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Course Abstract

In this course, we describe the fundamentals of light transport and techniques for computing the
global distribution of light in a scene. The main focus will be on the light transport smulation
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Goals

* Fundamental understanding of global illumination
algorithms

* How to design a Gl algorithm?

* Understanding advantages and disadvantages of Gl
algorithms

The goal of this course isto offer afundamental understanding of global
illumination algorithms.

More specifically, we will explain how one can design a global illumination
algorithm, starting from the fundamental light transport equations. This
approach differs from the more traditional ad-hoc approaches, where people
start from abasic ray tracer, and then add more effects on a‘menu’ basis.

Looking at global illumination algorithmsthisway, it iseasier to look at
specific advantages and disadvantages of different approaches.



What will be covered?

* “What is the Rendering Equation?”

* “How to design global illumination algorithms?”
* case study: stochastic radiosity

* “What are current trends in Gl research?”

This course will cover the following topics:

- Radiometry and the rendering equation. The rendering equation isthe
fundamental transport equation that describes light transport in a three-
dimensional scene. It isarecursive integra equation, which isdifficult to
solve anayticaly. So numerical technigques need to be used.

- Starting from the rendering equation, we can design global illumination
algorithms based on the general notion of path transport. Different choices
give rise to different algorithms, each with their own error characteristics.

- An important case study is the class of stochastic radiosity methods.
Employing stochastic relaxation methods or random walks, they can provide
much better convergence than the more classic finite element techniques.



What will not be covered?

* Nuts and Bolts:

* “How to intersect a ray with a procedural surface?”

* “What is the best acceleration structure for ray
tracing?”

* How to use existing “global illumination” or
“photorealistic” rendering software.

* E.g. Mentalray, Lightwave, ...

We will not cover any lower-level functionality needed to write and design
global illumination algorithms. Basic operations such as ray-geometry
intersection tests, or acceleration structures for speeding up ray-casting, are not
the focus of this course.

Also, we will not focus on how to use existing software packages that can
render photo-realistic images.



Photo-realistic Rendering Framework

Modeling Global Tone
Illumination Mapping
Measurements Algorithms Operators

Geometry
BRDFs Radiometric
Lights Values
Textures

The general framework for a photo-realistic rendering system can be
composed of four parts:

- Acquisition of data (measurements of geometry and materials)
- Light transport simulation (global illumination agorithms)

- Visual Display (tone mapping operators)

- Human observer

This course focuses on the global illumination part. We will touch on some of
the other parts, but will not go into any detail.

This framework for photorealistic rendering is described in more detail in:

Donald P. Greenberg, Kenneth Torrance, Peter Shirley, James Arvo, James
Ferwerda, Sumanta Pattanaik, Eric Lafortune, Bruce Walter, Sing-Choong
Foo, and Ben Trumbore. A framework for realistic image synthesis. In Turner
Whitted, editor, SIGGRAPH 97 ConferenceProceedings, Annual Conference
Series, pages 477--494. ACM SIGGRAPH, Addison Wedey, August 1997.



Structure of the course

Part 1: Radiometry

Part 2: General Strategies for designing Gl
algorithms

Part 3: Case Study: Stochastic Radiosity

Part 4;: Trends and Future Research




Radiometry and
Rendering Equation

Radiometry, Rendering Equation

Materials: Interaction of light with matter
* Assumptions about light behavior

* Physical quantities

* Bidirectional Reflectance Distribution Function
(BRDF)

Light Transport:
* Rendering equation




What Is Light?

Electromagnetic radiation

Source: accelerating charge
* Thermal
* Quantum Effects (lasers)

* Fluorescence, etc.

Can be absorbed, reflected, transmitted

Dual (Wave/Particle) Interpretation

Plane Wave

Particle
(E=hv)




Light
Geometric Optics
Wave Model

Quantum Model

Geometric Optics

Can describe the following effects:

Emission

Reflection / Refraction




Wave Model

Maxwell’s Equations
Object size comparable to wavelength

Can describe the following effects: o
Diffraction & Interference 7~
Polarization

Usually not considered in CG

Quantum Mechanics Model

Can describe the following effects:
Fluorescence

Phosphorescence
Light-electricity (photo-electric effects)
Light-gravity (some astronomical effects)

Usually not considered in CG




Geometric Optics: Emission

Energy emitted due to:
* chemical

e electrical

* nuclear

processes

Perfect Reflections/Refractions

Interface between 2 materials

perfect reflection perfect refraction
(Snell’ s law)




Realistic Reflections/Refractions

Interface between 2 materials

reflection refraction

N\
)

N~

Geometric Optics: other effects

Can also describe:

Absorption \\\/heai

Participating Media

Varying index of refraction




Light Transport

Equations that describe steady-state light
energy distribution in the scene

Particles = “‘guanta” of light, each with color
and intensity (‘photons”)

Achieve steady state instantaneously

Radiometry

Physical measurement of energy

Terms
* Radiance: Power/(area steradian)

* Radiosity: Exitant Power/area

* Irradiance: Incident Power/area




Radiance

L(x,8): radiance; radiant energy density
X is position, @ is direction

Radiance is the power

* Per unit projected surface area

* Per unit solid angle

units: Watt / m2.sr

Projected surface area, direction

Per unit projected surface area

dA dA

Radiance varies with direction
Incident radiance, Exitant radiance




Radiance —properties (invariance)

Invariant along a straight line (in vacuum)

X+t, ©

Why is radiance so important?

Response of a sensor (camera, human eye)
IS proportional to radiance

* constant is determined by geometry of the sensor

Pixel values in image are proportional to
radiance received from that direction




Radiance represents equilibrium
Radiance values at all points in the scene

and in all directions expresses the
equilibrium

Radiance relation to power

Power: integrate radiance over area and
solid angle

d’P=L(x — ©)-cosé - dw, - dA

P= j jL(xa@)-cosH-da)@-dA

Area Solid
Angle

10



Diffuse emitter: radiance

Diffuse emitter: light source with equal
radiance everywhere

P= j J'L(xe(a)~cos¢9~da)®~dA

Area Solid
Angle

:Lj dA jcos&dcoe

Area Solid
Angle

=L-Area-rx

Sun Example: radiance

power: 3.91 x 1026 W
area: 6.07 x 1018 m?2

radiance = power/(area.m)
= 2.05 x 107 W/ mZ2.sr




Sun Example

//Same radiance on Earth and Mars?

Sun Example: Power on earth

Power reaching earth on a 1m? square:

P=L jdA '[(:osé*-da)(9

Area Solid
Angle

Assume cos@=1 (sun in zenith)

12



Sun Example:

Power reaching Earth on a 1m? square _

P=L-Area-SolidAngle

Solid Angle = Areag,/(distanceqyy, )
=6.710°sr

P=(2.05x 10’ W/ m2.sr) x (1 m?)x (6.7105 &)
=1373.5 Watt

Radiance - some examples

Power reaching Mars on a 1m? square:

P=L-Area-SolidAngle

Solid Angle = Areag,/(diStance, s sun)?
=292 10°%sr

P = (2.05x 107 W/ m2.5r) X (1 m2) x (2.92 105 &)
= 598.6 Watt




Light N Detector
Source *

PN

Reflectance - Three Forms

- 5 .

[deal"difftuse“Ideal Directional
(Lambertian) specular diffuse

N\

14



BRDF special case: ideal diffuse

Pure Lambertian

(0 ¢ 0,)=1 T
T

0<p,<1

Properties of the BRDF: Reciprocity
Reciprocity

fr(®i ﬁgr): fr(®r %®|)

Intuition: photon does not know which
direction it is coming from

Therefore, use notation: f (©, <> ©,)

Bounds:0 < fr (®i VRN ®r) < o0

15



Rendering Equation (RE)

RE describes radiance transport in a scene
Input:

* light sources
* geometry of surfaces

e reflectance characteristics of surfaces

Output: value of radiance at all points and
in all directions

Rendering Equation

16



Rendering Equation

Rendering Equation

L(x—0) = L(x—>0)+

[Lixew) (0¥ © ©)cos(N,, ¥)da,

hemisphere

17



Rendering Equation

L(x—>0) =

L.(x—>0)+ I L(x<—Y¥)f,(x,¥ < 0) COS(NX,‘P)da)\P

= L(x->0)+ |

hemisphere

& f.(X,¥ <> ©)cos(N, ,\I’)da)q,

Summary

Geometric Optics
BRDF
Radiance is fundamental measure

Rendering equation describes how
radiance can be evaluated in a scene




Radiometry & The Rendering Equation

Global illumination algorithms solve for the equilibrium distribution of light energy in a scene. This chap-
ter presents key concepts and definitions required to formulate the global illumination problem. First, we
give the basic assumptions that rendering algorithms make about the behavior of light. Then, we present
radiometric terms and define the bidirectional reflectance distribution function (BRDF), which captures the
interaction of light with surfaces. Finally, we present the rendering equation, a mathematical formulation of
the problem that global illumination agorithms must solve.

1. Models of light

Light is electromagnetic radiation produced by accelerating a charge. Light can be produced in different
ways; for example, by thermal sources such as the sun, or by quantum effects such as fluorescence where
materials absorb energy at some wavelength and emit it at some other wavelength. There are several mod-
elsthat attempt to explain the behavior of light:

e Geometric Optics Model

In this model, light is assumed to travel through transparent media along rays. This model captures
effects such as emission, reflections, transmission (or refractions). This is the most commonly used
model in computer graphics.

e \Wave model

The wave model is described by Maxwell’s equations and captures effects that arise because light inter-
acts with objects of size comparable to the wavelength of light. This model explains effects such as dif-
fraction, interference, polarization and dispersion. However, these effects are too detailed for the
purposes of image generation in computer graphics and are generally ignored.

e Quantum model

The quantum mechanics model is the fundamental model of light that captures effects such as fluores-
cence and phosphorescence. However, this model is also too detailed and is generally not considered in
computer graphics.
The geometric optics model is the most commonly used model in computer graphics and the model we are
going to usein this course. We are interested in a subset of the behavior exhibited by light: emission, reflec-
tion and transmission.

In this chapter we make several assumptions to formulate the rendering equation. We ignore the light
energy that is absorbed at surfaces and dissipated as heat. We also ignore effects due to the transmission of
light through participating media and media with varying indices of refraction. Additionally, we assume
that light propagates instantaneously through vacuum. Therefore, the goa of the global illumination algo-
rithms presented in this course is to compute the steady-state distribution of lightsin scenes.

2. Radiometry

Radiometry is the area of study involved in the physical measurement of light. This section gives a brief
overview of the radiometric units that will be used in this course.



2.1 Radiometric Terms and Definitions

Radiance Power or Flux

The fundamental radiometric quantity is Radiant Power, also called Flux. Radiant Power, often denoted
as @, is expressed in Watt (Joule/sec), and expresses how much total energy flows from/to/through a sur-
face per unit time. For example, we can say that a light source emits 100 Watts radiant power, or that 50
Waetts radiant power is incident on a desk. Note that we do not specify how large the surface of the light
source or desk is, nor do we specify the distance to/from the source.

Irradiance

I rradiaznce (E) isthe incident radiant power on a surface, per unit projected surface area. It is expressed as
Watt/m*©.

i

E=L

>

For example, if 50 Watt radiant power isincident on a surface which has an area of 1.25 m?, the irradiance
at each surface point is 40 Watt/m? (if the incident power is uniformly distributed over the surface).

Radiant Exitance or Radiosity
Radiant Exitance (M), also called Radiosity (B), is the exitant radiant power per unit projected surface
area, and is also expressed as Watt/m?.

i

M:B:J_

>

For example, alight source emitting 100 Watt, which has an area of 0.1 m?, has a radiant exitance of 1000
Watt/m? in each point of its surface (if the emitting power is uniform over the area of the light source).

Radiance

Radiance (L) isthe most important quantity in radiometry. Radiance isflux per unit projected area per unit
solid angle (Watt/sr.m?)

L. o do
dwdAL dwdAcoso

Intuitively, radiance expresses how much power arrives at (or leaves from) a certain point on a surface, per
solid angle, and per unit area. But we do not consider the normal area, but the area projected perpendicular
to the direction we are interested in. This stems from the fact that if the same power that would arrive a a
normal incident angle, now arrives at a grazing angle, the energy is ‘smeared out’ over a larger surface.
Since we explicitly want to express power per (unit) area and per (unit) projected direction, we haveto take
the larger areainto account, and that is where the cosine term comes from.

Notations:

L(x — ©): radiance leaving point x in direction ©
L(x < ©): radiance arriving at point x from direction ©



[
|
o
Acoso

i

7

area’s

Energy incident on a surface: perpendicular and under angle 6.

Relationships between radiometric units

In the above definitions, we assumed finite surfaces and finite solid angles. However, we can also define
radiometric quantities as continuous functions defined for each point in space and each direction (where
appropriate):

Flux: ®(x— 0O)
Irradiance; E(x « ©) = E@(_)_(_%_Ql
dA
Radiant exitance or radiosity: B(x — ©) = d______@(x-i aS))
dA
2 2
Radiance: L(x — ©) = d ®(x _1@) - dox-0)
dodA dwdAcos6

Reversing the above differentiations:
o = L(x— ©)cosddw,dA
'[A'[Q 0" x
E(x) = j L(x ¢ ©)cosbdmg
Q

B(X) = IQL(X—> ©)cosbdmg

2.2 Properties of radiance

An important property of radiance isitsinvariance along straight paths (in vacuum). The radiance leaving
point x directed towards point y is equal to the radiance arriving at point y from the direction in which point
X is observed. In other words: L(x— y) = L(y « X). This can be proven by considering two differential
surface areas, and by computing energy transport between them.

Due to the definition of radiance, the total (differential) power which is leaving differential surface area
dA,, and whichisarriving at dAy, can be written as:

d2® = L(x—>y)cosexde—ydAX

where xy is the direction pointing from x to y, and dwx— isthe solid angle subtended by dAy as seen from
X. The power that arrives at area dAy from area dA, cah be expressed in asimilar way:



Energy transport between two differential surfaces.
2 —
dd =Ly« X coseydooﬁdAy

We can also write the differential solid angles as follows:

coso, dA coso,dA

do— = — Yy Yy do— = X X
Xy r2 yx r2
Xy Xy

If we assume that no energy loss occurs between the two differential surfaces (as is the case in vacuum),
and that there are no external light sources adding to the power arriving at dA,,, then due to conservation of
energy, al energy that leaves the surface dA, in the direction of the surface Ay must arrive at the surface
dA,:

y

L(xX—vy) cosexdwx—ydAX = L(y«Xx) coseydooﬁdAy
cosf, dA, coso,dA,
L(x— y)cosex————z————dAX = Ly« x)cosey————z————d
Fey ray

and thus:

L(X—>y) = L(y<X)

So, radiance does not attenuate with distance, and isinvariable along straight paths of travel. This property
of radiance is no longer valid if we alow a participating medium to be present between the two surfaces,
which can absorb and scatter energy.

From the above observation, it follows that once incident or exitant radiance at all surface pointsis known,
the radiance distribution for all points in a three-dimensional scene is aso known. Almost all algorithms
used in global illumination limit themselves to computing the radiance val ues at surface points (still assum-
ing the absence of any participating medium). Radiance at surface pointsis referred to as surface radiance
by some authors, whereas radiance for general points in three-dimensional space is sometimes called field
radiance.

Another important property of radiance is that most light receivers, such as cameras or the human eye, are
sensitive to radiance. The response of these sensorsis proportional to the radiance incident upon them; the
constant of proportionality depends on the geometry of the sense.

Together, these two properties of radiance explain why the perceived color or brightness of an object does
not change with distance.



Wavelength dependency
All of the above measures and quantities are not only dependent of position and direction, but are also

dependent on the wavelength of the light energy under consideration. Thus, radiance values are normally
specified for al possible wavelength values. The measures defined above are to be considered as integrated
functions over the wavelength domain covering visible light. However, in papers and publications, it is
often implicitly assumed that the wavelength dependency is part of the equations, and is not mentioned
explicitly.

2.3 Examples

Example 1: Diffuse emitter
A diffuse emitter, by definition, emits equal radiance in all directions from al its surface points:

L(x—>0) = L

o = IAIQ L(x — ©)cosbdmgdA,

IAIQ L cos@dwgdA,

L( IA dAX) (IQ cosedwe)

= wLA

So, for a diffuse surface, the radiance equals the flux divided by the area, divided by . Using the above
equations, it is straightforward to write down the following relationship between power, radiance and radi-
osity of adiffuse surface:

® = LA = Br

Example 2: Non-diffuse emitter
Suppose we have a square area light source with a surface area measuring 10cm times 10cm. Each point of

the light source emits radiance according to the following distribution over its hemisphere:

L(x— ©) = 6000cos (Watt/sr.n?)

Remember that the radiance function is defined for all directions on the hemisphere, and all points on a sur-
face. This specific distribution is equal for all points on the light source, but there is a fall-off as the direc-
tion is further away from the normal at each surface point (see figure below).

The radiosity value for each point can be computed as follows:



normal

)

Two-dimensional plot of emitted radiance according to cosine distribution.

B(X) = IQL(X—> ©)cosbdmg

| 6000c0s?6 dog,
Q

6000( cos?0dwg,

2nn/2
6000 [ | cos’6 sinBdede
00

cos30 T/Z
0

o | =
6000 n[ 2

4000% Watt/m® = 12566 Watt/m”
The power for the complete light source can be computed as follows:

o = IAIQ L(x — ©)cosbdmgdA,

= IAUQ L(x— ©) cosedwe) dA,

j B(X)dA,

40001t Watt/m? - 0.1 m? - 0.1 m?
125.66 Watt

Example 3
Consider the radiance output from the Sun arriving at the Earth and Mars. Assume the sun is auniform dif-
fuse emitter. Using the equation from Example 1:

d = LAR

The total power emitted by the sun is 3.91(10%%) Watt, and the surface area of the sun is 6.07(10%) m2.
Therefore, the radiance equals:



26
L =2 _ 331407 _ 5 05(107)) watt/ m?sr.
AT 16.07(1018)

Given a 1m x 1m patch on the surface of the Earth, the power arriving at that patch is given as:

P = II L cosOdmdA
AT Q
Assume that the sun is at its zenith, therefore, cosd = 1

P = A aicn L - SolidAngle

patc

The solid angle subtended by the sun as seen from Earth is:

1L
ASun

SolidAngle = = 107°(6.7) s

distance
So the total power incident on the patch equals:

P = (1-1)(2.05(107))(6.7(107°)) = 1373.5 Watt

Given a 1m x 1m patch on the surface of Mars, the power arriving at that patch can be computed in the
same way. The solid angle subtended by the Sun as seen from Mars equals:

1L
ASun

SolidAngle = 5 = 1075(2.92) s

distance
Therefore the power incident on a patch on Marsis given by:

P = (1-1)(2.05(107))(2.92(1075)) = 598.6 Watt

Thus, even though the radiance is of the sun isinvariant along rays and does not drop off with distance, the
solid angle measure ensures that the power does drop off with distance squared.

3. The Bidirectional Reflectance Distribution Function (BRDF)

Materials interact with light in different ways, and different materials have different appearances given the
same lighting conditions. Some materials appear as mirrors, others appear as diffuse surfaces. The reflec-
tance properties of a surface are described by a reflectance function, which models the interaction of light
reflecting at a surface.

The bidirectional reflectance distribution function (BRDF) is the most general expression of reflectance of
amaterial, at least at the level of detail we wish to consider. The BRDF is defined as the ratio between dif-
ferential radiance reflected in an exitant direction, and incident irradiance through adifferential solid angle;
or more precisely, the BRDF is defined as the derivative of reflected radiance to incident irradiance.

dL(x—>©,) _ dL(x— ©,)

9= 00) = ExT®,) - Lixe ©,)0056,dog
i | | G)I




0, dL(x—> ©,) 0,

dE(x < ©,)

Geometry for the BRDF
The BRDF has some interesting properties:

1. The BRDF can take any positive value, and varies with wavelength.

2. The value of the BRDF will remain unchanged if the incident and exitant directions are interchanged.
This property is aso called the Helmholtz reciprocity, a principle which says that paths followed by
light can be reversed.

f.(x ©,— 0, =f(x 6, —0)

Because of the reciprocity property, we will use a double arrow to indicate the fact that the two direc-
tions may be freely interchanged: f.(x, ©, <> ©,).

3. Generally, the BRDF is anisotropic. That is, if the surface is rotated about the surface normal, the value
of f. will change. However, there are many isotropic materials for which the value of . does not
depend on the specific orientation of the underlying surface.

4. The vaue of the BRDF for a specific incident direction is not dependent on the possible presence of
irradiance along other incident angles. Therefore, the BRDF as defined above behaves as a linear func-
tion with respect to all incident directions. In order to know the total reflected radiance due to someirra-
diance distribution over the hemisphere around an opaque, non-emissive surface point, we have to
integrate the BRDF definition over the surrounding hemisphere, and this provides us with the following
equation, which is referred to as the reflectance equation:

dL(x— ©,) = f,(x, ©, > ©,)dE(x <+ ©,)

L(x—>©,) = [f(x © 6,)dE(X ©)
Q

X

L(x—>©,) = j f (X, © <> ©,)L(x < ©)cos(n,, ©)dog
Q

X

where cos(n,, ©) isthe cosine of the angle formed by the vectors n, and ©.

Depending on the nature of the BRDF, the material will appear as a diffuse surface, as amirror, as a glossy
surface, or can exhibit any behavior described by the BRDF. The more common encountered types of
BRDF, as used in photo-realistic rendering, are listed below:

Diffuse surfaces

Some materialsreflect light in auniform way over the entire reflecting hemisphere. That is, given anirradi-
ance distribution, the reflected radiance is independent of the exitant direction. Such materials are called



Diffuse and glossy surfaces

diffuse reflectors, and the value of their BRDF is constant for all values of ©, . To an observer, a diffuse
material looks the same from all possible directions. For a pure Lambertian surface:

Pq
f(x,© -0, = —

The reflectancep represents the fraction of incident energy that is reflected at a surface. For physically
based materids, py variesfrom 0 to 1.

Specular surfaces

Perfect specular surfaces only reflect light in one specific direction. According to Snell’s law the incident
and exitant direction make equal angles to the surface’s normal. The BRDF of a perfect specular surface
can be described with the proper use of d-functions. Perfect specular surfaces however, are merely an ideal
mathematical concept. A perfect specular surface has only one exitant direction for which the BRDF is dif-
ferent from 0, which implies that the value of the BRDF along that direction is infinite. Real materials can
exhibit this behavior very closely, but are nevertheless not ‘ideal reflectors’ as defined above.

Glossy surfaces

Most surfaces, however, are neither ideally diffuse nor ideally specular, but exhibit a combination of both
reflectance behaviors; these surfaces are called glossy surfaces. Their BRDF is often difficult to model
with analytical formulae.

Transparent surfaces

Strictly speaking, the BRDF is defined over the entire sphere of directions (4rn steradians) around a surface
point. This is important for transparent surfaces, since these surfaces can ‘reflect’ light over the entire
sphere. The ‘transparent’ side of the BRDF can also behave as a diffuse, specular or glossy surface,
depending on the transparency characteristics of the material. In this text, we will limit ourselves to non-
transparent surfaces, and to BRDFs defined only over the reflecting side of the sphere. However, one hasto
be careful when assuming properties about the transparent side of the BRDF. Some characteristics, such as
reciprocity, may be not true with transparent surfaces. In most texts, the term BSDF (Bidirectional Scatter-
ing Function) is used to denote the reflection and transparent parts together.

In global illumination algorithms one often uses empirical models to characterize the BRDF. Great care
must be taken to make certain that these empirical models indeed make up a good and acceptable BRDF.
More specifically, the following conditions must be met to make the empirical model physically plausible:



e Due to the conservation of energy, the total amount of power reflected over all directions must be less
than or equal to the total amount of power incident on the surface (excess power istransformed into heat
or other forms of energy). For any distribution of incident radiance L(x < V) over the hemisphere, the
total incident power per surface area is the total irradiance over the hemisphere:

E = IL(xe‘P)cos(nX,‘P)dwq,
Q

X

Thetotal reflected power M isadoubleintegral over the hemisphere. Suppose we have a distribution of
exitant radiance L(x — ©) at asurface. Thetotal power per unit surface arealeaving the surfaceis:

M = j L(x — ©)cos(n,, ©)dog
Qy
From the definition of the BRDF we know:

dL(x = 0) = f (X, ¥ <> O)L(Xx <« ¥)cos(n,, ¥)doy

Integrating this equation to find the value for L(x — ©) and combining it with the expression for M
givesus:

M = j Ifr(x, ¥ < ©)L(x« ¥)cos(n,, ©)cos(n,, ¥)doydog
QXQX

The BRDF satisfies the constraint of energy conservation for reflectance in a surface point if for all pos-
sible incident radiance distributions L (x < V) the following inequality holds true:

j j f.(X, ¥ ¢ ©)L(x« ¥)cos(n, ©)cos(n, ¥)doydog
QXQX

M<E or <1
I L(x < ¥)cos(n,, ¥)doy

Qy

Thisinequality must be true for any incident radiance function. Suppose we take an appropriate -func-
tion for the incident radiance distribution, such that the integrals become simple expressions:

L(x<Y¥) = L,,6(¥-0)
then the above equation can be simplified to:

A% j f.(x, ¥ < ©)cos(n,, ©)dog <1
Q

X

This is a necessary condition for energy conservation, since it expresses the inequality for a specific
incident radiance distribution. It is aso a sufficient condition because incident radiance from two differ-
ent directions do not influence the value of the BRDF,; therefore conservation of energy isvalid for any
combination of incident radiance values. If the value of the BRDF is dependent on the intensity of the
incoming light, one has to check the more elaborate inequality. A BRDF which is dependent on the
value of incident radiance is not uncommon. Light striking a surface changes the temperature of that
surface, and the perceived color of an object depends on its temperature. Such behavior of BRDFs is
usual ly not considered in photo-realistic rendering.



e The empirical model for the BRDF must also obey the Helmholtz reciprocity. Thisis an important con-
straint for some algorithms, especially those that compute the distribution of light energy by considering
paths starting from the light sources and paths starting from the observer at the same time. Such algo-
rithms explicitly assume that light paths can be reversed, and thus the model for the BRDF should
reflect this property.

Glassner[Glas95] presents an overview of severa BRDF models used in computer graphics. The most
commonly used mode is the Phong model which is computationally efficient, but is not physically based
sinceit does not satisfy the energy conservation property described above. To date the most comprehensive
model isthe He [He92] model which includes effects such as subsurface scattering and surface anisotropy;
however, it is computationally very inefficient. Instead people use other models such as the Cook-Torrance
[Cook84a] which is physically based and uses microfacets to explain the reflectance behavior of light or
the Ward model [Ward92] which is a popular empirically based model.

4. The Rendering Equation (RE)

This section presents the rendering equation, a mathematical formulation of the steady-state distribution of
energy in a scene with no participating media. As mentioned before, we assume that this steady-state equi-
librium distribution of light energy is achieved instantaneously.

The rendering equation specifies the outgoing radiance at apoint x in adirection @: L(x — ©) in terms of
the emitted radiance at that point, L ,(x — ©), and the reflected radiance at that point L .(x — ©).

L(X—=>0) = L (Xx—>0)+L (x—0)
Using the definition of the BRDF we have

dL,(x = ©) = f.(x, ¥ <> ©)dE(x < ¥)

L(x— ©) = Ifr(x,‘P<—>®)dE(xe ¥)
Q

X

L(x— ©) = Ifr(x, ¥ & O)L(x <« ¥)cos(n,, ¥)doy
Q

X

Therefore, the most common formulation of the rendering equation is:

L(x— ©) = Ifr(x,‘P<—>®)L(xe ¥)cos(n,, ¥)dwy
Q

X

In the rest of this course we will describe different techniques to solve the Rendering Equation.



Spherical Geometry & Coordinates

1. General Concepts

In rendering, we often want to work with functions defined over a hemisphere (one-haf of a sphere). A
hemisphere is a two-dimensional surface, where each point on the surface defines a direction. Spherical
coordinates parametrize the hemisphere such that mathematical operations become possible. In spherical
coordinates, each direction is represented by two angles. Thefirst angle, ¢, indicates the azimuth, the sec-
ond angle, 6, indicates the elevation. Using the notation that capital Greek letters represent directions, we
can say that direction © = (¢, 0).

AZ

direction ®

X

Hemispherical coordinates.
The range of the anglesis given by:

¢ e [0, 2]
0e [0, /2]

0 is measured starting from the normal vector at point x (the direction perpendicular to the surface on
which x islocated), ¢ ismeasured w.r.t an arbitrary axis located in the tangent plane to the surface.

So far we have defined points - or directions - on the hemisphere. If we want full spherical coordinates,
where we can specify every point in space (and not only points on the hemisphere), we not only need a
direction, but also a distance r along this direction. A point is then defined by three coordinates (o, 6, r) .
Transforming between Cartesian and full spherical coordinates is straightforward using elementary trigo-
nometry:

X = rcosesing
= rsingpsin®
I coso

N <
1

or:



= /x2+y2+22
tang = y/X

x2+ 2
tano = y

Rendering algorithms typically integrate functions over directions incident at a given surface point; there-
fore, these agorithms usually use hemispherical coordinates without the distance parameter.

2. Solid Angle

If we want to integrate functions over the hemisphere (e.g. we want to compute al incident light at a sur-
face point), we need a measure on the hemisphere. This measure is the solid angle.

A finite solid angle is defined as follows. measure the given area on the sphere, and divide by the radius
squared. In the figure below, solid angle Q equals its subtended area A divided by the radius squared. If
r = 1, thesolid angle is simply the surface area on the hemisphere.

nXA Q:_A_
I'Z

By
=

Finite solid angle.

X

The concept of solid angle is completely analogous to anglesin 2D. Since the area of a hemisphere equals
2nr~, the solid angle covered by the entire hemisphere is 2r; the solid angle covered by a complete
sphereis 4. Solid angles are dimensionless, but are expressed in steradians (sr). Note that the solid angle
is not dependent on the shape of surface A. To compute the solid angle subtended by an arbitrary surface or
object in space, seen from a specific point, we first project that surface on the hemisphere centered at that
point, and compute the solid angle of the projection.

The solid angle is only dependent on the area of the projection, and does not depend on the shape. There-
fore, two objects with different shapes can still subtend the same solid angle.

For small surfaces, we can use an approximation to compute the solid angle subtended by a surface or

object: Acosa is called the projected surface area. It is an approximation of the projected area of A on a
hemisphere.

3. Integration over hemispheres

Just as differential surface areas or differential volumes can be defined in Cartesian XY or XY Z space to
integrate functions, we can define differential solid angles to integrate functions in hemispherical space.



arbitrary surface, not located
on a sphere

Approximation of the solid angle subtended by small surfaces.

However, unlike differential areas/volumes in Cartesian space, there is a complication that arises in hemi-
spherical space: for aconstant 6 near the horizon, the ‘area’ on the hemisphere ‘ sweeped’ out by some dif-
ferential do is much larger than the area sweeped out for a constant 6 near the pole. The differential solid
angle takes this into account, by using a compensating factor sin®.

A differential solid angle, centered around direction © , iswritten as: dog = sin6dode

Integrating afunction f(®) = f(o, 0) over the hemisphere can then be written as:

2nn/2
jf(@)dwe = j jf(cp, 6)sin6dodeo
Q 00

E.g. 1: Computing the area of the hemisphere:



direction ®
solid angle dwy

X

Differential solid angle on the hemisphere.
2 w/2
[dog = [de [ sinede
Q 0 0
2n
I d(p[—cose]g/2

0
2n

I l.do
0
=27

E.g. 2: Integrating a cosi ne distribution over the hemisphere

f(©) = f(p,0) = cosO

2 m/2
Icos(@, n)dog Id(p I cos0sin0do
Q 0 0

2n

I d(p[_coszer/z
0

0

2

2n
1
[ 5do
0
2n
2

=T

In rendering, we will often make use of a transformation that switches between integrals over the hemi-
sphere and integrals over surfaces. For example, if we want to compute all incident light at a point dueto a
distant light source, we can integrate over al directions within the total solid angle subtended by the light
source, or we can integrate over the actual area of the light source. In order to carry out this transformation,



we have to know what the relationship is between a differential solid angle and a differential surface area
on adistant surface. We use the approximation for small surfaces, which is the exact formulain the case of
differential surfaces:

solid angle dwg
_ COosOdA

0) =
direction ® er

Solid angle - differential area transformation.

X

The differential solid angle dog around direction © is transformed to a differential surface dA around
surface point y. Therefore, any integral over the hemisphere can also be written as an integral over surfaces
visible in each direction as follows:

[f@)dwg = [fy) CrozsedA
A

Q Xy




Monte Carlo Integration

1. Terms and definitions

A random variable describes the possible outcomes of an experiment. Associated with arandom variabley
is a probability distribution function F(y) . Thisfunction gives the probability with which an event occurs
with an outcome lower than or equal to the value of y.

F(y) = probability of random variable<y

F(y) is a non-decreasing function, and is non-negative over the entire domain of the random variable.
Associated with a probability distribution function F(y) is a probability density function (PDF) f(y). If
F(y) iscontinuous over the domain of the random variable, the PDF can be written as the derivative of the
distribution. Given a PDF, we can always construct the corresponding probability distribution function by
integrating the PDF:

y
Fiy) = [ foodx

—o0

Intuitively, one can say that f(x)dx is the probability that the value of the random variable will be equal to
X. A PDF has the following properties:

[eS)

Ip(x)dx =1

—o0

VX: p(x)=0

The probability of the event for which the value of the random variable is situated between two values a
and b isgiven by:

b
Pla<y<b] = Ip(x)dx
a

A sample can be generated according to a given distribution by applying the inverse cumulative distribu-
tion function to a uniformly generated random variable u over the [0, 1] interval. The resulting sampleis
then computed as F ~(u) . Thisis awell-known method of generating random samples, and is graphically
represented in the figure bel ow. This method can only be used however, when the inverse of the probability
distribution function is known.

In most cases, it is not possible to derive an analytical formulafor the inverse of the cumulative distribution
function. An alternative is to use rejection sampling. This technique raises the dimension of the sampled
particles by one, and generates uniform sample points over a bounding box which totally enclosesthe PDF.
For a one-dimensional PDF, whose maximum value over the domain [a, b] to be sampled is M, a pair
(X, y) isuniformly generated over the rectangle [a, b] x [0, M]. In order to become a distribution for x
according to the PDF p(x), the sampled pair isregjected if p(x) <y, and is accepted otherwise. The distri-
bution of the accepted samples x is equal to the PDF p(x) .
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Still another alternative is to use a numerical table, which is constructed by approximating the distribution

function by a piecewise linear function. This method, however, is not widely used, except perhaps when
the PDF to be sampled is extracted from measured data.

The expected value of a random variable is the mean value obtained by performing an infinite number of
experiments. Mathematically, the expected value of a random variable x (E[x]) with PDF p(x) can be
expressed as:

E[X] = pr(x)dx

More generally, if we want to compute the expected value of afunction of arandom variable:

[eS)

EIf00] = [ foop(x)dx

—o0

The variance of a random variable is a measure of the mean square deviation from the expected vaue.
Variance is defined as the expected value of the squared distance between the outcome of an experiment
and its expected value:



S’Tf(0] = EL(f(x) ~ EIf(x)])*]
A well-known expression for the variance can easily be derived:

2 2 2
o [f)] = Ef() 1-E[f(X)]
The definitions and terms used for probability functions can easily be expanded to higher dimensions.

2. Basic Monte Carlo Integration

Suppose we want to numerically integrate a function f(x) over an integration domain D, i.e., we want to
compute the value of the integral I:

| = If(x)dx
D

D = [oyg...Bq] x[0,...Bo0 x ... X [0y... Byl (a;, By e R)

where d is the dimension of the integration domain. Deterministic quadrature formulas would construct a
number of sample points, and use the function values at those points to compute an estimate of I. Monte
Carlo integration basically uses the same approach, but uses a stochastic process to generate the sample
points. It is easy to imagine that we are able to generate N sample points x; (i = 1, ..., N) distributed uni-
formly over the domain D. The mean of the evaluated function values f(x;) multiplied by the area of the
integration domain, provides us with an unbiased estimator for I:

N d
1
= [‘N- > f(Xi)] [H (Bi_“i)]
i=1 i=1
An estimator issaid to be unbiased if its expected value equals the exact result of the expression we want to
estimate by means of the stochastic process. The above estimator (1) is indeed unbiased, because its

expected value equals the value of |. This can be proven easily: the PDF is uniform over the entire domain,
and must thus be equal to:

d -1
p(x) = [H (Bi—ai)}

i=1

It is now straightforward to compute the expected value of (I} :



N d
E((1)) E[[ﬁ Y f(xn] '[H (Bi—oci)]]
N - d -
T %,[H (Bi—oci)] CE(f(%)

1 i=1

d
[H (Bi_ai)] . I_H_i(_)f)____dx
=1 DH(Bi_OCi)

i=1

If(x)dx
D

This estimator also has a variance 02 , which is expressed as.

67 = 1 [ (F0) —1)%dx
N TT Bi—e)”
i=1
=1 [If(x)zdx—lzj
N TT Bi—ep)

i=1
and which in turn can be estimated by:

N N 2
1 2 1
PR ‘[N.Zf(xi)]
((52) _ =1 - =1

N - H (Bi—(xi)

i=1

Basic Monte Carlo integration will often produce much larger errors compared to deterministic quadrature
formulas with a comparable number of sample points. However, Monte Carlo integration can be useful
when we want to compute integrals of high dimensions. When using classic quadrature rules, the number
of sampling points usually grows exponentially with the dimension of the integral, whereas the number of
sampling pointsin aMonte Carlo integration can be of any nature. Another situation where we might opt to
use a Monte Carlo integration technique is when the functions to be integrated are of a rather complex
nature, and do not allow usto make any predictions about the expected error margins. The main advantage
of Monte Carlo integration is that it provides us with an unbiased estimator, which can be important in the

cases mentioned.



3. Importance Sampling

Monte Carlo integration methods can roughly be subdivided in two categories: those that have no informa-
tion about the function to be integrated, and those that do have some kind of information available about
the function. Some authors call the first class of methods ‘blind Monte Carlo’, and the second class
‘informed Monte Carlo’ techniques. Intuitively, one expects that informed M onte Carlo methods are ableto
produce more accurate results as opposed to blind Monte Carlo methods. The basic Monte Carlo integra-
tion algorithm outlined above is a blind Monte Carlo method, because it generates its sample points uni-
formly, without looking at the function itself.

This section describes a sampling technique known as importance sampling. Importance sampling uses a
non-uniform probability function for generating samples. By choosing the probability function wisely on
the basis of some knowledge of the function to be integrated, we can often reduce the variance. If we have
aPDF p(x) defined over theintegration domain D, and if we are able to generate sample points x; accord-
ing to p(x), we can then estimate the value of | by generating N sample points and computing the weighted
mean:

f(x)

(

Zl-

”MZ

(N =

-~

The expected value of (I} equals|, and this ensures that the estimator is unbiased:

N f(x.)
1 i
El = 1
[N.le(xi)
I =

ECD)

N o
1
N 2 E[ )
i=1
N
= _I%IZ If(())(())p(x)dx
=1D
N
= %IZ [food
:]_D

To determine whether this estimator behaves better than uniform sampling, we have to compute its vari-
ancec:

2 _ o(f0 )2 _ o(f0)? 2
= i(m—l) p(x)dx = i(a;(-)) p(x)dx —|

which can be estimated by its own estimator <02> :



It is obvious that the choice of p(x) has an influence on the value of the variance. The difficulty of impor-
tance sampling is to choose a p(x) in such away that the variance is as low as possible, in order to make
the estimator as reliable as possible. The optimal p(x) can be found by minimizing the expression for vari-
ance, using variational techniques and Lagrange multipliers.

We have to find the scalar A for which the following expression L, a function of p(x), reaches a minimum:

2
L(p) = [(333) poodc+ A pooc
D D

We have one boundary condition, which states that the integral of p(x) equals 1 over the integration
domain:

Ip(x)dx =1
D

Thiskind of problem can be solved by using the Euler-Lagrange differential equation.

2
L(p) = (T + ap0o)ax
D

To minimize, we need to differentiate;

2
_ (1
=0 = 55 * A0
2
=0 = —f—z—(—)i)—+k
P20

or p(x) = —%Jf(x)l

The constant 1/ ./A isascaling factor, such that p(x) can fulfill the boundary condition. The optimal p(x)
isthen given by:

[F(x)
If(x)dx
D

pP(x) =

If we use this p(x), the variance will be exactly 0. It is not possible to construct such a p(x) because this
implies we have to know the value of 1, which is exactly what we seek. This does not imply, however, that
importance sampling cannot be used as a sampling tool. It is one of the major tools in order to enhance
Monte Carlo integration techniques. Intuitively, a good importance sampling function matches the shape of



the original function as closely as possible. The figure below shows three different probability functions.
Each of them will produce an estimator whose expected value will be equal to the value of the integral, but
the variance of the one on the left-hand side will be larger than the variance of the sampling function shown
on the right hand side.

Importance sampling with different PDFs.

There are various methods for constructing a‘good’ probability function. The most obvious oneis to build
anumerical probability table by sampling the function to be integrated and use that table to generate sam-
ples. Another (adaptive) strategy could consist of constructing the PDF at various steps during the sam-
pling process, based on the information gathered with all samples so far. This kind of strategy will be
explained further in thistext.

Another way of looking at importance sampling is to consider importance sampling as a transformation of
variables of an integral. Suppose we want to evaluate the following one-dimensional integral:

b b b
= - (fX) - fx
| = [foodx = j 200 PO jp(x)dp( )
a

We can rewrite this mtegral by carrying out a variable transformation:

~1
y = P(X) X =P (y)

dy = p(x)dx
The integral then is expressed as:

P(b)
= [ IE <y>> [P~ ) 4y
oy PP )
If p(x) isaPDF, then P(a) = 0 and P(b) = 1. Evauating thisintegral using asimple Monte Carlq inte-
gration requires the generation of anumber of samples y, over theinterval [0, 1], and evaluating P " (y;) .

Thisis exactly the same procedure as was used for generating non-uniform samples, by taking the inverse
of the cumulative probability distribution function.

4. Stratified Sampling

When generating samples over a domain, we have no control over where the samples will be positioned
relative to each other. It is therefore possible that we have clusters of samplesin one region, and ailmost no
samples in another region. In other words, there may occur severe deviations from the number of samples



we can expect in a certain part of the domain. This can happen irrespective of the PDF used, because the
PDF only tells us something about the expected number of samples in parts of the domain, but not about
the number of samples actually generated in that part.

Stratified sampling is a sampling technique that counters the effect of clumping. The basic idea is to split
up the integration domain in mdigunct subdomains (also called strata), and evaluate the integral in each of
the subdomains separately with one or more samples. More precisely:

1 Ol Ol Olm_1 1
If(x)dx = If(x)dx+ If(x)dx+...+ I f(x)dx + I f(x)dx
0 0 oy Olm_2 Om-1

Stratified sampling often leads to a smaller variance as opposed to a crude Monte Carlo integration method.
The variance of a stratified sampling method, where each stratum receives a number of samples n. , which
arein turn distributed uniformly over their respective intervals, is equal to [Hamm64]:

o m o
2 1
7 I foo dx -3 = I f(x)dx

1 o _q =1 "o,

(OCj _(xj_l)

Q
|
M 3

i

If al the strata are of equal size (ocj —0o; _1 = 1/m), and each stratum contains one uniformly generated
sample(nj = 1;N = m), the above equation can be simplified to:

m Q m Q 2
1
6% = >3 I F(x)2dx — 3 I f(x)dx
i=1 o5 =104
2
1 N Q;
= L0 fx)d
= —N—I 00 dx— 3 I (X)dx
0 j=10_4

This expression indicates that this variance is always smaller than the one obtained by a pure Monte Carlo
sampling scheme. As a consegquence, there is no advantage in generating more than one sample within a
single stratum, since a simple equal subdivision of the stratum such that each sample is attributed to a sin-
gle substratum, always yields a better result.

This does not mean however, that the above sampling scheme always gives us the smallest possible vari-
ance, because we did not take into account the size of the strata relative to each other and the number of
samples per stratum. It is not an easy problem to determine how these degrees of freedom can be chosen
optimally, such that the final variance is the smallest possible. It can be proven that the optimal number of
samples in one subdomain is proportional to the variance of the function values relative to the average
function value in that subdomain. Applied to the principle of one sample per stratum, this implies that the
size of the strata should be chosen such that the function variance is equal in al strata. Such a sampling
strategy assumes prior knowledge of the function in question, which is often not available. However, such
sampling strategy might be used in an adaptive sampling agorithm [Pres90].



Stratified sampling can aso be combined with importance sampling. Thisisquite logical, since importance
sampling basically is a transformation from one integration domain to another. This strategy avoids the
clumping of samples, and at the same time distributes the sasmples according to the preset probability distri-
bution.

F(X)

0 Y

0 Xz X3 Xo X1 1

L

Stratified Monte Carlo sampling combined with importance sampling.

5. When to use Monte Carlo integration?

Monte Carlo integration often produces results that are worse than deterministic quadrature formulas that
require an equal amount of work. However, Monte Carlo integration can yield some advantages:

e Monte Carlo integration always provides us with an unbiased estimator of the integral. This means that
the expected value of the integration procedure equals the exact value of the integral.

e Monte Carlo integration can prove to be useful for integrating functions with complex behavior (e.g.
discontinuities). Deterministic integration algorithms often assume that the integrand does not differ
much from the class of functions for which the integration method is originally designed (e.g. low order
polynomials).

e Monte Carlo integration can be used for high-dimensional integrals, and does not require complex sub-
divisions of the integration domain. Moreover, irregular or complex integration domains can be handled
by means of a Monte Carlo integration scheme quite easily.

The main drawback is the fact that we still end up with a significant amount of error, and that it is hard to
provide an upper bound for the error, due to the variance of the stochastic process. One way to reduce the
varianceisto use stratified sampling or importance sampling as discussed above. Another way of reducing
the error isto compute as much of the integral as possible using deterministic techniques. This can be sum-
marized by the following principle: *If, at any point of a Monte Carlo calculation, we can replace an esti-
mate by an exact value, the sampling error in the final result will be reduced.” The second drawback is that
the variance only decreases proportional to the square root of the number of samples. Deterministic quadra-
ture formulas usually give faster convergence rates.

As a summary, one can state that Monte Carlo can be used for unknown, high-dimensional functions; if
possible, stratified sampling and importance sampling should be used to generate a good distribution of
samples.



6. Fredholm Equations and Monte Carlo Integration

This section describes various strategies for solving Fredholm equations using Monte Carlo integration.
These equations are important for the global illumination problem, because the transport of radiance and
potential is expressed exactly by this kind of equations. Because the transport equations are essentially
recursive, which means the integrand is unknown, Monte Carlo integration is a viable alternative to com-
pute function values described by these equations.

6.1 Fredholm equations of the second kind

A Fredholm equation of the second kind (a recursive, linear integral equation, with a fixed integration
domain) in its most general form can be written as:

a(x) = b(x) + [K(x y)a(y)dy
D

The unknown function is a(x) . b(x) and the kernel K(x, y) are given functions. Generally, we want to
evaluate a(x) in anumber of pointsxin order to learn more about the behavior of a(x).

Since the equation is recursive and no termination condition to stop the recursive nature of the computation
isexplicitly stated, one evaluation of arequiresin its turn the evaluation of an integral. The evaluation can
therefore be thought of as an integral of infinite dimension.

a(x) = b(x) + [K(x y)a(y)dy

D

b(x) + [K(x, y)b(y)dy + [K(x y>[ [K, y’)a(y’)dy’] dy
D D D

b(x) + [K(x, y)b(y)dy + [ [K(x, y)K(y, y)b(y)dy'dy + ...
D DD

A Fredholm equation can generally not be solved using analytical techniques. Because of the high dimen-
sion of the integral, a Monte Carlo method could be a good alternative.

6.2 Relationship with global illumination

The Fredholm equation of the second kind is a very important equation for the global illumination problem.
Indeed, all transport equations of radiance are equations of this kind.

LIX=>Ogy) = Le(X—>0g,)+ IdweL(y—>—®)fr(x,®<—>®out)cos(®, n,)
Q

X

where y = r(x, ©)

y isthefirst visible point as seen from x in direction © . The BRDF, together with the cosine term, takes
the role of the kernel. The emittance of light sources and the initial importance act as the initially known



function b. These equations, however, are not one-dimensional equations, but two-dimensional Fredholm
equations in which the integration domain is the hemisphere around a single surface point.

6.3 Recursive Monte Carlo solutions

When solving a Fredholm equation, we basically want to evaluate the unknown function a(x) at a number
of points X; . These points are determined by the requirements of another computation, possibly an integra-
tion method of the function a(x) over a certain integration domain. Suppose the function a needs to be
evaluated for a certain argument value x. b(x) isaknown function, so b(x,) can be evaluated directly.
To estimate theintegral part of a(x) , we generate anumber of sample pointsy; over thedomain D using
aPDF p,(y) . An estimator for a(X) isthen given by:

(XO7 y| )a(y| )

s =g+ 5 SO

This expression does not real Iy give us a usable value, since the values for a(y;) are still unknown. Thus,
a(Xg) can be approximated by adding more approximations recursively:

N, No
=b — b i
(a0 (XO)+N1i§1 P1(Y;) W ,Z Po(7 \y, *3)
™ K ¥) K(
1 Xo Y Yi» 4 j
i =

There are afew problems with this method of estimating a(x) :

e Thesumisin principle infinite and will never stop. However, if the kernel function fulfils certain condi-
tions, the subsequent terms become smaller and smaller, and will contribute less to the final result. Nev-
ertheless, one has to provide some sort of termination criterion to stop the recursive algorithm.

e The number of samplesrequired for estimating each term in the sum grows very quickly; i.e., estimating
the second term requires N, - N, new samples. Since the nature of the Monte Carlo algorithm requires
that the number of samplesis large, this means a significant amount of computational work.

e One might wonder whether the infinite series of sumswill ever converge. This depends on the nature of
the kernel function K(x, y) . Without going into a detailed description, one can say that the Fredholm
equation has a solution provided that the series

K(X,y) + IK(X, x K (X, y)dx, + Idxljdsz(x, X K(Xg, Xo)K (X0, Y) + ...
D D D

converges for agiven x and y. A sufficient condition for convergence of this seriesis that:

IKI = JIKx yldy<1
D



This is indeed the case for the global illumination transport equations, where the kernel function
K(x,y) equalsthe BRDF times a cosine factor. The convergence can also be deduced from the physical

interpretation of the equation. Due to the restriction of energy conservation, the egquations describing
light transport must always yield a viable result, without diverging or infinite solutions.

Absorption

Because the Fredholm equation is inherently recursive, an estimator produced by a Monte Carlo algorithm
isgiven by an infinite sum. If we want the evaluating algorithm to stop, we have to introduce a termination
condition. However, we still want to maintain the advantage of a non-biased estimator. Simply ignoring the
terms of the sum which fall beyond a certain threshold will introduce a bias. The concept of absorption pro-
vides one possibility of handling this problem.

Suppose we want to integrate the function f(x) over its integration domain [0, 1] . Before evaluating the
function for each sample point x; , we first decide whether or not to use x; (or absorb x; ). The probability
of absorption, isgiven by the absorption coefficient o (0O < a0 < 1). The absorption is decided by generating
auniform random variable u over[0, 1].

For each sample point x;, we now decide what estimator to use. Because a number of samples will be
absorbed, we have to give the non-absorbed samples a higher weight. An estimator y is constructed such
that:

uso y=0
u> o = —————f(xi)
o y = T o
The expected value of y equals:
Ely] = 0 L1000 =
yl = 0o+ ——(1-0) = f(x)

Thus, absorption does not change the expected value of the experiment.

The variance can be expressed as:

2
f(x;) 2 f(x) o
o7yl = (7 ~f0q)) (1= + (0 -f0q) 0 = —

(1-a)?

It is easy to imagine that the f(x) can be of any nature. f(x) can be arecursive function evaluation, or even
the result of another stochastic process. If the absorption test produces a value for u which is larger than o,
we evaluate f(x), otherwise, the result is 0. If we apply such a scheme to a recursive evaluation (e.g. the
Fredholm equation), we decide at each step whether we evaluate the next recursive term. This provides us
with anice termination algorithm, that still keeps the advantage that the final result will be unbiased, due to
the extraweighting factor.

The value of o should be chosen carefully. If o islarge, the recursive evaluation will terminate rapidly, but
we can expect a high variance on the final result. If o is small, the recursive evaluation has a small chance
of terminating, but the result will be more reliable. Usually, the context of the specific problem provides
some insight in order to choose a good valuefor o.



The relation with global illumination lies in the fact that during light-surface interaction, part of the irradi-
ance is absorbed by the surface, and is being transformed into heat or some other form of energy. This
physical process aso has to be modelled somehow in our simulation. Thus use of an absorption coefficient
isan elegant way to do this.

Next event estimation
A Monte Carlo eva uation of the Fredholm equation can be expressed as:

N
) 1 o KX YDA,
00 =T o

i =

which is an estimator for:

a(xy) = b(xg) + [K(xg y)a(y)dy
D
The choice of PDF p, (y) strongly influences the variance on the final result. According to the principle of
importance sampling, we get better results if p;(y) closely resembles K(x,, y)a(y). But, a(y) is till
unknown at his point of the global evaluation, so we can only base our choice on the knowledge of the ker-
nel K(Xg, Y) -

However, the function a is not completely unknown, because the first term of the sum is the known func-
tion b. We can rewrite the Fredholm equation as:

a(x) = b(x) +c(x) where c¢(x) = IK(X, y)a(y)dy
D

c() = [K(x, y>[b<y> + [Ky, y’)a(y’)dy'] dy
D D

[ y)b(yydy + [KOx y) [K(y, y)a(y)dy’dy
D D D

JKO y)b(yydy + [K(x yye(y)dy
D D

In order to evaluate c(x) , we now have to evaluate two integrals. However, there is one distinct advantage:
because we have split the integral in two parts, we can apply much better estimation techniques to each part
individually. The first term of this sum contains known functions K(x, y) and b(y). We can therefore
apply an informed Monte Carlo algorithm to thisfirst term. Possibly, we might even be able to evaluate this
first term analytically. Asaresult, the variance for an estimator of c¢(x) will decrease. The second term still
isarecursive evaluation. Here, westill can rely only on our knowledge of K(x, y) inorder to come up with
a suitable sampling scheme.

The next event estimation technique will prove to be useful if K(x, y)b(y) has some distinct properties
which makes it easy to sample or to compute analytically, so that the decrease in variance will be obvious.
Some typical examples are listed below.



e |f b(y) isafunction which is zero over alarge part of the domain, and contributes significantly to the
overall result of the integral, we might choose to generate more samples in the part of the integration
domain where b(y) differs from zero. By using next event estimation, we can limit the generation of
samples over the subdomain only.

A Kxya) A «xyby) A kxye)

_—

s - s
y y y

Next event estimation applied to a function which is zero over a significant part of theintegration domain.

® A more extreme situation occurs if b(y) equalsaDirac-impulse. We can integrate the first term analyt-
ically. In this case, sampling never yieldsthe correct result, since we are never able to generate the exact
point where b(y) differsfrom zero. An analytical evaluation provides us with an exact result and thus a
better approximation to the overall value c(y) .

A K yay) A K y)by) A K ycy)

_—

s s
y 7 y

Next event estimation applied to a Dirac-impulse.

e A combination of the above cases arises when b(y) has some very sharp spikes. Due to their high func-
tion values, these spikes will cause ahigh variance when selected with ageneral sampling scheme. If we
can separate these spikes from the main integral, we can adjust the sampling function such that the
spikes themsel ves are sampled with a much higher frequency. This might reduce the overall variance.

K(x, y)a(y) K(x, y)b(y) K(X, y)c(y)

A A A

_—

L8 78
y 7 y

Next event estimation applied to a function containing shar p spikes.



The above examples, and their respective solutions, are actually based on the same principle as importance
sampling: if the function value is high, we want to generate more samples at that point. If we can compute
theintegral analytically (e.g. a Dirac-impulse), we might gain a much more significant decrease in the vari-
ance of thefina estimator.

Random walks

As stated above, one of the problems associated with solving Fredholm equations using a Monte Carlo
approach, is that the number of samples might increase very rapidly, due to the recursive nature of the
equation. At each step of the recursion, a number of samplesis generated, thereby effectively generating a
tree of samples. At each node of the tree, we have to compute a possible contribution to the overall result.

a(Xg) = b(xg) + ...

K(Xp Y1)0(Y1) K(Xg Y2)b(Y5) K(Xp Ya)b(ygs) KX yy)Plyy)
P1(Yy) P1(Y5) P1(Y3) pl(le)

K YKOp 20b(Z) (X Y K (o 2y b2y
pl(YZ)pz(Zl‘yz) P1(Y,) pZ(ZNZ‘yZ)

Treeresulting from evaluating a(x).

As can be seen, much work is spent computing the contributions of the nodes lower in the tree, simply
because there are alot more nodes at those depths. These lower nodes typically yield less significant contri-
butions to the overall result. This is a consequence of the increasing multiplications of the kernel function.
This approach seems disadvantageous, because much work is spent eval uating and generating samples that
have no visible impact on the final result of a(x,). On the other hand, we do not want to ignore these
deeper nodes, because they ensure us of an unbiased estimator for a(x) . A compromise is needed to con-
centrate more work in the higher branches of the tree, without ignoring possible contributions of the lower
nodes.

One might be tempted to think that increasing the probability of absorption will solve this problem. A
higher absorption ratio will indeed limit the depth of the tree, but there are still more lower branches when
the overall number of branchesis kept constant.

A more elegant solution is to distribute the work evenly over al the levels of the tree. We can accomplish
this by generating only one sample at each recursive level. This gives rise to a so-called random walk. The
concept of absorption is maintained to end the recursion..

A singlevalue a(xy) can be approximated by adding all contributions from the random walk:



a(Xg) = b(xg) + ...

K(Xp» Y1)b(Y1) KXo Y2)b(Y5) KXo Y3)b(Y3) K (X, le)b(le)
P1(Yq) P1(Ys) P1(Y3) pl(le)

K(Xg YKV 2Db(z) KX Y2 )K(Yp Zy,)b(Zy)
pl(YZ)pz(Zl‘yz) P1(Y,) pZ(ZNZ‘yZ)

Random walk for evaluating a(xp).

K(Xg X) K(Xg, X' )K(X’, X”)
———b(X) +
p’(X’) p’(X)p”(X"|X’)

The variance associated with this estimate is very bad, because we approximate each level of the recursion
with just one sample. On the other hand, we have not used as many samples as we would have done when
generating an entire tree. This gives us an opportunity to generate several random walks. By generating
several random walks originating from a(x,) , and subsequently computing the average of these walks, we
have more estimators for a(x,), and the result might improve. The difference between these two
approaches is drawn schematically below.

(a(xg)) = b(xg) + b(x”) +

a(xg) a(xg)

(i

Single tree ver sus several random walks.

The net result of using random walks is that more effort will be spent in computing the first terms of the
recursive sum. Under the conditions given above for convergence of the Fredholm equation, this seems
reasonable. Indeed, the contributions of the terms later in the series are less and less significant, and will
have a decreasing effect on the final result. Therefore, more relative effort should be put in the first terms.

The total estimator obtained by performing several random walks can be expressed as:

N

walks

1 K(Xg X) KX XDK(X, X")
Z (b(xo) + ——mb(x )+ p/(X/)p//(X//|X/) b(X )+ )

wal ks .
=1

(a(xq)) = N
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Rendering Equation

L(X—0) = L(x>0)+ [ f,(¥ & ©)-L(x ¥)-cos(¥,n,) - de,

L(x«'¥) L(x — ©)
\ //

Black Boxes

* We assume that we can query the scene geometry
and materials

* surface points
* light sources

* visibility checks
* tracing rays




Black Boxes

* Surface points

f (X0 W)=2
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Brdf value="?
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Black Boxes

* Light sources




Black Boxes

* Tracing rays + visibility checks

* spatial acceleration structures
* bounding volumes

Radiance evaluation

Fundamental problem of Gl algorithms:
* Evaluate radiance at a given surface pointin a

given direction

L(x—>0)="7

4

X




Radiance evaluation

),

Radiance Evaluation




Radiance Evaluation

Radiance Evaluation

* Many different light paths contribute to single
radiance value

* many paths are unimportant

* Tools we need:

* generate the light paths
* sum all contributions of all light paths
* clever techniques to select important paths




Monte Carlo Integration

* Numerical tool to evaluate integrals

* Rendering equation:

L(x— ©)=L,(x— )+ j f (¥ 0)-L(x ¥)-cos(¥,n,)-do,

Monte Carlo Integration

I :Tf(x)dx

Generate N random samples x;
with probability density p(x;)

Estimator:




Monte Carlo Integration

* Expected value of estimator
E[(1)]=1

* on ‘average’, we have the right result

e Standard deviation o is a measure for the stochastic
error

L j o ”X) 1T p()dx

Monte Carlo Integration - Example

* Integral

| = _ISX“dx:l m
i

u.g

* Stochastic error ¢ -

=l
l

‘ i | \Hlt " H J |y J 1 ‘

l ‘H H | “‘ ! w“{"f i




Monte Carlo Integration - 2D

* MC Integration works well for higher dimensions

= ﬁ f (X, y)dxdy

Monte Carlo Integration - 2D
* Integration over hemisphere:

| = j f (©)dw,

2zl 2
= [ [ f(p.6)sinodod
00




Direct lllumination

* Paths of length 1 only, between receiver and light
source

Direct lllumination

L(x—>0)= [ f,(¥ ¢ ©)-L(x < ¥)-cos(¥,n,)-da,

Q,

L(x— ©) = j f.(x~¥ <> ©)-L(y = ¥)-G(x y)-dA
Asurce

e
cos(n,,®) cos(n,, ¥)Vis(x, y)
. °> CoN=—"——7
Xy

Ny
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Generating direct paths

* Pick surface points y; on light source

* Evaluate direct illumination integral

12 %9
13 (-, © O)L(y, = ¥)G(X )
‘i\

Generating direct paths

Parameters
* How many paths (“shadow-rays”)?

* total?
* per light source? (~intensity, importance, ...)

* How to distribute paths within light source?

¢ distance from point x
* uniform

11



Generating direct paths

1 path / sourc 9 paths / source 36 paths / source

Alternative direct paths

* shoot paths at random over hemisphere; check if
they hit light source

* paths not used efficiently

* noise in image

* might work if light source
occupies large portion on
hemisphere

12



Alternative direct paths

1 paths / point 16 paths/ point 256 paths/ point

Alternative direct paths

* pick random point on random surface; check if on
light source and visible to target point

* paths not used efficiently

* noise in image

* might work for large surface
light sources

\ b

i N

\

\
S~
SN
N

T
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Direct path generators

Light source sampling Hemisphere sampling Surface sampling

- L, non-zero -L.canbeO -L.canbeO

- 1vigbility termin - no vigihility in - 1vigbility termin
estimator estimator estimator

Direct paths

* Different path generators produce different
estimators and different error characteristics

* Direct illumination general algorithm:

compute radiance (point, direction)
est rad = 0;
for (i=0; i<n; 1i++)
p = generate path;

est _rad += energy transfer(p) / probability(p);

est rad = est rad / n;
return(est rad) ;

14



Indirect lllumination

* Paths of length > 1

* Many different path generators possible

* Efficiency dependent on:

* BRDFs along the path
* Visibility function

Indirect paths - surface sampling

* Simple generator (path length = 2):

* select point on light source
* select random point on surfaces

* per path:
* 2 visibility checks

15



Indirect paths - surface sampling

* Indirect illumination (path length 2):

Lx—>0)= [ [Lly—>¥)f(2-%, © ¥,)6(z ) (2-¥; © O)G(y, )dAdA,
Agurce A

(Lixo> ) = L3 L0 2 W) (3% © ¥5)6(2., %) f,(5.-¥s ©O)6(y. 9
N < P, (¥:)p,(2)

* 2 visibility values (which might be 0) cause noise

Indirect paths - source shooting

* “shoot” ray from light source, find hit location

* connect hit point to receiver

* per path:
* 1 ray intersection
* 1 visibility check

\. ~3
N ~
\.
\.
\
‘W'\
U

16



Indirect paths - receiver gathering

* “shoot” ray from receiver point, find hit location

* connect hit point to random point on light source

* per path:
* 1 ray intersection
* 1 visibility check

Indirect paths

Surface sampling Source shooting Receiver gathering

- 2vigbility terms; - 1vigbility term - 1vigibility term
canbeO - 1ray intersection - 1ray intersection

17



More variants ...

* “shoot” ray from receiver point, find hit location
* “shoot” ray from hit point, check if on light source

* per path:
* 2 ray intersections
* L. might be zero

Indirect paths

* Same principles apply to paths of length > 2

* generate multiple surface points

* generate multiple bounces from light sources and
connect to receiver

* generate multiple bounces from receiver and connect
to light sources

* Estimator and noise characteristics change with
path generator

18



Indirect paths

* General algorithm:

compute radiance (point, direction)
est rad = 0;
for (i=0; i<n; 1i++)
p = generate indirect path;
est rad += energy transfer(p) / probability(p);
est rad = est rad / n;
return(est rad) ;

Indirect paths - how to end recursion?

* Contributions of further light bounces become
less significant

* |f we just ignore them, estimators will be
biased!

19



Russian Roulette

* Integral

} X
| = [ f.p(=)Pdx
N

e Estimator

o) = f();) if x <P,
0 ifx>P. 0

° Variance O,yete >0

Russian Roulette

* In practice: pick some ‘absorption probability’ o
* probability 1-o that ray will bounce
* estimated radiance becomes L/ (1-o)

°*°Eg.aa=09
* only 1 chance in 10 that ray is reflected
* estimated radiance of that ray is multiplied by 10

20



Complex path generators

* Bidirectional ray tracing

* shoot a path from light source
* shoot a path from receiver
* connect end points

Complex path generators

* Combine all different paths and weigh them
correctly

21



Bidirectional ray tracing

* Parameters

* eye path length = 0: shooting from source
¢ light path length = O: gathering at receiver

* \WWhen useful?

* Light sources difficult to reach
* Specific brdf evaluations (e.g., caustics)

Classic ray tracing?

* Classic ray tracing:

* shoot shadow-rays (direct illumination)
* shoot perfect specular rays only for indirect

* ignores many paths

* does not solve the rendering equation

22



General global illumination algorithm

* Black boxes

* evaluate brdf, L,
* ray intersection
* visibility evaluation

* Design path generators

* Path generators determine efficiency of global
illumination algorithm
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StochasticRadiosity

Doing Radiosity without Form Factors

Ph.Bekaert

Intr oduction

This coursesectionfocuseson algorithmsto computelight transportin purely diffuse 3D envi-
ronments. The input consistsof a model of a 3-dimensionakcene with surfacesbroken up in
patchesmostoftentrianglesor corvex quadrilaterals With eachpatchthe self-emittedradiosity
E; (dimensions]W/m?]) andreflectiity p; (dimensionlessaregiven. The self-emittedradiosity
is theradiositythata patchemits“on its own”, evenif therewereno otherpatchesn the model,
or all otherpatchesvereperfectlyblack. Thereflectvity is anumber(for eachconsideredvave-
length)betweerD andl. It indicateswvhatfractionof thepowerincidentonthe patchgetsreflected
(therestgetsabsorbed) Thesedatasuffice in orderto computethe total emittedradiosity B; (di-
mension:[W/m?]) by eachpatch,containingbesideshe self-emittedradiosity alsothe radiosity
recevedvia any numberof bouncedrom otherpatchesn the scene.The problemof computing
B; is commonlycalledtheradiosityproblem[18, 9, 43].

Therestrictionto diffuseemissionandreflectionmay seemdraconicatfirst sight. In addition,
subdviding a scendnto patchedimits whatkind of geometrydescriptionscanbeused.Thereare
otherlight transportalgorithmsthat do not suffer theselimitations. We believe that radiosityis
neverthelesaninterestingtopic for study because:

o diffusereflectionis a reasonabl@approximationin mary indoorandoutdoorervironments,
wherein particularindirectnon-diffuseilluminationis oftennot soimportant;

¢ tessellatiorof inputmodelsis alsorequiredin otherrenderingalgorithms for instancenvhen
using graphicshardware. Although meshquality requirementsre higher mary meshing
problemsarenot uniquefor radiosity Meshingis a topic thathasbeenstudiedextensvely;

¢ the computedradiositiescan be corvertedinto patchand vertex colors, or into a texture,
which canbe renderedn real time using commoditygraphicshardware. Reasonablap-
proximationsfor non-diffusedirectillumination, suchasglossyhighlights,andevenmirror
reflectionscanalsobe addedusinggraphicshardware. At this time, thisis a uniqueadvan-
tageof radiositymethods;

*Currentadress:Max PlancklInstitut fur Informatik, Im Stadtwald 46.1,66123Saarbiicken, Germaly. E-mail:
Phi | i ppe. Bekaert @rpi - sb. npg. de



¢ theradiosityproblemis a simplified instanceof the generallight transportproblem. Both
problemscanbe solved usingthe sametechniquesat leastin theory We will show in this
coursethat the setof techniquedor solving radiosity is richer thanfor the generallight
transportproblem. We hopethe overview in this documentmay thereforeinspire further
researcHor thegeneralight transportproblemtoo.

This coursesectionis structuredas follows: first, a conciseoverview is given of the radiosity
method(§1). Ourfocusis on Monte Carloalgorithmsfor the radiosityproblem,which have been
proposedelatively recently The mainunderlyingprinciplesof thesealgorithmsarepresentedn
§2. Monte Carlo algorithmsfor radiosity are more reliable and easierto implementandto use
thantheir deterministiccounterparts.In addition,they requirelessstorageandyield fair quality
imagesmorerapidly in far mostcases. Theseadvantagesare relatedwith the fact that explicit
computationand storageof so calledform factorsis avoided. Thereare basicallytwo waysto
do this: by stochasticadaptation®f classicaliteratve methodsfor solving linear systems(§3)
andby randomwalks (§4). Next (§5), several variancereductiontechniquesandthe useof low
discrepang samplingarepresentedTheseechniquesansometimeyield very significantspeed-
ups.We concludewith adescriptiorhow higherorderapproximationandhierarchicarefinement
canbeincorporatedn Monte Carloradiosityalgorithms(§6).

All resultsreportedin thesenoteshave beenobtainedusing RENDERPARK on a 195MHz
R10000SGI Octanesystemwith 256MB RAM. RENDERPARK is a free software testbed sys-
temfor globalillumination algorithms,developedat the computergraphicsresearchgroupof the
departmenobf computerscienceattheK. U. Leuven,Leuven,Belgium. The sourcecodeof REN-
DERPARK canbedownloadedrom www. r ender par k. be.

1 The Radiosity Method

In this section,we will presenta very conciseoverview of the radiositymethod. More extensve
treatmentanbe found in the booksby Cohenand Wallace[11] and Sillion and Puech[63] as
well asvariousSIGGRAPHcourserganizedn the past.First,amathematicatiescriptionof the
problemis given. Next, the classicakadiositymethodis outlinedanddiscussed.

1.1 Mathematical problem description

The radiosity problemcan be describedmathematicallyin threedifferentways: by the general
renderingequationaninstanceof it for purelydiffuseervironmentsandby a discretizedversion
of thelatter.

1.1.1 The generalrendering equation

The renderingequation,introducedin the field by Kajiya [25], describedight transportin ervi-
ronmentsexhibiting generallight emissionandscattering.The averageradiosity B; emittedby a



patchi, in suchanernvironmentis givenby:

1
B, = A_/ / L7 (z,0) cos OdwedA, (1)
with
L7(z,0) =L (2,0)+ | fr(2;0" > ©)L(z,0’) cos b dwer (2)
Qg

Themeaningof thesymbolsis summarizedn atableatthe endof thesenotes(page44).

1.1.2 The radiosity integral equation

In a purelydiffuseenvironment,self-emittedradiancel_” (z) andthebrdf f,.(z) donotdependon
directions® and®’. Therenderingequationthenbecomes:

L7 (z) =L (z) + ; [r(x) L (2,0 cos #' dwg,.

Of coursetheincidentradiancel.“ (z, ©') still depend®nincidentdirection. It correspondso the
exitantradiancel~ (y) emittedby the point y visible from z alongthe direction©’. Theintegral
above,overthehemispherél,, canbetransformednto anintegraloverall surfacesS in thescene,
yielding anintegral equationin which no directionsappear:

L7 (z) = L7 (x) + pla) / G(z,y) L7 (y)dA,
or (multiplicationwith = on bothsides):
B(z) = B(z) + p(x) / Gz, y)B(y)dA, 3)

Thekernelof thisintegral equationis:

cos 0 cos 0,

G(z,y) = vis(z, y). (4)

2
Ty

Equation(1) now becomes:
1
Bi= - / B(z)dA,. (5)
A Js,

1.1.3 The radiosity systemof linear equations

Onemethodto solve integral equationdik e (3) is the Galerkinmethod[14, 32,11, 63]. Basically
the left andright handside of (3) are projectedonto a setof basisfunctionsand the resulting
coeficientsleft andright areequated With a constanbasisfunctionfor eachpatchi (v;(z) = 1
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if v € S;and0 if z ¢ S;), approximatingB(z) by B(z) ~ B(z) = 3, Bii(z), the Galerkin
methodyieldsthe classicakradiositysystemof linearequations:

Bj=E;+pi ) FyBj (6)
J
ThefactorsF;; arecalledpatdh-to-patd form factors:

1
Fo=+ [ [ Gawida. )

Thecoeficients B; thatresultafter solvingthe systemof linearequationg6) areonly anapprox-
imationfor the averageradiosities(5) in the previous section.Thedifferenceis thatdiscretisation
errorsget propagatedresultingin diffusereflectionsof for instancelight leaks. It is possibleto
construciscenesn which thedifferences visible, but suchcasesreveryrarein practice.We will
denoteboththe averageradiosity(5) andtheradiositycoeficientsin (6) by B; in theremaindeiof
thistext.

1.2 The classicalradiosity method
Solvingtheradiosityproblemtakesthefollowing four steps:

1. Discretisatiorof theinputgeometryin patches. For eachresultingpatch:, aradiosityvalue
(perconsideredvavelength)B; will becomputed;

2. Computatiorof form factorsF;; (7), for every pair of patches andy;
3. Numericalsolutionof the radiositysystemof linearequationg6);

4. Displayof thesolution,includingthetransformatiorof theresultingradiosityvaluesB; (one
for eachpatchandconsidereavavelength)o displaycolors. Thisinvolvestonemappingand
gammacorrection.

In practice,thesestepsareintertwined,for instance:form factorsare only computedwhenthey
are needed,intermediateresultsare displayedalreadyduring systemsolution, in adaptve and
hierarchicaradiosity[10, 21], discretisations performedduringsystemsolution,etc. . . .

1.3 Problems

At first sight,onewould expectthatstep3, radiositysystemsolution,would be the main problem
of theradiositymethoddueto the sizeof the linear systemghatneedto be solved (oneequation
perpatch,100,000patchess quite common).Theradiositysystemof linearequationgs in prac-
tice however very well behared, so that simpleiterative methodssuchasJacobior Gauss-Seidel
iterationscorverge afterrelatively few iterations.

Themainproblemsof theradiositymethodarerelatedto thefirst two steps:



Constant Approximations "true” radiosity Quadratic Approximations

Flat shaded Gouraud shaded

Figurel: Meshingartifactsin radiositywith constanapproximationgleft) includeundesireghad-
ing discontinuitiesalongpatchedges.Gouraudshadingcanbe usedto blur thesediscontinuities.
Whereever theradiosityvariessmoothly a higherorderapproximatiorof radiosityon eachpatch
resultsin a more accuratemage on the samemesh(a quadraticapproximationwas usedin the
right column), but artifactsremainneardiscontinuitiessuchas shadov boundaries.The middle
columnshowsthe“true” radiositysolution(computedwith bidirectionalpathtracing).

1. Scenediscretisation:the patchesshall be small enoughto captureillumination variations
suchasnearshadev boundariestheradiosity B(z) acrosseachpatchneedgo be approxi-
matelyconstantFigurel shavs whatimageartifactsmayresultfrom animproperdiscreti-
sation.On the otherhand,the numberof patcheshouldnt betoo high, becausehis would
resultin anexaggeratedgtoragerequirementgndcomputatiortimes;

2. Form factor computation: the numberof form factorsis not only huge (10,000,000,000
form factorsfor 100,000patches)but eachform factorin additionrequiresthe solution of
a non-trivial 4-dimensionaintegral (7). Theintegral will be singularfor akutting patches,
wherethe distancer,, in the denominatoiof (4) vanishes.The integrandcanalso exhibit
discontinuitiesof variousdegreesdueto changingvisibility (seefigure?2).

Extensve researcthasbeencarriedout in orderto addresgheseproblems. Proposedsolutions
includecustomalgorithmsform factorintegration(hemi-cubealgorithm,shaftculling ray tracing
acceleration, . . ), discontinuitymeshing adaptve andhierarchicalsubdvision, clustering,form
factorcachingstratgiesthe useof view importanceandhigherorderradiosityapproximations.

The techniguegpresentedn thesenotesaddresgshe latter problemby avoiding form factor
computationand storagecompletely This resultsin morereliable algorithms(no problemswith
form factorcomputationakrror), that requirelessstorage(no form factorsneedto be stored).In
addition,the presentea@lgorithmsaremoreeasyto implementandto useandthey resultin images
of reasonablguality, shaving multiple inter-reflectioneffects,sometimesnuchmorerapidly than
otherradiosityalgorithms.
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Figure 2: Form factor difficulties: the form factorintegral, equations(7) and (4), containsthe

squaredistancebetweerpointsin the denominatar This causes singularityfor akutting patches
(left). Changingyisibility introducediscontinuitieof variousdegreesn theform factorintegrand
(right). Dueto this problemsyeliableform factorintegrationis a difficult task.




2 Monte Carlo Radiosity Basics

It is possibleto avoid form factorcomputatiorandstoragen radiositybecaus¢heform factorsF;;
(7) for fixeds andvariablej form a probability distribution thatcanbe sampledefficiently. Using
form factorsampling Monte Carloestimationof sumsthatoccurin radiosityyieldsexpressionsn
whichtheform factorappearsn numeratoanddenominatgrsoit cancelsandthenumericalvalue
of aform factoris never needed.In this section,an outline is given how sumscanbe estimated
usingthe Monte Carlomethod,andhow form factorbasedsamplingcanbe carriedout.

2.1 Monte Carlo estimation of sums
2.1.1 Monte Carlo methods

Only avery brief outlineis givenhere.An excellentintroductionto Monte Carlomethodscanbe
foundin [26].

The basicideaof Monte Carlo methodsis to formulatea quantityto be computedasthe ex-
pectedvalue of a randomvariable. The meanof independensamplesof the randomvariable
yieldsanestimatefor its expectedvalueandthusfor the quantityto be computed.

A randomvariableis a setof possibleoutcomessaya;, with associategrobabilitiesp; that
indicatethe chancehatthe outcomewill shav upin arandomitrial. Theoutcomesanbediscrete
events(“heads”or “tails”, oneof the six facesof a dice, a integer numberin a givenrange),or
continuoug(for instancea pointin a squareor a directionin the hemisphereabove a pointon a
surfacein 3D space).The probabilitiesneedto be positive andthey sumupto 1. In thesenotes,
we will dealmainly with discreterandomvariables.

The expectedvalueof a discreterandomvariableA = (@i, pi),i = 1...n (nisthenumberof
potentialoutcomes)is definedas

n

E [/‘i] = Z ;i Pi- (8)

=1
A secondjuantityrelatedto randomvariablesthevariance playsin importantrolein theanalysis

of the performanceof a Monte Carlo method. The varianceis the meansquaredeviation of the
outcomedrom the expectedvalue:

n

VEA =3 (- BLAI) 5= Y atp — BLAP. ©

=1

2.1.2 Monte Carlo summation

We will now applythe above definitionsin orderto estimatea finite sum

S = iai.
i=1

IMonte Carlosummatioris the sameasMonte Carlointegration,but with a discreterandomvariableratherthana
continuousone.




Supposehat N timesaterma,,, s = 1,... N israndomlyandindependentlypickedfrom thesum,
with theterma; having a probability p; of beingpicked. The averageratio of thevaluea;, of the
pickedterms,overtheir probability p;, , thenyieldsanestimatefor thesumsS:

N

1 a;
— “ ~S. 10
N ; D, ° (10)

Indeed therandomvariablethatcorrespondsvith this procedurds S = (a;/p;, p;), with outcomes

A

a;/p; andassociategrobabilitiesp;, i = 1. ..n. Theexpectedvalueof S is:

n

RSESY gpi = S.

i=1 *°

This impliesthatestimatingS by a singlesampleworks, but it is easyto shav thatin thatcase,
alsothemeanof N independentrials will yield a correctestimatg26]. Thevariance

f e a2
visI=) L -9 (11)

i=1

indicateshow effective suchMonte Carlo summationwill be. It canbe shavn that an estimate

with IV trials will be off by lessthanonestandad error 1/ V[S]/N 68.3%of thetime. It will be
off by lessthantwice the standarderror95.4%of thetime. The probabilitythatthe estimatds off

by lessthanthreetimesthe standarderroris 99.7%. If thevarianceV/[S] is large, moresamples
(larger N) will berequiredin orderto obtainestimatesvhich arewithin afixedthresholdrom the

true sumwith givenconfidence.

Ideally, the varianceshouldbe zero, in which casea single randomtrial alreadyyields the
correctresult. Theestimators for S is thencalledperfect Unfortunately perfectestimationis not
possibleif the quantityto be estimateds not alreadyknown. In the caseof summation perfect
estimationwould resultif p; is chosenproportionalto a; andall a; are of the samesign. The
probabilitiesp; however needto be normalized: )" , p, = 1. Normalizationimplies that they
would have to equalp; = a;/S, but S is not known in advance! Note that with theseperfect
probabilities,a; /p; = S always.Any randomtrial would yield the correctresultindeed.

The varianceformula above indicatesthat good estimationwill resultalreadyif p; is chosen
approximatelyproportionalo a;. Ontheotherhand,caremustbetakenthatnoneof thetermsgets
atoolow probability, yielding largeratiosa? /p;. In particularp; shallnever be zeroif a; isn't: the
estimatesvould nolongercorvergeto thecorrectsolution(they would be biased andthevariance
would beinfinitely large.

2.1.3 Discussion

Monte Carlomethodsarewidely applicableandsimple.lt is sometimesaidthatthey areaway of
solving complicatedmathematicaproblemswithout complicatedmath. Indeed,all oneneedso
dois 1) designarandomvariablewith appropriataneanandlow variance2) take randomsamples
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from it, and3) averagetheresultg. Disregardingroundingerrorsandothersourcesof inaccurate
arithmetic,the more samplesone takes, the closerthe estimatewill be to the correctresult. In
the caseof imagesynthesisthe error manifeststself in the form of noisy artifacts. If animage
computedwith a correctlyimplementedunbiasedvionte Carloalgorithmexhibits no noise,it will
becorrect.

Themaindisadantageof Monte Carlomethodss theirslow, O(1/y/N) corvergencein order
to reducethe standarderrorby afactorof 10, 100timesmoresamplesreneededFor thisreason,
alot of researcthasbeencarriedout (andstill is beingdone)in orderto transformagivenestimator
for someprobleminto onewith lower variance(variancereductiontechniques)or to take samples
accordingto non-randonbut moreuniform patternglow-disciepancysampling, sees5.

Consideringthat computersare very good at addingnumbers Monte Carlo summationis in
generahotrecommendedThe situationhowever changegor sumswith alarge numberof terms,
which arenot simplenumbersput which arethe resultof somecomplicatedcalculation.With an
appropriatgorobability distribution p;, it may happernthatonly a smallsetof all termsin the sum
needdo be evaluatedn orderto obtainanestimatefor the sumthatis of sufficientaccurag. The
impactof thetermswhich arenot sampleds takeninto accounin the probability distribution, “by
thefactthatthey could have beensampled”.We shallseethatthisis the casen radiosity

2.2 Form factor sampling

In radiosity we will needto evaluatesumswith asmary termsastherearepatchesn the scene.
Eachtermcontainsaform factor F;;, whichis givenby a non-trivial 4-dimensionaintegral (7).

Theform factorsF;; for fixed: andvariablej form a probability distribution becausehey are
all positive or zero,andthey sumupto 1 in acloseden/ironment:Z;?:1 F,; = 1. This probability
distribution canbe sampledy meansof local or global uniformly distributedlines In bothcases,
randomlines (rays)aretracedthroughthe scenein sucha way thatthe probability of obtaininga
ray from a fixed patch: to ary otherpatchy in the scenecorrespondso the form factor F;; (see
figure3). In otherwords,giventhata uniformly distributedlocal or globalline pierceshepatchi,
it will have its next intersectiorwith a surfacein the sceneon ary otherpatchj with probability
equalto F;;. Suchlineswill beusedto sampletransitionsfrom a patch: to arandomotherpatch
J with probability of selectingj beingequalto F;;.

2.2.1 Localline sampling

Thefirst way to sampleaccordingo theform factorsis to select
1. auniformly choserrandomray origin = onthesurfaces; of thefirst patchi;

2. acosine-distrilntedray direction® w.r.t. thesurfacenormalat x.

2Quite often however, thereis complicatedmath involved in the designof an appropriateestimatoror in the
samplingalgorithm!



Figure3: Local uniformly distributedlines (left) areconstructedy explicitly samplingthe origin
onapatchin thescene Globallines(right) areconstructedvithoutreferenceo ary of thepatches
in the scene.Their intersectionpointswith the surfacesin the sceneare however alsouniformly
distributed. The anglebetweentheselines andthe normalon eachintersectedsurfaceis cosine
distributed, just like with local lines. The intersectionpoints define spanson eachline. Each
global line spancanbe usedbidirectionallyfor form factor computationbetweernthe connected
patches.

The probability thatthefirst hit pointy = h(x, ©) of thisray with a surfaceof the scendayson
apatchj is givenby F;;3. This samplingschemehasbeenproposedat the endof the '80-iesasa
ray-tracingalternatve for the hemi-cubealgorithmfor form factorcomputatiori62, 57].

2.2.2 Global line sampling

Therealsoexist techniquego construcuniformly distributedlineswithoutexplicitly samplingthe
origin on a patchin the scene.Uniformly distributedlines constructedvithout explicit sampling
theorigin onapatch,arecalledglobal uniformlydistributedlines Theconstructiorandproperties
of suchlineshave beenstudiedextensiely in integral geometry{48, 49, 50].

In the context of radiosity the following algorithmshave beenused:

e Two-points-on-a-sphee method:two uniformly distributedpointsp andq aresampledon
the surfaceof a sphereéboundingthe scene.Theline connectingy andg canbe shown to be
a uniformly distributedline within the sceng49]. A field of N uniformly distributedlines
is obtainedby sampling N pairsof pointsx, andy,, K = 1,..., N, onthe surfaceof the
boundingsphere;

e Plane-intercept method[46, 37,50, 70]: a uniformly distributedpoint © is sampledon the
unit sphere. As such,© is a uniform global direction. Considerthe plane P throughthe
origin andperpendiculato ©: the planeequations © - x = 0. Now considerthe orthogonal

3Exercise:proofthis. Hint: calculatethe probabilityp;; thath(z, ©) € S;
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projectionof the sceneonto this plane. Eachuniformly sampledpoint = in the projection
definestogethemwith ©, auniformly distributedline throughthe scene.

Theresultinglinescrossseveralsurfacesin the scene.Theintersectiorpointswith theintersected
surfacesdefinespansof mutually visible patchesalongthe line (seefigure 3). Eachsuchaline
spancorrespondso two local cosine-distrilntedlines— onein both directionsalongtheline —
becausehe global uniformly distributedlines are uniformly distributedw.r.t. every patchin the
sceneThisis unlikelocallines,which areuniformly distributedonly w.r.t. the patchon which the
origin wassampled.

It canbe shown thatthe probability that a global uniform line, generatedvith the aforemen-
tionedalgorithmsntersectagivenpatchi, is proportionalto thesurfaceareaA; [50]. If NV global
linesaregeneratedthe numberN; of linescrossinga patch: will be

A
N; = N . (12)
It canalsobe shown that,if N;; is thenumberof linesthathave subsequenintersectionsvith the
surfacesn thesceneon patch: andon patchj, then

Nyj

i

~ F;;

17"

2.2.3 Local versusglobal line sampling

The main adwvantageof global lines over local lines is that geometricscenecoherencecan be
exploitedin orderto generateyloballinesmoreefficiently:

¢ Inanaiveray-tracingmplementatiorior instancethetwo-points-on-a-sphemethodwould
yield all £ intersection®f aline with thesurfacesin thesceneatthe samecostof determin-
ing only the nearesintersectiorof alocalline. In aproperlyconstructedscenethe number
of line spanson a globalline is half the numberk of intersectionpoints. Sinceeachspan
is usedbidirectionally this meanghatthe globalline yields the equivalentof £ local lines
at the samecost. Even whenusing ray-tracingacceleratiortechniqueghat allow to stop
tracingalocal line beforeall its potentialintersectiongvith the scenearedeterminedthere
still is aspeed-up.

e The plane-intercepmethodallows bundlesof parallelglobal linesto be generatedisinga
Z-buffer lik e algorithm: first, a uniform randomdirection® is chosen.Next, a rectangular
window is chosenn the plane,throughthe origin andperpendiculato ©, thatcontainsthe
orthogonalprojectionof the whole sceneon the plane. A certainresolutionfor rendering
is chosenin the window. Eachpixel will correspondo a parallelglobal line. Finally, a
suitableorthogonalprojectionmatrix is setup andthe scengorojectedontothe planeusinga
Z-buffer-lik e algorithm. Insteadof keepingonly the nearesZ-valuein eachpixel however,
afull sortedlist of all patchesvisible througheachpixel is kept[37]. Alternatively, it is
possibleto usesweep-planalgorithmsto solve thevisibility problemanalytically[46]. This
correspondso a bundleof parallellineswith infinite density[69].
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The main limitation of global linesw.r.t. local lines is that their constructioncannoteasily be
adaptedn orderto increaseor decrease¢heline densityon a givenpatch.In particular whenused
for form factorcalculation it canbe shovn thatthe form factorvarianceis approximatelyinverse
proportionalto theareaA; of the sourcepatch:. Thevariancewill be high on smallpatches.
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3 StochasticRelaxation Radiosity

The radiosity systemof linear equationg6) is usually solved usingan iterative solution method
suchasJacobi,Gauss-Seidebr Southwelliterations. Eachiterationof sucha relaxationmethod
consistof sums:dotproductsof arow of theform factormatrix with theradiosityor powervector
Whenthesesumsareestimatedisinga Monte Carlomethod,asexplainedin the previoussection,
astochasticelaxationmethodresults.In this sectionwe explorestochastigelaxationmethoddor
radiosity basedn form factorsampling.Not only is form factorcomputatiorandstorageavoided
in stochastigelaxationmethodshut alsotheir time compleity is muchlower: roughlylog-linear
in thenumberof patchegatherthanquadratic.

3.1 The Jacobiiterati ve method for radiosity
3.1.1 Regular gathering of radiosity

The Jacobiiterative methodfor radiosity constructsa sequencef approximationsBi(k) for the
solution of the radiosity systemof equationg(6). As the first approximationBZ.(O) = E;, self-

emittedradiosity can be taken. A next approximationBZ.(’““) is then obtainedby filling in the
previousapproximationB(*) in theright handsideof (6):

B = E

k+1 k
B*Y = Ei+p Y FyBY (13)

J

A hemi-cubealgorithmfor instanceallows to computeall form factorsF;; for fixedpatch: simul-
taneouslyDoing so,iterationstepsaccordingo theabove schemecanbeinterpretedasgathering

steps:in eachstep,the previousradiosityapproximationsBJ(-k) for all patchesgj are“gathered”in
orderto obtaina new approximatiorfor the radiosity B+ at.

3.1.2 Regular shootingof power

A shootingvariantof the above iteration algorithm can be obtainedby multiplying the left and
right handsideof (6) by theareaA;, yielding the so calledpowersystemof linearequations:

P,=®;+ Y P;Fjip;. (14)
J
TheJacobiterative methodcanalsobeappliedto this systemof equationsyielding the following
iterationscheme:

PO = o
PFY = o+ PP Fp. (15)

J
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3.1.3 Incrementalshootingof power

Eachregular power-shootingiteration above replacesthe previous approximationof power P*)
by anew approximationP*+1). Similarto in progressie refinementadiosity[8], it is possibleto
construciterationsin whichunshotpoweris propagatedatherthantotal power. An approximation
for thetotal poweris thenobtainedasthesumof increments\ P%*) computedn eachiterationstep:

APi(O) ®;
k+1 k
APZ-(+) — ZAPJ( )Fjipi
J

3

k
PP = 3 APY
=0

3.1.4 Discussion

With deterministicsummationthereis no differencebetweertheresultsafter completeiterations
with theabove threeiterationschemesWe will seebelon however, thatthey leadto quitedifferent
algorithmswhenthe sumsareestimatedtochastically

Thecomputatiorcostof eachdeterministiaterationis quadratian the numberof patches.

3.2 StochasticJacobiradiosity
3.2.1 Stochasticincrementalshootingof power

Considerthe incrementalpower shootingiterationsabose. The sum Zj APj(k)Fjipi canalsobe
written asa doublesum,by introducingKronecler’s deltafunctiond; = 1 if [ = and0 if [ # 4:

APi(kH) = Z AP]'(k)Fjlpl(sli-
7sl
Thedoublesumcanbe estimatedisinga Monte Carlomethodasexplainedin §2.1:
1. Pickterms(pairsof patches)j, () in eitherof thefollowing ways:
(a) By localline sampling:

e Selecta“source”patch; with probability p; proportionalto its unshotpower:

pj=APP/APY with: APY =" APH
J

e Selecta “destination”patch/ with conditionalprobability p;; = F; by tracinga
localline asexplainedin §2.2.1.

Thecombinedprobability of picking a pair of patchegj, ) is

pi = pipu; = APY F JAPY.
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(b) By globalline sampling(transilluminationmethod[37, 68]): the intersection®of each
globalline (§2.2.2)with the surfacesn the scenalefinespansof mutuallyvisible pairs
of pointsalongthe line. Eachsuchpair correspondso aterm (j,/) in thesum. The
associateghrobabilityis:

Py = AjFj/Ar.

2. Eachpickedtermyieldsascoreequalto thevalueof thattermdividedby its probability p;;.
The averagescoreis an unbiasedestimatefor AP(’““) Estimationwith N local linesfor
instanceyields:

i i AP](sk js:lsplsélsﬂ _

]ss

k) Ni (k+1)
AP — =~ AP,
N

N; = ZL 4y, i is thenumberof local linesthatlandon .

The procedureabove canbe usedto estimateAPi(k“) for all patcheg simultaneouslyThe same
sampleqrays)canbe used.The differenceis only in the scoreswhich basicallyrequireto count
the numberof rayshitting eachpatch.With stratifiedlocal line sampling,algorithm1 results.

3.2.2 Discussion

The mostexpensve operationin the algorithmabove is ray shooting. The numberof raysthat
needsto be shotin orderto computethe radiositiesin the sceneto given accurag with given
confidencds determinedy the varianceof the involved estimators.We discussherethe caseof
localline sampling.

Variance of a single iteration The varianceof the above sketchedMonte Carlo methodfor
estimatingAPi(’““) is straightforvardto computeaccordingto (11) [1]:

2
[ (k+1 | = )Api(k—e—l) _ (APi(k—i—l)) - (16)
Thelattertermis usuallynegligible comparedo theformer(APi(k“) < AP}’“)).

Variance of a sequenceof iterations until corvergence Thesolution P; is eventuallyobtained
asasumof incrementsAPi(k) computedin eachiterationstep. The varianceon eachincrement

APZ.('“) is given above. Assumingthat subsequeniterationsare independentwhich is to good
approximatiortruein practice) andthat V, independensamplesareusedin the k-thiteration,the
varianceon theresultof K iterationswill be

K
V[P] = Z VIAP®).
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Algorithm 1 IncrementaktochasticJacobiiterative method.

1. Initialize total power P; «+ ®;, unshotpower AP, + ®;, receved power §P; « 0 for all
patches andcomputetotal unshotpower APy = Y. AP;

2. Until ||AP,|| < € or numberof stepsexceedsmaximum,do

(a) Choosenumberof samplesV;
(b) Generatarandomnumber € (0, 1);
(c) Initialize Ny, < 0; ¢ < 0;
(d) Iterateoverall patches, for eachi, do
i. g < AP;/APr;
ii. g« q+aq;
iii. N; <+ [N¢+&]| — Nprew;
iv. Do NV, times,
A. Samplerandompointz on S;;
B. Samplecosine-distrinteddirection© atx;
C. Determinegpatch; containingthenearesintersectiorpointof theray originat-
ing atz andwith direction®, with thesurfacesof thescene;
D. Incremen®P; « 6P; + +p;APr.
V. Nyreo ¢ Nyrew + Ni.

(e) Iterateover all patcheg, incrementotal power P; < P; + 6 P;, replaceunshotpower

AP; + §P; andclearrecevedpower § P; + 0. Computenew total unshotpower A Py
onthefly.

(f) DisplayimageusingP;.

Optimalallocationof N = Zszl N, sampleover theindividual iterationsis obtainedf 1/Ny is
inverseproportionalto V{AP®]. For all patches, V|AP*)] (16) is approximatelyproportional
to P}k_l), suggestingo chooseéhenumberof samplesn the k-th iterationproportionalto thetotal
unshotpawer A P~ to be propagatedh thatiteration:

AP%

N, ~ N
k Py

When N, dropsbelov a small threshold,convergencehasbeenreached. Combiningall above
results,it canbeshowvn thatthe varianceon theradiosity B; aftercorvergences to goodapproxi-
mationgivenby [1]:

~1 . Prpi(Bi — E)

V[B;] ~ N a, (17)
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Time complexity In orderto computeall radiositiesB; to prescribedaccurag ¢ with 99.7%
confidencethe numberof samplesV shallbe chosersothat

B
3 V][VZ] <e
for all <. Filling in (17) thenyields:
P i(B; — E;
N> QTT-maXM. (18)
9 4 Az

Thisformulaallows usto examinehow the numberof raysto be shotmustbeincreaseagsascene
to berendereds “madelarger”. Therearehowever mary possiblescenariohow a scenecanbe

“madelarger”. For instancenew objectscanbe addedor onecanswitchto afiner tessellatiorof

the surfacesin the scenewithout addingnew objects.If all patchesn a scenearesplit in two, the

requirednumberof raysin orderto obtaina givenaccurag will needto be doubledasdividing

the patchegasymptotically)hasno effect on reflectivities and radiosities. The costof shooting
aray is often assumedo be logarithmicin the numberof polygons. Although the truth thusis

much more complicated,t is often statedthat Monte Carlo radiosity algorithmshave log-linear
compleity. In any casetheircompleity is muchlowerthanquadratic. Thisresultis notonly valid

for incrementaktochasticshootingof power, but alsofor otherMonte Carloradiosityalgorithms
basedon shooting[59, 51, 1].

3.2.3 Stochasticregular shootingof power

The sumsin regular power shootingiterations(15) canbe estimatedusinga very similar Monte
Carlo methodasdescribedabove for incrementabower shooting. The first stochasticlacobira-
diosity algorithms,proposedoy L. andA. Neumannet al. [38], consistecentirely of suchitera-
tions. Unlike in its deterministiccounterpartthe resultingradiositysolutionsof eachiterationare
averagedyatherthanhaving theresultof a new iterationreplacethe previous solution. The main
disadwantageof usingonly regulariterationsis thathigherorderinter-reflectionsappearedn the
resultonly at a slow pace,especiallyin bright environments. This problemhasbeencalledthe
warmingup or burn in problem[38, 37, 40, 39]

Thewarmingup problemcanbe avoidedby first performinga sequencef incrementapower
shootingiterationsuntil cornvergence asexplainedabove. Thisresultsin afirst completeradiosity
solution, including higher orderinter-reflections. Especiallywhenthe numberof samplesh is
ratherlow, this first completesolutionwill exhibit noisyartifacts.Stochastiagegular power shoot-
ing iterationscanthenbeusedin orderto reduceheseartifacts.A regularpower shootingteration
canbeviewedasatransformationtransformingafirst completeradiositysolutioninto anew com-
pleteone. It canbe shavn thatthe outputis largely independenof theinput. The averageof the
two radiositydistributionsobtainedsubsequentlys to goodapproximatiorthe sameasthe result
of oneiterationwith twice the numberof samples.
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3.2.4 Stochasticregular gathering of radiosity

Also regularradiositygatheringterations(13) canbe corvertedinto a stochastioczariantusingthe
procedureoutlinedabove. The main differencewith power shootingiterationsis thatnow, a new
radiosity estimateis obtainedasthe averagescoreassociatedvith raysthat are shotfrom each
patch:, ratherthanfrom raysthatlandon.

The varianceof regulargatheringis in practicemostoften higherthanthat of shooting,but it
doesnotdependnthepatcharea.Gatheringcanthereforebeusefulin orderto “clean” noisyarti-
factsfrom smallpatcheswhich have a smallchanceof beinghit by shootingraysfrom elsavhere
andthereforecansuffer from alarge variancewith shooting.

3.3 Other stochasticrelaxation methodsfor radiosity

It is possibleo designstochasti@daptationsf otherrelaxationmethodsn thesamespirit. Shirley

hasinvestigatedalgorithmsthatcanbe viewed asstochastiagncrementalGauss-Seidednd South-
well algorithmg[57, 59, 58]. Bekaerthasstudiedstochasti@adaptation®f over-relaxation,Cheby-
sheys iteratve method,and the conjugategradientmethod(suggestedy L. Neumann). These
relaxationmethodshave beendevelopedin hopeof reducingthe numberof iterationsto corver-

gence.Sincethe deterministiciterationshave a fixed computationcost, stronglyrelatedwith the
size of a linear system,reducingthe numberof iterationsclearly reduceghe total computation
costto corvergence.Thisis however not sowith the stochastiozariants. The computatiorcostof

stochastigelaxationmethodss dominatedby the numberof sampledo betaken. The numberof

sampless only looselyrelatedwith the sizeof thesystem.In theradiositycasejt turnsoutthatthe

simplestochasticacobiterationsdescribedboveis atleastasgoodasotherstochastigelaxation
methods. Figure 4 illustratesour claim that stochastiaelaxationcanyield usefulimagesmuch
fasterthancorrespondingleterministiaelaxationalgorithms.

18



Figure4: Stochastiaelaxationmethodscanyield usefulimagesmuchfasterthantheir determin-
istic counterpartsThe shavn ernvironmentconsistof slightly morethan30,000patchesThetop

imagewasobtainedwith incrementaltochastiqgpower shootingiterationsin lessthan2 minutes
ona195MHzR10000SGI Octanesystemusingabout10° rays. Evenif only 1 ray wereusedfor

eachform factor 9 - 108 rayswould be requiredwith a deterministicmethod. Noisy artifactsare
still visible, but areprogressiely reducedusingregularstochastigpower shootingiterations. After

about30 minutesthey arenotvisible anymore.

This progressie variancereductionis illustratedin the bottomimages,shovn without Gouraud
shadingo make noisyartifactsbettervisible. The shovn imageshave beenobtainedafterl, 4, 16,

64 and252 (right-to-left, top-to-bottom)terationsof lessthan2 minuteseach.

Themodelshownn is aneditedpartof the SodaHall VRML modelmadeavailableattheUniversity
of Californiaat Berkeley.
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4 RandomWalk Radiosity

Unlike stochastiacelaxationmethodsrandomwalk methoddor linearsystemsarewell coveredin
Monte Carloliterature[20, 66, 19, 16, 47]. Their applicationto the radiositysystemof equations
(6) andequialentpower system(14) hasbeenproposedy Sbert{50, 51]. They arecalleddiscrete
randomwalk methodsbecauséhey operateonadiscretestatespace In thissectionwe will show
how they differ from morefamiliar continuousrandomwalk methodsfor secondkind Fredholm
integral equations.Thereare mary differentkinds of randomwalks besideghe familiar collision
randomwalk which contributesa scorewheneer it hits a surface. We will comparethemwith
eachotherandwith the stochasticdJacobiradiositymethodsof the previoussection.

4.1 Randomwalks in a continuousstatespace
4.1.1 Particle transport simulations and integral equations

Light transportis an instanceof a wider classof linear particle transportproblems,that canbe
solvedasfollows [26]:

1. Fix adescriptionof the state X of a particle. In mary applicationsjncludingillumination
computationparticlesaresuficiently characterizedby their positionz, direction®, enegy
E*andthetimet;

2. Fix adescriptionof the particlesourcesdy meansof a normalizedsource (or birth) density
distribution S(X) and a constantSy expressingthe total emissionintensity With X =
(z,0, E,t), S(X) expressesherelative intensityof emissionof particleswith enegy E at
time ¢ from positionz andinto direction©;

3. Fix adescriptiorof how particlesnteractwith themediumandsurfacesn whichthey travel.
Particlescanbe scatteredr absorbedIf the scatteringandabsorptiorof the particlesonly
depend®ntheirpresenstate andnotontheir pasthistory, particlescatteringandabsorption
is fully determinedy atransitiondensityfunction7(X — X') from eachstateX to each
otherstateX'. Thetransitiondensityfunctionneednotto be normalized:

p(X) = /Q T(X - X")dX'

describeghe averagenumberof particlesresultingwhen a particle scattersat X. Here,
(2 denoteghe full statespaceof the particles. p(X) canbe largerthan1, e.g. in nuclear
reactions,in which casethe mediumis called a multiplying or supercritical medium. If

p(X) < 1,a(X) =1 - p(X) expressesheintensityof absorptiorat X . In casex(X) > 0,

themediumis calledabsorbingor sub-critical;

4. Particle pathsare simulatedby samplingemissioneventsaccordingto the sourcedensity
function S(X) andsubsequentlgamplingscatteringeventsaccordingto 7'(X — X') until

4for photons:E = hc/\ with A Plancks constant¢ thevelocity of light and\ the wavelengthof the photon.
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the particleis eitherabsorbedr disappearsrom the region of interest(assuminghatthe
particlewill not re-enterthe region of interest). While simulatingparticle paths,eventsof
interestarecounted.

Suchasimulationis suitedfor computingweightedintegralsof the particledensityfunction y (X):
G = [ g¥)x(x)ax (19)
Q

The responseor detectorfunction g(X) expressesur interestin particleswith given location,
direction,enegy andtime X. For instanceby taking g(X) = 1 for particleslocatedon a given
surfaceand0 onothersurfacesthe particleflux onthe surfacewill beestimated.

Theparticledensityy (X) is thedifferentialparticleflux atgivenlocation,directionandenegy
at a fixed time. It is the sum of the sourcedensity S(X) and the densityof particlesthat are
scatterednto X from elsavhere:

X(X) = S(X) + / Y(X)T (X' — X)dX'. (20)

In short: simulation of particle pathswith given source density.S(X) and transition density
T(X' — X) is a techniqueto samplepoints X in statespacef2 with (non-normalizeddensity
x(X) thatis the solutionof theintegral equation(20).

4.1.2 Continuousrandom walks for radiosity

Thegenerakenderingequation(2) andtheradiosityintegral equation(3) areof the sameform as
(20). In the caseof a purelydiffuseenvironment,equation(3), we proceedasfollows:

e Only thelocationof the particleis of interest: X = z;

e The sourcedensity S(X) correspondgo the normalizedself-emittedradiosity E(z)/®r,
with @+ thetotal self-emittedoower in the scene;

e The transitiondensity7' (X’ — X) corresponddo G(y,z)p(z). It canbe sampledby
shootinga ray in a cosinedistributeddirectionw.r.t. the surlacenormalat y. Next a sur
vival/absorptiortestis carriedout at the new locationz, taking the probability of survival
equalto thereflectvity p(z);

e Theparticledensityy(X) correspondsvith theradiosity: x(z) = B(z)/®r.

Suchpatrticlesimulationcanbeusedin orderto estimatentegralscontainingtheradiosityfunction
B(z). With the generalrenderingequation(2), particle transportis simulatedwith non-difuse
emissionandscattering.Theresultingparticledensityis againproportionalto the radiosityif only
locationis takeninto account.It will be proportionalto the exitant radiancel ”(z, ©) whenwe
take into accountbothlocationanddirection. The basicideais however the alwaysthe same.We
discussa numberof applicationsfor the purely diffuse casebelow. Particle transportsimulation
faithfull to thelaws of physicsis calledanalag simulation.
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4.1.3 The histogram method
Theaverageradiosityon a patchi is givenby anintegral equationof B(z):

1
Bj=— .
b B(z)dA,

Randomwalk constructe@soutlinedabore areatechniqueo samplepointsz with densityx(z) =
B(z)/®r. With N randomwalks, B; canbe estimateds

OrN;
AN~

B;

whereN; is the numberof visits to the patchi. The histogrammethodfor radiositycomputations
hasbeendemonstratetly Heckbert[22], Pattanaikj44] andotherslateron.
4.1.4 Basisfunction methods

Bouatouchetal. [5] andFeda[17] have usedsuchrandomwalksin orderto estimatehigherorder
(linear, quadratic, .. ) approximation®f radiosityon patches:

B;(z) = ZBi,awi,a(‘T)'

Thefunctionsy; () arecalledbasisfunctions.Thesumabove is over all basisfunctionsdefined
on patchi. A constantapproximationis obtainedwhenusingjust onebasisfunctions;(x) per
patch,whichis 1 onthepatchandO outside(see§1.1.3). The coeficients B; , canbe obtainedas
scalamproductswith socalleddual basisfunctions&i,a:

Bi,a = / B(.’I))@bz,a(,f)dAm
S
With N randomwalks,theseintegralscanbe estimatedas

) ~
WT ¢i,a(xs) ~ Bz’,a-

The sumis over all pointsz; visited by the randomwalks. The dual basisfunction @Ei,a is the
uniquelinearcombinationof the original basisfunctionss; g thatfulfills therelations

/54 &i,a(x)lﬂi,ﬁ(x)df‘lw = 0q,3-

In the caseof a constantapproximationthe dual basisfunctionis ¢;(z) = 1/4; if z € S; and0
elsavhere.Thisresultsin the sameexpressiomaswith the histogrammethod.
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4.1.5 Kernelmethods

The radiosity B(y) at a pointy could also be written asan integral involving a so called Dirac
pulsefunction:

Estimatingthe latterintegral with randomwalks wouldn’t work, becauséhe Dirac pulsefunction
is zero everywhere,exceptwhenits agumentis zero. The chanceof finding a particle hitting
exactly the point y is zeroin theory. Evenif we would find a particle hitting exactly at y, the
valueof the Dirac pulseis not determinate.lt cant befinite, becausehe Dirac functionis zero
everywhereexceptat onepoint andits integral is equalto 1. An approximatiorfor the radiosity
aty canhowever be obtainedby usinga different,normalizeddensitykernel function K (z — v)
centerecaroundy:

Thisintegral canbe estimatedising N randomwalksas:
dr ~
WZK(% —y) = B(y)

The sumis againover all pointsz; visited by therandomwalks, andcanbe viewed alternatvely
asa sumof the valueat the querypoint i of mirroredkernelsk (y — z,) = K(z, — y) centered
aroundthe hit pointsz,. This form of densityestimationhasbeenusedby Chen[6], Collins [12]

and Shirley etal. [60, 74]. Also the photonmapalgorithmby Jenseret al. [24] is basedon a
similar principle. Density estimationandthe photonmaparediscussedn detailin othercourses
atthis conference.

4.1.6 Final gathering using dependenttests

Final gatheringis a well known view-dependentechniqueto computevery high-qualityimages
basednaroughradiositysolution.Basically it re-evaluategheradiosityemittedby pointsz,, vis-
ible throughevery pixelin animage by filling in theapproximatere-computediew-independent
radiositysolution B(y) in theright handsideof theradiosityintegral equation:

BYP(a,) = Blay) + [ BO)Gap)olay)dA,

Considerthe equation:

BUSP)) = B(x,) + /S B(y)G(y, z,)p(z,)dA,.

SIn practice the chances not zerobecausef finite precisionarithmetic.
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This is alsoan integral containingthe radiosity function B(y), and canthus be estimatedusing

randomwalks. Estimategor BdiSp(a:p) canbe obtainedusingthe samesetof randomwalk hit
pointsy, for all z,:

E(z,) + p(xp)% S Gy, ) ~ BISP(z,).

Evaluatingthe kernelvaluesG(ys, z,,) for a fixed randomwalk hit point y,, requiresvisibility
testingsimilar to in algorithmsfor computingshadaevs in animagedueto a point light source
[29].

4.1.7 Collision estimation
In globalillumination algorithms the randomwalks areusedin a slightly moreefficient way than
explainedabove:
e Particlesat the light sourceare not counted,becausdhey estimatethe self-emittedlight
distributionwhich is known. We call this sourcetermestimationsuppession

¢ Whensamplingtransitionsfirst anabsorption/surwial testis carriedout. Only if theparticle
survies,it is propagatedo anothersurface,by tracingaray;

e Particlesarecountednot only whenthey survive a collision with a surface(survival estima-
tion), but alsowhenthey are absorbedcollision estimation). This is compensateéor by
multiplying the estimatesbove with the probability of survival, i.0.w. with thereflectvity

Pi-

4.2 Randomwalks in a discrete statespace
4.2.1 Discreterandom walks and linear systems

The statesn which a particlecanbe found do not needto form a continuousset. They canalso
form a discreteset. For instancethe statescanbe “the particleis on patch:”, with onesuchstate
perpatch.

Justlik e the particle densityresultingfrom a randomwalk with continuoussourceandtran-
sition densityis the solutionof a second-kind=redholmintegral equation the (discrete)particle
densityy; resultingfrom a discreterandomwalk with sourcedensityr; andtransitiondensityp;;
(for particlesgoingfrom i to j), is the solutionof a systemof linearequation$:

Xi =T+ Zijji- (21)
j
This densitycanbe usedin orderto estimatescalarproducts

G=<g,x>=) 4 (22)

For instancepy choosingg; = d;x, the k-th componenty,. of the solutionof (21) is computed.

5Notethe switchof indicesp;; insteadof p;;!
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4.2.2 Discreteshootingrandom walks for radiosity

Usinglocal or globaluniformly distributedlines(§2.2), we areableto simulateparticletransitions
from a patchi to patch;j accordingto theform factor F;;.

Due to the orderin which the indicesof the form factorsappearin the equationsdiscrete
randomwalk simulationasoutlinedabove is thereforesuitedto solve the power system(14)

P=®; + ZPijiPi-

J

The origin of the randomwalks is chosenaccordingto birth probabilitiesw; = ®;/®, propor
tional to the self-emittedflux (® is the total self-emittedflux, division by it normalizeghe birth
probabilities). The transitionprobabilitiesare p;; = Fj;p;. In orderto simulatetransitions first
a uniformly distributedrandomline throughj is tracedin orderto determinei, the next patchto
be visited. Next, a survival testis donewith p; beingthe probability of survival. If the particle
survives,a contribution &7 /N is recordedon the patch:i onwhich the particlesurvived. N is the
total numberof randomwalks beingtraced. Both local or global lines canbe usedfor sampling
transitions.Globallinesyield socalledglobal multi-pathalgorithmg[55, 50.
Therandomwalk estimatorsketchedabove is calleda survivalshootingestimator:

e survivalestimation:particlescontributeascoreonly if they surviveacollisionwith asurface.
Somealternatveswill bediscussedbelow (§4.3);

¢ shooting the physicalinterpretatioris thatof particlesbeingshotfrom thelight sources.

4.2.3 Discretegathering random walks for radiosity

A well known resultfrom algebrastatesthat eachscalarproduct< x,w > like (22) with the
solutionx of a linearsystemCx = e canalsobe obtainedasa scalarproduct< e,y > of the
sourceterm e with the solutionof the adjoint systemof linear equationsC Ty = w with source
termw:

<w,x>=<CTy,x >=<y,Cx >=<y,e>.

C' denoteghetransposednatrix C: if C = {c;;}, thenC" = {¢;;}.
Adjoint systemscorrespondingo the radiositysystemof equation(6) look lik e:

Yi=Wi+ ) Yjp;Fy. (23)

J

Theseadjointssystemsandthe statemenabove canbeinterpretedasfollows: considerthe power
P, emittedby apatchk. P, canbewrittenasascalamproductP, = Ay B, =< B, W >with W; =
A;6;: all componentsf thedirectimportancevectoriV are0, exceptthek-th componentywhichis
equalto W, = A,. Thestatemenaboveimpliesthat P, canalsobeobtainedasP, =< Y, E >=
> Y;E;, whichis aweightedsumof the self-emittedradiositiesat the light sourcesn the scene.
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ThesolutionY of theadjointsystem(23) indicatesto whatextenteachlight sourcecontributesto
theradiosityatk. Y is calledimportanceor potentialin literature[65, 45, 7].

The adjoints(23) of the radiosity systemalsohave theindicesof the form factorsin the right
order sothey canbe solvedusinga randomwalk simulationwith transitionssampledwith local
or globallines. The particlesarenow however shotfrom the patchof interest(r; = dy;), instead
of from thelight sourcesThetransitionsprobabilitiesarep;; = p; F};: firstanabsorption/survial
testis performed.If the particlesurvives,it is propagatedo a new patch,with probabilitiescorre-
spondingto theform factors.A non-zerocontribution to theradiosityof patchk resultswheneer
theimaginaryparticlehits alight source.lts physicalinterpretations thatof gathering

Continuousgatheringrandomwalk methodscanbe obtainedin a very similar way, by intro-
ducingadjointsof an integral equation. Adjoints of the radiosity integral equationfor instance,
look like:

1) = V(@) + [ 16)0)G0.2)d4,

Continuougyatheringrlandomwalks arethe basisof pathtracingalgorithms[13, 25].

4.3 Scoring

Thepreviousparagraphslreadymentionedhatrandomwalks canbe usedin differentways. The
straightforvard analogshootingsimulationscorrespondo so calledsurvival estimation,jn which
a particleyields a scorewheneer it survivesa collision with a surface. In graphicswe aremore
familiar with randomwalks in which particlesyield a scorewheneer they hit a surface,alsoat
absorbedThis kind of randomwalk estimatorsarecalledcollision estimatorsA third kind which
is occasionallymentionedin graphicsliteratureare so called absorptionestimatorsjn which a
particleyieldsascoreonly whenit is absorbedIn the samespirit, mary moreexotic randomwalk
estimatorscan be developed,for instanceestimatorghat yield a scoreonly on the one but last,
secondbut last, . .. collision, or estimatorghatyield a scoreon the two, three,... lastcollision
(seefigureb).

In all thesecasestherandomwalksareconstructedn anidenticalmanneyasoutlinedbefore.
Thedifferences only in their scores:1) whenascoreis contritutedand,related,2) whatvalueis
contributed. The dervation of the scoresto be associateavith a randomwalk in orderto obtain
unbiasedestimatorgor solvinglinearsystemsandthe calculationof the varianceof randomwalk
estimatorsinvolvesafair amountof algebra.ln mosttexts, a particularexpressiorof thescoress
proposedandthe unbiasednesandvariancederived accordingto the definition of expectedvalue
andvariance A morecompactconstructve approachbasednjusttwo theoremsganbefoundin
[1]. Thefirsttheoremeadsto a setof equationsallowing to derive scoreghatguarante@nbiased
estimationby construction.The secondheorenyieldsa generakexpressiorfor thevariance.

Tablel and2 summarizegheresultsfor the discreteabsorptiongcollision andsurvival shooting
andgatheringrcandomwalksfor radiosity[50, 51].
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Figure5: Kinds of randomwalk estimators:the black dots indicate at what nodesthe pathis
allowed to yield a contribution. Gatheringrandomwalks originateat a patchof interest. They
yield a non-zerascoreonly whena light sourceis hit at the allowed locations. Shootingrandom
walksoriginateatalight sourceandcontributea scoreto all patchesattheallowedlocations.

estimator | scores(jo, ... ,jr) | varianceV|§]
i Pe O 5 P @1 p 12
absorption T 0jk T by — bg

collision | Z-®7 370 dj,k B O (1 + 2Gx) by, — by
survival ALk(I)T Z;f 5jtk ALk(DT(l + 2<k)bk — b%

Table1l: Scoreandvarianceof discreteshootingrandomwalk estimatordor radiosity j, is the
patchat which a randomwalk originates. It is a patchon a light sourcein the scene,chosen
with probability proportionalto its self-emittedpower. ji, ... ,j, arethe patchessubsequently
visited by therandomwalk. Transitionsaresampledby first doinga survival/absorptiortest,with
survival probability equalto the reflectvity. After survival, the next visited patchis selectedwith
probability equalto theform factor by tracinglocal or globallines. 7 is thelengthof therandom
walk: therandomwalk is absorbedfterhitting thepatchj,.. Theexpectatiorof all theseestimators
is the non-selfemittedadiosityb, = B, — E) atapatchk (sourcetermestimationis suppressed).
The left columnwith mathematicakxpressionsndicateswhat scoreshall be contributedto the
resultfor unbiasedestimation.Theright columncontainghevariance (; is therecurrentadiosity
atk: if £ wouldbetheonly sourceof radiosity with unit strengththetotal radiosityon £ would be
largerthanl, say I, becausetherpatchesn the sceneeflectpartof the light emittedby & back
to k. Therecurrentadiositythenwouldbe(;, = I, — 1.

4.4 Discussion

Randomwalk estimatordor radiositythuscanbe classifiedaccordingto thefollowing criteria:
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estimator | score3(jo =k, ... ,7,) = & (J) | varianceV [3;] |
absorption pkl—i');% P Y T brs — b}
collision | px >, Ej, ok g (Es + 2bs)bgs — b,
survival | pe o) pr 3, Betapy, — b2

Table2: Scoreandvarianceof discretegatheringandomwalk estimatorgor radiosity Theexpec-
tationis b, = B, — Ej, thenon-selfemittedadiosityon patchk (alsohere,sourcetermestimation
is suppressed)j, is the patchat which a particularrandomwalk originates.It is alwaysthe patch
k of interest. jq, ... , j, aresubsequentlyisited patches.Transitionsare sampledn exactly the
sameway asfor shootingrandomwalks: first anabsorption/surwial testis carriedout, with prob-
ability of survival equalto thereflectvity. After survival, a next patchis selectedwvith probability
equalto the form factor by tracinglocal or globallines. 7 is the lengthof the randomwalk. by

is the radiosityat £ dueto the light sources, receved directly or via interreflectionsrom other

patchegbs = ), bys).

¢ whetherthey arecontinuousor discreterandomwalks;
e whetherthey areshootingor gathering

e accordingto wherethey generatea contribution: at absorptionsurvival, at every collision,
etc... .

4.4.1 Continuousversusdiscreterandom walks

Continuousrandomwalks and discreterandomwalks estimatedifferentquantities(see§1.1.3).
The differenceis in practicehowever only rarely noticeable. Also the algorithmic differenceis
guite small: with a continuousrandomwalk, a particleis alwaysreflectedfrom its point of in-
cidenceon a patch. In a discreterandomwalk, a particleis reflectedfrom a uniformly chosen
differentlocationon the patchonwhichit landed.

Experimentsn which a continuousand discretecollision shootingrandomwalk have been
comparedjndicatethatthereis no significantdifferencein variance.Low discrepang sampling
however, appeardo be significantly more effective with the discreterandomwalk thanwith the
continuougandomwalk [1].

4.4.2 Shootingversusgathering

The varianceexpressionsn the tablesabove allow to make a detailedtheoreticalcomparisorof
discreteshootingandgatheringrandomwalks. The shootingestimatorshave lower variance ex-
cepton small patcheswhich have low probability of being hit by rays shotfrom light sources.
Unlike shootingestimatorsthe varianceof gatheringestimatorsioesnotdependnthe patcharea
Ay. For suficiently small patchesgatheringwill be moreefficient. Gatheringcould, like in the
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caseof stochastigelaxationmethodspe usedin orderto “clean” noisy artifactson small patches
aftershooting.

4.4.3 Absorption, survival or collision?

Thevarianceresultsin thetablesabove alsoindicatethatthe survival estimatorsarealwaysworse
thanthe correspondingollision estimatorspbecausehe reflectvity pj, is alwayssmallerthanl.
As arule,thecollision estimatorsaalsohave lower variancehantheabsorptiorestimatorsbecause
therecurrentadiosity(, is in generahegligible (shooting)andself-emittedradiosity £, of alight
sources in generaimuchlargerthanthe non-selfemittedadiosityin practice(gathering).

Theseresultshold when transitionsare sampledaccordingto the form factors. When the
transitionprobabilitiesare modulated for instanceto shootmore raysinto importantdirections
(§5.1),anabsorptiorestimationcansometimese betterthana collision estimator In particular it
canbeshawn thatacollision estimatorcannever be perfect,becauseandomwalks cancontritute
avariablenumberof scores An absorptiorestimatoalwaysyieldsasinglescore.Themoreexotic
estimatorsnentionedabove, whichyield scoresatthetwo last,threelast,. . . collisionsalsoyield
afixednumberof scoresFor thatreasonthey mayalsoyield perfectestimatorsTheir analysiss
aninterestingopic for furtherresearch.

4.4.4 Discretecollision shootingrandom walks versusstochasticJacobirelaxation

Accordingto table 1, the varianceof N®" discretecollision shootingrandomwalks is approxi-
mately:
VRW 1 Dk

NEW X NERW A_k(I)T(B’f — Ex)

Thevarianceof incrementapower shooting(17) with N5 raysis approximately:

| 1 p
o WZ—kPT(Bk — Ey).
It canbe shavn that N#" randomwalks resulton the averagein NV Pr./®; raysto be shot.
Filling in N5% = NEW P, /& in theexpressiorabove thusindicatesfor for samenumberof rays,
discrete collision shootingrandomwalks and incrementalpower shootingJacobi iterations are
approximatelyequallyefficient This obsenationhasbeenconfirmedin experimentd1].
Bothalgorithmshave anintuitiveinterpretationn thesensef particlesbeingshotfrom patches.
The particleshave uniform startingpositionon the patchesandthey have cosine-distrilbteddirec-
tionsw.r.t. thenormalonthe patchesThenumberof particlesshotfrom eachpatchis proportional
to thepower propagatedrom the patch.Sincethetwo methodscomputethe sameresult,thesame
numberof particleswill be shotfrom eachof the patches.If alsothe samerandomnumbersare
usedto shootparticlesfrom eachpatch,the particlesthemseles canalsobe expectedto be the
same. The maindifferenceis the orderin which the particlesareshot: they areshotin “breath-
first” orderin stochastigelaxationandin “depth-first” orderwith randomwalks (seefigure6).
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Figure 6: This figure illustratesthe differencein orderin which particlesare shotin stochastic
Jacobiiterations(“breadth-first”order)andin collision shootingrandomwalk radiosity (“depth-
first” order).Eventually the shotparticlesarevery similar.

Therearehowever alsoother moresubtle differencedetweerthe algorithms,in particularin
the survival sampling.Experimentswith very simplescenessuchasanemptycube , whererecur
rentradiosity (;, is important,do reveal a differentperformance.The conclusionthat stochastic
Jacobiiterationsandrandomwalks areequally efficient is alsono longertrue whenhigherorder
approximationare used,or with low discrepang samplingor in combinationwith variancere-
ductiontechniquesMany variancereductiontechniquesandlow discrepang samplingareeasier
to implementand appeamore effective for stochastiaelaxationthanwith randomwalks (both
continuousor discrete seeg5). Stochastiaelaxationwith higherorderapproximationappearst
leastasgoodaswith continuousandomwalks, andis significantlysuperiorto a discreterandom
walk (§6.1).
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5 Variance Reductionand Low DiscrepancySampling

Thebasicalgorithmsof the previoussectionscanbe mademoreeffective by usingvariancereduc-
tion techniquesndlow discrepang sampling.In this section,we will discussvariancereduction
by view-importancesampling by controlvariatespy combininggatheringandshootingestimators
usingthe samerandomwalks or raysandby weightedimportancesampling.

5.1 View-importance drivenshooting
5.1.1 View-importance

In the basicalgorithmsof the previous sections transitionsare sampledusing probabilitiesthat
reflectthe laws of physics. The quality of the computedresultmainly dependson the areaand
reflectvity of the patchesput is furthermoreuniform in the whole scene. Sometimeshowever,
onewould like to save computationtime by having a high quality only in a part of the scene,
for instancethe part of the scenethatis visible in a view, while compromisingon the quality
in unimportantpartsof the scene.For instance whencomputinganimageinsidea singleroom
in a large building with sereral floors eachcontainingmary rooms, the basicestimatorswould
spenda lot of work in computingthe illumination in all roomson all floors to similar quality.
Onemight preferto concentratehe computatiorwork on theroom oneis in, at the expenseof
a lower quality of the radiosity solutionin otherroomsand other floors of the building. With
view-importancesampling the samplingprobabilitiesin our Monte Carloradiosityalgorithmsare
modulatedn suchaway thatmoresamplesaretakenin importantregionsof asceneandfewerin
lessimportantregions.

This requiresin the first placea measureor the importanceof the illumination acrossthe
surfacesin the scene. As explainedin §4.2.3,the adjointsof the radiosity systemof equations
yield sucha measure.Here, it will be more corvenientto useadjointsof the power systemof
equationg14)”:

J

Theimportanced; arealwaysdefinedw.r.t. somedirectimportancadistribution V;. Whenchoos-
ing V; = 1 for the patcheg thatarevisible in aview, andV; = 0 for patcheghatarenot visible
in a view, I; is called view-importanceand indicateswhat fraction of the radiosity B; will be
contributedto the patchesvisible in aview, directly or via inter-reflections.

A continuousview importancefunction I(z) on the surfacesof the scenecanbe definedin a
very similar way by meansof adjointsof theradiosityintegral equation(3):

@) = Vi) + [ Tw)o)Gly. 2)dA, (25)

"Adjoint radiositysystemg23) are obtainedby multiplying the left andright handside of if (24) with the patch
aread;. Y; andW; in (23) arerelatedto I; andV; hereasY; = A;I; andW; = A;V;.
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The equationdrom which importanceis to be solved are of the sameform asthe equationghat
describelight transport,andthereforethe samealgorithmsasfor light transportcanbe usedfor
computingimportancen a scene.This canhappenreitherin separatg@hasespr both at the same
time. Moreover, thecomputatiorof importancecanpossiblybespedup by takingadwantageof the
adjointof importance:theradiosity In practice,oneshouldtake carehowever thatimportances
only usedfor computingradiosity(andvice versa)if theimportancesolutionis sufficiently stable.

5.1.2 View-importance driven shootingrandom walks
View-importancel; canbeusedin variouswaysduringrandomwalk sampling:

¢ for modulatingthetransitionprobabilities,sothatrandomwalks arescatteregreferentially
towardsregionsof high importance.Unfortunately this canno longerbe doneusing uni-
formly distributedlocal or globallinesandrequireghatincomingimportanceat every patch
is storedor canbe queriedefficiently in someway [33, 67];

¢ for modulatingthesurvival probabilitiesonly, soparticlesnearimportantregionsgetahigher
chanceof survival. In regionsof low importance particleswill bekilled off with a higher
probability than accordingto the reflectvity (Russianroulettg. In interestingregions, it
evenis possibleto split a particlein two new particlesof which the scoresareappropriately
combined(splitting);

e for modulatingthebirth probabilities sothatmorerandomwalksarestartedrom important
light sourcesandfewer from unimportantsources.This canbe combinedwith importance-
modulatedransitionsampling,or canbedonewith analogtransitionsampling.In thelatter
casethebestresultsareobtainedoy modulatingtheanalogpirth probabilitiesatlight sources
(proportionalto self-emittedpower) by the squake root of view-importancg52].

In orderto keeptheestimatiorunbiasedscoreshallbedecreasedhenprobabilitiesareincreased
andvice versa.lf the survival chanceof a particleis reducedn Russiarroulettefor instancethe
contribution of a particlethat survivesthe testshall be increasedn orderto compensateView-
importancebasedsamplinghas beenstudiedfor continuousas well as discreterandomwalks
[45, 15, 52,54, 1].

5.1.3 View-importance dri ven stochasticrelaxation radiosity

In the contet of incrementalandregular power shooting(§3.2), view importancecanbe usedin
orderto

e aim particlespreferentiallytowardsinterestingregions: the problemis the sameas with
randomwalks: local or globalline samplingis no longerhelpful andincomingimportance
needdo be storedwith eachpatch;

e increaser decreas¢heprobabilityof shootingaray from agivenpatch:thisyieldsthesame
effect as Russianroulette, splitting and modulatingbirth probabilitiestogetherin random
walks. It is very easyto implementwith local line sampling.
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In general,view-importancedriven stochastiaelaxationmethodscan be derved in exactly the
sameway asanalogstochastiaelaxationmethodsby consideringhe power systemof equations
(14) modifiedasfollows:

pil;

Pili = @0+ ) Pi(l; = V) Fiig >
; J J

J

Nonview-importancedrivenstochasticelaxationradiositycorrespondsvith thechoicesl; = 1/p;
andV; = 1/p; — 1. (Thesechoicesare alwaysa valid solutionof (24) in closedervironments).
Figure7 shavs someresults pbtainedwith algorithmsdevelopedoy NeumanrandBekaer{36, 1].

5.2 Control variates

Anotherwell known variancereductiontechniques by meansof so calledcontrol variates.Sup-
posea function f(x) is to be numericallyintegratedandthatwe know theintegral G' of a similar
function g(z). If the differencef(x) — g(x) is to goodapproximationconstant,t will be more
efficient to usea Monte Carlo methodfor integratingthe differencef(z) — g(x) andaddG af-
terwards. The function g(z) is calleda control variate. Control variateshave beenproposedor
variancereductionin stochastiaaytracingby Lafortune[34]. We discussherethe applicationto
discreterandomwalksandstochastiaelaxation.

5.2.1 Control variatesfor linear systems

Thisideacanbeappliedto the solutionof linear systemgandintegral equations)n thefollowing
way: supposeve know an approximationx for the solutionx of x = e + Ax. The correction
Ax = x — x thenfulfills

Ax=(e+Ax—%)+A-Ax (26)
Proof:
Ax=(I-A)-Ax+A - Ax; (I-A)-Ax=x—Ax+Ax—x=e+ Ax—X

O
This is true regardlessof the error in the approximationx. Now supposeAx is computed
usingfor instancea randomwalk method. TheresultingestimateAx for the correctionAx will
not be exact, sothatx = x + Ax will notbe exactly equalto the solutionx of the systemto be
solvedeither However, regardlesof the error on the first approximationx, the error on the nen
approximationx is only determinedy the erroron the computeccorrectionAx! Sometimesthe
correctionAx canbe estimatednoreefficiently thanx itself.
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Figure7: View-importancedrivenstochasticlacobiradiosity: the top imageshave beenobtained
usingapproximatelythe sametotal amountof work (about9 minutes,3.3 10° rays). The top-left

image,computedwith view-importancejs significantlylessnoisythanthetop-rightimage,which

hasbeenobtainedwithout computingandtaking advantageof view-importance.The bottom-left
imageshaws an overview of the scenein which the view wastaken. The scenewas subdvided
in 162,000patchesThe bottom-rightimageshavs the importancedistribution for the view. High

intensityindicateshigh view-importance.

Theshavn modelis aneditedpartof the SodaHall VRML modelmadeavailableatthe University
of Californiaat Berkeley.
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5.2.2 Constantcontrol variatesin random walk radiosity

Theonly choicefor x thatallows Ax to be calculatedanalyticallyin the caseof radiosity is the
constanthoiceB; = . With this choice,we get

AB; = (Ez + ZPiFijﬁ - 5) + Z piFijAB;
J J
= (B;—(1—-p)B)+>_ piFi;AB;
J

The questionnow is how to determinean optimal valuefor 3. Heuristicsfor choosingsg canbe
derivedby minimizing the expectedmeansquareerror of randomwalk estimators Several crude
approximationsieedto be madehowever, andthe benefitsarein practicenot very significant.

5.2.3 Constantcontrol variatesin stochasticrelaxation radiosity

In stochasticJacobirelaxationhowever, constantcontrol variatevariancereductionis easierto
obtainand more effective. Monte Carlo summationshall be appliedto the following modified
power equations:

Pl =&, + A;p;3 + Z ZAj(Bj — B)Fjipidix
v g

A goodvaluefor the control radiosity 3 canbe obtainedby numericaloptimizationof F'(3) =

> As | Bs — B [1,41].
Onedisadwantageof constantontrolvariatesn radiosityis thatthesceneébeingrenderedeeds
to fulfill certainrequirements:

e it needgo beclosed,because)therwisezj F;; B # 8 for somepatches in thescene;

e therecannotbe closed“holes” in ascenethatdo notreceve ary light, e.g. theinterior of a
box.

Thespeedipthatcanbeobtainedwith aconstantontrolvariatetypically is in therangeof 5-50%.

5.3 Gathering for free

Yet anothervariancereductiontechniquedescribedn Monte Carlo literatureis the combination
of several estimatordor the samequantity In Monte Carloradiosity onewill alwaysfind a gath-
ering estimatorcorrespondingvith eachshootingestimator Gatheringis in generalessefficient
thanshooting,but by combininggatheringandshootingover randomwalks andrayssampledor

shooting,a moderatevariancereductionis possibleat negligible additionalcost.
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5.3.1 Combining estimatorsand multiple importance sampling

Supposewo estimatorsS; and S, for a givenquantity S areavailable. Any linear combination
w151 +wySy with constaniveightsw, +w, = 1 will thenalsobeanestimatoifor S. Thevariance
of thelinearcombinatiorhowever depend®n theweights:

V[wls’l + wQSA2] = wfV[S’l] + U);V[SQ] + 2’(1]111]2(:0\/[51, 512]
Cov[Sy, S,] denoteghe co-varianceof thetwo estimators:
Cov[Sy, Sy] = E[S; - S5] — E[S1] - E[Sa).

If $; and S, areindependentthe covarianceis zerd. Minimization of the varianceexpression
above allowsto fix the optimalcombinationweights:

ﬂ _ V[gg] — CO\/[S}, SAQ]
wa V[Sﬂ — CW[g1, gg] '

For independengestimatorsthe weightsshallbe inverseproportionalto the variance.In practice,
theweightscanbe calculatedn two differentways:

e usinganalyticalexpressiongor thevarianceof theinvolvedestimatorgsuchaspresentedh
thistext);

e usinga-posterioriestimategor the variancesdbasedon the samplesn an experimentthem-
selwes[26]. By doingso,aslightbiasis introduced.As the numberof sampless increased,
thebiasvanishesthe combinationis asymptoticallyunbiasedr consistent

The combinationof estimatorscanbe generalizedor morethantwo, say M estimators.If Ny,
outof atotal of N samplesaretakenfrom eachestimators,,, yielding primaryestimatess® | k =
1,..., N, for S, thecombinedestimatedook like:

M 1 Np, ~
D Wmr— ) SRS,
m=1 ™ k=1

Veach[73] notedthatvery robustcombinationis often possibleby assigningpotentiallydifferent
weightsw?, to eachindividual sample evenfor samplesrom the sameestimator:

Mo

m=1 m

5

B
Il
—

Thecorrespondingombinedestimatolis unbiasedslong ast‘f:1 wk = 1 for everysample He
proposedseveralheuristicdor determiningheweights.Thebasicideabehindtheseheuristicss to

8A zerocovariances anecessaryut notasuficient conditionfor independencehereexist dependengstimators
thatalsohave zerocovariance(seee.g.[26, p.13]).
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give asampleaweightthattakesinto accountthe probability thatthe samplewould have resulted
with the other estimators:if the samplewould be generatednly with low probability with the

otherestimatorsit is givenalarge weight. Vice versa,whenary otherestimatorwould yield the

samesamplewith high probability, the weight of the sampleis reduced.One of thoseheuristics
is the so calledbalanceheuristig in which the weightsw?, aresimply choserproportionalto the
probability of drawing the sampleaccordingto the m-th estimatoy multiplied with the numberof

samplesV,,.

5.3.2 Combining gathering and shootingin discreterandom walk radiosity

Combininggatheringandshootingover a singlesetof randomwalkscanbedonein severalways:

e usingmultiple importancesampling:the basicobsenationis thatgatheringradiosityover a
pathsggmenty,, j;.1, - - - , js ISidenticalto shootingpower overthereversesggment;s, js 1,

., j¢~ Multiple importancesamplingcanbe appliedif the probability of having asub-path
originatingat the end-pointsj; andj, arebothknown. In practice,combinedgatheringand
shootingbasedon multiple importancesamplingis usefulonly with globallines,in global
multi-pathalgorithms[55, 50]. With local lines,therequiredprobabilitiesareunfortunately
notknown in adwvance;

e usinga-posteriorivarianceestimatessuchestimatesanbe obtainedby approximatingan-
alytical expressiong53]. Alternatively, samplebasedvarianceestimationis alsopossible
[1]. Samplebasedvarianceestimationyieldsvery goodweightseventually but the weights
areunreliablein thebeginningof thecomputationswhenonly few randomwalkshave been
visiting a patch. A-posteriorivarianceestimationallows to combineshootingand gather
ing alsowith local line sampling. Figure8 shaws the shootingandgatheringcontrikbutions
associateavith asinglepath.

Combininggatheringandshootingin randomwalk radiosityyields moderatevariancereduction,
again5-50%,but the additionalcomputatiorcostis negligible.

5.3.3 Combining gathering and shootingin stochasticJacobiradiosity

Combininggatheringandshootingin stochasticJacobiiterationsis againvery simple[1]. Each
line shotin power shootingiterations(§3.2.1)yields a contrikbution to the patchthatit hits, while
in gatheringiterations(§3.2.4),the line yields a contribution to the patchfrom whereit wasshot.
Also here,gatheringcorrespondsvith shootingover the reverseline. Unlike with randomwalks,
the probability of shootinga line from every patchis known, so multiple importancesampling
canbeused. Theresultis thata scorecanbe recordedat both endsof eachshotline. For aline
connectinghe patcheg andj, thescoresatbothendpointsare:

pin .

L9 = 7 J  0on
i 24 pidj + pjA; '
pi L :

ST = — - on
Wiy piA; + piA; g
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Figure8: Contributionsof arandomwalk 5, 71, j2, 73: (a@,b,c)gatheringat jq; (d) shootingat j1;
(e,f) gatheringat j;; (g) shootingat j,; (h) gatheringat j; (i) shootingat j5.

As before,p; andp; indicatethe probability of shootinga line from ¢ andj. With local lines,we
canchoosep; proportionalto the power to be shotfrom i. With globallines, p; is proportionalto
the patchareaA;.

Thetechniquds extremelysimpleto implement,it is alwayssafeto use,it comesat no addi-
tional costandcanyield fair speed-upsup to afactorof 2 if illuminationis nearlyuniform.

5.4 Weightedimportance sampling

Weightedimportancesamplingis yet anothervariancereductiontechnique. It canbe explained
intuitively asfollows: suppos®neneedgo computeanintegral F' = [ f(z)dz andthatoneknows
asecondsimilar, integral G = [ g(z)dz with samedomain.Both integralscanthenbe estimated
usingthe samesamples The resultingMonte Carlo estimate for G canthenbe comparedwith
the true, known, valueof G. Dueto its randomnature,the estimate will sometimesbe larger
thanG andsometimese smaller Supposehatoneknows thatthe correspondingstimatef” for
F will alsobelargerthanF in caseG is largerthanG, a moreaccurateestimatefor F' thenmay
be FG/G: F is decreased G > G andit is increasedf G < G.

Unlike thevariancereductiongechniqueslescribedbefore,weightedimportancesamplingis
biasedbut it is consistentf f andg fulfill certainrequirementsThe biasvanishesas1/N (N is
the numberof samples).This is muchfasterthanthe statisticalerror, which vanishesas1/v/N.
A moreelaborateexpositionof thisidea,with applicationto form factorintegrationandstochastic
relaxationradiosity canbefoundin [4].
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Figure9: If samplevectorswith sameindex areusedon differentpatchesfor choosingthe ori-
gin anddirectionof the rays, distractingpatternsmay resultin a computedimage. This figure
illustrateshow suchpatterngnayresultdueto clusteredcontributionsfrom nearbysources.

5.5 Low-discrepancysampling

Low discrepang sampling[42] allows to achieve a higher corvergenceratethan O(1/+/N) by
placingsamplesnoreuniformly thanrandom.Thetheorybehindnumericalintegrationwith low-
discrepang samplingcalledquasi-MonteCarlo integration,is totally differentthanthatof Monte
Carlomethodshasedn randomsampling.Integrationwith randomsampless basedn statistics.
Quasi-MonteCarlo methodsare basedon numbertheory The corvergenceratesthan can be
obtaineddependon the dimensiond of the integral andare non-trivial to analyze. They canbe
O(log® N/N).

In practicehowever, improved cornvergenceratesare often obtainedby little more thanre-
placingthe randomnumbergeneratoiby a so calledquasi-randommumbergeneratar Local line
sampling(§2.2.1)for instanceyequires4-dimensionatandomvectors:two randomnumbersare
neededor choosingaray origin andtwo morefor samplinga cosinedistributeddirection. Keller
[27] shavedthatusinga 4-dimensionatjuasi-randonvector[42] yields speed-upsf aboutanor-
derof magnitudevhencomputingform factorswith locallines. Neumanretal. obsenedasimilar
speed-upvhenusingquasi-randommumbersinsteadof randomnumbersn stochastiaelaxation
radiosity[39]. Thespeed-umbtainedwith quasi-randonsamplingin continuousshootingrandom
walk radiosity[28] is however muchsmaller In discreteshootingrandomwalk radiosity it is of
the samemagnitudeasin stochastiaelaxationradiosity andoften muchhigherthanin continu-
ousrandomwalks[1]. A theoreticalstudy of the corvergencerate of quasi-randonsamplingin
radiosityhasbeencarriedout by Szirmay-Kalog71].

Therearehoweveranumberof importantdifferencesetweermrandomandquasi-randonsam-
pling. The maindifferencein practiceis thatquasi-randonsamplesarenot statisticallyindepen-
dent. They canevenbevery stronglycorrelated Naive applicationcanresultin disturbingaliasing
artifactsin computedmages(seefigure 9). With local line samplingin radiosity the correlations
canbe broken by keepinga separatesampleindex for eachpatch. The sampleindex is initialized
to adifferentvaluefor eachpatch,andis incrementedndependentlyrom otherpatchesachtime
anew ray needdo be shotfrom the patch.
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6 Extensions

To conclude anumberof usefulextensiongo the Monte Carloalgorithmsdescribedofar will be
presentedn this section.Especiallythelatter, theincorporationof hierarchicarefinementmakes
Monte Carloradiosityalgorithmshighly competitve with deterministicadiosityalgorithms.

6.1 Higher order radiosity

Sofar, thefocushasbeenon the computatiorof a constantadiosityapproximatioron eachpatch.
On patcheswvherethe radiosity function B(z) variessmoothly (everywhereexceptnearshadaev

boundaries)higherorderapproximationglinear, quadratic, .. ) will be moreaccurateat a little

higherstoragecost(oneadditionalvalueperbasisfunction,seefigure 1 on page5).

We alreadymentionechow continuougandomwalkscanbeusedin orderto computea higher
orderapproximationn §4.1.4. Similar algorithmscanalsobe developedfor stochastiaelaxation
radiosityandfor discreterandomwalks[3, 1]. The necessanadaptationso stochastiaelaxation
radiosityareminimal: local or global lines canbe castasfor constantapproximations.Only the
contritutedscoresareslightly different,andcontainthe dual basisfunctions); . (z) atthe point z
hit by thelines.

Feda[17] analysedhe costof usingcontinuousrandomwalksin orderto estimatea product
Legendrebasisapproximationof radiosity He obseredthatthe requirednumberof sampledor
a K-th orderapproximationis K? timeslarger thanfor a constantapproximations.Bekaerthas
shawn that this is alsothe casefor higherorderstochastiaelaxationradiosity The increasen
computatiortime for higherorderapproximationss largerthanin deterministionethodq23, 75|,
but the resultingalgorithmsare significantly easierto implementand are muchlesssensitve to
computationakrrors(seefigure 10).

Higherorder approximationsan also be estimatedwith discreterandomwalks. The result
that discreterandomwalks are as good as stochastiaelaxationradiosity doeshowever not hold
for higherorderapproximationsdiscreterandomwalks have a muchhighervariancewhich gets
worsefor bright environmentsand higherapproximationorder They are not recommendedor
practicaluse.

6.2 Hierar chical refinementand clustering

Accuratea-priori meshingfor radiosityis a difficult task. On the onehandside, the patchesshall
besmallenoughn orderto accuratelycapturehigh-frequeng illumination variations,suchasnear
shadav boundariesOntheotherhand thenumberof patchesieeddo bekeptassmallaspossible
in orderto avoid redundantomputationwork. With hierarchicalrefinemen{10, 21, 56], large
input patcheswill be broken up into smallerelementsduring the computationsvhenneededas
predictedby arefinemenbracle function.
Smallinput patchescanalsobe groupedinto clustes in orderto reducethe numberof form

factorsto be computedduringinitial linking in deterministicadiosityalgorithms[64, 61]. A user
is not only liberatedfrom the difficult task of creatinga suitablemeshhimself, but hierarchical
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Figure 10: Two imagesgeneratedrom the samecorverged cubic approximationsolution. Once
the solutionhasbeenobtained,a new imagefor a new viewpoint can be generatedn fractions
of a second. Theseimagesillustrate also that the (discrete)higher order stochasticrelaxation
radiosity algorithmdescribedn thesenotescanyield very high imagequality in regionswhere
the illumination variessmoothly: computationalerror is dealtwith effectively in Monte Carlo
radiosity In the neighborhoodf discontinuitieshowever, disturbingimageartifactsremaindue
to thediscretisatiorerror Theresultingimageartifactswould be avoidedif discontinuitymeshing
wereused.
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Figure11: Perray hierarchicalrefinementin stochasticlacobiradiosity: for eachray shot,con-
nectingtwo pointsx andy, the algorithmwill determinewhich level of the elementhierarchies
atx andy is appropriategfor computinglight transportfrom x to y. The elementhierarchiesare
lazily constructedIn non-hierarchicaMonte Carloradiosity light transportwould be computed
betweertheinput patchesontainingthe end-pointse andy of theray.

refinementandclusteringalsoallow to computelight transportalwaysat a properlevel of detail.
Thenumberof form factorsto be computeds reducedrom quadratido log-linearin this way.

Hierarchicalrefinementanbeincorporatedalsoin Monte Carloradiosityalgorithms,combin-
ing the benefitsof hierarchicakefinementwith lower sensitvity for computationaerrorin Monte
Carloradiosity

The incorporationof hierarchicalrefinementduring form factorcomputationwith local lines
hasbeenproposedy severalauthorg35, 31, 30], who usedit asareplacementor the hemi-cube
algorithmin progressie refinementadiosity Thebasicideain thesethreeproposalss identical:
a large amountof raysis shotfrom the sourcepatch. The surroundingsceneis subdvided in
recever elementsothateachrecever element(a surfaceor cluster)recevesthe sameamountof
rays. The disadantages thatthesetechniqueswill only work if a large numberof raysis shot
simultaneouslyffrom the shootingpatch. This is not the casein morerecentstochastiaelaxation
algorithms.

Tobleret al. [72] have presentedan adaptve meshingschemefor continuousshootingran-
domwalk radiosity (§4.1.3). By simultaneouslkeepingtrack of incidentparticleson successie
hierarchicaklementevels,smoothnesassumptiorviolationscanbe detected.

Bekaertetal. [2, 1] proposedo incorporatehierarchicakefinementn stochastidacobiradios-
ity by meansf per-rayrefinementThebasicobsenationis thateachline castin non-hierarchical
stochasticlacobiradiositycarriessomeflux from the patchcontainingits origin to the patchcon-
tainingits destinatiorpoint. With hierarchicakrefinementawhole stackof elementscorresponds
with both end-points.A refinementoraclewill predictfor eachline, at whatlevel of the element
stackcontainingthe destinatiorpoint of aline, theflux carriedby theline shallbe depositedsee
figure11). Elementsarerefinedlazily, on thefly duringthecomputations.

Perray refinementworks extremely well with a cheaporacle,suchasbasedon transported
power [21]. Someresultsarepresentedn figure 12. Hierarchicalstochasticlacobiradiosityhas
beenusedn orderto rapidly computeradiositysolutionsn scenegontainingmillions of polygons,
suchasentirebuilding andcarmodels,on highendPCs.
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Figure 12: Complex scenegenderedwith hierarchicalMonte Carlo radiosity: theater(39,000
initial polygons,refinedinto 88,000elements5 minutes),conferencaoom (125,000polygons,
refinemenyields178,000elements9 minutes)andcubicleoffice spacg128,000polygonsyefined
into 506,000elements10 minutes).

Model credits: CandlestickTheater:Design: Mark Mack Architects,3D Model: CharlesEhrlich

andGreg Ward (work conductedhsa researclprojectduringthe Architecture239X coursetaught
by Kevin Matthews formerly at UC Berkeley, College of EnvironmentalDesign). Conference
roomandcubiclespacanodelsby Anat Grynbeg andGreg Ward(LawrenceBerkeley Laboratory

Berkeley, California).
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Notations

fr(z;0 < ©)
G(z,y)
h(z,©)

L7 (z,0),L (z,0)

O 3

dLL)@

p(z)
Di
Dij
T

scalamproductof X andY (functionsor vectors)

estimateor approximatiorfor X, or modifiedquantity X

Monte Carloestimatoirfor aquantity X (randomvariablefor estimatingX)
largestintegersmallerthanor equalto x

matriceswith elements;;, ¢;;

vectorswith components;, b;, . . .

surfaceareaof patchi

differentialareaata pointz

absorptiorprobability of arandomwalk

radiosityemittedby patch: (constanpproximations)
radiosityemitted“under” basisfunction; , in B(ac) = Em B oi.o(T)
“true” radiosityfunctionatpointz

B; — FE; : non-selfemittedadiosityat patch:

radiosityats dueto light sourcepatchl: b; = )", by

co-varianceof Monte CarloestimatorsX andY’

transposef thematrix C: ¢;; = c¢;;

randomwalk hit pointdensity

Kroneclersdelta:1if i = 7,0if 1 # j

self-emittedradiosityby patch: (constantapproximations)

“true” self-emittedradiosityfunctionatx

expectationof the Monte CarloestimatorX for X

patchi-to-patch4 form factor

BRDF at z for scatteringrom adirection®© into direction®’ or vice versa
geometricadiositykernel

first pointon asurfacevisible from z in thedirection©

importanceat patch: (radiosity-like)
exitantandincidentradianceat x into/from direction©

numberof samplesn a Monte Carlocomputation

sizeof aproblem,for instancenumberof equationsn alinearsystem
hemispheref directionsabove x

infinitesimalsolid anglecontainingdirection©®

A; B;: power emittedby patchi
(continuous)probability densityat a point

(discrete)probabilityat a patchor statei

transitionprobabilityfrom ; to 5

randomwalk birth probabilityat

A; E;: self-emittedpower at patch:
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,lvbi,a
,(/Ji,a

8
e

p(x)

<
TSNS P

vis(z, y)

Gi

a-th basisfunctionon patch:

a-th dualbasisfunctionon patchi: [ Vi.0(2)0ip(x)dAy = Sap
distancebetweernpointsz andy

reflectvity of patch:

reflectvity atpointz

surfaceof patchi: (setof points)
out-goingdirectionat point z

anglebetweer®, andthe surfacenormalat x

A;I;: importanceat patchi (power-lik e)
source-importancat patch: (radiosity-like)

varianceof the Monte CarloestimatorX for X

visibility predicate:lif z andy aremutuallyvisible, O if not
A;V;: source-importancat patch: (power-like)
recurrentradiosity: fraction of radiosityon i dueto itself
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Recent Trends and
Future Work

Part 4: Recent Trends + Research

Photon Maps

Metropolis Light Transport

Future directions of research




Photon Map

ldea: Stochastic ray tracing + pre-
storage of information
2 passes:

* shoot light-rays (“photons”) and record any hit-
points on surfaces

* shoot viewing rays, collect information from
stored photons

Pass 1: shoot photons

Light path generated
using MC techniques

Store:
* position
* incoming direction
* probability

* color

. R




: shoot photons

Light path generated
using MC techniques
Store:

position

incoming direction

probability

color

Pass 1: shoot photons

Light path generated
* using MC techniques

Store:
position
incoming direction
probability

color




Pass 2: viewing ray

Search for N closest
photons

Assume these
photons hit the point
we're interested in

Compute average
radiance

Metropolis

* Generate paths using any path generation method

* Once a valid path is found, mutate it to generate
new valid paths

* Advantage: once an important path with low
probability is found, it is explored




Metropolis

Valid path

Metropolis

Small mutations




Metropolis

Small mutations

Metropolis

Small mutations




Metropolis

Accept mutations
based on energy
transport

Metropolis




Future Directions

* Expand stochastic radiosity methods to non-diffuse
environments

* Find better schemes for storing radiance
information in the scene

* photon maps
* density estimation

Future Directions

* Points as rendering primitives (e.g. Surfels, QSplat)

* also useful for global illumination?

* Real-Time Global lllumination?




