

trace a ray from P to L;
If L is visible at P

radiance += LocalShade(L, P);
else

P is in shadow, do nothing;
}

}
DO GLOBAL SHADING
ReflectedRay
TransmittedRay
return(radiance);

Figure 1.15: Pseudo Code for the Raytracing approach

Figure 1.16: Antialiasing: a) A circle b) Strongly aliased circle c) Aliased Circle at Higher Resolution d)
Antialiased Circle

1.2.2 Radiosity

Radiosity methods [35, 70, 15] attempt to capture view-independent diffuse interre¤ections in a scene,
Figure 1.17 [5]. Techniques originally developed to compute the radiant interchange between surfaces,
were £rst applied to the global illumination problem in the mid 1980s. Radiosity4 methods are applicable
to solving for the interre¤ection of light between ideal (Lambertian) diffuse surfaces. Radiosity assumes
ideal diffuse re¤ections. The algorithm achieves global illumination by explicitly creating a global system
of equations to capture interre¤ections of light in a scene and automatically accounting for the effects of
multiple re¤ections. To accomplish this the surfaces of a scene are £rst divided into a mesh of patches. The
radiance of these patches is computed by solving a system of equations, Figure 1.18 [9]. The result of a
radiosity solution is not just a single image but a full three dimensional representation of the distribution of
light energy in an environment, making it a view independent method.

The amount of light leaving each patch can be expressed as a combination of its emitted light and its
re¤ected light.

4The term radiosity refers to a measure of radiant energy, speci£cally the energy leaving a surface per unit area per unit time. Now,
radiosity has also come to mean a set of computational techniques for computing global illumination.
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Figure 1.17: Radiosity

Figure 1.18: Radiosity: An image on the left, meshed representation on the right

Bi = Ei + ρi

n
∑

j=1

FijBj

Bi is the exitance radiosity of patch i. (impident energy per unit area per unit time per unit surface)
Ei is the radiosity emitted from patch i. (energy per unit area per unit time)
Fij is the form factor from i to j, the fraction of energy leaving patch i that arrives at patch j.
ρi is the re¤ectivity of patch i.
n is the number of patches in the environment.

The form-factor, Figure 1.19, Fij is the fraction of energy transferred from patch i to patch j. The
reciprocity relationship [80] states:

AjFji = AiFij

For all patches in a scene we get a linear system of equations:
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Figure 1.19: The relationship between two patches

A patch can contribute to its own re¤ected energy (in the case of concave objects) so this must be taken
into account; so in general, terms along the diagonal are not merely 1. Due to the wavelength dependency
of the ρi and Ei the matrix must be solved for each band of wavelengths to be considered, in computer
graphics this usually includes a band for each of red, green and blue wave bands. However, the form factors
are solely dependent on geometry, and not wavelength dependent and so do not need to be recomputed if
the lighting or surface re¤ectivity changes.

This system of equations can be solved for the radiosity values by using iterative methods, for example
Gauss-Seidel Iteration. Once the values for each pass have been obtained then the values at the vertices of
the patches are calculated and the patches can then be passed to a standard polygon rendering pipeline that
implements Gouraud shading. The value at a vertex can be calculated by averaging the radiosity values of
the surrounding patches [36].

Form Factor Computation The form-factor, from differential area dAi to differential area dAj is:

dFdi−dj =
cos θi cos θj

πr2
HijdAj

As shown in Figure 1.19, for the ray between differential areas dAi and dAj ; θi is the angle between
the ray and the surface normal of Ai, θj is the angle between the ray and the surface normal of Aj , r is the
length of the ray, Hij takes the value of 1 or 0 depending on whether or not dAi is visible from dAj . To
calculate the form factor, Fij from differential area dAi to £nite area Aj integrate over the area of patch j:

Fdij =

∫

cos θi cos θj

πr2
HijdAjdAi

So the form-factor from Ai to Aj is computed as the area average of the above equation over patch i:

Fij =
1

Ai

∫

Ai

∫

Aj

cos θi cos θj

πr2
HijdAjdAi

By assuming that the centre of a patch typi£es other points on that patch, then F ij can be approximated
by Fdij calculated for dAi at the centre of patch i.

An equivalent to computing form-factors, Nusselt [71] projected parts ofAj visible from dAi onto a unit
hemisphere, this projected area is then projected orthographically down onto the hemisphere’s unit circle
base, then dividing by the area of the circle, Figure 1.20. Projecting onto the unit hemisphere accounts for
cos θj/r

2, the projection to the base accounts for the multiplication by cos θi, and dividing by the area of
the base accounts for the division by π.

An alternative algorithm, proposed by Cohen and Greenberg [15], projects onto the upper half of a
cube, hemicube, centred about dAi, with the cube’s top parallel to the surface, Figure1.21. The hemicube
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Figure 1.20: The Nusselt Analog

is divided into a uniform grid. All patches in the environment are clipped to the view-volume frusta de£ned
by the centre of the cube and each of its £ve faces, then each of the clipped patches is projected onto the
appropriate face of the hemicube.

Each cell, p, which Cohen [15] refers to as a pixel, of the hemicube has a precomputed delta form factor
associated with it:

4Fp =
cos θi cos θj

πr2
4A

θp is the angle between the surface normal of cell p and the vector between dAi and p, r is the length of
the vector. Assigning the hemicube a (x, y, z)co-ordinate system, with the origin at the centre of the bottom
face, then for the top face:

r =
√

x2p + y2p + 1

cos θi = cos θp =
1

r

xp and yp are the co-ordinates of the hemicube.
The approximate form factor, Fdij for any patch j can be found by summing the values of 4Fp asso-

ciated with each cell p in Aj’s hemicube projections. The values of 4Fp for all the hemicube cells sum to
1. Assuming that the distance between the patches is large relative to the size of the patch, these values for
Fdij can be used as the values of Fij to compute patch radiosities.

The full matrix algorithm solves each Bi value one at a time by “gathering” light contributions from all
other patches in the scene. One of the disadvantages of this method is only after all radiosities have been
computed is the resultant image displayed. For complex environments the time taken to produce a solution
can be extensive. This means that the user is unable to alter any of the parameters of the environment until
the entire computation is complete. Then once the alteration is made, the user must once again wait until
the full solution is recomputed. To alleviate this Cohen et al. [14] proposed the progressive re£nement
radiosity which uses the notion of adaptive re£nement of images, to provide the user as soon as possible
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Figure 1.21: The Hemicube

with an approximation of the full solution. Rather than evaluating the effect that all other radiosities have
on a particular patch, progressive re£nement examines the effect that a patch has on all other patches in the
environment.

With early radiosity techniques it was necessary to build the complete matrix of form-factors before
solving the radiosity method. By re-ordering computation so that the complete form-factor doesn’t need
to be stored progressive re£nement radiosity allows partial solutions to be displayed, Figure 2.22. The
progressive re£nement approach simultaneously solves all patch radiosities by repeatedly choosing a patch
to “shoot” and distributing that patch’s energy to all other patches. This is attractive as it provides a very
good approximation to the £nal solution after only a few iterations.

The main advantage of radiosity methods lies in the view independence of the solution, and the ability
to accurately simulate lighting effects.

More details of the radiosity method may be found in, for example [4, 16, 82]

1.2.3 Radiance

Radiance is a physically based lighting simulation tool for visualising lighting in virtual environments
[89, 51]. This system employs a raytracing strategy, with signi£cant extensions to traditional raytracing,
to achieve accurate simulation of the propagation of light through an environment. The approach encom-
passes a hybrid deterministic/stochastic raytracing approach to ef£ciently solve the rendering equation,
while maintaining an optimum balance between speed of computation and accuracy of the solution. This
is achieved by applying a recursive algorithm to solve the rendering equation, reformulated below, with
the notion of energy transfer between two points replaced by energy passing through a point in a speci£c
direction (i.e. the de£nition of radiance):

Lr(θr, φr) = Le +

∫ ∫

Li(θi, φi)f(θr, φr, θi, φi)| cos θi| sin θidθidφi
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BEGIN
initially bi = 4bi = 0 for non light sources
initially bi = 4bi = ei for light sources
select patch i
WHILE ( 4bi ¡ TOLERANCE)

calculate form factors at patch i using the hemi-cube method
FOR j:= 1 TO all other patches (except i) DO

/* Include i if it is concave */
DO Updates
4RAD := (ρj 4bi FijAi)÷Aj

/* update change since last patch j shot light */
4bi = 4bi + 4Rad
/* update total radiosity of patch j */
bj = bj + 4Rad

END FOR
/* patch i has just shot - reset unshot radiosity to 0 */
4bi := 0
select next patch i
END WHILE

END

Figure 1.22: Pseudo Code for the Progressive Re£nement Radiosity Solution

To accelerate the solution, the integral is separated into those parts which can be computed deterministically,
and those which are better solved using stochastic methods. The direct component is computed by tracing
rays to random locations on the light sources. The specular indirect component is computed by distribut-
ing rays about the mirror and transmission directions using uniform Monte Carlo sampling. Once these
two prominent components are calculated, the diffusely interre¤ected component is computed by occasional
evaluation of the integral at dynamically selected locations.

The Direct Component

Light sources are responsible for a large proportion of the illumination in a scene. Therefore it makes
sense to determine which objects are sources and compute them separately in a ”direct calculation”. This
involves identifying those objects that contribute to the illumination more signi£cantly than others, mostly
these are light sources but in some cases may include other re¤ecting objects.

Light source testing, or shadow testing, has been used since the introduction of raytracing, and is one
of the best strategies for improving ef£ciency and reducing noise. However there are a number of problems
associated with conventional shadow testing algorithms:

• The time taken to perform shadow testing increases linearly according to the number of light sources
in the scene. So it would take twice as long to render an image containing two sources as it would to
render an image containing a single source. Clearly for complex environments containing many light
sources this become prohibitive.

• Subdivision of large light sources 5 is necessary if inaccurate solutions containing excessive noise are
to be avoided. If subdivision is done unconditionally, this leads to oversampling of sources at points
that are far enough away that a single shadow ray would be suf£cient.

• Most direct calculations fail to include light re¤ection from mirrors. Determining such signi£cant
sources with undirected ray samples is usually impractical, and results in missing illumination.

Radiance remedies the above shortcomings by:
5large relative to the distance to the illuminated surface
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Selective Shadow Testing: A prioritised list of potential source contributions is created at each evaluation
of the rendering equation. The largest potential contributors are tested for shadows £rst, testing is
halted when the remainder of the potential contributions has fallen below some speci£ed fraction of
the accumulated total. The total estimate of the direct component is the sum of the tested light sources
and a statistical estimate of the remainder.

Adaptive Source subdivision: The simplest approach for sources that are large relative to their distance
is to send multiple sample rays. Unfortunately, breaking a source into smaller pieces and sending
multiple rays is unsatisfactory for distant points - an adaptive sampling technique is more practical.
Multiple rays are sent to sources if they are large relative to the distance of the evaluation point.
Sources are recursively divided into smaller portions until each portion satis£es some size/distance
criterion.

Virtual Light Source Calculation: A mirror surface may re¤ect sunlight on a diffuse or semi-specular
surface. Although the diffuse interre¤ection calculation could in principle handle this effect, it is
possible that insuf£cient sampling of an intense light source will occur. A small source re¤ected
specularly is still too small to £nd in a practical number of naive Monte Carlo samples, the algorithm
must know where to look. Virtual light sources, which do not exist in reality, are introduced to combat
this problem. Virtual light sources direct the shadow rays in the appropriate directions to £nd re¤ected
or otherwise transferred light sources.

The Indirect Component

The calculation of the indirect component computes all sources of illumination not accounted for during
the direct component computation. This includes light re¤ected and transmitted in specular directions and
light bouncing diffusely between surfaces. Thus the indirect component is computed separately as specular
sampling and diffuse interre¤ections. To achieve specular sampling a single ray is sent in the designated
specular direction. In the case of ideal re¤ection or transmission, the direction is completely determined. In
the case of rough-specular Monte Carlo importance sampling is used to determine the actual sample direc-
tion, and the light source(s) contribution is computed as part of the direct component.

Despite the considerable savings achieved by removing the direct lighting and specular re¤ections com-
ponents from the integral, the diffuse indirect contributions remaining prove too expensive to recalculate
at every pixel. Such a process would involve tracing hundreds of rays per pixel to ensure variance within
tolerable levels. This is the reason why many conventional ray tracing approaches account for these indirect
contributions using an arbitrary constant ambient term. This has been successful because the illumination
changes gradually across a surface and the eye is more sensitive to contrast and therefore the resulting sur-
faces appear smooth. Radiance however takes a more accurate approach by spreading out this in¤uence
over a number of pixels which results in a smooth, accurate result at a modest sampling cost.

The basic idea is to perform a full evaluation of the rendering equation for indirect diffuse contributions
only as needed, caching and interpolating these values over each surface. Direct and specular components
are still computed on a pixel by pixel basis, but hemispherical sampling occurs less frequently. The result
is a good estimate of the indirect diffuse contribution when required by sending more samples than would
be possible for a pixel-independent calculation. Computing the indirect irradiance at a point in a scene,
involves sending a few hundred uniformly distributed rays over the projected hemisphere. If any of these
rays hits a light source its contribution is ignored, as direct component is handled separately. This sampling
process is applied recursively for multiple re¤ections, and does not grow exponentially as each level has its
own cache of indirect values.

The hemisphere samples not only give information about the indirect illumination, but also informa-
tion about the locations and brightness of surfaces visible from the evaluation point. Using this gradient
information in addition to the value of the function, a higher order interpolation can be used to get a better
irradiance estimate between the calculated points. In effect, a smoother and more accurate result is achieved
without having to do any additional sampling, and with very little overhead.

To summarise Radiance uses a raytracing method with extensions to handle specular, diffuse and direc-
tional diffuse re¤ection, and transmission to generate high quality lighting simulations. Studies have shown
that Radiance is capable of producing highly realistic and accurate imagery [48], for this reason we have
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chosen to use the Radiance suite of lighting simulation programs to generate the images used in the study
presented in this thesis.

1.3 Summary

”Realistic representation in computer graphics requires quantifying light and materials, de-
veloping rules that describe their interaction (illumination models) and presenting the results
through some display medium so the correct perceptions are created” [40].

This chapter opened with a brief introduction to light followed by a description of the fundamental
terms, de£nitions and nomenclature associated with light energy including explanations of relevant radio-
metric terms, along with their photometric counterparts. Materials in nature interact with light in various
ways, and materials can be characterised according to such behaviour. Diffuse materials re¤ect light uni-
formly in all directions, specular materials re¤ect light in the mirror direction only, materials of a glossy
nature re¤ect light, and those materials that exhibit retro re¤ection re¤ect light back in the direction of the
incident light. Illumination models take a description of a set of light sources and a set of surfaces which in-
cludes geometric, emissive and re¤ective properties, and attempt to calculate the interaction of the light with
surfaces in the environment to produce an image. Early illumination models performed such calculations
by considering the distribution of re¤ected light as function of incoming energy from the light source(s) to
produce a local illumination model. Local is used to emphasise the fact that the illumination of a surface is
determined by, and only by, the characteristics of the surface itself and those of the light source.

The interre¤ection of light can account for a high proportion of the total illumination in a scene. This
is especially true for indoor scenes where light cannot “escape” the scene but instead is always re¤ected
back into the scene by some surface. To account for such interre¤ections, all objects must be considered
a potential source of illumination for all other objects in the scene. This constitutes a global illumination
model. Global illumination models attempt to include all of the light interaction in a scene, giving rise to
effects such as indirect illumination, soft shadows and colour bleeding, all of which have an impact on the
perception of the resulting imagery, and hence the quality of the image.

The rendering equation which describes the fundamentals of global light exchanges in a scene is pre-
sented. Most image synthesis methods involve attempting to solve the rendering equation for each point in
a scene.

Some of the more popular existing solution strategies for global illumination, Raytracing and Radiosity,
were brie¤y reviewed. Raytracing provides an accurate method for obtaining global, specular re¤ection
and transmission effects. Pixel rays are recursively traced through a scene, accumulating intensity contri-
butions through repeated bounces between objects. By constructing a ray-tree for each pixel in the image
plane, contributions are added from the terminal nodes to determine the intensity value for the pixel. A
number of spatial subdivision techniques have been introduced to minimise the number of ray object inter-
sections. Using Monte Carlo sampling to trace multiple rays per pixel, distributed raytracing provides an
accurate method for modelling effects such as gloss, shadow effects and motion blur. Radiosity methods
provide accurate methods for modelling diffuse re¤ection effects. This is achieved by calculating radiant
energy transfer between surface patches in an environment. The solution of radiosity techniques are greatly
accelerated using a number of extensions including the hemicube, progressive radiosity and hierarchical
techniques. Finally Radiance, a physically based lighting simulation, which uses an extended raytracing
methodology was introduced. Radiance accelerates its solution of the rendering equation by treating the
direct component, the specular component and indirect interre¤ections separately.

To give an idea of differences between the three approaches, raytracing, radiosity and radiance, Figure
1.23 shows from left to right, a raytraced image, an image generated using radiosity and £nally an image
computed with the Radiance lighting simulation package.
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Figure 1.23: Renderings of a simple environment. Raytraced Solution (left), Radiosity Solution (center), &
Radiance Solution (right)
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Chapter 2

Visual Perception in Realistic Image
Synthesis

1

Realism is often a primary goal in computer graphics imagery. We strive to create images that are
perceptually indistinguishable from an actual scene. Rendering systems can now closely approximate the
physical distribution of light in an environment. However, physical accuracy does not guarantee that the
displayed images will have an authentic visual appearance. In recent years the emphasis in realistic image
synthesis has begun to shift from the simulation of light in an environment to images that look as real as the
physical environment they portray. In other words the computer image should be not only physically correct
but also perceptually equivalent to the scene it represents. This implies aspects of the Human Visual System
(HVS) must be considered if realism is required. Visual perception is employed in many different guises in
graphics to achieve authenticity. Certain aspects of the HVS must be considered to identify the perceptual
effects that a realistic rendering system must achieve in order to effectively reproduce a similar visual
response to a real scene. This chapter outlines the main characteristics of the HVS and the manner in which
knowledge about visual perception is increasingly appearing in state-of-the-art realistic image synthesis. It
is organised into three Sections, each exploring the use of perception in realistic image synthesis, each with
slightly different emphasis and application. First, perception driven rendering algorithms are described,
which focus on embedding models of the HVS directly into global illumination computations in order to
improve their ef£ciency. Then perception based image quality metrics, which aim to compare images on a
perceptual rather than a physical basis, are presented. These metrics can be used to evaluate, validate and
compare imagery. Finally, Tone Reproduction Operators, which attempt to map the vast range of computed
radiance values to the limited range of display values, are discussed.

2.1 Visual Perception

Perception is the process by which humans, and other organisms, interpret and organise sensation in order
to understand their surrounding environment. Sensation refers to the immediate, relatively unprocessed
result of stimulation of sensory receptors. Perception, on the other hand, is used to describe the ultimate
experience and interpretation of the world and usually involves further processing of sensory input. Sensory
organs translate physical energy from the environment into electrical impulses processed by the brain. In
the case of vision light, in the form of electromagnetic radiation, activates receptor cells in the eye triggering
signals to the brain. These signals are not understood as pure energy, rather, perception allows them to be
interpreted as objects, events, people and situations.

2.1.1 The Human Visual System

Vision is a complex process that requires numerous components of the human eye and brain to work to-
gether. Vision is de£ned as the ability to see the features of objects we look at, such as colour, shape,

1written by Ann McNamara      ann.mcnamara@tcd.ie
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Figure 2.1: Cross section of the human eye

size, details, depth, and contrast. Vision begins with light rays bouncing off the surface of objects. These
re¤ected light rays enter the eye and are transformed into electrical signals. Millions of signals per second
leave the eye via the optic nerve and travel to the visual area of the brain. Brain cells then decode the signals
providing us with sight.

The response of the human eye to light is a complex, still not well understood process. It is dif£cult
to quantify due to the high level of interaction between the visual system and complex brain functions. A
sketch of the anatomical components of the human eye is shown in Figure 2.2 [43]. The main structures are
the iris, lens, pupil, cornea, retina, vitreous humor, optic disk and optic nerve.

Figure 2.2: The components of the HVS

The path of light through the visual system begins at the pupil, is focused by the lens, then passes onto
the retina, Figure 2.3 [39], which covers the back surface of the eye. The retina is a mesh of photoreceptors,
which receive light and pass the stimulus on to the brain. Figure 2.1 [43] shows the internal structure of the
human eye, a sphere, typically 12mm in radius, enclosed by a protective membrane, the sclera. At the front
of the sclera lies the cornea, a protruding opening, and an optical system comprising the lens and ciliary
muscles which change the shape of the lens providing variable focus. Light enters the eye though the lens
and proceeds through the vitreous humor, a transparent substance, to the rear wall of the eye, the retina.
The retina has photoreceptors coupled to nerve cells, which intercept incoming photons and output neural
signals. These signals are transmitted to the brain through the optic nerve, connected to the retina at the
optic disk or papilla, more commonly known as the blind spot. The retina is composed of two major classes
of receptor cells known as rods and cones. The rods are extremely sensitive to light and provide achromatic
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vision at low (scotopic) levels of illumination. The cones are less sensitive than the rods but provide colour
vision at high (photopic) levels of illumination. A schematic drawing of rod and cone cells is shown in
Figure 2.3. Cones are nerve cells that are sensitive to light, detail, and colour. Millions of cone cells are
packed into the macula, aiding it in providing the visual detail needed to scan the letters on an eye chart, see
a street sign, or read the words in a newspaper.

Figure 2.3: Retinal structure

Rods are designed for night vision. They also provide peripheral vision, but they do not see as acutely
as cones. Rods are insensitive to colour. When a person passes from a brightly lit place to one that is
dimly illuminated, such as entering a movie theatre during the day, the interior seems very dark. After
some minutes this impression passes and vision becomes more distinct. In this period of adaptation to the
dark, the eye becomes almost entirely dependent on the rods for vision, which operate best at very low light
levels. Since the rods do not distinguish colour, vision in dim light is almost colourless.

Cones provide both luminance and colour vision in daylight. They contain three different pigments,
which respond either to blue, red, or green wavelengths of light. A person who is missing one or more of
the pigments is said to be colour-blind and has dif£culty distinguishing between certain colours, such as red
from green.

These photoreceptor cells are connected to each other and the ganglion cells which transmit signals to
and from the optic nerve. Connections are achieved via two layers, the £rst and second synaptic layers. The
interconnections between the rods and cones are mainly horizontal links, indicating a preferential processing
of signals in the horizontal plane.

Normal daytime vision, where the cones predominate visual processing, is termed photopic, whereas
low light levels where the rods are principally responsible for perception is termed scotopic vision. When
both rods and cones are equally involved then vision is termed mesopic. Figure 2.4 [73], shows the range of
luminance encountered by a typical human observer in a natural environment along with associated visual
parameters.

Visual acuity is the ability of the Human Visual System (HVS) to resolve detail in an image. The human
eye is less sensitive to gradual and sudden changes in brightness in the image plane but has higher sensitivity
to intermediate changes. Acuity decreases with increase in distance. Visual acuity can be measured using
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Figure 2.4: The range of luminance in the natural environment and associated visual parameters

a Snellen Chart, a standardised chart of symbols and letters. Visual £eld indicates the ability of each eye to
perceive objects to the side of the central area of vision. A normal £eld of vision is 180o.

Contrast is de£ned as:
lmax − lmin
lmax + lmin

where lmax and lmin are the maximum and minimum luminance. Human brightness sensitivity is loga-
rithmic, so it follows that for the same perception, higher brightness requires higher contrast. Apparent
brightness is dependent on background brightness. This phenomenon, termed simultaneous contrast, is
illustrated in 2.5. Despite the fact that all centre squares are the same brightness, they are perceived as
different due to the different background brightness.

Figure 2.5: Simultaneous contrast: the internal squares all have the same luminance but the changes in
luminance in the surrounding areas change the perceived luminance of the internal squares

Depth Perception is the ability to see the world in three dimensions and to perceive distance. Images
projected onto the retina are two-dimensional, and from these ¤at images vivid three dimensional worlds are
constructed. Binocular Disparity and monocular cues provide information for depth perception. Binocular
disparity is the difference between the images projected onto the left and right eye. The brain integrates
these two images into a single three dimensional image to allow depth and distance perception. Monocular
cues are cues to depth that are effective when viewed with only one eye, including interposition, atmospheric
perspective, texture gradient, linear perspective, size cues, height cues and motion parallax.

Perceptual Constancy is a phenomenon which enables the same perception of an object despite changes
in the actual pattern of light falling on the retina. Psychologists have identi£ed a number of perceptual
constancies including lightness constancy, colour constancy, size constancy and shape constancy.

• Lightness Constancy: The term lightness constancy describes the ability of the visual system to
perceive surface lightness correctly despite changes in the level of illumination.
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• Colour Constancy: Closely related to lightness constancy, this is the ability of the HVS to perceive
the correct colour of an object despite changes in illumination.

• Shape Constancy: Objects are perceived as having the same shape regardless of changes in their
orientation. - example with cube, from front and side

• Size Constancy: This is the tendency to perceive objects as staying the same size despite changes in
viewing distance.

2.1.2 Human Visual Perception

A number of psychophysical experimental studies have demonstrated many features of how the HVS works.
However, problems arise when trying to generalise these results for use in computer graphics. This is
because, often, experiments are conducted under limited laboratory conditions and are typically designed
to explore a single dimension of the HVS. As described earlier, the HVS comprises complex mechanisms,
which rather than working independently, often features work together, and therefore it makes sense to
examine the HVS as a whole. Instead of reusing information from previous psychophysical experiments,
new experiments are needed. Some examples will support this.

Figure 2.6: When a black and white patterned top shown on the left is rotated at 5-10 revolutions per
second, coloured rings can be seen. The light intensity distribution of the rotating pattern as a function of
time is shown on the right. Spatiotemporal interactions between antagonistic, spectrally opponent colour
mechanisms account for this phenomenon.

A Benham’s disk is a ¤at disc, half of which is black and the other half has three sets of lines like the
grooves on a record but more spaced out, Figure 2.6. When the disk is spun a human observer sees red,
yellow and green rings, despite the fact that there are no colours in the pattern. The curves on the right of
the pattern begin to explain what happens. Each curve plots the temporal light intensity distribution at the
different radii from the centre, created when the top is spun. These changing light patterns produce spa-
tiotemporal interaction in the HVS that unbalance antagonistic, spectrally-opponent mechanisms to create
the appearance of coloured rings. This illusion demonstrates that, although it may be convenient to model
the HVS in terms of unidimensional responses to motion, pattern and colour, human percepts are in fact the
product of complex multidimensional response.

A second example, Figure 2.7 [1], shows the panels in checkerboard block on the left and a ¤at pattern
on the right, which have the same re¤ectance, but differences in their three-dimensional organisation means
they are perceived differently. The two panels marked with X’s have the same re¤ectance, but on the block
they appear to have different re¤ectance under different levels of illumination. Conversely, the two panels
marked with O’s have different re¤ectance values but on the block appear to be the same colour due to
the different illumination conditions. This demonstrates the complexity of interactions between apparent
re¤ectance, apparent illumination and apparent shape that can dramatically affect human perception.
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Figure 2.7: Interaction between apparent re¤ection, apparent illumination and apparent three-dimensional
shape. Corresponding panels in the two patterns have the same physical re¤ectance. Differences in the per-
ceived spatial organisation of the patterns produces differing interpretations in terms of lightness (apparent
re¤ectance) and brightness (apparent illumination)

Figure 2.8: Importance of depth perception for lightness constancy

2.1.3 Lightness Perception

Gilchrist [31, 30, 29] justi£ed the systematic study of lightness error as an understanding of the HVS. He
found that there are always errors when judging lightness, and these errors are not random, but systematic.
The pattern of these systematic errors therefore provide a signature of the visual system. He de£nes a
lightness error as “any difference between the actual re¤ectance of a target surface and the re¤ectance of
the matching chip selected from a Munsell chart”. The task de£ned for the psychophysical experiments
described later in this thesis involves asking human observers to match the re¤ectance of real world objects
to a Munsell chart, which gives a measure of errors in lightness matching. The observer is then asked to
match the re¤ectance of simulated objects (in a computer generated rendition of the real world) to the same
Munsell chart. This gives a measure of lightness errors with respect to the computer image. There are
limitations on the HVS, so there will be errors (systematic errors) in both cases. For the rendered image to
be deemed a faithful representation, both sets of lightness errors should be close to each other.

Gilchrist (1977) showed that the perception of the degree of “lightness” of a surface patch (i.e. whether
it is white, gray or black) is greatly affected by the perceived distance and orientation of the surface in
question, as well as the perceived illumination falling on the surface - where the latter was experimentally
manipulated through a variety of cues such as occlusion, or perspective.

Perception of the lightness of patches varying in re¤ectance may thus be a suitable candidate for the
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choice of visual task. It is simple to perform, and it is known that lightness constancy depends on the
successful perception of lighting and the 3D structure of a scene, for example Figure 2.8. When viewed
in isolation, the patches on the top left hand corner appear to be of different luminance. However, when
examined in the context of the entire scene, it can be seen that the patches have been cut from the edge of
the stairwell, and are perceived as an edge where the entire stairwell has the same luminance. Eliminating
the depth cues means that the patches are perceived as different, demonstrating the dependency of lightness
perception on the correct perception of three-dimensional structure [31]. As the key features of any scene are
illumination, geometry and depth, the task of lightness matching encapsulates all three key characteristics
into one task. This task is particularly suited to an experimental framework, as apart from being simple
to perform it also allows excellent control over experimental stimuli. Subsequent chapters describe an
experimental framework, with such a lightness matching task at the core, to allow human observers to
compare real and synthetic scenes, but £rst we look at how knowledge of the HVS can be applied for the
advancement of computer graphics techniques.

2.2 Perception and Graphics

Recent years have seen an increase in the application of visual perception to computer graphics. As men-
tioned earlier, in certain applications it is important that computer images should not only be physically
correct but also perceptually equivalent to the scene it is intended to represent. Realism implies compu-
tational expense, and research is beginning to emerge to investigate how knowledge of the human visual
system can be used to “cut corners” and minimise rendering times by guiding algorithms to compute only
what is necessary to satisfy the observer. Perception based image quality metrics, which can be used to
evaluate, validate and compare imagery have been presented. Also, tone reproduction operators, have been
introduced to map the vast range of computed radiance values to the limited range of the display device.

2.2.1 Perceptually driven rendering

Even for realistic image synthesis there may be little point spending time or resources to compute detail
in an image that would not be detected by a human observer. By eliminating any computation spent on
calculating image features which lie below the threshold of visibility, rendering times can be shortened
leading to more ef£cient processing. Because the chief objective of physically based rendering is realism,
incorporating models of HVS behaviour into rendering algorithms can improve performance, as well as
improving the quality of the imagery produced. So by taking advantage of the limitations of the human
eye, just enough detail to satisfy the observer can be computed without sacri£cing image quality. Several
attempts have been made to develop image synthesis algorithms that detect threshold visual differences and
direct the algorithm to work on those parts of an image that are in most need of re£nement.

Raytracing produces an image by computing samples of radiance, one for each pixel in the image plane.
Producing an anti-aliased image is dif£cult unless very high sampling densities are used. Mitchell [65]
realised that deciding where to do extra sampling can be guided by knowledge of how the eye perceives
noise as a function of contrast and colour. Studies have shown that the eye is most sensitive to noise in
intermediate frequencies [78]. While frequencies of up to 60 cycles per degree (cpd) can be visible, the
maximum response to noise is at approximately 4.5 cpd, so sampling in regions with frequency above this
threshold can be minimised, without affecting the visual quality of the image. Mitchell begins by sampling
the entire image at low frequency then uses an adaptive sample strategy on the image according to the
frequency content. This results in a non uniform sampling of the image, which enables aliasing noise to
be channelled into high frequencies where artefacts are less conspicuous. However, non-uniform sampling
alone doesn’t eliminate aliasing, just changes its characteristics to make it less noticeable. Mitchell applies
two levels of sampling. To decide whether the high sampling density should be invoked the variance of
samples could be used [52], but this is a poor measure of visual perception of local variation. Instead
Mitchell chooses to use contrast to model the non-linear response of the eye to rapid variations in light
intensity:

C =
Imax − Imin
Imax + Imin

As each sample consists of three separate intensities for red, green and blue, three separate contrasts can
be computed for each of them. These three contrasts are tested against separate thresholds, 0.4, 0.3 and

29



0.6 for red, green and blue respectively, and super-sampling is done if any one exceeds the threshold. The
contrast metric is then used to determine when the high sampling density should be invoked. This test is
most sensitive to green in accordance with the human eye’s response to noise as a function of colour. Multi
stage £lters are then used to reconstruct the non-uniform samples into a digital image. Although this idea
has the beginnings of a perceptual approach, it is at most a crude approximation to the HVS. Only two levels
of sampling are used and it doesn’t account for visual masking 2.

The HVS exhibits different spatial acuities in response to different colours. Evidence exists that colour
spatial acuity is less than monochrome spatial acuity. Exploiting this poor colour spatial acuity of the HVS,
Meyer and Liu [62] developed an adaptive image synthesis algorithm which uses an opponents processing
model of colour vision [61] comprising chromatic and achromatic colour channels. Using a Painter and
Sloan [72] adaptive subdivision, a k-D tree representation 3 of the image is generated. Areas of the image
containing high frequency information are stored at the lower levels of the tree. They then modi£ed a screen
subdivision raytracer to limit the depth to which the k-D tree must be descended to compute the chromatic
colour channels. The limit is determined by psychophysical results describing the colour spatial frequency.
They achieved a modest saving in computational effort and showed, using a psychophysical experiment,
that decreasing the number of rays used to produce the chromatic channels had less of an effect on image
quality than reducing the number of rays used to create the achromatic channels. This was the £rst work
to attempt to minimise the computation of colour calculations, as opposed to just decreasing costly object
intersection calculations.

Bolin and Meyer [6] took a frequency based approach to raytracing, which uses a simple vision model,
making it possible for them to control how rays are cast in a scene. Their algorithm accounts for the contrast
sensitivity, spatial frequency and masking properties of the HVS. The contrast sensitivity response of the
eye is non-linear. So, when deciding where rays should be cast, the algorithm deems a luminance difference
at low intensity to be of greater importance than the same luminance difference at high intensity. The spatial
response of the HVS is known to be less for patterns of pure colour than for patterns that include luminance
differences. This means that it is possible to cast fewer rays into regions with colour spatial variations than
are cast in regions with spatial frequency variations in luminance. Finally, it is known that the presence
of high spatial frequency can mask the presence of other high frequency information (masking). When
used in conjunction with a Monte Carlo raytracer, more rays are spawned when low frequency terms are
being determined than when high frequency terms are being found. Using this strategy, the artefacts that
are most visible in the scene can be eliminated from the image £rst, then noise can be channelled into areas
of the image where artefacts are less conspicuous. This technique is an improvement on Mitchell’s method
because the vision model employed accounts for contrast sensitivity, spatial frequency and masking.

Despite the simplicity of the vision models used in these approaches, the results are promising, espe-
cially as they demonstrate the feasibility of embedding HVS models into the rendering systems to produce
more economical systems without forfeiting image quality. Fuelled by the notion that more sophisticated
models of the HVS would yield even greater speedup, several researchers began to introduce more complex
models of the HVS into their global illumination computations.

Myszkowski [67] applied a more sophisticated vision model to steer computation of a Monte Carlo
based raytracer. Aiming to take maximum advantage of the limitations of the HVS, his model included
threshold sensitivity, spatial frequency sensitivity and contrast masking. A perceptual error metric is built
into the rendering engine allowing adaptive allocation of computation effort into areas where errors remain
above perceivable thresholds and allowing computation to be halted in all other areas (i.e. those areas where
errors are below the perceivable threshold and thus not visible to a human observer). This perceptual error
metric takes the form of Daly’s [20] Visible Difference Predictor (VDP), discussed in Section 2.2.2.

Bolin and Meyer [7] devised a similar scheme, also using a sophisticated vision model, in an attempt to
make use of all HVS limitations. They integrated a simpli£ed version of the Sarnoff Visible Discrimination
Model (VDM) into an image synthesis algorithm to detect threshold visible differences and, based on those
differences direct subsequent computational effort to regions of the image in most need of re£nement.
The VDM takes two images, speci£ed in CIE XYZ colour space, as input. Output of the model is a Just
Noticeable Difference (JND) map. One JND corresponds to a 75% probability that an observer viewing
the two images would detect a difference [54]. They use the upper and lower bound images from the
computation results at intermediate stages and used the predictor to get an error estimate for that stage.

2The presence of high spatial frequency in an image can mask the presence of other high frequency information
3A KD Tree is a data structure that is used in computer science during orthogonal range searching
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The image quality model is used to control where to take samples in the image, and also to decide when
enough samples have been taken across the entire image, providing a visual stopping condition. A more
comprehensive description of the VDM is given in Section 2.2.2.

Applying a complex vision model at each consecutive time step of image generation requires repeated
evaluation of the embedded vision model. The VDP can be expensive to process due to the multi-scale
spatial processing involved in some of its components. This means that in some cases the cost of re-
computing the vision model may cancel the savings gained by employing the perceptual error metric to
speed up the rendering algorithm. To combat this, Ramasubramanian [76] introduced a metric that handles
luminance-dependent processing and spatially-dependent processing independently, allowing the expensive
spatially-dependent component to be precomputed. Ramasubramanian developed a physical error metric
that predicts the perceptual threshold for detecting artefacts in the image. This metric is then used to pre-
dict the sensitivity of the HVS to noise in the indirect lighting component. This enables a reduction in the
number of samples needed in areas of an image with high frequency texture patterns, geometric details, and
direct lighting variations, giving a signi£cant speedup in computation.

Using validated image models that predict image £delity, programmers can work toward achieving
greater ef£ciencies in the knowledge that resulting images will still be faithful visual representations. Also
in situations where time or resources are limited and £delity must be traded off against performance, percep-
tually based error metrics could be used to provide insights into where computation could be economised
with least visual impact.

2.2.2 Perceptually Based Image Quality Metrics

Figure 2.9: Photograph of a conference room (left) & photo-realistic rendering (right)

Reliable image quality assessments are necessary for the evaluation of realistic image synthesis algo-
rithms. Typically the quality of the image synthesis method is evaluated using image to image comparisons.
Often comparisons are made with a photograph of the scene that the image depicts, as shown in Figure 2.9
[51].

Several image £delity metrics have been developed whose goals are to predict the amount of differences
that would be visible to a human observer. It is well established that simple approaches like mean squared
error do not provide meaningful measures of image £delity, Figure 2.10. The image on the left has been
slightly blurred, while the image on the right has deliberate scribbles. The Root Mean Square Error (RMSE)
value for blurred image is markedly higher than the RMSE for the image on the right. However, a human
observer might indicate a higher correlation between the two images. This illustrates that the use of RMSE
is not suf£cient [75]. Clearly more sophisticated measures which incorporate a representation of the HVS
are needed. It is generally recognised that more meaningful measures of image quality are obtained using
techniques based on visual (and therefore subjective) assessment of images, as after all most £nal uses of
computer generated images will be viewed by human observers.

In 1998, Li and Meyer conducted a comprehensive study that compared two of the more successful
image quality models, outlined here:
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Figure 2.10: Comparing top images to the image on the bottom using RMSE

Daly’s Visible Differences Predictor

The Visible Difference Predictor (VDP) is a perceptually based image quality metric proposed by Daly
[20]. The VDP takes a psychophysically based approach to construct a model of human vision. Two images
serve as input to the VDP, and a difference map is produced as output. This difference map predicts the
probability of detection of differences between the two images. Figure 2.11 gives a block diagram of the
components of the predictor. The main stages are an initial non-linearity, frequency domain weighting with
the human contrast sensitivity function CSF, and a series of detection mechanisms.

To account for adaptation and the non-linear response of retinal neurons, a non-linear response func-
tion is applied to each image. Daly assumed that adaptation is a function of each pixel individually. The
model used for adaptation estimates the relationship between brightness sensation and luminance. At low
levels of luminance a cube-root power law is applied, while at higher luminance levels it approximates the
logarithmic dependence.

The next stage involves converting the image to the frequency domain. The transformed data is weighted
with the CSF i.e. the scaled amplitude for each frequency is multiplied by the CSF for that spatial frequency.
This data is then normalised (by dividing each point by the original image mean) to give local contrast
information.

The image is then divided into 31 independent streams. It is known that the HVS has speci£c selectivities
based on orientation (6 channels) and spatial frequency (approximately one octave per channel). Each of
the £ve overlapping spatial frequency bands is combined with each of the six overlapping orientation bands
to split the image into thirty channels. Along with the orientation-independent base band this gives a total
of 31 channels. At this point the individual channels are transformed back into the spatial domain.

A mask, which is a function of image location in the image, is associated with each channel. The pres-
ence of masking information at a speci£c location, spatial frequency and orientation increases the thresh-
old of detectability for a signal with those characteristics. A threshold elevation map for each channel is
computed as a function of the mask contrast. Finally, mutual masking is applied between the two sets of
threshold elevation maps from both input images to produce a single threshold elevation map per channel.

Contrasts of corresponding channels in one image are subtracted from those of the other images, and the
difference is scaled down by threshold elevation. The scaled contrast differences are used as the argument to
a psychometric function to compute a detection probability. The psychometric function yields a probability
of detection of a difference for each location in the image, for each of the 31 channels. The detection
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probabilities for all of the channels are combined using the assumption of independent probabilities, giving
an overall signed detection probability for each location in the image.

Figure 2.11: A block diagram of the Visible Differences Predictor (VDP)

Sarnoff Visual Discrimination Model

The Sarnoff VDM [53] focuses more attention on modelling the physiology of the visual pathway.
Therefore the VDM operates in the spatial domain (as opposed to the frequency domain approach of VDP).
The main components of the VDM include spatial resampling, wavelet-like pyramid channelling, a trans-
ducer for JND calculations and a £nal re£nement step to account for CSF normalisation and dipper effect
simulation. The VDM also takes as input two images along with a set of parameters for viewing conditions,
and here the output is a map of JND’s. The overall structure of the VDM is shown in £gure 2.12.

To account for the optics of the eye and mosaic structure of the retina, a single point spread function
(PSF) is used to predict the foveal performance of the two dimensional optics of the eye (it is assumed the
PSF is circularly symmetric). The effect of the PSF convolution is blurring of the input images. A spatial
resampling, at a rate of 120 pixels per degree, is then applied to account for the £xed density of the cones
in the fovea. This resampling is essential in a spatial domain approach since the extraction of the different
frequency bands is dependent on the resampling kernels and the resampling rates. If the original image is
too big, and the local image quality cannot be assessed in a single glance, then the image can be subdivided
into smaller blocks.

A Laplacian pyramid stores a wavelet representation of the resampled input images and a quadrature
mirrored pair of convolution kernels records information along each of the four orientations. On comple-
tion of this stage, the raw luminance signal has been converted into units of local contrast. Due to the
use of a spatial domain convolution approach, the peak frequency of each level has to be a power of two.
The seven bandpass levels have peak frequencies from 32 to 0.5 cycles/degree, where each level is sep-
arated from its neighbours by one octave. A steerable pyramid is used to perform the decomposition, to
increase performance. This is a multi-scale, multi-orientation, image transform with both frequency and
orientation components. The last step in the decomposition process is computation of a phase-independent
energy response by squaring and summing odd phase and even phase coef£cients. They are determined by
convolving the quadrature mirror pair £lters with a certain frequency band.

The energy measure is normalised by the square of the reciprocal of the CSF, then a transducer is used
to re£ne the JND map by taking the spatial masking dipper effect into account. The dipper shape re¤ects on
characteristic of the contrast discrimination function. This stage involves the transformation by a sigmoid
non-linearity. Finally the model includes a pooling stage in which transducer outputs are averaged over a
small region by convolving with a disc-shaped kernel.

Once the JND difference map has been computed for each channel, the £nal stage involves putting
together the contributions from each channel. This leads to the concept of a space of multiple dimensions.
There are 28 channels involved in the summation, seven pyramid levels times four different orientations.
For each spatial position the £nal JND distance can be regarded as the distance between the 28-dimensional
vectors.

Meyer and Li concluded that although both methods performed comparably, the Sarnoff VDM was
deemed slightly more robust producing better JND maps and required less re-calibration than the Daly
VDP. Despite this both have been successfully incorporated into global illumination algorithms to produce
favourable results [66, 68, 8].

The main contribution of Meyer and Li’s study was the independent veri£cation of the major features
of each model. Meyer and Li do agree however, that psychophysical experiments involving a large set of
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Figure 2.12: A block diagram of the Visual Discrimination Model (VDM)

images would be needed for a complete evaluation, to investigate the performance of models under a wider
range of conditions.

2.2.3 Comparing Real and Synthetic Scenes

While image quality metrics have been successfully incorporated into global illumination algorithms to
guide computations more ef£ciently, metrics can also be useful to validate and compare rendering tech-
niques. As the goal of realistic image synthesis is to generate representations of a physical scene, simula-
tions should therefore be compared to the real world scenes.

Using a simple £ve sided cube as their test environment, Meyer et al [63] presented an approach to image
synthesis comprising separate physical and perceptual modules. They chose diffusely re¤ecting materials
to build a physical test model. Each module is veri£ed using experimental techniques. The test environment
was placed in a small dark room. Radiometric values predicted using a radiosity lighting simulation of a
basic scene are compared to physical measurements of radiant ¤ux densities in the real scene. Then the
results of the radiosity calculations are transformed to the RGB values for display, following the principles
of colour science. Measurements of irradiation were made at 25 locations in the plane of the open face for
comparison with the simulations. Results show that irradiation is greatest near the centre of the open side
of the cube. This area provides the best view of the light source and other walls. In summary, there is good
agreement between the radiometric measurements and the predictions of the lighting model.

Meyer et al. then proceeded by transforming the validated simulated value to values displayable on
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a television monitor. Twenty participants were asked to differentiate between a real environment and the
displayed image, both of which were viewed through the back of a view camera. They were asked which of
the images was the real scene. Nine out of the twenty participants (45%) indicated that the simulated image
was actually the real scene, i.e. selected the wrong answer, revealing that observers would have done just as
well by simple guessing. Although participants considered the overall match and colour match to be good,
some weaknesses were noticed in the sharpness of the shadows (a consequence of the discretisation in the
simulation) and in the brightness of the ceiling panel (a consequence of the directional characteristics of the
light source). The overall agreement lends strong support to the perceptual validity of the simulation and
display process. This was the £rst attempt to compare real and simulated scenes side by side, using human
observers.

Although the results of the study are encouraging, there are some drawbacks with this approach: The
scene under examination was very simple, the methodology for comparison itself was not inherently con-
trolled, and the results suggest that the participants could have simply guessed. To really investigate the
differences between a real environment and its synthetic representation, a more robust approach is required.

Figure 2.13: NIST Comparison using a Conference Room

Another approach to comparing real and simulated scenes takes a captured image of the real scene in
question and uses numerical techniques to determine the perceptual differences between the two. Rushmeier
et al. [77] explored using perceptually based metrics, based on image appearance, to compare the image
quality of a rendered scene to a captured image of the scene being represented, Figure 2.13. The following
image comparison metrics were derived from [20, 24, 55] in a study which compared real and synthetic
images by Rushmeier et al [77]. Each is based on ideas taken from image compression techniques. Image
compression techniques seek to minimise storage space by saving only what will be visible in an image
(similar to the goal of perceptually driven rendering where the aim is to minimise rendering times by com-
puting only what will be visible in the image). The goal of Rushmeier’s study was to obtain results from
comparing two images using these models that were large if large differences between the images exist, and
small when they are almost the same. These suggested metrics include some basic characteristics of human
vision described in image compression literature. First, within a broad band of luminance, the eye senses
relative rather than absolute luminances. For this reason a metric should account for luminance variations,
not absolute values. Second, the response of the eye is non-linear. The perceived “brightness” or “lightness”
is a non-linear function of luminance. The particular non-linear relationship is not well established and is
likely to depend on complex issues such as perceived lighting and 3-D geometry. Third, the sensitivity of
the eye depends on the spatial frequency of luminance variations. The following methods attempt to model
these three effects. Each model uses a different Contrast Sensitivity Function (CSF) to model the sensitivity
to spatial frequencies.

Model 1 After Mannos and Sakrison: [55].
This model is adapted from a study in image compression which attempted to derive a numerically
based measure of distortion which corresponds to the subjective evaluation of the image by a human
observer, in order to simulate the optimum encoding technique. First, all the luminance values are
normalised by the mean luminance. The non-linearity in perception is accounted for by taking the
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cubed root of each normalised luminance. A Fast Fourier Transform (FFT) is computed of the result-
ing values, and the magnitude of the resulting values are £ltered with a CSF to an array of values.
Mannos and Sakrison [MaSa74] proposed a model of the human contrast sensitivity function. The
contrast sensitivity function tells us how sensitive we are to the various frequencies of visual stimuli.
If the frequency of visual stimuli is too high we will not be able to recognise the stimulus pattern any
more. Imagine an image consisting of vertical black and white stripes. If the stripes are very thin (i.e.
a few thousand per millimetre) humans will be unable to see individual stripes. All that we will see
is a gray image. If the stripes then become wider and wider, there is a threshold width, after which
humans are able to distinguish the stripes. The contrast sensitivity function proposed by Mannos and
Sakrison is:

A(f) = 2.6 · [0.0192 + 0.114
√

f ]e−(0.114
√
f)1.1 ].

where f is the spatial frequency of the visual stimuli given in cycles/degree. Finally, the distance
between the two images is computed by £nding the Mean Square Error (MSE) of the values for
each of the two images. This technique therefore measures similarity in Fourier amplitude between
images.

Model 2 After Gervais et al: [24].
The original purpose of this model was to identify confusion among letters of the alphabet. Even
though this problem is quite different to image comparison, Rushmeier et al. justify using this model
as it includes the effect of phase as well as magnitude in the frequency space representation of the
image. Once again the luminances are normalised by dividing by the mean luminance. A Fast Fourier
Transform (FFT) is computed, producing an array of phases and magnitudes. These magnitudes are
then £ltered with an anisotropic CSF £lter function constructed by £tting splines to psychophysical
data. The distance between two images is computed using methods described in [24].

Model 3 After Daly: adapted from [20].
Described in more detail in Section 2.2.2, this model combines the effects of adaptation and non-
linearity into a single transformation, which acts on each pixel individually. In the £rst two models
each pixel has signi£cant global effect in the normalisation by contributing to the image mean. Each
luminance is transformed by an amplitude non-linearity value. A FFT is applied to each transformed
luminance and then they are £ltered by a CSF (computed for a level of 50 cd/m2). The distance
between the two images is then computed using MSE as in model 1.

Myszkowski [67] realised the VDP had many potential applications in realistic image synthesis. He
completed a comprehensive validation and calibration of VDP response via human psychophysical ex-
periments. He subsequently used the VDP local error metric to steer decision making in adaptive mesh
subdivision, and in isolating regions of interest for more intensive global illumination computations, Fig-
ures 2.14, 2.15. The VDP was tested to determine how close VDP predictions come to subjective reports
of visible differences between images by designing two human psychophysical experiments. Results from
these experiments showed a good correspondence between human observations and VDP results.

These perception based image quality metrics have demonstrated the success of implementing a visual
model, in spite of the fact that knowledge of the visual process is as yet incomplete. However, there is a
fundamental problem with all these methods from the point of view of validation. Although these methods
are capable of producing images based on models of the HVS, there is no standard way of telling if the
images “capture the visual appearance” of scenes in a meaningful way. One approach to validation could
compare observers’ perception and performance in real scenes against the predictions of the models. This
would enable calibration and validation of the models to assess the level of £delity of the images produced.

2.2.4 Tone Mapping

The range of luminance we encounter in natural environments (and hence the range of luminances that can
be computed by a physically based rendering algorithm) is vast. Over the course of the day the absolute
level of illumination can vary by more than a 100,000,000 to 1 from bright sunlight down to starlight. The
dynamic range of light energy in a single environment can also be large, in the order of 10,000 to 1 from
highlights to shadows. However, typical display media have useful luminance ranges of approximately 100
to 1. This means some mapping function must be used to translate real world values into values displayable
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Figure 2.14: ”Perceptual” convergence of the lighting solution. The £rst column shows the current solution,
then the absolute and VDP predicted difference with respect to the fully converged solution shown in 2.15

by the device in question, be it electronic (CRT) or print media. Initial attempts to develop such a mapping
were simple ad-hoc methods which failed miserably for high dynamic range scenes. These ad-hoc methods
proceeded by employing a linear arbitrary scaling, either mapping the average of a luminance in the real
world to the average of the display, or the maximum non-light source luminance to the maximum displayable
value. While such a scaling proved appropriate for scenes with similar dynamic range to the display media,
it failed to preserve visibility in scenes with high dynamic ranges of luminance. This is due to the fact that
very bright or very dim values must be clipped to fall within the range of displayable values. Also, using
this method all images are mapped in the same manner irrespective of absolute value. This means a room
illuminated by a single candle could be mapped to the same image as a room illuminated by a search light,
resulting in loss of the overall impression of brightness and so losing the subjective correspondence between
real and displayed scene. It follows that more sophisticated mappings were required.

Tone Mapping, originally developed for use in photography and television, addresses the problem of
mapping to a display, and is an attempt to recreate the same perceptual response in the viewer of a synthetic
image as they would have if looking at the real scene. Taking advantage of HVS sensitivity to relative
luminances rather than absolute luminances allows the overall subjective impression of a real environment
to be replicated on some display media, despite the fact that the range of real world luminances often dwarfs
the displayable range.

Tone reproduction operators can be classi£ed according to the manner in which values are transformed.
Single-scale operators proceed by applying the same scaling transformation for each pixel in the image, and
that scaling only depends on the current level of adaptation, and not on the real-world luminances. Multi-
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Figure 2.15: Fully Converged Image, and Perceptual Scales

scale operators take a differing approach and may apply a different scale to each pixel in the image, this
time the scaling is in¤uenced by many factors.
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Figure 2.16: A block diagram of tone reproduction

2.2.5 Single Scale Tone Reproduction Operators

Tumblin and Rushmeier were the £rst to apply the dynamics of tone reproduction to the domain of realistic
image synthesis [88]. Using a psychophysical model of brightness perception £rst developed by Stevens
and Stevens [83], they produced a tone reproduction operator that attempted to match the brightness of the
real scene to the brightness of the computed image displayed on a CRT. To achieve this an observer model
is built which describes how real world and display luminances are perceived, and a display model that
describes how a frame-buffer value is converted into displayed luminance, Figure 2.16 [88]. The image
is presented to a hypothetical real world observer, who adapts to a luminance La(w). Applying Stevens’
equation, which relates brightness to target luminance, the perceived value of a real world luminance, Lw,
is computed as:

Bw = 10
β(La(w))(π × 10−4Lw)α(La(w))
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where β(La(w)) and α(La(w)) are functions of the real world adaptation level:

α(La(w)) = 0.4 log10(La(w)) + 1.519

β(La(w)) = −0.4(log10(La(w)))2 − 0.218 log10(La(w)) + 6.1642

Luminances are in cd/m−2. If it is assumed that a display observer viewing a CRT screen adapts to a
luminance, La(d), the brightness of a displayed luminance value can be similarly expressed:

Bd = 10
β(La(d))(π × 10−4Ld)α(La(d))

where β(La(d)) and α(La(d)) are as before. To match the brightness of a real world luminance to the bright-
ness of a display luminance, Bw must equal Bd. The luminance required to satisfy this can be determined:

Ld =
1

π × 10−4 10
βa(w)−βa(d)

αa(d) (π × 10−4Lw)
αa(w)
αa(d)

This represents the concatenation of the real-world observer and the inverse display observer model. To
determine n, the frame buffer value, the inverse display system model is applied to give:

n = [
Ld − Lamb
Ldmax

]
1
γ

giving

τTUMB(Lw) = [
10

βa(w)−βa(d)
αa(d) (π × 10−4Lw)

αa(w)
αa(d)

π × 10−4 ]

Taking a slightly different approach, Ward [89] searched for a linear transform to give a similar result,
while keeping computational expense to a minimum. He proposed transforming real world luminances, Lw,
to display luminances, Ld, through m, a scaling factor:

Ld = mLw

The consequence of adaptation can be thought of as a shift in the absolute difference in luminance
required in order for a human observer to notice a variation. Based on psychophysical data collected by
Blackwell [13], Ward de£nes a relationship that states that if the eye is adapted to luminance level La, the
smallest alteration in luminance that can be seen satis£es:

4(La) = 0.0594(1.219 + L0.4a )
2.5

Real world luminances are mapped to the display luminances so the smallest discernible differences in
luminance can also be mapped, using:

4L(La(d)) = m4L(La(w))

Where Law and La(d) are the adaptation levels to the real world scene and display device respectively. The
scaling factor, m, dictates how to map luminances from the world to the display such that a Just Noticeable
Difference (JND) in world luminances maps to a JND in display luminances :

m =
4L(La(d))

4L(La(d))
= (
1.219 + L0.4a(d)

1.219 + L0.4a(w)
)2.5

To estimate the adaptation levels, Law to Lad, Ward assumes that the adaptation level is approximately half
the average radiance of the image, (La(d) = Ldmax/2). Substituting in to equation (above) results in values
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from 0 to Ldmax, and dividing by Ldmax then gives values in the required range from [0..1]. The scaling
factor is then given by:

m =
1

Ldmax
[
1.219 + (Ldmax/2)

0.4

1.219 + (L0a(w).4)
]2.5

where Ldmax is typically set to 100cdm−2.
In 1996, Ferwerda et al. [21] developed a model conceptually similar to Ward’s, but in addition to pre-

serving threshold visibility, this model also accounted for changes in colour appearance, visual acuity, and
temporal sensitivity. Different tone reproduction operators are applied depending on the level of adaptation
of the real world observer. A threshold sensitivity function is constructed for both the real world and dis-
play observers given their level of adaptation. A linear scale factor is then computed to relate real world
luminance to photopic display luminance. The required display luminance is calculated by combining the
photopic and scotopic display luminances using a parametric constant, k, which varies between 1 and 0 as
the real world adaptation level goes from top to bottom of the mesopic range.

To account for loss of visual acuity, Ferwerda et al. used data obtained from experiments that related the
detectability of square wave gratings of different spatial frequencies to changes in background luminance.
By applying a Gaussian convolution £lter, frequencies in the real world image which could not be resolved
when adapted to the real world adaptation level are removed. Light and dark adaptation are also considered
by Ferwerda, by adding a parametric constant, b, to the display luminance, the value of which changes over
time.

A critical and underdeveloped aspect of all this work is the visual model on which the algorithms are
based. As we move through different environments or look from place to place within a single environment,
our eyes adapt to the prevailing conditions of illumination both globally and within local regions of the
visual £eld. These adaptation processes may have dramatic effects on the visibility and appearance of
objects and on our visual performance. In order to produce realistic displayed images of synthesised or
captured scenes, a more complete visual model of adaptation needs to be developed. This model will
be especially important for immersive display systems that occupy the whole visual £eld and therefore
determine the viewer’s visual state.

2.2.6 Multi-Scale Tone Reproduction Operators

After careful investigation of the effect tone mapping had on a small test scene illuminated only by a single
incandescent bulb, Chiu et al [11] believed it was incorrect to apply the same mapping to each pixel. By
uniformly applying any tone mapping operator across the pixel of an image, incorrect results are likely.
They noted that the mapping applied to a pixel should be dependent on the spatial position in the image of
that pixel. This means that some pixels having the same intensities in the original images may have differing
intensity values in the displayed image. Using the fact that the human visual system is more sensitive to
relative changes in luminance rather than absolute levels, they developed a spatially non-uniform scaling
function for high contrast images. First the image is blurred to remove all the high frequencies, and then the
result is inverted. This approach was capable of reproducing all the detail in the original image, but reverse
intensity gradients appeared in the image when very bright and very dark areas were close to each other.
Schlick [79] proposed a similar transformation based on a rational tone reproduction operator rather than
a logarithmic one. Neither of these methods accounted for differing levels of adaptation. Their solutions
are based purely on experimental results, and no attempt is made to employ psychophysical models of the
HVS.

Larson et al. [50] developed a histogram equalisation technique that used a spatial varying map of foveal
adaptation to transform a histogram of image luminances in such away that the resulting image lay within
the dynamic range of the display device and image contrast and visibility were preserved. First a histogram
of brightness (approximated as a logarithm of real-world luminances) is created for a £ltered image in which
each pixel corresponds to approximately 1o of visual £eld. A histogram and a cumulative distribution func-
tion are then obtained for this reduced image. Using threshold visibility data from Ferwerda, an automatic
adjustment algorithm is applied to create an image with the dynamic range of the original scene compressed
into the range available on the display device, subject to certain restrictions regarding limits of contrast
sensitivity of the human eye.

In addition to tone reproduction operators being useful for rendering calculated luminance to the screen,
they are also useful for giving a measure of the perceptible difference between two luminances at a given

40



level of adaptation. This function can then be used to guide algorithms, such as discontinuity meshing,
where there is a need to determine whether some process would be noticeable or not to the end user.

Gibson and Hubbold [26] have used features of the threshold sensitivity displayed by the HVS to ac-
celerate the computation of radiosity solutions. A perceptually based measure controls the generation of
view independent radiosity solutions. This is achieved with an a-priori estimate of real-world adaptation
luminance, and uses a tone reproduction operator to transform luminance values to display colours and is
then used as a numerical measure of their perceived difference. The model stops patch re£nement once
the difference between successive levels of elements becomes perceptually unnoticeable. The perceived
importance of any potential shadow falling across a surface can be determined, this can be used to control
the number of rays cast during visibility computations. Finally, they use perceptual knowledge to optimise
the element mesh for faster interactive display and save memory during computations. This technique was
used on the adaptive element re£nement, shadow detection, and mesh optimisation portions of the radiosity
algorithm.

Discontinuity meshing is an established technique used to model shadows in radiosity meshes. It is
computationally expensive, but produces meshes which are far more accurate and which also contain fewer
elements. Hedley [42] used a perceptually informed error metric to optimise adaptive mesh subdivision
for radiosity solutions, the goal being to develop scaleable discontinuity meshing methods by considering
visual perception. Meshes were minimised by discarding discontinuities which had a negligible perceptible
effect on a mesh. They demonstrated that a perception-based approach results in a greater reduction in mesh
complexity, without introducing more visual artefacts than a purely radiometrically-based approach.

2.3 Summary

The beginning of this chapter gave a brief introduction to the physiological and psychological workings
of the Human Visual System, with particular attention paid to the perception of lightness. It has been
established that the correct perception of lightness is critically dependent on the correct perception of the
illumination in a scene, as well as the correct perception of depth. As illumination and three dimensional
geometry are the key features of any scene, this makes the task of lightness perception an ideal task to
investigate the perception of imagery. In subsequent chapters, an experimental framework is presented
based on the task of lightness perception which allows comparison of computer generated imagery to real
physical scenes.

Later in the chapter, the applications of visual perception in computer graphics were explored. For
many applications, computer imagery should not only be physically correct but also perceptually equivalent
to the scene it represents. Knowledge of the HVS can be employed to greatly bene£t the synthesis of
realistic images at various stages of production. Global illumination computations are costly in terms of
computation. There is a great deal of potential to improve the ef£ciency of such algorithms by focusing
computation on the features of a scene which are more conspicuous to the human observer. Those features
that are below perceptual visibility thresholds have no impact on the £nal solution, and therefore can be
omitted from the computation, increasing ef£ciency without causing any perceivable difference to the £nal
image. Perceptual metrics involving advanced HVS models can be used to determine the visible differences
between a pair of images. These metrics can then be used to compare and evaluate image quality. They
can also be used within the rendering framework to steer computation into regions of an image which are in
most need of re£nement, and to halt computation when differences in successive iterations of the solution
become imperceptible.

Future applications will require perceptual accuracy in addition to physical accuracy. Without perceptual
accuracy it is impossible to assure users of computer graphics that the generated imagery is anything like the
scene it depicts. Imagine a visualisation of an architectural design. Without perceptual accuracy it is dif£cult
to guarantee the architect that the visualisation suf£ciently represents their design, and that the completed
building will look anything like the computer representation. This chapter discussed how knowledge of
the HVS is being incorporated at various stages in the image synthesis pipeline. The problem is that much
of the data used has been obtained from speci£c psychophysical experiments which have been conducted
in specialised laboratory environments under reductionistic conditions. These experiments are designed
to examine a single dimension of human vision, however, evidence exists to indicate that features of the
HVS do not operate individually, but rather functions overlap and should be examined as a whole rather
than in isolation. Tone reproduction operators map computed radiance values to display values in a manner
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that preserves perception of the original scene. Tone reproduction operators produce a perceptual match
between the scene and the image in the hopes that the image may be used predictively.

There is a strong need for the models of human vision currently used in image synthesis computations
to be validated to demonstrate that their performance is comparable to the actual performance of the HVS.
Subsequent chapters introduce a framework that provides a £rst step toward such validation.
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Chapter 3

A Psychophysical Investigation

1 This chapter outlines the steps involved in designing and building a psychophysical experiment to facilitate
easy comparison of real scenes and synthetic images by a human observer [60, 59, 85, 56, 57, 58]. The
apparatus includes a calibrated light source and a well articulated scene containing three dimensional objects
placed within a custom built environment which were placed to introduce shadows into the scene, paired
with various synthetic images of that scene. Measurements of virtual environments are often approximate.
However, for the application described in this thesis an accurate description of the environment is essential
to avoid introducing errors at such an early stage of the rendering pipeline. Also, once an image has been
rendered, it is important to display this image in the correct manner taking into account the limitations of
the display device. The measurements required for this study and the equipment used to record them are
described herein. Also described is the process involved in designing the experiment to ensure a robust
set-up which yields valid results. This is achieved by employing psychophysical techniques for the study of
the HVS. Psychophysics comprises a collection of methods used to conduct non-invasive experiments on
humans, the purpose of which is to study mappings between events in an environment and levels of sensory
responses [19, 25]. This thesis is concerned with the levels of human visual responses, the goal being to
examine perceptual behaviour in response to real and computer imagery.

Use of a perceptual lightness matching procedure is chosen because it is sensitive to errors in perceived
depths, as well as the more obvious dependence on the array of luminance values in the scene. Lightness
constancy depends on a correct representation of the three-dimensional structure of the scene [28, 27] and
the illumination in the scene. Any errors in depth/illumination perception, when viewing the computer
model, will result in errors of constancy, and thus poor psychophysical matching performance. This makes
the lightness matching task a good candidate for comparing scene content in real and synthetic images.

This chapter provides a detailed description of the construction of an experimental framework which
enables human observers to perform the light-matching task in real scenes and computer generated repre-
sentations. Task performance in each case (real versus rendered) can then be compared to give a measure
of perceptual equivalence. To ensure correctness in such a study it is necessary to begin with a smaller pilot
study to identify any shortcomings of the framework, which can then be corrected before a fuller study is
undertaken.

3.1 The Pilot Study

When conducting experiments it is common to conduct a relatively small, preliminary study designed to
put the experimenter in a better position to conduct a fuller investigation. Such studies, pilot studies, are
useful for working through the practical details that are dif£cult to anticipate, and also help to familiarise
the experimenter with logical and theoretical facets of the experiment that might not be apparent from just
thinking about the situation. Often during the pilot study, the experimenter recognises needed controls,
¤aws in logic and so on [25]. For these reasons a small preliminary study preceded the main experiments.
For the pilot study a simple test scene was constructed that allows implementation and testing of various
conditions. The main function of this section is to describe precisely how the pilot study was conducted,

1written by Ann McNamara      ann.mcnamara@tcd.ie
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discuss the results obtained and the modi£cations necessary to eliminate some unwanted in¤uences present
in the pilot method.

3.1.1 Participants in the Pilot Study

Fifteen observers participated in the pilot study. In each condition participants were naive as to the pur-
pose of the experiment. All reported to have normal or corrected-to-normal vision. The average age of
participants was twenty-£ve, the group was made up of eleven males and four females.

3.1.2 Apparatus

This study required an experimental set-up comprised of a real environment and a computer representation
of that environment. On face value this may appear to be a simple task, however accurate modelling of
even simple scenes can prove dif£cult. For this study it was important to take great care during both the
modelling and display stages of the rendering pipeline. The study seeks to evaluate the lighting simulations
used. In order to draw reliable conclusions from the study, errors at the modelling and display stages must
be avoided, otherwise errors are likely to arise from any one of the three stages involved in generating the
image. Here we describe the equipment used to construct the real world test environment, along with the
physical measurements performed to attain the necessary input for the synthetic representations.

The Real Scene
The test environment was a £ve sided box of 557 mm high, 408 mm wide and 507 mm deep, with an

opening on one side. All interior surfaces of the box were painted with white matt house paint. To the
right of this enclosure a chart showing thirty grey level patches, labelled as in Figure 3.2, were positioned
on the wall to act as reference. The thirty patches were chosen to provide perceptually spaced levels of
re¤ectance from black to white, according to the Munsell Renotation System [92]. A series of £fteen of
these grey level patches were chosen at random, reshaped, and placed in no particular order within the
physical environment. A small front-silvered, optical mirror was incorporated into the set up to facilitate

Figure 3.1: Experimental set up

alternation between the two settings, viewing of the original scene or viewing of the rendered scene on the
computer monitor. When the optical mirror was in position, participants viewed the original scene. In the
absence of the optical mirror the computer representation of the original scene was viewed. The angular
subtenses of the two displays were equalised, and the fact that the display monitor had to be closer to the
participant for this to occur, was allowed for by the inclusion of a +2 diopter lens in its optical path; the lens
equated the optical distances of the two displays, Figure 3.1.

Illumination
The light source consisted of a 24-volt quartz halogen bulb mounted on optical bench £ttings at the top

of the test environment. This was supplied by a stabilised 10 amp DC power supply, stable to 30 parts per
million in current. The light shone through a 70 mm by 115 mm opening at the top of the enclosure. Black
masks, constructed of matt cardboard sheeting, were placed framing the screen and the open wall of the
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Figure 3.2: Reference patches

enclosure, a separate black cardboard sheet was used to de£ne the eye position. An aperture in this mask
was used to enforce monocular vision, since the VDU display did not permit stereoscopic viewing, and it
was felt that therefore monocular viewing would give a fair comparison of the two scenes.

3.1.3 The Graphical Representation

The geometric model of the real environment was created using Alias Wavefront [90]. To describe a
physical environment, a lighting simulation program takes as input the geometry of the environment and
objects in the environment, the properties of the light source(s), and the material characteristics of the
surfaces and objects. To obtain input to the lighting simulation software the following measurements were
required.

Figure 3.3: The Minolta CS-100 chroma meter

Geometry: A tape measure was used to measure the geometry of the test environment. Length measure-
ments were made with an accuracy of the order of one millimetre.

Illumination: The photometric instrument used throughout the course of the pilot experiments was the Mi-
nolta Spot Chroma meter CS-100. The Minolta chroma meter is a compact, tristimulus colourimeter
for non contact measurements of light sources or re¤ective surfaces, Figure 3.3 [64]. The one degree
acceptance angle and through the lens viewing system enables accurate targeting of the subject. The
chroma meter was used to measure the chromaticity and luminance values of the materials in the
original scene and from the screen simulation. The luminance meter was also used to take similar
readings of the thirty reference patches. The illuminant was measured by illuminating an Eastman
Kodak Standard White powder, pressed into a circular cavity, which re¤ects 99% of incident light
in a diffuse manner. The chroma meter was then used to determine the illuminant tristimulus val-
ues. Measured chromaticity values were converted to RGB triplets by applying a matrix based on the
chromaticity co-ordinates of the monitor phosphors and a monitor white point [84].
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Materials: The chroma meter was used for material chromaticity measurements. To ensure accuracy of the
measurements £ve measurements were recorded for each material, the highest and lowest luminance
magnitude recorded for each material discarded and an average was taken of the remaining three
values. The CIE (1931) xy chromaticity co-ordinates of each primary were obtained and the relative
luminance for each phosphor were recorded using the chroma meter, measurements were transformed
to RGB triplets using the same method applied for the illumination measurements.

Using the required measurements as input the rendered image was then created using the radiance lighting
simulation package [89] to generate the graphical representation of the real scene. Radiance is a physically
based lighting simulation package, which means that physically meaningful results may be expected, pro-
vided the input to the renderer is meaningful. Radiance is described in detail in section 1.2.3. Radiance
uses RGB tristimulus values to describe surface characteristics, so the values obtained for the illuminant
and surfaces in the scene need to be transformed from xy chromaticity co-ordinates to values usable by
radiance, namely tristimulus RGB values.

The CIE (1931) xy chromaticity co-ordinates of each primary were obtained using the Minolta chroma
meter [64]. Then these values were transformed to screen RGB tristimulus values as input to Radiance
lighting simulation program using the following method [84]. Using measured xy values the z for each
primary can be calculated using the relationship

x+ y + z = 1

For each phosphor the relative luminances are recorded using the chroma meter. These are normalised
to sum to 1. The resulting values are the Y tristimulus values. From the Y tristimulus values and the
chromaticity co-ordinates for each primary we compute the X and Z tristimulus values using the formulas

Xr = Yr × xr
yr

Zr = Yr × zr
yr

Similarly for green and blue phosphor. By this method a matrix, T , is constructed.
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Now to compute the tristimulus (RGB), £rst the X, Y and Z tristimulus values need to be calculated:
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Then applying the following matrix gives the RGB values which can then be used as input to radiance.
∣

∣

∣

∣

∣

∣

R
G
B

∣

∣

∣

∣

∣

∣

=
∣

∣ T−1
∣

∣

∣

∣

∣

∣

∣

∣

X
Y
Z

∣

∣

∣

∣

∣

∣

The entire experimental set-up resided in an enclosed dark laboratory in which the only light sources are
the DC bulb (shielded from direct view) or illumination from the monitor. As described earlier, Gilchrist [10,
28, 30] has shown that such an experimental environment is suf£cient for the purposes of this experiment.

3.1.4 Procedure

The participants’ task was to match grey level patches within the physical environment, to a set of control
patches, Figure 3.4. Then participants were asked to repeat the same task with the original environment
replaced by its computer representation, and in addition some slight variations of the computer representa-
tion, such as changes in Fourier composition (blurring), see Figure 3.5. The reason for deliberate distortion
of the original rendered image is due to the fact that many image comparison techniques make assump-
tions about what is important in an image, i.e. spatial frequency. What really is important may depend
on task. So while slightly disturbing spatial frequency (for example) in an image will cause a numerical
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Figure 3.4: Patches within the physical environment(left) are compared with a set of control patches (right)

technique to produce large differences, the difference may not be detectable by a human observer. The
HVS is not a photometer, as discussed in section 3.2, while pixel by pixel comparisons might be suf£cient,
they can give misleading results as the outcome does not always correspond to the perceptible differences
between images. In the Original Scene, physical stimuli were presented in the test environment, described

Figure 3.5: Rendered image, left, with blurring, right

in the previous¡ section. Participants viewed the scene monocularly through a £xed viewing position. The
experiment was undertaken in a darkened room under constant, controlled illumination conditions.

While viewing the Computer Simulated Scene, representation of the stimuli, rendered using Radiance,
were presented on the monitor of a Silicon Graphics 02 machine. Again, participants viewed the screen
monocularly through a £xed viewing position.

3.2 Results and Discussion of Pilot Study

A number of different conditions were investigated during the complete pilot study, ranging from a rendered
image to its real counterpart, to comparing distorted, deliberately incorrect images to the physical scene.
For the pilot study data were obtained for £fteen participants. Participants had either normal or corrected-
to-normal vision. Each participant performed a number of conditions, in random order, and within each
condition the participant’s task was to match the £fteen grey test patches to a reference chart on the wall.
Each patch was matched only once. Although each participant started on a randomly chosen patch, they
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Figure 3.6: Participants started at different patches but followed the same path
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Figure 3.7: Ideal response: obtained if each participant matched each object to its correct corresponding
Munsell Value

followed the same path around the patches. As illustrated in Figure 3.6, one participant may have followed
the red track while another followed the blue track, but the sequence in which they were visited was the
same. This can lead to problems due to the order in which patches are viewed, (section 3.4.1).

Figure 3.7 shows the results that would be obtained if each participant matched each patch exactly to its
corresponding patch on the chart. A perfect set of data would lie along a 450 diagonal line. The lightness
matching technique is used as a measure of perceptual response to a physical scene. The HVS is not perfect,
and so some errors are made in the lightness matching task. These “errors”, or deviations from what would
be an ideal response are shown in Figure 3.8.

The blue line shows the actual response to the real scene. Now this response becomes the “ground-
truth” against which all other responses are measured. The closer a response is to this line, the closer the
perceptual match between the scene and the image. The experimental data for the real environment lie close
to this line, with some small but systematic deviations for speci£c test patches. These deviations show that
lightness constancy is not perfect for the original scene. What this means is as follows: when observing a
given scene, small (but signi£cant) errors of lightness perception are likely to occur. A perceptually-perfect
reconstruction of the scene should produce a very similar pattern of errors if it is perceptually similar to
the original. So for high quality renderings the response should follow the ground-truth closely in order to
conclude the image is a faithful representation.

The main idea behind the pilot study was £rst to establish the framework and ensure the chosen task was
suf£cient as a comparison measure. For this reason a number of different conditions were run to evaluate
the feasibility of the framework. This is a pilot study so only simple statistics were applied for a basic
analysis of the results.
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Figure 3.8: Response of average matching of Munsell values to REAL
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Figure 3.9: Response of average matching of Munsell values real with rendered, with the rendered image
shown on the right

3.2.1 Condition A: Real Versus Rendered

The purpose of the £rst experiment was to determine how similar perceptual response to a rendered scene
was to that of the real scene it represents. Participants performed the lightness matching task on both the
real scene and the rendered image. Results are averaged over all participants to give the average match per
patch.

Figure 3.9 shows the results obtained for the comparison. The x-axis gives the actual Munsell value
of each patch, the y-axis gives the matched Munsell value, averaged across the participants. (Results for
following conditions are presented on the same axes)

In general, it can be seen that the matched values are very similar to those of the original scene, in other
words, the same (small) failures of constancy apply both to the real scene and the rendered image. This, in
turn suggests that there is no signi£cant perceptual difference between the original scene and the rendered
version. This is in spite of the fact that the mean luminance of the rendered versions was lower by a factor
of about 30 compared to the original.

3.2.2 Condition B: Real Versus 30% Blurred

In condition B, participants were presented with a 30% blurred version of the rendered image used in
condition 1, Figure 3.10. Blurring was achieved by passing a gaussian £lter over each pixel in the image.
Again the matched values are very similar to those chosen in the original scene. This suggests that the HVS
is not very sensitive to slight variations in spatial frequency.

Under these conditions the blurred version looked very different subjectively, due to visible softening
of edges, but again similar data were obtained.

49



0

2

4

6

8

10

0 2 4 6 8 10
A

ve
ra

ge
 m

at
ch

ed
 M

un
se

ll 
va

lu
e

Munsell value of patches

Real Scene
Blurred Rendered Scene

Figure 3.10: Response of average matching of Munsell values real with blurred rendered
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Figure 3.11: Comparison of average matching of Munsell values with real with partial occlusion

3.2.3 Condition C: Real Versus Partially Occluded

As a £rst attempt at introducing shadows into the environment, a “shelf” like structure was placed at the top
of the test scene to limit the amount of light falling on the regions, Figure 3.11. This was done in both real
and virtual scenes. The results are plotted as for the previous conditions, and show that despite the shadow,
the response is again similar in both cases, suggesting little perceptual difference between the two.

3.2.4 Conclusion from Conditions of Pilot Experiment

The pilot experiment shows for simple scenes that lightness constancy is extremely robust against changes
to the rendered image.

For each condition in the pilot experiments the biggest deviations occur at regions 9 and 16. This is
interesting as both these regions are partially in shadow. At this stage however, no conclusive evidence exists
as to the reason for such deviation, due to the manner in which the pilot study was conducted. For instance,
participants followed the same sequence when performing the task, so regions were tested in an orderly
manner, a more dependable approach should examine regions in random order to avoid ordering effects.
Also, the control chart was separate from the scenes/images under consideration, forcing participants to shift
their gaze between the two. Adaptation is affected when moving between scene and control chart, it would
be more satisfactory if the viewer was allowed to adapt fully to the scene in question before attempting
evaluations. So any one of a number of factors may contribute to these mis-matches. To correctly conclude
which factor contributes to these ¤uctuations these issues need to be addressed before the comprehensive
study is made. This will allow conclusions to be drawn in the absence of such errors.

50



3.2.5 Compared to Numerical Techniques

In an effort to compare this method to currently available techniques it is possible to reduce the pattern of
results to a single value as follows :

• taking the matches to the original scene as reference, calculate the mean signed deviation for the
rendered, blurred rendered and partial occlusion functions.

• Compute the mean and standard deviation of these

Table 3.1 shows the results obtained. A value of zero in this table would indicate perceptually perfect match;
the actual values given come close to this and are statistically not signi£cantly different from zero. This,
therefore, again indicates high perceptual £delity in both versions of the rendered scene.

Compared to Real Mean Munsell Value Deviation
Rendered Scene -0.37 (σ = 0.44)
Blurred Scene -0.23 (σ = 0.57)
Partial Occlusion Scene -1.16 (σ = 0.93)

Table 3.1: Comparison of test images to real environment

How do these values compare to other methods? Using the algorithm of Daly [20] a 5.04% difference
between the rendered and blurred rendered images is returned. As a comparison, a left-right reversal of the
image gives a difference value of 3.71%; and a comparison of the image with a white noise grey level image
results in a difference value of 72%. Thus, the algorithm suggests that there is a marked difference between
the rendered image and blurred rendered image; for example this is a 36% greater difference than that with
a left-right reversed image. (This difference increases for less symmetrical images). However, our method
suggests that these two scenes are perceptually equivalent in terms of our task. It may therefore be that there
is a dissociation between our method and that of the Daly technique. In addition, the algorithmic method
cannot give a direct comparison between the original scene and the rendered version; this could only be
achieved by frame grabbing the original which is a process likely to introduce errors due to the non-linear
nature of the capture process. This idea of comparing the psychophysical approach to image quality metrics
is explored further in [56].

In Summary: the results of the pilot study show that the rendered scenes used in this study have high
perceptual £delity compared to the original scene, and that other methods of assessing image £delity yield
results which are markedly different from ours. The results also imply that a rendered image can convey
albedo.

3.3 Conclusions and Problems with Pilot Study

The main purpose of the pilot study was to test the feasibility of using psychophysical techniques to give
an index of image £delity. Shadows are important for the correct perception of a scene [29]. Although
the pilot study gave con£dence in the lightness-matching task as a basis for scene-image comparison, the
environment used was very basic, consisting of ¤at polygonal patches placed in an empty £ve sided cube.

The pilot study demonstrated the potential of the lightness matching based experiment to measure the
perceptual correspondence between real and synthetic images. As previously mentioned the purpose of a
pilot study is to reveal problems with the experiment before a full study is made. The following dif£culties
arose during the pilot study and needed to be addressed before a more comprehensive study was made. The
main problems to be addressed were:

Ordering Effects: Each participant matched each patch in the same sequence, so, for example, each par-
ticipant examined patch 1 directly after patch 6. This can lead to ordering effects [19] which means
the perception of a patch may be in¤uenced by the perception of the patch examined immediately
previous. Consider looking at a light object immediately after viewing a dark object. This may cause
the lightness of the light object to be arti£cially exaggerated, and so will be perceived as lighter than it
really is. To avoid the ordering effect from the experiment, it is better to allow participants to examine
the objects in a random manner rather than a prede£ned sequence
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Patch Selection: As described the experiment involved asking participants to match each patch in the scene
to one of a set of control patches hanging on the wall. In order to view this control chart and make a
selection, the participant was forced to move his gaze away from the scene. So the viewer switched
between adaptation to the scene, and adaptation to the control chart. As the process of adaptation can
take several minutes, it is not a good idea to allow alternation between views. A better approach is to
£rst train each participant to learn the control chart, thus allowing selection of a match from memory
without moving their gaze from the scene in question, guaranteeing that the adaptation level remains
constant.

Measuring Equipment: The device used to measure the re¤ectance and emissive properties for the pilot
study outputs Y, xy tristimulus values. A more sophisticated device allows more precise measurement,
resulting in more accurate readings. For this reason a spectoradiometer is used for measuring input
in the full experiment.

This suite of pilot experiments instilled con£dence in the methodology, while establishing some com-
mon methods and conditions. So while the results of the pilot study look promising, strong claims cannot be
based on the results of this set of experiments due to the shortcomings of the experimental design. By taking
action to combat the shortcomings a more complete study can be undertaken. Results from an improved
framework can then be used with a higher level of con£dence to draw conclusions about HVS perception in
real and synthetic images and the differences between the two.

The actions taken to remedy these shortcomings are presented in the next section.

3.4 Experiment: The Physical Framework

Although the pilot study demonstrated the usefulness of the technique, more importantly it highlighted some
of the ¤aws in the framework which may otherwise have escaped unnoticed. These ¤aws and the actions
taken to remedy them are addressed here before moving on to the discussion of the main set of experiments
which form the foundations for the new image comparison framework. To introduce more complexity into
the environment, the idea of shadowing used in condition C of the pilot study is extended by replacing two
dimensional patches by three dimensional objects to allow the exploration of effects such as shadowing and
depth perception.

3.4.1 Ordering Effects

In the pilot experiments, participants were asked to match patches in the physical scene to patches on
the Munsell Chart. Each participant started on a different (randomly selected) patch, but then followed
the same path as before, for example, patch 4 was always examined directly after patch 15 and directly
before patch 6. This leads to what is known in experimental psychology as ordering effects. To explain
this phenomenon consider how observing a dark object immediately after a brighter object may in¤uence
perception of the dark object. As an extreme example bear in mind the experience of matinee cinema
goers, when on emerging from the dark cinema theatre £nd themselves temporarily “blinded” by their
bright environment. Ordering effects are perhaps the reason for such sharp “spikes” in the data collected
during the pilot experiments. To eliminate any doubts and error introduced by ordering effects, participants
were asked to examine objects in the new set up in a random order. Each participant began by examining
a different randomly selected object, followed by another randomly selected object, and so on, examining
randomly selected objects until each object in the scene had been tested. In addition to randomisation of
object examination, the order of presentation of images was conducted in a completely random manner. For
example, if a high quality image was presented £rst to every participant, this may affect their perception of
lower quality images. This may arti£cially exaggerate the ”goodness” or ”badness” of an image. To avoid
this scenario images are presented randomly, including presentation of the real environment.

3.4.2 Matching to Patches

Through the course of the pilot study it became apparent that moving the eye between the screen and
the control patches was unacceptable. In addition to adding to time taken to complete each experiment
this procedure introduced possible errors due to adaptation effects. Adaptation occurs over time, quickly
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switching gaze between scene and control patches did not allow the viewer to fully adapt to either the scene
or the patches, and so potential errors of judgement are likely when testing in this manner. A new method
of matching to patches was devised for the main experiment, as described in Section 4.8.1.

3.4.3 Custom Paints

Patch Number Patch Re¤ectance Paint Re¤ectance Paint Name
0 0.049429567 0.04708, 0.048301 Black, 9:1
1 0.054809032 - -
2 0.066896445 0.063563 4:1
3 0.060829058 - -
4 0.083818697 0.077891 2:1
5 0.087025778 - -
6 0.101228624 0.096187 3:1
7 0.112001329 0.113279 1:1
8 0.123494339 - -
9 0.122389474 0.138329 2:3
10 0.159463761 - -
11 0.151914931 - -
12 0.15708198 - -
13 0.174353557 - -
14 0.168015403 0.161078 3:7
15 0.22593297 0.200236 1:4
16 0.270090158 - -
17 0.291413257 - -
18 0.295541683 - -
19 0.339228031 0.328583 1:9
20 0.367078689 - -
21 0.37551392 - -
22 0.394189794 - -
23 0.434945453 0.420213 1/2:9 1/2
24 0.464873337 - -
25 0.506370125 0.529190123 1/4:9 7/4
26 0.551247036 0.531189 1/8:9 7/8
27 0.610832586 - -
28 0.682142642 - -
29 0.755641895 0.879516 White

Table 3.2: Paint re¤ectance along with re¤ectance of corresponding patch

Due to the three dimensional nature of objects in the new scene, simple two dimensional patches were
no longer appropriate. To accommodate the three dimensional objects, custom paints were mixed, using
precise ratios to serve as the basis for materials in the scene. To ensure correct, accurate ratios were achieved
30ml syringes were used to mix paint in ratios of black to white as shown in Table 4.3. Although the ratios
of each paint sample was known it was still necessary to determine the re¤ectance values for each paint
sample. This was done using the same method used to determine the illumination and materials during the
pilot study . The paint samples were measured against a standard. This standard was set by illuminating
an Eastman Kodak Standard White powder, pressed into a circular cavity, which re¤ects 99% of incident
light in a diffuse manner. This circular cavity was housed in an black oblong box, coated with black velvet
(to avoid interre¤ections). At one end of the box was an opening to allow the light to shine through, and
an opening on the side to allow the measurements to be taken as shown in Figure 3.12. The custom paints
were used to paint £fteen samples which were cut such that they could be slotted into the oblong box, and
measured under controlled conditions.
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Figure 3.12: Sketched representation of measuring environment

The relationship between the patches that the participants were trained on and the custom paints used
on the objects in the scene is shown in Figure 3.13.

3.4.4 Three Dimensional Objects

While the pilot study gave con£dence in the method, it became obvious that a full investigation would
require a more complex scene, showing shadows and three dimensional objects. Several objects were
chosen ranging from household objects, to custom made oblong wooden pillars. The objects and their
dimensions are given in Table 4.3. Each object was painted with a randomly chosen custom paint from the
samples described in Section 4.3.

3.5 Modi£cations to the Original Apparatus

Extending the environment to introduce complexity meant some additional measurements were needed. In
the pilot study the patches were generated using known re¤ectance, then veri£ed using the Minolta CS-100
Chroma Meter. For the main experiment, although the ratios of the paint were known, their re¤ectance
needed to be measured. More comprehensive measurements can be achieved using a spectroradiometer to
obtain measurements across the visible spectrum. A spectroradiometer is an instrument used for detecting
and measuring the intensity of radiant thermal energy. The radiometer is essentially a partially evacuated
tube within which is mounted a shaft with four light vanes. One side of the vanes is blackened and the
other is of polished metal. Upon receiving external radiation, the blackened side absorbs more heat than the
polished side, and the free molecules in the bulb react more strongly on the dark side, pushing the dark side
away from the source of radiation. The spectroradiometer used for these measurements was a TOPCON
spectroradiometer (model sr-1) 2. The sr-1 outputs the spectral radiance of the sample under examination,
in 5nm increments.

For the actual experiments more complete spectral re¤ectances of the paints used were measured using
a TOPCON-100 spectroradiometer. This data is recorded in Appendix A.

2kindly loaned for this study by DERA
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Figure 3.13: Corresponding paint and patch re¤ectance

3.6 Experimental Design

3.6.1 Participants

Eighteen observers participated in each experiment. In each condition participants were naive as to the pur-
pose of the experiment. All reported to have normal or corrected-to-normal vision. Participants are assigned
to groups in such a way that groups are approximately equivalent, this is achieved through randomisation,
a term used extensively throughout the remainder of this chapter.

3.6.2 Randomisation and Counterbalancing

Experiments are designed to detect the human visual response to a certain condition, and to detect the
response to only that condition. It may seem the best manner to control for other effects would be to
identify them and eliminate their effects. However, to identify all variables might conceivably in¤uence an
experimental outcome. By randomising, an experiment is arranged so that extraneous features tend to be
equally represented in experimental groups. Random assignment to conditions in an experiment is inclined
to produce equal representation of variables requiring control. Randomisation of order of presentation
means conditions are as likely to occur in one order as another. It also means that presenting a condition
in one position for a given participant, say light environment £rst, has no in¤uence on whether the same
condition is presented in any other position. If order of presentation is completely randomised this would
mean no “balancing” occurs. It is assumed a truly random process will eventually result in a fairly even
balance of various orders of presentation. Randomisation has the distinct disadvantage that imbalances in
order of presentation may occur simply on a chance basis. This is especially true if the number of conditions
is small. Randomisation will even things out in the long run but only if the experiment is extensive. It is
even possible that the same condition will be presented in the same manner each and every time just as
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Object Dimensions Paint

Pyramid 17 x 14 x 14 1:9
Small Cylinder 7.6 x 7.6 x 9.7 WHITE
Ledge on Small Cylinder 15 x 25 x 7.0 3:2
Small Sphere at Front radius 2.2 4:1
Small Cube at Front 7 x 7 x 7 9:1
Tall Rectangle on Right 7 x 7 x 23 3:7
Large Sphere radius 8.8 2:3
Tall Cylinder on Right 7.6 x 7.6 x 24.1 1:4
Ledge on Tall Cylinders 15 x 15 x .6 1:1
Small Cylinder 7.6 x 7.6 x 9.7 BLACK
Tall Cylinder on Left 7.6 x 7.6 x 24.1 BLACK
Tilted Box 11.5 x 11.5 x 11.5 2:1
Box Under Tilted Box 15 x 25.5 x .6 1

4 : 9
3
4

Ledge on Rectangle on Right 41 x 15 x .6 3:7
Tall Rectangle on Right 7 x 7 x 32.3 1

8 : 9
7
8

Walls WHITE

Table 3.3: Objects in the mixed environment, their placement and assigned paint

it is possible to draw four aces from a deck of cards without cheating [19]. To avoid such imbalances
counterbalancing is often used instead of randomisation. Counterbalancing means that the experimenter
ensures that various possible presentation orders occur equally often.

In this study there are three distinct conditions, the design of the experiment is counter balanced by
ensuring each condition is presented £rst one third of the times, second one third of the time and last one
third of the time. By counterbalancing the effect of either of the three conditions being presented £rst will be
present equally in each condition. By examining results when a treatment comes £rst and comparing results
when the same treatment comes second or third, effects of ordering can be seen. Many variables have effects
that need to be taken into account. Fatigue or hunger for example can be present depending on the time
of day the experiment is conducted. This condition must therefore be counterbalanced to avoid unwanted
in¤uences on the data. For this experiment, time was divided into three zones, namely morning, middle of
day and afternoon. This division worked out neatly resulting in eighteen different combinations of time of
day/condition. Using eighteen participants, one for each combination counterbalances the experiment, thus
removing any time of day or ordering effects. Experimentation time for each condition was approximately
45 minutes, with 54 conditions meant the experiments ran over 50 hours.

3.7 Procedure

Each object was matched once only and the order in which each participant performed the matches was
varied between participants and conditions. The experimental conditions were kept constant over each par-
ticipant, and the instructions given were the same in each case. To avoid data contamination it is critical to
keep treatments as similar as possible across participants. In general, such explanations were given when
the question was raised by an observer, the task being clear to most observers. The following steps outline
a single experiment.

3.8 Experiment
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3.8.1 Training on Munsell Chips

Figure 3.14: Patch arrangement used to train participants with reference chart

Figure 3.15: Patch arrangement used to train participants without the reference chart)

In [60], the task involved matching regions to a control chart which meant observers had to look away
from the scene under examination to choose a match. Moving between scene and chart may affect adaptation
to the scene in question, also the view point is not £xed, for this reason we decided to train participants
on the control patches £rst. Once trained on the patches participants could then recall the match from
memory. Training was conducted as follows. Observers were asked to select, from a numbered grid of 30
achromatic Munsell chips presented on a white background, a sample to match to a second unnumbered grid
(Figure 3.14) which was simultaneously displayed on the same background, under constant illumination.
The unnumbered grid comprised 60 chips. At the start of each experiment participants were presented
with two grids, one an ordered numbered regular grid the other an unordered unnumbered irregular grid
comprising one or more of the chips from the numbered grid.

Both charts were hung on the wall approximately one meter from the participant. Each participant was
asked to match the chips on the unnumbered grid to one of the chips on the numbered grid on the left. In
other words they were to pick a numbered square on the left and place it right next to the grid on the right
which in the grid would match it exactly. This is done in a random manner, a laser pointer 3 was used to point
to the unnumbered chip under examination. Then the numbered chart was removed, and the unnumbered
chart replaced by a similar chart but one where the chips had a different order. Participants repeated the task,
this time working from memory to recall the number each chip would match to. The results are shown in
Figure 3.16. The graph on the left shows the average match across 18 participants, both with the reference
chart and without the reference chart. The graph on the right shows the average correlation. This correlation
gives an indication of the extent to which two sets of data are linearly related. A value close to 1 indicates
a strong relationship, while a value of 0 signi£es there is no linear relationship. A correlation of 1 would
result if the participant matched each unnumbered patch to its corresponding numbered patch, in reality

3non-invasive medium
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this is not the case and some small errors are made, what we need to determine is if the errors made when
matching from memory i.e. without the chart are about the same size as the errors made with the reference
chart in place. The correlation value when matching the patches with the chart in place is 0.96, and when
matching from memory the result is 0.92, indicating a very small difference between the two conditions.
From this small difference we can conclude that participants are approximately as good at matching the
patches without the reference chart in place. Thus, this training paradigm proved to be reliable and stable.
This has the dual bene£t of speeding up the time taken per condition, as well as ensuring participants do not
need to move their gaze from image to chart, thus eliminating any in¤uence due to adaptation.
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Figure 3.16: Results from matching patches with and without the reference chart

3.8.2 Matching to Images

Each participant was presented with a series of images, in a random order, one of which was the real
environment. Participants were not explicitly informed which image was the physical environment. Each
object was matched only once, however for certain paint samples there was more than one object painted
with that paint in the environment.

The media used for stimulus presentation was a gamma corrected 20-inch monitor with the following
phosphor chromaticity co-ordinates:

xr = 0.6044 xg = 0.2808 xb = .1520 xw = 0.2786
yr = 0.3434 yg = 0.6016 yb = .0660 yw = 0.3020

3.8.3 The Graphical Representations

Eleven images (conditions) were presented to each participant, the real environment and ten synthetic im-
ages. Conditions are listed here along with the aims that we hoped to achieve from the comparison.

A. The Real Environment: Human judgements of lightness are not perfect. This was illustrated during
the pilot study when participants made small errors when comparing patches in the real scene to the
set of control patches on the Munsell Chart. The pattern of these errors thus becomes the ”ground
truth” against which the pattern of errors in the synthetic images are compared. If similar patterns
occur in both cases, it can be concluded that the synthetic representation has high £delity to the real
environment.
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B. Photograph: Comparison to a photograph is needed to enable us to evaluate our method to more
traditional image comparison metrics. The reasoning behind this is that most current techniques
compare to “reality” by comparing to a captured image. We wanted to see if this is equivalent to
comparing to a real physical environment and so included a photograph, taken with a digital camera,
as one of our test images.

C. Radiance: 2 Ambient Bounces: A Radiance [89] image generated using 2 ambient bounces is
generally considered to be a high quality image. Here we wanted to determine if 2 ambient bounces
gives a similar perceptual impression to an 8 ambient bounce image which is more compute intensive.

D. Radiance: 8 Ambient Bounces: We wanted to investigate if there was a marked difference using
a Radiance image generated using 8 ambient bounces, as this involves considerably more compute
time, and might not be necessary i.e. may not provide any more perceptual information than an image
rendered using 2 ambient bounces.

E. Radiance: 8 Ambient Bounces BRIGHT: This image had its brightness increased manually to see
if this affected perception. The brightness was doubled (i.e. the intensity of each pixel was multiplied
by 2) to see what, if any, effect this had on the perception of the image.

F. Radiance: Default: Image generated with the default Radiance parameters. This would determine
whether extra compute time makes a signi£cant difference. The default image renders in a very short
time, however ambient bounces of light are absent, we wanted to compare this to imagery where
interre¤ections were catered for.

G. Radiance: Controlled Errors in Estimate Re¤ectance Values: The RGB values for the materials
were set to equal values to see what difference, if any, this made compared to using measured val-
ues. A poor perceptual response to this image would con£rm our suspicion that material properties
must be carefully quanti£ed if an accurate result is required. This comparison, and the next, was to
demonstrate the importance of using exact measurements rather than estimations for material values.

H. Radiance: Controlled Errors in Estimate of Light Source: The RGB values for the light source
were set to equal values to see what difference this made compared to using measured values. This
experiment will show the necessity of measuring emission properties of sources in an environment if
an accuracy is the aim.

I. Radiance: Tone Mapped: We wanted to investigate the difference tone mapping would make to our
test image. Tone mapping transforms the radiance values computed by the rendering engine to values
displayable on a display device in a manner that preserves the subjective impression of the scene.
The Tone Mapping Operator (TMO) used here was introduced by Ferwerda et al. [21]. Although the
image examined does not have a very high dynamic range, we were interested to see the effects tone
mapping would have on image perception.

J. Renderpark: Raytraced: This was a very noisy image generated using stochastic raytracing. This
experiment was designed to see how under-sampling would affect perception. Here the effect of
under-sampling is exaggerated but might give insights in to how much undersampling a rendering
engine can ”get away with” without affecting perceptual performance.

K. Renderpark: Radiosity: Finally, to investigate the effects of meshing in a radiosity solution, a
poorly meshed radiosity image was used. We wanted to demonstrate the importance of using an
accurate meshing strategy when employing radiosity techniques.

The images used are shown in Figures 3.17, 3.18 and 3.19.
Three full experiments were run, in each of the three, ten images were considered. The three environ-

ments are shown in Figure 4.20. Building on condition 5 of the pilot study, two new environments were
introduced. First an environment containing entirely dark objects was constructed. Then a replica of this
environment was also built with the same objects but they were painted only with light paint. All condi-
tions for each experiment are shown in Figure 3.17 the original environment, Figure 3.18 shows conditions
examined using the light environment, and the dark environment conditions are shown in Figure 3.19.
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Mixed Environment Dark Environment Light Environment

A. Real Environment
√ √ √

B. Photograph
√ √ √

C. 2 ambient bounces
√ √ √

D. 8 ambient bounces
√ √ √

E. 8 ambient bounces - Bright
√ √ √

F. Default
√ √ √

G. Guessed Materials
√ √

H. Guessed Illumination
√ √ √

I. Tone Mapped
√ √ √

J. Raytracing
√ √

K. Radiosity
√ √

Table 3.4: Experimental conditions: note some of the dark Environments were too dark to use so were not
considered

3.8.4 Instructions

Each observer was presented with eleven images, one of which was the real scene. Images were presented in
a random order to avoid any in¤uences that might arise from a certain presentation sequence. Participants
were not explicitly informed which scene they were viewing. After training on the patches, participants
could recall from memory the number corresponding to each Munsell chip. Participants were asked to
examine each target object in the scene, in a completely random order, and recall from memory the number
of the Munsell chip they felt closely matched the paint on the target object. Such an explanation was given
when the question was raised by an observer, the task being clear to each participant.

3.9 Summary

We have introduced a method for measuring the perceptual equivalence between a real scene and a com-
puter simulation of the same scene. Because this model is based on psychophysical experiments, results are
produced through study of vision from a human rather than a machine vision point of view. We have pre-
sented a method for modelling a real scene, then validated that model using the response of the human visual
system. By conducting a series of experiments, based on the psychophysics of lightness perception, we can
estimate how much alike a rendered image is to the original scene. We conduct a series of psychophysical
experiments to assess the £delity of graphical reconstruction of real scenes. Methods developed for the
study of human visual perception are used to provide evidence for a perceptual, rather than a mere physical,
match between the original scene and its computer representation. Results show that the rendered scene has
high perceptual £delity compared to the original scene, which implies that a rendered image can convey
albedo 4. This enables us to evaluate the quality of photo-realistic rendering software, and develop tech-
niques to improve such renderer’s ability to produce high £delity image Because the complexity of human
perception and the computational expensive rendering algorithms that exist today, future work should focus
on developing ef£cient methods from which resultant graphical representations of scenes yield the same
perceptual effects as the original scene. To achieve this the full gamut of colour perception, as opposed to
simply lightness, must be considered by introducing scenes of increasing complexity.

4albedo is the proportion of light or radiation re¤ected by a surface
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A. Phototgraph B. 2 Ambient Bounces C. 8 Ambient Bounces

E. Default F. Estimated Materials G. Estimated Illumination

H. Tone Mapped I. Raytraced J. Radiosity

     Bright
D. 8 Ambient Bounces

Figure 3.17: Images (Conditions) examined
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Bright
B. Photograph C. 2 Ambient Bounces D. 8 Ambient Bounces E. 8 Ambient Bounces

F. Default G. Estimated Materials H. Estimated Illumination

I. Tone Mapped J.. Raytraced K. Radiosity

Figure 3.18: Images examined - The Light Environment
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Bright
B. Photograph C. 2 Ambient Bounces D. 8 Ambient Bounces E. 8 Ambient Bounces

F. Default I. Tone MappedH. Estimated Illumination

Figure 3.19: Images examined - The Dark Environment

Figure 3.20: The three test scenes, a light environment, a mixed environment, and a dark environment
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Abstract

Synthesis of realistic images which predict the appearance of the real world has many appli-
cations including architecture and interior design, illumination engineering, environmental as-
sessment, special effects and film production, along with many others. Due to costly global
illumination computation, which is required for the prediction of appearance, physically-based
rendering still remains the domain of research laboratories, and is rarely used in industrial prac-
tice. In this overview special attention is paid to the solutions which use perception-guided algo-
rithms to improve their performance. This makes it possible to focus the computation on readily
visible scene details, and to stop it when further improvement of the image quality cannot be
perceived by the human observer. Also, by better use of perception-motivated physically-based
partial solutions, meaningful images can be presented to the user at the early stages of computa-
tion. Since many algorithms make simplifying assumptions about the underlying physical model
in order to achieve gains in rendering performance, a validation procedure for testing lighting
simulation accuracy and image quality is proposed. To check the requirement of appearance
predictability imposed on the developed algorithms, the rendered images are compared against
the corresponding real-world views.
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1 Perception-Driven Global Illumination and Rendering Com-
putation

One of the basic goals of realistic rendering is to create images which are perceptually indis-
tinguishable from real scenes. Since the fidelity and quality of the resulting images are judged
by the human observer, the perceivable differences between the appearance of a virtual world
(reconstructed on a computer) and its real world counterpart should be minimized. Thus, per-
ception issues are clearly involved in realistic rendering, and should be considered at various
stages of computation such as global illumination computation, rendering, and image display.

The most common approach is to consider the visual characteristics of the human observer
at the stage of image display. Such considerations are mostly driven by the need to overcome
numerous physical limitations of the display device. Let us recall that as a result of view-
independent global illumination computation, a distribution of the radiometric (photometric)
values over the scene surfaces is obtained. Then, for given viewing parameters, those values
are projected on the image plane, and are presented on the display device in the form of a 2D
array of discrete values for every pixel. Usually, current display technologies cannot directly
reproduce these values due to their limited absolute and dynamic luminance ranges, and color
gamut. However, the visual system of humans has limited capabilities in detecting differences
in absolute luminance levels, and concentrates more on spatial aspects when comparing two
images [79]. Thus, it might be possible to obtain the perceptual match between a real scene
and a displayed image even though the display device is not able to reproduce the actual lumi-
nance values. To achieve this goal, Tumblin and Rushmeier [71] introduced the Tone Mapping
Operator (TMO) that maps the simulated luminance values to the corresponding display lumi-
nance values taking into account the limitations of the display device, such that the impression
of brightness is similar for the scene and display observer. The perception of brightness varies
with the state of adaptation, and therefore the adaptation states of the scene and display observer
are determined. The development of efficient TMOs that better utilize the low contrast display
devices to reproduce the appearance of high contrast scenes without loss of shading and texture
details, is an active research topic in computer graphics. A good survey of recent results can
be found in [70]. The problem of color reproduction on the limited gamut of a display device
has attracted much less attention in the computer graphics literature. However, this problem is
well addressed in the more specialized literature of imaging and color science. An example of
an advanced color reproduction model, which predicts a wide range of visual phenomena, is the
Hunt model [26] developed in the Kodak Research Laboratories. A comprehensive survey of
the color appearance models can be found in [15].

In this chapter we focus on embedding the characteristics of the Human Visual System
(HVS) directly into global illumination and rendering algorithms to improve their efficiency.
This research direction has recently gained much attention within the computer graphics com-
munity [3,21,22,50,61]. Since global illumination solutions are costly in terms of computation,
significant efficiency improvements can be made by focusing computation on those scene fea-
tures which can be readily perceived by the human observer under given viewing conditions.
This means that those features that are below perceptual visibility thresholds, can be simply
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omitted from the computation without causing any perceivable difference in the final image
appearance.
Current global illumination algorithms usually rely on energy-based metrics of solution errors,
which do not necessarily correspond to the visible improvements of the image quality [34]. Ide-
ally, one may advocate the development of perceptually-based error metrics which can control
the accuracy of every light interaction between surfaces. This can be done by predicting the vi-
sual impact those errors may have on the perceived fidelity of the rendered images. In practice,
there is a trade-off between the robustness of such low-level error metrics and their computa-
tional costs. In Section 1.1 we give some examples of such low-level metrics applied in the
context of hierarchical radiosity and adaptive meshing computations.

Another approach is to develop a perceptual metric which operates directly on the rendered
images. If the goal of rendering is just a still frame, then the image-based error metric is ad-
equate. In the case of (view-independent) solutions for interactive viewing, the application
of the metric becomes more complex because a number of “representative” views should be
chosen. In practice, instead of measuring the image quality in absolute terms, it is much eas-
ier to derive a relative metric which predicts the perceived differences between a pair of im-
ages [62]. (It is well-known that the common mean-squared error metric usually fails in such a
task [8, 18, 62, 68].) A single numeric value might be adequate for some applications; however,
for more specific guiding of computation, a local metric operating at the pixel level is required.
In Section 1.2 we give a brief overview of the application of such local metrics to guide the
global illumination and rendering solutions. Such metrics usually involve advanced HVS mod-
els, which may incur non-negligible computation costs. An important issue becomes whether
the savings in computation that are obtained through the usage of such metrics can compensate
these costs.

A representative example of such an advanced image fidelity metric is the Visible Differ-
ences Predictor (VDP) developed by Daly [8]. In Section 1.3 we overview briefly the VDP,
which we use extensively in this work. The VDP metric, when applied in global illumination
computation, provides a summary of the algorithm performance as a whole rather than giving
a detailed insight into the workings of its particular elements. However, a priori knowledge of
the current stage of computation can be used to obtain more specific measures for such tasks as
adaptive meshing performance, accuracy of shadow reconstruction, convergence of the solution
for indirect lighting, and so on. Since the VDP is a general purpose image fidelity metric, we
validate its performance in these tasks. In Section 1.3.1 we report the results of comparisons of
the VDP predictions when the model incorporates a variety of contrast definitions, spatial and
orientation channel decomposition methods, and Contrast Sensitivity Functions (CSFs) derived
from different psychophysical experiments. The goal of these experiments was to test the VDP
integrity and sensitivity to differing models of visual mechanisms, which were derived by differ-
ent authors and for different tasks than those which have been originally used by Daly. Also, we
conducted psychophysical experiments with human subjects to validate the VDP performance
in typical global illumination tasks (Section 1.3.2). An additional goal of these experiments was
to test our implementation of the complex VDP model.

When our rigorous validation procedure of the VDP performance was successfully com-
pleted, we could then apply the metric to our actual global illumination applications. We used
the VDP to monitor the progression of computation as a function of time for hierarchical ra-
diosity and Monte Carlo solutions (Section 1.4.1). Based on the results obtained, we propose
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a novel global illumination algorithm which is a hybrid of stochastic (density estimation) and
deterministic (adaptive mesh refinement) techniques used in an optimized sequence to reduce
the differences between the intermediate and final images as perceived by the human observer
in the course of lighting computation (Section 1.4.2). The VDP responses are used to support
selection of the best component algorithms from a pool of global illumination solutions, and
to enhance the selected algorithms for even better progressive refinement of the image quality.
The VDP is used to determine the optimal sequential order of component-algorithm execution,
and to choose the points at which switchover between algorithms should take place. Also, we
used the VDP to decide upon stopping conditions for global illumination simulation, when fur-
ther continuation of computation does not contribute to perceivable changes in the quality of the
resulting images (Section 1.4.3).

1.1 Low-Level Perception-Based Error Metrics

One of the research directions towards perception-driven improvement of global illumination
computation performance relies on direct embedding of some simple error metrics to find the
adequate level of light interactions between surfaces. Gibson and Hubbold [19] proposed a
perception-driven hierarchical algorithm in which a TMO and the perceptually uniform color
space CIE

�����������
are used to decide when to stop the hierarchy refinement. Links between

patches are not further refined once the difference between successive levels of elements be-
comes unlikely to be detected perceptually. Gibson and Hubbold applied a similar error metric
to measure the perceptual impact of the energy transfer between two interacting patches, and to
decide upon the number of shadow rays that should be used in a visibility test for these patches.
A similar strategy was assumed by Martin et al. [43], whose oracle of patch refinement operates
directly in the image space and tries to improve the radiosity-based image quality for a given
view. More detailed analysis of these and other similar techniques can be found in [60].

Perceptually-informed error metrics were also successfully introduced to control adaptive
mesh subdivision [19, 24, 57] and mesh simplification [78] in order to minimize the number
of mesh elements used to reconstruct the lighting function without introducing visible shading
artifacts. The quality of lighting reconstruction is judged by the human observer, so it is not a
surprise that purely energy-based criteria used in the discontinuity meshing [12,36] and adaptive
mesh subdivision [5,35,74] methods are far from optimal. These methods drive meshing refine-
ment based on the measures of lighting differences between sample points, which are expressed
as radiometric or photometric quantities. However, the same absolute values of such differences
might have a different impact on the final image appearance, depending on the scene illumi-
nation and observation conditions (which determine the eye sensitivity). To make things even
more complicated, a TMO must also be taken into account because it determines the mapping of
simulated radiometric or photometric values into the corresponding values of the display device.

Myszkowski et al. [57] noticed that mesh refinement can be driven by some metrics which
measure quantitatively visual sensation such as brightness instead of commonly used radiomet-
ric or photometric quantities. Myszkowski et al. transformed the stimulus luminance values to
predicted perceived brightness using Stevens’ power law [71] and a decision on the edge splitting
was made based on the local differences in brightness. The threshold differences of brightness,
which triggered such subdivision, corresponded to the Just Noticeable Difference (JND) values
that were selected experimentally and had different values depending on the local illumination



Perception-Driven Global Illumination and Rendering Computation 6

level. For darker regions of the displayed image the eye is more sensitive and smaller values of
the thresholds are chosen. Conversely, for bright regions that are close to the image saturation
the threshold values are significantly larger. For the optimal threshold selection the global illu-
mination should be known. However, in the radiosity technique [53] only direct illumination is
known at the stage of mesh refinement, which might result in an overly conservative threshold
selection. In such conditions, some lighting discontinuities predicted as perceivable could be
washed out in the regions of significant indirect lighting. Obviously, this could lead to excessive
mesh refinement, which is a drawback of the technique presented in [57].
Gibson and Hubbold [19] showed that the meshing performance can be improved even if some
crude approximation of global illumination such as the ambient correction term [6] is used. Also,
Gibson and Hubbold improved the method from [57] further by introducing color considerations
into their mesh subdivision criteria.
Further improvement of meshing performance was reported in [75] by using a lighting simu-
lation algorithm (discussed in more detail in Section 1.4.2) which provides local estimates of
global illumination quickly. These estimates are available at the mesh refinement stage, which
makes a more reliable evaluation of the contrast at lighting discontinuities possible. Thus, the
prediction of discontinuity perceivability also becomes more robust and excessive mesh subdivi-
sion can be avoided. In the example given in [75], the uniform mesh built of 30,200 triangles was
subdivided into 121,000, 97,000, and 86,000 elements using techniques proposed in [57], [19],
and [75] respectively, without any noticeable difference in the resulting image quality.
Perception-based criteria have also been used to remove superfluous mesh elements in the
discontinuity meshing approach [24]. Also, a similar perception-driven mesh simplification
was performed as a post-process to a density estimation solution applying a dense, uniform
mesh [78].

All techniques discussed so far used perceptual error metrics on the atomic level (e.g., every
light interaction between patches, every mesh element subdivision), causing a significant over-
head on procedures that are repeated thousands of times in the course of the radiosity solution.
This imposes severe limitations on the complexity of human spatial vision models, which in
practice are restricted to models of brightness and contrast perception. Recently, more complete
(and costly) vision models have been used in rendering to develop higher level perceptual error
metrics which operate on the complete images. In the following section we briefly overview
applications of such metrics to global illumination and rendering solutions.

1.2 Advanced Perception-Based Error Metrics

Embedding advanced HVS models into global illumination and rendering algorithms is very
attractive scenario, which enables computation to be perception-driven specifically for a given
scene. Bolin and Meyer [3] have developed an efficient approximation of the Sarnoff Visual
Discrimination Model (VDM) [38], which made it possible to use this model to guide the place-
ment of samples in a rendered image. Because samples were only taken in areas where there
were visible artifacts, some savings in rendering time compared to the traditional uniform or
adaptive sampling were reported. Myszkowski [50] has shown some applications of the VDP to
drive adaptive mesh subdivision taking into account visual masking of the mesh-reconstructed
lighting function by textures. Ramasubramanian et al. [61] have developed their own image
quality metric, which they applied to predict the sensitivity of the human observer to noise in
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the indirect lighting component. This made a more efficient distribution of indirect lighting sam-
ples possible by reducing their number for pixels with higher spatial masking (in areas of images
with high frequency texture patterns, geometric details, and direct lighting variations). All com-
putations were performed within the framework of the costly path tracing algorithm [28] and a
significant speedup of computation was reported compared to the sample distribution based on
purely stochastic error measures.

A practical problem arises due to the fact that the computational costs incurred by the
HVS models introduce an overhead to the actual lighting computation, which may become
more significant the more rapid the lighting computation becomes. The potential gains of such
perception-driven computation can be easily canceled out by this overhead, depending on many
factors such as scene complexity, performance of a given lighting simulation algorithm for a
given type of scene, image resolution, and so on. The HVS models can be simplified to reduce
the overhead, e.g., Ramasubramanian et al. [61] ignore spatial orientation channels in their vi-
sual masking model, but then underestimation of visible image artifacts becomes more likely.
To prevent such problems and to compensate for ignored perceptual mechanisms, more conser-
vative (sensitive) settings of the HVS models should be applied, which may also reduce gains in
the lighting computation driven by such models.

It seems that keeping the HVS models at some high level of sophistication and embedding
them into rendering algorithms, which are supposed to provide a meaningful response rapidly,
e.g., in tens of seconds or single minutes, may be a difficult task. For example, full processing
of the difference map between a pair of images at a resolution of ������������� pixels using the
VDP model [8] takes about 20 seconds on a R10000, 195 MHz processor and such processing
should be repeated a number of times to get reasonable monitoring of progress in image quality.
In this work we explore two different approaches, in which the advanced HVS models are used
off-line or on-line. In the former case, the VDP is used only at the design stage of the global
illumination algorithms and the tuning of their parameters. Thus, the resulting algorithms can
spend 100% of their computation time in lighting simulation, and the costs of HVS processing
(which is performed off-line) are of secondary importance (Section 1.4.2). In the latter case, the
VDP processing is performed along with the time-consuming global illumination computation
to decide upon its stopping condition. However, in this application the VDP computation is
performed exclusively at later stages of computation, and involves only a small fraction of the
overall computation costs (Section 1.4.3).

In the following section we briefly describe the VDP as a representative example of an
advanced image fidelity metric that is strongly backed by findings in physiology and psy-
chophysics.

1.3 Visible Differences Predictor

Although substantial progress in the study of physiology and psychophysics has been made in
recent years, the HVS as a whole and the higher order cognitive mechanisms in particular, are
not yet fully understood. Only the early stages of the visual pathway beginning with the retina
and ending with the visual cortex are considered as mostly explored [11]. It is believed that the
internal representation of an image by cells in the visual cortex is based on spatial frequency and
orientation channels [40, 82, 88]. The channel model explains well such visual characteristics
as:
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� the overall behavioral Contrast Sensitivity Function (CSF) - visual system sensitivity is a
function of the spatial frequency and orientation content of the stimulus pattern;

� spatial masking - detectability of a particular pattern is reduced by the presence of a second
pattern of similar frequency content;

� sub-threshold summation - adding two patterns of sub-threshold contrast together can
improve detectability within a common channel;

� contrast adaptation - sensitivity to selected spatial frequencies is temporarily lost after
observing high contrast patterns of the same frequencies; and,

� the spatial frequency after-effects - as result of the eye’s adaptation to a certain grating
pattern, other nearby spatial frequencies appear to be shifted.

Because of these favorable characteristics, the channel model provides the core of the most
recent HVS models that attempt to describe spatial vision. Our application of the HVS model
is concerned with how to predict whether a visible difference will be observed between two
images. Therefore, we were most interested in the HVS models developed for similar tasks
[7,8,16,18,37,44,66,68,86,92], which arise from studying lossy image compression, evaluating
dithering algorithms, designing CRT and flat-panel displays, and generating computer graphics.
Let us now describe briefly the Visible Differences Predictor (VDP) developed by Daly [8] as
a representative example, which was selected by us for our experiments on global illumination
algorithms.

The VDP is considered one of the leading computational models for predicting the differ-
ences between images that can be perceived by the human observer [32]. The VDP receives
as input a pair of images, and as output it generates a map of probability values, which char-
acterize perceivability of the differences. The input target and mask images undergo identical
initial processing (Figure 1.1). At first, the original pixel intensities are converted to physical
luminance values in the display device. If the exact range of luminance values is not known for a
given CRT display it is usually assumed that the maximum luminance value is about 100 �

�������
.

Weber’s law-like behavior is applied to derive brightness sensation for every pixel based on the
corresponding luminance values. The non-linear response of retinal neurons and their adapta-
tion characteristics are taken into account. For the sake of simplicity it is assumed that the HVS
adapts separately to each pixel. Then the resulting image is converted into the frequency do-
main and processing of the CSF is performed. The resulting data is decomposed into the spatial
frequency and orientation channels using the Cortex transform, which is a pyramid-style, invert-
ible, and computationally efficient image representation. In Figure 1.2a we show organization
of the filter bank in the Cortex transform, which models the combined radial frequency and ori-
entational selectivity of cortical neurons. After decomposing the input image into six frequency
bands, each of these bands (except the lowest-frequency baseband) undergoes identical orienta-
tional selectivity processing. The resulting decomposition of the image frequency plane into 31
radial frequency and orientation channels is shown in Figure 1.2b. Then the individual channels
are transformed back to the spatial domain, in which visual masking is processed.

As the result of CSF computation the contrast values in all channels are normalized by
the corresponding values of detection thresholds. Due to visual masking characteristics of the
HVS those threshold values can be further elevated with increases in the contrast of image
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Figure 1.1: Block diagram of the Visible Differences Predictor (multiple arrows indicate parallel
processing of the spatial frequency and orientation channels).

(mask) pattern. For every channel and for every pixel, the elevation of the detection threshold
is calculated based on the mask contrast for that channel and that pixel. It is usually assumed
that the threshold elevation is computed for the mask image. Also, more conservative approach
can be chosen in which mutual masking is considered by taking the minimal threshold elevation
value for the corresponding channels and pixels of the two input images. The resulting threshold
elevation maps are then used to normalize the contrast differences between target and mask
images. The normalized differences are input to the psychometric function which estimates the
probability of detecting the differences for a given channel. This estimated probability value is
summed across all channels for every pixel. Finally, the probability values are used to visualize
visible differences between the target and mask images. It is assumed that the difference can
be perceived for a given pixel when the probability value is greater than 0.75, which is the
standard threshold value for discrimination tasks [88]. When a single numeric value is needed
to characterize the differences between images, the percentage of pixels with probability greater
than this threshold value is reported. The former measure is suitable to estimate the differences
locally, while the latter measure provides global information on the differences for the whole
image.

The main advantage of the VDP is a prediction of local differences between images (on the
pixel level). The Daly model also takes into account the visual characteristics that we think are
extremely important in our application: a Weber’s law-like amplitude compression, advanced
CSF model, and visual masking function.

The original Daly model also has some disadvantages, for example, it does not process chro-
matic channels in input images. However, in global illumination applications many important
effects such as the solution convergence or the quality of shadow reconstruction can be relatively
well captured by the achromatic mechanism, which is far more sensitive than its chromatic coun-
terparts.

The VDP seems to be one of the best existing choices for our applications involving pre-
diction of image quality for various settings of global illumination solutions. This claim is
supported by our extensive VDP integrity checking, and validation in psychophysical experi-
ments that we briefly summarize in the following two sections. More extensive documentation
of these tests is provided on the VDP project Web pages [1].
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1.3.1 VDP Integrity

The VDP model predicts many characteristics of human perception. However, the computa-
tional models of these characteristics were often derived from the results of various unrelated
experiments, which were conducted using completely different tasks. As pointed out by Taylor
et al. [66] this is a potential threat for the VDP integrity. The approach promoted in [66,89] was
to execute psychophysical experiments that directly determined the model parameters. How-
ever, such experiments usually cover significantly less visual mechanisms, for example, the
model proposed by Taylor et al. does not support visual masking. In this respect, the strategy
taken by Daly results in a more complete model, although, perhaps at the expense of its integrity.

We decided to examine the integrity of Daly’s model to understand how critical are its ma-
jor components in maintaining a reasonable output. We replaced some model components by
functionally similar components, which we obtained from well-established research results pub-
lished in the literature. We investigated how the VDP responses will be affected by such replace-
ments.

We experimented with three types of CSF used in the following HVS models: [8], [16, 44],
and [18]. The response of the VDP was very similar in the former two cases, while for the
latter one discrepancies were more significant. A possible reason for such discrepancies is that
the CSF used in [18] does not take into account luminance adaptation for our test, which could
differ from the conditions under which the CSF was originally measured.

Also, we experimented with different spatial and orientation channel decomposition meth-
ods. We compared the Cortex transform [8] with 6 spatial and 6 orientation channels (a typical
output of every channel for our standard test image is shown on the VDP project Web pages [1])
and the band-pass (Laplacian) pyramid proposed by Burt [4] with 6 spatial frequency channels,
and extended to include 4 orientation channels. While the quantitative results are different, the
distribution of probabilities of detection differences between images corresponds quite well.
The quantitative differences can be reduced by an appropriate scaling of the VDP responses.

Daly’s original VDP model used an average image mean to compute the global contrast for
every channel of the Cortex transform. We experimented with the local contrast using a lowpass
filter on the input image to provide an estimate of luminance adaptation for every pixel. This
made the VDP more sensitive to differences in dark image regions, and we found that in many
cases the VDP responses better matched our subjective impressions.

In experiments we performed, we found that the VDP prediction was quite robust across the
tasks we examined and variations in the configuration of VDP modules. While the quantitative
results we obtained were different in many cases (i.e., the probability values for perceiving a
difference which are reported for every pixel), the distribution of predicted perceivable differ-
ences over the image surface usually matched quite well. A comparison of the VDP output for
all experiments discussed in this section is provided on the VDP project Web pages [1].

In [50] we report representative results of more specialized VDP experiments, which were
focused on prediction of the perceived shadow quality as a function of the visual masking by a
texture, the CRT device observation distance, and the global illumination solution convergence.
In all cases tested we obtained predictions that matched well our subjective judgments. On the
VDP project Web pages [1] we provide input images along with the VDP predictions for the full
set of experiments we performed. We disseminate this material on the Internet so that it can be
used for testing other metrics of differences between images.
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Figure 1.3: The standardized mean ratings (squares) at each of 10 cumulative computation times
are shown along with corresponding VDP predictions (filled circles).

1.3.2 Psychophysical Validation of the VDP

Since the VDP is a general purpose predictor of the differences between images, it can be used
to evaluate sets of images from a wide range of applications. In our experiments we chose to
test its performance in global illumination tasks, which correspond to our intended use of the
VDP. In this work we discuss one selected experiment in which we compared VDP responses
with those obtained from human subjects for a series of image pairs resulting from successive
refinement in a progressive hierarchical radiosity solution. We chose this experiment because it
validates the VDP role in the development of our novel global illumination algorithm described
in Section 1.4.2. The description of our other psychophysical experiments with subjects con-
cerning visual masking of shadows by textures, and image fidelity following JPEG compression
can be found in [42]. As postulated in [22] the experiments were performed in cooperation with
an experimental psychologist.

In the experiment reported here, subjective judgments from 11 human observers were col-
lected for pairs of images presented on a high-quality CRT display under controlled viewing
conditions. The experimental subjects were requested to rank on a scale from 1 to 9 the per-
ceived global difference between each of a pair of images. In every pair, the final image for
the fully converged radiosity solution was presented side-by-side with an image generated at an
intermediate stage of radiosity computation. In total ten intermediate images taken at different
stages of computation were considered, and presented to subjects in a random order. We used
the HTML forms to present stimuli, and the subjects could freely scroll the display and adjust
their ranking (we include examples of our HTML forms on the VDP project Web pages [1]).
The prediction of differences for the same pairs of images was computed using the VDP, and
compared against the subjects’ judgments. Figure 1.3 summarizes the results obtained. A good
agreement was observed between VDP results and subjective ratings. This means that as the
progressive radiosity solution converged, close agreement between the VDP predictions and the
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subjective judgments was maintained.
The results of our psychophysical experiment suggest that the VDP can be used to estimate

what might be termed “perceptual” convergence in image quality rather than “physical” con-
vergence. Such an image quality measure can be used to compare the performance of various
rendering techniques as a function of the computation time, and to decide when the computation
can be finished because further improvement of the image quality cannot be perceived by the
human observer [50].

Encouraged by the positive results of VDP validation in psychophysical experiments and
integrity tests, we used the VDP in actual applications where the main goal was to improve the
performance of global illumination computation. In the following section we discuss a number
of examples of such applications.

1.4 VDP Applications in Global Illumination Computation

A common measure of the physical convergence of a global illumination solution is the Root
Mean Square (RMS) error computed for differences between pixel values of the intermediate
and final images. The RMS error is not suitable to monitor the progress of computation because
it poorly predicts the differences as perceived by the human observer [8, 18, 62, 68]. In Sec-
tion 1.3.2 a new metric of the perceptual convergence in image quality was discussed, and we
used this metric to compare the performance of selected global illumination techniques (Sec-
tion 1.4.1). As the result of such a comparison, a hybrid global illumination solution has been
proposed in which the technique that performs best in terms of the perceptual convergence is
selected at every stage of computation [75]. We discuss this hybrid technique in Section 1.4.2.

As can be seen in Figure 1.3 the ranking for the final stages of the radiosity solution (70–200
minutes) was considerably more difficult because the corresponding images were very similar.
This suggests a novel application of the VDP (and other similar metrics) to decide upon the
computation stopping conditions, when further computation will not result in noticeable changes
in the image quality as perceived by the human observer. We discuss this topic more in detail in
Section 1.4.3.

1.4.1 Evaluating Progression of Global Illumination Computation

In many practical applications it is important to obtain the intermediate images which correspond
well to the final image at possibly early stages of solution. A practical problem arises how
to measure the solution progression, which could lead to the selection of an optimal global
illumination technique for a given task. Clearly, since the human observer ultimately judges
the image quality, basic characteristics of the HVS must be involved in such a measure of the
solution progression. We used the VDP to provide the quantitative measures of the perceptual
convergence by predicting the perceivable differences between the intermediate and final images
[50].

We investigated the perceptual convergence of the following view-independent algorithms:

� Deterministic Direct Lighting (DDL) computation with perceptually-based adaptive mesh
subdivision [57]. We provide more details on the DDL algorithm in [53, 54].
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� Shooting iteration Hierarchical (link-less and cluster-based) Radiosity (SHR)
[53, 54] for indirect lighting computation. By default, a pre-calculated fixed mesh is used
to store the resulting lighting.

� Density Estimation Photon Tracing (DEPT) from light sources with photons bucketed into
a non-adaptive mesh [75]. By Direct DEPT (DDEPT) we denote buckets with photons
coming directly from light sources, and by Indirect DEPT (IDEPT) we denote a different
set of buckets with photons coming via at least one reflection. We provide more details
on the DEPT algorithm in [75].

The DDL and SHR techniques are deterministic, while the DEPT algorithm is stochastic.
Obviously direct (DDL and DDEPT) and indirect (SHR and IDEPT) lighting computation tech-
niques are complementary, but in practice the following combinations of these basic algorithms
are used: DDL+SHR, DDL+IDEPT, and DDEPT+IDEPT (DEPT for short).

We measured the performance of these basic techniques in terms of perceived differences
between the intermediate and final images using the VDP responses. As we discussed in Sec-
tion 1.3, the VDP response provides the probability of difference detection between a pair of
images, which is estimated for every pixel. We measured the difference between images as the
percentage of pixels for which the probability of difference detection is over 0.75, which is the
standard threshold value for discrimination tasks [88]. In all tests performed, we used images of
resolution 512 � 512. The diagonal of the images displayed on our CRT device was 0.2 meters,
and we assumed that images were observed from the distance of 0.5 meters.

We assumed that the final images used for the VDP computation are based on the DDL+SHR
and DDL+IDEPT global illumination solutions, which converge within some negligible error
tolerance. The final images obtained using these methods are usually only slightly different.
Minor discrepancies can be explained by various approximations assumed by each of these
completely different algorithms, e.g., different handling of the visibility problem, the lighting
function discretization during computation used by the SHR technique. To eliminate the influ-
ence of these differences on the VDP response, for a given method we considered the final image
generated using this particular method. The only exception is the DDEPT+IDEPT method, for
which we use the final image generated using the DDL+IDEPT technique because it provides
more accurate direct lighting reconstruction for a given mesh/bucket density.

In this work we report results obtained for a scene, which we will refer to as the POINT

(in [75] we consider three different scenes of various complexity of geometry and lighting).
Both direct and indirect lighting play a significant role in the illumination of the POINT scene.
The scene is built of about 5,000 polygons, and the original scene geometry was tessellated into
30,200 mesh elements using the DDL technique.

The graphs in Figure 1.5 show that the perceptual convergence of the indirect lighting solu-
tion for the SHR technique is slower than the IDEPT approach (direct lighting is computed using
the same DDL method). In our experience, the difference in performance between the IDEPT
over SHR methods is far more significant for complex scenes. The SHR technique shows better
performance for simple scenes only. Based on these results, we use the DDL+SHR technique
for scenes built of fewer than 500 polygons. For scenes of more practical complexity, we con-
sider the DDL, DDEPT and IDEPT techniques to optimize the progressive refinement of image
quality.
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a) b) c)

Figure 1.4: Test scene POINT: a) full global illumination solution, b) indirect lighting only, c)
direct lighting only.
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Figure 1.5: Plots of the VDP results (predicted global differences between the intermediate and
final images) measuring the performance of the DEPT, DDL+IDEPT, and DDL+SHR algorithms
for the POINT scene.
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The graphs in Figure 1.5 show that at the initial stages of computation the DEPT technique
provides the best performance, and rapidly gives meaningful feedback to the user. At later
stages, the DDL+IDEPT hybrid shows faster perceptual convergence to the final image. In
both cases, we used the same fixed mesh to bucket photons. Due to the basic mesh-element
granularity, many subtle details of direct lighting distribution could not be captured well using
the DDEPT technique. For example, small and/or narrow lighting patterns may be completely
washed out. Also, when shadows are somehow reconstructed, they can be distorted and shifted
with respect to their original appearance, and their boundaries can be excessively smooth. The
problem of excessive discretization error, which is inherent in our DDEPT method, is reduced
by the adaptive mesh subdivision used by the DDL technique.

The graphs in Figure 1.5 show that the algorithms examined have different performance at
different stages of computation. This makes possible the development of a hybrid (composite)
algorithm which uses the best candidate algorithm at a given stage of computation. This idea is
further investigated in the following section.

1.4.2 Optimizing Progression of Global Illumination Computation

Based on the results of experiments measuring the perceptual convergence which were presented
in the previous section for the POINT scene, and similar results obtained for different scenes we
investigated (e.g., refer to [75]), a new hybrid technique that uses DDEPT, IDEPT and DDL can
be proposed:

1. First, stochastic computations of direct and indirect lighting should be performed.

2. Second, the stochastically computed direct component should be gradually replaced by
its deterministically computed counterpart to reconstruct the fine details of the lighting
function.

3. Finally, stochastic indirect computation should be continued until some stopping criterion
is reached, e.g., a criterion that is energy-based in terms of the solution variance (some
engineering applications may require precise illumination values), or perception-based in
terms of perceivable differences between the intermediate and final images [50].

All algorithms discussed use mesh vertices to store the results of direct and indirect lighting
computations separately, so switching between them can easily be performed. The mesh is
adaptively refined to fit the lighting distribution better in the case of the DDL technique only
(refer to [53, 54]), but then indirect lighting computed using the IDEPT can be interpolated at
the new vertices.

While the obtained ordering of the basic algorithms was the same across all tested scenes
(refer also to [75]), the optimal selection of switchover points between the sequentially executed
algorithms depended on the given scene characteristics. Ideally, the switchover points should
be selected automatically based on the performance of component algorithms for a given scene,
which could be measured by the on-line VDP computation. However, performing the VDP
computation at the runtime of the composite algorithm computation is not acceptable because
of the high costs of the VDP processing (Section 1.2). To overcome this problem we decided to
elaborate a robust heuristic of the switchover points selection which provides good progression
of the image quality for a wide range of indoor scenes. For this purpose, we designed another
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Figure 1.6: Experimental setting for evaluation of the image quality progression and selection
of the switchover points between global illumination algorithms (the human-assisted selection
is based on minimizing the perceptual distance between the intermediate and final images).

experiment involving the VDP off-line, and our experimental setting is shown in Figure 1.6.1

Within this framework we applied the VDP to get quantitative measures of the image quality
progression as a function of time points

��

at which switching between our basic algorithms

DEPT (DDEPT+IDEPT), DDL, and IDEPT was performed.
The results of our experiments for the POINT test scene are summarized in Figure 1.7a.

The thick line between two switchover points
���

and
� � depicts possible performance gains if

DEPT is replaced by DDL at
���

, and then DDL is replaced by IDEPT at
� � . Also, we tried a

different switching strategy, in which after switching from DEPT to DDL at
� �

, we performed
switching back and forth between the DDL and IDEPT algorithms. We refer to this strategy
as
� ����������� ���

, where � stands for the number of switchover points. We investigated various
choices of

� 
������! #"
, which controlled switching between the DDL and IDEPT algorithms.

For example, we performed the switching after completion of every single iteration of the DDL
computation, or every two such iterations and so on. Also, we changed

�$�
, which effectively

controls the initial DEPT computation time. The thin line in Figure 1.7a shows an envelope of all
graphs depicting our composite algorithm performance for all combinations of switchover points
investigated by us. This envelope approximates the best expected performance of our composite
technique assuming an “optimal” switching strategy between the DDL and IDEPT algorithms
with multiple switchover points

��� �������%� � �
. As can be seen, gains in performance achieved

using the
��� ��������� � �

strategy were negligible compared to the strategy based on well-chosen
switchover points

���
and

� � . This observation was confirmed for other tests we performed [75].
1This setting is of general use and can be easily applied to any set of global illumination algorithms to select the best

basic algorithm for a given task and computation stage.
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Figure 1.7: Plots of the VDP results (magnified from Figure 1.5) measuring the performance of
DEPT and DDL+DEPT algorithms for the POINT test. a) The thick line between two switchover
points
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,
and then the IDEPT is activated at

� � . The thin line depicts an “optimal” switching strategy
between the DDL and IDEPT algorithms with multiple switchover points

��� ��������� � �
. b) Per-

formance gains for various choices of switching time
���

.
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For the sake of simplicity of our composite algorithm, we decided to use just two switchover
points

� �
and

� � . We investigated various choices of
� �

, which measures the duration of the ini-
tial DEPT computation. We assumed that

� � is decided automatically when the DDL computa-
tion is completed. The composite algorithm performance for various

� �
is shown in Figure 1.7b.

As can be seen our composite algorithm performs much better than the standalone DDL+IDEPT
or DEPT methods for all choices of

� �
which are considered in Figure 1.7b. In [75] we show

that the choice of
���

is not extremely critical in terms of the image quality progressive refine-
ment. However, a too short

���
may result in a poor quality of indirect lighting, which cannot

be improved during the DDL computation. On the other hand, a too long
� �

may result in an
undesirable delay in reconstruction of shadows and other shading details. Because of this, the
upper bound for

���
should be comparable to the computation time of the first iteration

��
 � in
the DDL processing, after which the first rendering of a complete direct lighting distribution
becomes possible. We can estimate

� 
 � well by measuring the timings of pilot photons tracing
and by knowing the number of initial mesh vertices, the number of light sources, and estimating
the average number of shadow feelers (i.e., rays traced to obtain visibility information) for area
and linear light sources.

Our heuristic for the
� �

selection proceeds as follows. At first, we run the DEPT computa-
tion for time

��������� 
 � (where
����� �  

, and
���
	�� � � seconds, since in our implementation

we assumed that 0.5 seconds is the minimal interval for sampling DEPT solution errors). We
then estimate the ��
�� error �� of the indirect lighting simulation (we provide a derivation of
the ��
�� error measure for the DEPT algorithm in [76]). Based on the results of DEPT com-
putation for multiple scenes, we assume that a reasonable approximation of indirect lighting can
usually be obtained for the ��
�� error threshold value

���������  ��� . Taking into account the
basic properties of stochastic solution convergence [65], we estimate the required computation
time

�������
to reach the accuracy level

�������
as

� ����� � ��� �� �� ������ �

and finally, we set
� �

as ��� �"!�#%$ � ������� � ��
 � " �
For simplicity, our heuristic relies on the energy-based criterion of indirect lighting accuracy.
Obviously, in the perceptual sense this criterion does not guarantee the optimal

�$�
switchover

point selection. However, we found that this heuristic provided stable progressive refinement of
rendered image quality for all tests performed with multiple scenes. The robust behavior of our
heuristic can be explained by the relative insensivity of our composite algorithm to the selection
of
���

[75], and the strong lowpass filtering properties of our lighting reconstruction method at
the initial stages of computation.

Figure 1.8 shows an example of fast perceptual convergence of the intermediate solutions
in terms of the perceived quality of the corresponding images. The THEATER scene is built of
17,300 polygons (tessellated into 22,300 mesh elements) and is illuminated by 581 light sources.
Figures 1.8 depict nonfiltered (a) and filtered (b) illumination maps, obtained after 30 seconds of
the DEPT computation. Figure 1.8b closely resembles the corresponding image in Figure 1.8c,
which took 20 and 68 minutes of the DEPT and DDL computations, respectively. The final
antialiased image (Figure 1.8d) was rendered using ray tracing, which took 234 minutes (the
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image resolution was 960 � 740 pixels). In the ray tracing computation, direct lighting was
recomputed for every image sample. This solution is typical for multipass approaches, e.g., [27].
The indirect lighting was interpolated based on the results of the IDEPT computation, which are
stored at mesh vertices. Since all surfaces of the scene in Figure 1.8 exhibit the Lambertian
properties of light reflection, the illumination maps (Figures 1.8b and c) are of similar quality
to that obtained using the ray tracing computation (Figure 1.8d). Obviously, once calculated,
illumination maps make possible walkthroughs of adequate image quality almost immediately,
while the ray tracing approach requires many hours of computation if the viewing parameters
are changed. This example shows the advantages of high quality view-independent solutions for
rendering environments with prevailing Lambertian properties.

a) b)

c) d)

Figure 1.8: Comparison of various renderings for the THEATER scene: a) photon tracing without
illumination map filtering (30 seconds), and b) photon tracing with filtering (30 seconds), c)
enhanced accuracy of direct illumination (88 minutes), d) ray traced image (234 minutes).

It was impractical to use the VDP on-line (because of its computational costs) in algorithms
that produce some intermediate results (images) rapidly, which was the case of our composite
global illumination solution. However, for applications which require substantial computation
time, embedding advanced HVS models might be profitable. In the following section we dis-
cuss an example of using the VDP on-line to decide upon the stopping conditions for global
illumination computation which often requires many hours to be completed.
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1.4.3 Stopping Conditions for Global Illumination Computation

Global illumination computation may be performed just to generate realistic images, or for some
more demanding engineering applications. In both cases, quite different criteria to stop compu-
tation proved to be useful [50]. In the former case, computation should be stopped immediately
when the image quality becomes indistinguishable from that of the fully converged solution for
the human observer. A practical problem here is that the final solution is not known, because it
is actually the goal of the computation. In the latter case, stopping conditions usually involve
estimates of the simulation error in terms of energy, which is provided by the lighting simulation
algorithm, and compared against a threshold value imposed by the user. For some algorithms
such as radiosity it might be difficult to obtain a reliable estimate of simulation accuracy, while
it is a relatively easy task for Monte Carlo techniques [73, 76, 77].

A common practice is to use energy-based error metrics to stop computation in realistic
rendering applications. In our observation, such error metrics are usually too conservative, and
lead to excessive computation times. For example, significant differences of radiance between
the intermediate and final stages of solution which may appear in some scene regions, can lead to
negligible differences in the resulting images due to the compressive power of the TMO used to
convert radiance to displayable RGB. Occasionally, energy-based metrics prove to be unreliable
and visible image artifacts may appear even though the error threshold value is set very low.
Since the error is measured globally, it may achieve a low value for the whole scene but locally
it can be still very high.

Clearly, some perception-informed metrics, which capture well local errors are needed to
stop global illumination computation without affecting the final image quality. We decided to
use the VDP for this purpose, encouraged by positive results of psychophysical experiments in
similar tasks that we reported in Section 1.3.2. We assume that computation can be stopped
if the VDP does not report significant differences between intermediate images. A practical
problem is to select an appropriate intermediate image which should be compared against the
current image to get robust stopping conditions.

We attempt to find a heuristic solution for this problem through experiments with the DDL+IDEPT
technique which we described in Section 1.4.1. In this work we discuss the results obtained for
the POINT test scene shown in Figure 1.4. However, we achieved similar results for other scenes
we tested.

Let us assume that the current image ��� is obtained after the computation time
�

, and
let us denote by ����� � ��� � � � � " the VDP response for a pair of images ��� and � � � where�
	 ��	  

. We should find an
�

to get a reasonable match between ����� � ��� � � � � " and
���
� � ��� � ��� " , where ��� is an image for the fully converged solution. Figure 1.9 shows the
numerical values of ���
� � ��� � ��� " and ���
� � ��� � � � � " for

� ���  � � ��� � � �� � � ��� seconds
and various

�
, for scene shown in Figure 1.4. While the numerical values of ���
� � � � � � ��� � � "

provide the upper bound for ���
� � � � � � � " over all investigated
�

, it is even more important
that the image regions with the perceivable differences are similar in both cases (refer to the
VDP project Web pages [1] for color images with ����� � � � � � � " and ���
� � � � � � ��� � � " ). This
means that for certain regions of � ��� � � and � � the variance of the luminance estimate is very
small (below the perceived level), and it is likely that it will be so for � � . For other regions
such variance is high, and it is likely that luminance estimates for � ��� � � and � � which fluctuate
around the converged values for � � will be different, and can be captured by the VDP. Thus, the
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Figure 1.9: The VDP predicted differences between � � and � � , and � � and � � � images.

choice of
�

is a trade-off. The
�

should be small enough to capture such perceivable fluctuations.
However, it should not be too small because � � � may exhibit high variance in the regions
in which the solution for ��� converged to that of ��� , with luminance differences below the
noticeable level. In our experiments with stopping conditions for the DEPT technique for various
scenes we found that

� � � � � (50% of photons are the same for � � and � ��� � � ) is such a
reasonable trade-off.



Perception-Driven Rendering of High-Quality Walkthrough Animations 23

2 Perception-Driven Rendering of High-Quality Walkthrough
Animations

Rendering of animated sequences proves to be a very computation intensive task. In profes-
sional production this involves specialized rendering farms designed specifically for this pur-
pose. Data revealed by major animation companies show that rendering times for the final
antialiased frames are still counted in tens of minutes or hours [2], so shortening this time be-
comes very important. A serious drawback of traditional approaches to animation rendering is
that error metrics controlling the quality of frames (which are computed separately one by one)
are too conservative, and do not take advantage of various limitations of the HVS.

It is well-known in the video community that the human eye is less sensitive to higher spatial
frequencies than to lower frequencies, and this knowledge was used in designing video equip-
ment [72]. It is also conventional wisdom that the requirements imposed on the quality of still
images must be higher than for images used in an animated sequence. Another intuitive point is
that the quality of rendering can usually be relaxed as the velocity of the moving object (visual
pattern) increases. These observations are confirmed by systematic psychophysical experiments
investigating the sensitivity of the human eye for various spatiotemporal patterns [29, 81]. For
example, the perceived sharpness of moving low resolution (or blurred) patterns increases with
velocity, which is attributed to the higher level processing in the HVS [87]. This means that all
techniques attempting to speed up the rendering of every single frame separately cannot account
for the eye sensitivity variations resulting from temporal considerations. Effectively, computa-
tional efforts can be easily wasted on processing image details which cannot be perceived in
the animated sequence. In this context, a global approach involving both spatial and temporal
dimensions appears promising and is a relatively unexplored research direction.

In this work we present a framework for the perceptually-based accelerated rendering of
animated sequences [55]. In our approach, computation is focused on those selected frames
(keyframes) and frame fragments (inbetween frames), which strongly affect the appearance of
the entire animation by depicting image details readily perceivable by the human observer. All
pixels related to these frames and frame fragments are computed using a costly rendering method
(we use ray tracing as the final pass of our SHR global illumination solution), which provides
images of high quality. The remaining pixels are derived using inexpensive Image-Based Ren-
dering (IBR) techniques [41,45,63]. Ideally, the differences between pixels computed using the
slower and faster methods should not be perceived in animated sequences, even though such
differences can be readily seen when the corresponding frames are observed as still images. A
spatiotemporal perception-based quality metric for animated sequences is used to guide frame
computation in a fully automatic and recursive manner.

In the following section we briefly introduce the basics of IBR techniques, and we show
their non-standard applications in the context of animation walkthroughs. Then we propose our
animation quality metric, and show its application to improve efficiency of rendering animation
walkthrough sequences.
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2.1 Image-Based Rendering Techniques

In recent years, Image-Based Rendering (IBR) techniques became an active research direction.
The main idea behind the IBR is to derive new views of an object based on a limited number of
reference views. The IBR solutions are especially appealing in the context of photographs of the
real-world, because a high level of realism of the derived frames can be obtained while tedious
geometric modeling required by the traditional (geometry-based) rendering can be avoided. A
practical problem with the IBR techniques is that depth (range) data registered with every image
are required to properly solve occlusions which arise when the camera translational motion is
involved. For the real-world scenes this problem can be addressed using costly range scanning
devices, or using computer vision methods [30], e.g., the stereo-pair method, which are usually
far less accurate and robust.

The IBR approach is also used for generated images, in which case the geometrical model is
available, so depth data of high accuracy can be easily obtained. The main motivation of using
IBR techniques for synthetic scenes is rendering efficiency (it is relatively easy to achieve the
rendering speed of 10 or even more frames per second on an ordinary PC without any graphics
accelerator [63]). Figure 2.1 depicts the process of acquiring an image for the desired view
based on two reference images (keyframes), and corresponding depth maps (the distance to the
object is encoded in grey scale). At first, 3D warping [45] and reprojection of every pixel in
the reference image to its new location in the desired image (inbetween frame) is performed.
Usually a single reference image does not depict all scene regions that are visible from the de-
sired view, which results in holes in the warped reference images. Such holes can be removed
by combining information from multiple reference images during the compositing step (in the
example shown in Figure 2.1 just two images are composited), which complements the desired
image rendering. This requires a careful selection of the reference images to cover all scene
regions which might be visible from desired views. For a walkthrough animation along a prede-
fined path a proper selection of keyframes is usually easier because of the constraints imposed
on the camera locations for desired views. We exploit this observation to improve the efficiency
of high-quality rendering of walkthrough animations, which we discuss in Section 2.3.

The 3D warping technique [45] has one more application in the context of walkthrough ani-
mation sequences. As a result of the 3D warping of a selected frame to the previous (following)
frame in the sequence, the displacement vector between positions of the corresponding pixels
which represent the same scene detail is derived (refer to Figure 2.2). Because the time span
between the subsequent animation frames is known (e.g., in the PAL composite video standard
25 frames per second are displayed), it is easy to compute the velocity vector based on the cor-
responding displacement vector. A vector field of pixel velocities defined for every image in the
animation sequence is called the Pixel Flow (PF) which is the well-known notion in the digital
video and computer vision communities [67]. In this work we focus on walkthrough anima-
tion sequences that deal exclusively with changes of camera parameters,2 in which case a PF
of good accuracy can be derived using the computationally efficient 3D warping technique. In
Section 2.2.1 we show an application of the PF to estimate the human eye sensitivity to spatial
patterns moving across the image plane.

2In the more general case of scene animation the PF can be computed based on the scripts describing motion of
characters, changes of their shape and so on [64]. For the natural image sequences sufficient spatial image gradients
must exist to detect pixel displacements, in which case so called optical flow can be computed [67]. The optical flow
computation is usually far less accurate and more costly than the PF computation for synthetic sequences.
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Figure 2.1: IBR: derivation of an image for the desired view based on two reference images.

2.2 Animation Quality Metric

Assessment of video quality in terms of artifacts visible to the human observer is becoming
very important in various applications dealing with digital video encoding, transmission, and
compression techniques. Subjective video quality measurement usually is costly and time-
consuming, and requires many human viewers to obtain statistically meaningful results [69].
In recent years, a number of automatic video quality metrics, based on the computational mod-
els of human vision, has been proposed. Some of these metrics were designed for video [72,90],
and are often specifically tuned (refer to [91]) for the assessment of perceivability of typical
distortions arising in lossy video compression such as blocking artifacts, blurring, color shifts,
and fragmentation. Also, some well-established still image quality metrics were extended into
the time domain [39, 69, 83].

A lack of comparative studies makes it difficult to evaluate the actual performance of the dis-
cussed metrics. It seems that the Sarnoff model [39] is the most developed.3 Also, Watson [83]
proposed a metric based on the Discrete Cosine Transform which is computationally efficient
and retains many basic characteristics of the Sarnoff model [84]. In this work we decided to use
our own metric of animated sequence quality, which is specifically tuned for synthetic animation
sequences.

3The product of Tektronix, Inc. called PQA-200 Picture Quality Analyzer test instrument includes the so called
JNDmetrix which is based on this technology.
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frame frame+1frame-1

Figure 2.2: Displacement vectors for a pixel of the current frame in respect to the previous
(frame-1) and following (frame+1) frames in an animation sequence. All marked pixels depict
the same scene detail.

Before we move on to the description of our metric, we recall basic facts on the spatiotem-
poral Contrast Sensitivity Function (CSF) which is an important component of virtually all ad-
vanced video quality metrics. We show that in our application it is far more convenient to use the
spatiovelocity CSF, which is a dual representation of the commonly used spatiotemporal CSF.

2.2.1 Spatiovelocity CSF Model

Spatiotemporal sensitivity to contrast, which varies with the spatial and temporal frequencies
is an important characteristic of the HVS. The sensitivity is characterized by the so called spa-
tiotemporal CSF, which defines the detection threshold for a stimulus as a function of its spatial
and temporal frequencies. One of the most commonly used analytical approximations of the
spatiotemporal CSF are the formulas derived experimentally by Kelly [29]. Instead of exper-
imenting with flickering spatial patterns, Kelly measured contrast sensitivity at several fixed
velocities for traveling waves of various spatial frequencies. Kelly used the well-known rela-
tionship of equivalence between the visual patterns flickering with temporal frequency � , and
the corresponding steady patterns moving along the image plane with velocity

�� such that [81]:

� � �������	� ��
���
�� ��
� �� (2.1)

where
���

and
��


denote the horizontal and vertical components of the velocity vector
�� , which

is defined in the image plane ��� , and
���

and
��


are the corresponding components of the spatial
frequency

��
. Kelly found that the constant velocity CSF curves have a very regular shape at any

velocity greater than about 0.1 degree/second. This made it easy to fit an analytical approxi-
mation to the contrast sensitivity data derived by Kelly in the psychophysical experiment. As a
result, Kelly obtained the spatiovelocity CSF, which he was able to convert into the spatiotem-
poral CSF using equation (2.1).

We use the spatiovelocity CSF model provided by Daly [9], who extended Kelly’s model to
accommodate for the requirements of current CRT display devices (characterized by the maxi-
mum luminance levels of about 100 �

� � � �
), and obtained the following formula:

� ��� � � � � " � � � � � �  ��� � ��������� � � � �� " � !�"
� �
� � ��" � ��� " �$#&%(' ��)

� " � � � � � � �*�
� "� � � +
"

(2.2)

where
���-, ��(,

is the spatial frequency in cycles per degree,
� �., �� ,

is the retinal velocity in
degrees per second, and � � �  �  ��

, �
� � � � � � , � �

�  � �
are coefficients introduced by Daly.
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In [9, 55] a more extended discussion on estimates of the retinal velocity is available, which
takes into account the eye natural drift, smooth pursuit, and saccadic movements. Figure 2.3
depicts the spatiovelocity CSF model specified in equation (2.2).
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Figure 2.3: Spatiovelocity Contrast Sensitivity Function.

Although the spatiotemporal CSF is used by widely known video quality metrics, we chose
to include the spatiovelocity CSF into our animation quality metric. Our design decision was
encouraged by the observation that it is not clear whether the vision channels are better described
as spatiotemporal (e.g., Hess and Snowden [25], and many other results in psychophysics) or
spatiovelocity (e.g., Movshon et al. [49], and many other results especially in physiology). Also,
accounting for the eye movements is more straightforward for a spatiovelocity CSF than for a
spatiotemporal CSF [9]. Finally, the widely used spatiotemporal CSF was in fact derived from
Kelly’s spatiovelocity CSF, which was measured for moving stimuli (traveling waves). However,
the main reason behind our choice of the spatiovelocity CSF is that in our application we deal
with synthetic animation sequences for which it is relatively easy to derive the PF (as it was
shown in Section 2.1). Based on the PF and using the spaciovelocity CSF, the eye sensitivity
can be efficiently estimated for a given image pattern in the context of its motion across the
image space. The spaciovelocity CSF is an important component of the Animation Quality
Metric (AQM) developed by the author, which we describe in the following section.

2.2.2 Animation Quality Metric Algorithm

As the framework of our AQM we decided to expand the perception-based visible differences
predictor for static images proposed by Eriksson et al. [14]. The architecture of this predictor
was validated by Eriksson et al. through psychophysical experiments, and its integrity was
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shown for various contrast and visual masking models [14]. Furthermore, we found that the
responses of this predictor are very robust, and its architecture was suitable for an incorporation
of the spatiovelocity CSF.

Figure 2.4 illustrates the processing flow of the AQM. Two comparison animation sequences
are provided as input. For every pair of input frames the probability map ������� of perceiving
the differences between these frames is generated as output. ������� provides for all pixels the
probability values, which are calibrated in such a way that 1 Just Noticeable Differences (JND)
unit [8, 39] corresponds to a 75% probability that an observer can perceive the difference be-
tween the corresponding image regions. While � ����� provides local information on the differ-
ences, for some applications it is more convenient to use just a single value which measures
the differences globally. We assumed that the percentage of pixels in � ����� with the predicted
differences over the 1 JND unit is a good measure of such global differences.

In the AQM computation each input frame undergoes the identical initial processing. At
first, the original pixel intensities are compressed by the amplitude non-linearity and normalized
to the luminance levels of the CRT display. Then the resulting images are converted into the
frequency domain, and decomposition into spatial and orientation channels is performed using
the Cortex transform which was developed by Daly [8] for the VDP. Then, the individual chan-
nels are transformed back to the spatial domain, and contrast in every channel is computed (the
global contrast definition [14] with respect to the mean luminance value of the whole image was
assumed).

In the next stage, the spatiovelocity CSF is computed according to the model of Kelly. The
contrast sensitivity values are calculated using equation (2.2) for the center frequency

�
of each

frequency band of the Cortex transform. The visual pattern velocity is estimated based on the
average PF magnitude between the currently considered frame, and the previous and following
frames (refer to Figure 2.2). As we discussed in Section 2.1, the PF can be estimated rapidly
using the 3D warping technique, which requires access to the range data of the current frame and
the camera parameters for all three involved frames. This means that the access to well localized
data in the animation sequence is required. Since the visual pattern is maximally blurred in the
direction of retinal motion, and spatial acuity is retained in the direction orthogonal to the retinal
motion direction [13], we project the retinal velocity vector onto the direction of the filter band
orientation. The contrast sensitivity values function are used to normalize the contrasts in every
spatial frequency-orientation channel into the JND units. Next the visual masking is modeled
using the threshold elevation approach [14]. The final stage is error pooling across all channels.

The AQM is well suited to computer graphics applications, and can be used to determine
when a lower image quality will be not perceived for a given frame, and its local regions. As
pointed out in [10] our AQM has a strong potential in efficient guiding of the video compression
to determine the level of perceived details locally per frame. In this work we apply the AQM to
guide inbetween frame computation, which we discuss in the following section.

2.3 Rendering of the Animation

For animation techniques relying on keyframing the rendering costs depend heavily upon the
efficiency of inbetween frame computation because the inbetween frames usually significantly
outnumber the keyframes. We use IBR techniques [41, 45] described in Section 2.1 to derive
the inbetween frames. Our goal is to maximize the number of pixels computed using the IBR
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Figure 2.4: Animation Quality Metric. The spatiovelocity CSF requires the velocity value for
every pixel, which is acquired from the PF. The PF is computed for the previous and following
frames along the animation path in respect to the input frame

�

(or frame
� �

which should closely
correspond to frame

�

).

approach without deteriorating the animation quality as perceived by the human observer.
The quality of pixels derived using IBR techniques is usually lower than ray-traced pixels,

e.g., in the regions of derived frames which are expanded in respect to the reference frames.
The HVS sensitivity is especially high for such quality degradations when the PF values are
low. We replace IBR-derived pixels in such regions with ray-traced pixels. The replacement
is performed when the PF velocity is below a specified threshold value, which we estimated in
subjective and objective (using the AQM) experiments [56]. In typical animations, usually only
a few percent of the pixels are replaced, unless the camera motion is very slow. Those pixels are
usually grouped around a so called focus of expansion [67] which represents the position in the
image corresponding to the point towards which the camera is moving.

Since specular effects are usually of high contrast and they attract the viewers attention
when looking at a video sequence [58], special care is taken to process them properly. Existing
IBR methods require costly preprocessing to obtain specular effects of good quality [20, 31,
33, 48]. For example, a huge number of pre-calculated images is needed to obtain crisp mirror
reflections. Because of these problems we decided to use ray tracing for pixels depicting objects
with strong specular properties. We use our AQM to decide for which objects with glossy
reflectance or transparent properties such computations are required.

Pixels representing objects in the inbetween frames which are not visible in the keyframes
cannot be properly derived using the IBR techniques, and we apply ray tracing to fill the resulting
holes in frames (refer to Section 2.1). An appropriate selection of keyframes is an important
factor in reducing the number of pixels which must be ray traced. This issue is discussed in
more details in [56]. In particular, it is shown that the accumulated PF along the animation path
can be used to improve the performance of IBR computation. It turns out, that by reducing
the variance of the accumulated PF between the animation segments, the number of pixels in
inbetween frames which depict objects invisible in the keyframes can usually be reduced.

In this work for the sake of simplicity we assume that initially the keyframes are placed
sparsely and uniformly along the animation path which is known in advance. Then adaptive
keyframe selection is performed, which is guided by the AQM predictions. We provide a de-
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tailed description of this solution in the following section. Then, we discuss the performance of
our approach for a case study walkthrough animation.

2.3.1 Adaptive Refinement of Keyframe Placement

At first the initial keyframe placement is decided by choosing the constant length of � �  
frames

for all animation segments � . Then every � is processed separately applying the following
recursive procedure:

1. Generate the first frame
� � and the last frame

� �
in � using ray tracing. The keyframes

that are shared by two neighboring segments are computed only once.

2. Apply 3D warping to keyframes
� � and

� �
to derive two instances

� � � ��� ��� and
� � �� ��� ��� of

an inbetween frame � � � �	� .
3. Use the AQM to compute the probability map � ����� with perceivable differences between� � � ��� ��� and

� � �� ��� �
� .
4. Mask out from � ����� all pixels that must be ray traced because of the IBR deficiencies

(discussed in Sections 2.1 and 2.3). The following order for masking out pixels is taken:

(a) Mask out from � ����� pixels with low PF values (in [56] we discuss experimental
derivation of the PF threshold value used for such masking).

(b) Mask out from � ����� pixels depicting objects with strong specular properties (i.e.,
mirrors, transparent and glossy objects). The item buffer [85] of frame

� � ��� �
� is
used to identify pixels representing objects with such properties. Only those spec-
ular objects are masked out for which the differences between

� �� ��� �
� and
� � �� ��� ��� as

reported in � ����� can be readily perceived by the human observer. In Section 2.3.2
we provide details on setting the thresholds of the AQM response, which are used
by us to discriminate between the perceivable and imperceivable differences.

(c) Mask out from � ����� holes composed of pixels that could not be derived from
keyframes

� � and
� �

using 3D warping.

5. If masked-out � ����� shows the differences between
� �� ��� �
� and

� � �� ��� ��� for a bigger per-
centage of pixels than the assumed threshold value:

(a) Split � at frame
� � ��� �
� into two subsegments � � (

� � ��������� � � ��� �
� ) and
� � (

� � ��� ��� ��������� � � ).

(b) Process recursively � � and � � , starting this procedure from the beginning for each
of them.

Else

(a) Composite
� �� ��� �
� and

� � �� ��� ��� with correct processing of object occlusions [41,63] to
derive

� � ��� �
� .
(b) Ray trace all pixels which were masked out in the step 4 of this procedure, and

composite these pixels with
� � ��� �
� .



Perception-Driven Rendering of High-Quality Walkthrough Animations 31

(c) Repeat the two latter steps for all remaining inbetween frames,
i.e.,

� �#��������� � � ��� ����� � and
� � ��� �
� � � ��������� � � �

�
in � .

To avoid image quality degradation resulting from multiple resamplings, the fully ray-traced
reference frames

� � and
� �

are always warped in step 5c to derive all inbetween frames in � .
Pixels to be ray traced, i.e., pixels with low PF values, pixels depicting specular objects with
visible differences (such objects are selected once for the whole � in step 4b), and pixels with
holes resulting from the IBR processing must be identified for every inbetween frame separately.
We evaluate the AQM response only for frame

� � ��� ��� . We assume that derivation of
� � ��� ��� ap-

plying the IBR techniques is the most error-prone in the whole segment � because its arclength
distance along the animation path to either the

� � or
� �

frames is the longest one. This as-
sumption is a trade off between the time spent for rendering and for the control of its quality
(we discuss the AQM costs in Section 2.3.2), but in practice, it holds well for typical animation
paths.

Figure 2.5 summarizes the computation and compositing of an inbetween frame. We used
a dotted line to mark those processing stages that are performed only once for segment � . All
other processing stages are repeated for all inbetween frames.

As a final step, we apply a spatiotemporal antialiasing technique, which utilizes the PF to
perform motion-compensated filtering (refer to [55] for more details).

2.3.2 A Case Study Walkthrough Animation

In this work we choose as a case study a walkthrough animation for the ATRIUM scene shown
in Figure 3.1b (more details on this scene are provided in Chapter 3). The main motivation for
this choice were the interesting occlusion relationships between objects which are challenging
for IBR. Also, a vast majority of the surfaces exhibit some view-dependent reflection properties,
including the mirror-like and transparent surfaces, which made the computation of inbetween
frames more difficult. Under such conditions, the AQM guided selection of keyframes and
glossy objects within inbetween frames to be recomputed was more critical, and wrong decisions
concerning these issues could be easy to perceive. In [56] we discuss another case study in
which a walkthrough within the POINT scene (shown in Figures 1.4 and 2.5) is analyzed with an
emphasis on strong variations of the PF along the animation path.

For our experiments we selected a walkthrough sequence of 200 frames. At the initial
keyframe selection step, we assumed the length � �  � � � frames for each animation segment
� . Figure 2.6a illustrates adaptive refinement of the initial keyframe placement guided by the
AQM predictions. We use the global measure (refer to Section 2.2.2) of the differences between
frames, i.e., the percentage of pixels in � ����� for which the differences are over 1 JND. Note that
only pixels to be derived using the IBR approach are considered, while pixels to be ray traced
are masked out (refer to Section 2.3.1). The filled squares in Figure 2.6a show the global AQM
predictions of the differences between the subsequent keyframe pairs:

� � warped to
� � � ��� ��� , and� �

warped to
� � �� ��� ��� for every initial segment � . Segments with global predictions over 10%

are split, and the filled diamonds show the corresponding reduction of the predicted perceivable
differences between the newly inserted frames. The 10% threshold was chosen experimentally,
and can be justified by the fact that for an animated sequence the observer can only fixate at
one location per frame. For such a location and its surround of approximately 1 visual degree
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Figure 2.5: The processing flow for inbetween frames computation.
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Figure 2.6: ATRIUM walkthrough statistics: a) the AQM prediction of the perceived differences
between the warped images of two neighboring reference frames, b) the percentage of pixels
to be recalculated by ray tracing. In a) lines connecting the symbols were added for the figure
readability and they do not have any meaning for unmarked frames.
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the eye sensitivity is high due to the foveal vision [79], while it decreases significantly for the
remaining image regions which are perceived by means of the peripheral vision (eccentricity
effect). The AQM sensitivity is tuned for the foveal vision because at the stage of animation
rendering it is not known where the observer will be looking. This means that the AQM predic-
tions might be too conservative for many image regions, and the degradation of quality usually
cannot be perceived unless the observer attention is specifically attracted to these regions. To
improve the rendering performance, we chose a trade-off solution in which visible differences
between warped keyframes are allowed for a small number of pixels (up to 10%). Although
some perceivable quality problems may arise for these pixels, it is most likely that the observer
will not notice them at all.

The overall costs of the computation of inbetween frames are strongly affected by the num-
ber pixels of that must be ray traced. As we discussed in Section 2.3, we replace IBR-derived
pixels by ray traced pixels for image patterns moving with low velocity. The graph in Fig-
ure 2.6b shows the percentage of such pixels for which the PF values are below the experimen-
tally derived threshold velocity 0.5 degree/second (for details concerning the derivation of this
threshold value refer to [56]). Also, we use ray tracing to derive pixels depicting specular objects
for which the IBR technique leads to the AQM predicted degradation of the animation quality.
As described in Section 2.3.1, for every segment � we run the AQM once to decide upon the
specular objects which require recomputation. If a group of connected pixels representing an
object (or a part of an object) exhibits differences greater than 2 JND units (a 93.75% probabil-
ity of the difference discrimination), we select such an object for recalculation. If differences
below 2 JND units are reported for an object by the AQM then we estimate the ratio of pixels
exhibiting such differences to all pixels depicting this object. If the ratio is bigger than 25%,
we select such an object for recomputation - 25% is an experimentally selected trade-off value,
which makes a reduction in the number of specular objects requiring recomputation possible, at
the expense of some potentially perceivable image artifacts. The graph in Figure 2.6b shows the
percentage of specular pixels selected for recomputation. Finally, the percentage of pixels that
are ray traced due to IBR occlusion problems is included in this graph. Table 2.1 summarizes
the results depicted in Figure 2.6b by providing the average percentage of pixels per frame to
be ray traced. Note that the keyframe pixels, which are always ray traced, are included in the
average.

Although the AQM processing costs are relatively high (it takes 243 seconds4 to process a
pair of frames), the overall computation cost per frame was reduced from 40 minutes to 20.5
minutes without noticeable differences in the animation quality.5 Even better performance can
be expected for environments in which specular objects are depicted by a smaller percentage of
pixels, and camera motion is faster.

4We had to consider images of resolution ���������
	���� for the Fast Fourier Transform processing of our frames of
resolution ���
�����
��� .

5All timings reported in this section were measured on a MIPS 195 MHz processor.
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Table 2.1: Statistics of the ray traced pixels in the ATRIUM walkthrough.

Slow motion Specular objects IBR occlusions Keyframes Total
[%] [%] [%] [%] [%]
2.4 40.8 0.3 6.0 49.5

3 Validation of Global Illumination and Rendering Solutions

It is relatively easy to use commodity rendering techniques to create great looking images;
however, it is much more difficult to create images that match the appearance of a real envi-
ronment [46, 54]. The basic precondition to achieving this goal is physically-based lighting
simulation, which is a computationally demanding problem. To make computation tractable in
practical applications, many simplifying assumptions are usually introduced to underlying phys-
ical models. Because analytic evaluation of such simplifications and interactions between them
is generally impractical, the correctness of a given technique must be checked experimentally
by a comparison of simulation results to some reference data [52]. For example, the distribu-
tion of illumination at some predefined points derived analytically or measured experimentally
can be used to validate the lighting simulation part of a rendering algorithm. An effective way
to test complete rendering algorithms, including Tone Mapping Operators (TMO) used for dis-
playing images on the CRT device [71], is a direct comparison of the appearance of virtual and
real-world images as seen by the human observer [46, 47]. Unfortunately, such experimental
validation was almost never performed for existing global illumination solutions, which makes
it difficult to compare their efficiency, or even test their implementation correctness.

One of the reasons such validation experiments are rarely performed in practice is lack of
standardized, robust, non-trivial, and easily accessible test data. Ideally, a standard set of di-
versified tests should be available, such that the performance of global illumination solutions
could be measured in terms of the achieved lighting simulation accuracy, image fidelity, and
computation time. The existence of such tests would make possible the comparison of particu-
lar elements of rendering algorithms as well. Other areas of research such as computer vision,
and augmented reality could also benefit from such test scenes in their studies.

There have been some isolated attempts to develop such standard tests. A well-known exam-
ple is the Cornell box, which was used to validate radiosity solutions [47]. Rushmeier et al. [62]
developed a model of a conference room with four different lighting systems and correspond-
ing photographs of its real world counterpart. Recently, McNamara et al. [46] built a low scale
environment, and requested the human observers to compare its appearance against images gen-
erated by the Radiance rendering system [80]. These scenes are of relatively low complexity in
terms of geometry and lighting, and only the Lambertian and specular reflectance data are posted
on the corresponding Web pages. Myszkowski and his students developed more complete data
of a complex environment (an atrium at the University of Aizu), which are disseminated through
the Internet for public use [51].

In the following section we provide more details on the atrium test scene. Also, we present
the obtained validation results for the SHR and hybrid algorithms (refer to [53, 54]) using the
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atrium data. Finally, we describe a multi-stage validation procedure designed specifically for
global illumination and rendering solutions developed by Myszkowski and Kunii [54].

3.1 Experiments with the Atrium Scene

The main goal of our experiments with the atrium test scene was to predict the appearance of
a full-scale, real world architectural environment of significant complexity given all required
input data such as geometry, description of light sources, surface reflectance characteristics, and
textures. The atrium at the University of Aizu was chosen for its challenging lighting model, the
richness and diversity of the materials employed in the construction, and the geometrical purity
of its architectural structure. Two versions of the atrium data have been developed by the author
and his students within the last six years.
In the earlier version of the atrium data, the geometrical model was significantly simplified (it
was built of about 28,000 polygons) partially to account for the performance of graphics work-
stations available in the mid-nineties. Since the reflectance and color characteristics of con-
struction materials used in the atrium were not available at that time as well, their manual tuning
was performed to reduce the differences between the synthesized image and the corresponding
photograph. In Section 3.1.1 we describe the overall procedure which we took to obtain a good
match between these images.
In the current version of the atrium data, special care was taken to reconstruct a vast majority of
the atrium details. The model is built of almost 700,000 polygons. The reflectance characteris-
tics of the most important construction materials were experimentally measured, and BRDFs of
high sampling density were obtained. Also, the lighting distribution on the floor was measured
at selected sample points. The goal of the experiments with these data was twofold:

� Estimation of the lighting simulation accuracy through comparison with measurement
data;

� Evaluation of computer images fidelity in respect to the real world environment.

In Section 3.1.2 we summarize the obtained results.

3.1.1 Simplified Model

The goal of the experiment performed with the earlier version of data was to match the syn-
thesized image to the photograph. The atrium geometry, although simplified, was properly
reconstructed for all major surfaces taking part in lighting interactions. Furthermore, the spatial
candle-power characteristics (so called goniometric diagrams) of two types of light sources in-
stalled in the atrium were obtained from their manufacturer (Matsushita Electric, Inc.). In total
108 light sources were modeled. However, the reflectance characteristics of the materials used
in the atrium were not available. As the first approximation, the reflectance coefficients were as-
signed based on the data which are available in literature (e.g., [59]) for similar materials. Only
specular and diffuse reflectance coefficients were used, and their values were manually adjusted
to reduce the visible differences between the image and the photograph.

The question of media used for judging such differences immediately arises. If the media are
the same, and viewed under similar conditions (e.g., photographs compared side-by-side), then
the observer’s state of adaptation is also very similar, and his judgment becomes quite reliable.
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Obviously, the fidelity problem of image reproduction on a given medium must be properly
addressed, which in practice proves to be a very difficult problem [15]. In our experiments, we
used the CRT display device to compare images, because this method offers more flexibility in
contrast and brightness manipulations than the hard-copy photographs.

We took the following procedure for the display of synthetic and photographic images. First,
we confirmed that we were able to present the photographic image under display conditions that
gave the best match between this image and the real-world environment. For this purpose, we
adjusted contrast, gamma correction and brightness of the photographic image. Next, we pro-
ceeded with displaying the synthetic image using the TMO which was originally developed by
Tumblin and Rushmeier [71], but was adapted to our needs. The synthetic image was gener-
ated using the ray tracing technique based on the view-independent illumination maps, which
were produced using the SHR approach. Luminance values were computed for every pixel of
the image, and transformed to perceived brightness values which were predicted using Stevens’
power law [71] for given observation conditions. Assuming that the lighting simulation results
are correct, these brightness values should correspond to those of the real-world scene. The
brightness transformation was also performed for the range of luminances produced by the dis-
play device. Then the image brightness values were mapped to those of the display device while
preserving the contrast relation in respect to the maximum brightness value in the image and the
maximum brightness value which can be reproduced by the CRT display device. The goal of
this mapping was to overcome limitations of the CRT device in the dynamic luminance range
reproduction, while obtaining a believable appearance of the displayed image in respect to the
real-world scene appearance. Then, we adjusted the parameters of the brightness transformation
until the appearance of the synthetic image (Figure 3.1b) best matched that of the photographic
image (Figure 3.1a). Since we were unable to determine directly a given viewer’s light adap-
tation level, this method allowed the brightness function to be chosen that worked best for that
viewer under those viewing conditions. Note that the chroma was maintained separately to avoid
color shifts, which could arise from applying the non-linear brightness transformation to every
RGB channel.

While our atrium rendering was far from being perfect, first impressions when observing the
rendered image and comparing its appearance with the photographic image were quite favorable.
In fact, many viewers who were quite familiar with the real atrium thought that they were view-
ing the actual photographic images, when they first viewed the synthetic images. This means
that, in terms of the absolute evaluation, the quality of our images was acceptable. However,
when the same viewers compared the synthetic images to the photographic images, they were
able to find many differences and therefore were able to provide us very useful feedback. Apart
from clearly visible geometry simplifications in the model, the viewers detected our unrealistic
reflections on the side atrium wall, which were originally built of glossy metallic panels. It be-
came clear that simple Lambertian and specular reflectance functions cannot properly reproduce
the appearance of such surfaces, and an exact BRDF must be considered instead. Also, some
viewers noticed that while the image and photographs have similar appearance, they poorly
reconstruct the real-world atrium appearance.
The atrium is illuminated by mixed fluorescent and incandescent lighting, and the standard pho-
tographic techniques failed to produce satisfactory results. The daylight as well as tungsten films
resulted in unnaturally yellowish and bluish images (the question arises whether the commonly
used term “photorealistic rendering” is adequate, or rather just “realistic rendering” should be
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used instead). We chose the daylight film, which subjectively produced more believable results.
Since we adjusted manually surface reflectance coefficients and color to reduce the differences
between the resulting rendered image and the photograph, the image became yellowish as well.
In other words, a good match to the photograph was obtained, which in this case was not equiv-
alent to a good reproduction of the real-world atrium appearance.

In the following section we describe the next generation of the atrium model in which a vast
majority of the drawbacks discussed were removed.

3.1.2 Complete Model

The main motivation of further work on the atrium model was to overcome its most annoying
drawbacks that were pointed out by the viewers judging the atrium rendering quality. The fol-
lowing measures were taken to improve the fidelity of rendered atrium images in respect to the
real-world scene:

� Geometry. The geometrical model was very carefully prepared based on the blueprints
and direct measurements within the atrium. Every detail of the model was described with
a very high accuracy.

� Surface reflectance characteristics. The BRDF measurement for six major construction
materials was performed in cooperation with the Integra, Inc. company. The materials
selected for measurement represent more than 80% of the total surface area in the atrium.
The reflectance attributes for the remaining surfaces were estimated based on available
literature, e.g., [59]. To derive the color of painted surfaces, which were not selected
for the BRDF measurement, the Standard Paint Color charts edited by the Japan Paint
Manufacturers Association were used, and the corresponding RGB values were derived
from a Toyo 88 RGB color finder.

� Textures. Texture acquisition was performed using a digital camera. Standalone samples
of the major construction materials, allowed for much better control of the illumination of
the sample than would have been possible directly in the atrium environment.

� Light sources. The same goniometrical diagrams as in the earlier version of the atrium
model were used. While these diagrams are highly accurate, a practical problem arises
with estimation of the maintenance factor for every light source to account for its uti-
lization level, accumulated dirt and so on. Some atrium light sources are used on a daily
basis, while others are usually switched off to cut down electricity costs. To overcome this
problem, the illumination due to every light source was measured trying to minimize the
influence of indirect lighting. A luxmeter probe was placed in a deep box in such a way
that the probe was directly illuminated, while indirect lighting influence was suppressed
by the box. To reduce interreflections within the box all its sides were covered with a black
fabric. Measurements to determine a reference were taken from newly installed bulbs in
a dirt free fixture. The maintenance factor for this reference light source was assumed to
be 100%. The maintenance factors of the other light sources were scaled in respect to the
reference, based on measurements of illumination at similarly selected sample points. The
lowest maintenance factor was 62%, which clearly shows that the catalogue data should
be properly interpreted to account for characteristics of the real world environment.
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Figure 3.1: An atrium of the Research Quadrangle at the University of Aizu: a) photograph, b)
rendering based on the simplified atrium model.
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More details on the atrium modeling issues are available on the atrium project Web pages
[51].

We used the atrium data to validate the lighting simulation accuracy of our hybrid algorithm
described in Section 1.4.2. Also, we investigated to what extent the image appearance is influ-
enced by the replacement of the measured BRDF by a less rigorous approach to light scattering,
in which simple approximations of the surface reflectance by Lambertian and mirror reflection
models is considered. To estimate these coefficients hemispherical integration of the measured
BRDF for various incident angles was performed, and the obtained values were averaged. This
corresponds to the situation when the approximated reflectance can be somehow acquired, e.g.,
by using a simple measurement device, or by taking standard values from textbooks for the most
common materials. This scenario is also useful when the global illumination and rendering soft-
ware does not support complex reflectance functions described using BRDFs.

We measured the lighting distribution at the atrium floor for 84 sample points. Although all
measurement points were directly illuminated, indirect lighting was also significant accounting
for about 30–55% of the total illumination. The graphs in Figure 3.2 show the distribution of
measured and simulated illumination at selected sample points, which are located at the atrium
floor along three different lines (refer to the atrium project Web pages [51] for a complete doc-
umentation of experiments performed with tabulated illumination and error values). The best
results were obtained from the measured BRDF, in which case the average simulation error in
respect to the measured illumination was 10.5%. For the approach based on the averaged diffuse
and specular reflectance, the error increased to 18.2%. Errors below 5%, 10%, and 20% were
obtained for about 40%, 75%, and 93% of the sample points, respectively, when the measured
BRDFs were used. When the averaged reflectance coefficients were used errors below 5%, 10%,
and 20% were obtained for 8%, 31%, and 68% of the sample points, respectively.

The obtained results may appear pessimistic in terms of the simulation accuracy achieved.
However, the following tolerances for lighting design applications are proposed in the guide-
lines issued by Commission Internationale de l’Éclairage [17]: 10% for average illuminance
calculations and 20% for measured point values. Such a high tolerance is a result of the realistic
evaluation of the accuracy of input data for lighting simulation such as the BRDF of materi-
als, description of light sources, and simplifications of geometrical models. Taking into account
some possible inaccuracies in our atrium model, it can be stated that our hybrid technique mostly
meets the requirements imposed on the simulation accuracy in lighting engineering applications.
However, this is the case only when the measured BRDFs were used, while for the averaged dif-
fuse and specular reflections the errors are too big. On the other hand, such inaccuracies usually
do not affect significantly the image quality. To our experience it is important to model properly
the mirror-like reflections for glossy surfaces. For the BRDF approach this is an easy task, but
for the averaged diffuse and specular reflections some tricks are required, e.g., activating the
distributed ray tracing [23] with many reflected rays spread within a solid angle centered around
the mirror reflection direction.

A robust prediction of real-world scene appearance based on valid input data opens many
important applications for realistic rendering. We performed psychophysical experiments in-
volving 25 subjects (12 of them got basic training in realistic image synthesis and could be
considered as experts) to check how different are rendered images in respect to their real-world
counterpart. The settings used in our experiments are shown in Figure 3.3. We did not use pho-
tographs as reference images in this comparison because of the fidelity problems discussed in
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Figure 3.2: Illumination values [lx] distribution on the atrium floor along a) the left-hand side
corridor (near the wall), b) the left-hand side corridor (near columns), and c) the central part of
the atrium. Measured illumination is compared against the results of simulation in which the
BRDF, and averaged diffuse and specular reflectance coefficients (in the graph we mark this
approach by “KDKS”) are considered.
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Section 3.1.1. Instead, we chose the cross-media comparison [15] in which images displayed on
the CRT screen were compared directly against the real-world atrium. For the rendered images
we used two methods of acquiring surface reflectance characteristics: (1) through the BRDF
measurement, and (2) through the manual adjustment driven by the image appearance (as dis-
cussed in Section 3.1.1). The first method we dub the predictive rendering, and the second one
the artistic rendering, since the latter approach is commonly used in the film and entertainment
industry [2]. Figures 3.4a and b show example images obtained using the predictive and artistic
approaches (refer to the atrium project Web pages [51] for all images used in our experiments).
We conducted two sets of experiments the goal of which was to study the differences that can
be perceived during a very limited and an unlimited observation time.

In the first group of experiments, the subjects were allowed to watch the atrium scene for
10 seconds, and then they were exposed randomly for the same period of time to the predic-
tive image, the artistic image, or just the digital photograph. The subjects were asked how well
the real-world atrium is reproduced by every presented image. Also, more specific questions
concerning lighting reconstruction and tone reproduction on the CRT device were posed. In
all cases the photographs got the highest scores with the mean ranking falling into the range
7.36–8.48 (for the scale spanning the range 0–10). The artistic and predictive approaches got
lower scores falling into the ranges 6.88–7.24 and 6.56–6.96, respectively. What is remarkable
is that the differences in the mean ranking of photographs and computer images were rather
small, below the value of standard deviation error. The artistic approach which is much easier
and cheaper (no expensive BRDF measurement is required) was slightly higher ranked than the
predictive rendering, which to certain extent explains why pragmatic industry always chooses
tweaking rendering parameters instead of performing full-fledged physically-based computa-
tions. The artist can compensate for simplifications in the real-world modeling as well as for
the errors accumulated during input data acquisition (e.g., the measurement of BRDFs and go-
niometrical diagrams). However, such an artistic approach is likely to fail because of the lack
of reference views for the tasks involving rendering of scenes whose appearance is unknown
but must be properly predicted. This is a common problem in engineering applications such as
urban planning, architecture and interior design, and product appearance design.

In the second group of experiments the observation time was not limited, and the pho-
tographs were not considered anymore. Detailed questions were posed to the subjects con-
cerning the quality of lighting and shadow reconstruction, texture and light source rendering,
appearance of highlights and reflections, and contrast reproduction. In the majority of cases the
artistic approach obtained slightly higher mean ranking scores, while the fidelity of the appear-
ance of highlights and reflections were ranked higher for the predictive approach. This suggests
that by measuring the BRDF better image fidelity can be expected, especially for materials with
complex reflectance characteristics. The detailed comments provided by the subjects revealed
that lack of contrast in highlight and shadow areas is particularly annoying. This could be im-
proved by more careful selection of the TMO. The architectural perfection of the model does
not account for variations in construction and disparities of materials. This becomes highly vis-
ible near highlights and reflection regions, which are distorted because of inaccuracies in the
positioning of tiles. Also, in the real-world scene subjectively stronger specularity can be ob-
served for pink tiled columns and brown painted panels in the central part of the atrium. This
disagreement in appearance can be explained by inaccuracies in the capturing of rapidly chang-
ing specular reflectance during the BRDF measurement. Also, the limited dynamic range of the
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Figure 3.3: Settings used for experimental comparison of the atrium images displayed at the
CRT device against the real-world view. The subject observed the atrium through an aperture
which limited the field of view to the one similar to the displayed images.

CRT device may contribute to this disagreement. A more detailed report on the psychophysical
experiments is presented on the atrium project Web pages [51].

The atrium test is a good tool to evaluate the overall rendering performance and quality.
However, it is too complex to validate isolated components of the global illumination algorithms.
This requires some step-by-step validation procedure. In the following section we present an
attempt to establish such a procedure.

3.2 Multi-Stage Validation Procedure

Myszkowski and Kunii [54] proposed a systematic approach toward validation of global illumi-
nation and rendering solutions. As the result, a multi-stage validation procedure was designed,
which an attempt of testing lighting simulation and image display solutions proposed in the re-
alistic image synthesis literature. The SHR approach (refer to [53, 54]) was chosen as a case
study. The following validation stages were considered:

1. Comparison with analytically derived data. The advantages of such an approach are
easy access to the reference data and very good accuracy of such data. For example, this
makes it possible to check whether the simulation results converge to the correct solution,
or some bias is introduced by an examined algorithm. However, the analytical solutions
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a)

b)

Figure 3.4: Rendered images using the more complete atrium model a) the predictive rendering
and b) the artistic rendering.
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of the rendering equation exist only for extremely simple scenes.

In [54] two simple scenes were considered: an empty cube and an empty sphere tessellated
by planar mirrors. For the cube test the Lambertian surface reflectance characteristics
were assumed. This test was used to investigate the influence of the discretization error
caused by meshing solutions of various complexity which are used in radiosity computa-
tion. In particular, it turned out that a lighting storage scheme based on a non-adaptive
mesh can lead to significant discretization errors, even if the lighting simulation is of a
good accuracy.

The test with an empty sphere tessellated by one or two mirror planes was designed specif-
ically to check the modeling accuracy of specular light reflection. Since modeling of such
reflections for indirect lighting is costly within the radiosity algorithm framework, the goal
of this test was to investigate how clustering of secondary emitters trades the simulation
accuracy for the computation efficiency. The results presented in [54] showed that clus-
tering dramatically reduces the computation costs while it affects the solution accuracy
only slightly.

2. Comparison with experimentally measured data. More advanced tests involving visi-
bility computations must be performed for the completeness of the validation procedure.
The only way to obtain reliable lighting distribution data for complex environments is a
direct measurement of illumination for real-world scenes.

In [54] two sets of measurement data were compared against simulation results. The data
were obtained in the specifically designed measurement room owned by Toshiba Light-
ing Corporation. Real-world light sources (not idealized point light sources used in the
analytical tests, which distribute energy uniformly in all directions) were used to illumi-
nate the room, and their spatial energy distribution was specified by their goniometrical
diagrams. This made it possible to test whether such diagrams are handled properly by
the SHR software. While originally not considered in [54], the most recent version of
the atrium test (refer to Section 3.1.2) with measured distribution of illumination on the
floor, could also be used. However, this atrium test is especially suitable for validation of
algorithms supporting complex BRDFs, which is not the case for the SHR technique.

3. Comparison of rendered images and photographs. The validation procedure discussed
so far was used to test all major components of the SHR algorithm in terms of the accuracy
of lighting simulation. However, in many applications what really matters is the quality
of rendered images as perceived by the human observer.

In [54] the atrium scene discussed in Section 3.1.1 was chosen to compare simultaneously
viewed synthetic images and photographic images representing the same scene. Obvi-
ously, the latter version of the atrium test (refer to Section 3.1.2) could be considered,
but at the time of preparing [54] it was not available. As discussed in Section 3.1.1, the
comparison against the photographic image might involve the problem of fidelity to real-
world. However, such a comparison proved to be useful in evaluating some of aspects of
rendering such as the fidelity of geometry and light distribution modeling. Also, it is much
easier to use photographs, especially by the third party users, who were not involved in
the development of test data, and who could not see the real-world scene used for the test.
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As concluded in [54] the SHR algorithm positively passed all stages of validation, and can
be considered as an efficient and reliable tool for lighting simulation and predictive rendering of
high quality images. The hybrid algorithm (refer to in Section 1.4.2) which was developed more
recently [75] underwent a similar validation procedure. The obtained lighting simulation accu-
racy and quality of images (refer to Section 3.1.2) were also very good. The hybrid algorithm
is our default choice for rendering of complex scenes, which feature surfaces with the complex
BRDFs. We prefer to use the SHR algorithm for simpler scenes with mostly Lambertian surface
reflectance characteristics.
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