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ABSTRACT

Very large polyhedral models, which are used in more and more graphics
applications today, are routinely generated by a variety of methods such as surface
reconstruction algorithms from 3D scanned data, isosurface construction algorithms
from volumetric data, and photogrametric methods from aerial photography. The
course will provide an overview of several closely related methods designed to
smooth, denoise, edit, compress, transmit, and animate very large polygonal
models, based on signal processing techniques, constrained energy minimization,
and the solution of diffusion differential equations.
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Eurographics'’2000 State of the Art Report on Geometric Signal Processing on
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on 3D Geometry Compression at Siggraph'98, Siggraph'99, Siggraph’2000, and ACM
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by the MPEG-4 standard; the HotMedia project, where he transfered his 3D geometry
compression technology to the award winning (PC Expo'2000 Best of Show Sofware)
IBM HotMedia product. And the Pieta project, where Michaelangelo's Florentine Pieta
was 3D scanned and a 3D model was reconstructed to support art historian Jack
Wasserman in his comprehensive study of the statue.



Course Syllabus and Timeline

1:30 INTRODUCTION (5")

1:35 TAUBIN (85")

e Representation of polygonal models
Operations on large polygonal meshes
Laplacian smoothing
The shrinkage problem
Fourier analysis on meshes
Smoothing by partial Fourier expansion
Smoothing as low-pass filtering
Taubin smoothing
FIR/IIR filter design
Implicit Fairing / Multi-resolution modeling
Smoothing with constraints
Preventing tangential drift by curvature flow
Applications to 3D geometry compression
Optimal mesh sampling rate conversion
Adaptive curvature-based resampling
Filtering of normal and tensor fields
Non-linear filtering / anisotropic diffusion

3:00 BREAK (15")

3:15 KOBBELT (85")

o Multiresolution representations
Coarse-to-fine (refinement, remeshing)
Fine-to-coarse (simplification)

Detail encoding

Fairing by constrained energy minimization
General set-up
Multi-level smoothing
Fairing by solving PDEs
Linear PDEs

Non-linear PDEs
Practical aspects
Multiresolution editing
Static connectivity
Dynamic connectivity

4:40 QUESTIONS AND ANSWERS (15")

5:00 ADJURN
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Geometric Signal Processing on Large Polygonal Meshes

Leif Kobbelt*

Since hierarchical methods in geometric modelling have
emerged as a key tool to handle highly complex 3D data sets, the
term multiresolutionhas been adapted from signal processing the-
ory to emphasize the notion of decomposing a given shape into ge-
ometric frequency bands just like arbitrary (scalar or multi-modal)
signals can be expressed by a superposition of different frequencies.
The descriptive and functional power of these techniquesislargely
due to the intuitive correlation between high frequencies and fine
detail on one side and low frequencies and global shape features on
the other side.

Naturaly, the operators to analyze or synthesize geometric
shapes and their multi-resolution spectra, are very similar to the
digital filters that are used in standard signal processing applica
tions. The main difference isthat the graph- or surface topology of
apolygona mesh is more complicated than the temporal or spatial
domains on which conventional signals are usually defined (typi-
cally IR?). Hence the major difficulty in applying signal processing
techniques to geometric shapes is their generalization with respect
to the domain topol ogy.

The approach taken by Taubin [18] isto generalize the notion of
frequencyto triangle meshes by considering the vertex positions of
agiven mesh as a set of point samples from the underlying shape.
The resulting piecewise linear surface is then an approximative re-
construction of the continuous shape from those samples.

In order to obtain a definition of frequencyor wavelengthwhich
is independent from the specific geometric shape, we can measure
the distance between mesh vertices by their topological distance,
i.e., by the number of edges we have to follow to describe a path
from vertex A to vertex B. For this definition, the highest fre-
quency signal (i.e., the shortest wavelength) is achieved if the geo-
metric location of directly neighboring vertices varies strongly and
lower frequencies are characterized by vertex positions such that
local minima and maxima are several edges apart.

The general task of analyzing the spectrum of a given signal is
agloba problem and hence computationally involved. For the ef-
ficient processing of large triangle meshes we have to find a lo-
cal approximations —ideally leading to filter algorithms with linear
complexity.

Consider, eg., a triangle mesh which consists of one center
vertex p and its surrounding neighbors qo,...,q,—1. Then the
smoothest possible geometric configuration (in terms of topologi-
cal wavelength) is achieved if the center vertex lies at the center of
gravity of itsneighbors, i.e.,

1 n—1
P = E Z qi-
i=0

For al other configuration, the amount of higher frequency compo-
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nents can be measured by the difference vector
1 n—1
Up) = - Z @ — p. &

An effective low-passfilter applied to the considered mesh will shift
the position of the center vertex such that the length of the vector
U(p) isreduced.

In alarger mesh each vertex can be understood as the center ver-
tex to its directly adjacent neighbors. Consequently (1) gives alo-
cal estimate of the highest frequency at that location on the surface.
Again, a low-pass can be implemented which moves each vertex
towards the center of gravity of its neighbors and thus attenuates
the highest frequency components.

After applying such alow-pass filter to a given mesh, the piece-
wise linear surface will become less rough. Hence to local geome-
try (= thelocal signal) could be reconstructed from fewer samples
without losing significant geometric information. Thisisvery sim-
ilar to standard results from signal processing which state that the
necessary sampling rate for correct reconstruction of agiven signal
depends on the highest frequency component.

In the context of multiresolution techniques a decomposition of
ageometric data set M, isusually obtained by first applying alow-
passfilter operation L which preserves only the low frequency com-
ponents. Hence the difference of the vertex positionsin the original
mesh and the filtered mesh My = L(M,) contains all the high
frequency information. Since M) is oversampledn the sense that
fewer samples would be sufficient for reliable reconstruction, we
can apply a sub-sampling operator such as mesh decimation which
yields a coarser mesh M, .

Applying (1) to this mesh, again, measures the high frequency
components but since the samples are distributed more sparsely,
those frequencies belong to a different frequency band. This band
can beisolated by computing the difference between the vertex po-
sitionsin M; and afiltered version M| = L(M;).

By repeating this procedure of alternating low-pass filtering and
subsampling, we generate a sequence of coarser and coarser meshes
M; with the total shape information decomposed into different fre-
quency bands represented by the differences M; — M.

The basic ingredient for the above algorithm is alinear low-pass
filter which is derived from the local " noise-estimator” (1). From a
geometric point of view there are several interpretations for this
vector U(p). Usudly it is considered as some kind of discrete
Laplace vector or Mean Curvature vector. An obvious generaliza-
tion of (1) is

n—1
up) = = > ai(ai - p) )

n
=0

where the coefficients «; can be used to adapt the operator to the lo-
cal mesh distortion, i.e., to the varying edge lengths or to the angles
between edges and normals. In [4] a number of possible choicesis
presented. From this perspective the low-pass filter operation turns
out to be a diffusion operator that moves the vertices (= particles)
along the direction given by (2).

A completely different interpretation emerges from the observer
tion that a solution to the equation /(p) = 0 isin fact a discrete



approximation to a continuous surface f satisfying the partial dif-
ferential equation
Af=0. (3)

Hence the application of the low-pass filter can be considered as
one step in an iterative algorithm to solve the linear system which
characterizes the solution of the PDE (3). Moreover, the PDE (3) is
the Euler-Lagrange eguation to the membrane optimization prob-
lem that minimizes the surface area while respecting prescribed
boundary conditions.

Analoguously, if we control the low-pass filtering by higher or-
der Laplace vectors

n—1

Z/{2(p) = - Z a;(U(q:) — U(p))

n
=0
weiteratively solve the fourth order PDE
Nf=0

whose solutions minimizes the thin plate energy [9].

It turns out that the alternative interpretation of the low-passfilter
asan iterative PDE solver naturally enablesthe inclusion of interpo-
lation constraints to the multiresolution decomposition. For exam-
ple, al meshes M; can be forced to interpolate the same boundary
curve which is useful when locally modifying the mesh model [9].

Geometrically more sophisticated generalizations of the curva
ture estimator (2) can be derived, if we allow the coefficients «;
to be non-linear functions of the local geometry and that they are
updated in every step of the iteration [15]. By this we can gener-
ate discrete approximations to continuous solutions of non-linear
PDEs whose shape is ailmost completely independent from the ac-
tual mesh connectivity.
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Large dense polygonal meshes

Are becoming standard representation for surface data
+ 3D Scanning (Reverse engineering, Art)
& Isosurfaces (Scientific Visualization, Medical)
# Subdivision Surfaces (Modeling, Animation)
But have too many degrees of freedom (vertices)
How to ?
+ Smooth / De-noise
o Edit / Deform / Constrain / Animate
+ Represent / Compress / Transmit

8/12/2001 Taubin / Siggraph 2001 Course 17
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Digital Signal Processing on Meshes

8/12/2001 Taubin / Siggraph 2001 Course 17

ORIGINAL LAPLACIAN TAUBIN
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Taubin / Siggraph 2001 Course 17 2



8/12/2001

Polygonal Meshes

Components

+ Connectivity (Vertices, Edges, Faces)

o Geometry (Vertex Coordinates)

o Properties (Normals, Colors, Texture Coordinates)
Connectivity ( combinatorial algorithms )

« Boundary / Regular / Singular Edges and Vertices

+ Connected Components

. / Non-manifold

+ Orientable / Oriented

+ Topology

8/12/2001 Taubin / Siggraph 2001 Course 17

3D Representations

Surfaces
+ Polygonal meshes
Disconnected triangles (STL file format)
IndexedFaceSet (VRML file format)
Half-Edge data structure (manifold meshes)
+ Boundaries of solid objects
Volumes (solid objects)
« Implicit surfaces
Defined by inside-outside function
& Iso-surfaces : convertion to polygonal mesh

8/12/2001 Taubin / Siggraph 2001 Course 17
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Disconnected Triangles

Triangle Mesh with T triangles
+ Each triangle specified by 3 vectors = 9T floats
+ No connectivity information
o STL file format used for Rapid Prototyping

(1,4,0)
(0,3,0)

(2,0,0)

8/12/2001 Taubin / Siggraph 2001 Course 17

IndexedFaceSet

Array of vertex coordinates

Each 3D vertex has an associated vertex index

in {0,...,V-1}

A triangle is defined by three vertex indices (i,j,k)

A polygonal face without holes is defined by more indices
coordindex [ 0,1,2,-1,2,1,3,4,-1]

VRML’97 file format

8/12/2001 Taubin / Siggraph 2001 Course 17
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Polygonal Mesh Components

Connectivity
o coordIndex (faces)
Geometry
« coord (vertex coordinates)
Properties
# color/colorindex/colorPerVertex
+ normal/normalindex/normalPerVertex
o texCoord/texCoordindex

8/12/2001 Taubin / Siggraph 2001 Course 17

Connectivity / Classification of Elements

Edges

+ Boundary (1 incident face)

# Regular (2 incident faces)

# Singular (3 or more incident faces)
Vertices

# Regular / Singular

Connected components

+ Connected Components of Dual Graph

8/12/2001 Taubin / Siggraph 2001 Course 17
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Manifold Meshes

No singular edges
+ Boundary
Edge with 1 incident face
+ Regular
Edge with 2 incident faces
No singular vertices
+ Boundary

dual graph of set of incident faces form a path
+ Regular

dual graph of set of incident faces form a cycle
Data Structure to represent and operate on ?

8/12/2001 Taubin / Siggraph 2001 Course 17

Doubly-linked data structure Oriented egde

Planar subdivisions p
Orientation @»

Vertices / Faces / Half-Edges »

Non-oriented egde

) mIZRe srcVert ex hal f Edge {
\ f ace
srcVert ex
next Edge
revEdge
dst Vert ex R g

twi nEdge
face

\ prevEdge

8/12/2001 nex%%ﬂ?smgraph 2001 Course 17
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Doubly-linked data structure

One half-edge per corner of mesh

Simple Face

o closed loop of half-edges

Multiply connected face

+ 1 external loop + one or more internal loops

vertex
vertex

face

8/12/2001 / Siggraph 2001 Course 17

Orientation

Consistent if edge is added or removed
Counterclockwise for outer loop
Clockwise for inner loops

Twin edges have opposite orientations

N

8/12/2001 Taubin / Siggraph 2001 Course 17
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Doubly-linked data structure

Operations

o Traversal / triangle strips / compression
o Surgery / Euler operations

+ Simplification / subdivision

How to construct from IndexedFaceSet ?
+ Simply connected faces

+ Geometric intersections ignored
Conversion to manifold

+ Removal of singular edges and vertices

8/12/2001 Taubin / Siggraph 2001 Course 17

Mesh Graph
G=(V,E)
V set of mesh vertex indices {0,...,V-1}
F set of faces f=[i,j,k,...]
E set of mesh edges e={i,j}

i*={j:{ij}isinE}

Signals Defined on the
vertices of a graph

8/12/2001 Taubin / Siggraph 2001 Course 17
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Different approaches

Physics-based / PDE Surfaces
Variational / Regularization
Multiresolution

Subdivision Surfaces

8/12/2001 Taubin / Siggraph 2001 Course 17

Classical Digital Signal Processing

Signals defined on regular grids

+ 1D : music / speech

+ 2D : images / video

+ 3D : medical imaging

Shannon Sampling Theorem

DFT/FFT Fourier Analysis

FIR/IIR Linear Filters

Convolution

Multi-rate filtering / upsampling / downsampling ...

8/12/2001 Taubin / Siggraph 2001 Course 17
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The Signal Processing Approach

Laplacian smoothing

+ The shrinkage problem

# Fourier analysis on meshes

< Smoothing by partial Fourier expansion
+ Smoothing as low-pass filtering

& Taubin AJu smoothing

o FIR/IIR filter design

o Implicit Fairing / Multiresolution modeling
+ Weights / Hard and soft constraints

Compression of geometry information

8/12/2001 Taubin / Siggraph 2001 Course 17

Main references

Taubin AJu smoothing (SG’95)

Taubin-et-al FIR filter design (ECCV’96)
Desbrun-et-al Implicit smoothing (SG’99)
Kobelt-et-al Multiresolution smoothing (SG’98)
Tani-Gotsman Spectral compression (SG’00)
Balan-Taubin prediction by filtering (CAD’00)

Khodakovsky-Schroder-Sweldens
Progressive Geometry Compression (SG'00)

Guskov-et-al Multiresolution Signal Processing (SG’'99)

8/12/2001 Taubin / Siggraph 2001 Course 17
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Laplacian smoothing in mesh generation

Used to improve quality of 2D meshes for FE computations
Move each vertex to the barycenter of its neighbors
But keep boundary vertices fixed

8/12/2001 Taubin / Siggraph 2001 Course 17

The 1D Discrete Fourier Transform

For 1D periodic signals

i+1

There is a fast algorithm to compute the DFT : the FFT
|deal Low-Pass filter can be implemented
Complexity is O(n log(n))

8/12/2001 Taubin / Siggraph 2001 Course 17
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Laplacian smoothing of 1D discrete signals

Known as Gaussian smoothing
Convolution of 1D signal with Gaussian kernel
Also for 2D discrete and continuous signals

Vi+1

A A
\ Vi ZEVi—1+(1‘)\)Vi+§Vi+1

O0<A<1

8/12/2001 Taubin / Siggraph 2001 Course 17

Laplacian smoothing of 1D discrete signals
A A
Vi'=—Vi—1 +(L-A)vj+—V;
i =5 Vil (1-A)vi > Vit
, 1 1
Vi' =V ”\(E(Vi—l Vi) + 5 (Visl ‘Vi)j

Vi
) o Vi
Vi—1 1+1
e Preserves DC

8/12/2001 Taubin / Siggraph 2001 Course 17
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Laplacian smoothing with general weights

v.' = vl+}\Av

8/12/2001 Taubin / Siggraph 2001 Course 17

The Laplacian operator
v.' = Vi +)\Avi

Av, = Zwij(vj Vi)

8/12/2001 Taubin / Siggraph 2001 Course 17
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Laplacian smoothing : advantages

Linear time

Linear storage

Edge length equalization (depending on the application)
Constraints and special effects by weight control

8/12/2001 Taubin / Siggraph 2001 Course 17

Shrinkage of Laplacian smoothing

8/12/2001 Taubin / Siggraph 2001 Course 17

Taubin / Siggraph 2001 Course 17
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Laplacian smoothing : disadvantages

Shrinkage
# Solved by scale adjustment for closed shapes ?
¢ What is going on? Fourier analysis
# Solved by Taubin’s algorithm for general shapes
# Solved by Low-Pass filtering
Edge length equalization (depending on the application)
+ Fujiwara weights
# Desbrun-et-al weights

8/12/2001 Taubin / Siggraph 2001 Course 17

Fixing shrinkage by renormalizing scale

Vi Vv

Adjust scale s to keep distance to barycenter v constant

> Jvi = = X lstv -
I I

Vi" =V +s(vj'-V)

8/12/2001 Taubin / Siggraph 2001 Course 17
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Fixing shrinkage by renormalizing scale

It is a global solution
Local perturbation changes shape everywhere
Does not work !!!

For a better solution we need to understand why
shrinkage occurs

Fourier Analysis

8/12/2001 Taubin / Siggraph 2001 Course 17

Fourier analysis on meshes

X' = X, +)\Zwij(xj -X.) X' = (I-AK) x
]

Eigenvalues of K = I|-W (FREQUENCIES)
= < <. ... < <
0 k0 < k1 <--- < kN <2

Right eigenvectors of K (NATURAL VIBRATION MODES)

Sa g

l,...,e

0’ \

8/12/2001 Taubin / Siggraph 2001 Course 17
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Geometry of low and high frequencies

Kneni = Kepi' = — 2. wiey; —ep)
j

Low frequency
P e m—

_— T~

AVAN

8/12/2001 Taubin / Siggraph 2001 Course 17

High frequency

Natural vibration modes

8/12/2001 Taubin / Siggraph 2001 Course 17
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The Discrete Fourier Transform

Eigenvectors form a basis of N-space
Every signal can be written as a linear combination

A

X = xoeo +x1e1+--- +xNeN

Discrete Fourier Transform (DFT)

(0 1 N)

8/12/2001 Taubin / Siggraph 2001 Course 17

The lIdeal Low-Pass Filter

Truncated Fourier expansion

x':;( e +>A<e +---+>A< e
00 "1 L

8/12/2001 Taubin / Siggraph 2001 Course 17
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The Discrete Fourier Transform

= truncated Fourier expansion

X :1x0e0+---+1xLeL

~A

XL+1eL +l+--- +OX|\|eN

+0

But eigenvectors be computed
Compute an approximation instead : Linear filtering

8/12/2001 Taubin / Siggraph 2001 Course 17

Polynomial Functions of Matrices

f(k) univariate polynomial
K square matrix
f(K) square matrix

To evaluate f(K)x only need to know how two multiply
a matrix by a vector, a number by a vector, and how to
add two vectors
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Analysis of Laplacian smoothing
Laplacian smoothing
xN = (1 - AK)Y x =f(K)x

f(k) univariate polynomial (rational later)
f(K) matrix

K and f(K) have same eigenvectors
Eigenvalues of f(K)

f(ko) , f(kl) e f(kN)
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Laplacian Smoothing is a Linear Filter
After filtering

KK)x:f&D)erO+~-+KkN)xNe

\

For Laplacian smoothing SRR [ IG e
flkp) =1 . .
f&p=a-AhW-»0 j#0 0<A <1
Laplacian smoothing is a low-pass filter !
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Linear Filtering
After filtering

f(K)x:f(kO)er +---+f(kN)xNe

0 I\

Evaluation of f(K) x is matrix multiplication

It require the computation of eigenvalues and
eigenvectors (DFT)

8/12/2001 Taubin / Siggraph 2001 Course 17

Low-Pass Linear Filtering
After filtering

f(K)x = f(k) X Bt +Hilk) X 8

N

Need to find univariate polynomial f(k) such that
f(kh) =1 Kk
f(kh) =0

<
L~ kPB
p
kL kPB
Need to define efficient evaluation algorithm
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Taubin smoothing (Siggraph’95)

Two steps of Laplacian smoothing

First shrinking step with positive factor
Second unshrinking step with negative factor
Use inverted parabola as transfer function

f(K) = (L-pk)L-AK)Y  with —p>A>0

FRLIEE RO FRLTEEF RO
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Taubin smoothing (Siggraph’95)
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Taubin-Zhang-Golub (ECCV’96)

FIR filter design
Efficient algorithm to evaluate any polynomial transfer
function

Based on Chebyshev polynomials defined by three term
recursion

All classical Finite Impulse Response (FIR) filter design
techniques can be used with no modifications

Implemented method of “windows” based on truncated
Fourier series expansion of ideal transfer function and
coefficient weighting to remove Gibbs phenomenon
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FIR filters vs. IR filters

Sharp transitions and narrow pass-bands require very
high degree polynomial transfer functions

Infinite Inpulse Response (lIR) filters with rational
transfer functions can produce good approximations
using polynomials of low degree

But require the solution of sparse linear systems
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IR filters

If f(k)=g(k)/h(k), with h(k) non-zero in [0,2]
Filtering a signal x requires solving the system

h(K)x" =g(K)x

y =g(K) x isan FIR filter

With H = h(K) solving H x’ =y with the
Preconditioned Biconjugate Gradients algorithm
(PBCG) only requires methods to multiply a vector z
by H and by H' and a preconditioner H’
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Desbrun-Meyer-Schroder-Barr (SG’99)
Implicit fairing

Corresponds to the classical Butterworth filter with transfer
function

1

0= kT

Need to solve sparse (for small N) linear system

(1+ W/ k)N KY) X" =X

But with PDE formulation in the paper
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Implicit fairing
Laplacian smoothing corresponds to the numerical solution of

d_x = Adt Ax
ot

using the forward Euler method
X'=X +AdtAX = (I +AdtA)x
They use the backward Euler method instead
(I-AdtA)x' =X

Stable for large time steps (true or false ?)
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Kobelt-et-al Multiresolution modeling
(Siggraph’98)

Minimize membrane energy E, = ||AX||2

or thin plate energy E, = HAZXHZ

Requires boundary vertex position constraints
Speed-up by multi-grid approach

Jacobi updates similar to Laplacian and Taubin updates
How does it compare with single-res FIR filters ?

8/12/2001 Taubin / Siggraph 2001 Course 17
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What can be done with the weights ?

Av, = Zwij(vj Vi)
J

Weights

+ Neighborhoods = non-zero weights

+ Prevention of Tangencial drift

« Edge-length equalization

Boundaries and creases / hierarchical smoothing
Vertex-dependent smoothing parameters

8/12/2001 Taubin / Siggraph 2001 Course 17

Preventing tangencial drift
Fujiwara (P-AMS’95)
& Weights inversely proportional to edge length
Desbrun-Meyer-Schroder-Barr (SG’99)

# Based on better approximation of curvature normal
V. q..

| |

cij = cot(aij) + cot(Bij)'

Bij\ V.
J

Guskov-et-al (SG’'99) based on divided differences and
second order neighborhood
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Smoothing with Constraints

Boundaries

Creases

Singular edges

Imposing Vertex Constraints / Discrete Fairing
# Lack of normal control

Imposing Normal Constraints

Detecting and Enhancing Creases

# Anisotropic Difussion

+ Non-Linear filtering

+ Evolution of Weights

8/12/2001 Taubin / Siggraph 2001 Course 17

Hierarchical neighborhoods

Assign a numeric label to each vertex

Vertex | is a neighbor of vertex i only if i and j are
connected by an edge, and the label of i is less or equal
than the label of j
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Boundaries and creases

8/12/2001 Taubin / Siggraph 2001 Course 17

Vertex Constraints and Surface Design
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Boundaries and creases

Use hierarchical neighborhoods
Assign label 1 to boundary and crease vertices
Assign label 0 to all internal vertices

The graph defined by the boundary and crease edges
and vertices is smoothed independently of the rest of
the mesh

The rest of the mesh “follows” the graph defined by the
boundary and crease edges and vertices
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Position and normal constraints

Hard vs. soft constraints
Hard vertex position constraints are easy to impose

General hard linear constraints require solving small
linear systems

Yamada-et-al Discrete Spring Model (PCCGA’98)
Impose soft normal constraints with a spring model
that adds an extra term to the smoothing step

Slow convergence and/or high computational cost
Multi-resolution helps
More work needed
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Curvature-based Sampling

Silva-Taubin Curvature-based sampling (SIAM-GD’99)
Taubin Tensor of curvature (ICCV’'95)

2 _ 2
v =vi #gn =,

Vi =0,
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Geometry compression

Static or single-resolution vs. progressive
Connectivity, geometry, and properties

Geometry and properties cost much more than
connectivity

Commercial grade single-resolution methods available

# Taubin-Rossignac Topological Surgery (MPEG-4/ IBM
HotMedia)

& Touma-Gotsman (Virtue Ltd.)
Need better geometry prediction/compression
schemes
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Tani-Gotsman (Siggraph’00)
Spectral Compression
Based on partial DFT expansion
Connectivity is transmitted first

Encoder computes Eigenvalues/Eigenvectors of matrix
K to evaluate Fourier coefficients

Fourier coefficients are transmitted

Decoder computes Eigenvalues/Eigenvectors of matrix
K to reconstruct the partial sum

Mesh partition into smaller submeshes to be able to
deal with the numerical restrictions

Need to compute lots of Eigenvalues/Eigenvectors
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Balan-Taubin _ _
prediction by filtering (CAD’00)
Based on a vertex clustering hierarchy (PM, PFS, etc.)

Connectivity is transmitted progressively interlieved
with geometry data

Fine Geometry is predicted from coarse geometry by
filtering the coarse geometry on the fine mesh

Filter coefficients are determined by solving a LS
problem

Corrections are not transmitted

min, || x, = f(K)x. [
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Khodakovsky-Schroder-Sweldens
Progressive Geometry Compression
(SG’00)
Good for large densely sampled meshes with low
topological complexity (3D scanning, etc.)
MAPS Remeshing produces subdivision surface
Wavelet compression

Zero-tree encoding
Very good results reported

8/12/2001 Taubin / Siggraph 2001 Course 17

Conclusion/ To Do

Fast and efficient methods to smooth with hard and
soft constraints

Relation to subdivision surfaces
Global vs. local behavior of smoothing operators

Goal: free-form modeling based on intuitive
user interface to manipulate constraints, remesh,
simplify, etc.

Goal: and effective methods for the
compression of geometry data.

Implementation of other popular SP operations
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A Signal Processing Approach To Fair Surface Design

Gabriel Taubin!
IBM T.J.Watson Resear ch Center

ABSTRACT

In this paper we describe a new tool for interactive free-form fair
surface design. By generalizing classical discrete Fourier analysis
to two-dimensional discrete surface signals— functions defined on
polyhedral surfaces of arbitrary topology —, we reduce the prob-
lem of surface smoothing, or fairing, to low-pass filtering. We
describe a very simple surface signal low-pass filter algorithm that
appliesto surfacesof arbitrary topology. Asopposed to other exist-
ing optimization-based fairing methods, which are computationally
more expensive, this is a linear time and space complexity algo-
rithm. With this algorithm, fairing very large surfaces, such as
those obtained from volumetric medical data, becomes affordable.
By combining this algorithm with surface subdivision methods we
obtain a very effective fair surface design technique. We then
extend the analysis, and modify the algorithm accordingly, to ac-
commodate different types of constraints. Some constraints can
beimposed without any modification of the algorithm, while others
reguirethe solution of asmall associated linear system of equations.
In particular, vertex location constraints, vertex normal constraints,
and surface normal discontinuities across curves embedded in the
surface, can be imposed with this technique.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picturelimage generation - display algorithms; 1.3.5
[Computer Graphics]: Computational Geometry and Object Mod-
eling - curve, surface, solid, and object representations; J.6 [Com-
puter Applications]: Computer-Aided Engineering - computer-
aided design

General Terms: Algorithms, Graphics.

1 INTRODUCTION

The signal processing approach described in this paper was origi-
nally motivated by the problem of how to fair large polyhedral sur-
faces of arbitrary topology, such asthose extracted from volumetric
medical data by iso-surface construction algorithms [21, 2, 11, 15],
or constructed by integration of multiple range images [36].

Since most existing algorithms based on fairness norm opti-
mization [37, 24, 12, 38] are prohibitively expensivefor very large
surfaces — a million vertices is not unusual in medical images —,
we decided to look for new algorithms with linear time and space
complexity [31]. Unless these large surfaces are first simplified
[29, 13, 11], or re-meshed using far fewer faces [35], methods
based on patch technology, whether parametric [28, 22, 10, 20, 19]
or implicit [1, 23], are not acceptable either. Although curvature

1IBM T.JWatson Research Center, PO.Box 704, Yorktown Heights, NY 10598,
t aubi n@vat son. i bm com
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continuous, a patch-based surface interpolant is far more complex
than theoriginal surface, moreexpensiveto render, and worst of al,
does not removethe high curvature variation present in the original
mesh.

Asinthefairnessnorm optimization methodsand physics-based
deformable models [16, 34, 30, 26], our approach is to move the
verticesof the polyhedral surfacewithout changing the connectivity
of the faces. The faired surface has exactly the same number of
verticesand faces asthe original one. However, our signal process-
ing formulation results in much less expensive computations. In
these variational formulations [5, 24, 38, 12], after finite element
discretization, the problemis often reduced to the solution of alarge
sparselinear system, or amore expensiveglobal optimization prob-
lem. Large sparselinear systemsare solved using iterative methods
[9], and usually result in quadratic time complexity algorithms. In
our case, the problem of surfacefairing is reduced to sparse matrix
multiplication instead, alinear time complexity operation.

The paper isorganized asfollows. In section 2 we describe how
to extend signal processingto signal sdefined on polyhedral surfaces
of arbitrary topology, reducing the problem of surface smoothingto
low-passfiltering, and we describe aparticularly simplelinear time
and spacecomplexity surface signal low-passfilter algorithm. Then
we concentrate on the applications of this algorithm to interactive
free-form fair surface design. AsWelch and Witkin [38], in section
3 we design more detailed fair surfaces by combining our fairing
algorithm with subdivision techniques. In section 4 we modify our
fairing algorithm to accommodate different kinds of constraints.
Finally, in section 5 we present some closing remarks.

2 THE SIGNAL PROCESSING APPROACH

Fourier analysis is a natural tool to solve the problem of signal
smoothing. The space of signals — functions defined on certain
domain —is decomposedinto orthogonal subspacesassociated with
different frequencies, with the low frequency content of a signal
regarded as subjacent data, and the high frequency content as noise.

21 CLOSED CURVE FAIRING

To smooth a closed curve it is sufficient to remove the noise from
the coordinatesignals, i.e., to project the coordinate signalsonto the
subspace of low frequencies. This is what the method of Fourier
descriptors, which dates back to the early 60’s, does [40]. Our ap-
proach to extend Fourier analysisto signals defined on polyhedral
surfaces of arbitrary topology is based on the observation that the
classical Fourier transform of asignal can be seen as the decompo-
sition of the signal into a linear combination of the eigenvectors of
the Laplacian operator. To extend Fourier analysisto surfaces of
arbitrary topology we only haveto define anew operator that takes
the place of the Laplacian.

Asamotivation, let usconsider the simple case of adiscretetime
n-periodic signal —afunction defined on aregular polygon of » ver-
tices —, which we represent asa column vector z = (z1, ..., zn)".
The components of this vector are the values of the signal at the
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® vertex v;

e neighbors vjig €1°
® newposition v; = v; + {\, p} Ejei* wij (v; — v;)

Figure 1: The two weighted averaging steps of our fairing algo-
rithm. (A) A first step with positive scale factor X is applied to all
the vertices. (B) Then a second step with negative scale factor 4 is
applied to all the vertices.

vertices of the polygon. The discrete Laplacian of z is defined as

1 1
Az; = 5(%’—1 —zi)+ §(z~;+1 — ;) , (€]

where the indices are incremented and decremented modulo ». In
matrix form it can be written as follows

Az =—-Kz, 2

where K is the circulant matrix

2 -1 -1
-1 2 -1
K== .. ..
-1 2 -1
-1 -1 2

Since K is symmetric, it has real eigenvalues and eigenvectors.
Explicitly, the real eigenvalues ki, ..., k, of K, sorted in non-
decreasing order, are

k; =1—cos(2x|j/2|/n),

and the corresponding unit length real eigenvectors, w1, . .., %n,

are

1/n ifj=1
\/2/n sin(27h|j/2]/n) if jiseven
\/2/n cos(2xh|j/2]/n) if jisodd.

Notethat 0 < k1 < --- < k, < 2, and as the frequency k;
increases, the corresponding eigenvector «;, asan-periodic signal,
changes more rapidly from vertex to vertex.

To decompose the signal = as a linear combination of the real
eigenvectorsuy, . .., un

(w)n =

mZZ&w, (©)

is computationally equivalent to the evaluation of the Discrete
Fourier Transform of z. To smooth the signal = with the method
of Fourier descriptors, this decomposition has to be computed, and
then the high frequency terms of the sum must be discarded. But

k
f&)\ 1.0 1.0 HOM
b1 k=%
\\ M
|
/ 0 kpB2 \ 0 kpB “2
A B

Figure2: (A) Graph of transfer function f(k) = (1 — pk)(1 — Ak)
of non-shrinking smoothing algorithm.

this is computationally expensive. Even using the Fast Fourier
Transform algorithm, the computational complexity is in the order
of nlog(n) operations.

An aternative is to do the projection onto the space of low
frequencies only approximately. This is what a low-pass filter
does. We will only consider here low-passfilters implemented asa
convolution. A more detailed analysisof other filter methodologies
is beyond the scope of this paper, and will be done elsewhere [33].
Perhapsthe most popular convolution-based smoothing method for
parameterized curves is the so-called Gaussian filtering method,
associated with scale-spacetheory [39, 17]. In its simplest form, it
can be described by the following formula

T, =z + \Az; , 4)

where 0 < A < 1 isascae factor (for A < 0 and A > 1 the
algorithm enhances high frequenciesinstead of attenuating them).
This can be written in matrix form as

g = -2K)e. (5)

It iswell known though, that Gaussianfiltering producesshrink-
age, and this is so because the Gaussian kernel is not a low-pass
filter kernel [25]. To define a low-pass filter, the matrix I — AK
must be replaced by some other function f(K') of the matrix K.
Our non-shrinking fairing algorithm, described in the next section,
is one particularly efficient choice.

We now extend thisformulation to functionsdefined on surfaces
of arbitrary topology.

2.2 SURFACE SIGNAL FAIRING

At this point we need a few definitions. We represent a polyhedral
surface as a pair of lists § = {V, F'}, alist of n verticesV, and a
list of polygonal faces F'. Although in our current implementation,
only triangulated surfaces, and surfaceswith quadrilateral facesare
allowed, the algorithm is defined for any polyhedral surface.

Both for curves and for surfaces, a neighborhood of a vertex
v; is a set ¢* of indices of vertices. If the index ;5 belongs to
the neighborhood :*, we say that v; is a neighbor of v;. The
neighborhood structure of a polygonal curve or polyhedral surface
is the family of all its neighborhoods {z* : ¢ = 1,2,...,n}. A
neighborhood structure is symmetric if every time that a vertex v;
is a neighbor of vertex v;, also v; is a neighbor of v;. With non-
symmetric neighborhoods certain constraints can be imposed. We
discussthisissuein detail in section 4.

A particularly important neighborhood structureisthefir st order
neighborhood structure, where for each pair of vertices v; and v;
that shareaface (edgefor acurve), wemakew; aneighbor of v;, and
v; aneighbor of v;. For example, for apolygonal curve represented
as a list of consecutive vertices, the first order neighborhood of a
vertex v; is+* = {i — 1,7 + 1}. The first order neighborhood



Figure 3: (A) Sphere partialy corrupted by normal noise. (B)
Sphere (A) after 10 non-shrinking smoothing steps. (C) Sphere (A)
after 50 non-shrinking smoothing steps. (D) Sphere (A) after 200
non-shrinking smoothing steps. Surfacesare flat-shaded to enhance
the faceting effect.

structure is symmetric, and since it is implicitly given by the list
of faces of the surface, no extra storage is required to represent
it. This is the default neighborhood structure used in our current
implementation.

A discrete surface signal isafunction z = (z1,...,2,)" de
fined on the vertices of a polyhedral surface. We definethe discrete
Laplacian of a discrete surface signal by weighted averages over
the neighborhoods

Az; = Z wij (2 — =), (6)

JE>*

where the weights w;; are positive numbers that add up to one,

e Wi = 1, for each . The weights can be chosen in many
different ways taking into consideration the neighborhood struc-
tures. One particularly simple choice that produces good results is
to set w;; equal to the inverse of the number of neighbors 1/|:*|
of vertex v;, for each element 5 of +*. Note that the case of the
Laplacian of a n-periodic signal (1) is a particular case of these
definitions. A more general way of choosing weights for a sur-
face with a first order neighborhood structure, is using a positive
function ¢(v;, v;) = ¢(v;, v;) defined on the edges of the surface

_ )
Ehei* ¢(vi, vn)

For example, the function can be the surface area of the two faces
that share the edge, or some power of the length of the edge
#(vi,v5) = ||lvi — v;]|*. In our implementation the user can
choose any one of these weighting schemes. They produce similar
results when the surface has faces of roughly uniform size. When
using a power of the length of the edges as weighting function, the
exponent o« = —1 producesgood results.

If W = (ws;) is the matrix of weights, with w;; = 0 when
j is not a neighbor of ¢, the matrix K can now be defined as

C D

Figure 4: (A) Boundary surface of voxels from a CT scan. (B)
Surface (A) after 10 non-shrinking smoothing steps. (C) Surface
(A) after 50 non-shrinking smoothing steps. (D) Surface (A) after
100 non-shrinking smoothing steps. ks = 0.1 and A = 0.6307 in
(B), (C), and (D). Surfaces are flat-shaded to enhance the faceting
effect.

K = I —W. In the appendix we show that for a first order
neighborhood structure, and for all the choicesof weightsdescribed
above, the matrix K hasreal eigenvalues0 < k; < ky < --- <
k. < 2 with corresponding linearly independent real unit length
right eigenvectors «,, ..., u,. Seen as discrete surface signals,
these eigenvectors should be considered as the natural vibration
modes of the surface, and the corresponding eigenvalues as the
associated natural frequencies.

The decomposition of equation (3), of thesignal z into alinear
combination of the eigenvectorsu, . . . , u,, isstill valid with these
definitions, but there is no extension of the Fast Fourier Transform
algorithm to compute it. The method of Fourier descriptors — the
exact projection onto the subspace of low frequencies — is just
not longer feasible, particularly for very large surfaces. On the
other hand, low-passfiltering — the approximate projection —can be
formulated in exactly the sameway asfor n-periodic signals, asthe
multiplication of a function f(K') of the matrix K by the original
signal

' = f(K)e,
and this process can be iterated N times

N :f(K)N:v.

Thefunction of one variable f(%) isthetransfer function of the
filter. Although many functions of onevariable can be evaluatedin
matrices[9], wewill only consider polynomials here. For example,
in the case of Gaussian smoothing the transfer function is f(k) =
1 — Xk. Sincefor any polynomial transfer function we have

' = f(K)e :ZSif(ki)Ui,

=1

because Ku; = k;ui, to define a low-pass filter we need to find
a polynomial such that f(k:;)™ = 1 for low frequencies, and



F(k)N = 0for highfrequenciesintheregion of interest % € [0, 2].

Our choiceis
f(k) = (1= Xk)(1 — pk) @)

where0 < A, and p isanew negative scalefactor suchthat i < —A.
That is, after we perform the Gaussian smoothing step of equation
(4) with positive scale factor A for all the vertices — the shrinking
step —, we then perform another similar step

zi =z; + pAz; 8)

for al the vertices, but with negative scale factor p instead of A —
the un-shrinking step —. These steps are illustrated in figure 1.

The graph of the transfer function of equation (7) isillustrated
infigure 2-A. Figure 2-B showsthe resulting transfer function after
N iterations of the algorithm, the graph of the function f(k)".
Since f(0) = 1 and g + A < 0, thereis a positive value of &, the
pass-band frequency kes, suchthat f(kes) = 1. Thevalue of keg is

1 1
12

The graph of the transfer function f(k)" displays a typical low-
passfilter shapein the region of interest & € [0, 2]. The pass-band
region extendsfrom k = 0 to k = kee, where f(k)" ~ 1. Ask
increasesfrom k = kps t0 k = 2, the transfer function decreasesto
zero. The faster the transfer function decreasesin this region, the
better. Therate of decreaseis controlled by the number of iterations
N.

Thisalgorithmisfast (linear both in time and space), extremely
simple to implement, and produces smoothing without shrinkage.
Faster algorithms can be achieved by choosing other polynomial
transfer functions, but the analysis of the filter design problem is
beyond the scope of this paper, and will be treated elsewhere[33].
However, as arule of thumb, the filter based on the second degree
polynomial transfer function of equation (7) canbedesigned by first
choosing a values of kps. Values from 0.01 to 0.1 produce good
results, and all the examples shown in the paper where computed
with kps =~ 0.1. Once kps hasbeen chosen, we haveto choose A and
N (p comesout of equation (9) afterwards). Of course we want to
minimize N, the number of iterations. To do so, A must be chosen
as large as possible, while keeping | f(k)| < 1 for keg < k < 2
(if |£(k)| > 1 in [kes, 2], the filter will enhance high frequencies
instead of attenuating them). In some of the examples, we have
chosen A so that f(1) = —f(2). For kes < 1 this choice of A
ensures a stable and fast filter.

Figures 3 and 4 show examplesof large surfacesfaired with this
algorithm. Figures 3 is a synthetic example, where noise has been
added to one half of a polyhedral approximation of a sphere. Note
that while the algorithm progresses the half without noise does not
change significantly. Figure 4 was constructed from a CT scan of
a spine. The boundary surface of the set of voxels with intensity
value above a certain threshold is used as the input signal. Note
that there is not much difference between the results after 50 and
100 iterations.

3 SUBDIVISION

A subdivision surface is a smooth surface defined as the limit of
a sequence of polyhedral surfaces, where the next surface in the
seguence is constructed from the previous one by a refinement
process. In practice, sincethe number of facesgrowsvery fast, only
afew levelsof subdivision are computed. Oncethefacesare smaller
than the resolution of the display, it is not necessary to continue. As
Welch and Witkin [38], we are not interested in the limit surfaces,
but rather in using subdivision and smoothing stepsastoolsto design
fair polyhedral surfacesin aninteractive environment. Theclassical

Figure 5. Surfaces created alternating subdivision and different
smoothing steps. (A) Skeleton surface. (B) One Gaussian smooth-
ing step (A = 0.5). Notethe hexagonal symmetry becauseof insuf-
ficient smoothing. (C) Five Gaussian smoothing steps (A = 0.5).
Note the shrinkage effect. (D) Five non-shrinking smoothing steps
(ks = 0.1 and A = 0.6307) of this paper. (B),(C), and (D) are
the surfaces obtained after two levels of refinement and smoothing.
Surfaces are flat-shaded to enhancethe faceting effect.

subdivision schemes[8, 4, 12] arerigid, in the sensethat they have
no free parameters that influence the behavior of the algorithm as
it progresses trough the subdivision process. By using our fairing
algorithm in conjunction with subdivision steps, we achieve more
flexibility in the design process. In this way our fairing algorithm
can be seen as a complement of the existing subdivision strategies.

In the subdivision surfaces of Catmull and Clark [4, 12] and
Loop [18, 6], the subdivision process involves two steps. A re-
finement step, where a new surface with more vertices and facesis
created, and a smoothing step, where the vertices of the new sur-



face are moved. The Catmull and Clark refinement process creates
polyhedral surfaces with quadrilateral faces, and Loop refinement
process subdivides each triangular face into four similar triangular
faces. In both cases the smoothing step can be described by equa-
tion (4). The weights are chosen to ensure tangent or curvature
continuity of the limit surface.

These subdivision surfaces have the problem of shrinkage,
though. The limit surface is significantly smaller overall than the
initial skeleton mesh —thefirst surface of the sequence—. Thisisso
because the smoothing step is essentially Gaussian smoothing, and
as we have pointed out, Gaussian smoothing produces shrinkage.
Because of the refinement steps, the surfaces do not collapse to the
centroid of theinitial skeleton, but the shrinkage effect can be quite
significant.

The problem of shrinkage can be solved by a global operation.
If the amount of shrinkage can be predicted in closed form, the
skeleton surface can be expanded before the subdivision processis
applied. Thisis what Halstead, Kass, and DeRose [12] do. They
show how to modify the skeleton mesh so that the subdivision sur-
face associated with the modified skeleton interpolates the vertices
of the original skeleton.

The subdivision surfaces of Halstead, Kass, and DeRose in-
terpolate the vertices of the original skeleton, and are curvature
continuous. However, they show a significant high curvature con-
tent, even when the original skeleton mesh does not have such
undulations. The shrinkage problem is solved, but a new problem
isintroduced. Their solution to this second problem is to stop the
subdivision process after a certain number of steps, and fair the
resulting polyhedral surface based on avariational approach. Their
fairness norm minimization procedure reduces to the solution of a
large sparselinear system, and they report quadratic running times.
The result of this modified algorithm is no longer a curvature con-
tinuous surface that interpolates the vertices of the skeleton, but a
more detailed fair polyhedral surface that usually does not interpo-
late the vertices of the skeleton unless the interpolatory constraints
are imposed during the fairing process.

We argue that the source of the unwanted undulations in the
Catmull-Clark surface generated from the modified skeleton is the
smoothing step of the subdivision process. Only one Gaussian
smoothing step does not produce enough smoothing, i.e., it does
not produce sufficient attenuation of the high frequency compo-
nents of the surfaces, and these high frequency components persist
during the subdivision process. Figure 5-B shows an example of
a subdivision surface created with the triangular refinement step
of Loop, and one Gaussian smoothing step of equation (4). The
hexagonal symmetry of the skeleton remainsduring the subdivision
process. Figure5-C showsthe sameexample, but wherefive Gauss-
ian smoothing steps are performed after each refinement step. The
hexagonal symmetry hasbeenremoved at the expenseof significant
shrinkage effect. Figure 5-D shows the same example where the
fivenon-shrinking fairing stepsare performed after each refinement
step. Neither hexagonal symmetry nor shrinkage can be observed.

4 CONSTRAINTS

Although surfaces created by a sequence of subdivision and smooth-
ing steps based on our fairing algorithm do not shrink much, they
usually do not interpolate the vertices of the original skeleton. In
this section we show that by modifying the neighborhood structure
certain kind of constraints can beimposed without any modification
of the algorithm. Thenwe study other constraintsthat require minor
modifications.

41 |INTERPOLATORY CONSTRAINTS

Figure 6: Example of surfaces designed using subdivision and
smoothing steps with one interpolatory constraint. (A) Skeleton.
(B) Surface (A) after two levelsof subdivision and smoothing with-
out constraints. (C) Sameas (B) but with non-smooth interpolatory
constraint. (D) Same as (B) but with smooth interpolatory con-
straint. Surfaces are flat-shaded to enhancethe faceting effect.

Aswementioned in section 2.2, asimpleway tointroduceinterpola-
tory constraintsin our fairing algorithm is by using non-symmetric
neighborhood structures. If no other vertex isaneighbor of acertain
vertex vy, i.e., if the neighborhood of v, isempty, then thevalue z,

of any discrete surface signal =z does not change during the fairing
process, because the discrete Laplacian Az, is egqual to zero by
definition of empty sum. Other vertices are allowed to have v, as
a neighbor, though. Figure 6-A shows a skeleton surface. Figure
6-B shows the surface generated after two levels of refinement and
smoothing using our fairing algorithm without constraints, i.e., with
symmetric first-order neighborhoods. Although the surface has not
shrunk overall, the nose has been flattened quite significantly. This
is so becausethe noseis made of very few facesin the skeleton, and
these faces meet at very sharp angles. Figure 6-C shows the result
of applying the same steps, but defining the neighborhood of the
vertex at the tip of the noseto be empty. The other neighborhoods
are not modified. Now the vertex satisfies the constraint — it has
not moved at all during the fairing process —, but the surface has
lost its smoothness at the vertex. This might be the desired effect,
but if it is not, instead of the neighborhoods, we have to modify the
algorithm.

42 SMOOTH INTERPOLATION

We look at the desired constrained smooth signal =5 as a sum of
the corresponding unconstrained smooth signal ¥ = F z after N
steps of our fairing algorithm (i.e. F = f(K)Y), plus a smooth
deformation d,

:v]cv:zN—l—(zl —z{v)dl.

The deformation d; isitself another discrete surface signal, and the
constraint (z3 )1 = z; issatisfiedif (d1 ), = 1. To construct such
a smooth deformation we consider the signal 6, where

1 j=4
0 j#i

Thisis not a smooth signal, but we can apply the fairing algorithm
to it. Theresult, let usdenoteit £y, the first column of the matrix
F, isasmooth signal, but its value at the vertex v, is not equal to
one. However, sincethe matrix F' isdiagonally dominated, 7, the
first element of its first column, must be non-zero. Therefore, we
can scalethe signal F,; to makeit satisfy the constraint, obtaining
the desired smooth deformation

(6:); =

dy = Fo FTb.



Figure 7: Examples of using subdivision and smoothing with
smooth interpolatory constraints as a design tool. All the sur-
faces have been obtained by applyingtwo levels of subdivisionand
smoothing with various parametersto the skeleton surface of figure
5-A . Constrained vertices are marked with red dots. Surfaces are
flat-shaded to enhancethe faceting effect.

Figure 6-D showsthe result of applying this process.

When more than one interpolatory constraint must be imposed,
the problem is slightly more complicated. For simplicity, we
will assume that the vertices have been reordered so that the in-
terRoIatory constraints are imposed on the first m vertices, i.e.,
(200 = 21,.., (2N )m = zm. Wenow look at the non-smooth
signalséy, . . ., 6, and at the corresponding faired signals, thefirst
m columns of the matrix F'. These signals are smooth, and so, any
linear combination of them is also a smooth signal. Furthermore,
since F' isnon-singular and diagonally dominated, thesesignalsare
linearly independent, and there exists alinear combination of them
that satisfies the m desired constraints. Explicitly, the constrained
smooth signal can be computed as follows

1 —:l:{v
N N -1 .
Tom —z%

where F.., denotes the sub-matrix of F determined by the first »
rows and the first s columns. Figure 7 shows examples of surfaces
constructed using subdivision and smoothing stepsand interpolating
some vertices of the skeleton using this method. The parameter of
thefairing algorithm have been modified to achievedifferent effects,
including shrinkage.

To minimize storage requirements, particularly whenn islarge,
and assuming that m is much smaller than », the computation
can be structured as follows. The fairing algorithm is applied to
81 obtaining the first column F'§; of the matrix F. The first m
elements of this vector are stored as the first column of the matrix
Fpm. Theremaining m — n elements of F§; are discarded. The
same process is repeated for 62, . . ., 8, obtaining the remaining

columnsof F,..,. Thenthe following linear system

N
Y1 1 — 23
me : =
N
y‘m. Tm — Tm

issolved. Thematrix F,... isnolonger needed. Thentheremaining
components of the signal y are set to zero ym4+1 = -+ = y» = 0.
Now the fairing algorithm is applied to the signal y. The result
is the smooth deformation that makes the unconstrained smooth
signal =¥ satisfy the constraints

:v]cv:zN—l—Fy.

43 SMOOTH DEFORMATIONS

Note that in the constrained fairing algorithm described above the
fact that the values of the signal at the vertices of interest are
constrained to remain constant can betrivially generalized to allow
for arbitrary smooth deformations of asurface. To do so, the values
z1,...,Tm iNequation (10) must be replaced by the desired final
valuesof thefaired signal at the corresponding vertices. Asininthe
Free-form deformation approaches of Hsu, Hughes, and Kaufman
[14] and Borrel [3], instead of moving control points outside the
surface, surfaces can be deformed here by pulling one or more
vertices.

Also note that the scope of the deformation can be controlled by
changing the number of smoothing steps applied while smoothing
the signals éi,...,6,. To make the resulting signal satisfy the
constraint, the value of N in the definition of the matrix # must
be the one used to smooth the deformations. We have observed
that good results are obtained when the number of iterations used to
smooth the deformationsis about five times the number used to fair
the original shape. The examplesin figure 7 have been generated
in this way.

44 HIERARCHICAL CONSTRAINTS

This is another application of non-symmetric neighborhoods. We
start by assigning a numeric label I; to each vertex of the surface.
Then we define the neighborhood structure as follows. We make
vertex v; a neighbor of vertex v; if »; and v; share an edge (or
face), and if i; < I;. Note that if v; is a neighbor of »; and
l; < l;,thenv; isnot aneighbor of v;. The symmetry applies only
to vertices with the same label. For example, if we assign label
I; = 1 to al the boundary vertices of a surface with boundary, and
label I; = 0 to all the internal vertices, then the boundary is faired
as a curve, independently of the interior vertices, but the interior
verticesfollow the boundary vertices. If wealsoassignlabel I; = 1
to a closed curve composed of internal edges of the surface, then
the resulting surface will be smooth along, and on both sides of
the curve, but not necessarily acrossthe curve. Figure 8-D shows
examples of subdivision surface desighed using this procedure. If
wealsoassignlabel I; = 2 to someisolated pointsalong the curves,
then those vertices will in fact not move, because they will have
empty neighborhoods.

45 TANGENT PLANE CONSTRAINTS

Although the normal vector to a polyhedral surface is not defined
at a vertex, it is customary to define it by averaging some local
information, say for shading purposes. When the signal = in equa-
tion (6) is replaced by the coordinatesof the vertices, the Laplacian
becomes a vector

Av; = Z wij (v; — vs) .

JE>*
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Figure 8: (A) Skeleton with marked vertices. (B) Surface (A) after
three levels of subdivision and smoothing without constraints. (C)
Same as (B) but with empty neighborhoodsof marked vertices. (D)
Same as (B) but with hierarchical neighborhoods, where marked
vertices have label 1 and unmarked vertices have label 0. Surfaces
are flat-shaded to enhance the faceting effect.

This vector average can be seen as a discrete approximation of the
following curvilinear integral

L o= e di(w),
Y Joey

where v is a closed curve embedded in the surface which encircles
the vertex v;, and |y| is thelength of the curve. It isknownthat, for
a curvature continuous surface, if the curve v is let to shrink to to
the point v;, the integral convergesto the mean curvature (v;) of
the surface at the point »; times the normal vector N; at the same

point [7]

lim
€—0 |'Ye|

(v — ;) dl(v) = &(vi)N; .

vEYe

Because of this fact, we can define the vector Av; as the normal
vector to the polyhedral surface at v;. If N; isthe desired normal
direction at vertex v; after the fairing process, and S; and T; are
two linearly independent vectors tangent to N;, The surface after
N iterations of the fairing algorithm will satisfy the desired normal
constraint at the vertex v; it the following two linear constraints

SIAWY =TIAWN =0

are satisfied. This leads us to the problem of fairing with general
linear constraints.

4.6 GENERAL LINEAR CONSTRAINTS

We consider herethe problem of fairing a discrete surface signal «
under general linear constraintsCzY = ¢, whereC' isam x n ma-
trix of rank m (m independent constraints), and ¢ = (c1, ..., em)*

is avector. The method described in section 4.1 to impose smooth
interpolatory constraints, is aparticular case of this problem, where
the matrix C' is equal the upper m rows of the m x m identity
matrix. Our approachisto reducethe general caseto this particular
case.

We start by decomposing the matrix C' into two blocks. A first
m x m block denoted C/;y, composed of m columns of C', and a
second block denoted C/ 2y, composed of the remaining columns.
The columns that constitute C(;y must be chosen so that C;) be-
come non-singular, and as well conditioned as possible. In practice
this can be done using Gauss elimination with full pivoting [9], but
for the sake of simplicity, we will assume here that C(1y is com-
posed of the first m columns of C'. We decompose signals in the
sameway. z(1) denotes here the first m components, and z(,) the
last n — m components, of the signal z. We now define a change
of basisin the vector space of discrete surface signals as follows

z1) = )~ O 0 ¥
T2) = Ye)

If weapply thischange of basisto the constraint equation C{ 1 yz 1)+
Cl2)z(2) = ¢, weobtain C1)y(1) = ¢, or equivalently

v = Caye,

which isthe problem solved in section 4.2.

5 CONCLUSIONS

We have presented a new approach to polyhedral surface fairing
based on signal processing ideas, we have demonstrated how to
use it as an interactive surface design tool. In our view, this new
approach represents a significant improvement over the existing
fairness-norm optimization approaches, because of the linear time
and space complexity of the resulting fairing algorithm.

Our current implementation of theseideasis a surface modeler
that runs at interactive speedson a|BM RS/6000 classworkstation
under X-Windows. In this surface modeler we have integrated
all the techniques described in this paper and many other popular
polyhedral surface manipulation techniques. Among other things,
the user can interactively define neighborhood structures, select
vertices or edgesto impose constraints, subdivide the surfaces, and
apply the fairing algorithm with different parameter values. All the
illustrations of this paper where generated with this software.

Intermsof futurework, weplantoinvestigate how thisapproach
can be extended to provide alternatives solutions for other impor-
tant graphics and modeling problems that are usually formulated
as variational problems, such as surface reconstruction or surface
fitting problems solved with physics-based deformable models.

Some related papers [31, 32] can be retrieved from the IBM
web server (htt p: // waw. wat son. i bm com 8080).
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APPENDI X

We first analyze those cases where the matrix W can be factorized as a
product of a symmetric matrix £ times a diagonal matrix D. Such is the
case for the first order neighborhood of a shape with equal weightsw;; =
1/]2*| in each neighborhood:*. In this case E is the matrix whose z5-th.
element is equal to 1 if verticesv; and »; are neighbors, and O otherwise,
and D is the diagonal matrix whose :-th. diagonal element is 1/|*|.
Since in this case W is a normal matrix [9], because D1/2WD~1/2 =
D'/2ED!/2 is symmetric, W has all real eigenvalues, and sets of n
left and right eigenvectors that form respective bases of n-dimensional
space. Furthermore, by construction, W is also a stochastic matrix, a
matrix with nonnegative elements and rows that add up to one [27]. The
eigenvalues of a stochastic matrix are bounded above in magnitude by 1,
which is the largest magnitude eigenvalue. It follows that the eigenvalues
of the matrix K are real, bounded below by 0, and above by 2. Let
0< ky <ks <--- < kn < 2betheeigenvaluesof thematrix K, and let
u,uz2, ..., uy asetof linearly independent unit length right eigenvectors
associated with them.

When the neighborhood structureis not symmetric, the eigenvaluesand
eigenvectorsof W might not be real, but as long as the eigenvaluesare not
repeated, the decomposition of equation (3), and the analysis that follows,
are still valid. However, the behavior of our fairing algorithm in this case
will depend on the distribution of eigenvaluesin the complex plane. The
matrix W is still stochastic here, and so all the eigenvalues lie on a unit
circle|k; —1| < 1. If all theeigenvaluesof W arevery closeto thereal line,
the behavior of the fairing algorithm should be essentially the sameasin the
symmetric case. This seems to be the case when very few neighborhoods
are made non-symmetric. But in general, the problem has to be analyzed
on acaseby casebasis.
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ABSTRACT:

For a number of computational purposes, including visualization, smooth surfaces are approxi-
mated by polyhedral surfaces. An inherent problem of these approximation algorithmsis that the
resulting polyhedral surfaces appear faceted. A signal processing approach to smoothing polyhedral
surfaces was recently introduced [10, 11]. Within this framework surface smoothing corresponds to
low-pass filtering. In this paper we look at the filter design problem in more detail. We analyze the
stability properties of the low-pass filter described in [10, 11], and show how to minimize its running
time. Then we show that most classical techniques used to design finite impulse response (FIR)
digital filters can also be used to design significantly faster smoothing filters. Finally, we describe an
algorithm to estimate the power spectrum of a signal, and use it to evaluate the performance of the
different filter design techniques described in the paper.



1. Introduction

The signal processing framework introduced in [10, 11], extends Fourier analysis to discrete
surface signals, functions defined on the vertices of polyhedral surfaces. As in the method of
Fourier Descriptors [12], where a closed curve is smoothed by truncating the Fourier series of its
coordinate signals, avery large polyhedral surface of arbitrary topology is smoothed here by low-pass
filtering its three surface coordinate signals. And although the formulation was developed mainly
for signals defined on surfaces, it isin fact valid for discrete graph signals, functions defined on the
vertices of directed graphs. Since this general formulation provides a unified treatment of polygonal
curves, polyhedral surfaces, and even three-dimensional finite elements meshes, we start this paper
by reviewing thisformulationinits full generality.

Then we look at the filter design problem in more detail, with the main goal of minimizing the
execution time of the low-pass filtering algorithm, given a desired frequency response specification.
But we also take into consideration numerical issues, such as stability. We first study the tradeoffs
that exists between minimizing execution time and maintaining the filter stable for the low-pass filter
design of [10, 11]. Then we show that most classical finiteimpul se response (FIR) digital filter design
techniques can be applied, with minor or no modifications in most cases, to the design of discrete
graph signal filters. FIR filters, which in this framework correspond to sparse matrix multiplication,
yield acceptable linear time and space complexity algorithms. Five to ten-fold speedups with respect
to the low-passfilter design of [10, 11] can easily be obtained.

Then, we comparethe performanceof the different filter design methodol ogieswith an algorithmto
estimate the power spectrum of adiscrete graph signal. Thispower spectrum estimator isimplemented
as a bank of high order band-pass filters, designed with the same techniques as the surface low-pass
smoothing filters. However, the goal hereisto design very sharp band-pass filters, not necessarily to
minimizethe order of thefilter. We also use the power spectrum estimator to determine the pass-band
frequency of thefilter in such away that shrinkage is prevented.

We end the paper with some experimental results and our conclusions.

2. Fourier Analysisof Discrete Graph Signals

In this section we describe the signal processing formulation of [10, 11] in its most general form,
i.e., for discrete graph signals, functions defined on directed graphs. We represent a directed graph
ontheset {1,...,n} of n nodesas a set of neighborhoods {z* : : = 1,...,n}, where :* is a subset
of nodes that we call the neighborhood of node:. If 7 isan element of :* we say that ;5 is aneighbor
of 7, and we visualize it as an arrow from : to 5. In principle, except for prohibiting a node from
being a neighbor of itself, we do not impose any other constraint on the neighborhoods. Note that ;
isalowed to be a neighbor of : without requiring to be aneighbor of ;, and neighborhoods can also
be empty. We call avector z = (z1, ..., z,)t, with one component per node of the graph, a discrete
graph signal.

We represent a polyhedral surface asapair of arrays .S = {V, F'}, an array of n verticesV, and an
array of faces F'. A vertex isathree-dimensional vector of real coordinates, and afaceis a sequence
of non-repeated indices of vertices representing a closed three-dimensional polygon. Triangulated



surfaces are the most common, where all faces are triangles. We look at a polyhedral surface of »
vertices as a directed graph, by labeling the vertices with distinct node numbersranging from 1 to n,
and defining a neighborhood for each node. We normally use first order neighborhoods, were node ;
isaneighbor of node: if < and 7 share an edge (or face), but other neighborhood structures can be used
for other purposes, such as to impose certain types of constraints[11]. A discrete surface signal isa
discrete graph signal defined on the associated graph. We visualize a discrete surface signal defined
on apolyhedral surface asa piece-wise linear function defined on the surface. Discrete surface signals
defined on polygonal curves, and on simplicial complexes of higher dimension, can be interpreted in
asimilar way.

The Fourier transform of a discrete graph signal cannot be defined in the traditional way because
there is no notion of convolution. However, there is an alternative definition that can be generalized.
Computing the Discrete Fourier Transform (DFT) of asignal defined on aclosed polygon of » vertices
is equivalent to decomposing the signal as alinear combination of the eigenvectors of the Laplacian

operator
1 1
Ami = §($i—1 — mz) + §($i+1 — mz) y (21)
were the Fourier transform is the vector of coefficients of the sum. To define the Fourier transform of
asignal defined on an arbitrary directed graph we only have to define alinear operator that we will call
the Laplacian operator. This is the same idea behind the method of eigenfunctions of Mathematical
Physics[1].

We define the Laplacian of adiscrete graph signal z by the formula
Ami = Z W5 (mj — mz) (22)
je*

where the weights w,; are positive numbers that add up to one for each vertex

Z Wq5 = 1.

je*
These weights can be chosen in many different ways taking into consideration the neighborhoods,
but in this paper we will assume that they are not functions of the signal z. Otherwise, the resulting
operator is non-linear, and so, beyond the scope of this paper. One particularly smple choice that
produces good resultsisto set w;; equal to theinverse of the number of neighbors1/|*| of node<, for
each element j of :*. Other choices of weights are discussed in [10, 11]. Note that the Laplacian of a

signal defined on aclosed polygon, described in equation (2.1), isa particul ar case of these definitions,
withw,; = 1/2,forj € «* = {2 — 1,7 + 1}, for each node.

If W = (w;;) denotes the matrix of weights, with w;; = 0 when ; is not a neighbor of ¢, and
K =1 — W, theLaplacian of adiscrete signal can be written in matrix form as

Az =—Kz . (2.3)

Although the method applies to general neighborhood structures, in this paper we will restrict our
analysisto those cases where the matrix W can be factorized as a product of asymmetric matrix times
adiagona matrix W = ED. Inthis case the matrix W isanormal matrix [4], because the matrix

DY?*wD~V? = pV/2Epl/? (2.4)
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is symmetric. Note that such is the case for the first order neighborhoods of a surface with equal
weights w,;; = 1/|¢*| in each neighborhood :*, where E is the incidence matrix of the neighborhood
structure (asymmetric matrix for first order neighborhoods), the matrix whosez5-th. element is equal
to 1 if the nodes: and 5 are neighbors, and 0 otherwise; and D isthe diagonal positive definite matrix
whose :-th. diagonal element is 1/|:*|. When W is anorma matrix it has all real eigenvalues, and
sets of n left and right eigenvectors that form dual bases of n-dimensional space. Furthermore, by
construction, W is also a stochastic matrix, a matrix with nonnegative elements and rows that add up
toone[9]. Theegenvaluesof astochastic matrix are bounded abovein magnitudeby 1. It followsthat
the eigenvalues of the matrix K are real, bounded below by 0, and above by 2. Seen as discrete graph
signals, the right eigenvectors of the matrix K can be considered as the natural vibration modes, and
the corresponding eigenval ues as the associated natural frequencies. In our case, a vibration mode of
high natural frequency corresponds to a rapid oscillation in the space domain. For example, for any
directed graph, the constant signal (1,...,1) is an eigenvector of K associated with the frequency
k = 0, and the values of a natural vibration mode associated with a low natural frequency varies
slowly when we move from a vertex to a neighbor vertex.

In the ssimple cases of signals defined on regular polygons, or more generally on graphswith group
structure [3], the eigenvectors and eigenvalues of K have analytic expressions. The Fast Fourier
Transform agorithm for signals defined on closed polygons is a good example of how this structure
can be exploited. However, for the typical large graphsthat we areinterested in processing here, there
are no analytic expressions for the eigenvalues and eigenvectors of K. And although afew extremal
eigenvalues and eigenvectors of K can be computed with the Lanczos method [4], it is numerically
impossible to reliably compute all of them. However, and thisis the most significant observation, for
filtering operations it is not necessary to compute the eigenvectors explicitly.

If0 <k <--- <k, <2 aretheeigenvalues of K, eq,...,e, aset of corresponding right
eigenvectors, and ¢y, ..., 6, the associated dual basis of e, ..., e,, the identity matrix 7, and the
matrix K can be written as follows

I:Zezﬁf K:Zkzeﬁf,
=1 =1

and every discrete graph signal = has a unique decomposition as alinear combination of eq, .. ., e,
z=Iz=> ie, (2.5)
=1
where £; = &fz. We call the vector £ = (24,...,%,)" the Discrete Fourier Transform (DFT) of

z, generalizing the classical definition for signals defined on closed polygons. Note, however, that
this definition does not identify a unique object yet. If a different set of right eigenvectors of K is
chosen, a different DFT is obtained. To complete the definition, if W = ED with E symmetric,
and D diagonal, The formula (z,y)p = z*Dy defines an inner product in our space of signals, and
normalizing theright eigenvectorsof K to unit length with respect to the associated normisequivalent
to orthonormalizing them with respect to the inner product, and Parseval’s formulais satisfied

2 (2.6)

z

Izl =
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where the norm on the right hand side is the Euclidean norm. That is, the frequency components z;e,
of the signal = are orthogonal with respect to the inner product defined by D. We will assume from
now on that the right eigenvectors of K are normalized in this fashion. These results will be used in
sections 7 and 8.

Tofilter thesignal = isto change its frequency distribution according to atransfer function f(%)

n

=1 =1
The frequency component of = corresponding the the natural frequency k; is enhanced or attenuated
by afactor f(k;). For example, the transfer function of an ideal low-passfilter, illustrated in figure 1,
is
1 for0 <k <k
f“’_{o for kee < k<2 (28)

where &y iSthe pass-band frequency. Inthiscase, al the frequencies above the pass-band frequencies

1.0

Figure 1: Graph of theideal low-passfilter f,..

are removed, leaving only the low frequency components. The method of Fourier Descriptors
[12] consists in filtering a discrete graph signal with an ideal low-pass filter transfer function. An
efficient algorithm (O(nlog(n))) to ideal low-passfilter a signal defined on a closed polygon can be
implemented using the Fast Fourier Transform algorithm. But in the general case of discrete graph
signals, there is no efficient numerical method to compute its DFT, particularly when the number of
nodes of the graph is very large. The computation can only be performed approximately, which is
the main subject of this paper. To do this the ideal low-pass filter transfer function is replaced by an
analytic approximation, usually a polynomial or rational function, for which the computation can be
performed in an efficient manner. A wide range of analytic functions of one variable f(%) can be
evaluated in a matrix such as K [4]. Theresult is another matrix f( K) with the same left and right
eigenvectors, but with eigenvalues f(k;), ..., f(k,)

n

FK) =3 f(k:)eid;

=1

4



The main reason why thefiltering operation z’' = f( K') = of equation (2.7) can be performed efficiently
for a polynomial transfer function of low degree, is that when K is sparse, which is the case here,
the matrix f(K) is also sparse (but of wider bandwidth), and so, the filtering operation becomes the
multiplication of a vector by a sparse matrix.

In Gaussian smoothing thetransfer functionisthepolynomial fy (k) = (1—Xk)N, with0 < X < 1.
But this transfer function produces shrinkage

1 fork=0
0 for0<k<2.

That is, as N grows, the shape asymptotically converges to its centroid.

mna—A@N:{

N—oo

N =2
\/\ 1.0 1.0 N >2
Y k=3
“
R f/ }
/ 0 ke 2 \ (U 2
A B

Figure 2: Graph of transfer function f(k) = ((1 — pk)(1 — Xk))¥/2. (A) N = 2. (B) N > 2. (out of
scale)

The algorithm introduced in [10, 11] is escentially Gaussian smoothing with the difference that
the scale factor A changes from iteration to iteration, alternating between a positive value A and a
negative value . This smple modification still produces smoothing, but prevents shrinkage. The
transfer function is the polynomial fx(k) = ((1 — Mk)(1 — pk))N/2, with0 < A < —p and N even,
illustrated infigure 2-A for N = 2, andin2-B for N > 2. Thisdisplaysatypical low-passfilter shape
in the region of interest, from & = 0 to £ = 2. The pass-band frequency of thisfilter is defined as the
unique value of & in theinterval (0,2) such that fx(k) = 1. Such avalue exissswhen0 < A < —g,
and turns out to be equal to ks = 1/X + 1/p. This polynomial transfer function of degree N results
in alinear time and space complexity algorithm, which is very smple to implement, and produces
smoothing without shrinkage. From now on we will refer to this algorithm as the A — i agorithm.
However, as we will see below, faster algorithms can be achieved by choosing as transfer function a
beter polynomial approximation of the same degree of the ideal low-passfilter.

3. Fast Smoothing as Filter Design

We are faced with the classical problem of digital filter design in signal processing [8, 5], but
with some restrictions. Note that because of the linear complexity constraint discussed above, only
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polynomial transfer functions (FIR filters) are allowed. With rational transfer functions (1R filters)
better approximationsof theideal |ow-passfilter could be achieved with lower degrees of polynomials,
but in our context a rational transfer function f(k) = g(k)/h(k) involves solving the sparse linear
system h(K)z' = g(K )z, which is not a linear complexity operation. Because of this reason, we
leave the study of rational transfer functionsfor the future.

Because of space restrictions, of all the traditional FIR filter design methods availablein the signal
processing literature, we only cover herein some detail the method of windows, which isthe smplest
one. With thismethod we can design filterswhich are significantly faster, or sharper, than those obtain
with the A — x agorithm for the same degree.

4. Optimizing the A\— g algorithm
The )\ — x algorithm can be described in arecursive fashion as follows

1 N=0
fu(k) = {(1 — v k) fv_1(k) N >0

where Ay = A, for N odd, and Ay = p for N even. Note that this algorithm requires minimum
storage, only one array of dimension . to store the Laplacian of asignal if computed in place, and two
arrays of dimension » in general. The agorithmis described in figure 3, where z is the input signal,
and z’ isthe result of the filtering operation.

filter(N, A\1,..., An, K, z,2)
20 =z
for j=1to N step 1 do
zt = Kz°
20 =20 — \;Kz!
end
m/:3:0
return

Figure3: The A — y filtering algorithm.

To maintain the minimum storage property and the same simple algorithmic structure, one could
try to generalize by changing the scale factors Ay from iteration to iteration in a different way. But
if we start with a given pass-band frequency k- = 1/) + 1/u, asit is usualy the case when one
wants to design the filter, there are many values of X and x such that 0 < A < —y, that define afilter
with the same pass-band frequency. In order for the polynomia f(k) = (1 — Ak)(1 — pk) to define
a low-pass filter in the interval [0, 2] it is necessary that |f(k)| < 1 in the stop-band region, so that
fn(k) = f(k)Y — 0 when N grows. Since f(kes) = 1 and f(k) is strictly decreasing for & > ke,



this condition is equivalent to f(2) > —1, which trandates into the following constraint on A

_kPB + (Q_kps)z + 4
A< . 4.1
2(2—kes) (4.1)

Figure 4 shows examples of transfer functions of filters designed for the same pass-band frequency,
but with different values of A. As ) increases, the dope of the filter immediately after the pass-band
frequency increases, i.e., the filter becomes sharper, but at the same time instability starts to develop
at the other end of the spectrum, close to £ = 2. If the maximum eigenvalue k,, of the matrix K
is significantly less than 2 (which is not usually the case) we only need the filter to be stable in the
interval [0, k,] (i.e, 1 > f(k,) > —1), and larger values of ) are acceptable. A good estimate of
the maximum eigenvalue of K can be obtained with the Lanczos method [4]. Even if the maximum
eigenvalue &, is not known, the signal z to be smoothed might be band-limited, i.e., the coefficients
z; In equation (2.5) associated with high frequencies are all zero, or very closeto zero. Thiscondition
might be difficult to determine in practice for a particular signal, but if we apply the algorithm with
small A for a certain number of iterations, the resulting signal becomes in effect band-limited. At
thispoint A can be increased keeping the pass-band frequency constant, maybe even making thefilter
unstable, and the algorithm can be applied again with the new values of A and y for more iterations.
Thisprocess of increasing A keeping the pass-band frequency constant can now be repeated again and
again. A moderate speed-up is obtained in thisway. Figure 5 show some examples of this process.
All the filtersin this figure produce amost the same response, but filter (F) is five times faster than
filter (A).

5. Filter Design with Windows

The most straightforward approach to traditional digital filter design is to obtain a trigonometric
polynomial approximation of the ideal filter transfer function by truncating its Fourier series. The
resulting trigonometric polynomial minimizes the L, distance to the ideal filter transfer function
among all the trigonometric polynomials of the same degree. Note that it is sufficient to know how
to construct low-passfilters. A band-pass filter can be constructed as the difference of two low pass
filters, and a high-pass filter can be constructed in a similar way. To obtain regular polynomials, not
trigonometric ones, we first apply the change of variable & = 2(1 — cos(#)). This change of variable
isal — 1 mapping [0, 7 /2] — [0,2]. Then we extend the resulting function to theinterval [—=, 7] as
follows

0 7/2<6<m
hip(8) =< fie(2(1 —cos())) 0<6<x/2
h(—8) —71<6<0.
Note that this function, periodic of period 27 and even, isalso an ideal low-passfilter as afunction of

¢ .
1 if 0] < g

hue(0) = {0 otherwise ’



1 N=2 | 1 N=2 1
N=20 N=20
0 kg 2 0 kg \ 2
-1 -1
A B
1 N=2 1 1
N =20
)
0 ke 2 2
1 -1
C D

Figure 4: Graphs of transfer function ((1 — Ak)(1 — uk))N/2 for N = 2 and N = 20 and pass-band
frequency ks = 1/A + 1/ = 0.09. (A) A = 0.5: stable. (B) A = 0.6 : stable. (C) A = 0.7 : limit
case. (D) A = 0.8 : unstable.
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Figure 5: Different combinations of parametersin ((1 — Ak)(1 — uk))™/2 produce amost indistin-
guishable transfer functions. The pass-band frequency k. = 1/)A + 1/p = 0.1 isthe samein the four
cases. (A) A = 0.3, p = —0.3093, N = 120. (B) A = 0.5, o = —0.5263, N = 40. (C) A = 0.7,
p=—0.7527, N =20. (D) A = 0.9, x = —0.9890, N = 12. (E) A = 0.3, o = —0.3093, N = 12,
followed by A = 0.5, p = —0.5263, N = 12, followed by A = 0.7, x = —0.7527, N = 12. (F)
A =023, =—-0.3093, N =6, followedby X = 0.5, » = —0.5263, N = 6, followed by X = 0.7,
w=—0.7527, N = 6, followed by A = 0.9, x = —0.9890, N = 6. Notethat (C) and (D) are unstable
by themselves, but preceded by stable filters become stable. The degrees of the polynomialsare (A)
120, (B) 40, (C) 20, (D) 12, (E) 36, and (F) 24.



where g is the unique solution of ke, = 2(1 — cos(feg)) in [0, 7/2]. Since A(#) isan even function,
it has a Fourier series expansion in terms of cosines only

hip(8) = ho + 2 Z hy cos(nf) ,

n=0
where h,, IS

= L " _ ‘9PB/7T n=>0
fin = 27 /_ﬂ P(6) cos(nf) df = {sin(n Og)/mm n>0

Now, it iswell known that cos(n 8) = T,(cos(8)), where T,, isthe n-th. Chebyshev polynomial [2],
defined by the three term recursion

1 n=>0
To(w) =< w n=1
2wl 1(w) —Tha(w) n>1

The N-th. polynomial approximation of £, for k& € [0, 2] isthen

N .
Fa(k) = 97 To(1—k/2) + 3 %Tn(l — k/2). (5.1)

Figure 6 shows some of these polynomials compared with the polynomials ((1 — Ak)(1 — uk))N/2 for
the same pass-band frequency.

As can be easily observed in figure 6, direct truncation of the series leads to the well-known
Gibbs phenomenon, i.e., afixed percentage overshoot and ripple before and after the discontinuity.
Asitisshown in section 9, thisis one of the problems that makes this technique unsatisfactory. The
other problem is that the resulting polynomial approximation does not necesarily satify the constraint
fn(0) =1, whichisreguired to preserve the average value of the signal (DC level in classical signal
processing, centroid in the case of surfaces). Our experiments show that adesirable surface smoothing
filter transfer function should be as close as possible to 1 within the pass-band as possible, and then
decrease to zero in the stop-band ([%¢s, 2]).

Another classical technique to control the convergence of the Fourier series isto use a weighting
function to modify the Fourier coefficients. In our case the polynomial approximation of equation
(5.1) ismodified as follows

.
(k) = o 2 Ty — ky2) 3 2P g gy 52)

where wy, wy, . . ., wy arethe weights that constitute a so called window. Since the multiplication of
Fourier coefficients by awindow corresponds to convolving the original frequency response with the
Fourier series defined by the window, adesign criterion for windowsisto find afinite window whose
Fourier transform has relatively small side lobes. The polynomia approximation of equation (5.1) is
aparticular case of (5.2), wheretheweightsareal equal to 1. Thisis called the Rectangular window.
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Figure 6: (A) Polynomia transfer function f(k) = ((1 — Mk)(1 — pk))¥/? with ks = 0.1 and
A = 0.6307. (B) Truncated Fourier series approximation of the ideal low-pass filter (Rectangular
window).
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Other popular windows are, the Hanning window, the Hamming window, and the Blackman window.

1.0 Rectangular
~}J0.540.5 cos(nw /(N + 1)) Hanning (5.3)
Y= 0.54 4 0.46 cos(n/(N + 1)) Hamming '

0.42 4+ 0.5 cos(nm /(N + 1)) + 0.08 cos(2n7/(N + 1)) Blackman .

The Fourier series of the rectangular window has a narrow center lobe, but its side lobes contain a
large part of the total energy, and decay very dowly. The Hamming window has 99.96 percent of its
energy in itsmain lobe, but the width of the main lobe is twice the width of the rectangular window’s
main lobe. The Blackman window further reduces the peak side lobe ripple at the expense of amain
lobe whose width is about triple the width of the rectangular window’s main lobe. There are other
window designs that are optimal in one way or another [7, 6, 5], but the window coefficients are in
some cases difficult to compute, and as we will see below, we can design satisfactory filters with the
windows described above.

If the low-pass filter must have a very narrow pass-band region, which is usually the case in the
surface smoothing application, then a high degree polynomial is necessary to obtain a reasonable
approximation. Thisisin fact a consequence of the uncertainty principle. The phenomenon can be
observed even in the case of the rectangular window, illustrated in figure 6. The problem is even
worse for the other windows, because they have wider main lobes. To obtain a reasonably good
approximation of degree N, the pass-band must be significantly wider than the width of the main
lobe of the window. If o isthe width of the main lobe of the window, the resulting filter will be
approximately equal to onefor 6 € [0, 8 — o], approximately equal to zero for 8 € [f + o, 7], and
approximately decreasing for § € [0 — 0,0 + o]. Our solution in this case of narrow pass-band
frequency, is to design the filter for a small value of IV, but with the pass-band frequency increased
by o (no longer the width of the main lobe of the window)

fulh) = o = gy, 3 2 D gy s

and then, eventually iteratethisfilter (f(k) = fn(k)™). Thevalueof o can be determined numerically
by maximizing f(ke) under the constraints | (k)| < 1 for ks < k& < 2. In our implementation, we
computetheoptimal o with alocal root finding algorithm (afew Newton iterations) sothat fy(kes) = 1,
starting from an interactively chosen initial value. Figure 7 shows some examples of filters designed
in this way, compared with filters of the same degree and ¢ = 0, and with A — y filters of the same
degree. Figure 8 shows several views of the filter design control panel of our interactive surface
editing system.

6. Implementation

Figure 9 describes our algorithmic implementation of thefiltering operation ' = fx(K ) z, where
f(k) isthetransfer function

f(k) = ijTj(l —k/2).

12



C D

Figure 7: Filters fx (k) for ke = 0.1 and o > 0.0. (A) Rectangular window, N = 10, o = 0.1353.
(B) Rectangular window, N = 20, ¢ = 0.0637. (C) Hamming window, N = 10, o = 0.5313. (D)
Hamming window, N = 20, o = 0.2327. In each of the four cases the thick black line corresponds
to the filter described above, the thin black line to the same filter with o = 0.0, and the gray lineisa
A — p filter of the same degree and A = 0.5.
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Figure 8: Interactive filter design subsystem.
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This algorithm applies not only to low-pass filters, but to any polynomial transfer function expressed
aslinear combination of Chebyshev polynomials (every polynomial can bewritteninthisway). From
the numerical point of view, the Chebyshev polynomials congtitute a better basis than the power basis
because they are orthogonal in the interval [—1,1], Furthermore, the design techniques described
above produce polynomial coefficients with respect to this basis. In terms of storage, the algorithm
only requires four auxiliary arrays z°, z!, z%, 3 of dimension ». In terms of computation, the most
expensive operation is the multiplication of a vector by the matrix K, an operation that is executed
N times. Thisisthe evaluation of the Laplacian, described in equation (2.2), which is also alinear
complexity operation, because K is sparse.

filter(N, fo,..., fn, K, z,2")

0 =z
zl = K20
3:1:3:0—%3:1

3 = for + frzt
forj =2to N step 1 do

2 _ Kml

z? = (:cl — :BO) + (:cl — :c2)
$3 — $3 + fi$2
z0 = 2!
z! = z?

end

o = $3

return

Figure 9: Thefiltering algorithm z’ = f(K)z.

7. How to Choose The Pass-Band Frequency

So far in our discussion of how to design low-pass filters, the pass-band frequency k. was given.
In this section we are concerned with how to choose the pass-band frequency to prevent shrinkage. 1f
the signals are the coordinates of the vertices of a closed surface, preservation of the enclosed volume
is a natural criterion. But even in this case, normalizing the filtered signal to make it satisfy the
criterionis an expensive global operation that requires the evaluation of asurfaceintegral. And since
the criterion does not have a natural generalization to arbitrary discrete graph signals, we will use a
different criterion, more related to the signal processing formulation. Asin the classical case, since
the DFT 2 of asignal = satisfies Parseval’s formula, the value of #? can be interpreted as the energy
content of z in the frequency k;. Similarly, the sum



measures the energy content of z in the pass-band. Our criterion isto choose the minimum pass-band
frequency such that most of the energy of the signal falls in the pass-band, i.e., we choose k. such

that
> &= (1=¢lzlp,
k;<kpp

whereeisavery small number. Of course, since we cannot computethe DFT of z, we cannot minimize
this expression exactly. We can only get a rough estimate of the minimizer using the power spectral
estimator described in the next section. What value of ¢ to use, and how accurate the estimation should
be is application dependent, but in general it should be determined experimentally for a set of typical
signals.

8. Power Spectrum Estimation

|deally, to evaluate the performance of the different low-passfilter algorithmswe should measure
the DFT of the filter outputs, and check that the high frequency energy content is very small. Since
we do not have any practical way of computing the DFT, we estimate the power spectrum, or energy
distribution, of a signa as follows. We partition the interval [0,2] into a small nhumber of non-
overlapping intervals I, ..., I, and for each one of this intervals we estimate the energy content
of the signal within the interval. We do so by designing a very sharp (high degree) pass-band filter
f7(k) for each interval I?. The energy content of the signal = within the interval 17 can be estimated
by measuring the total energy of the output of corresponding filter applied to the signal

IF(E)zlp ~ > &

k,eli

By designing all these FIR filters of the same degree, a filter-bank, we can evaluate all of them
simultaneoudly at a greatly reduced computational cost. The only disadvantage is that we need M
arrays of the same dimension as the input signal = to accumulate the filter outputs before their norms
are evaluated. If the pass-band filters were ideal, Parseval’s formulaimplies that the sum of the total
energies of the filter outputs must be equal to the total energy of the input signal. Since the transfer
functions of the filters overlap, this condition is only approximately satisfied. But the error can be
made arbitrarily small by increasing the degree of the polynomials.

Figure 8 shows several views of the spectrum estimation control panel of our interactive surface
editing system. In thisfigure NV is the degree of the filters in the filter bank, M is the number of
bands, and K0 is the width of each band. We recommend using filters designed with the Hanning or
Hamming windows of a degree at lest ten times the number of spectrum bands.

9. Experimental Results

We have integrated all the methods described above within our surface editing and visualization
system, illustrated in figure 11. Figure 12 shows the result of applying the filters of figure 7 to the
same input surface. The spectrum estimate for the input surface yields the 99.88% of the energy in
theband [0, 0.1]. Thisisatypical result for relatively large surfaces, and we have found that a default
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Figure 10: Interactive power spectrum estimation subsystem.
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Figure 11: Interactive surface editing system.
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Figure 12: Filtersof Figure 7 applied to the same surface. In all these examples ke, = 0.1. (A) Input
surface (2565 vertices, 5138 triangles). (B) A — u filter A = 0.5 n = 10. (C) A — p filter A = 0.5
n = 20. (D) A — p filter A = 0.5 n = 60. (E) Rectangular window o = 0.0 » = 10. (F) Rectangular
window ¢ = 0.0 n = 20. (G) Rectangular window ¢ = 0.01353 n = 10. (H) Rectangular window
o =0.06374 n = 20. (I) Hamming window ¢ = 0.0 n» = 10. (J) Hamming window ¢ = 0.0 n = 20.
(K) Hamming window ¢ = 0.5313 n = 10. (L) Hamming window ¢ = 0.2327 n = 20.
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value ks = 0.1 produces very good results. But as we pointed out before, the appropriate value for a
family of similar signals must be determined experimentally by estimating the spectrum of a typical
sample.

The A — p algorithm produces very good results, but to significantly reduce high frequencies, a
relatively large number of iterations might be necessary. The results obtained with rectangular filters
are unsatisfactory. They are somehow better when we increase the value of o, as described in section
5, but although they are faster, they change the low frequencies components too much, altering the
shape quite significantly.

The idedl transfer function should be as flat as possible in the pass-band region (f(k) ~ 1 for
k € [0, kes]), and then decrease as fast as possible in the stop-band region (k € [k, 2]). The transfer
function of the A\ — . algorithm hasthis shape, but does not decrease fast enough in the stop-band. The
filtersdesigned with the other three windows (Hanning, Hamming, and Blackman), and with increased
o producetransfer functions of similar shape. The Blackman window produces transfer functionsthat
are much flatter in the pass-band, but at the expense of a dower rate of decrease in the stop-band.
Hanning and Hamming windows produce similar results, but the Hamming window produces transfer
functions with less oscillations. As figure 12 shows, filters designed with the Hamming window
produce filters of similar quality asthe A — x algorithm, but much faster.

10. Conclusions

Generalizing the signal processing formulation of [10, 11], in this paper we formulated the most
significant concepts of Fourier analysis for signals defined on oriented graphs, and showed that linear
filterswith polynomial transfer function can be implemented in an efficient manner, and designed with
classical digital filter design methods. In particular, we have shown how to design surface smoothing
filters that produce almost the same effect as the filter described in [10, 11], but in a fraction of the
time. We have also described a method to estimate the power spectrum of a signal, and used this
power spectrum estimate to determine the pass-band frequency for a surface smoothing filter, and as
atool to evaluate the performance of different filter designs. We have also given aformal definition
of the shrinkage problem, which isvalid not only for closed surfaces, but for any signal.
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Abstract
. . . . and hardware resources.
We describe a multiresolution representation for meshes based on

subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-

ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-

ing algorithms for refinement and coarsification enables us to make

them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction

Applications such as special effects and animation require creation

and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at
many scales (cf. Fig. 1). The model might be constructed from
scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizinghods.

The latter is a common source of data particularly in the entertain-

ment industry. When using laser range scanners, for example, indi-

vidual models are often composed of high resolution meshes with
hundreds of thousands tallions of triangles.

Manipulating such fine meshes can be difficult, especially when
they are to be edited or animated. Interactivity, which is crucial in

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-
rithms. The system should be capable of deliveringdtipie frames

these cases, is challenging to achieve. Even without accounting forper second update rates even on small workstations taking advan-
any computation on the mesh itself, available rendering resourcesiage of lower resolution representations.

alone, may not be able to cope with the sheer size of the data. Pos-
sible approaches include mesh optimization [15, 13] to reduce the jjag

size of the meshes.
Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-

mantics. The representation of the mesh needs to provide con- e
trol at a large scale, so that one can change the mesh in a broad,

smooth manner, for example. Additionally designers will typi-

cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

*dzorin@gg.caltech.edu
tps@cs.caltech.edu
twim@bell-labs.com

In this paper we present a system which possesses these proper-

e Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

¢ Simplicity/uniformity: A single primitive, triangular mesh, is

used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitragpblogy sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user's expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches

H-splines were presented in pioneering work on hierarchical

editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the
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coarser patch. Repeating this process, one can build very compli- As more fine level detail is needed the proliferation of control
cated shapes which are entirely parameterized over the unit squarepoints and patches can quickly overwhelm both the user and the
Forsey and Bartels observed that the hierarchy induced coordinatemost powerful hardware. With detail at finer levels, patches become
frame for the offsets is essential to achieve correct editing seman-less suited and polygonal meshes are more appropriate.

tics. .
. . . . Polygonal Meshes  can represent arbitrary topology and re-
H-splines provide a uniform framework for representing both the gque fine detail as found in laser scanned models, for example.
coarse and fine level details. Note however, that as more detail Gjyen that most hardware rendering ultimately resolves to triangle
is added to such a model the internal control mesh data structuresg.,,_conversion even for patches, polygonal meshes are a very ba-
mci/r\t/ehg}nd rr}nc_;re r_es_err;ple a| fine polyhedrﬁll mec?h. Wt lar SiC primitive. Because of sheer size, polygonal meshes are difficult
lle their original implementation allowed only for regular , anipylate interactively. Mesh simplification algorithms [13]
topologies their approach could be extended to the gendtaigse 1 q\ide one possible answer. However, we need a mesh simpli-

by using surface sp;llines or one of the spline derived general topol- ¢i-ation approach, that is hierarchical and gives us shape handles
ogy subdivision schemes [18]. However, these schemes have N0k, smooth changes over larger regions while maintaining high fre-
yet been made to work adaptively. quency details.

Forsey and Bartels' original work focused on the ab initio de-
sign setting. There the user's help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model it is crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as thanalysisalgorithm. An H-spline analysis al-

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivisiorconnects and unifies these two extremes.

\
‘v

) . ; SIS
gorithm based on weighted least squares was introduced [10], but /‘(ﬁﬁ“
is too expensive to run interactively. Note that even in an ab initio fl?‘ﬂ}
design setting online analysis is needed, since after a long sequence %\

of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de- i 4' ‘f&‘

fine multiresolution approximations and fast analysis algorithms. f)‘y“ / A}“i\\

Finkelstein and Salesin [9], for example, used B-spline wavelets A@a‘wy“r Aﬁa’(ﬁ\}%‘y
- ] . ” - . /) /A

to describe multiresolution editing of curves. As in H-splines, pa- \«;‘gggw, /”%‘f;éj“'lﬂ

rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet Figure 2: Subdivision describes a smooth surface as the limit of a
representations of detail tend to behave in undesirable ways duringsequence of refined polyhedra. The meshes show several levels of
editing and returned to a pure B-spline representation as used inan adaptive Loop surface generated by our system (dataset courtesy
H-splines. Hugues Hoppe, University of Washington).
Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was usedSubdivision  defines a smooth surface as the limit of a sequence
to define the different levels of resolution. The original construc- of successively refined polyhedral meshes (cf. Fig. 2). In the reg-
tions were limited to piecewise linear subdivision, but smoother ular patch based setting, for example, this sequence can be defined
constructions are possible [24, 28]. through well known knot insertion algorithms [5]. Some subdi-
An approach to surface modeling based on variational methods vision methods generalize spline based knot insertion to irregular
was proposed by Welch and Witkin [27]. An attractive character- topology control meshes [2, 6, 19] while other subdivision schemes
istic of their method is flexibility in the choice of control points.  are independent of splines and include a number of interpolating
However, they use a global optimization procedure to compute the schemes [7, 28, 16].

surface which is not suitable for interactive manipulation of com- Since subdivision provides a path from patches to meshes, it can
plex surfaces. serve as a good foundation for the unified infrastructure that we
Before we proceed to a more detailed discussion dingdwe seek. A single representation (hierarchical polyhedral meshes) sup-
first discuss different surface representations to motivate our choiceports the patch-type semantics of manipulatiow finest level de-
of synthesis (refinement) algorithm. tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and
1.2 Surface Representations space growth of naive subdivision. This is the core of our contribu-
There are many possible choices for surface representations!tion. ) ) L .
Among the most popular are polynomial patches and polygons. We summarize the main features of subdivision important in our

context

¢ Topological Generality: Vertices in a triangular (resp. quadri-
lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com- ¢ Multiresolution: becausethey are the limit of successive refine-
pounded in the arbitrary topologytiag when poynomial param- ment, subdivision surfaces supportitirasolution algorithms,
eterizations cease to exist everywhere. Surface splines [4, 20, 22] such as level-of-detail rendering, multiresolution editing, com-
provide one way to address the arbitrary topology challenge. pression, wavelets, and numerical multigrid.



e Simplicity: subdivision algorithms are simple: the finer mesh m
is built through insertion of new vertices followed Mgcal
smoothing.

¢ Uniformity of Representation: subdivision provides a single

"3 _ i
. A i VI T' 5(3)
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.
i
s(1)

Graph with vertices M esh with points

. |5 1 2 - g
1.3 Our Contribution % T Se) §
Aside from our perspective, which unifies the earlier approaches, -.% 3 i1 i+1 g:
our major contribution—and the main challenge in this program— =] 1 T+ s (6) s (3) 5

is the design of highly adaptive and dynamic data structures and

algorithms, which allow the system to function across a range of y N s'+(15)
computational resources from PCs to workstations, delivering as , :

much interactive fidelity as possible with a given ygin render- 7 ) 5 )

ing performance. Our algorithms work for the class of 1-ring sub- i+1
division schemes (definition see below) and we demonstrate their s (2

performance for the concrete case of Loop's subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3 Figure 4: Left: the abstract graph. Vertices and triangles are mem-
already gives a preview of how the different algorithms make up bers of setd”* andT" respectively. Their index indicates the level
the editing system. In the next sections we first talk in more detail of refinement when they first appeared. Right: the mapping to the
about subdivision, smoothing, and hingsolution transforms. mesh and its subdivision in 3-space.

|
With each set’* we associate a map, i.e., for each verteand
H each level we have a 3D point'(v) € R®. The sets' contains
all points on level, s* = {s*(v) | v € V'}. Finally, asubdivision
Rend SR schemes a linear operata which takes the points from leveto
—’ points on thdinerleveli + 1: s't! = S *

Assuming that the subdivision converges, we can define a limit

Select group of vertices Create dependent surfaces as
at level i submesh o= lim S*s°
+ kE—oco ’
o(v) € R? denotes the point on the limit surface associated with
vertexv.

Local analysis L ocal synthesis In order to define our offsets with respectto a local frame we also

need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operators) and R acting ons® so thatg’ (v) = (Qs*)(v)
. ) . ) ' andr’(v) = (Rs')(v) are linearly independent tangent vectors at
Figure 3: Thefrelat_lonshlp between various procedures as the usera(v). gl’o)geth(er wi)tgw ;n orientatign the)‘/)define a local orthonormal
moves a set of vertices. frame F' (v) = (n'(v),q' (v), " (v)). It is important to note that
in general it is not necessary to use precise normals and tangents
during editing; as long as the frame vectors are affinely related to
2 Subdivision Lhehpositions of vertices of the mesh, we can expect intuitive editing
ehavior.
We begin by defining subdivision and fixing our notation. There are
2 points of view that we must distinguish. On the one hand we are
dealing with an abstragiraphand perform topological operations
on it. On the other hand we havenzeshwhich is the geometric
object in 3-space. The mesh is the image of a map defined on the
graph: it associates point in 3D with everyvertexin the graph
(cf. Fig. 4). Atriangledenotes a face in the graph or the associated
polygon in 3-space.
Initially we have a trimgular graphT™® with verticesV°. By 1-ring at level i 1-ring at level i+1
recursivelyrefiningeach triangle into 4 subtriangles we can build
a sequence of finer triangulatio’s with verticesV*, ¢ > 0
(cf. Fig. 4). The superscriptindicates thdevel of triangles and
vertices respectively. A triangle € T* is a triple of indices
t = {va, v, v} C V.

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge

The vertex sets are nestedd$ C V' if j < 1. We define (right).
oddvertices on level asM* = V't \ V. V**! consists of two
disjoint sets:evenvertices {*) andoddvertices §/*). We define Next we discuss two common subdivision schemes, both of
thelevelof a vertexv as the smallestfor whichv € V*. The level which belong to the class df-ring schemes In these schemes

ofvist+ 1ifandonlyifv € M". points at levet + 1 depend only on 1-ring neighborhoods of points



atleveli. Letv € V' (v even) then the point ! (v) is a function Because of its computational simplicity we decided to use a version
of only thoses'(vx,), v» € V*, which are immediate neighbors  of Taubin smoothing. As before let € V* have K neighbors
of v (cf. Fig. 5 lefymiddle). Ifm € M’ (m odd), it is the vertex ~ wvx € V'. Use the averagé; (v) = K~' 3. s'(vx), to define
inserted when splitting an edge of the graph; we call such vertices the discrete Laplaciafi(v) = gi(v) — Si(v), On this basis Taubin

middle verticedf edges. In this case the poiit! (m) is a func- gives a Gaussian-like smoother which does not exhibit shrinkage
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right). H:=IT+upL)(I+XL).
’ 1 1 With subdivision and smoothing in place, we can describe the
1 ‘ transform needed to support ttiesolution editing. Rcall that
for multiresolution editing we want the difference betweeocas-
’ 1 3 3 sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.
1 g With each vertex and each level > 0 we associate detail

1 1 vector,d'(v) € R®. The setl contains all detail vectors on lev&l
d' = {d'(v) | v € V'}. Asindicated in Fig. 7 the detail vectors

. L . ] ) are defined as
Figure 6: Stencils for Loop subdivision with unnormalized weights

for even and odd vertices. d'=(F) (s =S H=(F)Y'(I-SH)s",

) ) _ o i.e., the detail vectors at levétecord how much the points at level
Loop is a non-interpolating subdivision scheme based on a gen-; differ from the result of subdividing the points at levet 1. This
eralization of quartic triangular box splines [19]. For a given even difference is then represented with respect to the local frAfi@

vertexv € V', letvy € V' with1l < k < K beits K 1- obtain coordinate independence.

ring neighbors. The new poist*!(v) is defined ass'*! (v) = Since detail vectors are sampled on the fine level nmié&stthis
(a(K) + K) ™ (a(K) s (v) + 34, s'(vx)) (cf. Fig. 6),a(K) = transformation yields an overrepresentation in the spirit of the Burt-
K(1—a(K))/a(K),anda(K) = 5/8—(3+2 cos(2r/K))? /64. Adelson Laplacian pyramid [1]. The only difference is that the
For odd e Weighis Shoun i =, © are used. Two inde T oap). Theoretcaly i ould be possibe 0 subsample he detal
per;(dent tangent vectovs(p) andtz(v) are given byt,(v) = vectors and only record a detail per odd vertexdéf—'. This is

poy €827 (k 4 p)/K) s*(on). what happens in the wavelet transform. However, subsampling the

Features such as boundaries and cusps can be accommodatefbiails severely restricts the family of smoothing operators that can
through simple modifications of the stencil weights [14, 25, 29].  pe ysed.

Butterfly is an interpolating scheme, first proposed by Dyn et ’ * 1
al. [7] in the topologically regular $éng and ecently general- - 1 s
ized to arbitrary topologies [28]. Since it is interpolating we have ’ Smoothing ‘ ’ Subdivision ‘ v

s'(v) = o(v) for v € V' even. The exact expressions for odd S 4 /J\ d.gsil T d
vertices depend on the valen&eand the reader is referred to the I\ F) —

original paper for the exact values [28].
. ) ) Figure 7: Wiring diagram of the multiresolution transform.
For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.
4 Algorithms and Implementation

3 Multiresolution Transforms Before we describe the algorithms in detail let us recall the overall

So far we only discussed subdivision, i.e., how to go from coarse to structure of the mesh editor (cf. Fig 3). The analysis stage builds
fine meshes. In this section we describe analysis which goes froma succession of coarser approximations to the surface, each with

fine to coarse. fewer control parameters. Details or offsets between successive
We first needsmoothingi.e., a linear operatio/ to build a levels are also computed. In general, the coarser approximations
smooth coarse mesh at level 1 from a fine mesh at level are not visible; only their control points are rendered. These con-
‘ ‘ trol points give rise to airtual surfacewith respect to which the

sl =Hs'. remaining details are given. Figure 8 shows wireframe representa-

tions of virtual surfaces corresponding to control points on levels 0,

Several options are available here: 1, and 2.

o Least squares:One could define analysis to be optimal in the When an edit level is selected, the surface is represented inter-

least squares sense, nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the

min ||Si - S Si—1||2. edit level, while the finer Ieve_I details remain gnchanged relative_

sit to the coarser level. Meanwhile, the system will use the synthesis

. . . algorithm to render the modified edit level with all the finer details
The solution may have unwanted undulations and is to0 €xpen-,4qed in. In between edits, analysis enforces consistency on the
sive to compute interactively [10]. internal representation of coarser levels and details (cf. Fig. 9).

¢ Fairing: A coarse surface could be obtained as the solution to  The basic algorithm#\nalysis  and Synthesis  are very
a global variational problem. This is too expensive as well. An simple and we begin with their description.
alternative is presented by Taubin [26], who usdsaal non- Let: = 0 be the coarsest and= n the finest level withV
shrinking smoothing approach. vertices. For each vertexand all levels finer than the first level



thresholds. Three thresholds control this pruniag:for adaptive
analysisg s for adaptive synthesis, anrg: for adaptive rendering.

To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis

The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found. Adaptive analysiavoids the storage cost associated
with detail vectors below some threshelgdby observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning

For this purpose we need an integer.finest :=
max;{||v.d[t]]| > ea}. Initially v.finest = n and the fol-
lowing precondition holds before callirignalysis(i)

e The surface is uniformly subdivided to levigl

Figure 9: Analysis propagates the changes on finer levels to coarser® Vv € V, Posli] = s'(v),

levels, keeping the magnitude of details under control. Left: The o Yo € V' |i< j < v.finest : v.d[j] = d’(v).
initial mesh. Center: A simple edit on level 3. Right: The effect of Now Analysis(i) becomes:

the edit on level 2. A significant part of the change was absorbed
by higher level details.

Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.
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Analysis( 1)
where the vertex appears, there are storage locationsg:] and
v.d[1], each with 3 floats. With this the total storage add3 03 *
(4N/3) floats. In generaly.s[i] holdss® (v) andv.d[:] holdsd® (v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by callingF(z).

Global analysis and synthesis are performed level wise:

Yo € V7! ¢ w.s[i — 1] := smooth (v, 1)
Yoe V' :
v.d[i] := v.s[i] — subd (v,7 — 1)
if wv.finest > or ||v.d[i]]| > ea then
v.dfi] = v.F(3)" * v.d[i]

else
v.finest ;= 1 — 1
Analysis Synthesis Prune( ¢ — 1)
for i=n downto 1 for i=11t n
Analysis( 1) Synthesis( 1) Triangles that do not contain details above the threshold are unre-
fined:
With the action at each level described by
Prune( 1)

Analysis( 1) vt € T : If all middle verticesm havem.finest = i — 1

and all children are leaves, delete children.

Yu € V’:_l : v.s[i — 1] := smooth (v, 1)
YoeV' :wudi] = v.F()" * (v.s[i] — subd (v, — 1))

This results in an adaptive mesh structure for the surface with

and vd[i] = d'(v) forallv € V', ¢ < v.finest. Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
Synthesis( i) can differ in more than one level. Initial analysis has to be followed

by a synthesis pass which enforces restriction.
Yo € V' @ s.ofi] := v.F(i) * v.d[i] + subd (v,i — 1)

4.2 Adaptive Synthesis

The main purpose of the general synthesis algorithm is to rebuild

Analysis computes points on the coarser level1 using smooth- the finest level of a mesh from its hierarchical representation. Just
ing (smooth ), subdividess'™* (subd ), and computes the detail  as in the case of analysis we can get savings from noticing that in
vectorsd® (cf. Fig. 7). Synthesis reconstructs levddy subdividing flat regions, for example, little is gained from synthesis and one
level: — 1 and adding the details. might as well save the time and storage associated with synthe-

So far we have assumed that all levels are uniformly refined, i.e., sis. This is the basic idea behiadaptive synthesisvhich has two
all neighbors at all levels exist. Since time and storage costs grow main purposes. First, ensure the mesh is restricted on each level,
exponentially with the number of levels, this approachis unsuitable (cf. Fig. 10). Second, refine triangles and recompute points until
for an interactive implementation. In the next sections we explain the mesh has reached a certain measure of local flatness compared
how these basic algorithms can be made memory and time efficient.against the threshold;. ‘

Adaptiveand local versions of these generic algorithms (cf. The algorithm recomputes the poing§(v) starting from the
Fig. 3 for an overview of their use) are the key to these savings. coarsest level. Not all neighbors needed in the subdivision stencil
The underlying idea is to use lazy evaluation and pruning based onof a given point necessarily exist. Consequently adaptive synthesis




Figure 10: A restricted mesh: the center triangle i€nand its
vertices inV*. To subdivide it we need the 1-rings indicated by the

circular arrows. If these are present the graph is restricted and we

can compute'*! for all vertices and middle vertices of the center
triangle.

lazily creates all triangles needed for subdivision by temporarily re-

Refine (¢, ¢, dir)

if t.leaf then Create children fot
Vo €t :if wv.depth <i+1 then
GetRing (v, 1)
Update (v,1)
Ym € N(v,i+1,1) :
Update (m, 1)
if m.finest > 14 1 then
forced := true
if dir and Flat (¢) <es and not forced then
Delete children of
else
Vit € current : t.restrict := true

Update (v, 7)
v.s[i + 1] := subd (v, 1)
v.depth =1+ 1
if wv.finest > 1+ 1 then
vsfi+ 1] += v.F(i+ 1) xv.d[i + 1]

The conditiorw.depth = ¢ + 1 indicates whether an earlier call to

fining their parents, t_hen computes subdivision, and finally d_eletes Refine already recomputegf"’l (U) If not, call GetRing (U, Z)
the newly created triangles unless they are needed to satisfy theandupdate (v, ) to do so. In case a detail vector livesvait level

restriction criterion. The following precondition holds before en-
tering Adaptive Synthesis

e VteT7|0< 5< 1 tisrestricted
o Vo e V|0 < j<wv.depth :v.s[j] = (v)

wherev. depth := max;{s'(v)has been recomputed

AdaptiveSynthesis

Yo € VO : v.depth := 0
for =0t n—1
temptri := {}
VieT" :
current = {}
Refine (t,1,true )
YVt € temptri : if not
Delete children ot

t.restrict then

The list temptri serves as a cache holding triangles from levels
7 < t which are temporarily refined. A triangle is appended to the
listif it was refined to compute a value at a vertex. After processing
level ¢ these triangles are unrefined unless theiestrict flag is

set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are

appended tdemptri, parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The functionRefine (¢, :, dir) (See below) creates children of
t € T* and computes the values’ (v) for the vertices and mid-
dle vertices of. The results are stored ins[: + 1]. The boolean
argumentdir indicates whether the call was made directly or recur-
sively.

i (v.finest > ¢ 4 1) add it in. Next compute‘t! (m) for mid-
dle vertices on level 4+ 1 aroundv (m € N(v,¢+ 1,1), where
N(v,1,1) is thel-ring neighborhood of vertex at level:). If m
has to be calculated, compuigbd (2, ) and add in the detail if it
exists and record this factin the flgced which will prevent unre-
finement later. At this point, al*** have been recomputed for the
vertices and middle vertices of Unrefinet and delete its children

if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (ifesced = false ).
The list current functions as a cache holding triangles from level
¢ — 1 which are temporarily refined to build a 1-ring around the
vertices oft. If after processing all vertices and middle vertices of
¢ it is decided that will remain refined, none of the coarser-level
triangles fromcurrent can be unrefined without violating restric-
tion. Thust.restrict is set for all of them. The functioRlat (t)
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing (v, 7) ensures that a complete ring of triangles
on level: adjacentto the vertex exists. Because triangles on level
¢ are restricted triangles all triangles on levetl 1 that contairw
exist (precondition). At least one of them is refined, since other-
wise there would be no reason to c@letRing (v, ). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates inctheent cache
for fast access later.

GetRing (v, 7)

Vie T 'withv €t :
if t.leaf then
Refine (¢,¢— 1,false ); temptri.append(t)
t.restrict .= false ;t.temp := true
if t.temp then
current. append(t)




4.3 Local Synthesis

Even though the above algorithms are adaptive, theytiineis ev-
erywhere. During an edit, however, not all of the surface changes.
The most significant economy can be gained from performing anal-
ysis and synthesis only over submeshes which require it.

Assume the user edits levelknd modifies the points'(v) for
v € V* c V', This invalidates coarser level valugsandd® for
certain subsefs™ C V*,: <, andfinerlevel points’ for subsets
V* C V' for: > . Finer level detail vectorg® for ¢ > [ remain
correct by definition. Recomputing the coarser levels is done by
local incremental analysigescribed in Section 4.4, recomputing
the finer level is done blpcal synthesislescribed in this section.

The setof vertice§™* which are affected depends on the support
of the subdivision scheme. If the support fits intoraxing around
the computed vertex, then all modified vertices on level1 can
be found recursively as

yretl = U N(v,i+1,m).
vEV*?

We assume that: = 2 (Loop-like schemes) o = 3 (Butterfly
type schemes). We define thebtriangulatioriZ ** to be the subset
of triangles of7™ with vertices inV **.

LocalSynthesis is only slighty modified from
AdaptiveSynthesis iteration starts at level and iter-
ates only over the submegH:.

4.4 Local Incremental Analysis

After an edit on level local incremental analysiwill recompute
s"(v) andd' (v) locally for coarser level vertices K ) which are
affected by the edit. As in the previous section, we assume that
the user edited a set of verticeon levell and callV*' the set of
vertices affected on levél For a given vertex € V** we define

Vi
Ve, Ve,
2

Figure 11: Sets of even vertices affected through smoothing by ei-
ther an evemw or oddm vertex.

R'™'(v) C V'~ to be the set of vertices on leviel- 1 affected
by v through the smoothing operatéf. The setd”** can now be
defined recursively starting from leve= [ to ¢ = 0O:

The setR'~!(v) depends on the size of the smoothing stencil and
whetherv is even or odd (cf. Fig. 11). If the smoothing filter
is 1-ring, e.g., Gaussian, thaliﬂ"l(v) = {v} if v is even and

R (m) = {ve1,ve2} if m is odd. If the smoothing filter is 2-
ring, e.g., Taubin, the®'~!(v) = {v} U{vx | 1 < k < K}

if v is even and®' = (m) = {ve1, ves,vs1, 052} if v is odd. Be-
cause of restriction, these vertices always exist. e V* and

v’ € R (v) we lete(v, v') be the coefficient in the analysis sten-
cil. Thus

(Hs")(v))

This could be implemented by running over thleand each time
computing the above sum. Instead we use the dual implementation,
iterate over alb, accumulating=) the right amount ta*(v") for

v’ € R'='(v). In case of a 2-ring Taubin smoother the coefficients
are given by

cv,v) = (L—p)(L=X)+pr/6

c(v,ur) = pA/6K
c(m,ve1) = (1—pA+ 1A =XNp+pr3)/K
c(m,vp) = pA/3K,

where for each(v, v'), K is the outdegree of .

The algorithm first copies the old points(v) for v € V** and
1 < [ into the storage location for the detail. If then propagates
the incremental changes of the modified points from lévelthe
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detall
vectors that depend on the modified points.

We assume that before the edit, the old poistia) for v €
V*! were saved in the detail locations. The algorithm starts out by
building V**~! and saving the points'~!(v) for v € V**~!in
the detail locations. Then the changes resulting from the edit are
propagated to level — 1. Finally S s*~! is computed and used to
update the detail vectors on level

LocalAnalysis( 7)
Yo e V* Vo' € R v) -
V*i—l U= {UI}
v'dli — 1] := v'.s[i — 1]
Yo e V* Vo' € RP7H(v) ¢
v'.s[i — 1] += c(v,v') * (v.s[i] — v.d[i])

Yo e V¥l
vdfi] = U.F'(i)t * (v.s[i] — subd (v,7 — 1))
Ym € N(v,1,1) :

m.d[i] = m.F(2)" * (m.s[i] —subd (m,s — 1))

Note that the odd points are actually computed twice. For the Loop

scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can

avoid double computation by imposing an ordering on the triangles.

The top level code is straightforward:

LocalAnalysis

Yo e V¥ ood[l] := v.s[l]
for ¢:=1 downto 0
LocalAnalysis( 7)

It is difficult to make incremental local analysis adaptive, as it is
formulated purely in terms of vertices. It is, however, possible to
adaptively clean up the triangles affected by the edit and (un)refine
them if needed.

4.5 Adaptive Rendering
The adaptive renderinglgorithm decides which triangles will be
drawn depending on the rendering performance available and level
of detail needed.

The algorithm uses a flagdraw which is initialized tofalse ,
but set totrue as soon as the area corresponding te drawn.
This can happen either whetitself gets drawn, or when a set of
its descendents, which coveris drawn. The top level algorithm
loops through the triangles starting from the level 1. A triangle



is always responsible for drawing its children, never itself, unless it are never copied, and a boundary is needed to delineate the actual

is a coarsest-level triangle. submesh.
The algorithms we have described above make heavy use of
. container classes. Efficient support for sets is essential for a fast
AdaptiveRender implementation and we have used the C++ Standard Template Li-
for i=n—1 downto O brary. The mesh editor was implemented using Openinventor and
Vee Tt . ifnot  t.leaf then OpenGL and currently runs on both SGI and Intel PentiumPro
Render (t) workstations.
Yt T° : if not t.draw then
displaylistappend(t)

T-vertex

\’}Y/

Figure 12: Adaptive rendering: On the left 6 triangles from leyel
one has a covered child from level 1, and one has a T-vertex.
On the right the result from applyirigender to all six.
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of the children and set the draw flag for all their vertices ant ‘“‘A‘;‘%’W
also might be necessary to draw a triangle if some of its middle

vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routioat (¢) will cut

¢t into 2, 3, or 4, triangles depending on how many middle vertices
are drawn.

Render (¢)
Ifor (gffetfmlig [\fé?tvsxw _| ggi?st (m) > ep) then Figure 13: On the left are two meshes which are uniformly sub-
Ye € t.child : divided and consist of 11k (upper) and 9k (lower) triangles. On
if not c.draw then the right another pair of meshes mesh with e_lpproxmately the same
displaylistappend(c) numbers of triangles. Upper and lower pairs of meshes are gen-
Yo € e v.draw = true erated from the same original data but the right meshes were op-
t.draw = true timized through suitable choice ef. See the color plates for a
else if 3m e t.mid vertex | m.draw = true comparison between the two under shading.

vt' € cut (t) : displaylistappend(t")
t.draw := true

5 Results

In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.
Figure 13 shows two triangle mesh approximations of the Ar-
4.6 Data Structures and Code g g PP

madillo head and leg. Approximately the same number of triangles
The main data structure in our implementation is a forest of trian- are used for both adaptive and uniform meshes. The meshes on the

gular quadtrees. Neighborhood relations within a single quadtree left were rendered uniformly, the meshes on the right were rendered
can be resolved in the standard way by ascending the tree to theadaptively. (See also color plate 15.)

least common parent when attempting to find the neighbor across a Locally changing threshold parameters can be used to resolve an
given edge. Neighbor relations between adjacent trees are resolvedrea of interest particularly well, while leaving the rest of the mesh
explicitly at the level of a collection of roots, i.e., triangles of a at a coarse level. An example of this “lens” effect is demonstrated
coarsest level graph. This structure also maintains an explicit rep-in Figure 14 around the right eye of the Mannequin head. (See also
resentation of the boundary (if any). Submeshesrooted at any levelcolor plate 16.)

can be created on the fly by assembling a new graph with some set We have measured the performance of our code on two plat-
of triangles as roots of their child quadtrees. It is here that the ex- forms: an Indigo R10000@175MHz with Solid Impact graphics,
plicit representation of the boundary comes in, since the actual treesand a PentiumPro@200MHz with an Intergraph Intense 3D board.




We used the Armadillo head as a test case. It has approximatelyAcknowledgments
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjustedr so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,00
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raise%
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is rendereReferences
in immediate mode, while the rest of the surface continues to be ; ;
rendered as a display list. Grabbing a submesh of 20-30 faces (a [ Eg;};a%tfrﬁggg écIJDdEeILEEII\:l 'Ilgralrjs I?grﬁgﬁﬂ %ﬁa(TSIJng;S a
typical case) at level 0 added 250 mS of time per redraw, at level 1 532-540 ) ' ' '
it added 110 mS and at level 2 it added 30 mS in case of the SGI. 2] ’
The corresponding timings for the PC were 500 mS, 200 mS and
60 mS respectively.
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(AFOSR F49620-96-1-0471). Other support was provided by the
NSF STC for Computer Graphics and Scientific Visualization.
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Figure 15: Shaded rendering (OpenGL) of the meshes in Figure 13.
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Figure 16: Shaded rendering (OpenGL) of the meshes in Figure 14.
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Abstract

During the last years the concept of multi-resolution modeling has
gained special attention in many fields of computer graphics and
geometric modeling. In this paper we generalize powerful multi-
resolution techniques to arbitrary triangle meshes without requiring
subdivision connectivity. Our major observation is that the hierar-
chy of nested spaces which is the structural core element of most
multi-resolution algorithms can be replaced by the sequence of in-
termediate meshes emerging from the application of incremental
mesh decimation. Performing such schemes with local frame cod-
ing of the detail coefficients already provides effective and efficient
algorithms to extract multi-resolution information from unstruc-
tured meshes. In combination with discrete fairing techniques, i.e.,
the constrained minimization of discrete energy functionals, we ob-
tain very fast mesh smoothing algorithms which are able to reduce
noise from a geometrically specified frequency band in a multi-
resolution decomposition. Putting mesh hierarchies, local frame
coding and multi-level smoothing together allows us to propose
a flexible and intuitive paradigm for interactive detail-preserving
mesh modification. We show examples generated by our mesh
modeling tool implementation to demonstrate its functionality.

1 Introduction

Traditionally, geometric modeling is based on piecewise polyno-
mial surface representations [8, 16]. However, while special poly-
nomial basis functions are well suited for describing and modify-
ing smooth triangular or quadrilateral patches, it turns out to be
rather difficult to smoothly join several pieces of a composite sur-
face along common (possibly trimmed) boundary curves. As flex-
ible patch layout is crucial for the construction of non-trivial geo-
metric shapes, spline-based modeling tools do spend much effort to
maintain the global smoothness of a surface.

Subdivision schemes can be considered as an algorithmic gen-
eralization of classical spline techniques enabling control meshes
with arbitrary topology [2, 5, 6, 18, 22, 39]. They provide easy
access to globally smooth surfaces of arbitrary shape by iteratively
applying simple refinement rules to the given control mesh. A se-
quence of meshes generated by this process quickly converges to a
smooth limit surface. For most practical applications, the refined

*Computer  Sciences Department (IMMD9),  University  of
Erlangen-Niirnberg, Am Weichselgarten 9, 91058 Erlangen, Germany,
Lei f. Kobbel t @ nf ormati k. uni - erl angen. de

meshes are already sufficiently close to the smooth limit after only
a few refinement steps.

Within a multi-resolution framework, subdivision schemes pro-
vide a set of basis functions @ j = ¢(2' - — j) which are suitable to
build a cascade of nested spaces V; = span([@;,j]j) [4, 33]. Since the
functions ¢ j are defined by uniform refinement of a given control
mesh My =2V, the spaces V; have to be isomorphic to meshes 2;
with subdivision connectivity.

While being much more flexible than classical (tensor-product)
spline techniques, the multi-resolution representation based on the
uniform refinement of a polygonal base mesh is still rather rigid.
When analyzing a given mesh 94, i.e., when decomposing the
mesh into disjoint frequency bands W; = Vi1 \ Vi, we have to invert
the uniform refinement operation V; — Vj;1. Hence, the input mesh
always has to be topologically isomorphic to an iteratively refined
base grid. In general this requires a global remeshing/resampling
of the input data prior to the multi-resolution analysis [7]. More-
over, if we want to fuse several separately generated subdivision
meshes (e.g. laser range scans) into one model, restrictive compat-
ibility conditions have to be satisfied. Hence, subdivision schemes
are able to deal with arbitrary topology but not with arbitrary con-
nectivity!

The scales of subdivision based multi-resolution mesh represen-
tations are defined in terms of topological distances. Since every
vertex pj j on each level of subdivision 24 represents the weight
coefficient of a particular basis function @ j with fixed support, its
region of influence is determined by topological neighborhood in
the mesh instead of geometric proximity. Being derived from the
regular functional setting, the refinement rules of stationary subdi-
vision schemes only depend on the valences of the vertices but not
on the length of the adjacent edges. Hence, surface artifacts can
occur when the given base mesh is locally strongly distorted.

Assume we have a subdivision connectivity mesh and want to
apply modifications on a specific scale Vj. The usual way to im-
plement this operation is to run a decomposition scheme several
steps until the desired resolution level is reached. On this level
the mesh 94 is modified and the reconstruction starting with 24/
yields the final result. The major draw-back of this procedure is the
fact that coarse basis functions exist for the coarse-mesh vertices
only and hence all low-frequency modifications have to be aligned
to the grid imposed by the subdivision connectivity. Shifted low-
frequency modifications can be faked by moving a group of vertices
from a finer scale simultaneously but this annihilates the mathemat-
ical elegance of multi-resolution representations.

A standard demo example for multi-resolution modeling is
pulling the nose tip of a human head model. Depending on the
chosen scale either the whole face is affected or just the nose is
elongated. On uniformly refined meshes this operation only works
if a coarse-scale control vertex happens to be located right at the
nose tip. However, for an automatic remeshing algorithm it is very
difficult, if not impossible, to place the coarse-scale vertices at the
semantically relevant features of an object.

In this paper we present an alternative approach to multi-
resolution modeling which avoids these three major difficulties, i.e.
the restriction to subdivision connectivity meshes, the restriction to
basis functions with fixed support and the alignment of potential
coarser-scale modifications.



The first problem is solved by using mesh hierarchies which
emerge from the application of a mesh decimation scheme. In Sec-
tion 2 we derive the necessary equipment to extract multi-resolution
information from arbitrary meshes and geometrically encode detail
information with respect to local frames which adapt to the local
geometry of the coarser approximation of the object.

To overcome the problems arising from the fixed support and
aligned distribution of subdivision basis functions, we drop the
structural concept of considering a surface in space to be a linear
combination of scalar-valued basis functions. On each level of de-
tail, the lower-frequency components of the geometric shape are
simply characterized by energy minimization (fairing). In Section 3
we overview the discrete fairing technique [19, 38] and show how a
combination with the non-uniform mesh hierarchy leads to highly
efficient mesh optimization algorithms. Due to the local smoothing
properties of the fairing operators, we are able to define a geomet-
ric threshold for the wavelength up to which a low-pass filter should
remove noise.

With an efficient hierarchical mesh smoothing scheme available,
we propose a flexible mesh modification paradigm in Section 4.
The basic idea is to let the designer freely define the region of in-
fluence and the characteristics of the modification which both can
be adapted to the surface geometry instead of being determined by
the connectivity. The selected region defines the "frequency” of the
modification since it provides the boundary conditions for a con-
strained energy minimization. Nevertheless the detail information
within the selected region is preserved and does change according
to the global modification. Exploiting the efficient schemes from
Section 3 leads to interactive response times for moderately com-
plex models.

Throughout the paper, we consider a modeling scenario where
a triangle mesh 9 with arbitrary connectivity is given (no from-
scratch design). All modifications just alter the position of the ver-
tices but not their adjacency. In particular, we do not consider ad
infinitum subdivision to establish infinitesimal smoothness. The
given mesh M = My represents per definition the finest level of
detail.

2 Multi-resolution representations

Most schemes for the multi-resolution representation and modifica-
tion of triangle meshes emerge from generalizing harmonic analysis
techniques like the wavelet transform [1, 23, 30, 33]. Since the fun-
damentals have been derived in the scalar-valued functional setting
RY - R, difficulties emerge from the fact that manifolds in space
are in general not topologically equivalent to simply connected re-
gions in RY.

The philosophy behind multi-resolution modeling on surfaces
is hence to mimic the algorithmic structure of the related func-
tional transforms and preserve some of the important properties
like locality, smoothness, stability or polynomial precision which
have related meaning in both settings [9, 12, 40]. Accordingly, the
nested sequence of spaces underlying the decomposition into dis-
joint frequency bands is thought of being generated bottom-up from
a coarse base mesh up to finer and finer resolutions. This implies
that subdivision connectivity is mandatory on higher levels of de-
tail. Not only the mesh has to consist of large regular regions with
isolated extra-ordinary vertices in between. Additionally, we have
to make sure that the topological distance between the singulari-
ties is the same for every pair of neighboring singularities and this
topological distance has to be a power of 2.

Such special topological requirements prevent the schemes from
being applicable to arbitrary input meshes. Global remeshing and
resampling is necessary to obtain a proper hierarchy which gives
rise to alias-errors and requires involved computations [7].

Luckily, the restricted topology is not necessary to define dif-
ferent levels of resolution or approximation for a triangle mesh.

In the literature on mesh decimation we find many examples for
hierarchies built on arbitrary meshes [11, 15, 20, 24, 27, 31, 35].
The key is always to build the hierarchy top-down by eliminating
vertices from the current mesh (incremental reduction, progressive
meshes). Running a mesh decimation algorithm, we can stop, e.g.,
every time a certain percentage of the vertices is removed. The in-
termediate meshes can be used as a level-of-detail representation
[15, 23].

In both cases, i.e., the bottom-up or the top-down generation
of nested (vertex-) grids, the multi-resolution concept is rigidly at-
tached to topological entities. This makes sense if hierarchies are
merely used to reduce the complexity of the representation. In the
context of multi-resolution modeling, however, we want the hierar-
chy not necessarily to rate meshes according to their coarseness but
rather according to their smoothness (cf. Fig 1).

We will use multi-resolution hierarchies for two purposes. First
we want to derive highly efficient algorithms for mesh optimiza-
tion. In Section 3 we will see that topologically reduced meshes are
the key to significantly increase the performance (levels of coarse-
ness). On the other hand, we want to avoid any restrictions that are
imposed by topological peculiarities. In particular, when interac-
tively modifying a triangle mesh, we do not want any alignment.
The support of a modification should have no influence on where
this modification can be applied (levels of smoothness).

To describe the different set-ups for multi-resolution repre-
sentation uniformly, we define a generic decomposition scheme
A= (A(])|AL|J)T (analysis) as a general procedure that transforms a
given mesh 94 into a coarser/smoother one M;_1 = ApM; plus de-
tail coefficients Dj_1 = Aw ;. In the standard wavelet setting the
cardinalities satisfy #D;_1 + #M;_1 = #9M; since decomposition is
a proper basis transform.

If a (bi-orthogonal) wavelet basis is not known, we have to
store more detail information (#D;_1 + #M;_1 > #9;) since the
reconstruction operator A~1 might be computationally expensive
or not even uniquely defined. Well-known examples for this kind
of decomposition with extra detail coefficients are the Laplacian-
pyramid type of representation in [40] and the progressive mesh
representation [15].

When Ao is merely a smoothing operator which does not change
the topological mesh structure of 24 we have Ay = Id — Ag and
#Dy_1 = #Mi_1 = #M,.

2.1 Local Frames

In a multi-resolution representation of a geometric object M = M,
the detail coefficients D;_1 describe the difference between two ap-
proximations M;_q and A; having different levels of detail. For
parametric surfaces, the detail coefficients, i.e., the spatial location
of the vertices in 94 have to be encoded relative to the local ge-
ometry of the coarser approximation A_1. This is necessary since
modifications on the coarser level should have an intuitive effect on
the geometric features from finer scales.

First proposed by [10] it has become standard to derive local
coordinate frames from the partial derivative information of the
coarse representation 24 1. Since we do not assume the existence
of any global structure or auxiliary information in the sequence of
meshes 9, we have to rely on intrinsic geometric properties of
the triangles themselves. Depending on the intended application
we assign the local frames to the triangles or the vertices of 24_;.
A detail vector is then defined by three coordinate values [u,v,n]
plus an index i identifying the affine frame F = [p;,U;, Vi, Nij] with
respect to which the coordinates are given.

2.1.1 Vertex-based frames

We can use any heuristic to estimate the normal vector N; at a vertex
pi in a polygonal mesh, e.g., taking the average of the adjacent tri-
angle normals. The vector Uj = E — (ETN;)N; is obtained by pro-
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Figure 1: The well-known Stanford-Bunny. Although the original mesh does not have subdivision connectivity, mesh decimation algorithms
easily generate a hierarchy of topologically simplified meshes. On the other hand, multi-resolution modeling also requires hierarchies of
differently smooth approximations. Notice that the meshes in the lower row have identical connectivity.

jecting any adjacent edge E into the tangent plane and V; := N; x U;.
The data structure for storing the mesh 4_; has to make sure that
E is uniquely defined, e.g. as the first member in a list of neighbors.

2.1.2 Face-based frames

It is tempting to simply use the local frame which is given by two
triangle edges and their cross product. However, this will not lead to
convincing detail reconstruction after modifying the coarser level.
The reason for this is that the local frames would be rigidly attached
to one coarse triangle. In fact, tracing the dependency over several
levels of detail shows that the original mesh is implicitly partitioned
into sub-meshes being assigned to the same coarse triangle T. Ap-
plying a transformation to T implies the same transformation for all
vertices being defined relative to T. This obviously leads to artifacts
between neighboring sub-meshes in the fine mesh.

A better choice is to use local low order polynomial interpolants
or approximants that depend on more than one single triangle. Let
Po, P1, and po be the vertices of a triangle T € #_; and p3, pa,
and ps be the opposite vertices of the triangles adjacent to T (cf.
Fig. 2). To construct a quadratic polynomial

u? v2
F(u,v) = f+ufy+vfy+ ?fuu‘l‘UVfuv‘i‘ Efw

approximating the p; we have to define a parameterization first.
Note that the particular choice of this parameterization controls the
quality of the approximant. Since we want to take the geometric
constellation of the pj into account, we define a parameterization
by projecting the vertices into the supporting plane of T.

Exploiting the invariance of the polynomial interpolant with re-
spect to affine re-parameterizations, we can require F(0,0) := po,
F(1,0) :=p1, and F(0,1) := p, which implies

f = po
fu = p1—po— % fuu 1)
fy = p2—po— % f.

Let the vertices p3, p4, and ps be projected to (us,v3), (ug,vs), and
(us,Vs) according to the frame [po, p1,P2]. To additionally stabilize
the interpolation scheme, we introduce a tension parameter T € [0, 1]
which trades approximation error at p3, ps, and ps for minimizing
the bending energy 2, +2f2, +f2,. Using (1) we obtain
sug(us—1) ugvs 3vz(vg—1)

Jus(us—1) ugva  Fva(va—1)

=N

i 1 fUU
sUs(us—1) Uusvs 35Vs(vs—1) fw | =
T 0] 0 fwv
0 2T 0
0 0 T
(P3s—Po) + U3 (Po — P1) + V3 (Po — P2)
(P4 —Po) + Uz (Po — P1) + Va (Po — P2)
(Ps*P0)+U5(P06P1)+V5(P0*P2)
0
0

which has to be solved in a least squares sense.

To compute the detail coefficients [d,V,h] for a point q with re-

spect to T, we start from the center (u,v) = (3, 3) and simple New-

ton iteration steps (u,v) < (u,v) + (Au, Av) with d = q — F(u,V)

(F]Fu FIF\,)(Au) _ <F3d>

FIFv FIFy Av Fid

quickly converge to the point F(0,V) with the detail vector d per-
pendicular to the surface F(u,v). The third coefficient is then
h = sign(d" (Fy x Fy))||d].

Although the parameter values (G, V) can lie outside the unit tri-
angle (which occasionally occurs for extremely distorted configu-
rations) the detail coefficient [0, V, h] is still well-defined and recon-
struction works. Notice that the scheme might produce counter-
intuitive results if the maximum dihedral angle between T and one
of its neighbors becomes larger than 7. In this case the parameter-



ization for p3, p4, and ps could be derived by rotation about T’s
edges instead of projection.

Figure 2: Vertex labeling for the construction of a local frame.

Obviously, the detail coefficient [0, V, h] is not coded with respect
to a local frame in the narrow sense. However, it has a similar se-
mantics. Recovering the vertex position g’ requires to construct the
approximating polynomial F'(u,v) for the possibly modified ver-
tices pj, evaluate at (0, 7) and move in normal direction by h. The
distance h is a measure for the "’size” of the detail.

In our current implementation on a SGI R10000/195 MHz work-
station the analysis q — [0, V, h] takes about 20uS while the recon-
struction [00,V, h] — g takes approximately 8uS. Since a progressive
mesh representation introduces two triangles per vertex split, this
means that for the reconstruction of a mesh with 10° triangles, the
computational overhead due to the local frame representation is less
than half a second.

2.2 Decomposition and reconstruction

To complete our equipment for the multi-resolution set-up we have
to define the decomposition and reconstruction operations which
separate the high-frequency detail from the low-frequency shape
and eventually recombine the two to recover the original mesh.
We apply different strategies depending on whether decomposition
generates a coarser approximation of the original geometry or a
smoother approximation.

In either case the decomposition operator A is applied to the orig-
inal mesh 94 and the details D;_; are coded in local frame coordi-
nates with respect to #4;_1. Since the reconstruction is an extrapo-
lation process, it is numerically unstable. To stabilize the operation
we have to make the details as small as possible, i.e., when encod-
ing the spatial position of a point q € R® we pick that local frame
on M;_; which is closest to q.

Usually the computational complexity of generating the detail
coefficients is higher than the complexity of the evaluation during
reconstruction. This is an important feature since for interactive
modeling the (dynamic) reconstruction has to be done in real-time
while the requirements for the (static) decomposition are not as de-
manding.

2.2.1 Mesh decimation based decomposition

When performing an incremental mesh decimation algorithm, each
reduction step removes one vertex and retriangulates the remain-
ing hole [15, 31]. We use a simplified version of the algorithm
described in [20] that controls the reduction process in order to op-
timize the fairness of the coarse mesh while keeping the global ap-
proximation error below a prescribed tolerance.

The basic topological operation is the half edge collapse which
shifts one vertex p into an adjacent vertex g and removes the two
degenerate triangles. In [20] a fast algorithm is presented to deter-
mine that triangle T in the neighborhood of the collapse which lies

closest to the removed vertex p. The position of p is then coded
with respect to the local frame associated with this triangle.

The inverse operation of an edge collapse is the vertex split [15].
Since during reconstruction the vertices are inserted in the reverse
order of their removal, it is guaranteed that, when p is inserted, the
topological neighborhood looks the same as when it was deleted
and hence the local frame to transform the detail coefficient for p
back into world coordinates is well-defined.

During the iterative decimation, each intermediate mesh could
be considered as one individual level of detail approximation. How-
ever, if we want to define disjoint frequency bands, it is reasonable
to consider a whole sub-sequence of edge collapses as one atomic
transformation from one level 24 to M;_1.

There are several criteria to determine which levels mark the
boundaries between successive frequency bands. One possibility
is to simply define 94 to be the coarsest mesh that still keeps a
maximum tolerance of less than some ¢; to the original data. Al-
ternatively we can require the number of vertices in %4_1 to be a
fixed percentage of the number of vertices in A4. This simulates
the geometric decrease of complexity known from classical multi-
resolution schemes. We can also let the human user decide when
a significant level of detail is reached by allowing her to browse
through the sequence of incrementally reduced meshes.

In order to achieve optimal performance with the multi-level
smoothing algorithm described in the next section, we decided in
our implementation to distribute the collapses evenly over the mesh:
When a collapse p — q is performed, all vertices adjacent to g are
locked for further collapsing (independent set of collapses). If no
more collapses are possible, the current mesh defines the next level
of detail and all vertices are un-locked. One pass of this reduction
scheme removes about 25% of the vertices in average.

2.2.2 Mesh smoothing based decomposition

For multi-resolution modeling we have to separate high frequency
features from the global shape in order to modify both individu-
ally. Reducing the mesh complexity cannot help in this case since
coarser meshes do no longer have enough degrees of freedom to
be smooth, i.e., to have small angles between adjacent triangles.
Hence, the decomposition operator Ag becomes a mere smooth-
ing operator that reduces the discrete bending energy in the mesh
without changing the topology (cf. Section 3).

A natural way to define the detail coefficients would be to store
the difference vectors between the original vertex position q and
the shifted position g’ with respect to the local frame defined at
g’. However, in view of numerical stability this choice is not op-
timal. Depending on the special type of smoothing operator A
the vertices can move within” the surface such that another vertex
p' € Mi_1 = ApM; could lie closer to g than g’ (cf. Fig. 3).

Figure 3: Although the bending energy minimizing smoothing op-
erator Ao is applied to a plane triangulation, the vertices are moved
within the plane since linear operators always do the fairing with re-
spect to a specific parameterization (cf. Section 3).

To stabilize the reconstruction, i.e., to minimize the length of the
detail vectors, we apply a simple local search procedure to find the



nearest vertex p’ € Mi_, to g and express the detail vector with
respect to the local frame at p’ or one of its adjacent triangles. This
searching step does not noticeably increase the computation time
(which is usually dominated by the smoothing operation Ag) but
leads to much shorter detail vectors (cf. Fig 4).
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Figure 4: The shortest detail vectors are obtained by representing
the detail coefficients with respect to the nearest local frame (left)
instead of attaching the detail vectors to the topologically corre-
sponding original vertices.

3 Discrete fairing

From CAGD it is well-known that constrained energy minimization
is a very powerful technique to generate high quality surfaces [3, 13,
25, 28, 37]. For efficiency, one usually defines a simple quadratic
energy functional £(f) and searches among the set of functions
satisfying prescribed interpolation constraints for that function f
which minimizes ‘.

Transferring the continuous concept of energy minimization to
the discrete setting of triangle mesh optimization leads to the dis-
crete fairing approach [19, 38]. Local polynomial interpolants are
used to estimate derivative information at each vertex by divided
difference operators. Hence, the differential equation characteriz-
ing the functions with minimum energy is discretized into a linear
system for the vertex positions.

Since this system is global and sparse, we apply iterative solving
algorithms like the GauRB-Seidel-scheme. For such algorithms one
iteration step merely consists in the application of a simple local
averaging operator. This makes discrete fairing an easy accessible
technique for mesh optimization.

3.1 The umbrella-algorithm

The most prominent energy functionals that are used in the theory
and practice of surface design are the membrane energy

En(f) = /fu2+fv2 @

which prefers functions with smaller surface area and the thin plate
energy

ZTF’(f) = /fuzu+2fuzv+fv2v 3)

which punishes strong bending. The variational calculus leads to
simple characterizations of the corresponding minimum energy sur-
faces

or
A% f = fyuu+2 fuow + faw = 0 (5)

respectively. Obviously, low degree polynomials satisfy both differ-
ential equations and hence appropriate (Dirichlet-) boundary condi-
tions have to be imposed which make the semi-definite functionals
Em and Erp positive-definite.

The discrete fairing approach discretizes either the energy func-
tionals (2-3) [19, 38] or the corresponding Euler-Lagrange equa-
tions (4-5) [17, 36] by replacing the differential operators with di-
vided difference operators. To construct these operators, we have to
choose an appropriate parameterization in the vicinity of each ver-
tex. In [38] for example a discrete analogon to the exponential map
is chosen. In [17] the umbrella-algorithm is derived by choosing a
symmetric parameterization

(ui,vj) = (cos(2n%),sin(2n%)), i=0,...,n—1 (6)

with n being the valence of the center vertex p (cf. Fig 5). This pa-
rameterization does not adapt to the local geometric constellation
but it simplifies the construction of the corresponding difference
operators which are otherwise obtained by solving a Vandermonde
system for local polynomial interpolation. With the special param-
eterization (6) the discrete analogon of the Laplacian Af turns out
to be the umbrella-operator

1 n-1

U(p) = ﬁizopi—p

with p; being the direct neighbors of p (cf. Fig. 5). The umbrella-
operator can be applied recursively leading to

U(pi) — U(p)

lnl
2(p) = =
‘U(lo)—ni=

M

as a discretization of A2f.

Pnfl

Figure 5: To compute the discrete Laplacian, we need the 1-
neighborhood of a vertex p (— umbrella-operator).

The boundary conditions are imposed to the discrete problem
by freezing certain vertices. When minimizing the discrete version
of v we hold a closed boundary polygon fixed and compute the
membrane that is spanned in between. For the minimization of Erp
we need two rings of boundary vertices, i.e., we keep a closed strip
of triangles fixed. This imposes a (discrete) C* boundary condition
to the optimization problem (cf. Fig 6). All internal vertices can
be moved freely to minimize the global energy. The properly cho-
sen boundary conditions imply positive-definiteness of the energy
functional and guarantee the convergence of the iterative solving
algorithm [29].

The characteristic (linear) system for the corresponding uncon-
strained minimization problem has rows 2(p;) = 0 or U?(pj) =0
respectively for the free vertices pj. An iterative solving scheme
approaches the optimal solution by solving each row of the system
separately and cycling through the list of free vertices until a stable
solution is reached. In case of the membrane energy Zy this leads
to the local update rule

Pi <+ Ppi+ U(pi) (M



and for the thin plate energy Erp , we obtain

Pi «+ Pi— % U (pi) (8)

with the "diagonal element”

where nj and nj j are the valences of the center vertex pj and its jth
neighbor respectively.

Figure 6: A closed polygon or a closed triangle strip provide C°
or C! boundary conditions for the discrete fairing. On the left the
triangle mesh minimizes £y on the right it minimizes ZErp.

Although the rule (8) can be implemented recursively, the perfor-
mance is optimized if we use a two step process where all umbrella
vectors 7U(p;) are computed in a first pass and 7% (pj) in the sec-
ond. This avoids double computation but it also forces us to use in
fact a plain Jacobi-solver since no intermediate updates from neigh-
boring vertices can be used. However the (n+ 2) : 2 speed-up for
a vertex with valence n amortizes the slower convergence of Jacobi
compared to GauB-Seidel.

3.2 Connection to Taubin’s signal processing ap-
proach

The local update operator (7) in the iterative solving scheme for
constrained energy minimization is exactly the Laplace smoothing
operator proposed by Taubin in [34] where he derived it (also in the
context of mesh smoothing) from a filter formalism based on gener-
alized Fourier analysis for arbitrary polygonal meshes. In his paper,
Taubin starts with a matrix version of the scaled update rule (7)

[pi] := (I4+A ) [pi]

where A is a damping factor and formally rewrites it by using a
transfer function notation

f(k) := 1—Ak
with respect to the eigenbasis of the (negative) Laplace operator.
Since no proper boundary conditions are imposed, the continued
filtering by f(k) leads to severe shrinking and hence he proposes
combined filters
f(k) == (1=AK)(1—pk) ©)

where A and 1 are set in order to minimize the shrinking. A feasible
heuristic is to choose a pass-band frequency

1 1
keg = X+ﬂ € [0.01...0.1]

and set A and | while observing the stability of the filter.

Obviously, the update rule for the difference equation (p;) =0
which characterizes meshes with minimum membrane energy cor-
responds to a special low-pass filter with transfer function f;(k) =
(1 —k). For the minimization of the total curvature, characterized
by U?(p;) = 0, the iteration rule (8) can be re-written in transfer
function notation as

1 1
VA

which corresponds to a combined Laplace filter of the form (9)
with pass-band frequency kpg = 0. Although this is not optimal
for reducing the shrinking effect, we observe that the transfer func-
tion happens to have a vanishing derivative at k = 0. From sig-
nal processing theory it is known that this characterizes maximal
smoothness [26], i.e., among the two step Laplace filters, the 7/2-
filter achieves optimal smoothing properties. To stabilize the filter
we might want to introduce a damping factor 0 < 0 < %v into the
update-rule

foe(k) = (1—%k2) = (1+ k)

(0}
Pi <+ pi—;‘uz(pi)

3.3 Multi-level smoothing

A well-known negative result from numerical analysis is that
straight forward iterative solvers like the Gaul’-Seidel scheme are
not appropriate for large sparse problems [32]. More sophisticated
solvers exploit knowledge about the structure of the problem. The
important class of multi-grid solvers achieve linear running times
in the number of degrees of freedom by solving the same problem
on grids with different step sizes and combining the approximate
solutions [14].

For difference (= discrete differential) equations of elliptic type
the GauR-Seidel iteration matrices have a special eigenstructure that
causes high frequencies in the error to be attenuated very quickly
while for lower frequencies no practically useful rate of conver-
gence can be observed. Multi-level schemes hence solve a given
problem on a very coarse scale first. This solution is used to predict
initial values for a solution of the same problem on the next refine-
ment level. If these predicted values have only small deviations
from the true solution in low-frequency sub-spaces, then Gaul3-
Seidel performs well in reducing the high-frequency error. The
alternating refinement and smoothing leads to highly efficient varia-
tional subdivision schemes [19] which generate fair high-resolution
meshes with a rate of several thousand triangles per second (linear
complexity!).

As we saw in Section 2, the bottom-up way to build multi-
resolution hierarchies is just one of two possibilities. To get rid
of the restriction that the uniform multi-level approach to fairing
cannot be applied to arbitrary meshes, we generate the hierarchy
top-down by incremental mesh decimation.

A complete V-cycle multi-grid solver recursively applies opera-
tors ®; = WP ®;_1 RW where the first (right) W is a generic (pre-
)smoothing operator — a GauB-Seidel scheme in our case. R is a
restriction operator to go one level coarser. This is where the mesh
decimation comes in. On the coarser level, the same scheme is ap-
plied recursively, ®;_1, until on the coarsest level the number of
degrees of freedom is small enough to solve the system directly (or
any other stopping criterion is met). On the way back-up, the pro-
longation operator P inserts the previously removed vertices to go
one level finer again. P can be considered as a non-regular subdi-
vision operator which has to predict the positions of the vertices in
the next level’s solution. The re-subdivided mesh is an approxima-
tive solution with mostly high frequency error. (Post-)smoothing
by some more iterations W removes the noise and yields the final
solution.

Fig 7 shows the effect of multi-level smoothing. On the left you
see the original bunny with about 70K triangles. In the center left,



Figure 7: Four versions of the Stanford bunny. On the left the original data set. In the center left the same object after 200 iterations of the
non-shrinking Laplace-filter. On the center right and far right the original data set after applying the multi-level umbrella filter with three or

six levels respectively.

we applied the Laplace-filter proposed in [34] with A = 0.6307 and
pu= —0.6732. The iterative application of the local smoothing op-
erator

Pi < pi + AW U(pi) (10)

removes the highest frequency noise after a few iterations but does
not have enough impact to flatten out the fur even after several hun-
dred iterations. On the right you see the meshes after applying a
multi-level smoothing with the following schedule: Hierarchy lev-
els are generated by incremental mesh decimation where each level
has about 50% of the next finer level’s vertices. The pre-smoothing
rule (8) is applied twice on every level before going downwards
and five times after coming back up. On the center right model
we computed a three level V-cycle and on the far right model a
six level V-cycle. Notice that the computation time of the multi-
level filters (excluding restriction and prolongation) corresponds to
about (2+5)(1+0.5+0.5% +...) < 14 double-steps of the one-
level Laplace-Filter (10).

3.4 Geometric filtering

The bunny example in Fig. 7 is well suited for demonstrating the
effect of multi-level smoothing but we did not impose any bound-
ary conditions and thus we applied the smoothing as a mere filter
and not as a solving scheme for a well-posed optimization prob-
lem. This is the reason why we could use the number of levels to
control the impact of the smoothing scheme on the final result. For
constrained optimization, it does not make any sense to stop the
recursion after a fixed number of decimation levels: we always re-
duce the mesh down to a small fixed number of triangles. Properly
chosen boundary condition will ensure the convergence to the true
solution and prevent the mesh from shrinking.

Nevertheless, we can exploit the effect observed in Fig. 7 to de-
fine more sophisticated geometric low-pass filters. Since the sup-
port of the Laplace-filters is controlled by the neighborhood relation
in the underlying mesh, the smoothing characteristics are defined
relative to a "topological wavelength”. Noise which affects every
other vertex is removed very quickly independent from the length
of the edges while global distortions affecting a larger sub-mesh are
hardly reduced. For geometric filters however we would like to set
the pass-band frequency in terms of Euclidian distances by postu-
lating that all geometric features being smaller than some threshold
€ are considered as noise and should be removed.

Such filters can be implemented by using an appropriate mesh
reduction scheme that tends to generate intermediate meshes with
strong coherence in the length of the edges. In [20] we propose a
mesh decimation scheme that rates the possible edge collapses ac-
cording to some generic fairness functional. A suitable objective
function for our application is to maximize the roundness of trian-
gles, i.e., the ratio of its inner circle radius to its longest edge. If
the mesh decimation scheme prefers those collapses that improve
the global roundness, the resulting meshes tend to have only little

variance in the lengths of the edges. For the bunny example, we can
keep the standard deviation from the average edge length below one
percent for incremental decimation down to about 5K triangles.

By selecting the lowest level My down to which the V-cycle
multi-level filtering iterates, we set the threshold € = (M) for
detail being removed by the multi-level smoothing scheme. The
thresholding works very well due to the strong local and poor global
convergence of the iterative update rule (8). Fig. 8 shows the base
meshes for the multi-level smoothing during the computation of the
two right bunnies of Fig. 7.
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Figure 8: Base meshes where the V-cycle recursion stopped when
generating the right models in Fig. 7. The final meshes do not loose
significant detail (watch the silhouette). Notice how in the left ex-
ample the fur is removed but the bunny’s body preserved while in
the right example the leg and the neck start to disappear.

4 Multi-resolution modeling on triangle
meshes

In this section we describe a flexible and intuitive multi-resolution
mesh modeling metaphor which exploits the techniques presented
in the last two sections. As we discussed in the introduction, our
goal is to get rid of topological restrictions for the mesh but also
to get rid of difficulties emerging from the alignment of the basis
functions in a hierarchical representation and the rigid shape of the
basis function’s support.

From a designer’s point of view, we have to distinguish three se-
mantic levels of detail. These levels are defined relative to a specific
modeling operation since, of course, in a multi-resolution environ-
ment the features that are detail in a (global) modification become
the global shape for a minute adjustment.

e The global shape is that part of the geometry that is the subject
of the current modification. Intuitively, the designer selects a
piece of the global shape and applies a transformation to it.

e The structural detail are features that are too small to be mod-
ified by hand but still represent actual geometry. This detail
should follow the modification applied to the global shape in a



Figure 9: The wooden cat model 24 (178K triangles, left) is in progressive mesh representation. The high resolution is necessary to avoid
alias errors in the displacement texture. The center left model 44 (23K triangles) is extracted by stopping the mesh reduction when a
prescribed complexity is reached. On this level interactive mesh modification is done which yields the model 24 (center right). The final
result M (right) is obtained by running the reconstruction on the modified mesh.

geometrically intuitive manner. The preservation of structural
detail during interactive modeling is crucial for plausible vi-
sual feed-back (cf. the eyes and ears of the wooden cat model
in Fig. 9).

e The textural detail does not really describe geometric shape.
It is necessary to let the surface appear more realistic and is
often represented by displacement maps [21]. In high qual-
ity mesh models it is the source for the explosive increase in
complexity (cf. the wood texture in Fig. 9).

Having identified these three semantic levels of detail, we suggest a
mesh modeling environment which provides flexible mesh modifi-
cation functionality and allows the user to adapt the mesh complex-
ity to the available hardware resources.

In an off-line preprocessing step, an incremental mesh decima-
tion algorithm is applied and the detail coefficients are stored with
respect to local frames as explained in Section 2.2.1. This trans-
forms the highly complex input model into a progressive-mesh type
multi-resolution representation without any remeshing or resam-
pling. The representation allows the user to choose an appropriate
number of triangles for generating a mesh model that is fine enough
to contain at least all the structural detail but which is also coarse
enough to be modified in realtime. This pre-process removes the
textural detail prior to the actual interactive mesh modification.

Suppose the original mesh model 2 is transformed into the pro-
gressive mesh sequence [M, ..., Mp] with My being the coarsest
base mesh. If the user picks the mesh 94 and applies modifications
then this invalidates the subsequence [Mi_1,..., Mp]. If the work-
ing resolution is to be reduced afterwards to 4j (j < i) then the in-
termediate meshes have to be recomputed by online mesh decima-
tion. The textural detail encoded in the subsequence [M, ..., Mi 1]
however remains unchanged since it is stored with respect to local
frames such that reconstruction starting from a modified mesh 24/
leads to the intended result 94,. Fig. 9 shows an example of this
procedure.

4.1 Interactive mesh modeling by discrete fairing

The most important feature in the proposed multi-resolution mesh
modeling environment is the modification functionality itself (mod-
eling metaphor) which hides the mesh connectivity to the designer.

The designer starts by marking an arbitrary region on the mesh
M. In fact, she picks a sequence of surface points (not necessarily
vertices) on the triangle mesh and these points are connected either
by geodesics or by projected lines. The strip of triangles § which
are intersected by the geodesic (projected) boundary polygon sep-
arates an interior region 9, and an exterior region 2 \ (M, U.S).

The interior region 94, is to be affected by the following modifica-
tion.

A second polygon (not necessarily closed) is marked within the
first one to define the handle. The semantics of this arbitrarily
shaped handle is quite similar to the handle metaphor in [37]: when
the designer moves or scales the virtual tool, the same geometric
transformation is applied to the rigid handle and the surrounding
mesh 94, follows according to a constrained energy minimization
principle.

The freedom to define the boundary strip § and the handle geom-
etry allows the designer to build "custom tailored” basis functions
for the intended modification. Particularly interesting is the defini-
tion of a closed handle polygon which allows to control the char-
acteristics of a bell-shaped dent: For the same region 94, a tiny
ring-shaped handle in the middle causes a rather sharp peak while a
bigger ring causes a wider bubble (cf. Fig 10). Notice that the mesh
vertices in the interior of the handle polygon move according to the
energy minimization.
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Figure 10: Controlling the characteristics of the modification by the
size of a closed handle polygon.

Since we are working on triangle meshes, the energy minimiza-
tion on M, is done by discrete fairing techniques (cf. Section 3).
The boundary triangles . provide the correct C! boundary condi-
tions for minimizing the thin plate energy functional (3).

The handle imposes additional interpolatory constraints on the
location only — derivatives should not be affect by the handle.
Hence, we cannot have triangles being part of the handle geome-
try. We implemented the handle constraint in the following way:
like the boundary polygon, the handle polygon defines a strip of
triangles being intersected by it. Whether the handle polygon is
open or closed, we find two polygons of mesh edges on either side
of that strip. We take any one of the two polygons and collect ev-
ery other mesh vertex in a set of handle vertices. Keeping these
handle vertices fixed during the mesh optimization is the additional
interpolatory constraint.



The reason for freezing only every other handle vertex is that
three fixed vertices directly connected by two edges build a rigid
constellation leaving no freedom to adjust the angle between them.
During discrete optimization this would be the source of undesired
artifacts in the smooth mesh.

With the boundary conditions properly set we perform the thin
plate energy minimization by using the umbrella algorithm de-
scribed in Section 3.1. To obtain interactive response times, we
exploit the multi-level technique: a mesh decimation algorithm is
applied to the mesh M, U S to build up a hierarchy. Then starting
from the coarsest level, we apply the 72 smoothing filter alternat-
ing with mesh refinement. This process is fast enough to obtain sev-
eral frames per second when modeling with meshes of #M, ~ 5K
triangles (SGI R10000/195MHz). Typically, we set the ratio of the
complexities between successive meshes in the hierarchy to 1:2 or
1: 4 and iterate the smoothing filter 3 to 5 times on each level.

During the interactive mesh smoothing we do not compute the
full V-cycle algorithm of Sect. 3.3. In fact, we omit the pre-
smoothing and always start from the coarsest level. When a ver-
tex is inserted during a mesh refinement step we place it initially
at its neighbor’s center of gravity unless the vertex is a handle ver-
tex. Handle vertices are placed at the location prescribed by the
designer’s interaction (handle interpolation constraint). Hence the
mesh is computed from scratch in every iteration instead of just up-
dating the last position. This is very important for the modeling
dialog since only the current position, orientation and scale of the
handle determines the smoothed mesh and not the whole history of
movements.

For the fast convergence of the optimization procedure it turns
out to be important that the interpolation constraints imposed by the
handle vertices show up already on rather coarse levels in the mesh
hierarchy. Otherwise their impact cannot propagate far enough
through the mesh such that cusps remain in the smoothed mesh
which can only be removed by an excessive number of smoothing
iterations. This additional requirement can easily be included into
the mesh reduction scheme by lowering the priority ranking of col-
lapses involving handle vertices.

4.2 Detail preservation

If the modified mesh 24/ is merely defined by constrained energy
minimization, we obviously loose all the detail of the originally
selected submesh 94,. Since only the boundary and the handle ver-
tices put constraints on the mesh, all other geometric features are
smoothed out.

To preserve the detail, we use the multi-resolution representa-
tion explained in Section 2.2.2. After the boundary S and the han-
dle polygon are defined but before the handle is moved by the de-
signer, we apply the multi-level smoothing scheme once. Although

the original mesh 4/, and the smoothed mesh 4/, are topologically
equivalent, they do have different levels of (geometric) resolution
and hence constitute a two-scale decomposition based on varying
levels of smoothness. We encode the difference D, between the
two meshes, i.e., the detail coefficients for the vertices p; € M, by
storing the displacement vectors with respect to the local frame as-

sociated with the nearest triangle in /.

When the designer moves the handle, the bottom-up mesh
smoothing is performed to re-adjust the mesh to the new interpo-

lation conditions. On the resulting smooth mesh 94/, the detail D,
is added and the final mesh 24/ is rendered on the screen. Due to
the geometric coding of the detail information, this leads to intuitive
changes in the surface shape (cf. Figs. 11, 12). The "frequency” of
the modification is determined by the size of the area, i.e., by the
boundary conditions and the fact that the supporting mesh is opti-
mal with respect to the thin-plate functional.

5 Conclusions and future work

We presented a new approach to multi-resolution mesh represen-
tation and modeling which does not require the underlying trian-
gle mesh to have subdivision connectivity. By adapting multi-level
techniques known from numerical analysis to the non-regular set-
ting of arbitrary mesh hierarchies, we are able to approximately
solve constrained mesh optimization in realtime. Combining the
two results allows us to present a flexible metaphor for interactive
mesh modeling where the shape of the modification is controlled
by energy minimization while the geometric detail is preserved and
updated according to the change of the global shape.

Our current implementation of an experimental mesh model-
ing tool already provides sufficient functionality to apply sophis-
ticated realtime modifications to arbitrary input meshes with up to
100K triangles. However, all changes do affect the geometry of the
meshes only. So far we did not consider topological modifications
of triangle meshes. In the future, when modifying a given mesh,
we would like new vertices to be inserted where the mesh is locally
stretched too much and, on the other hand, we would like vertices
to be removed when strong global modification causes local self-
intersection of the reconstructed detail.
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Figure 11: The mesh model of a bust (62K triangles, left, courtesy Stefan Karbacher) is modified by multi-resolution edits. The modified area
M, is the bust’s face while the handle polygon lies around the nose. From left to right, we apply rotation, scaling and translation.

Figure 12: Some more modifications on the bust model. The support of the modification and the handle geometry adapt to the intended design
operation. The detail is preserved while the global modification is controlled by discrete fairing.
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Abstract

The useof polygonalmeshedor the representationf highly com-
plex geometricobjectshasbecomethe de facto standardn most
computegraphicsapplications Especiallytrianglemeshesrepre-
ferreddueto theiralgorithmicsimplicity, numericakobustnessand
efficient display The possibility to decomposea given triangle
meshinto a hierarchyof differently detailedapproximationsen-
ablessophisticatednodelingoperationgik e themodificationof the
globalshapeunderpreseration of the detailfeatures.

So far, multiresolutionhierarchieshave beenproposedmainly
for mesheswith subdvision connectiity. This type of connecti-
ity resultsfrom iteratively applyinga uniform split operatorto an
initially givencoarsebasemesh.In this paperwe demonstratéow
asimilar hierarchicalstructurecanbe derived for arbitrarymeshes
with norestrictionsontheconnectiity. Sincesmooth(subdvision)
basisfunctionsareno longeravailablein this generalizedcontext,
we useconstraine@negy minimizationto associatsmoothgeom-
etry with coarselevels of detail. As the enegy minimizationre-
quiresoneto solve aglobalsparsesystemwe investigateheeffect
of variousparameterandboundaryconditionsin orderto optimize
the performancef iterative solvingalgorithms.

Another crucial ingredientfor an effective multiresolutionde-
compositionof unstructuredmeshess the flexible representation
of detailinformation.We discussseveralapproaches.

1 Introduction

Subdvision techniquesprovide very efficient and flexible algo-
rithms for the generationof free form surface geometry[2, 5, 6,
18, 25, 39). Startingwith an arbitrary control mesh#/y we can
apply the subdvision rulesto computefiner andfiner meshesV,
with control verticesp{" becomingmore and moredenseuntil the
desiredapproximatiortolerancerequiredfor a given applicationis
reached.Theresultis a smoothsurfacehaving the sametopology
astheinitial controlmesh.

The distinct subdvision levels My, give rise to powerful mul-
tiresolutionsemanticsincewe canconsidera subdvision scheme
asthelow passreconstructioroperatorin thefilter bankalgorithm
for awavelet-typedecompositiorof the geometricshape The sub-
division basisfunctionswhich areassociatedvith the controlver-
ticesgeneralizehe conceptof dyadicscalingfunctionsto polyhe-
dral parametedomaing26, 31, 40].

*Computer Graphics Group, Max-Planck-Institutfur Informatik, Im
Stadtvald, 66123Saarbiicken, German, kobbelt@mpi-sb.mpg.de

However, subdvision techniquesare genuinely basedon the
coarse-to-finegeneratiorof hierarchicalgeometryrepresentations:
a coarsebasemeshwith only few facesis iteratively refined by
introducingan exponentiallyincreasinghumberof degreesof free-
dom for capturingfiner andfiner detail information. As a conse-
guencethe control meshesmust have so-calledsubdivisioncon-
nectivity which meansthat sub-regjions of the refined mesh M,
which correspondo onesinglefaceof theoriginal basemesh/ g,
have theconnectiity of regulargrids(cf. Fig. 1).

It turnsoutthatthis restrictionis notsuitablefor severalstandard
applicationscenariosIn practiceoneis often given someexisting
geometrianodelwhichis to be modifiedby makinglocal or global
adjustments. Since suchtriangular meshesusually do not come
with the ratherspecialsubdvision connectvity, we cannotapply
subdvision techniquesvithout preprocessing.

Thispreprocessinfasto performaglobalremeshingf thedata.
Althoughseveralflexible androbustalgorithmshave beenproposed
for this problem[7, 24, 22] therearestill difficultieswith automat-
ically finding a suitablelayoutfor the basemesh. Semi-automatic
approachetike [23, 24] with constraintssetby the useronly par
tially solve this problem. Moreover, the remeshings alwaysa re-
samplingprocessandhenceeven an optimal remeshingalgorithm
cannotrecover the original shapeexactly. High frequeng artifacts
dueto aliaserrorsareratherlikely to appear

The rigidity of subdvision connectiity meshessmepgesfrom
the factthat the classificationof the detail coeficientsinto prede-
finedrefinementevelsis donetopologically Theactualsizeor geo-
metricfrequencyassociateavith a detailcoeficient hencestrongly
depend®n the sizeof the correspondindpasetrianglein theunre-
finedcontrolmesh.As it is usuallynotpossibleto have all triangles
in thebasemeshof unit size,detailfeatureonthesamerefinement
level andtheir correspondingupportcanvary by oneor moreor-
dersof magnitude Avoiding this problemby usingadaptve refine-
mentstratgiesis notappropriatén someapplications.

Another problemwhich is inherentto the multiresolutionrep-
resentatiorof freeform geometrybasedon subdvision surfacesis
thefixedsupportof themodifications.If controlverticesareusedas
handlesto modify the surfacegeometryon a certainlevel of detalil
thentheregion of the meshwhich actuallychangesis determined
by the supportof the associatedbasisfunction. We could simulate
moreflexibility in the definition of the supportby moving several
controlverticesirom somefinerlevel simultaneouslyut thiswould
diminishthe advantage®of amultiresolutionrepresentation.

Moreover, the coarsescalecontrol verticesin a subdvision rep-
resentatiorarealignedto the coarsescalegrid. This meanghatwe
lose spatialresolutionif we modify a surfaceon a low frequeng
band.Consequentlywe canapplymodificationsf theglobalshape
only at a very limited numberof locations. In fact, asevery con-
trol vertex c in a subdvision connectvity meshis introducedon a
certainrefinementevel I (c) the supportof the modificationwhen
moving c is boundedyy the sizeof thebasisfunctionsonthatlevel.

For example,if we move a controlvertex ¢ which topologically
correspondso a vertex in the basemeshthenwe canchoosethe
basisfunctioncontrollingthe editfrom ary refinementevel. How-
ever, moving a directly adjacentvertex ¢y, on refinementievel m
canonly affect the finestscalesincecy,, doesnot have a represen-
tationon ary coarsetevel. Hence a coarsescalemodificationcan
be centeredat ¢y but not at ¢y, which lies only € away. Thisis not
intuitive for the designetto whomthe actualsurfacerepresentation
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Figurel: Subdvision connectvity meshegesultfrom iteratively applyinga uniform split operationto the facesof aninitial controlmesh.
Only afixednumberof isolatedextraordinaryverticeswith valence# 6 remainin themesh.

Figure2: In a multiresolutionmodelingenvironment,the support
of the modificationandits characteristicshapeshouldadaptto the
givengeometry(here:the bust’s hair). Thelow-frequeng modifi-
cationaffectsexactly the region definedby the designer The high
frequeny detailis preseredin a naturalway.

shouldbeopaque.

With all thesdifficultiesenumeratedye understanthatcoarse-
to-finehierarchieemeging from subdvisiontechniquesnightcer
tainly be the bestway to effectively represensmoothfree form
geometryin applicationdik e surfacereconstructionscatterediata
interpolation,or ab initio designwherethe facelayoutfor the base
meshis definedby the designer However, it doesnot appeatto be
the optimalsolutionfor flexibly modifying existingmodelslik e the
onesobtainedfrom capturingreal objectgeometryby laserscan-
ning devices.

Our goalis to enabletrue free form multiresolutioneditswhere
thesupportandthecharacteristicef amodificationcanadaptto the
surfacegeometry(cf. Fig. 2). In [21] we generalizedhe concept
of multiresolutiondecompositiorandmodelingto mesheswith ar-
bitrary topology and connectiity. The key obseration is thatwe
canno longerstick to the notion of surfacegeometrybeingrepre-
sentedby the superpositiorof smoothscalarvaluedbasisfunctions
over anestedsequencef grids. Thereasorfor thisis thatwe can-

not make ary assumption®n the actualdistribution of the mesh
verticesa priori. Hence,imposingary kind of vectorspacestruc-
turewould requireusto constructexplicitly acustomtailoredbasis
functionfor eachvertex.

Leaving theclassicaket-up,it turnsoutthatfor merepolygonal
mesheg(not control meshes) coarsenessand smoothnesare no
longer synoryms. While in the subdvision framework the basis
functionson the coarsescalesare alsosmootherin the sensethat
they have lesscurvature,we find that for plain polygonalmeshes
the effect of shifting a control vertex on a coarsescalestill causes
asharpfeature.To speakaboutsmoothpolygonalmeshesve need
moredegreesof freedomsincesmoothmeshesretypically rather
fine tesselations.
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Figure 3: For plain triangle meshesve have to distinguishcoarse
andsmoothapproximationgupperandlower row). If meshesre
consideredas control mesheswith respectto scalarvalued basis
functionsthenthe connectiorbetweenthe upperanthe lower row
is provided by evaluatingthe weightedsuperpositiorof the control
vertices'’influence.

We have to solve two centralproblemsn orderto developeffec-
tive multiresolutionalgorithmsfor arbitrarymeshesFirstwe have
to construciatopolagical hierarchy of differentresolutionswith the
finestresolutionbeingthe original mesh. This hierarchymustnot
rely on ary assumptionsboutthe connectiity of thegivenmesh.

Besideghetopologicallevels of detailwe needa geometrichi-
erarchy, i.e., we needa propercharacterizatiorof smoothcoarse-
scalegeometry In the subdvision basedmultiresolutionsetting,



we have the associatedcalingfunctionswhich fill in the smooth
geametrybetweerthe coarsescalecontrolvertices.In thegeneral-
ized settingwe have to find an alternatve definition sincea priori

definedscalingfunctionsare no longer available. A possibleso-
lution to this problemis to usediscreteenegy minimizationtech-
niguesto obtainsmoothlow-detail approximationgo the original

model.

While the basicprinciplesof this approactave beenpresented
in [21], we discussmoretechnicaldetailsin this paper After ex-
plaining the generationof coarse-to-finehierarchiesand fine-to-
coarsehierarchieswe comparedifferentwaysto representhe de-
tail information betweenthe resolutionlevels. The crucial issues
areherehow to definethe local frameswith respectio which the
detailis encodedandhow to chosethe numberof hierarchylevels.
In the context of discreteenegy minimizationwe investigatethe
effect of variousparametersn the multi-level solving algorithm,
namelythe numberof hierarchylevels and the numberof Gauf3-
Seideliterationson eachlevel. We demonstrat¢hatimposinginter-
polationconstraintatthe centersof thetriangularfacesaccelerates
theglobalconvergenceof theiterative solver comparedo imposing
the constraintsaatthevertices.

2 Multiresolution representations

Most schemedor the multiresolutionrepresentatioandmodifica-
tion of triangle meshesemepge from generalizingharmonicanal-
ysis techniquedik e the wavelet transform[1, 26, 31, 34]. Since
thefundamentalarederivedin the scalarvaluedfunctionalsetting
R > R, difficulties emepge from the factthat manifoldsin space
arein generanot topologicallyequialentto simply connectede-
gionsin IRY.

The philosophybehindmultiresolutionmodelingon surfacesis
henceto mimic the algorithmic structureof the relatedfunctional
transformsand presere someof the importantpropertieslike lo-
cality, smoothnessstability or polynomial precisionwhich have
related meaningin both settings[8, 13, 40]. Accordingly the
nestedsequencef spaceaunderlyingthe decompositiorinto dis-
joint frequeng bandss thoughtof beinggeneratethottom-upfrom
a coarsebasemeshup to finer andfiner resolutions. This implies
that subdvision connectiity is mandatoryon higherlevels of de-
tail, i.e., the meshhasto consistof large regular regionswith iso-
lated extra-ordinaryvertices. Additionally, we have to male sure
that the topologicaldistancebetweenthe singularitiesis the same
for every pair of neighboringsingularitiesandthis topologicaldis-
tancehasto be a powver of 2. Obviously, sophisticatednodeling
operationdike booleanopeiations necessarilyequirea complete
restructuringof the resultingmeshto re-establishsubdvision con-
nectity.

Thesespecialtopologicalrequirementprevent suchtechniques
from beingapplicableto arbitraryinput meshesTo obtaina proper
hierarchy global remeshingand resamplingis necessarywhich
givesriseto alias-errorandrequiresnvolvedcomputation$?7, 24].

Luckily, therestrictedconnectyity is not necessaryo definedif-
ferentlevels of resolutionor approximationfor a triangle mesh.
In the literature on meshdecimationwe find mary examplesfor
hierarchiesbuilt on arbitrary mesheq12, 17, 20, 27, 29, 32, 36).
Thekey is alwaysto build the hierarchytop-davn by eliminating
verticesfrom the currentmesh(incrementalreduction cf. Fig. 4).
Runningameshdecimatioralgorithm,we canstop,e.g.,everytime
a certainpercentagef the verticesis removed. The intermediate
mesheganbe usedasa level-of-detailrepresentatiofil 7, 26].

In bothcasesi.e., thecoarse-to-finer thefine-to-coarsgenera-
tion of nestedvertex-) grids, the multiresolutionconceptis rigidly
attachedo topologicalentities. This makessensef hierarchiesare
merelyusedto adjustthe compleity of therepresentatioriVe will
exploit thesequencef nestedyridsemeging from this topological
hierarchyto generalizethe conceptof multi-grid solversfor large
sparsesystems.

In thecontext of multiresolutionmodeling however, wewantthe

hierarchynot necessarilyo ratemeshesccordingto their coarse-
nesshut ratheraccordingo theirsmoothnesd~or thiswe needage-
ometrichierarchyaccompaying the topologicalone. To complete
our basicequipmenfor the multiresolutionset-upon unstructured
meshesve henceneed(besideghe staticlevels of detail)to define
thedecompositiomndreconstructioroperationsvhichseparat¢he
high-frequeng detailfrom thelow-frequeng shapeandeventually
recombinethe two to recover the original mesh. Here, the recon-
structionoperatorhasto generatehe smoothlow-frequeng shape
if the detailinformationis suppresseduringreconstruction.This
is wherediscretefairing techniquessomein. Further we have to
encodehedetailinformationrelative to thelow-frequeng shapen
orderto guaranteentuitive detail preseration after a global modi-
fication(local frame3.

2.1 Coarse-to-fine Hierarchies

For subdvision basedmultiresolution representatiorthe recon-
structionoperatoris given by the underlyingsubdvision scheme.
We transform a given mesh My, to the next refinementlevel
My,.1 = SMm by applying the stationarysubdvision operatorS
andmove theobtaineccontrolverticesby addingtheassociatede-
tail vectors: M1 = Mr’n+1+ Dm. Thesupportof the subdvision
maskimplies that eachcontrol vertex p™ in My, hasinfluenceon
several control verticesin Mé1+l' Consequentlythe modification
of p/™s position eventually causesa smoothbump on the result-
ing surface. The actualshapeof this bump can be computedby
applyingthe subdvision operatorS without detail reconstruction,
i.e. Dy := 0. Obviously, the supportof the bump dependn the
refinementevel m on which the modificationis applied.

The decompositioroperatorhasto be an inverseof the subdi-
vision operator i.e., given a fine mesh#,,,1 we have to find a
meshMy, suchthat M1 &~ SMm. In this casethe detail vectors
D := Mmy1 — SMm becomeas small as possible[40]. Due to
the uniform split which is part of the subdvision operators, it is
obvious that this techniqueappliesonly if My,1 hassubdvision
connectvity.

2.2 Fine-to-coarse Hierarchies

If we build the hierarchyby usinganincrementameshdecimation
schemethe decompositioroperatorD appliesto arbitrarymeshes.
Givenafine mesh?, 1 we find Mm = D M1, €.9.,by applying
anumberof edgecollapseoperationsHowever, it is not clearhow
to definethedetail coeficientssinceinversemeshdecimation(pro-
gressivameshesalwaysreconstructshe original meshandthereis
no canonicalway to generatesmoothlow-frequeng geometryby
suppressinghe detailinformationduringreconstruction.

To solve this problemwe split eachstepof the progressie mesh
refinementnto atopologicaloperation(vertex insertion)andageo-
metricoperationwhich placesthere-insertedserticesat their orig-
inal position. In analogyto the plain subdvision without detail
reconstructionwe have to figure out a heuristicwhich placesthe
new verticessuchthatthey lie on a smoothsurface(insteadof their
original position). Thedifferencevectorbetweerthis predictedpo-
sitionandtheoriginal locationof thevertex canthenbeusedasthe
associatedetail vector

Sincewe operateon unstructurednesheswe cannotusefixed
(stationary)rulesfor the placemenbf the re-insertedvertices. In-
steadwe usediscreteenegy minimization which meansthat the
re-insertedverticesare placedsuchthat someglobal bendingen-
ey is minimized. In Section3 we review a simpletechniquefor
the effective generatiorof meshesvith minimum bendingenegy
without specificrequirement®n the connectvity.

2.3 Detail encoding

In orderto guaranteéntuitive detail preseration undermodifica-
tion of the global shapewe cannotsimply storethe detail vectors
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Figure 4: For multiresolutionrepresentationbasedon subdvision techniquesthe hierarchiesare built from coarseto fine by applyinga
uniform subdvision operator(top row, left to right) while incrementameshdecimatiorgeneratebierarchiesrom fine to coarseby iteratively

remaoving vertices(bottomrow, left to right).

with respecto a global coordinatesystembut have to definethem
with respecto local frameswhich arealignedto thelow-frequeng
geometny[10, 11]. Usually, theassociatetbcal framefor eachver-
tex hasits origin atthelocationpredictedby thereconstructiorop-
eratorwith suppressedetail. Thisis in analogyto decompositions
basedbn aglobalparameterizationf the surfaces.

However, in mary caseshis canleadto ratherlong detail vec-
torswith asignificantcomponentvithin thelocaltangeniplane(cf.
Fig. 5). Sincewe prefershortdetail vectorsfor stability reasons,
it makes senseto use a different origin for the local frame. In
fact, the optimal choiceis to find that point on the low-frequeng
surfacewhosenormalvectorpointsdirectly to the original vertex.
In this case,the detail is not given by a threedimensionalvector
(Ax, Ay, Az)T but ratherby a basepoint p = p(u,Vv) on the low-
frequeng geometryplus a scalarvalue h for the displacementn
normaldirection.If alocal parameterizationf thesurfaceis avail-
ablethenthe basepoint p canbe specifiedby a two-dimensional
parametevalue(u, V).

Figure5: The shortestdetail vectorsare obtainedby representing
the detail coeficientswith respecto the nearestocal frame (left)
insteadof attachingthe detail vectorsto the topologically corre-
spondingoriginal vertices.

The generalsettingfor detail computatioris thatwe have given
two meshesM 1 and M’m+l where M1 is the original data
while M:n+1 is reconstructedrom the low-frequeng approxima-
tion My with suppressedetail, i.e. for coarse-to-fineéhierachies,
the mesth'ml is generatedby applyinga stationarysubdvision

schemeand for fine-to-coarsehierarchiesM,,; is optimal with
respectto someglobal bendingenegy functional. Encodingthe
geometricdifferencebetweerboth meshegequiresusto associate
eachvertex p of M1 with a correspondindasepoint q on the

continuous(piecavise linear) surface M| 1 suchthat the differ-
encevectorbetweerthe original pointandthebasepointis parallel

to the normalvectorat the basepoint. Any pointq on M 'm+1 can
bespecifiedby atriangleindex i andbarycentriccoordinatesvithin
thereferredtriangle.

To actuallycomputethe detail coeficients,we have to definea

normalfield on the mesthﬁnH. The mostsimpleway to do this
is to usethenormalvectorsof thetriangularfacesfor the definition
of a piecavise constaninormalfield. However, sincethe orthogo-
nal prismsspannedy atrianglemeshdo not completelycover the
vicinity of the mesh,we have to acceptnegative barycentriccoor

dinatedor thebasepointsif anoriginal vertex lies closeto anedge

of My, 1 Orif My, 4 is notsmoothenough(cf. Fig 6). This leads
to non-intuitive detailreconstructiorif thelow-frequeng geometry
is modified(cf. Fig. 7).

A techniqueusedin [21] is basedon the constructionof a
local quadraticinterpolantto the low-frequeng geometry The
basepoint is found by Newton-iteration. Although this technique
reducesthe numberof pathologicalconfigurationswith negative
barycentriccoordinategor the basepoint, we still obsere artifacts
in the reconstructedigh-frequeng surfacewhich are causedby
thefactthattheresultingglobalnormalfield of thecombinedocal
patchess notcontinuous.

Wethereforeproposeadifferentapproachwhich adaptghebasic



Figure6: The positionof a vertex in the original mesh(high-frequeng geometry)is given by a basepoint on the low-frequeng geometry
plusadisplacemenin normaldirection. Therearemary waysto definea normalfield on a trianglemesh.With piecevise constannhormals
(left) we do not cover thewhole spaceandhencewe sometimehave to usevirtual basepointswith negative barycentriccoordinatesTheuse
of local quadraticpatchesandtheir normalfields (center)someavhatimprovesthe situationbut problemsstill occursincethe overall normal
field is not globally continuous. Suchdifficulties are completelyavoidedif we generatea Phong-typenormalfield by blendingestimated

vertex normals(right).

Figure7: We modifiedthe original surface(left) by using a two-bandmultiresolutiondecomposition.Sincein this particularexperiment
thelow-frequeny geometrywaschosemot sufficiently smooth,mary detail vectorshase basepointswith negative barycentriccoordinates
whenwe usea piecavise constantnormalfield. Consequentlyno properdetail reconstructioris possibleafter the modification(center).
Representinghe detail vectorswith respecto the Phongnormalfield on the low-frequeng meshleadsto the expectedresult(right).

ideaof Phong-shading®] wherenormal vectorsare estimatecat
theverticesof atrianglemeshanda continuoushormalfield for the
interior of thetriangularfacesis computedy linearly blendingthe
normalvectorsatthecorners.

Supposewe aregiven a triangle A(a, b, c) with the associated
normalvectorsNa, Ny, andNc. For eachinterior point

g = aa+pBb+yc
with a + B4y = 1 wefind theassociatediormalvectorNg by
Ng = oNa+BNp+yNc.

Whencomputingthe detail coeficientsfor agivenpointp we have
to find the basepoint q suchthat

(p—a) xNg

hasall threecoordinatessanishing. By pluggingin the definition
of g andNg andeliminatingy = 1— a — 3 we obtaina bivariate
quadratidfunction

F:(uy) — R
andwe have to find the parametewalue(a, 3) suchthatF(a,B) =
(0,0,0)T. This canbeaccomplishedby performingseveralstepsof
Newton-iteration. Notice that F canbe interpretedasa quadratic

surfacepatchin IR® which passeshroughthe origin. The Taylor
coeficientsof F canexplicitly begivenby

F o= W+wWw
Fi = U+UW-wW-—2ww
o= V+VW—W-—2WW
Fu = UU-—UW+WW

Fow = UV—UW-_VW+2WW
Fw = VV—VW+WW

where

P x Na
P x Np
P x Ne
NaXa
Np x b
NcXC
(Np x @)+ (Na x b)
(Ne x @)+ (Na x €)
(Ne x b)+ (Np x C)

U

\%
W
uu
\AY
Ww
uv
uUw
VW

In caseoneof thebarycentriccoordinate®f theresultingpointq is
negative, we continuethe searchfor abasepointin thecorrespond-
ing neighboringtriangle. Sincethe Phongnormalfield is globally
continuouswe always find a basepoint with positive barycentric
coordinates.Fig. 6 depictsthe situationschematicallyand Fig. 7
shavs an exampleedit wherethe piecevise constantormalfield
causesneshartifactswhich do not occurif the Phongnormalfield
isused.

2.4 Hierarchy levels

For coarse-to-findnierarchieghelevelsof detailaredeterminedy
the uniform refinementbperator Startingwith the basemesh,
the mth refinementlevel is reachedafter applying the refinement
operatorm times. For fine-to-coarsehierarchieshereis no such
canonicalchoicefor the levels of resolution. Hencewe have to
figure out someheuristicgto definesuchlevels.

In [21] a simpletwo-banddecompositiohasbeenproposedor
themodeling,i.e. thehighfrequeng geometryis givenby theorig-
inal meshandthelow-frequeng geometryis the solutionof some
constrainedptimizationproblem.This simpledecompositiorper
formswell if the original geometrycanbe projectedonto the low-
frequeny geometrywithoutself-intersectionsk-ig. 8 schematically



Figure8: Whenthedifferencebetweertwo geometridevelsof de-
tail is too big, the high-frequeng geometrycannotbe projecteddi-

rectly onto the low-frequeng geometrywithout self-intersections.

In orderto guaranteeorrectdetailreconstructionye have to gen-
erateintermediatdevels suchthat the mappingbetweentwo suc-
cessve levelsis one-to-one.

shaws a configurationwherethis requirements not satisfiedand
consequentlyhedetailfeaturedoesnot deformintuitively with the
changeof theglobalshape.

This effect canbe avoided by introducingseveral intermediate
levelsof detail,i.e., by usingatrue multi-banddecompositionThe
numberof hierarchylevels hasto be chosensuchthatthe (i 4 1)st
level canbe projectedontolevel i without self-intersection Detail
informationhasto becomputedor every intermediatdevel.

The intermediatelevels can be generatedy the following al-
gorithm. We startwith the original meshandapply anincremen-
tal meshdecimationalgorithmwhich performsa sequencef edge
collapseoperations.Whena certainmeshcompl«ity is reached,
we performthe reversesequencef vertex split operationswhich
reconstructshe original meshconnectiity. The positionof there-
insertedverticesis found by solving a globalbendingenegy mini-
mizationproblem(discretefairing). Themeshthatresultsfrom this
proceduras asmoothedrersionof the original meshwherethede-
greeby which detailinformationhasbeenremored dependon the
targetcompleity of the decimationalgorithm(cf. Fig 10)

Supposeheoriginal meshhasny, vertices wherem is the num-
berof intermediatdevelsthatwe wantto generateWe cancompute
the meshesM ,, ..., My with fewer detail by applyingthe above
procedurewherethe decimationalgorithm stopsat a tarmget reso-
lution of nm,...,Nng remainingverticesrespectiely. The resulting
mesheyield amulti-banddecompositiorf theorignaldata.When
amodelingoperationchangeshe shapeof M o we first reconstruct
thenext level M'l by addingthe storeddetail vectorsandthenpro-
ceedby successiely reconstructing¥, , from 4.

The remainingquestionis how to determinethe numbersn;.
A simple way to do this is to build a geometricsequencewith
ni+1/ni = const. This mimics the exponentialcompleity growth
of the coarse-to-finehierarchies. Anotherapproachis to stopthe
decimationevery time a certainaverageedgelengthl; in the re-
mainingmeshis reached.

A more complicatedheuristictries to equalizethe sizesof the
differenceshetweenevels, i.e., the sizesof the detail vectors. We
first computea multi-banddecompositiorwith, say 100 levels of
detailwherewe choose//nj = const For every pair of successie
levelswe cancomputethe averagdengthof the detail vectors(dis-
placementvalues). From this information we can easily choose
appropriatevaluesn; = nj; suchthat the geometricdifferenceis
distributedevenly amongthe detaillevels.

In practiceit turnedoutthataboutfive intermediatdevelsis usu-
ally enoughto guaranteeorrectdetail reconstructionFig. 9 com-
paresthe resultsof a modelingoperationbasedon a two-bandand
amulti-banddecomposition.

3 Constrained discrete fairing

In the previous sectionwe explainedhow to generatetopological
hierarchiedor mesheswith arbitrary connectiity by incremental
meshdecimation. An associatedjeometrichierarchycan be ob-

tainedby re-insertingthe removed verticesand moving themto a
new positionsuchthata globalbendingenegy functionalis mini-

mized. Theideais to computea meshwhich is assmoothaspossi-
ble while still containinga controllableamountof geometriadetail.
Fig. 10 shavs anexample.

FromCAGD it is well-known thatconstraine@&negy minimiza-
tion is a very powerful techniqueto generatéhigh quality surfaces
[3, 14, 28, 30, 37]. For efficieng, one usually definesa sim-
ple quadraticenegy functional £(f) and searchesmongthe set
of functionssatisfyingprescribednterpolationconstraintsfor that
function f whichminimizesE.

Transferringthe continuousconceptof enegy minimizationto
the discretesettingof triangle meshoptimizationleadsto the dis-
cretefairing approacH19, 38]. Local polynomialinterpolantsare
usedto estimatederivative information at eachvertex by divided
differenceoperators.Hence,the differential equationcharacteriz-
ing the functionswith minimumenenpy is discretizednto alinear
systentor thevertex positions.

Sincethis systemis globalandsparsewe applyiterative solving
algorithmslik e the Gau3-Seidel-schemé&or suchalgorithmsone
iteration stepmerely consistsin the applicationof a simplelocal
averagingoperator This makesdiscretefairing an easyaccessible
techniguefor meshoptimization.

For the most popularfairing functional, the thin-plate enegy,
this approacHeadsto a simpleupdate-rulg21]

P p- % U?(p) @)

which hasto be appliedto all verticesof the mesh. Here, the
umbrella-operatof! is adiscretizatiorof theLaplace-operatdi35]

n-1

up) = - zopj - P
]=

with p;j being the directly adjacentneighbor verticesof p (cf.
Fig. 11). The umbrella-operatocan be appliedrecursvely lead-
ing to

5 B }nfl N
w(p) = _ ,—; U(pj) — U(p)

asadiscretizatiorof thesquared_aplacian.Thecoeficientv in (1)
is givenby
11
v=1+-) —
n ] n;j
wheren andn; arethe valencesof the centervertex p andits jth

neighbomj respectiely.
P

Figure 11: To computethe discreteLaplacian,we needthe 1-
neighborhoof avertex p (— umbeella-opesator).

In the context of discreteenegy minimization,the iterative ap-
plicationof theupdate-rulgl) implementsa Gaul3-Seidetolver for
the underlyinglinear system.From a more abstractpoint of view,
the rule canalsobe consideredasa mererelaxationoperatorthat
effectively filters out high frequeng noisefrom the mesh[35].



Figure 9: Non-projectabledetail featuresare not reconstructeatorrectly The original geometry(left) is modified by using a two-band
decompositionn the centeranda multi-banddecompositiomwith five intermediatdevelsontheright.

compl«ity andthenre-insertingthe verticesunderminimizationof somediscretefairnessunctional. The degreeby which geometricdetail
is removeddepend®on the coarsenessf the basemesh.Noticethatall shavn mesheshave exactly the sameconnectvity.

3.1 Multi-level smoothing

A well-known negative result from numerical analysisis that
straightforward iterative solverslik e the Gau3-Seideschemeare
not appropriateor large sparseproblemg33]. More sophisticated
solversexploit knowledgeaboutthe structue of the problem. The
importantclassof multi-grid solvers achieve linear runningtimes
in the numberof degreesof freedomby solvingthe sameproblem
on grids with differentstepsizesand combiningthe approximate
solutions[16].

For difference(= discretedifferential)equationf elliptic type
theGaulR-Seiddterationmatriceshave aspeciakigenstructuréhat
causesigh frequenciesn the error to be attenuated/ery quickly
while for lower frequenciesno practically useful rate of corver-
gencecanbe obsered. Multi-level schemedencesolve a given
problemon avery coarsescalefirst. This solutionis usedto predict
initial valuesfor a solutionof the sameproblemon the next refine-
mentlevel. If thesepredictedvalueshare only small deviations
from the true solution in low-frequeng sub-spacesthen Gaul3-
Seidelperformswell in reducingthe remaininghigh-frequeng er
ror. Thealternatingrefinementandsmoothingleadsto highly effi-
cientvariational subdivisiorschemeg19] which generatdair high-
resolutionmesheswith arateof severalthousandrianglespersec-
ond (linearcompleity!).

We canapply the sameprincipleto hierarchicaimeshstructures
which aregeneratedrom fine-to-coarselnsteadof iteratively solv-
ing the discretizedoptimization problem on the finest level, we
solve it on coarselintermediatdevelsfirst andthenusethe coarse
solutionsto estimatebetterstartingvaluesfor theiterative solveron
thefiner levels.

A completeV-cycle multi-grid solver recursvely appliesopera-
tors ®; = WP d;_1 RW wherethefirst (right) W is a generic(pre-)
smoothingoperator— a Gaul3-Seideschemein our case.R is a
restrictionoperatoito go onelevel coarser Thisis wherethe mesh
decimationcomesin. Onthe coarsetevel, the sameschemes ap-
plied recursvely, ®;_4, until on the coarsestevel the numberof
degreesof freedomis smallenoughto solve the systemdirectly (or
ary otherstoppingcriterionis met). On the way back-up the pro-
longationoperatorP insertsthe previously removed verticesto go

onelevel finer again. P canbe consideredasa non-reyular subdi-
vision operatomwhich hasto predictthe positionsof the verticesin
thenext level’s solution. There-subdvided meshis anapproxima-
tive solutionwith mostly high frequeng error (Post-)smoothing
by somemoreiterations¥ removesthe noiseandyields the final
solution.

In our particular setting of thin-plate optimization on fine-to-
coarsehierarchiesthe W-operatoiis simply theupdate-rulg€1) and
the restriction operatoris a sequenceof edge-collapser vertex
removal stepswhich are performedby the meshdecimationalgo-
rithm. The prolongationoperatore-insertsthe vertices. Sincethe
prolongatioroperatoicanbedesignedo insertthenew verticesto a
locally optimalposition,i.e.,the centerof gravity of its directneig-
borssuchthat ¢(p) = 0, thereis no needto actuallyperformary
pre-smoothingln fact,the whole multi-level smoothingalgorithm
reducego meshdecimationdown to a certainresolutionandthen
alternatingthe re-insertingand Gauf3-Seidesmoothing. Another
consequencis thatmoresophisticatedV-cycle schedulesrevery
unlikely to improve the corvergenceof thealgorithm.

Theareseveralalgorithmicparameter@ thisgenericmulti-level
schemeFirst, we have to choosethe numberof GauR-Seidesteps
which areperformedon every level. As thisis the mosttime con-
sumingstepof the algorithmandsinceour goalis to run the opti-
mizationin real-timewith a prescribechumberof framesper sec-
ond, we cannotallow the iterationto proceeduntil the residuum
dropsbelav somegiventhreshold We ratherperformafixednum-
ber of iterationson eachlevel. By adjustingthat numberwe di-
rectly tradethe quality of the resultingmeshfor the speedof the
algorithm.

Anotheralgorithmicparameters thenumberof hierarchylevels.
The two extreme positionsare eitherto re-insertall verticesand
then perform Gaul3-Seidebn the finestlevel only or to apply (1)
after the insertionof every single vertex. From a practicalpoint
of view, the upperboundfor the granulatityof hierarchylevelsis
reachedf theverticeswhichareinsertedvhengoingfrom level A/;
to M1, areindependenfrom eachother i.e., their topological
distanceis larger than somethreshold. This is becausehe local
updateoperation(1) propagategeometricchangesery slowly. An
alternatve to combininga sequenceof independentertex splits



Figure12: This diagramshawvs the logarithmof the approximation
error (vertical axis) vs. the computationtime (horizonticalaxis).

The knotson eachpolygonmark the measurement®r a different
numberof GauRR-Seideiterations(l,...,20). The differentpoly-

gonsconnectthe measurementfor the samenumberof hierarchy
levels (from bottomto top: 27,14,9,7,6 levels). The monototy of

the curvesshaws thatfor a fixedamountof computatiortime (ver-

tical line) or a prescribedapproximatiorerror (horizontalline) the
multi-level smoothingschedulewith the higher numberof levels
alwaysoutperformghe others.

(or edgecollapses)s proposedn [15] wherethe local smoothing
operatoiis appliedonly in thevicinity of thenewly insertedvertex.

Since the eigenstructureof the Gaul3-Seidelteration matrix
andhencethe corvergencebehaior of the generalizednulti-level
schemestrongly dependson the actualconnectiity of the mesh,
we cannotderive generalestimatedor the corvergencerates.Nev-
erthelesswe can analyzethe typical behaior of the multi-level
smoothingon fine-to-coarséiierarchiedy numericalexperiments.
We madesomeexperimentswherewe performedthe multi-level
smoothingwith a varying numberof hierarchylevels and Gauf3-
Seideliterationsperlevel. Theresultsareshavn in Fig. 12.

Ohviously the approximationerror decreasesvith increasing
numberof GauRR-Seidestepsandwith increasingnumberof lev-
els but alsothe computationakostsbecomehigher Whenusing
themulti-level smoothingn practicalapplicationsvetypically pre-
scribethemaximumtime or themaximumapproximatiorerror, i.e.,
wewantto find thebestapproximatiorwithin agivenperiodof time
or we wantto find a solutionwith a prescribedapproximationer-
ror asfastaspossible. In Fig. 12 theseconstraintscorrespondo
verticalor horizonticallinesrespectiely.

As a generalrule of thumbit turnedout thatmore GauR3-Seidel
iterationsperlevel only mamginally improve thefinal result. This is
dueto the bad convergenceon eachindividual level. Betterresults
canbe achieved if more hierarchylevels are usedbut with fewer
iterationsperlevel.

Noticethatthe numberof topolagical hierarchylevelsasoneal-
gorithmicparametein themulti-level smoothingscheméhasnoth-
ing to do with the numberof geometrichierarchylevelsin the ge-
ometricmulti-banddecompositior{topologicalvs. geometrichier
archy). Oneis usedto make the detail reconstructiormore robust
while the otheris usedto accelerateéhe global optimizationproce-
dure.

3.2 Boundary constraints

In orderto enableintuitive modelingfunctionality we have to im-

plementa simpleandeffective interactionmetaphar As the shape
of the meshis controlledby discretecurvature minimization, the
mostsimpleway to influencetheresultis by imposingappropriate
boundaryconstraints Theseconstraintsdleterminethe supportand
the shapeof the modification.

In [21] we proposeda simplemetaphomwherethe designesstarts
by markingan arbitraryregion on the mesha/y,. In fact,shepicks
asequencef surfacepoints(not necessarilyertices)on thetrian-
gle meshandthesepointsareconnecteckitherby geodesicor by
projectedines. Thestrip of triangles$ which areintersectedy the
geodesidprojectedboundarypolygonseparateaninterior region
M. andanexteriorregion M \ (M. US). Theinteriorregion M, is
to be affectedby the following modification.

A secondpolygon(not necessariliclosed)is marked within the
first one to definethe handle The semanticsof this arbitrarily
shapedandleis quite similarto the handlemetaphoiin [37]: when
the designemoves or scalesthe virtual tool, the samegeometric
transformationis appliedto the rigid handleand the surrounding
mesh/, follows accordingto a constrainecenegy minimization
principle.

Thefreedomto definetheboundarystrip.§ andthehandlegeom-
etry allows the designetto build "customtailored” basisfunctions
for theintendedmodification. Particularly interestings the defini-
tion of a closedhandlepolygonwhich allows to control the char
acteristicsof a bell-shapeddent: For the sameregion A/, a tiny
ring-shapedhandlein themiddlecausesrathersharppeakwhile a
biggerring causeswiderbubble(cf. Fig 13). Noticethatthemesh
verticesin the interior of the handlepolygonalsomove according
to theenegy minimization.
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Figure13: Controllingthecharacteristicef themodificationby the
sizeof a closedhandlepolygon.

Sincewe areworking on triangle meshesthe enegy minimiza-
tion on M, is done by discretefairing techniques. To enable
realtime editing we use the multi-level smoothingapproach(cf.
Fig. 14). While Fig. 15 depictsthe generalmodeling set-upfor
ageometridwo-banddecompositionmoreintermediatdevelscan
be usedfor the detail reconstructiorif the original geometrycan-
notbeprojectedontotheoptimizedmeshwithoutself-intersections.
The boundarytriangles$ provide the correctC! boundarycondi-
tions for minimizing the thin plate enegy functional. The handle
imposesadditionalinterpolatoryconstraint®onthelocationonly —
derivativesshouldnot be affect by the handle.

In [21] we proposedto imposethe handleinterpolationcon-
straintsto the optimizationproblemby simply freezingevery other
vertex of the handlepolygon. On onehandthis is a simpleway to
implementinterpolationconstraintspnethe otherhandit prevents
ary influenceonthetangentplane.

Anotherway to imposeinterpolationconstraintds to prescribe
themfor centes of triangles.Suchconstraintsaneasilybeembed-
dedinto theiterative enegy minimizationby allowing Gauf3-Seidel
updatedor all verticesandre-enforcingthe constraintsafter each
iteration. This meansthat we shift the constrainedrianglessuch
thattheir centerscoincidewith the interpolationpointsafter every
smoothingcycle. By shifting the triangleswithout rotationwe al-
low the tangentat the interpolationpoint to be controlled by the
optimizationprocesgandhencewe donotimposeaC? constraint).
Fig 16 demonstratethat the convergencebehaior is much better
for this kind of interpolationconstraintcomparedo freezingver-
tices.



Figure14: During the real-timemodeling,the multi-level smoothingalwaysstartson the coarsedevel down to which 2, is reduced(left).
We alternatevertex re-insertionand Gaul3-Seidesmoothing(centerleft) until the meshwith minimumthin plateenegy with respecto the
currentinterpolationconstraintss found(centeright). To this smoothmeshwe addthedetail coeficientsto reconstructhe modifiedsurface

(right).

Figure15: A flexible metaphorfor multiresolutionedits. On the left, the original meshis shavn. The blackline definesthe region of the
meshwhich s subjectto themodification. Thewhite line definesthe handlegeometrywhich canbe moved by thedesignerBoth boundaries
canhave anarbitraryshapeandhencethey can,e.g.,bealignedto geometricfeaturesn the mesh.The boundaryandthe handleimposeCt
andC? boundaryconditionsto the meshandthe smoothversionof the original meshis found by applyingdiscretefairing while observing
theseboundaryconstraints.The centerleft shaws the resultof the curvatureminimization (the boundaryandthe handleareinterpolated).
The geometricdifferencebetweenthe two left meshesds storedasdetail informationwith respecto loacalframes. Now the designercan
move the handlepolygonandthis changeshe boundaryconstraintsor the curvatureminimization. Hencethe discretefairing generates
modifiedsmoothmesh(centerright). Adding the previously storeddetailinformationyieldsthefinal resulton theright. Sincewe canapply
fastmulti-level smoothingwhensolving the optimizationproblem,the modifiedmeshcanbe updatedwith severalframespersecondduring
themodelingoperation.Notice thatall four meshedave the sameconnectiity.
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Figure 1:Mount Meshmore (Design Khrysaundt Koenig).

Abstract 1 Introduction

We generalize basic signal processing tools such as downsampling3D range sensing is capable of producing detailed and densely sam-
upsampling, and filters to irregular connectivity triangle meshes. pled triangular meshes of high quality. Increasing deployment of
This is accomplished through the design of a non-uniform relax- tnjs technology in the automotive and entertainment industries, as

gﬂg\?\/ ﬁgogﬁggrr% r‘i’;’;‘%fgr"gii%{‘ifg ds?:[t)w%rr]r?egr\]A/tr\hoesg?/\(l)ggegps/ gggen"gwell as many other areas, has fueled the need for algorithms to pro-
only on connectivity. This is combined with known mesh simpli- cess such datasets. Examples include editing, simplification, de-

fication methods to build subdivision and pyramid algorithms. We Nising, compression, and finite element simulation. .
demonstrate the power of these algorithms through a number of ap-  In the case of regularly sampled data, for example images, basic
plication examples including smoothing, enhancement, editing, and signal processing tools such as filtering, subsampling, and upsam-
texture mapping. pling exist. These can be used to build subdivision and pyramid

CR Categories and Subject Descriptors:1.3.5 [Computer Graphics]: Computa- algorlthm§, Wh'ch are useful ",1 many applications. Our goal is the
tional Geometry and Object Modelindhierarchy and geometric transformations, ob- ~ CONstruction of signal processing style analyses and algorithms for

ject hierarchies 1.4.3 [Image Processing and Computer Visioh Enhancement - triangle meshes.

filtering, geometric correction, sharpening and deblurring, smooth@g..2 Numer- Building the elements of a signal processing toolbox for meshes
ical Analysis]: Approximation -approximation of surfaces and contours, waveletsand  js not immediately straightforward since there are essential differ-
fractals ences between images, for example, and meshes. Images are func-
Additional Keywords: Meshes, subdivision, irregular connectivity, surface parame-  tions defined on Euclidean (“flat”) geometry and are almost always
terization, multiresolution, wavelets, Laplacian Pyramid. sampled on a regular grid. Consequently, algorithms such as sub-

sampling and upsampling are straightforward to define, and uni-
form filtering methods are appropriate. This makes Fourier analy-
sis an elegant and efficient tool for the construction and analysis of
signal processing algorithms.

In contrast, triangle meshes of arbitrary connectivity form an in-
herently irregular sampling setting. Additionally we are dealing
with general 2-manifolds as opposed to a Euclidean space. Conse-
quently new algorithms need to be developed which incorporate the
fundamental differences between images and meshes.

A crucial first observation concerns the difference between ge-
ometric and parametric smoothnesSeometricsmoothness mea-
sures how much triangle normals vary over the mesh. Geometric



Terminology hierarchy. We no longer have a choice as in the classical subdivision
In order to describe our contribution and its relationship|to setting. Consequently the filters used before downsampling and af-
existing work we need to set some terminology. Among {r ter upsampling should use non-uniform weights, which depend on
angulations we distinguish three types the local parameterization. The challenge is to ensure that these lo-
e Regular: every vertex has degree six; cal parameterizations are smooth so that subsequent algorithms act
' on the geometry and not some potentially bad parameterization.

e Irregular: vertices can have any degree;

e Semi-regular: formed by starting with a coarse irregula 1.1 Contributions

=

triangulation and performing repeated quadrisection|on  |n this paper we present a series of non-uniform signal process-

all triangles. Coarse vertices have arbitrary degree while  ing algorithms designed for irregular triangulations and show their

all other vertices have degree six. usefulness in several application areas. Specifically, we make the
In all cases we assume that any triangulation is a proper 2-  following contributions:
manifold with boundary. On the boundary regular vertides e We show how the non-uniform subdivision algorithm of
have degree four. Each of these triangulations call for differ- Guskov [12] can be used for geometric smoothing of triangle
ent filtering and subdivision algorithms: meshes. Our scheme is fast, local, and straightforward to imple-
e Uniform: fixed coefficient stencils everywhere; typically ment.

used only on regular triangulations; e We use the smoothing algorithm combined with existing hier-
e Non-uniform: filter coefficients depend on the conneg- archy methods to build subdivision, pyramid, and wavelet algo-

tivity and geometry of the triangulation; rithms for irregular connectivity meshes.

e Semi-uniform: coefficients of filters depend only on th

[4%

e We show how these signal processing algorithms can be used in

(local) connectivity of the triangulation; typically used on applications such as smoothing, enhancement, editing, anima-
semi-regular triangulations. tion, and texture mapping.

Using our terminology, for example, traditional subdivj-

sion [22] uses semi-uniform filters on semi-regular meshgs. 1.2 Related Work

In our approach we draw on observations made by researchers in
smoothness implies that there existanesmooth (differentiable) several different areas. These include classical subdivision [22],
parameterization of the mesh. However, any particular parameter- which we generalize to the irregular setting with the help of mesh
ization may well be non-smooth. The smoothness of the parame- simplification [13] and careful attention to the role of smooth pa-
terizations is important in most numerical algorithms, which work rameterizations. Parameterizations were examined in the context of
only with the coordinate functions the user provides. The algo- remeshing [19, 8, 9], texture mapping (e.g., [20]), and variational
rithms’ behavior, such as convergence rates or the quality of the modeling [16, 28, 21]. One area which employs these elements is
results, generally depends strongly on the smoothness of the coor-hierarchical editing for semi-regular [29] and irregular meshes [18].
dinate functions. Signal processing as an approach to surface fairing in the irreg-
In the regular setting of an image, or the knots of a uniform ten- ular setting was first considered by Taubin [26, 27]. He defines
sor product spline, we may simply use a uniform parameterization frequencies as the eigenvectors of a discrete Laplacian general-
and will get parametric smoothness wherever there is geometricized to irregular triangulations. The resulting smoothing schemes
smoothness. In the irregular triangle mesh setting there is a priori were used to denoise meshes, apply smooth deformations, and build
no such “obvious” parameterization. In this case using a unifor- semi-uniform subdivision over irregular meshes. Our approach is
mity assumption leads to parametric non-smoothness with undesir-related to Taubin’s and can be seen as a generalization to the non-
able consequences for further processing. One approach to remedyniform setting. In particular we build a smoothing method by min-
this situation is the use of remeshing [8, 19], which maintains the imizing multivariate finite differences. Together with progressive
original geometric smoothness, but improves the sampling to vary mesh simplification [14] we use these to define a non-uniform sub-
smoothly. This enables subsequent treatment with a uniform pa- division scheme and pyramid algorithm on top of an irregular mesh
rameter assumption without detrimental effects. Here we wish to hierarchy.
build tools which work on the original meshes directly. Progressive meshes and a semi-uniform discrete Laplacian were
To understand the role of the parameterization further, consider used by Kobbelt et al. [18] to perform multiresolution editing on
traditional subdivision [22], such as Loop or Catmull-Clark. In the irregular meshes. Given some region of the mesh, discrete fairing
signal processing context, subdivision can be seen as upsamplings used to compute a smoothed version with the same connectiv-
followed by filtering. One starts with an arbitrary connectivity mesh ity. This smoothed region is deformed and offsets to the original
and uses regular upsampling techniques such as triangle quadrisecmesh are added back in. Kobbelt discusses the issue of geomet-
tion to obtain a semi-regular triangulation. The subdivision weights ric vs. parametric smoothing. Smoothing of irregular meshes based
depend only on connectivity, not geometry. Such stencils can be de-on uniform approximations of the Laplacian results in vertex mo-
signed with existing Fourier or spectral techniques. These schemestion “within” the surface, even in a perfectly planar triangulation.
result in geometrically smooth limit surfaces with smooth semi- It is geometrically smooth, yet the parameter functions appear non-
uniform parameterizations. Because traditional subdivision is only smooth due to a non-uniform parameterization. This has undesir-
concerned withrefinementone has the freedom to choose regular able effects in a hierarchical setting in which fine levels are de-
upsampling, and semi-uniform schemes suffice. fined as offsets (“details”) from a coarse level: using the difference
The picture changes entirely if we wish to compute a mesh pyra- between topologically corresponding vertices in the original and
mid, i.e., we want to be able twarsifya given fine irregular mesh ~ smoothed mesh can lead to large detail vectors [18, Figure 4]. To
and laterrefineit again. We then need to filter, downsample, up- minimize the size of detail vectors they employed a search proce-
sample and filter again. The downsampling typically involves a dure to find the nearest vertex on the smoothed mesh to a given ver-
standard mesh simplification hierarchy. When subdividing back, tex on the original mesh. This diminishes the advantage of having a
we want to build a mesh with threameconnectivity as the original smoothed version with the exact same connectivity. In contrast, our
mesh and a smooth geometry. This time the upsampling procedurenon-uniform smoothing scheme affects only geometric smoothness
is determined by reversing the previously computed simplification and so does not need a search procedure. We will present two ways



in which our scheme can be used for editing: one is based on mul-and facesf = {i,j,k} € F, so that = VU £ U F. Two ver-
tiresolution and combines the work of Kobbelt et al. [18] with the tices: andj areneighborsif {i,j} € £. The 1-ring neighbors of
ideas of Zorin et al. [29]. The other method relies on defining vec- a vertexi form a setV:(i) = {j | {i,j} € £} (see Figure 2, left).
tor displacement fields with controllable decay similar to the ideas K; = #V1(4) is thedegreeof i. The edges froni to its neighbors
presented in the work of Singh and Fiume [23]. form a set€ (i) = {{3,5} | 7 € V1(4)}. A 1-ring neighborhood
We construct our subdivision scheme by designing a non- with flaps is shown in Figure 2 (middle). Its vertices except the cen-
uniform relaxation operator which minimizes second differences. ter vertex form a se¥»(¢) and its interior edges form a s&(:).
This is motivated by the smoothness analysis of the 1D irregular Finally, the neighborhood (e) of an edge (see Figure 2) is formed
setting [2]. This analysis relies on the decay of divided differ- by the 4 vertices of its incident triangles.
ences, carefully designed to respect the underlying parameteriza- The geometric realizationp(s) of a simplexs is defined as the
tion. These ideas were extended to the multi-variate setting in [12] strictly convex hull of the pointg; with ¢ € s. The polyhedron
and we employ them here. While the schemes we present havep(K) is defined asJsck¢(s) and consists of points, segments, and
many nice properties and work very well in practice, we note that triangles inR3.

their analytic smoothness is currently unknown.

2 Signal Processing Algorithms

2.1 Divided Differences in the Functional Setting

Our relaxation algorithm relies on minimizing divided differences.
In the one dimensional setting divided differences are straightfor-

Before describing the actual numerical algorithms we begin with ward to define, but for multivariate settings many approaches are
some remarks regarding different settings and establish our notationpossible (see for example [10, 4, 3]). An approach that was devel-

for triangulations and difference operators defined on them.

Coordinate Functions  To describe our algorithms we must
distinguish between two settings: the functional and the surface
setting. Thefunctional settingdeals with a functiong(u,v) of

two independent variables in the plane. The dependent variable
g can be visualized as height above thgv) parameter plane. In
practice we only have discrete daja = g(us,v;). The sample
points (u;,v;) are triangulated in the plane and this connectivity
can be transferred to the corresponding poiats v;, g;) in R3.

The canonical example of this is a terrain model.

The surface settingdeals with a triangle mesh of arbitrary
topology and connectivity embedded R with verticesp;
(zi,vi, ). Itis important to treat all three coordinatesy, andz
asdependentariables with independent parameterandwv, giv-

ing us three functional settings. The independent parameters are

typically unknown and must be estimated. Algorithms to estimate
global smooth parameterizations are described in [19, 8, 9, 20]. We
require onlylocal parameterizations which are consistent over the
support of a small filter stencil.

Triangulations  To talk about local neighborhoods of vertices
within the mesh it is convenient to describe the topological and

oped specifically with subdivision in mind is described in [12] and

we use it here for our purposes.

Consider a facg = {i, 7, k} and the triangleé = ¢(f) where

pi = (us,vs,9:). Then the first order divided difference gfat f

is simply the gradient of the piecewise linear spline interpolating
g denoted byV;g = (9g/0u,dg/0v). Note that the gradient
depends on the parameter locatidms, v;) and converges in the
limit to the first partial derivatives. If we create a three vector by
adding a third component equal to 1, we obtain the nonmalk=
(—90g/0u,—0g/0v,1) to the triangle. Conversely, the gradient is
the projection of the normal in the parameter plane. Consequently
the gradient is zero only if the triangteis horizontal ¢; = g;
gk)-

Second order differences are defined as the difference between
two normals on neighboring triangles and can be associated with

the common edge (see Figure 3, left). Consider an edgdj, k}

with its two incident facesf; = {j,k,l1} and fo = {j, k,l2}

(see Figure 2, right). Compute the difference between the two nor-
malsm. = ny, — ny,. Given that the two normals are orthogonal
to ¢(e) so is their differencen. (see Figure 3, right). But the
third component ofn. is zero, hencen. itself lies in the parame-

ter plane, which also contains the segment betwegtw;, 0) and

geometric aspects of a mesh separately. We use notation inspiredu, vk, 0). This implies thatn. is orthogonal to the segment and

by [24]. A triangle mesh is denoted as a pdh, IC), whereP is a
set of N point positionsP = {p; € R*| 1 <i < N} (eitherp;
(ui, vs, fi) in afunctional setting op; = (z:, ys, 2:) in the surface
setting), andC is anabstract simplicial complewhich contains all
the topological, i.e., adjacency information. The compigis a set

of subsets of 1,..., N}. These subsets are called simplices and
come in three types: vertices= {i} € V, edges = {i,j} € £,

Figure 2:Left: 1-ring neighborhood. The vertices except the center
one formV (¢) and the bold edges forgy (¢). Middle: 1-ring with
flaps. The vertices except the center one fak) and the bold
edges forn€2(4). Right: Edge neighborhood. The four vertices of
the incident triangles forr(e).

hence only its signed magnitude matters (see Figure 3).

plane contains both normals
and their difference;
planeis orthogonal
to 3D segment
triangle normals

difference of normals liesin parameter plane

Figure 3: In the functional setting triangles are erected over the

parameter plane. Their normals generate a plane orthogonal to
the edge in 3-space. Any vector in that plane which is also in the
parameter plane must be at right angles with the parameter plane
segment. Henc®? is orthogonal to(u;, v;) — (ux, vk).



This argument justifies defining the second order differdbge
as the component ofn. orthogonal to the segment in the pa-
rameter plane.D2g depends on four function values at vertices
w(e) = {4, k,11,l2}. Since all operations to compufe?g are lin-

ear (gradient, difference, and projection) so is the entire expression

ng: Z Ce,101-

lew(e)
The coefficients are given by
L. Le
Ce,ly — ) Ce,ly = )
b Apkg) P Apgm
g = el LAnhl
Ay k5] All.gik] Ay k5] All.5.k]

where A, x5, 1S the signed area of the triangle formed by
(Uky > Uiy )s (Ukg > Uiy )s (Ukg, Vig ); AN Le is the length of the seg-
ment betweeru;, v;) and(ux, vi) [12]. All the parameterization

Note that ifg is a linear function, i.e., all triangles lie in one
plane, the fairing functionak is zero. Consequently linear func-
tions are invariant undeR. In particular R preserves constants
from which we deduce that the; ; sum to one.

To summarize, given an arbitrary but fixed triangulation in the
parameter plane and function valugswith the associate@u;, v;)
coordinates, simple linear expressions describe first and second dif-
ferences. The coefficients of these expressions depend on the pa-
rameterization. The relaxation operaf®racts on individual func-
tion values to minimize the discrete second difference energy over
the &, (¢) neighborhood of a givep; = (us, vi, ¢i), leaving linears
invariant.

2.3 Relaxation in the Surface Setting

To apply the above relaxation in the surface setting we need to have
parameter valuegu, v) associated with every point in our mesh.
Typically such parameter values are not available and we must com-
pute them. One possible solution is to compute a global parame-
terization to a coarse base domain using approaches such as those
described in [8, 19]. However, specifying parameter values for an

information is captured in the edge length and signed triangle areas.entire region is equivalent to flattening that region and thus invari-

Given that we later only use squaresiaf the actual sign of the ar-

ably introduces distortion. Therefore we wish to keep the parame-

eas is not important as long as the orientations prescribed by (1) areter regions as small as possible. Typically one computes parameter
consistent. Also, note that the second order difference operator isvalues for a certain local neighborhood like a 1-ring. We propose

zero only if the two triangles lie in the same plane.

2.2 Relaxation in the Functional Setting

an even more local scheme in which parameter values are specified
separatelyfor each of theD? stencils. The two triangles of th@?
stencil get flattened with the so-callathge map using the com-

The central ingredient in our signal processing toolbox is a non- mon edge as a hinge, rotate one triangle until it lies in the plane
uniform relaxation operator. It generalizes the usual notion of a defined by the other triangle and compute the needed edge lengths
low pass filter. We begin by discussing the construction of such a and areas from (1). Note that the hinge map leaves the areas of

relaxation operator in the functional setting.
The purpose of the relaxation operation is the minimization of

the trianglesp(f1) ande( f2) unchanged and only affects the faces
{j, k, 11} and{j, k, l2}. The surface relaxation operator is defined

second order differences. To this end we define a quadratic energy,as before, but acts on pointsR#®

which is an instance of a discrete fairing functional [16]

E =3 ce(Di9)"

The relaxation is computed locally, i.e., for a given vertese com-
pute a relaxed function valuBg; based on neighboring function
valuesg;. TreatingE as a function of a givep; the relaxed value
Ryg; is defined as the minimizer @&(g;). Given that the stencil for
D2 consists of two triangles, all edges which affifg;) belong
to &2(7) (see Figure 2, middle)

)

Since the functional is quadratic the relaxation operator is linear in
the function values. To find the expression, write each offig

with e € &:(3), i.e., all second differences depending @nas a
linear function ofg;

Ryg; = argmin E(g;) = arg min 25682(1') (D2g).

Dgg = Ce,igi + Qe with o, = Zlew(e) \ {i} Ce,101-

Setting the partial derivative @& with respect tqy; equal to zero
yields

Rg; = ©))

2
(Zeefzu) Cert O‘E) / (Zeefzu) C) ’
which can be rewritten as

o s — Z{ee£2<i>uew<e>} Ceiie.
Z]-Ey2(i) Wi,j95, Wij = — 2 .
cegq (i) Ceri

Rgi =

There are two ways to impleme#it which trade off speed versus
memory. One can either precompute and storedheand use the
above expression or one can use (3) and compute the fly.

Rpi = Y jev, o) WiiPi-

Our minimization is similar to minimizing dihedral angles [21].
However, minimizing exact dihedral angles is difficult as the ex-
pressions depend non-linearly on the points. Instead one can think
of the D? as a linear expression which behaves like the dihedral
angle.

Features With our scheme it is particularly easy to deal with
features in the mesh. Examples include sharp edges across which
one does not wish to smooth. In that case Bfeassociated with
those edges are simply removed from the functional.

One may worry what happens with the equations in (1) in case
one of the triangles is degenerate, i.e., two of its points coincide and
its area is zero. Then thB? that use this triangle are not defined
and simply can be left out from the optimization. This is similar to
coinciding knots in the case of splines.

Comparison with Existing Schemes The approach fol-
lowed in [18] is to assume that the 1-ring neighborhood of a vertex
1 is parameterized over a regulk-gon. Using this approximation

a discrete Laplacian, dubbed umbrella, is computed as

Lo = K ey,

This discrete Laplacian was used in a relaxation opefater I+ L
which replaces a vertex with the average of its 1-ring neighbors.

In our setting, we can build a 1-ring relaxation scheme by only
taking the minimum in (2) ove€:(:). The relaxation operator is
then computed as in (3) with summations o¥g(7) rather than
&>(i). Our 1-ring scheme parameterized oregular K;-gon leads
to the same relaxation operator as used by Kobbelt. Our scheme can
thus be seen as a natural non-uniform generalization of the umbrella



which is still linear. In general we use tde(:) (1-ring with flaps) (Q("), IC(")) where the points on coarser meshes do move from

scheme as it yields visually smoother surfaces. their finest mesh position. These are denaid, i < n.

Taubin [26] presents a two step relaxation operdtor (I + In traditional signal processing, downsampling creates a coarser
pL)(I + AL), with p and A tuned to minimize shrinkage of the  |evel through the removal of a constant fraction of samples. This
mesh. leads to a logarithmic number of levels. A PM does not have such

Both of these schemes are semi-uniform filters since the weights g notion of levels. However, one may think of each removed vertex

only depend orK; and not the geometry. Consequently they affect as living on its own level, and the number of levels being linear.
both geometry and parameterization. Consider again an irregular

triangulation of a plane. Semi-uniform schemes try to make each 1- 3.1  Subdivision

ring look as much as possible like a reguléfgon. Thus the trian- Subdivision starts from a coarse mesh and successively builds finer
gulation may change globally while the plane remains the same. As and smoother versions [22]. In signal processing terms it consists of
we will see, this will lead to unwanted effects in applications such upsampling followed by relaxation. So far the word subdivision has
as editing and texture mapping. On the other hand our non-uniform been associated in the literature with either regular or semi-regular
scheme is linearly invariant, leaves the triangles unchanged, andmeshes with corresponding uniform or semi-uniform operators. If
does not suffer from the problems concerning movement “inside” one only has an original, coarse mesh and cares about building a
the surface observed in [18, Figure 4]. smooth version, then semi-regular is the correct approach.

Figure 4 shows the effect on a non-planar triangulation like  Our setting is different. The coarse mesh comes from a PM
the eye of the mannequin head. Our non-uniform scheme (right) started at the original, finest level. Hence the connectivity of the
smoothes the geometry without affecting the triangle shapes much.finer levels is fixed and determined by the reverse PM. Our goal
The semi-uniform scheme (middle) tries to make edge lengths asis to use non-uniform subdivision to buildggometricallysmooth
uniform as possible which can only be done by effectively destroy- mesh with thesameconnectivity as the original mesh and with as
ing the delicate mesh structure around the eye. This effect alsolittle triangle shape distortion as possible. Such smoothed meshes
applies to any other attributes that vertices may carry such as detailcan subsequently be used to build pyramid algorithms.
vectors for editing or texture map coordinates causing distortion  Subdivision is computed one level at a time starting from level
during smoothing (see Figure 8). no in the progressive mes@("0) = P("0) Since the reverse PM

Taubin [26] also uses a non-uniform discrete Laplacian in which adds one vertex per level, our non-uniform subdivision is computed
the weights vary as the powers of the respective edge lengths. Whilegne vertex at a time. We denote the vertex positionQ88 =
such an operator can greatly reduce the trla_ngle dl_stortl_ons, it can {ngn) |1<i<n}(n>no)and use meshe(sg("),lc(”)) with
be shown that such a scheme can never be linearly invariant. the same connectivity as the PM meshes.

Going fromQ™ 1 to Q™ involves three groups of vertices. (I)
the new vertex, which is introduced together with a point position

4™ to be computed. (Il) certain points from t@™ ) mesh
change position; these corresponct@nvertices. There is only a
small number of them. (lI) the remainder of the points@f* ),
typically the majority, remains unchanged. Specifically:

e The new positiom],(f) is computed after upsampling frokg* —*

Figure 4: Smoothing of the eye (left) with our non-uniform (right) oK™ (n) _ (n) (n—1)
and a semi-uniform scheme (middle). The semi-uniform scheme I = Zjevg(j) Wni
tries to make edge lengths as uniform as possible and severely dis-
torts the geometry, while the non-uniform scheme only smoothes the
geometry and does not affect the triangle shapes much.

The position of the new vertex is computed to satisfy the relax-
ation operator using points fro@™ ! with weights using areas
and lengths of mesfiP™, K(™).

e The even points 00" ~! form a 1-ring neighborhood of.

3 Multiresolution Signal Processing Their respective)y neighborhoods contain, which has just

o . . received an updated positigj*’
Up to this point we have only considered operators which act on a P P qﬁ

scale comparable to their small finite support. To build more pow- Vi€ Vin) -
erful signal processing tools we now consider a multiresolution set- ! ’
ting. . . . .
Multiresolution algorithms such as subdivision, pyramids, and The ev(erll)vertlces are (rs)laxed. usmg. the pom.t positions
wavelets require decimation and upsampling procedures. For im-  from " (except forgn™), using weights coming from
ages decimation comes down to removing every other row or col- (P", /C("))-
umn. The situation for meshes is more complex, but a considerable o Finally, the remainder of the positions do not change
body of work is available [13].
We employ Hoppe’s Progressive Mesh (PM) approach [14]. In Vj € V"_I\V{L(n) . q(n) _ q(n—l).
the PM setting, an edge collapse provides the atomic decimation J J
step, while a vertex split becomes the atomic upsampling step. For o central ingredient in our construction is the fact that the weights

simplicity we only employ half-edge collapses in our implementa- () . . )
tion. As a priority criterion we use a combination of the Garland- “i.j depend on parameter information from the m@sft). No

Heckbert quadric error metric [11] and edge length to favor removal gichally or even locally consistent parameterization is required. For
of long edges (see also [17]) eachD? stencil we use the hinge map as described above. In effect

Eacgh ha?lf edge collapse re.moves one vertex and we numberthen"Fhe original mesh p_rqv_ides the parameterizations and in this way
in reverse so that the one with highest index gets removed first. enters into the subdivision procedure. The acaehsandlengths

This gives a sequence & meshe{P™, k"), 1 < n < N, and which make up the expressions ioff;) are assembled based on the
P" = {p:i | 1 <i < n}. Later we will consider mesh sequences connectivity.(™ of leveln, and hence induce the level dependence

(n) _ (n) (n—1) n) (n)
q; " = Zkev;(]’) nt Wikde FWinGn .



n)

of the weights. As a result azﬂ;f] may be precomputed during the dnD)
PM construction and can be stored if desired for later use during

repeated subdivision. It is easy to see that the storage is linear in | +
the total degree) . K, of the mesh. | Presmooth | | Subdivision | '
o A A g™ D ™
/ |

Figure 6:Burt-Adelson style pyramid scheme.

stages: presmoothing, downsampling, subdivision, and computa-
tion of details.

e Presmoothing: Presmoothing in the original BA pyramid is im-
portant to avoid aliasing. We have found that in a PM the pres-
moothing step can often be omitted because the downsampling
steps (edge collapses) are chosen carefully, depending heavily
on the data. In essence vertices are removed mostly in smooth
regions, where presmoothing does not make a big difference.
Thus, no presmoothing was used in our implementation.

e Downsampling: n is removed in a half-edge collapse.

e Subdivision: Using the points frons™ ' we compute subdi-

vided pointSq](.") for the vertex just removed and the surround-
ing even vertices exactly as described in Section 3.1

e Detail Computation: Finally, detail values are computed for
all even vertices as well as the vertexThese detail vectors are
expressed in a local franﬂ?%("*l) which depends on the coarser
level:

Figure 5:Starting with the irregular triangulation of a sphere (up-
per left) we compute a PM down to 16 triangles (upper right). We Vi e Vi(n)U{n}: d§.") = F].("’l)(s;") - qj(.")),
then compute our non-uniform subdivision scheme back to the finest

level (lower left) and obtain a smooth mesh which approximates the
original. For comparison the lower right shows the limit surface of
a semi-uniform subdivision scheme.

We refer to the entire group af.™ as an arrayi™. In the
implementation this array is stored with

One of the features of the BA pyramid is that the above procedure

To illustrate the behavior of uniform functional subdivision can always be inverted independent of which presmoothing opera-
schemes one considers the so caflealing functioror fundamen- tor or subdivision scheme is used. For reconstruction, we start with
tal solution obtained from starting with a Kronecker sequence on he points ofS™~*, subdivide valueg'™ for both the new and even
the coarsest level. For surface subdivision, there is no equivalentto . . / - o
this. To illustrate the behavior of the surface scheme we perform Vertices and add in the details to recover the original vayes
the following experiment (see Figure 5). We start with an irregular 10 S€€ the potential of a mesh pyramid in applications it is im-
triangulation of a sphere with 12000 triangles (upper left) and com- Portant to understand that the detaif8’ can be seen as an approx-
pute a PM down to 16 triangles (upper right). Next the non-uniform imate frequency spectrum of the mesh. The det#il$ with large
surface subdivision scheme starting from the 16 triangles back to n come from edge collapses on the finer levels and thus correspond
the original mesh is computed (lower left). We clearly get a smooth to small scales and high frequencies, while the det#fls with
mesh. For comparison the lower right shows the limit function us- smalln come from edge collapses on the coarser levels and thus
ing a semi-uniform scheme. It is important to understand that the correspond to large scales and low frequencies.
non-uniform scheme has access to the parameterization information

of the original finest mesh whereas the semi-uniform scheme doesOvers_amleng factor ~ A _standard image pyramid has an over-
not use this additional information. sampling factor of 4/3, while we have an expected oversampling

While for uniform and semi-uniform subdivision, extensive liter- fac_:or of 7” Thdelad(\j/atntag(ta 0f|OV§{§ambp|Ir:lg 1S th;é thﬁ dete(;llsdare
ature on regularity of limit functions exists, few results are known quite small and lead to natural editing behavior [29]. If needed, a

for non-uniform subdivision [2, 12]. The goal of our strategy of Lescehlnel\c/]:IE \(/av)i(tlrftr?wé?er?ﬁ:rfirggevgx(:;sasn:ﬁpl"\:\?ef(zjai?/tigr.’?IThertli?:Zg Is to
minimizing D? is to obtainC! smoothness. However, there is cur- - oy,

rently no regularity result for our scheme in either the functional or of Vinto M levels withM < N
surface setting. V=VoUUic,cps Wn and Vi = Vi1 UWp.
3.2 Burt-Adelson Pyramid

The pyramid proposed by Burt and Adelson [1] (BA) is another
important signal processing tool. We show how to generalize it to
a mesh pyramid. We start from the finest level poifits = P and
compute a sequence of meshed’, ™) (1 < n < N) as well as

This can be done, for example, so that the sizes ofithegrow
with a constant factor [7]. The BA pyramid then goes froin

to Vim—1. First presmooth all even vertices W, then compute
subdivided values for all vertices iV,,, and their 1-ring neighbors

in V,,,. For the subdivided points, which need not be all vertices

oversampled difference™ between levels. of Vi, compute the details as differences with the original values
To go fromS™ to S* 1, i.e., to remove vertex, we follow the from V,,. One can see that the above algorithm with oversampling
diagram in Figure 6. The top wire represents the point§'f! factor 7 is a special case whét,, = {m}. The other extreme

while the bottom wire represent the points®f. There are four is the case with only one level containing all vertices. In that case



there is no multiresolution as all details live on the same level. The
oversampling factor is 1. By choosing the levels appropriately one
can obtain any oversampling between 1 and 7. It is theoretically
possible to build a wavelet-like, i.e, critically sampled multiresolu-
tion transform based on the Lifting scheme [25]. However, at this
point it is not clear how to design filters that make the transform
stable.

Caveat Often inthis paper we use signal processing terminology
such as frequency, low pass filter, aliasing, to describe operations or
2-manifolds. One has to be extremely careful with this and keep in
mind that unlike in the Euclidean setting, there is no formal def-
inition of these terms in the manifold setting. For example in a
mesh the notion of a DC component strictly does not exist. Also in
connection with the pyramid we often talk about frequency bands.
Again one has to be careful as even in the Euclidean setting the co-
efficients in a a pyramid do not represent exact frequencies due to
the Heisenberg uncertainty principle.

4 Applications

The algorithms we described above provide a powerful signal pro-
cessing toolbox. In this section we demonstrate this claim by con-
sidering a variety of applications that use them. These include
smoothing and filtering, enhancement, texture coordinate genera-
tion, vector displacement field editing, and multiresolution editing.
4.1 Smoothing and Filtering

One way to smooth a mesh is through repeated application of the
relaxation operatoR. Numerically this behaves similarly to tradi-
tional Jacobi iterations for an elliptic PDE solver. The relaxation
rapidly attenuates the highest frequencies in the mesh, but has little
impact on low frequencies. Even though each iteration of the oper-
ator is linear in the number of vertices, the number of iterations to
attenuate a fixed frequency band grows linearly with the mesh size.

This results in quadratically increasing run times as the sample den-
sity increases relative to a fixed geometric scale. One way to combat
this behavior is through the use of appropriate preconditioners, as

was done in [18], or through the use of implicit solvers [6]. _ Figure 7: Smoothing and filtering of the venus head. Original on
Using a mesh pyramid we can build much more direct and flexi- the top left; 20 finest level relaxation steps on the top right; low

ble filtering o_pe_rations. Recall that the dt_atails in a pyramid measure pass filter on the bottom left; stopband filter on the bottom right.
the local deviation from smoothness at different scales. In that sense

they capture the local frequency content of the mesh. This spectrumvisualize the effect of movement “within” the surface after smooth-

can be shaped arbitrarily by scaling particular details. Multiresolu- ing. This hints at another application: if one has a scanned mesh

tion filtering operators are built by setting certain ranges of detail with color (r,g,b) attributes per vertex then non-unifog@ometry

coefficients in the pyramid to zero. A low pass filter sets all detail smoothing will not distort those colors.

arraysd™ with n > n; to zero, while a high pass filter annihilates

d™ for n < ny,. However, for meshes it makes little sense to put 4.2 Enhancement

the coarsest details to zero as this would collapse the mesh. MoreEnhancement provides the opposite operation to smoothing in that

natural for meshes are stopband filters which zero out detail arraysit emphasizes certain frequency ranges. As before this can be done

d™ in some intermediate range; < n < np. in a single resolution manner as well as in the more flexible mul-
Figure 7 shows these procedures applied to the venus headtiresolution setup.

(IV = 50000). On the upper left the original mesh. The upper right The single resolution scheme is easy to compute and typically

shows the result of applying the non-uniform relaxation operator works best for fairly small meshes, such as those used as control

20 times at the finest level. High frequency ripples quickly diffuse, polyhedra for splines or semi-regular subdivision surfaces. The

but no attenuation is noticeable at larger length scales. The bottommain idea is to extrapolate the difference between the original mesh

left shows the result of a low pass filter which sets all details above and a single resolution relaxed mesh. The enhanced points are given

n; = 1000 to zero. Finally the bottom right shows the result of a by

stopband filter, annihilating all detail/00 < n < 15000. Note Ep; = pi + £(RFpi — pi),

how the last mesh keeps its fine level details, while intermediate

frequencies were attenuated. If desired all these filtering operationswhere¢ > 1. Figure 9 illustrates the procedure. On the left the

can be performed in a spatially varying manner due to the space- original mannequin head, in the middle the result after 20 relax-

frequency localization of the mesh pyramid. Figure 8 shows the ation steps, and on the right the enhanced version§ith2. The

difference between non-uniform (left) and semi-uniform smoothing first and last models of Figure 1 show the Loop subdivided meshes

(right) on the actual vertex positions. By keeping the original finest of the original and enhanced head. By using combinations of the

level texture coordinates for the vertices of both meshes we can different algorithms peculiar effects can be obtained. The second
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Figure 10:Enhancement of cow head (original on the left).

5%

Figure 11:Enhancement on the bunny. The original is on the left
and the frequency enhanced version on the right.

/ !

Figure 8: Movement “within” the surface due to smoothing visu-
alized by letting the vertices keep their original finest level texture
coordinates. Left non-uniform smoothing and right semi-uniform
smoothing.

4.3 Subdivision of Scalar Functions on Manifolds

We can use subdivision to quickly build smooth scalar functions
definedon a manifold. Simply start with scalar values on a coarse
level and use non-uniform subdivision to build a smooth function
defined on the finest level.

Figure 9:Enhancement of control mesh. On the left the original, in We present two applications. The first creates smoothly varying
the middle the smoothed mesh, and on the right the enhanced meskexture coordinate assignments for the finest level mesh from some
(see also Figure 1 for the resulting subdivision surfaces). user supplied texture coordinate assignments at a coarse level. The
second creates a smoothly varying function over a limited region of
an irregular mesh and then uses this function to generate a smooth
vector displacement field for shape editing purposes.

model in Figure 1 is obtained by extrapolating from a base model
built by 5 semi-uniform relaxation steps followed by 5 non-uniform
relaxation steps (needed to recover the parqmeterization and “pull” Texture Coordinate Generation DeRose et al. [5] discuss
features back in place). The third model in Figure 1 is extrapolated this problem in the context of classical, semi-uniform subdivision.
from a base built by first simplifying to level 100, then applying 1  Their goal was the construction of smooth texture coordinates for
relaxation step (which made the chin collapse and ears shrink), andcatmull-Clark surfaces. Beginning with user supplied texture co-
reconstructing. ordinates at some coarse level they subdivide these parameter as-
The single level scheme is simple and easy to compute, but lim- Signments to the finest subdivision level using the same subdivision
ited in its use. For example, it does not compute offsets with respect OPerator for texture coordinates as for the vertices. _ _
to local frames. If the mesh contains fine level detail self intersec-  Figure 12 shows the application of this idea to our setting. Ini-
tions quickly appear. As inimage enhancement one must be carefultial texture coordinate assignments were made using a cylindrical
not to amplify high frequency noise. For these reasons we need theProjection of all vertices iP'°*°. The left image shows a test tex-
more flexible setup of multiresolution enhancement. The approach ture on the coarse polygonal mesh. We then reconstruct the original
is simple, we compute a mesh pyramid, scale the desired details andinest level mesh and concurrently subdivide the texture coordinates
then reconstruct. As in the filtering application, the user has control to the finest level. The resulting mapping is shown on the right.
over the different frequency bands. Additionally, the local frames EVven though the geometry has much geometric detail and uneven
across the many levels of the mesh pyramid tend to stabilize the triangle sizes the final texture coordinates vary smoothly over the
procedure and lead to a more natural behavior. As a result the mul-€ntire surface.
tiresolution enhancement scheme deals better with large scanne

meshes which usually contain high frequency noise. %isplacement Vector Field Editing Singh and Fiume [23]

present an algorithm for deformation edits based on vector displace-

Figure 10 shows Loop subdivided versions of the original cow ment fields. These fields are defined through a smooth falloff func-
head and an enhanced version obtained by multiplying the detailstion around a “wire” which drags the surface along. The region of
d™ with 257 < n < 2904 = N by two (see also Figure 15, influence is a function of distance R?. Controlling this behavior
right column for an edit of the enhanced model). Finally, Figure 11 in regions of high curvature or in the vicinity of multiple close ob-
shows enhancement on the Stanford bunNy £ 34835). Here jects can be tricky. In our setting we have the opportunity to define
details with indicesl000 < n < 7000 were multiplied by 2, and the falloff functiononly on the surface itself. A similar idea was
details with indice000 < n < 13000 were multiplied by 1.5. used in [15] for feature editing.



Figure 13:Horse to giraffe edit using a surface based smooth dis-

Figure 12: A test texture is mapped to a coarse level of the mesh .
placement vector field.

pyramid under user control. The resulting texture coordinates are
then subdivided to the finest level and the result shown on the righ

W a;

We illustrate this idea with an example. Consider the horse ‘\lﬂw =i
“giraffe” edit in Figure 13. The user first outlines three regions \mi Bt
by drawing closed curves on the mesh. A region that remains un- “M
changed (A); a region that will be gradually stretched (B); and a \\/]
region that will undergo a translation (C). In our example, region ‘W{"
(A) is the back body and the four legs; (B) are the neck and torso; Ul
and (C) is the head. The boundary between (A) and (B) consists
of three closed curves. Next we define a scalar pararietenich
is 0 on the boundary between (A) and (B), and 1 on the boundary

between (B) and (C). The algorithm computes value# fivat vary . . . .
smoothly between 0 and 1 in region (B). Figure 14:Cow leg editing sequence: original, coarsest scale, edit,

This is accomplished by running a PM on the interior of region reconstruction with multiresolution details, reconstruction with sin-

(B) to a maximally coarse level. Then the initial valde= 1/2 gle resolution details.
is assigned to all interior vertices of the coarse region (B). Next
we apply relaxation t@ on the coarsest level within (B). This con-
verges quickly because there are few triangles; three steps suffice
Thesed values are then used as the starting values for subdivision
from the coarsest level back to the original region (B) while keeping
the 0 values on the boundary fixed. The resultthgalues on the
finest region (B) vary smoothly between 0 and 1. The only prob-
lem is that at the boundary they meet if’8 and not aC'* fashion.

The use of multiresolution details is important when the user
wishes to make large scale edits in regions with complicated fine
scale geometry. Because the multiresolution details are all de-
scribed in local frames, they have more flexibility to adjust them-
selves to a coarse scale edit.

We illustrate this with an edit on the leg of the cow (Figure 14).
The sequence shows the original leg, the coarse leg, a coarse edit,

This is because we only imposed Dirichlet like conditions and no and two reconstructions. The first used multiresolution details

Neumann condition. We address this with the following smoothing Wh'l_e the se_cond used single resolutlo_n_ detalls.'
transformationg := 1/2 — 1/2 cos(9). Finally, Figure 15 shows some additional edits. The horse was

edited at a level containing only 34 vertices (compare to the origi-
nal shape shown in Figure 13). The cow edit on the right column
involves both manipulation at coarse levels (snout, horns, leg, tail)
and overall enhancement.

On the left of Figure 13 the red lines are specified by the user
and the black lines show theisolines, visualizing howd varies
smoothly. The edit is now done by letting the user drag the head.
Every vertex in region B is subjected fotimes the displacement
vector of the head. This requires very little computation. The right
side of Figure 13 shows the result.

Dataset Venus Horse Bunny Cow Mann.

Size (fine) 50000 48485 34835 2904 689
Size (coarse) 4 34 19 57 5

4.4 Multiresolution Editing

The displacement vector editing is simple and fast, but has limited
use. We next discuss full fledged multiresolution editing for irreg- Timings (s)
ular meshes. Our algorithm combines ideas of Zorin et al. [29] and

Kobbelt et al. [18]. The former used multiresolution details and _ SIMP!- & Anal. 79 75 55 3.6 0.8

semi-regular meshes, while the latter used single resolution details Reconstruction 9 8 5.8 37 0.1
and irregular meshes. We combine the best of both approaches by

using multiresolution details with the irregular mesh setting. Analysis 9 8 5.8 37 0.1

The algorlthm(lns) straightforward.  The user can manipulate a Table 1:Timings for mesh pyramid computation assuming storage

group of pointss,™ in the mesh pyramid and the system adds 5¢her then recomputation of all areas and length needed in stencil
the finer level details back in. This is exactly the same use of the weight computations. The size field counts the total vertidgs (
pyramid as Zorin et al. only now for iregular meshes. Kobbelt et pace counts are generally twice as large. All times are given in
al. used anultiresolution/multigridapproach to define a smoothed  ¢aconds on an SGI R10k O2 @175Mhz.

mesh over a user selected region, but then congintge resolution
details between the original and smoothed mesh.
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Figure 15:Multiresolution edits. [10]

5 Conclusions and Future Work 11
We have shown how basic signal processing tools such as up and
down sampling and filtering can be extended to irregular meshes.
These tools can be built into powerful algorithms such as subdivi- (12]
sion and mesh pyramids. We have demonstrated their use in textur-
ing, editing, smoothing and enhancement. (13

Further research can be pursued in several directions. On the al-
gorithms side there is incorporation of various boundary conditions,
construction of positive weight schemes, and extensions to tetrahe-
dralizations. On the applications side there is adaptive gridding for
time dependent PDE’s, computing globally smooth parameteriza-
tions, extracting texture maps from scanned textures, and space-[l6]
frequency morphing.

15]

[17]

Compression  Another potential future application is compres-
sion. However, one needs to be extremely careful: our subdivision
weights depend on the parameterization which in turn depends on
the geometry of the original mesh. Thus one cannot use the sub-[lg]
division scheme as a predictor in a compression framework unless
sender and receiver share parameter information, i.e., the needed
areas and lengths to compute the subdivision. Only a setting where 20]
one repeatedly has to communicate functions or attributes defined
over a fixed triangulation would justify this overhead.

This touches upon a deeper issue. In some sense for a geometgy]
rically smooth irregular mesh only one dimension can effectively
be predicted by a subdivision scheme. Even for a geometrically
smooth mesh, no subdivision scheme can compress the informa-[22]
tion implicitly present in the parameterization. Ideally for smooth
surfaces one would like to use meshes with as little parametric in- [23]
formation as possible.

A typical example are semi-uniform meshes. This argument [24]
strongly makes the case for resampling onto semi-regular meshegz2s)
using smooth parameterizations [8, 19] before compression.

(18]

[26]
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Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
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Abstract

In this paper, we develop methods to rapidly remove rough features
from irregularly triangulated data intended to portray a smooth sur-
face. The main task is to remove undesirable noise and uneven
edges while retaining desirable geometric features. The problem
arises mainly when creating high-fidelity computer graphics objects
using imperfectly-measured data from the real world.

Our approach contains three novel featuresinglicit integra- ]
tion method to achieve efficiency, stability, and large time-steps; a y-
scale-dependent Laplacian operator to improve the diffusion pro- /
cess; and finally, a robust curvature flow operator that achieves a / ¥
smoothing of the shape itself, distinct from any parameterization. << i
Additional features of the algorithm include automatic exact vol- &)
ume preservation, and hard and soft constraints on the positions of
the points in the mesh.

We compare our method to previous operators and related algo-
rithms, and prove that our curvature and Laplacian operators have = . -
several mathematically-desirable qualities that improve the appear- @) N (b)

ance of the resulting surface. In consequence, the user can easily._. N .
select the appropriate operator according to the desired type of fair-)fb'?,urg ml(.)é?rzé do\rllegrlgi?)ln3v3itﬁht%tggsr?zgzy dr;;;:‘ déﬁ'?)g(e)r\e/:te(;trui:ﬁst)v'vo

ing. Finally, we provide a series of examples to graphically and

numerically demonstrate the quality of our results. integration step withAdt = 5-107°, the iterative linear solver
(PBCG) converges in 10 iterations. All the images in this paper
1 Introduction are flat-shaded to enhance the faceting effect.

While the mainstream approach in mesh fairing has been to enhancenliques. However, a number of issues in their application remain
the smoothness of triangulated surfaces by minimizing computa- 0pen problems in need of a more thorough examination.
tionally expensive functionals, Taubin [Tau95] proposed in 1995 a _ The simplicity of the underlying algorithms is based on very ba-
signal processing approach to the problem of fairing arbitrary topol- Sic, uniform approximations of the Laplacian. For irregular con-
ogy surface triangulations. This method is linear in the number of nectivity meshes this leads to a variety of artifacts such as geomet-
vertices in both time and memory space; large arbitrary connectiv- fic distortion during smoothing, numerical instability, problems of
ity meshes can be handled quite easily and transformed into visuallySlow convergence for large meshes, and insufficient control over
appealing models. Such meshes appear more and more frequentlglobal behavior. The latter includes shrinkage problems and more
due to the success of 3D range sensing approaches for creating comprecise shaping of the frequency response of the algorithms.
plex geometry [CL96]. In this paper we consider more carefully the question of numeri-
Taubin based his approach on defining a suitable generalization ¢l stability by observing that Laplacian smoothing can be thought
of frequency to the case of arbitrary connectivity meshes. Using Of as time integration of the heat equation on an irregular mesh.
a discrete approximation to the Lapiacian, its eigenvectors become This suggests the use ohplicit integration schemes which lead
the “frequencies” of a given mesh. Repeated application of the re- to unconditionally stable algorithms allowing for very large time
sulting linear operator to the mesh was then employed to tailor the Steps. At the same time the necessary linear system solvers run
frequency content of a given mesh. faster than explicit approaches for large meshes. We also consider
Closely related is the approach of Kobbelt [Kob97], who consid- the question of mesh parameterization more carefully and propose
ered similar discrete approximations of the Laplacian in the con- the use of discretizations of the Laplacian which take the underly-
struction of fair interpolatory subdivision schemes. In later work NG parameterization into account. The resulting algorithms avoid
this was extended to the arbitrary connectivity setting for purposes Many of the distortion artifacts resulting from the application of
of multiresolution editing [KCVS98]. previous methods. We demonstrate that this can be done at only a
The success of these techniques is largely based on their sim-T0dest increase in computing time and results in smoothing algo-
ple implementation and the increasing need for algorithms which rithms with considerably higher geometric fidelity. Finally a more

can process the ever larger meshes produced by range sensing teci§@reful analysis of the underlying discrete differential geometry is
used to derive a curvature flow approach which satisfies crucial ge-

ometric properties. We detail how these different operators act on
meshes, and how users can then decide which one is appropriate in
their case. If the user wants to, at the same time, smooth the shape
of an object and equalize its triangulation, a scale-dependent diffu-
sion must be used. On the other hand, if only the shape must be
filtered without affecting the sampling rate, then curvature flow has
all the desired properties. This allows us to propose a novel class of
efficient smoothing algorithms for arbitrary connectivity meshes.

2 Implicit fairing
In this section, we introducenplicit fairing, an implicit integra-

tion of the diffusion equation for the smoothing of meshes. We will
demonstrate several advantages of this approach over the usual ex-

*{mathieu|mmeyer|ps|barr }@cs.caltech.edu.



plicit methods. While this section is restricted to the use of a linear can be constructed by integrating the diffusion equation with a sim-
approximation of the diffusion term, implicit fairing will be used as  ple explicit Eulerscheme, yielding:

a robust and efficient numerical method throughout the paper, even

for non-linear operators. We start by setting up the framework and XML = (1 4 AdtL)X". (8)

defining our notation. With the umbrella operator, the stability criterion requihe < 1.

If the time step does not satisfy this criterion, ripples appear on the

2.1 Notation and definitions surface, and often end up creating oscillations of growing magni-

In the remainder of this papex, will denote a meshx a vertexof  tude over the whole surface. On the other hand, if this criterion is
this mesh, and;; the edge (if existing) connectingto x;. We will met, we get smoother and smoother versions of the initial mesh as
call Ny (i) the “neighbors” (or 1-ring neighbors) of, i.e., all the n grows.

verticesx; such that there exists an edggbetweerx; andx; (see

Figure 9(a)). 2.3 Time-shifted evaluation

In the surface fairing literature, most techniques use constrained s jmplementation of this previous explicit method, calfed
energy minimization. For this purpose, different fairness function- ward Euler methogdis very straightforward [Tau95] an‘d has nice
als have been us_ed. The most frequent functional is the total CUVa-pronerties such as linear time and linear memory size for each fil-
ture of a surfacé: tering pass. Unfortunately, when the mesh is large, the time step

> o restriction results in the need to perform hundreds of integrations to
E@©)= / K +K50S. 1) produce a noticeable smoothing, as mentioned in [KCVS98].
S Implicit integration offers a way to avoid this time step limi-
tation. The idea is simple: if we approximate the derivative us-

This energy can be estimated on discrete meshes [WW94, Kob97]. ) i .
9y [ ]lng the new mesh (instead of using the old mesh as done in ex-

by fitting local polynomial interpolants at vertices. However, prin- "9, ; A
cipal curvatures; andk, depend non-linearly on the surfa8e plicit methods), we will get to the equilibrium state of the PDE

Therefore, many practical fairing methods prefer the membrane faster. As a result of this time-shifted evaluation, stability is ob-
functional or the thin-plate functional of a mexh tained unconditionally [PTVF92]. The integration is not ! =

X" 4+ AdtL (X™1). Performing an implicit integration, this time

1 calledbackward Euler methqdthus means solving the followin
Emembranéx) = 2 /Q X5+X\? dudv 2 linear system: 9 g g
L (1 = AdtL)X™ L = X", 9)
Ethin plate(X) = E/QXEU+2X5\,+X\,2Vdudv (3) This apparently minor change allows the user not to worry about

practical limitations on the time step. Consequent smoothing will
Note that the thin-plate energy turns out to be equal to the total then be obtained safely by increasing the valdé. But solving a

curvature only when the parameterizatianv) is isometric. Their linear system is the price to pay.
respective variational derivatives corresponds to the Laplacian and
the second Laplacian: 2.4 Solving the sparse linear system
L(X) — X 4 Fortunately, this linear system can be solved efficiently as the ma-
(X) = Xuu+Xow ) trix A= 1 —AdtL is sparse: each line contains approximately six
2 non-zero elements if the Laplacian is expressed using Equ. (7) since
L=(X) = L oL(X) = Xuuuut 2Xuuw+ Xy (5) the average number of neighbors on a typical triangulated mesh is

For smooth surface reconstruction in vision, a weighted aver- Six. We can use a preconditioned bi-conjugate gradient (PBCG) to
age of these derivatives has been used to fair surfaces [Terg8].iteratively solve this system with great efficiedcyThe PBCG is
For meshes, Taubin [Tau95] used signal processing analysis tobased on matrix-vector multiplies [PTVF92], which only require
show that a combination of these two derivatives of the form: linear time computation in our case thanks to the sparsity of the
(A4 L —ApL? can provide a Gaussian filtering that minimizes MmatrixA. We review in Appendix A the different options we chose
shrinkage. The constansandp must be tuned by the user to ob-  for the PBCG in order to have an efficient implementation for our
tain this non-shrinking property. We will refer to this technique as PUrposes.

theA|palgorithm. 2.5 Interpretation of the implicit integration

2.2 Diffusion equation for mesh fairing Although this implig:it inte_gration for ;:iiffusion is soun_d as is, there
are useful connections with other prior work. We review the analo-

As we just pointed out, one common way to attenuate noise in a gies with signal processing approaches and physical simulation.

mesh is through diffusion process

X 2.5.1 Signal processing
Fran AL (X). (6) In [Tau95], Taubin presents the explicit integration of diffusion with
a signal processing point of view. IndeedXifis a 1D signal of a
By integrating equation 6 over time, a small disturbance will dis- given frequencyo: X = €, thenL (X) = —w?X. Thus, the transfer
perse rapidly in its neighborhood, smoothing the high frequencies, ,4ction for Equ. (8) is 1 Adtw?, as displayed in Figure 2(a) as a

while the main shape will be only slightly degraded. The Lapla- qjiq |ine, We can see that the higher the frequesgshe stronger
cian operator can be linearly approximated at each vertex by the 1 attenuation will be. as expected.

umbrella operator (we will use this approximation in the current e hrevious filter is called FIR (for Finite Impulse Response)
section for the sake of simplicity, but will discuss its validity in signal processing. When the diffusion process is integrated using

section 4), as used in [Tau95, KCVS98]: implicit integration, the filter in Equ. (9) turns out to be an Infinite
1 Impulse Response filter. Its transfer function is ngak-Adtw?),
Lx)== z Xj =X ) depicted in Figure 2(a) as a dashed line. Because this filter is always
jeNL(i) in [0,1], we have unconditional stability.
wherex; are the neighbors of the vertex andm = #N(i) is the 1we use a bi-conjugate gradient method to be able to handle non sym-

number of these neighbors (valence). A sequence of megxfigs metric matrices, to allow the inclusion of constraints (see Section 2.7).



Attenuation Attenuation

in the context of a fixed mesh, though: amplifying frequencies re-
quires refinement of the mesh to offer a good discretization.

B Explicit filter —| t Filter for ten explicit integrations —7

sk Implicit filter - | L Filter for ten implicit integrations - |

2.7 Constraints

] | We can put hard and soft constraints on the mesh vertex positions
o — ‘ during the diffusion. For the user, it means that a vertex or a set of
* ey ® Feqny vertices can be fixed so that the smoothing happens only on the rest
(a) (b) of the mesh. This can be very useful to retain certain details in the

Figure 2:Comparison between (a) the explicit and implicit transfer Mesh.

function forAdt = 1, and (b) their resulting transfer function after Avertexx; will stay fixed if we imposd. (x) = 0. More compli-
10 integrations. cated constraints are also possible [BW98]. For example, vertices

can be constrained along an axis or on a plane by modifying the
By rewriting Equ. (9) asX™! = (I —AdtL)~1X", we alsonote  PBCG to keep these constraints enforced during the linear solver

that our implicit filtering is equivalent tb+AdtL + (Adt)2L2 + ..., iterations.

i.e., standard explicit filtering plus an infinite sequence of higher ~ We can also easily implemesbft constraints each vertex can

order filtering. Contrary to the explicit approach, one single implicit be weighted according to the desired smoothing that we want. For

filtering step performs global filtering. instance, the user may want to smooth a part of a mesh less than
. another one, in order to keep desirable features while getting a
2.5.2 Mass-spring network smoother version. We allow the assignment of a smoothing value

Smoothing a mesh by minimizing the membrane functional can be between 0 and 1 to attenuate the smoothing spatially: this is equiv-
seen as a physical simulation of a mass-spring network with zero- alent to choosing a variabhe factor on the mesh, and happens to
rest length springs that will shrink to a single point in the limit. be very useful in practice. Entire regions can be “spray painted”
Recently, Baraff and Witkin [BW98] presented an implicit method  interactively to easily assign this special factor.

to allow large time steps in cloth simulation. They found that the i )

use of an implicit solver instead of the traditional explicit Euler in- 2.8 Discussion

tegration considerably improves computational time while still be- Even if adding a linear solver step to the integration of the diffusion
ing stable for very stiff systems. Our method compares exactly to equation seems to slow down the problem at first glance, it turns
theirs, but used for meshes and for a different PDE. We therefore out that we gain significantly by doing so. For instance, the implicit
have the same advantages of using an implicit solver over the usualintegration can be performed with an arbitrary time step. Since
explicit type: stability and efficiencywhen significant filtering is ~ the matrix of the system is very sparse, we actually obtain com-

called for. putational time similar or better than the explicit methods. In the
following table, we indicate the number of iterations of the PBCG
2.6 Filter improvement method for different meshes and it can be seen that the PBCG is

more efficient when the smoothing is high. These timings were per-

Now that the method has been set up for the usual diffusion equa-tormed on an SGI High Impact Indigo2 175MHz R10000 processor
tion, we can consider other equations that may be more appropriatyith 128M RAM.

or may give better visual results for smoothing when we use im-

plicit integration. [ Mesh [ Nboffaces | Adt=10 | Adt = 100 |
We have seen in Section 2.1 that bbttand L2 have been used Horse 42,000 | 8iterations (2.86s)| 37 iterations (12.6s)
T a0 Tt RVl ey e [ 22|10 | S s i 5
il egsion, < s S show, e b e pover ot [y |05 | S o2 e
! ) Buddha | 290,000 | 5iterations (13.78s)| 28 iterations (69.93s)

frequency analysis, it is a better filter. Unfortunately, the matrix
becomes less and less sparse as more and more neighbors are in- To be able to compare the results with the explicit method, one
volved in the computation. In practice, we find that is a very has to notice that one iteration of the PBCG is only slightly more
good trade-off between efficiency and quality. Using higher orders time consuming than one integration step using an explicit method.
affects the computational time significantly, while not always pro- Therefore, we can see in the following results that our implicit fair-
ducing significant improvements. We therefore recommend using ing takes about 60% less time than the explicit fairing for a filtering
(I +AdtL2)X"*1 = X" for implicit smoothing (a precise definition ?f Adtt_: lOtOl aswe Qetd""_b‘iﬁt 33 |t|er<_':;tlons c?/\r/npﬁred ]EO thg tthO kl)n-
O 2 : egration steps required in the explicit case. We have found this be-
of the umbrella-like operator fdr* can be found in [KCVS98]). havior to be true for all the other meshes as well. The advantage of
; ‘ ‘ T N — ‘ ‘ ‘ ‘_ the implicit method in terms of computational speed becomes more
5 PR B NN Mnc;%%j%j | obvious forlarge mesheand/orhigh smoothingzalue. In terms of
R quality, Figure 4(b) and 4(c) demonstrate that both implicit and ex-
plicit methods produce about the same visual results, with a slightly
better smoothness for the implicit fairing. Note that we use 10 ex-
plicitintegrations of the umbrella operator wixdt = 1, and 1 inte-
gration using the implicit integration withdt = 10 to approximate
e I S T the same results. Therefore, there is a definite advantage in the use
(a) (b) of implicit fairing over the previous explicit methods. Moreover,
Fi}rzlure 3: (a): Comparison between filters usitg L2, L3, and the remainder of this paper will make heavy use of this method and
L*. (b): The scaling to preserve volume creates an amplification its stability properties.

of all frequencies; but the resulting filter (diffusion+scaling) only 3  Automatic anti-shrinking fairing
amplifies low frequencies to compensate for the shrinking of the

diffusion. Pure diffusion will, by nature, induce shrinkage. This is inconve-
nient as this shrinking may be significant for aggressive smooth-
We also tried to use a linear combination of bbttandL2. We ing. Taubin proposed to use a linear combinatiorLadindL o L

obtained interesting results like, for instance, amplification of low to amplify low frequencies in order to balance the natural shrink-
or middle frequencies to exaggerate large features (refer to [GSS99]ing. Unfortunately, the linear combination depends heavily on the
for a complete study of feature enhancement). It is not appropriate mesh in practice, and this requires fine tuning to ensure both stable
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€Y (b) (© (d)
Figure 4:Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations »dth= 1, (c) 1 implicit integration witthdt = 10that takes
only 7 PBCG iterations (30% faster), and (d) 20 passes ofkjyealgorithm, withA = 0.6307and p= —0.6732 The implicit integration
results in better smoothing than the explicit one for the same, or often less, computing time. If volume preservation is called for, our technique
then requires many fewer iterations to smooth the mesh thahghalgorithm.

and non-shrinking results. In this section, we propose an automaticfor fairing. Indeed, no parameters need be tuned to ensure stability
solution to avoid this shrinking. We preserve the zeroth moment, or to have exact volume preservation. This is a major advantage
i.e., the volume, of the object. Without any other information on over previous techniques. Yet, we retain all of the advantages of
the mesh, we feel it is the most reasonable invariant to preserve,previous methods, such as constraints [Tau95] and the possibility
although surface area or other invariants can be used. of accelerating the fairing via multigrid [KCVS98], while addition-
3.1 Volume computation ally offering stability and efficiency. This technique also dramati-

) . . . . cally reduces the computing time over Taubin’s anti-shrinking al-
As we have a mesh given in terms of triangles, it is easy to compute gorithm: as demonstrated in Figure 4(c) and 4(d), usinghtipe
the interior volume. This can be done by summing the volumes of 45 rithm may preserve the volume after fine tuning, but one itera-
all the oriented pyramids centered at a point in space (the origin, for 5 will only slightly smooth the mesh. The rest of this paper ex-

instance) and with a triangle of the mesh as a base. This computa- it hoth automatic anti-shrinking and implicit fairing techniques
tion has a linear complexity in the number of triangles [LK84]. For ;. o¢ar more accurate tools for fairing.

the reader’s convenience, we give the expression of the volume of

a mesh in the fO”OWing equation, WheK%XE andXE are the three 4 An accurate dlfoS|on process
vertices of thekth triangle:

1 NbFaces Up to this section, we have relied on the umbrella operator
V= z Ok - Nk (20) (Equ. (7)) to approximate the Laplacian on a vertex of the mesh.
6 & This particular operator does not truly represent a Laplacian in the
— (1 — yy2 Ay physical meaning of this term as we are about to see. Moreover,
whereg = (xg +X¢ +Xi3<')/3_) andNy =X A X simple experiments on smooth meshes show that this operator, us-
3.2 Exact volume preservation ing explicit or implicit integration, can create bumps or “pimples”
After an integration step, the mesh will have a new volifieWe on the surface, instead of smoothing it. This section proposes a

then want to scale it back to its original volure® to cancel the ~ sounder simulation of the diffusion process, by defining a new ap-
shrinking effect. We apply a simple scale on the vertices to achieve proximation for the Laplacian and by taking advantage of the im-
this. By multiplying all the vertex positions b§ = (VO/vM)1/3, plicit integration.

the volume is guaranteed to go back to its original value. As this

is a simple scaling, it is harmless in terms of frequencies. To putit 4-1 Inadequacy of the umbrella operator

differently, this scaling corresponds to a convolution with a scaled The umbrella operator, used in the previous sections corresponds
Dirac in the frequency domain, hence it amplifies all the frequen- to an approximation of the Laplacian in the case of a specific pa-
cies in the same way to change the volume back. The resulting rameterization [KCVS98]. This means that the mesh is supposed
filter, after the implicit smoothing and the constant amplification to have edges of length 1 and all the angles between two adjacent

filter, amplifies the low frequencies of the original mestekactly edges around a vertex should be equal. This is of course far from
compensate for the attenuation of the high frequencies, as sketchedbeing true in actual meshes, which contain a variety of triangles of
on Figure 3(b). different sizes.

The overall complexity for volume preservation is then linear. Treating all edges as if they had equal length has significant un-
With such a process, we do not need to tweak parameters: thedesired consequences for the smoothing. For example, the Lapla-
anti-shrinking filter isautomaticallyadapted to the mesh and to  cian can be the same for two very different configurations, corre-
the smoothing, contrary to previous approaches. Note that hardsponding to different frequencies as depicted in Figure 5. This dis-
constraints defined in the previous section are applied before thetorts the filtering significantly, as high frequencies may be consid-
scaling and do not result in fixed points anymore: scaling alters the ered as low ones, and vice-versa. Nevertheless, the advantage of
absolute, but not the relative position. _ o the umbrella operator is that it is normalized: the time step for inte-

We can generalize this re-scaling phase to different invariants. gration is always 1, which is very convenient. But we want a more
For instance, if we have to smooth height fields, it is more appropri- accurate diffusion process to smooth meshes consistently, in order
ate to take the invariant as being the volume enclosed between thero more carefully separate high from low frequencies.
height field and a reference plane, which changes the computations
only slightly. Likewise, for surfaces of revolution, we may change
the way the scaling is computed to exploit this special property. We
can also preserve the surface area if the mesh is a non-closed sur-
face. However, in the absence of specific characteristics, preserving
the volume gives nice results. According to specific needs, the user @ (b)

can select the appropriate type of invariant to be used. Figure 5: Frequency confusion: the umbrella operator is evalu-
3.3 Discussion ated as the vector joining the center vertex to the barycenter of its

When we combine both methods of implicit integration and anti- neighbors. Thus, cases (a) and (b) will have the same approximated
shrinking convolution, we obtain an automatic and efficient method Laplacian even if they represent different frequencies.



We need to define a discrete Laplacian which is scale dependent, y T LT T JsamplesongidA - "7 samplesof grid B «
to better approximate diffusion. However, if we use explicit inte-  osf : : 1 o :
gration [Tau95], we will suffer from a very restricted stability crite- el
rion. Itis well known [PTVF92] that the time step for a parabolic
PDE like Equ. (6) depends on the square of the smallest length scale > - . 1o
(here, the smallest edge lengittin(|€])): wh . R
min(|€])? o ¥ T R T
) () (b)
Erer  Gian e > — X
This limitation is a real concern for large meshes with small de-  ***| GridB, reguiar FD - |
tails, since an enormous number of integration steps will have to ™" Graenended P X O
be performed to obtain noticeable smoothing. Thisigactablein ]
practice. | Xup @
With implicit integration explained in Section 2, we can over- 1 X ‘ ‘ '
come this restriction and use a much larger time step while still =t 1 53—
- - - - - - 0 L n L n L S u u U

achieving good smoothing, saving considerable computation. In L -1 i 1
the next two paragraphs we present one design of a good approxi- (©) (d)
mation for the Laplacian. Figure 6: Test on the heat equation: (a) regular sampling vs. (b)

. . . irregular sampling. Numerical errors in one step of integration (c):
4.2 Simulation of the 1D heat equation using the usual FD weight on an irregular grid to approximate sec-

T_he 1D case of a diffusion equation cor_responds_ to the heat equa-ond derivatives creates noise, and gives a worse solution than on
tion x = Xxuu. It is therefore worth considering this example as a the coarse grid, whereas extended FD weights offer the expected
test problem for higher dimensional filtering. To do so, we use pehavior. (d) Three unevenly spaced samples of a function and cor-

Milne’s test presented in [Mil95]. Milne compared two cases of responding quadratic fitting for extended FD weights.
the same initial problem: first, the problem is solved on a regular

mesh on0, 1], and then on an irregular mesh, taken to consist of a compute them initially using the current edges’ lengths and keep
uniform coarse grid of cells of@, 1] with each of the cells i;@% 1 their values constant during the PBCG iterations. In practice, we
subdivided into two fine cells as depicted in Figure 6(a) and 6(b). have not noted any noticeable drawbacks from this linearization.
With such a configuration, classical finite difference coefficients for We can even keep the same coefficients for a number of (or all)
second derivatives can be used on each cell, except for the middleiterations: it will correspond to a filtering “relative” to the initial
one which does not have centered neighbors. Milne shows that if mesh instead if the current mesh. For the same reason as before, we
no particular care is taken for this “peripheral” cell, it introduces a also recommend the use of the second Laplacian for higher qual-
noise ternthat creates large inaccuracies — larger than if the mesh ity smoothing without significant increase in computation time. As
was represented uniformly at the coarser resolution! But if we fit demonstrated in Figure 7, the scale-dependent umbrella operator
a quadratic spline at this cell to approximate the second derivative, deals better with irregular meshes than the umbrella operator: no
then the noise source disappears and we get more accurate resul§purious artifacts are created. We also applied this operator to noisy
than with a constant coarse resolution (see the errors created in eackata sets from 3D photography to obtain smooth meshes (see Fig-
case in one iteration of the heat equation in Figure 6(c)). ureland12).

This actually corresponds to the extension of finite difference  The number of iterations needed for convergence depends heav-
computations for irregular meshes proposed by Fornberg [For8sg]: ily on the ratio between minimum and maximum edge lengths. For
to compute the FD coefficients, just fit a quadratic function at the typical smoothing and for meshes over 50000 faces, the average
sample point and its two immediate neighbors, and then return number of iterations we get is 20. Nevertheless, we still observe
the first and second derivative of that function as the approximate undeswed behawor on flat surfaces: vertices in flat areas still slide
derivatives. For three points spack@ndd apart (see Figure 6(d)), ~ during smoothing. Even though this last formulation generally re-
we get the 1D formula: duces this problem, we may want to keep a flat antact The

next section tackles this problem with a new approach.
(Xa)i = 2 (Xa_rX.- N Xa+1fx.-> .

BTN A 5 Curvature flow for noise removal
Note that wher = o, we find the usual finite difference formula. |, terms of differential equations, diffusion is a close relative of
4.3 Extension to 3D curvature flow. In this section, we first explore the advantages of

h brell frors T hi bl ] . using curvature flow over diffusion, and then propose an efficient
The umbrella operator suffers from this problem of large inaccura- algorithm for noise removal using curvature flow.

cies for irregular meshes as the same supposedly constant parame-

terization is used (Figure 7 shows such a behavior). Surprisingly, ; ;

a simple generalization of the previous formula valid in 1D corre- 0.1 lefu§|on vs. curvature flow

sponds to a known approximation of the Laplacian. Indeed, Fuji- The Laplacian of the surface at a vertex has both normal and tan-

wara [Fuj95] presents the following formula: gential components. Even if the surface is locally flat, the Lapla-
cian approximation will rarely be the zero vector [KCVS98]. This

2 Xj = Xi . introduces undesirable drifting over the surface, depending on the
L (%) = E. Z el with E = ) z ) l&jl- (A1) parameterization we assume. We in effect fair the parameterization
jeNu() ™M JEN(i) of the surface as well as the shape itself (see Figure 10(b)).

. We would prefer to have a noise removal procedure that does not
where|g;| is the length of the edgﬂl)- Note that, when all edges  depend on the parameterization. It should use owthynsic prop-
are of size 1, this reduces to the umbrella operator (7). We will then erties of the surface. This is precisely what curvature flow does.
denote this new operator as theale-dependent umbrella operator  Curvature flow smoothes the surface by moving along the surface

Unfortunately, the operator is no longer linear. But during atypi- normaln with a speed equal to the mean curvafire
cal smoothing, the length of the edges does not change dramatically.

We thus make the approximation that the coefficients of the matrix Ax;

A= (I —AdtL) stay constant during an integration step. We can o —Ki n;. (12)



area of all the triangles of the 1-ring neighbors as sketched in Fig-
ure 9(a). Note that this ardauses cross products of adjacent edges,
and thus implicitly contains information on local normal vectors.
The complete derivation from the continuous formulation to the dis-
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S crete case is shown in Appendix B. We find the following discrete
N expression through basic differentiation:
=~ 1
—Kn= % z (cotaj +cot Bj)(xj —Xi) (14)

‘ QLY A jeNy(i)
(@) (b) (©) (d)

Figure 7:Application of operators to a mesh: (a) mesh with differ-
ent sampling rates, (b) the umbrella operator creates a significant
distortion of the shape, but (c) with the scale-dependent umbrella
operator, the same amount of smoothing does not create distortion
or artifacts, almost like (d) when curvature flow is used. The small
features such as the nose are smoothed but stay in place.

whereaj andB; are the two angles opposite to the edge in the
two triangles having the edg®; in common (as depicted in Fig-
ure 9(b)), andA is the sum of the areas of the triangles havipgs

a common vertex.

Xi

Other curvatures can of course be used, but we will stick to the
mean curvaturek = (K1 +Kz)/2 in this paper. Using this proce-
dure, a sphere with different sampling rates should stay spherical X,
under curvature flow as the curvature is constant. And we should X; Xin
also not get any vertex “sliding” when an area is flat as the mean (a) (b)
curvature is then zero. _ Figure 9:A vertex xand its adjacent faces (a), and one term of its
There are already different approaches using curvature cyryature normal formula (b).
flow [Set96], and even mixing both curvature flow and volume
preservation [DCG98] to smooth object appearance, but mainly in  Note the interesting similarity with [PP93]. We obtain almost
the context of level-set methods. They are not usable on a mesh aghe same equation, but with a completely different derivation than
is. Next, we show how to approximate curvature consistently on a theirs, which was using energies of linear maps. The same remark
mesh and how to implement this curvature flow process with our stands for [DCDS97] since they also find the same kind of expres-
implicit integration for efficient computations. sion as Equ. (14) for their functional, but using this time piecewise
linear harmonic functions.

5.2 Curvature normal calculation .
5.3 Boundaries

It seems that all the formulations so far have a non-zero tangential . .
component on the surface. This means that even if the surface is flat~0r hon-closed surfaces or surfaces with holes, we can define a spe-
around a vertex, it may move anyway. For curvature flow, we don't cial treatment for vertices on boundaries. The notion of mean cur-
want this behavior. A good idea is to check the divergence of the vature does not make sense for such vertices. Instead, we would
normal vector, as it is the definition of mean curvatute=(div n): like to smooth the boundary, so that the shape of the hole itself
if all the normals of the faces around a vertex are the same, this 9ets rounder and rounder as iterations go. We can then use for in-
vertex should not move then (zero curvature). Having this in mind, Stance Equ. (11) restricted to the two immediate neighbors which
we have selected the following differential geometry definition of Will smooth the boundary curve itself.

the curvature normak n: Another possible way is to create a virtual vertex, stored but not
displayed, initially placed at the barycenter of all the vertices placed
OA on a closed boundary. A set of faces adjacent to this vertex and con-
SA Kn (13) necting the boundary vertices one after the other are also virtually
created. We can then use the basic algorithm without any special
whereA is the area of a small region around the pdntvhere treatment for the boundary as now, each vertex has a closed area

the curvature is needed, aftiis the derivative with respect to the ~ around it.
(x,Y,2) coordinates oP. With this definition, we will have the zero )
vector for a flat area. As proven in Figure 8, we see that moving the 5.4  Implementation

center vertexq on a flat surface does not change the surface area. Similarly to Section 4, we have a non-linear expression defining

On the other hand, moving it above or below the plane will always the curvature normal. We can however proceed in exactly the same
increase the local area. Hence, we have the desired property of ayay, as the changes induced in a time step will be small. We simply
null area gradient for a locally flat surface, whatever the valence, compute the non-zero coefficients of the matrixAdtK, whereK

the aspect ratio of the adjacent faces, or the edge lengths around theepresents the matrix of the curvature normals. We then succes-
vertex. sively solve the following linear system:

X

X %% @ (I = AdtK) XML = X",

We can use preconditioning or constraints, just as before as every-
thing is basically the same except for the local approximation of
Figure 8: The area around a vertex ¥ying in the same plane as  the speed of smoothing. As shown on Figure 10, a sphere with dif-
its 1-ring neighbors does not change if the vertex moves within the ferent triangle sizes will remain the same sphere thanks to both the
plane, and can only increase otherwise. Being a local minimum, curvature flow and the volume preservation technique.
it thus proves that the derivative of the area with respect to the  In order for the algorithm to be robust, an important test must be
position of x is zero for flat regions. performed while the matriK is computed: if we encounter a face
of zero area, we must skip it. As we divide by the area of the face,

To derive the discrete version of this curvature normal, we se- degenerate triangles are to be treated specially. Mesh decimation
lect the smallest area around a vertgthat we can get, namely the  to eliminate all degenerate triangles can also be used as suggested
in [PP93].




we developed a curvature flow process. The same implicit inte-
gration is used for this new operator that now offers a smoothing
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i A only depending on intrinsic geometric properties, without sliding
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on flat areas and with preserved curvature for constant curvature ar-
eas. The user can make use of all these different tools according to
the mesh to be smoothed.

We believe the computational time for this approach can still

@) (b) © (d) be improved upon. We expect that multigrid preconditioning for

Figure 10:Smoothing of spheres: (a) The original mesh containing the PBCG in the case of the scale-dependent operator for diffu-
two different discretization rates. (b) Smoothing with the umbrella sion and for curvature flow would speed up the integration process.
operator introduces sliding of the mesh and unnatural deformation, This multigrid aspect of mesh fairing has already been mentioned
which is largely attenuated when (c) the scale-dependent version isin [KCVS98], and could be easily extended to our method. Like-

used, while (d) curvature flow maintains the sphere exactly. wise, subdivision techniques can be directly incorporated into our
method to refine or simplify regions according to curvature for in-
5.5 Normalized version of the curvature operator stance. Other curvature flows, for example along the principal cur-

We can now write the equivalent of the umbrella operator, but for Vature directions, are also worth studying.

the curvature normal. Since the new formulation has nice proper- Acknowledgements
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Figure 12: Faces: (a) The original decimated Spock mesh has 12,000 vertices. (b) We linearly oversampled this initial mesh (every visi-
ble triangle on (a) was subdivided in 16 coplanar smaller ones) and applied the scale-dependent umbrella operator, observing significant

smoothing. One integration step was us&dt = 10, converging in 12 iterations of the PBCG. Similar results were achieved using the

curvature operator. (c) curvature plot for the mannequin head (obtained using our curvature operator), (d) curvature plot of the same mesh

after a significant implicit integration of curvature flow (pseudo-colors).

[WW94]  Willian Welch and Andrew Witkin. Free-form shape design using triangu- Now, we take the neighboring area as being the union of the
lated surfaces. IBIGGRAPH 94 Conference Proceedingmsges 247-256, adjacent faces. The total adjacent afeis then equal to the sum
July 1994. of every adjacent face’s areA: = 5,A,, the area of each adjacent
Appendlx face being: A, = 1/|PQ" x PQ*1||. So, using Einstein summation
A Preconditioned Bi-Conjugate Gradient notation [Barg9], we have:

. . ; . . . 1
In this section, we enumerate the different implementation choices A2 =g POPPOMLg . PO PONHL
we made for the PBCG linear solver. 1 = 4 PQTPQL eim PO PO

A.1 Preconditioning whereg;ji is the permutation symbol. Using the Kronecker delta
A good preconditioning, and particularly a multigrid precondition-  &;;, and usingg% = &iq as well as] = 0/dPy, we derive:
ing, can drastically improve the convergence rate of conjugate gra- d

dient solver. The umbrella operator (7) has all its eigenvalues in  gA? oA

[—1,0]: in turn, the matrixA is always well conditioned for typical Py = 2A Py

values ofAdt. In practice, the simpler the conditioning the better. 1

In our examples, we used the usual diagonal preconditiéneth: = ZEikEim [— 3jq P PQPQL ™ — &g PQ PQ PQ!
Ai = 1/A;i, which provides a significant speedup with almost no

overhead. —84 PQ} PQLH PQR! — 8 PQ PQ ! PQF“]

A.2 Convergence criterion Using thee-3 rule statingg;jk&iim = 8ji Skm — djmdxi, We obtain:
Different criteria can be used to test whether or not further iterations 542 1

are needed to get a more accurate solution of the linear system. ﬁ = 3 [f [IPQ™ L2 PQ"+ (PQ"- PQ™Y) PQM1

We opted for the following stopping criterion after several tests: q

[[AX™L — X"|| < €]|X"||, where]|.|| can be either th&, norm, or, if —IPQ|)2 PQ L+ (PQL.PQY) an]

high accuracy is needed, the norm. q

A.3 Memory requirements = %[(PQ"“-Q"“Q”) PQ"+(PQ"-Q"Q™) PQ"“]q-

An interesting remark is that we don’t even need to store the matrix .
Ain a dedicated data structure. The mesh itself provides a sparse Consequently:
matrix representation, as the vertgxand its neighbors are the only

(et . : ; 0A; 1

non-zero locations in for rowi. Computations can thus be carried ™ _ -~ +1_ An+1An o Ue Lia +1
directly within the mesh structure. Computing can be imple- oP  4A ((PQn QNP+ (PQ QM) PQ! )
mented by gathering values from the 1-ring neighbors of each ver- . . (15)
tex, whileATX can be achieved by “shooting” a value to the 1-ring  Using Equ. (13), we find:
neighbors.

With these simple setups, we obtain an efficient linear solver for OA 1 oA (16)
the implicit integration described in Section 2. 2A " 2A IZ oP

B Curvature normal approximation From equations (15) and (16), we find the equations used in Sec-
From the continuous definition of the curvature normal (Equ. (13)), tion 5.2 since the dot product &Q" by Q"Q"* divided by their

we must derive a discrete formulation when the surface is given as cross product simplifies into a cotangent.

a mesh. Let's consider a poift of the mesh. Its neighbors, in

counterclockwise order arouri®] are the point§Q"}. An adjacent

face is then of the forn?,Q",Q™1. The edge vectoPQ" is the

difference betwee®" andP:

PQ'=Q"-P
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ABSTRACT

A number of static and multi-resolution methods have been introduced in recent years to compress 3D meshes. In most of
these methods the connectivity information is encoded without loss of information, but user-controllable loss of information
is tolerated while compressing the geometry and property data. All these methods are very efficient at compressing the con-
nectivity information, in some cases to a fraction of a bit per vertex, but the geometry and property data typically occupies
much more room in the compressed bitstream than the compressed connectivity data. In this paper we investigate the use of
polynomial linear filtering as studied in [Taubin95, TazhGo96], as a global predictor for the geometry data of a 3D mesh in
multi-resolution 3D geometry compression schemes. Rather than introducing a new method to encode the multi-resolution
connectivity information, we choose one of the efficient existing schemes depending on the structure of the multi-resolution
data. After encoding the geometry of the lowest level of detail with an existing scheme, the geometry of each subsequent
level of detail is predicted by applying a polynomial filter to the geometry of its predecesor lifted to the connectivity of the
current level. The polynomial filter is designed to minimize the [ 2-norm of the approximation error but other norms can be
used as well. Three properties of the filtered mesh are studied next: accuracy, robustness and compression ratio. The Zeroth
Order Filter (unit polynomial) is found to have the best compression ratio. But higher order filters achieve better accuracy and
robustness properties at the price of a slight decrease of the compression ratio.

1 Introduction

Polygonal models are the primary 3D representations for the manufacturing, architectural, and entertainment industries. They
are also central to multimedia standards such as VRML and MPEG-4. In these standards, a polygona mode! is defined by the
position of its vertices (geometry); by the association between each face and its sustaining vertices (connectivity); and optional
colors, normals and texture coordinates (properties).

Severa single-resolution [TaR098, LiKuo98] and multi-resolution methods [Hoppe96, PoH097, TaGuHoL a98, Ross99]
have been introduced in recent years to represent 3D meshes in compressed form for compact storage and transmission over
networks and other communication channels. In most of these methods the connectivity information is encoded without loss
of information, and user-controllable loss is tolerated while compressing the geometry and property data. In fact, some of
these methods only addressed the encoding of the connectivity data [GuSt98]. Multi-resolution schemes reduce the burden
of generating hierarchies of levels on the fly, which may be computationally expensive, and time consuming. In some of the
multi-resolution schemes the levels of detail are organized in the compressed data in progressive fashion, from low to high
resolution. This is a desirable property for applications which require transmission of large 3D data sets over low bandwith
communication channels. Progressive schemes are more complex and typically not as efficient as single-resolution methods,
but reduce quite significantly the latency in the decoder process.

In this paper we investigate the use of polynomial linear filtering [Taubin95, TazhGo96], as a global predictor for the
geometry data of a 3D mesh in multi-resolution 3D geometry compression schemes. As in other multi-resolution geometry
compression schemes, the geometry of a certain level of detail is predicted as a function of the geometry of the next coarser
level of detail. However, other 3D geometry compression schemes use simpler and more localized prediction schemes.

*Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, USA, rvbalan@scr.siemens.com. This paper was written while the
first author was a postdoctoral associate at IBM (T.J.Watson Research Center) and IMA (University of Minnesota)
TIBM T.J.Watson Research Center, PO.Box 704, Yorktown Heights, NY 10598, taubineus . ibm.com



Although we concentrate on the compression of geometry data, property data may be treated similarly. The methods
introduced in this paper apply to the large family of multi-resolution connectivity encoding schemes. These linear filters are
defined by the connectivity of each level of detail and a few parameters, which in this paper are obtained by minimizing a
global criterion related to certain desirable properties. Our simulations present the least square filters compared with some
other standard filters.

In [PaR099] the Butterfly subdivision schemeis used for the predictor. In [GuSwSc99], a specia second order local crite-
rion is minimized to refine the coarser resolution mesh. Thelatter class of algorithms have concentrated on mesh simplification
procedures and efficient connectivity encoding schemes. For instance in the Progressive Forest Split scheme [TaGuHoL a9g],
the authors have used a technique where the sequence of splitsis determined based on the local volume conservation criterion.
Next, the connectivity can be efficiently compressed as presented in the aformentioned paper or asin [R0ss99].

Mesh simplification has been also studied in a different context. Several works address the remeshing problem, usually
for editing purposes. For instance in [Eck&all95] the harmonic mapping is used to resample the mesh. Thus the remashing
is obtained by minimizing a global curvature-based energy criterion. A conformal map is used in [Lee& all98] for similar
purposes, whereas in [MaYaVe93] again a global length based energy criterion is used to remesh.

The organization of the paper is the following: in section 2 we review the mesh topology based filtering and introduce the
basic notions; in section 3 we present two geometry encoding algorithms; in section 4 we analyze three desirable properties,
accuracy, robustness and compression ratio; in section 5 we present numerical and graphical results; finally, the conclusions
are contained in section 6 and are followed by the bibliography.

2 Mesh Topology Based Filtering

Consider amesh (V, F) given by alist of vertex coordinates V (the mesh geometry) of thenV” vertices, and alist of polygonal
faces F (the mesh connectivity). The mesh geometry can be thought of as a collection of three vectors (z, y, z) of length nV
containing, respectively, the three coordinates of each vertex; aternatively we can see V as representing a collection of nV'
vectors (rg,r1,- - ., Ty ) Of length 3, each of them being the position vector of some mesh vertex. To the list F we associate
the symmetricnV x nV vertex to vertex incidence matrix M, and thenV x nV matrix K defined by:

K=1-DM 1)

where D isthenV x nV diagonal matrix whose (i, i) element is the inverse of the number of first order neighbors the vertex
i has. Asshown in [Taubin95], K hasnV real eigenvaluesall in theinterval [0, 2].

Consider now acollection P = (P,(X), P,(X), P,(X)) of three polynomials each of degree d, for some positive integer
d.

Definition We call P a polynomial filter of length d + 1 (and degree or order d), where its action on the mesh (V, F) is
defined by anew mesh (V', F) of identical connectivity but of geometry V' = (z', ', ') given by:

o' =P(K)z , y =Py(K)y , 2/ =P,(K)z @)

A rational filter (@), P) of orders (m,n) is defined by two collections of polynomials (Q ., @y, Q) and (P,, Py, P.) of

degrees mn, respectively n, whose action on the mesh (), F) is defined by the new mesh (V', F) through:

Q.(K)z' = P,(K)z , Qu(K)y' =P,(K)y , Q.(K)z' = P.(K)z (3

To avoid possible confusions, we assume @, (K), Q,(K) and Q. (K) invertible. We point out the filtered mesh has the same
connectivity asthe original mesh; only the geometry changes. Note also thefilter works for non-manifold connectivity aswell.

In this report we consider only polynomial filters, i.e. rationa filters of the form (1, P). In [DeMeScBa99], the authors
considered the case (@, 1). Note the distinction between polynomial and rational filters is artificial. Indeed, any rational
filter is equivalent to a polynomial filter of length nV/, in general, and in fact, any polynomial filter of degree larger than nV'
is equivalent to a polynomial filter of degree at most nV' — 1. These facts are results of the Cayley-Hamilton theorem (see
[FrinSp79], for instance) that says the characteristic polynomial of K vanishes when applied on K. Therefore:

QK) ' P(K) = Py(K) (4)

for some polynomial P, of degree at most nV' — 1. Hence the notion of 1IR (Infinite Impulse Response) filter does not have
any correspondencein the mesh topol ogy based filtering, because any polynomial of higher order or rational filter is equivalent
to a polynomial filter of degree at most nV' — 1, thus a FIR (Finite Impulse Response) filter. However, the difference between



polynomial and rationa filters laysin their implementation. The polynomial filter is easily implemented by aforward iteration
scheme. The rational filter can be implemented by a forward-backward iteration scheme:

w = Py(K)z )
Q.(K)r' = w

involving the solution of alinear system of size nV. For small degrees m,n compared to nV (when the rational form has an
advantage), the backward iteration turnsinto a sparse linear system, and thus efficient methods can be applied to implement it.

Two particular filtering schemes are of special importance to us and are studied next. Thefirst schemeis called the Zeroth
Order Filter and is simply defined by the constant polynomial 1:

Pz(X) =(1,1,1) (6)

Technically speaking, with the order definition given before, thisis a zero order filter, but the most general form of zero order
filters would be constant polynomials, not necessary 1. However, throughout this paper we keep this convention to call the
constant polynomial 1, the Zeroth Order Filter. Note its actionistrivial: it does not change anything.

The second distinguished filtering scheme is called Gaussian Smoothing and it is afirst order filter defined by:

Pe(X)=(1-X,1-X,1-X) (7)
Using the definition of K and the filter action on the mesh geometry, the geometry of the Gaussian filtered mesh is given by:
=DMz , y =DMy , 2’ =DMz (8

which turns into the following explicit form (using the position vectorsr ; and the first order neighborhood i * of vertex 4):
/ 1
Ty = W Z T ®)

In other words, the new mesh geometry is obtained by taking the average of the first order neighbors positions on the original
mesh.

3 TheProgressive Approximation Algorithms

In Progressive Transmission schemes, the original mesh is represented as a sequence of succesively simplified meshes obtained
by edge collapsing and vertex removal. Many simplification techniques have been proposed in the literature. For instancein
[TaGuHoL a98] the Progressive Forest Split method is used. It consists of partitioning the mesh into disjoint patches and in
each patch a connected sequence of edge collapsing is performed.

The meshes we are using here have been simplified by a clustering procedure. First all the coordinates are normalized so
that the mesh is included in a 3D unit cube. Next the cube is divided along each coordinate axis into 2 £ segments (B is the
quantizing rate, representing the number of bits per vertex and coordinate needed to encode the geometry), thus obtaining 2 38
smaller cubes. In each smaller cube all the edges are collapsed to one vertex placed in the center of the corresponding cube.
The mesh such obtained represents the quantized mesh at the finest resolution level. The coarsening process proceeds now
as follows: 23K smaller cubes are replaced by one of edge size 2% times bigger, and all the vertices inside are removed and
replaced by one placed in the middle of the bigger cube. Next, the procedure is repeated until we obtain a sufficiently small
number of vertices (i.e. a sufficient coarse resolution).

At each level of resolution, the collapsing ratio (i.e. the number of vertices of the finer resolution, divided by the number
of vertices of the coarser resolution) is not bigger than 23X . In practice, however, this number could be much smaller than this
bound, in which case some levels may be skipped. After [ steps, the number of bits needed to encode one coordinate of any
such vertex is B — [ K. Thus, if we consider al the levels of detail and a constant collapsing ratio R, the total number of bits
per coordinate needed to encode the geometry becomes:

Mb:NB+%(B—K)+£(B—2K)+---+%(B—LK)

RZ
where N is the initial number of vertices and L the numbers of levels. Assuming ﬁ < 1 we obtain M, = NB% +
NK ﬁ. Thus, the number of bits per vertex (of initial mesh) and coordinate turns into:

R K

Nbitsz (B+R_1

o1 ) [bits/vertex - coordinate] (10)




Thus, if we quantize the unit cube using B = 10 bits and we resample at each level with a coarsening factor of 2% = 2
and a collapsing ratio R = 2, we obtain the sequence has B/K = 10 levels of details encoded using an average of 22
bits/vertex - coordinate, or 66 bits /vertex (including al three coordinates). Thus a single resolution encoding would require
only B (10, in this example) bits per vertex and coordinate in an uncompressed encoding. Using the clustering decomposition
algorithm, the encoding of all levels of details would require N ;s (given by (10)), about 22 in this example, which is more
than twice the single resolution rate.

In this scenario no information about the coarser resolution mesh has been used to encode the finer resolution mesh. In a
progressive transmission, the coarser approximation may be used to predict the finer approximation mesh and thus only the
differences should be encoded and transmitted. Moreover, the previous computations did not take into account the internal
redundancy of the bit stream. An entropic encoder would perform much better than (10). In this paper we do not discuss the
connectivity encoding problem, since we are interested in the geometry encoding only. Yet, we assume at each level of detail
the decoder knows the connectivity of that level mesh.

Suppose that

(Meshpr,—1, mapnr,—2nr—1, Meshpr—2, mappr—3 nL—2, - - ., mapi 2, Meshy, mapo 1, Meshg)

is the sequence of meshes obtained by the coarsening algorithm, where Mesh 1,1 is the coarsest resolution mesh, Meshy
the finest resolution mesh, and map;_1, : {0,1,...,nV;_; — 1} = {0,1,...,nV; — 1} isthe collapsing map that associates
to the nV;_; vertices of the finer resolution mesh the nV; vertices of the coarser resolution mesh where they collapse. Each
mesh Mesh; has two components (Geomn,, Conn;), the geometry and connectivity respectively, as explained earlier. We are
concerned with the encoding of the sequence of geometries

(Geompr,—1,Geomyr—s, . ..,Geomy, Geomy).

Our basic encoding agorithm is the following:
The Basic Encoding Algorithm
Sep 1. Encode Geom,,,1, 1 using an entropic or arithmetic encoder;
Sep 2. Forl = nL — 1 down to 1 repeat:
Sep 2.1 Based on mesh Mesh,; and connectivity Conn;_; find a set of parameters Param;_, and construct a predictor
of the geometry Geom;_1:

Geom;_1 = Predictor(Mesh;, Conni_1, map;—1 1; Param;_1)

Sep 2.2 Encode the parameters Param;_1; .
Sep 2.3 Compute the approximation error Dif f; 1 = Geom;_1 — Geom;_; and encode the differences. <&
The decoder will reconstruct the geometry at each level by simply adding up the differenceto his prediction:

Geomy_1 = Predictor(Mesh;, Conn;_1, map;_1,; Param;_1) + Dif fi_1

Itisclear that different predictorsyield different performanceresults. In the next section we present several desirable properties
of the encoding scheme.
The data packet structure is represented in Table 1.

| Meshnp—1 | Mapni—2.n.-1&Conn,, s | Paramy,—s | Dif fan—2 | -+

| Mapy 1&Conng | Paramg | Dif fy |

Table 1: The data packet structure for the basic encoding algorithm

The Predictor consists of applying the sequence of operators extension, where the geometry of level [ is extended to level
[ — 1, and update, where the geometry is updated using a polynomial filter whose coefficients are called parameters of the
predictor and whose matrix is the finer resolution incidence matrix K; ;.
The extension step is straightforwardly realized using the collapsing maps:
rﬁ—l;ezt = rinap,,l,,(i) (12)
Thusthefirst “prediction” of the new vertex i is on the same point whereit collapses, i.e. the position of the vertex map ;1 4 (%)
in mesh [. Next, the updating step is performed by polynomial filtering as in (2). The filter coefficients are the predictor



parameters and have to be found and encoded. On each coordinate we use a separate filter. In the next section we introduce
different criteriato measure the prediction error associated to a specific property. In [TaGuHoLa98] Taubin filters (i.e. of the
form P(X) = (1 — AX)(1 + pX)) have been used as predictors, but no optimization of the parameters has been done. Here
we use more general linear filters taking into account several performancecriteria as well.

More speific, let us denote by ! ~"“** the nV;_, -vector of z-coordinates obtained by extension (11), and by «: !~'5#»dt the
filtered vector with the polynomial P, (X) = Y.¢_, ¢ X* of degreed,

xl—l;updt — Pw(Kl_l)xl—l;eact (12)

Let r'—1 denotethenV;_; x 3 matrix containing all the coordinatesin the natural order, !~* = [z!~1|y!~1|2!~1]. Similar for
ri=liurdt Theupdateis our prediction for the geometry Geom ;_:. Thenthe coefficients are chosen to minimize some ! ”-norm
of the prediction error:

min Jl—l — ”,,,l—l _ T'l_l;uPdt||lp (13)
Filters Coef ficients

Note the optimization problem decouplesinto 3 independent optimization problems, because we allow different filters on each
coordinate. The polynomial P, (X) can be represented either in the power basis, i.e. P,(X) = ZZ:O cx X*, or in another

basis. We tried the Chebyshev basis aswell, in which case P, (X) = ZZZO cxTr (X)) with T}, the k" Chebyshev polynomial.
On each coordinate, the criterion .J!~* decouples as follows:

Jl_l = ||(Jali_17‘]‘15_15‘];l;_1)||lp ’ Ji_l = ||ch.€v_1 - 37l_1||zp ’ in_l = ||Aycé_1 - yl_1||lp I Jé_l = ||Azclz_1 - Zl_l”lp I

(14)
wherethenV x d + 1 matrix A, iseither
Az — [xl—l;updt|Kl_1xl—1;updt| L |Kld71xl—1;updt] (15)
in the power basis case, or
Az — [Z’l_l;uPdt|T1 (Klil)ml—l;updt| . |Td(Kl,1)£L'l_1;uPdt] (16)

in the Chebyshev basis case. ¢/~ isthe d + 1 - vector of the z-coordinate filter coefficients and z!~* the nV;_, -vector of the
actual z-coordinatesall computed at level [ — 1. Similar for 4, 4., ¢, c,, andy' =1, 2! =1,

The Basic Encoding Algorithm can be modified to a more general context. The user may select the levels for which the
differences are sent. Then, for those levels the differences are not sent, the extension step to the next level has to use the
predicted valuesinstead of the actual values of the current level. In particular we may want to send the differences starting with
level nL — 1 and going down to some level S + 1; then, from level .S down to level 0 we do not send any difference but just
the parameters, excepted for the level 0 when we send the differencesas well. The algorithm just described is presented next:

The Variable Length Encoding Algorithm

Sep 1. Encode Mesh,,r,_1;

Sep 2. For! =nL — 1 downto S repeat:

Sep 2.1 Estimate the parameters Param;_, by minimizing .J'~!, where the predictor uses the true geometry of level I,
Geomy:
Geomy_1 = f(Conny, Conny_1, map;_1,, Geomy; Param;_1)

Sep 2.2 Encode the parameters Param;_1;
Sep2.31f [ £ S, encode the differences Dif f,_1 = Geomy_1 — Geomy_1 ;
Sep3. For/ =S —1downtol
Step 3.1 Estimate the parameters Param;—; by minimizing J'~! where the predictor uses the estimated geometry of level

Geomy_1 = f(Conny,Conny_1,map;_1, Geomy; Param;_)

Sep 3.2 Encode the parameters Param;_1;
Sep 4. Using the last prediction of level 0, encode the differences, Dif fo = Geomo — Geomg. <
In this case the data packet structure is the one represented in Table 2. In particular, for S = nL only the last set of
differencesis encoded. This represents an alternative to the single-resolution encoding scheme.



| Meshn—1 | Mapnp—n0-1&Conn, o | Paramyy o | Diffar—2 | -+ | Mapsis241&Conn,q

| Paramg4q | Diffsi1 | Mapgy1,:&Conns | Paramg | Maps s—1&Conng_q | Paramg_1 |

| Maps 1&Conny | Param, | Mapy 1&Conng | Paramy | Dif fy |

Table 2; The data packet structure for the variable encoding algorithm

4 Desired Properties

In this section we discuss three properties we may want the encoding scheme to possess. The three peoperties, accuracy,
robustness, compression ratio, yield different optimization problems all of the type mentioned before. The [ P-norm to be
minimized is different in each case. For accuracy the predictor has to minimize the > norm, for robustness the /2 norm should
be used, whereas the compression ratio is optimized for p € [1,2] in general. Thus a sensible criterion should be a trade-off
between these various norms. Taking the computational complexity into account, we have chosen the [ 2-norm as our criterion
and in the following section of exampleswe show several results we have obtained.

4.1 Accuracy

Consider the following scenario: Suppose we choose S = nL, the number of levels, in the Variable Length Encoding Al-
gorithm. Suppose also the data block containing the level zero differencesis lost (note this is the only data block containing
differences because S = n.L) Inthis case we would like to predict the finest resolution mesh as accurately as possible based on
the available information. Equivalently, we would like to minimize the distance between Mesh o and the prediction Meshy,
under the previous hypotheses. There are many ways of measuring mesh distances. One such measure is the Haussdorf
distance. Although it describes very well the closeness of two meshes, the Haussdorf distance yields a computational expen-
sive optimization problem. Instead of Haussdorf distance one can consider the maximum distance between vertices (i.e. the
[>°-norm, see [Al& all88)):
o= __max [Ir? —#df = [Ir® - ||
0<i<nVp—1

Note the [°°-norm is an upper bound for the Haussdorf distance. Consequently ¢ , controls the meshes closeness as well. As
mentioned in the previous section, the optimization problem (13) decouplesin three independent optimization problems. For
p = oo, these have the following form:

inf [|Ac b @)

where A was introduced by (15) and (16), depending on the basis choice, ¢ is the n f-vector of unknown fiter coefficients, and
bisoneof thethreevectorsz, y or z. For0 < i <nV —1,0<j < fL—1, A = [a], b = (b;) andwriting ¢; = f; — g;
with f; > 0, the positive part, and g; > 0, the negative part of c¢; (thus at least one of them is always zero), the optimization
problem (17) turnsinto the following linear programming problem:

d
max [~w—¢ Zj:o(fj + 9] (18)
w, f5,95,0i,vi
subject to : w, fi,95,ui,v; >0

bi=ui+ g ai; (fi — g;) —w
bi = —v; +E?=0 aij(fi = 9) +w

with & a small number to enforce at least one of f; or g; to be zero (for instance e = 10~°). With the standard simplex
algorithm, this problem requires the storage of a (2nV + 2) x (2nV + 2d + 2)-matrix (the so called tableaux) which is
prohibitive for large number of vertices (nV of order 10, for instance). In any case, the moral of this subsection isto point out
that the more accurate predictor is the one that achieves alower [ °°-norm error.

4.2 Robustness

Consider now the following scenario: the differences associated to the prediction algorithm are not set to zero but perturbed
by some random quantities. This may be due to several causes. We can either imagine irretrievable transmission errors or
even a resampling process at the transmitter to reduce the code length of the entire object. In any case we assume the true
difference d; is perturbed by some stochastic process ;. Thus the reconstructed geometry has the form !~ tireconstr —

i



ot~ BuPdt 4 i f £ + v;. We assume the perturbations are about of the same size as the prediction differences. Next suppose we
want to minimizein average the effect of these perturbations. Then one such criterionisthe noisevariance E[v ?]. Assumingthe
stochastic processis ergodic, it follows the noise variance can be estimated by the average of al the coordinate perturbations;
EV] =+ Ef; 51 v?. Next, since the perturbation is of the same order as the prediction error, the later term can be replaced
by the average of the differences. Hence we want to minimize:

1 N—-1
E[v}] ~ N > d;
i=0

This showsthat acriterion of robustnessisthetotal energy of the differences. In this case our goal to increase the robustness of
the algorithm is achieved by decreasing the  2-norm of the prediction errors. Thusthe filters are the solvers of the optimization
problem (13) for p = 2. The solution in terms of filter coefficientsis very easily obtained by using the pseudoinverse matrix.
Thus the solution of:

irgf |Ac — b,

isgiven by:
c= (AT A~ AT (19)

4.3 Compression Ratio

The third property we discuss now is the compression ratio the algorithm achieves. In fact, if no error or further quantization

is assumed, the compression ratio is perhaps the most important criterion in judging and selecting an algorithm. In general

estimating compression ratios is a tough problem due to several reasons. First of al one should assume a stochatic model of

the data to be encoded. In our case we encode the vectors of prediction errors, which in turn depend on the mesh geometry

and the way we choose the filters coefficients. Next one should have an exact characterization of the encoder’s compression

ratio. The best compression ratio, assuming a purely stochastic data, is given by Shannon’s entropic formulaand consequently

by the entropic encoder which strives to achieve this bound (Shannon-Fano and Huffman codings - see [ZiTr90] or [DaGr76]).

However the entropic encoder requires some a priori information about the data to be sent, as well as overhead information

that may affect the global compression ratio. Alternatively one can use adaptive encoders like the adaptive arithmetic encoder

asin the JPEG/MPEG standards (see [PeMi93]). This encoder may perform better in practice than blind entropic or arithmetic

encoders, however it has the important shortcoming that its compression ratio is not characterized by a closed formula. In any

case, for purely stochastic data the best compression ratio is bounded by Shannon’s formula which we discuss next. We thus
assume our bit sequence encoding scheme achieves this optimal bound. Suppose the quantized differencesz ;,0 <i < N — 1,
are independently distributed and have a known probability distribution, say p(n), —22~! < n < 28. Thus p(n) is the
probability that adifferenceisn. In this casethe average (i.e. expected value) of the number of bits needed to encode one such

differenceis not less than:

2B—1

Rshannon = — Z p(n)IOQQP(n)
n=—2B-1
where 22 is the number of quantization levels (see [ZiTr90]). Assuming now the ergodic hypothesis holds true, p(n) can be

replaced by the repetition frequency p(n) = % where f(n) is the repeatition number of the value n and NV is the total
number of values (presumably N = 3nV). Thus, if we replace the first p(n) in the above formula by this frequency, the sum
turnsinto

| N
R= N ; logap(n = x;)

Note the summation index has changed. At this point we have to asssume a stochastic model for the prediction errors. We
consider the power-type distribution that generalizes both the Gaussian and Laplace distributions, that are frequently used in
computer graphics models (see [PaR099], for instance):
1
(@) = gprryesp(—alal") (20)
where I'(x) is the Euler's Gamma function (to normalize the expression) and « is a parameter. For a = 1 it becomes the
Laplace distribution, whereasfor o = 2 it turnsinto the Gauss distribution. Then, the previousrate formulaturnsinto:

N-1
alogse 1 1
R =Ry + ]gz igo |z;]* , Ro=1+ loggF(a) — logaax — -~ log, a



Now we replace the parameter a by an estimate of it. An easy computation shows the expected value of |z| @ for the a-power
p.d.f. (20) is E[|z|*] = ﬁ Thus we get the following estimator for the parameter a:

1 N

g>

and the above formula of the rate becomes:

r
R = po(a log2 Zw . poa) =1+ log, - logy + (21)

Consider now two linear predictors associated to two different linear filters. Each of them will have different prediction
errors. |If we assume the prediction errors are independent in each case and distributed by the same power law with exponent
a but maybe different parameters a,, respectively a,, then the prediction scheme that yields the sequence of differences with
smaller [*“-norm has a better (entropic) compression bound and therefore is more likely to achieve a better compression ratio.
Equivalently, the p.d.f. that has alarger parameter a, or is narrower, would be encoded using fewer hits.

The argument we presented here suggests that a better compression ratio is achieved by the prediction scheme that mini-
mizes the [*-norm of the prediction error, where « isthe p.d.f.'s characteristic exponent (when it is a power-type law), usually
between 1 (the Laplace case) and 2 (the Gaussian case). For p = 2 the optimizing filter is found by using the pseudoinverse of
A asin (19). For p = 1, the optimizer solves the linear programming problem:

N-1 d
max Yo [ui— v —e 0o (fi + 95)] (22)
f3:95,Wi,vi
subject to : fi g5, ui,v; >0

d
bi =ui —vi+ 25 gaij(fj —g5)

with e asin (18), which involves (in the simplex algorithm) a (N + 2) x (2N + 2d + 1) matrix and the same computational
problems as (18).

5 Examples

In this section we present a number of examples of our filtering algorithm. For several meshes we study the accuracy the fine
resolution mesh is approximated, and al so the compression ratio obtained for different filter lengths.

First we analyze the Basic Encoding Algorithm presented in section 3. Thefilters coefficients are obtained by solving the
optimal problem (13) for p = 2, i.e. we use the least squares solution.

The car mesh represented in Figure 1 (eft) having nVy = 12784 vertices and 24863 faces is decomposed into a sequence
of 8 levels of details. The coarsest resolution mesh of nV; = 219 verticesis rendered in Figure 1 (right). We used severa
filter lengths to compress the meshes. In particular we study four types of filters, namely the Zeroth Order Filter, the Gaussian
Smoother and filters of order d = 1 and d = 3 (decomposed in power basis). The last two filterswill be termed as “higher order
filters’, although their order is relatively low. To check the accuracy of the approximation we used the prediction algorithm
assuming the differences are zero at all levels. The four meshes corresponding to the four filters are represented in Figure 2.

Figure 1: The car mesh at: the finest resolution (left) and the coarsest resolution (right) after 7 levels of reduction.




Figure 2: The car mesh at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth
Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least squares
filter of order 3 (bottom right).

Note the Zeroth Order Filter does not change the geometry at all (because of its pure extension nature). It gives the worst
approximation of the mesh, yet it has the best compression ratio (see below). The Gaussian filter smoothes out all the edges, a
natural consequence sinceit really correspondsto adiscrete diffusion process. The higher order filters (i.e. first order and third
order) trade-off between smoothing and compression.

In terms of the compression ratio, the four filters have performed as shown in Table 3. Varying the filter length we found
the compression ratios indicated in Table 4. All the results apply to the geometry component only. The connectivity is not
presented here.

Filter Zeroth Order | Gaussian Smoothing | LS of Degree1 | LS of Degree 3
Coarsest mesh 795 795 795 795
Coefficients 0 0 168 336
Differences 21840 64611 22520 22574
Total (bytes) 22654 65425 23503 23725
Rate (bits/vertex) 14.17 40.94 14.71 14.82

Table 3: Compression ratio results for several filtering schemes applied to the car mesh rendered in Figure 1.

Filter'sDegree| 1 | 2 | 3 | 4 | 5 | 6 | 7
bitsvertex | 14.71 | 14.82 | 14.85 | 14.89 | 1496 | 1504 | 1511

Table 4: Compression ratios for different filter lengthsin power basis.

Next we study the Variable Length Encoding Algorithm for the four particular filters mentioned before with the parameter
S = nL (i.e. inthe Single Resolution case). Thus the mesh geometry is obtained by successively filtering the extensions of
the coarser mesh and, at the last level, the true differences are encoded. In terms of accuracy we obtained very similar meshes.
More significantly are the compression ratios, shown in Table 5. To analyse the compression ratios of these four filters, we
have a'so plotted the histogram of the errors on a semilogarithmic scale in Figure 3. Note the power-type p.d.f. hypothesisis
well satisfied by the Zeroth, LS 15 and LS 3" order filters, and less by the Gaussian smoother. Also as smaller the [2-norm
error gets, as narrower the p.d.f. and as smaller the rate becomes, in accordance with the conclusions of Section 4.3.



Equally important is how these errors are distributed on the mesh. In Figure 4 we convert the actual differencesinto ascale
of colors and set this color as an attribute for each vertex. Darker colors (blue,green) represent a smaller error, whereas lighter
colors (yellow, red) represent alarger prediction error. The darker the color the better the prediction and also the accuracy. All
the errors are normalized with respect to the average I 2-norm error per vertex for that particular filter. The average I 2-norm
error is given on the last row in Table 5.

Filter Zeroth Order | Gaussian Smoothing | LS of Degree1 | LS of Degree 3
Coarsest mesh 795 795 795 795
Coefficients 0 0 168 336
Differences 27489 27339 25867 25532
Total (bytes) 28306 28156 26859 26690
Rate (bits/vertex) 17.71 17.62 16.81 16.68
I? error /vertex(-107*) [ 11.96 | 18.64 | 9.33 | 8.44 |

Table 5: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the car mesh rendered in Figure 1.

Note in the Single Resolution case there is no much difference among the filtering schemes considered. In particular the
higher order filters perform better than the Zeroth Order Filter, and the Gaussian filter behaves similarly to the other filters.
Thisis different to the Multi Resolution case in Table 3. There, the Gaussian filter behaves very poorly, and the Zeroth Order
Filter gives the best compression ratio. In fact it is better to the Single Resolution case. On the other hand, with respect to the
accuracy, the higher order filters give a more accurate approximation than the Zeroth Order Filter.

About the same conclusions hold for three other meshes we used: the round table, the skateboard and the piping construc-
tion.

The round table rendered in Figures 5, left, has nVy = 11868 vertices and 20594 faces. The coarsest resolution mesh
(at level 8, pictured on the right side) hasnV; = 112 vertices. The predicted mesh after 8 levels of decomposition when no
differenceis used, is rendered in Figure 6.

The skateboard mesh at the finest resolution (left, in Figure 9) hasnVy = 12947 vertices and 16290 faces. At the coarsest
resolution (right, in the samefigure) it hasnV; = 125 vertices.

The piping construction has nV, = 18138 vertices, and after 7 levels of detailsit is reduced to nVy, = 147 vertices. The
first simplification step achieves almost the theoretical bound: from 18138 vertices, the mesh is simplified to 2520 vertices.
The original mesh and its approximations are rendered in Figures 13-14.

Filter Zeroth Order | Gaussian Smoothing | LS of Degree1 | LS of Degree 3
Coarsest mesh 438 438 438 438
Coefficients 0 0 168 336
Differences 22739 51575 23645 23497
Total (bytes) 23196 52032 24274 24295
Rate (bits/vertex) 15.63 35.07 16.36 16.37

Table 6: Compression ratio results for several filtering schemes applied to the round table mesh rendered in Figure 5.

Filter'sDegree| 1 | 2 | 3 | 4 | 5 | 6 | 7
bitsvertex | 16.36 | 16.34 | 16.37 | 1650 | 16.62 | 16.73 | 16.88

Table 7: Compression ratios for different filter lengths, in power basis, for the round table.
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Figure 3: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to
the car mesh rendered in Figure 1.

Figure 4; The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).
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Figure 5: The round table mesh at: the finest resolution (Ieft) and the coarsest resolution (right) after 7 levels of reduction.

Filter Zeroth Order | Gaussian Smoothing | LS of Degree 1 | LS of Degree 3
Coarsest mesh 438 438 438 438
Coefficients 0 0 168 336
Differences 30386 29138 27972 27377
Total (bytes) 30847 29599 28609 28146
Rate (bits/vertex) 20.79 19.95 19.28 18.97
I? error/vertex(-10~%) | 1585 | 17.38 | 11.17 | 9.97 |

Table 8: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the round table mesh rendered in Figure 5.
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Figure 6: The round table mesh at the finest resolution level when no difference is used and the filtering is performed by: the
Zeroth Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least
squares filter of order 3 (bottom right).
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Figure 7: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to
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the round table rendered in Figure 5.
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Figure 8: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).




Figure 9: The skateboard mesh at: the finest resolution (left) and the coarsest resolution (right) after 8 levels of reduction.

Figure 10: The skateboard mesh at the finest resolution level when no differenceis used and the filtering is performed by: the
Zeroth Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least
squares filter of order 3 (bottom right).
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Filter Zeroth Order | Gaussian Smoothing | LS of Degree1 | LS of Degree 3
Coarsest mesh 444 444 444 444
Coefficients 0 0 168 336
Differences 22735 46444 22627 22443
Total (bytes) 23199 46908 23259 23247
Rate (bits/vertex) 14.33 28.98 14.37 14.36

Table 9: Compression ratio results for several filtering schemes applied to the skateboard rendered in Figure 9.

Filter'sDegree| 1 | 2 | 3 | 4 | 5 | 6 | 7
bitsvertex | 14.37 | 14.32 | 14.36 | 14.45 | 14.48 | 1454 | 1601

Table 10: Compression ratios for different filter lengths, in power basis, for the round table.

Zeroth Order Filter | Gaussian Smoothing | LS Filter of Degreel | LS Filter of Degree 3
Coarsest mesh 444 444 444 444
Coefficients 0 0 168 336
Differences 28931 27082 26542 26436
Tota (bytes) 29397 27549 27184 27250
Rate (bits/vertex) 18.16 17.02 16.80 16.84
I error /vertex(-10~%) | 43.87 | 51.83 | 38.82 | 36.12 |

Table 11: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the skateboard rendered in Figure 9.
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Figure 11: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied
to the mesh rendered in Figure 9.
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Figure 12: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).

Figure 13: The piping mesh at: the finest resolution (Ieft) and the coarsest resolution (right) after 7 levels of reduction.

Filter Zeroth Order | Gaussian Smoothing | LS of Degree1 | LS of Degree 3
Coarsest mesh 522 522 522 522
Coefficients 0 0 144 288
Differences 2605 31595 2625 2673
Total (bytes) 3146 32136 3311 3503
Rate (bits/vertex) 1.38 14.17 1.46 1.54

Table 12: Compression ratio results for severa filtering schemes applied to the piping construction mesh rendered in Figure
13.

Filte'sDegree | 1 | 2 3 ] 4|5 |6 |7
bits/vertex

| 146 [ 150 | 1.54 | 158 | 1.61 | 1.65 | 1.69

Table 13: Compression ratios for different filter lengths, in power basis, for the piping construction.
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Figure 14: The piping mesh at the finest resolution level when no difference is used and the filtering is performed by: the

Zeroth Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom |eft) and the least
squares filter of order 3 (bottom right).

Filter Zeroth Order | Gaussian Smoothing | LS of Degree1 | LS of Degree 3
Coarsest mesh 522 522 522 522
Coefficients 0 0 168 336
Differences 19160 41278 21009 21573
Total (bytes) 19704 41823 21701 22458
Rate (bits/vertex) 8.69 18.44 9.57 9.90
I? error/vertex(-10~?) | 121 | 22.96 | 1.20 | 1.20 |

Table 14: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the piping construction rendered in Figure 13.
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Figure 15: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied
to the mesh rendered in Figure 13.

Figure 16: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).
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The last mesh we discuss is somewhat different to the other. It is a sphere of nVy = 10242 vertices and 20480 faces that
reduces after 4 levelsto nV3; = 224 vertices. The striking difference is the compression ratio of the Zeroth Order filter: it
isthe worst of all the filters we checked. Even the Gaussian filter fares better than this filter. Snapshots of the approximated
meshes are pictured in Figures 17-18. The mesh used is non-manifold but thisis not a problem for the geometry encoder. The
histograms shown in Figure 19 are in accordance with the rate results presented in Table 17: the narrower the distribution the
better the rate. Note also how well a power-type low fits the 37¢ order filtered distribution.

Figure 17: The sphere at: the finest resolution (left) and the coarsest resolution (right) after 4 levels of reduction.

Filter Zeroth Order | Gaussian Smoothing | LSof Degree1 | LS of Degree 3
Coarsest mesh 881 881 881 881
Coefficients 0 0 72 144
Differences 29770 22614 19762 13395
Total (bytes) 30673 23518 20738 14440
Rate (bits/vertex) 23.96 18.37 16.20 11.28

Table 15: Compression ratio results for severa filtering schemes applied to the sphere rendered in Figure 17.

Filte'sDegree| 1 | 2 | 3 | 4 | 5 | 6 | 7
bitsvertex | 16.20 | 12.90 | 11.28 | 10.50 | 10.36 | 10.42 | 10.69

Table 16: Compression ratios for different filter lengths, in power basis, for sphere.

These examples show that in terms of compression ratio, the Zeroth Order Filter compresses best the irregular and less
smooth meshes, whereas higher order filter are better for smoother and more regular meshes. However, in terms of accuracy
and robustness, the higher order filters perform much better than its main “competitor”, the Zeroth Order Filter. Note, except
for highly regular meshes (like sphere, for instance), relatively low order filters are optimal. The range [1..5] seems enough for
most of the encoding schemes.

6 Conclusions

In this paper we study the 3D geometry filtering using the discrete Laplace operator. We next apply the filtering technique
to Multi Resolution Analysis where the original mesh is converted into a sequence of successive refinements. Based on the
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Figure 18: The sphere at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth
Order Filter (top left), the Gaussian Smoother (top right), the least squaresfilter of order 1 (bottom left) and the least squares
filter of order 3 (bottom right).
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Filter Zeroth Order | Gaussian Smoothing | LS of Degree 1 | LS of Degree 3
Coarsest mesh 881 881 881 881
Coefficients 0 0 168 336
Differences 28904 22152 20904 17920
Total (bytes) 29806 23055 21885 18971
Rate (bits/vertex) 23.28 18.00 17.09 14.82

I? error /vertex(-10~%) |

6.85

2.36

181

[ 11

Table 17: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to

the sphere rendered in Figure 17.
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Figure 19: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied
to the sphere mesh rendered in Figure 17.
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Figure 20: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).




coarser resolution mesh, the finer resolution mesh is predicted using an extension map followed by filtering. At each level,
the coordinate vectors are filtered separately using different filters. These filters are optimizers of some prediction error norm.
Thusthe geometry of asequence of successively refined meshesis encoded in the following format: first the coarsest resolution
mesh geometry and next for each successive level, the filters coefficients and prediction errors. The connectivity information
is supposed known at each level separately.

Next we study several desirable properties of any encoding scheme, finding for each one the appropriate criterion to be
optimized. Thus for a better accuracy of the predicted mesh when no difference is available, the filter coefficients should
minimize the [°°-norm of the prediction errors. For robustness, as understood in signal processing theory, the filters should
minimize the [2-norm of the differences. The third property, the compression rate, is maximized when the ! >-normis replaced
by al“-norm with « usually between 1 and 2, depending on the prediction error’s p.d.f. Thus, if the differences are Laplace
distributed, the /*-norm should be minimized, whereasif they are Gaussian, then the [ 2-norm should be used. In any case, each
of the three extreme cases (I>°, [ or I') can be solved exactly. The I2-norm case is the simplest and reltively computational
inexpensive, and is solved by a linear system. The other two cases turn into linear programming problems which are very
computational expensiveto solve.

These theoretical results are next applied to concrete examples. In general for large, non-smooth and irregular meshes the
Zeroth Order Filtering scheme yields the best compression ratio, but the poorest accuracy or, for the same reason, robustness.
Instead, by paying a small price in the compression ratio, a least square filter give a better rendering accuracy and superior
robustness. At the other end of the scale, for very smooth and regular meshes, the Gaussian filter (which in general behaves
very poorly) gives a better compression ratio than the Zeroth Order filter.

The Basic Encoding Algorithm can be modified to allow a variable structure. The user can choose for what levels the
differences are encoded and, by choosing a limit case, only the highest resolution level errors are encoded. Thus the MRA
scheme becomes a Single Resol ution encoding scheme. Examplesin terms of accuracy and compression ratio are shown in the
Examples section.

The novelty of this study consists in using linear filter in Multi Resolution encoding schemes and finding appropriate
optimization criteria for specific compression or rendering properties. We hope this compression scheme will prove effective
in Progressive Transmission protocols as MPEGA.
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Abstract

Very large polygonal models, which are used in more

and more graphics applications today, are routinely gen-

erated by a variety of methods such as surface reconstruction algorithms from 3D scanned data, isosurface con-
struction algorithms from volumetric data, and photogrametric methods from aerial photography. In this report
we provide an overview of several closely related methods developed during the last few yers, to smooth, denoise,
edit, compress, transmit, and animate very large polygonal models.

1. Introduction

The geometric signal processing approach was originally
motivated by the problem of smoothing large irregular
polygonal meshes of arbitrary topolog$, such as those
extracted from volumetric medical data by iso-surface con-
struction algorithms, or constructed by integration of multi-

ple range images, and the related problem of fair surface de-

sign. Because of the size of the typical data sets, only linear

polygonal mesh without changing the connectivity of the
faces. The smoothed mesh has exactly the same number of
vertices and faces as the original one. The simplest smooth-
ing algorithm that satisfies the linear complexity require-
ment is Laplacian smoothing, described in detail in section
2. Laplacian smoothing is an iterative process, where in each
step every vertex of the mesh is moved to the barycenter of
its neighbors.

time angl space algorithms can be cc_)nsidered, particqlr_;lrly The only problem with Laplacian smoothingsrinkage
for applications such as surface design and mesh editing, when a large number of Laplacian smoothing steps are iter-
where interactive rates are a primary concern. This constraint atively performed, the shape undergoes significant deforma-

on the complexity of the algorithms discards most early
algorithms based on fairness norm optimizatié@s 13 43,
parametric3t 26 112524 and implicit 27 patch technology,
physics-based deformable mod&1$1 33 30, and variational
formulations® 284313 |n these approaches, the problem is
often reduced to the solution of a large sparse linear sys-
tem, or a more expensive global optimization problem. Large
sparse linear systems are solved using iterative metfpds
and usually result in quadratic time complexity algorithms.
However, more recent work formulations have shown effi-
cient solutions to the variational formulation based on multi-
grid algorithms?122, and stable implicit sparse solvers that
are competitive when agressive smoothing is required

Most smoothing algorithms move the vertices of the

T On sabbatical from 08/01/2000 to 07/31/2001, Dept. of Electrical
Engineering, California Institute of Technology Mail Code 136-93,
Pasadena, CA 91125

(© The Eurographics Association 2000.

tions, eventually converging to the centroid of the original
data. The algorithm introduced by TauB#rsolves this prob-

lem and introduced the signal processing machinery neces-
sary to analyze the behavior of these smoothing processes.
This work was followed by a number of extensidfs and
applications to interactive shape desi§ri#3 21442212 3D
geometry compressici 2 19, and shape reconstruction from
multiple 3D scans.

Within the context of interactive shape design, Zdfide-
fines a multi-resolution subdivision structure over an irregu-
lar mesh, using the signal processing smoothing algorithms
as the basis of his analysis process.

Guskov!? follows a different signal processing approach
over the Progressive Mesh&sstructure, wherdrequency
has a completely different meaning. He is able to perform
similar filtering operations, as with the methods described in
this paper.



Taubin / Mesh Signal Processing

In 3D geometry compressi#h®®, Taubin et.al.3” use 3. Fourier Analysison Meshesand Graphs
these signal processing smoothing algorithms to predict the
position of high resolution vertices from their low resolution
counterparts in their progressive transmission scheme. Balan
and Taubir?, study the problem of constructing optimal fil-
ters in this context. Karni and Gotsmahuse the partial
Fourier expansion applied to the vertices of a mesh partition
to define a JPEG-like compression scheme for meshes.

AgraphG = (V, E), composed of a set afverticesV, and a

set of edge& can be directed or undirected. The undirected
graph of a MesM is composed of the set of mesh vertices
and the set of mesh edges as unordered pairs. In the directed
case, where the edges®fare ordered pairs of vertices, ev-
ery edge oM corresponds to two oriented edgesf

. . We look at the vertices oM as a three-dimensional
In the area of shpe reconstruction from multiple 3D scans, graph signal v= (vi,.. ,Vn)t defined onG. In general, a

Bernardini et.al® define aconformingprocess to estimate  4_gimensional graph signal on a graghis ad x n matrix

the average shape of several overlaping meshes by allowing, _ (X1,...,%n)", where each row atis regarded as the sig-
them to deform at very low frequency, while preserving the 5| value at thé-th. vertex of the graph.

details. This process is based on applying a very aggressive

smoothing filter to the deformation field that would make A neighborhoodor star of a vertex index in the graph
each vertex of each overlapping mesh move to the averageG S the sei” of vertex indicesj connected to by an edge
position of vertices of other meshes in a neighborhood. (i, ).

The paper is organized as follows. In section 2 we intro- "={j:(i,)) €E}.
duce Laplacian smoothing withing the context of meshes. In |f the index j belongs to the neighborhoat] we say thaf]
section 3 we show how Fourier Analysis can be performed is aneighborof i. The neighborhood structure of an undi-
on signals defined on meshes and graphs. In section 4 werected graph, such as the graph of a mesh defined above, are
discuss methods to smooth or denoise signals defined onsymmetric. That is, every time that a vertgis a neighbor
meshes and graphs as low-pass filtering. In section 5 we de-of vertexi, alsoi is a neighbor ofj. With non-symmetric
scribe Taubin's\|u algorithm. In section 6 we discuss how  neighborhoods, which are associated with directed graphs,
edge weights can be manipulated to compensate for irregu- certain constraints can be imposed. We discuss this issue in
lar edge lengths and face angles. In section 7 we show thatdetail in section 8.
classic filter design methods can be used to construct faster
smoothing algorithms, and other feature enhancing filters.
In section 8 we discuss how different constraints can be im-
posed to the smoothing algorithms and their relation to in-
teractive shape design. Finally, in section 9 we present our

The set of displacementsy; produced by the Laplacian
smoothing step that moves each vertex to the barycenter of
its neighbors can be described as the result of applying the
Laplacian operator to the vertices of the mesh.

conclusions. The Laplacian operator is defined on a graph signay
weighted averages over the neighborhoods
A =y Wij (Xj—X) )
2. Laplacian Smoothing Jer

where the weightsy; are non-negative numbers that add up

Laplacian smoothing is a well established technique to im- to one for each vertex star

prove the geometric irregularity of a 2D mesh in the field of

finite-elements meshiri§. In this context, boundary vertices z wij =1. (2)

of the mesh are constrained not to move, but internal vertices jer

are simultaneously moved to the barycenter of its neighbor- Since the Laplacian operators Ax s linear on the space of
ing vertices. And then the process is iterated a number of graph signals defined dB, and operates on the coordinates
times. of xindependently, itis sufficient to consider the case of one-

When Laplacian smoothing is applied to a noisy 3D dimensional graph signals.

polygonal mesh without constraints, noise is removed, but  In section 6 we discuss in detail different ways of choos-
significant shape distortion may be introduced. The main ing weights. For the time being, lets assume that the edge
problem is that Laplacian smoothing producdsinkage weights are determined by first choosing an edge Gpst
because in the limit, all the vertices of the mesh converge cj > 0 for each graph edge, and then settmg= ¢j/ci,

to their barycenter. whereg; is the average cost of edges incident to

To understand why the Laplacian smoothing algorithm re- G = z Gj >0.
moves high frequency noise, why it produces shrinkage, and ler
how to solve the shrinkage problem, we need to develop the For example, if all the edges have unit cagt= 1, then for
basic concepts of signal processing on meshes, or more gen-each neighboy of i, the weightwi;j is equal to the inverse of
erally, on graphs. the number of neighbors/fi*| of v. We organize the edge

(© The Eurographics Association 2000.
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costs and weights as matric€s= (cij), W = (wij), with Lapl aci an(G,W,x)
elements equal to zero jfis not a neighbor of. We also newAx = 0;
assume that once set, the weights are kept constant during for(e=(i,j)€E)
the iterative smoothing process. We will relax this asumption D = X +Wij (X — X;);
in section 6. end;

returnAx;

This choice of weights is independent of the vertex po-
sitions, orgeometry of the mesh, and only function of the  Figure1: Algorithm to evaluate the Laplacian operator=5
structure of the grapks, i.e. theconnectivityof the mesh. (V,E) directed graph, W matrix of weights defined on the
Note that as a result of the neighborhood normalization con- edges of G, x input signal on &x output signal.
straint of equation 2, although timex n matrix of edge costs

C is symmetric, in general the matrix of edge weigiiss Lapl aci anSmoot hi ng(G,W,N,\,x)
not. We consider edge weights that are function of the ge- newAx
ometry in section 6. for(i=0:i<N:i—i+1)
If we define the matrix< = | —W, with | the identity Ax=Lapl aci an(G,W,Xx);
matrix, the Laplacian operator applied to a graph signal X=X+ AAX;
can be written in matrix form as follows end;
return;
Ax = —KX. 3)

Figure2: The Laplacian Smoothing Algorithm. G graph, W

For undirected graphs and the choice of weights described Matrix of weights defined on the edges of G, N number of
above, the matriX< has real eigenvalues 9 k; < k < iterations,A scaling factor, x signal on G to be smoothd.
--- < kn < 2 with corresponding linearly independent real
unit length right eigenvectors, . .., " 36, In matrix form

KE = EdiagKk) , (4 signal x can be computed very efficiently using the Fast
) 1 ¢ ] ) Fourier Transform (FFT) algorith?h, and the eigenvalues
withE = (e, .. .,e’f),_k:_ (k, ..., kn)", and diagk) the diag- and eigenvectors d€ can be computed analytically. In gen-
onal matrix withk; in itsi-th. diagonal position. Seenas one-  grg the matrix is large, and although sparse, it is almost
dimensional graph signals, these eigenvectors can be con-ijnossible to reliably compute its eigenvalues and eigenvec-
sidered as t_heat_ural vibration modesf th_e graph, andthe 415 This makes it impractical to smooth vertex positions of
corresponding eigenvalues as the associaagafal frequen-  |3rge meshes with the Fourier descriptors method.
cies

Note that even using the FFT algorithm in the closed
polygonal curve case, the computational complexity is
O(nlog(n)), i.e., not linear.

Sinceel, ...,€" form a basis ofh-dimensional space, ev-
ery graph signak can be written as a linear combination

n .
x=Y %' =EX. (5)
=1 4. Smoothing as Low Pass Filtering

The vector of coefficientsis the Discrete Fourier Transform  Figure 4 describes the algorithm to evaluate the Laplacian
(DFT) of x, andE is the Fourier Matrix. operator on a signat defined on a directed graph, with
If instead of being derived from the vertices and edges given wgight maFri>W. Apd figure_4describes the Lapl_acian
of a mesh, the grapts is a closed polygonal curve with smoothing algorithm, with a scaling facto<OA < 1 which

' is used to control the speed of the diffusion process. With this

vertices and edges, i.e., a cycle, we are in the classical case . . .
of discrete-timan-periodic signals. parameter, one step of the Laplacian smoothing algorithm

can be described in matrix form as follows

Fourier analysis is a natural tool to solve the problem of 1
signal smoothing. The space of signals is decomposed into X =x+Mx= (1 - AK) x= f(K)X, (©)
orthogonal subspaces associated with different frequencies,where f(K) is a matrix obtained by evaluating the univari-
with the low frequency content of a signal regarded as sub- ate polynomialf(k) = 1 — Ak in the matrixK. If the pro-
jacent data, and the high frequency content as noise. To de-cess is iteratedN times, the output can still be expressed
noise a signal it is sufficient to compute its DFT, discard its asx = f(K)x, but with a different univariate polynomial
high frequency coefficients, and compute the linear combi- f (k) = (1—Ak)N.
nation of remaning terms as the result. This is exatly what
the method ofourier descriptor$® does to smooth a closed
curve.

A Linear Filter is defined by a univariate functiofk)
that can be evaluated on the square mafrbo produce an-
other matrix of the same size. Although many functions of
In the case of closed polygonal curves the DFT of a one variable can be evaluated in matriggsn this section

(© The Eurographics Association 2000.
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Taubi nSnoot hi ng(G,W, N, A, 1, X)
newAx
for(i=0;i<N;i=i+1)

Ax = Lapl aci an(G,W,x);
ifiiseven
X = X+ AAX;
el se
X = X+ PAX;
end;
return;

Figure3: The Taubin Smoothing Algorithm. G graph, W ma-
trix of weights defined on the edges of G, N number of itera-
tions,A and  scaling factors, x signal on G to be smoothd.

we only consider polynomials. In section 7 we also con-
sider rational functions. The functiofi(k) is the transfer
function of the filter. It is well known that for any of these
functions, the matriX (K) has as eigenvectors the eigenvec-
torset, ..., €" of the matrixK, and as eigenvalues the result
f(ki),..., f(kn) of evaluating the function on the eigenval-
ues ofK. Since for any polynomial transfer function

%:f(K)x:if(mze‘,

becauseke = ki€, to define a low-pass filter we need to
find a polynomial such thaf(k) ~ 1 for low frequencies,
and f (k) = 0 for high frequencies in the region of interest
ke [0,2).

In the case of Laplacian smoothing, where the transfer
function is f (k) = (1—Ak)N, with 0 < A < 1, we see that
for everyk € (0,2, we have(1—Ak)N — OwhenN — oo
because|l — Ak| < 1. This means that all the frequency

components, other than the zero frequency component (the

barycenter of all the vertices), are atenuated for I&Ng®n

the other hand, the neighborhood normalization constraint

of equation 2 implies that the matrik always has 0 as its
first eigenvalue with associated eigenvedy. .., 1)!, and

the zero frequency component is preserved without changes

becausef (0) = 1 independently of the values afandN.
In conclusion Laplacian smoothing filters out too many fre-
guencies.

5. The A|pAlgorithm

Taubin 36 proposed the following second degree transfer
function to solve the problem of shrinkage

f(k) = (1=Ak)(1—pk), @)

which can be implemented as two consecutive steps of

Laplacian smoothing with different scaling factors; the first
one withA > 0, and the second one with< —A < 0. That

is, after the Laplacian smoothing step with positive scale
factor A is performed (shrinking step), a second Laplacian

f@\ 1.0 1.0 f(Kk)
1
|
' ok 0 kee R

A B

Figure 4: Graph of transfer functions for tha|u algo-
rithm. (A) f(k) = (1—pk)(1—Ak). (B) f(k) = ((1—pk)(1—
AK)N/2 with N > 1.

smoothing step with negative scale faqtis performed (un-
shrinking step). Figure 5 describes the algorithm.

The graph of the transfer function of equation (7) is illus-
trated in figure 4-A. Figure 4-B shows the resulting transfer
function afterN iterations of the algorithm. Sincg0) = 1
andp+A < 0, there is a positive value d&f let us denote
it ke (the pass-band frequengysuch thatf (keg) = 1. The
value ofkpg is

kpg = 1 + } >0.
A

The graph of the transfer functiof{k) shown in Figure 4-
B displays a typicalow-pass filtershape in the region of
interestk € [0, 2]. Thepass-band regioextends fronk = 0
to k = keg, wheref (k) =~ 1. Ask increases fronk = keg to
k = 2, the transfer function decreases to zero. The faster the
transfer function decreases in this region, the better. The rate
of decrease is controlled by the number of iteratibins

For example, choosiny so thatf(1) = —f(2), i.e.,
0=f()+f(Q=1-3A+W+5,  (9)

ensures a stable and fast filtér A typical value forkeg is
0.1. The corresponding typical scaling factor values are then
computed from equations 8 and 9.

®)

Figures 5 and 6 show examples of large surfaces smoothed
with this algorithm. Figures 5 is a synthetic example, where
noise has been added to one half of a polyhedral approxi-
mation of a sphere. Note that while the algorithm progresses
the half without noise does not change. Figure 6 was con-
structed from a CT scan of a spine. The boundary surface of
the set of voxels with intensity value above a certain thresh-
old is used as the input signal. Note that there is not much
difference between the results after 50 and 100 iterations.

6. Weights

With Equal weightsdetermined by unit edge costs, very sat-
isfactory results are obtained on meshes which display very
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C D C D

Figure 5: (A) Sphere partially corrupted by normal noise. Figure 6: (A) Boundary surface of voxels from a CT scan.

(B) Sphere (A) after 10 non-shrinking smoothing steps. (C) (B) Surface (A) after 10 non-shrinking smoothing steps. (C)

Sphere (A) after 50 non-shrinking smoothing steps. (D) Surface (A) after 50 non-shrinking smoothing steps. (D) Sur-

Sphere (A) after 200 non-shrinking smoothing steps. Sur- face (A) after 100 non-shrinking smoothing steps.% 0.1

faces are flat-shaded to enhance the faceting effect. andA = 0.6307in (B), (C), and (D). Surfaces are flat-shaded
to enhance the faceting effect.

small variation in edge length and face angles across the

whole mesh, such as those shown in figures 5 and 6. When

these assumptions are not met, local distortions are intro- cases, such as when a texture is mapped onto the mesh, hav-
duced. The edge weights can be used to compensate for théng a non-zero tangencial component is undesirable. Based
irregularities of the teselation, and produce results which are on a better approximation to the curvature normal, Desbrun
function of the local geometry of the signal, rather than the proposes the following choice of edge costs

local parameterization. . .
P Cjj = cota;j j +cotfB;j, (20)

Fujiwara weightstry to compensate for irregular edge
lengths by determining the edge costs as a function of the Whereai j andp; j are the two angles opposite to the edge
edge lengthgj = @(||vj — vi|). For example, both Taubin (i, ) in the two triangles having in common. This choice
3 and Fujiwara® propose choosing the inverse of the edge _of \_/velghts produces no tangencial drift when all the faces
length@(t) = 1/t as the function, which makes the Laplacian incident to the vertex are coplanar.
operator independent of the edge lengths, and only depen-  pg three weighting schemes described in this section can
dent on the directions of the vectors pointing to the neigh- e applied to both Laplacian smoothing and Taubin smooth-
boring vertlge_s. This weighting scheme does not solve the ing, but bot Fujiwara weights and Desbrun weights must be
problems arising from unequal face angles. recomputed after each iteration, or after a small number of
Desbrun weightsompensate not only for unequal edge iterations. This makes the whole smoothing process a non-
lengths, but also for unequal face angles. Laplacian smooth- linear operation, and computationally more expensive.
ing with equal edge costs tends to equglize the lengths Of_ An interactive implementation of these techniques is
the edges, and so, .tends to make the triangular faces €U vailable as a Java apptetFigure 7 shows a screen shot
lateral. The vertex displacements produced by the Laplacian of this applet.
operator can be decomposed into a normal and a tangencial
component. In some cases the edge equalization may be the Guskov!2 proposed another weighting scheme based on
desired effect. This is the case when mesh smoothing is useddivided differences, but applies to a smoothing process based
to improve the quality of finite-elements mesh. But in other on a second order neighborhood.
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PAHARE, |

Figure 7: Implementation of some of the techniques de-
scribed in this paper as a Java appfét

FirFilter (GW,N,f,x)
newx’ = x
newx! = Lapl aci an(G,W,x°);
newx? = x% — 0.5x*
newx = fox®+ fxt
for(i=2;i<N;i=i+1)
X% =Lapl aci an(G,W,x%);

x:x+fix2;
0 =xt;
=
end;
return;

Figure 8: The FIR Filter Algorithm of Taubin et.af%. G
graph, W matrix of weights defined on the edges of G, N
number of iterations, = (fo,..., fn—1) polynomial coeffi-
cients in Chebyshev basis, x signal on G to be filtered.

7. Fast Smoothing as Filter Design

In the A\|p algorithm different combinations of the parame-
tersA, 1, andN produce almost identical transfer functions
f (k). For example if the scaling factoisis reduced in mag-

nitude, and them is recomputed to keep the pass-band fre-

quency unchanged using equation 8, an equivalent result can

be achieved with more iteratioA%

Taubin et.al#% showed how to efficiently implement any

lirFilter (G,W, NQ797 Nh,h,X)

Fi rFilter (G,W,Ng,g,Xx)
1

newx! =x;

newH = h(K);

sol ve Hx = x%:
return;

Figure9: The IIR Filter Algorithm Taubin et.af. G graph,

W matrix of weights defined on the edges of G, N number
of iterations, g= (9o, --,9n,—1) and h= (ho,...,hn, 1)
polynomial coefficients in Chebyshev basis, x signal on G to
be filtered.

and linear complexity

To(W) = 1
{ Ti(w) = w (11)
Ti(w) = 2wTj_1(w) = Tj_2(w)

Since the domain of Chebyshev polynomialsiis [0, 1],
the following change of variable is necessary 1 —k/2.

The ability to efficiently implement any polynomial trans-
fer function, reduces the problem of minimizing the num-
ber of iterations to a univariate polynomial approximation
problem, i.e., to the classical problem of Finite Impulse Re-
sponse (FIR) filter desgin in signal process#gAs an ex-
ample, Taubin et.al® showed how to design filters based
on the classical Window-based metHédbut other polyno-
mial approximation technique can be used to design stable
FIR filters. For example, The Parks-McClellan algoritim
uses the Remez exchange algorithm and Chebyshev approx-
imation theory to design filters with an optimal fit between
the desired and actual frequency responses. The filters are
optimal in the sense that the maximum error between the de-
sired frequency response and the actual frequency response
is minimized. Filters designed this way exhibit an equirip-
ple behavior in their frequency responses and are sometimes
called equiripple filters.

The only problem with FIR filters is that high degrees are
usually needed to obtain a good approximations of ideal fre-
quency responses with sharp transitions, such as low-pass
filters with a narrow pass-band. Infinite Impulse Response
filters (IIR), with rational transfer functions with polynomi-
als of low degree, solve this problem. In our case, if the trans-
fer function is a ratio of two polynomial§(k) = g(k)/h(k),
with h(k) # 0 for k € [0,2], filtering a signalx corresponds

to solving the following system of equations
h(K)X = g(K)x. (12)

Evaluation of this filter can be performed in three steps. First,

polynomial transfer function expressed as a linear combina- if g(k) is not constant, the right hand side of this equation is

tion of Chebyshev polynomidlsFigure 7 describes the al-
gorithm. Chebyshev polynomials are numerically more sta-

evaluated with the FIR algorithm of Taubin etxdi= g(K)x.
Then the the matrixi = h(K) has to be constructed, and fi-

ble than the power basis, and are defined by a three termnally the linear system of equatiobs = x* is solved. Fig-

recursion that results in an algorithm with low storage use

ure 7 describes this algorithm. In this context, IIR filters only

(© The Eurographics Association 2000.



Taubin / Mesh Signal Processing

makes sense if the polynomib(k) is of very low degree, Kuriyama2® and Yamad&“ impose hard constraints on
i.e., if the matrixH is sparse. Some sparse linear solvers only vertex positions, but modify the displacement produced by
need the to evaluate the product of the malttiky a vector. the Laplacian operator to impose soft normal constraints.

In that case the matril does not need to be constructed
explicitly, and the FIR algorithm of Taubin et.al. can be used
again to evaluate this filter as many times as necessary by
the linear solver.

We will only discuss here some of these methods.

8.1. Interpolatory Constraints
The Implicit Fairing method of Desbrun et.&lis a par-
ticular case this type of filter. It corresponds to the classical

Butterworth filter with transfer function . . .
hood structures. If no other vertex is a neighbor of a certain
f(k) = ;N . (13) vertexvy, i.e., if the neighborhood of; is empty, then the
1+ (k/kes) valuex; of any signalkk does not change during the smooth-
Desbrun et.al. development is based on a PDE formulation. iNg process, because the Laplacian operatgris equal to
They show that the Laplacian smoothing algorithm corre- Zero by definition of empty sum. Other vertices are allowed
sponds the solution of the diffusion process to havev; as a neighbor, though.

%X = AdtAX,

using theforward Euler method
X = x4 AdtAx = (I +AdtA)x,

A simple way to introduce interpolatory constraints in the
smoothing algorithm is by using non-symmetric neighbor-

with unit time stepdt = 1. They use théackward Euler
methodnstead, which requires the solution of the linear sys-
tem

(I =AdtA)X =x,

but is stable for arbitrary large time steps, as opposd to the Figure 10: Example of surfaces designed using subdivi-

explicit scheme which is stable only fprdt| < 1. Although sion and smoothing steps with one interpolatory constraint.

having to solve a sparse linear system per step, as apposedA) Skeleton. (B) Surface (A) after two levels of subdivi-

to multiplying by a sparse matrix, seems to slow down the sion and smoothing without constraints. (C) Same as (B) but

computation, they report computational time similar or bet- with non-smooth interpolatory constraint. (D) Same as (B)

ter than the explicit method. but with smooth interpolatory constraint. Surfaces are flat-
shaded to enhance the faceting effect.

8. Constraints

The ability to impose constraints to the smoothing process,  Figure 10-A shows a skeleton surface. Figure 10-B shows
such as specifying the positions of some vertices, or nor- the surface generated after two levels of refinement and
mal vectors, specifying ridge curves, or the behavior of the smoothing using our smoothing algorithm without con-
smoothing process along the boundaries of the mesh, isstraints, i.e., with symmetric first-order neighborhoods. Al-
needed in the context of free-form interactive shape design. though the surface has not shrunk overall, the nose has been
flattened quite significantly. This is so because the nose is
made of very few faces in the skeleton, and these faces meet
at very sharp angles. Figure 10-C shows the result of ap-
plying the same steps, but defining the neighborhood of the
vertex at the tip of the nose to be empty. The other neigh-
borhoods are not modified. Now the vertex satisfies the con-
Taubin 36 shows that by modifying the neighborhood straint — it has not moved at all during the smoothing process
structure certain kind of constraints can be imposed without —, but the surface has lost its smoothness at the vertex. This
any modification of the algorithm, while other constraints might be the desired effect, but if it is not, instead of the
that require minor modifications and the solution of small neighborhoods, we have to modify the algorithm.
linear systems.

All the methods described so far allows the signals to
freely evolve without imposing any constraint. For example,
although shrinkage prevention minimizes the problem in the
A|ualgorithm, all the smooth signal values are different from
the original ones.

Kobbelt 2- 22 formulates the problem as an energy min-
imization problem, and solves it efficiently with a multi-
resolution approach on levels of detail hierachies generated We look at the desired constrained smooth sigﬁais asum
by decimation. of the corresponding unconstrained smooth sighlat F x

8.2. Smooth Interpolation
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afterN steps of our smoothing algorithm (.= f(K)N),
plus a smooth deformaticsh

is solved. The matri¥mmis no longer needed. Then the re-
maining components of the signabre set to zergm,.1 =
--- =yn = 0. Now the smoothing algorithm is applied to the

N_ N N

X =X+ —x1)d signaly. The result is the smooth deformation that makes the
The deformatiort is itself another discrete surface signal, Unconstrained smooth signdl satisfy the constraints
and the constrainbg); = X is sat_isfied if(dl)l_ =1 To_ NN Fy.
construct such a smooth deformation we consider the signal
01, where

1 i 8.3. Smooth Defor mations
N J=1 . . . . .
(G)j = {0 i A0 Note that in the constrained smoothing algorithm described

o ) _above the fact that the values of the signal at the vertices of
This is not a smooth signal, but we can apply the smoothing jnerest is constraint to remain constant can be trivially gen-
algorithm to it. The result, let us denotef, the first col- eralized to allow for arbitrary smooth deformations of a sur-
umn of the matrix=, is a smooth signal, but its value at the face. To do so, if in equation (14), the valugs. . ., xm must

. . .s . 1 ' R |
vertexv, is not equal to one. However, since the maffiis be replaced by the desired final values of the faired signal at
diagonally dominatedty,, the first element of its first col-  ha corresponding vertices. As in in the Free-form deforma-
umn, must be non-zero. Therefore, we can scale the signaltiOn approaches of Hsu, Hughes, and Kaufrizand Borrel
Fn1 to make it satisfy the constraint, obtaining the desired 4 jnstead of moving control points outside the surface, sur-

smooth deformation
dy = FiF*

Figure 10-D shows the result of applying this process.

faces can be deformed here by pulling one or more vertices.

Also note that the scope of the deformation can be con-
trolled by changing the number of smoothing steps applied

while smoothing the signa, . . ., &n. To make the resulting
When more than one interpolatory constraint must be im- signal satisfy the constraint, the valueNfin the definition
posed, the problem is slightly more complicated. For sim- of the matrixF must be the one used to smooth the deforma-
plicity, we will assume that the vertices have been reordered tions. We have observed that good results are obtained when
so that the interpolatory constraints are imposed on the first the number of iterations used to smooth the deformations is

mvertices, i.e.(XY)1 = X1,. -, (X )m = Xm. We now look at
the non-smooth signal, ..., om, and at the corresponding
faired signals, the firsh columns of the matri = f(K)N.

These signals are smooth, and so, any linear combination of

them is also a smooth signal. Furthermore, siRcs non-

about five times the number used to fair the original shape.

8.4. Hierarchical Constraints

This is another application of non-symmetric neighbor-

singular and diagonally dominated, these signals are linearly hoods. We start by assigning a numeric ldpt each vertex
independent, and there exists a linear combination of them of the surface. Then we define the neighborhood structure as

that satisfies then desired constraints. Explicitly, the con-
strained smooth signal can be computed as follows

X1 — X

XCN = XN + an FrrTn% )
Xm — XN
whereRs denotes the sub-matrix 8fdetermined by the first
r rows and the firss columns.

(14)

To minimize storage requirements, particularly wimeis
large, and assuming thatis much smaller than, the com-
putation can be structured as follows. The smoothing algo-
rithm is applied tod; obtaining the first columir &, of the
matrix F. The firstm elements of this vector are stored as
the first column of the matrikmm The remainingn— n ele-

follows. We make vertex; a neighbor of vertex; if v; and

vj share an edge (or facgndif I; <I;. Note that ifvj is a
neighbor ofy; andl; <1, thenv; is not a neighbor o¥;. The
symmetry applies only to vertices with the same label. For
example, if we assign labgl =1 to all the boundary ver-
tices of a surface with boundary, and lalhek 0 to all the
internal vertices, then the boundary is faired as a curve, in-
dependently of the interior vertices, but the interior vertices
follow the boundary vertices. If we also assign labet 1

to a closed curve composed of internal edges of the surface,
then the resulting surface will be smoattong and on both
sides of the curve, but not necessaslyrossthe curve. Fig-

ure 11-D shows examples of subdivision surface designed
using this procedure. If we also assign labet 2 to some
isolated points along the curves, then those vertices will in

ments ofF 3, are discarded. The same process is repeated for fact not move, because they will have empty neighborhoods.

92, ...,0m, Obtaining the remaining columns &fhm. Then
the following linear system
Y1 X1 — X?

me

Y
Xm — Xm

8.5. Tangent Plane Constraints

Although the normal vector to a polyhedral surface is not
defined at a vertex, it is customary to define it by averaging
some local information, say for shading purposes. When the

(© The Eurographics Association 2000.
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C

D

Figure 11: (A) Skeleton with marked vertices. (B) Surface
(A) after three levels of subdivision and smoothing without
constraints. (C) Same as (B) but with empty neighborhoods
of marked vertices. (D) Same as (B) but with hierarchical
neighborhoods, where marked vertices have label 1 and un-
marked vertices have label 0. Surfaces are flat-shaded to en-
hance the faceting effect.

signalx in equation (1) is replaced by the coordinates of the
vertices, the Laplacian becomes a vector

Av; = Wi (V]—Vi).
jer

edge length times the mean curvature

o (g

which can be used as a definition of discrete mean curvature
35

> Wi ll(vi = vi)ll ) K(vi)Ni

jer

It follows that imposing normal constraints & is
achieved by imposing linear constraints &g. If N; is the
desired normal direction at vertexafter the smoothing pro-
cess, and§ andT; are two linearly independent vectors tan-
gent toN;, the surface afteN iterations of the smoothing
algorithm will satisfy the normal desired constraint at the
vertexy; it the following two linear constraints

gav =T =0

are satisfied. This leads us to the problem of smoothing with
general linear constraints.

8.6. General Linear Constraints

We consider here the problem of smoothing a discrete sur-
face signak under general linear constraim% = ¢, where

is amx n matrix of rankm (m independent constraints),
andc = (cy,...,cm)! is a vector. The method described in
section 8.1 to impose smooth interpolatory constraints, is a
particular case of this problem, where the ma@iis equal
the uppemrows of themx midentity matrix. Our approach
is to reduce the general case to this particular case.

We start by decomposing the matfixinto two blocks.
A first mx mblock denotedC 1), composed ofn columns
of C, and a second block denotégz), composed of the re-
maining columns. The columns that constitQig) must be
chosen so thdl ;) become non-singular, and as well condi-
tioned as possible. In practice this can be done using Gauss
elimination with full pivoting, but for the sake of simplic-
ity, we will assume here thal;) is composed of the firsh

This vector average can be seen as a discrete approximatiorcolumns ofC. We decompose signals in the same way.

of the following curvilinear integral

(V=vi)dli(v),

IVl Jvey

wherey is a closed curve embedded in the surface which
encircles the vertey;, and|y| is the length of the curve. Itis
known that, for a curvature continuous surface, if the curve
yis let to shrink to to the poing;, the integral converges to

the mean curvature(v;) of the surface at the point times
the normal vectoN; at the same poirt

[ v=wdiv) = kwn.
VEYe

.1
lim —
e—=0 |yg|
The expression on the right hand side is tlievature nor-
mal, wherek(v;) is the mean curvature of the surfacevat
andN; is the surface normal af. It follows that the length

of the laplacian vector is equal to the product of the average

(© The Eurographics Association 2000.

denotes here the first components, ang,) the lastn—m
components, of the signal We now define a change of basis
in the vector space of discrete surface signals as follows
—1
X(1) Yo —CpCYo

{ X(2) Y(2)
If we apply this change of basis to the constraint equation

CyXa) +C2)%2) = ¢ we obtainC)y(1) = ¢, or equiva-

lently
—1
Y =Cpjc,

which is the problem solved in section 8.2.

9. Conclusions

In this paper | described the basic elements of the signal pro-
cessing approach on meshes. It started as a solution to the
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shrinkage problem of Laplacian smoothing, and has evolved 14.
quite significantly during the last five years, with many im-
portant contributions and extensions by many authors, and
applications to other areas. In my opinion, the main reason

for this interest has been the simplicity of the algorithms and

the good qulity of the results produced. | believe that this
area will continue evolving in the near future, with theoreti-

cal advances, new efficient algorithms, and important appli- 17.
cations. Many concepts of classical signal processing may
see usefull applications in computer graphics and geometric
design, if efficient implementations become available. | look 18.
forward to continue contributing to this field myself.
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Geometric Fairing of Irregular Meshes
for Free-Form Surface Design

Robert Schneider *, Leif Kobbelt !

Maz-Planck Institute for Computer Sciences, Stuhlsatzenhausweg 85,
D-66123 Saarbricken, Germany

Abstract

In this paper we present a new algorithm for smoothing arbitrary triangle meshes
while satisfying G' boundary conditions. The algorithm is based on solving a non-
linear fourth order partial differential equation (PDE) that only depends on intrinsic
surface properties instead of being derived from a particular surface parameteriza-
tion. This continuous PDE has a (representation-independent) well-defined solution
which we approximate by our triangle mesh. Hence, changing the mesh complexity
(refinement) or the mesh connectivity (remeshing) leads to just another discretiza-
tion of the same smooth surface and doesn’t affect the resulting geometric shape
beyond this. This is typically not true for filter-based mesh smoothing algorithms. To
simplify the computation we factorize the fourth order PDE into a set of two nested
second order problems thus avoiding the estimation of higher order derivatives. Fur-
ther acceleration is achieved by applying multigrid techniques on a fine-to-coarse
hierarchical mesh representation.

Key words: Discrete fairing, Free-Form modeling, PDE method, Parameterization
independence

1 Introduction

Although piecewise polynomial patches are still the dominating free-form sur-
face representation in engineering applications, the use of triangle meshes has
become increasingly important — especially with the rising complexity of 3D
models. A general approach to generate free-form surfaces that satisfy aes-
thetic requirements is surface fairing where auxiliary degrees of freedom are

* Corresponding author. E-mail: schneider@mpi-sb.mpg.de
1" E-mail: kobbelt@mpi-sb.mpg.de

Preprint submitted to Elsevier Preprint 12 December 2000



used to improve the global distribution of curvature (or optimize any other
quality criterion). For triangle meshes this type of optimization has two dif-
ferent aspects. First, the triangle mesh should have outer fairness, i.e. the
imaginary surface that is approximated by the mesh should be optimal with
respect to curvature distribution. Additionally, the mesh should have inner
fairness which means that the distribution of mesh vertices within the surface
and the shape of the individual faces should be good according to application
dependent requirements.

The result of recent mesh fairing algorithms usually depends on the under-
lying mesh connectivity, thus the inner fairness influences the resulting outer
fairness in some way and even for the most sophisticated schemes there is
no guarantee that the surfaces are free of parameterization artifacts (Fig. 1).
A solution to this shortcoming is to use a fairing algorithm that is able to
separate the two fairness types (Fig. 2). This is achieved by using an outer
fairness measure that is based on intrinsic surface properties only, i.e. prop-
erties that depend on the geometry alone. Unfortunately, intrinsic fairing is a
nonlinear problem, and while the linear fairing operators are highly efficient
and in general mathematically well understood, the analysis in the non-linear
case is much more difficult. To the authors knowledge, even for the rather
simple fairing functional

/;ﬁ + K2 dA, (1)
A

leading to a minimal energy surface (MES), it is still unknown if a solution
always exists within specific smoothness classes.

In this paper the separation of outer and inner mesh fairness and parameter
independence is achieved by using an outer fairness concept that is based on
a discrete solution of an intrinsic PDE. The PDE we choose is of fourth order
and leads to surfaces of high quality. To speed up the construction scheme,
we factorize the fourth order PDE into two second order problems and use a
hierarchic mesh representation to enable multigrid techniques.

The paper is organized as follows: Section 2 reviews related work on mesh
fairing. In section 3 we present the concept of our intrinsic fairing approach.
Section 4 defines the notation we use throughout the paper. In section 5 and
6 we show how to discretize the necessary intrinsics. Finally, in section 7 we
present the details of our algorithm.
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Fig. 1. Mesh fairing based on discretizing the equation A?f = 0 using two different
local parameterization strategies. The boundary condition is determined by 3 cylin-
ders that are arranged symmetrically. a) shows the original mesh (920 vertices) and
b) a reduced version with 118 vertices. In c), d) and e) we see the results if local
uniform parameterization is assumed. In f) we used a discretization of a laplacian
that was derived from a discrete harmonic map to fair the original mesh. As we
can see, the mesh size and the local parameterization strategy heavily influence the
resulting surfaces. The rectangular patch introduced in the original mesh leads to
local as well as global shape distortions and prevents a symmetric solution.

2 Mesh fairing - previous work

Most mesh fairing schemes are based on linear operators. While this leads to
simple and fast algorithms, there is a serious consequence: The outer fairness
and therefore the shape of the resulting mesh highly depends on the chosen
parameterization strategy. As a consequence it is not possible to separate the
outer and inner fairness concept in this case. If we change the inner fairness
strategy we have to change the parameterization and will therefore also change
the outer fairness (see Fig. 1 (d) and (f)).

There are two types of fairing algorithms, depending on whether the fairing
is based on the calculation of a well defined surface or whether it is based on
filtering operations.
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Fig. 2. Our new fairing approach applied on the example shown in Fig 1. In a), b) and
c¢) we optimized the inner fairness with respect to a local uniform parameterization.
In d), e) and f) the mesh is discrete conformal to the original mesh in Fig. 1 a). We
can see that the chosen inner fairness strategy and the mesh structure have only
marginal influence on the shape. The influence of the mesh size is also much smaller
than in the linear setting. The continuity of the refection lines in c) indicates G*
continuity at the boundary.

The standard approach for fair surface construction is based on the idea to
minimize a fairness metric, punishing features that are inconsistent with the
fairness principle of the simplest shape (Burchard et al., 1994). Applied to
meshes this leads to the discrete fairing approach proposed by Kobbelt (1997).
Besides of energy minimization, during the last years various other linear mesh
fairing schemes have been developed.

A very effective method for smoothing polyhedral surfaces is the discrete dif-
fusion flow (Taubin, 1995a). Here the idea is to iteratively update each vertex

¢ = ¢ + Mg (2)

by adding a displacement vector that is a scaled discrete laplacian Ag;. For
stability reasons the scale factor A has to satisfy 0 < A < 1. A diffusion
flow that is unconditionally stable and hence enables larger scale factors was
presented by Desbrun et al. (1999).



The main purpose of the diffusion flow is to remove the high frequencies in
noisy meshes. Since the equilibrium surface of the flow only enables C° bound-
ary conditions, (2) is of only limited use in surface design. To enable smooth
boundary conditions one has to consider diffusion equations of higher order.
Taubin (1995a) proposed to combine two such smoothing steps with positive
and negative scale factors and developed an algorithm that enables various
interpolation constraints. Another idea that enables smooth boundary condi-
tions is to use higher powers of the laplacian in the diffusion flow. As a good
trade-off between efficiency and quality one can chose the bilaplacian flow,
enabling C! boundary conditions.

Another mesh fairing approach is based on the idea to discretize the PDE ap-
proach of Bloor and Wilson (1990). In (Kobbelt et al., 1998b) it was proposed
to discretize

A’f =0, (3)

where A is the laplacian operator, to create surfaces satisfying prescribed C*
boundary conditions. This equation results if we apply variational calculus to
the thin plate energy

[[ 124282, + 12, dudy

to describe the minimum of the functional.

Fairing based on some kind of diffusion flow and fairing based on the discretiza-
tion of the PDE (3) that describes the smooth solution are tightly connected
problems, since (3) is the equilibrium of the bilaplacian flow. In both cases
the discretization of the laplacian plays the central role. During the last years
various linear discretizations of the laplacian have been developed (Taubin,
1995a; Kobbelt et al., 1998b; Desbrun et al., 1999; Guskov et al., 1999), dif-
fering in how the geometry of the mesh affects the discretization. The chosen
discretization determines the inner mesh fairness, but it also greatly influences
the shape of the resulting mesh (Fig. 1).

To make the outer fairness independent of the mesh parameterization, other
approaches are based on intrinsic surface properties. These approaches lead
to nonlinear fairing schemes.

In (Welch and Witkin, 1994) a mesh fairing algorithm was presented that
enables G! boundary conditions based on the idea to minimize the total cur-
vature (1) thus punishing large curvature values. For an isometric parameteri-
zation this approach coincides with minimizing the thin plate energy (3). The
necessary intrinsic curvature values were estimated using local quadratic ap-



proximations over local planar parameterizations. However, in constellations
where the local quadratic approximations are not uniquely defined, their ap-
proach may lead to stability problems.

An intrinsic diffusion operator using a discrete mean curvature flow was pre-
sented by Desbrun et al. (1999), leading to an excellent noise reduction al-
gorithm. While this fairing algorithm is mainly designed for outer fairness
without tangential shift, in (Ohtake et al., 2000) this algorithm was combined
with an inner fairness criterion that leads to more regular meshes. Since these
algorithms converge to a discrete minimal surface satisfying H = 0, they only
enable C° boundary conditions and are therefore, as their linear counterparts,
of only limited use in surface design. Again, the solution is to use curvature
flows of higher order (Brakke, 1992; Hsu et al., 1992; Chopp and Sethian,
1999).

In (Schneider and Kobbelt, 2000a) it was proposed to approximate a PDE
based on intrinsics to create fair meshes with G' boundary conditions in the
special case where the meshes have subdivision connectivity. As we will see
in the next section, our method shares the principal idea to solve an intrinsic
PDE, but enables much greater flexibility.

3 Our fairing concept

We present a fairing algorithm for arbitrary triangle meshes that enables G*
boundary conditions (prescribed vertices and unit normals) and allows us
to completely separate outer and inner fairness. To achieve this, the outer
fairness strategy is based on the idea to discretize an intrinsic PDE. Given
G! information at the boundary, the PDE defines a smooth surface satisfying
the constraints, altering the mesh size, the connectivity or the inner fairness
condition only produces another discretization of the same smooth surface and
hence leads to geometries that will be close to each other (Fig. 2).

In practice this allows us to choose our inner fairness criterion freely. In this
paper we restricted ourselves to two especially important cases. One leads to
a regular mesh parameterization, the other produces meshes that are confor-
mally parameterized to a given initial polyhedron. The latter inner fairness
method plays a fundamental role for fairing of textured meshes and in mesh
editing, since it minimizes local distortions. An other consequence is that a
coarse mesh already approximates the shape of the smooth surface that is
implicitly defined by the PDE, so increasing the mesh size mainly improves
the quality of the approximation not the quality of the underlying shape. We
exploit this property to improve the efficiency of our construction algorithm
by using multigrid methods for arbitrary meshes. The necessary mesh hierar-



chies are created using the progressive mesh representation as introduced by
Hoppe (1996).

Following the set-up presented in (Schneider and Kobbelt, 2000a) to define
fair surfaces satisfying G' boundary constraints, the PDE that determines
our outer fairness concept in this paper is defined as

ABH == O, (4)

which can be interpreted as surface analogon to the planar equation k" = 0
(the derivative of the curvature x is with respect to arc length) leading to
clothoid splines. Here Apg is the Laplace-Beltrami operator and H the mean
curvature. The PDE only depends on geometric intrinsics and is comparatively
simple for a forth order equation. Because of the mean value property of
the laplacian, it is guaranteed that the extremal mean curvature values of a
solution of (4) will be reached at the border and that there are no local extrema
in the interior. Since constant mean curvature surfaces satisfy this equation,
important basic shapes as spheres, cylinders and minimal surfaces with H = 0
can be reconstructed. Although the PDE we propose can be derived as a
simplification of the Euler-Lagrange equation resulting from MESs (1), this is
a fairing technique in its own right, which therefore doesn’t have to be inferior
to the MES approach. In fact, this approach even has some advantages over
MESs, e.g. it reproduces cylinders, while it follows from the Euler-Lagrange
equation of (1) that MESs do not reproduce that surface class. This again is
completely analogous to the planar case. It is well known, that minimal energy
curves do not reproduce circles, while a clothoid spline obviously does.

In (Schneider and Kobbelt, 2000a) solutions of (4) were approximated by
meshes in the special case where the meshes have subdivision connectivity
and the boundary vertices could be regularly sampled on a smooth curve. The
construction scheme was based on the idea to design an inner fairness criterion
that partitions the surface in regular regions. Exploiting this regularity knowl-
edge in advance, it was possible to assign a local planar parameterization to
each vertex. Using these domains, the intrinsic values could be approximated
by local quadratic approximations, thus the quality of the discretization de-
pends on the quality of the estimated local planar parameterizations.

The algorithm presented in this paper doesn’t have such limitations. There are
also no restrictions concerning the mesh structure and the boundary vertices
and we are free to choose an inner fairness criteria. Nevertheless, the resulting
construction algorithm is fast and can be implemented compactly. Instead of
trying to simulate the continuous case using local quadratic approximations,
we use the discrete data of our minimization process directly.



4 Notation

We partition the vertices of a mesh M into two classes, denoting the set of
all border vertices with V(M) and the set of all vertices in the interior of M
with V;(M). For each vertex ¢; of M let N(g;) be the set of vertices g; that
are adjacent to ¢; and let D(¢;) = N(g;) U {¢;} be the according 1-disk. Let
H; = H(g;) denote the discrete mean curvature and 7i; = 7i(g;) the discrete
unit normal vector at the vertex ¢;. When it is clear which mean curvature
value or normal vector is meant, in some cases we omit the index to increase
the readability.

q aj Gj+1

Fig. 3. The Laplace-Beltrami operator at the vertex ¢; can be discretized using
D(g;).

5 Discretization of the Laplace-Beltrami operator

The discretization relies on the fact that there is a tight connection between the
Laplace-Beltrami operator Ap and the mean curvature normal of a surface. In
(Desbrun et al., 2000) also an improved discretization can be found that uses
a more detailed area calculation based on voronoi regions, but the following
discretization is sufficient for our needs. Let f : R? — R? be a parameterization
of a surface, then it is well known that the following equation holds

Apf = 2HT.

Exploiting this relation, a discretization of A g follows directly from the mean
curvature flow approach for arbitrary meshes that was presented by Desbrun
et al. (1999). They showed that the mean curvature normal at a vertex ¢; of
a triangular mesh M can be discretized using its 1-neighborhood by

3

Hit = -
"= 1A

Y (cot aj +cot B;)(g; — @), (5)

g;€N(qi)



where A is the sum of the triangle areas of the 1-disk at ¢; and «; and §; are
the triangle angles as shown in figure 3. Since the vertices can be interpreted
as sample points of a smooth surface parameterized by f and exploiting the
fact that a scaling factor does not influence the result, we can discretize the
equation AgH = 0 at a vertex ¢; as

>~ (cot aj +cot B;)(H; — Hj) = 0.

g;€N(q:)

If this equation is satisfied at all inner vertices ¢; € V(M) and if we further
know all mean curvature values for the boundary vertices Vg(M), this leads
us to a sparse linear system in the unknowns H; € V;(M), whose matrix S
has the coefficients

Sz’i = Z (COt Q; + cot Bj)a (6)

g;€N(qi)

—(cot aj +cot B;) : ¢ € N(g;)NVi(M)
Sy = . (7)
0 : otherwise.

The matrix S is symmetric and — as long as no triangle areas of the mesh M
vanish — positive definite. To see this, we note that S also appears in a paper by
Pinkall and Polthier (1993), where a stable construction algorithm for discrete
minimal surfaces based on the idea to minimize the discrete Dirichlet energy
of a mesh was presented. Hence, for an elegant proof of the mathematical
structure of this matrix we can refer to this paper. It should be mentioned
that S further appears in a paper about piecewise linear harmonic functions
(Duchamp et al., 1997).

6 Discretization of the mean curvature

In this section we present a discretization of the mean curvature H; at a
vertex ¢; that depends on the vertices in a local neighborhood. There are
various techniques to discretize surface curvatures, but to be applicable for our
construction algorithm, it is important that — for a given mesh connectivity —
the discretization of H; is a continuous function of those vertices.

Not all curvature discretization schemes satisfy this property. In (Welch and
Witkin, 1994) it was proposed to discretize curvature information using lo-
cal quadratic least square approximation over local planar parameterizations.
However, it is well known that least square approximation fails, if the points in



the parameterization plane lie on a curve of degree 2. To be able to detect such
cases, the authors estimated the condition number of the least square problem
in the Frobenius Norm and reduced the number of the basis functions if the
problem was ill-conditioned. This approach is not only costly, but makes the
discretization process discontinuous and thus leads to a potential instability
in the mesh fairing algorithm.

To avoid analogous stability problems, in the following we propose a mean
curvature discretization technique that satisfies the continuity criterion. More-
over, as we will show in section 7.2, the presented scheme has other favorable
properties that simplify the construction process.

At first glance, it seems tempting to use equation (5) to discretize the mean
curvature, but this would only be applicable for inner vertices. However, in
our construction algorithm presented later in section 7, we have to be able to
discretize the mean curvature not only for inner vertices, but also for boundary
vertices, where we have a completely different situation. Due to the boundary
constraints, here we already know the tangent plane of the final surface, but we
don’t have a complete 1-disk. To avoid having mean curvature discretizations
of different accuracy, we choose one technique that is able to handle both
cases, so our method expects that a tangent plane is known at every vertex.
At interior vertices where no normal vector is known in advance, we define it
to be the normalized sum of the vector crossproducts of the incident triangle
faces, in order to minimize square root operations.

Fig. 4. Left: Projecting the neighborhood of ¢; onto the plane defined by 7 and
normalizing the results we get the normal curvature directions t_; Right: The normal
curvature &; along the direction t_; is discretized by interpolating ¢; and ¢; with a
circle and using the inverse of the circle radius r as normal curvature. The center
of the circle lies on the line defined by ¢; and 7.

6.1 Moreton and Séquin’s curvature discretization algorithm

A curvature discretization algorithm that seems ideal for our needs was pre-
sented by Moreton and Séquin (1992). The idea of their approach is to use
the fact that the normal curvature distribution cannot be arbitrary, but is
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determined by Euler’s theorem (doCarmo, 1993).

Let Ez and Ey be an arbitrary orthonormal basis of the plane defined by the
normal 7i. To each vertex ¢; € N(¢;) we can assign a unit direction vector f;
by projecting ¢; into the plane and scaling this projection to unit length. For
each ¢; we can now estimate a normal curvature £; as the inverse of the circle
radius defined by ¢;, ¢; and ¢; (Fig. 4)

7)

. <Qj_Qi
;=2

v <Qj—€h’ Qj_Qi>' ¥

Using Euler’s theorem, we can express the normal curvature x,, for a direction
¢ by the principal curvatures x; and ko and the principal curvature directions
€1 and €. Let t, and ¢, be the coordinates of ¢ in the basis gw, {_)'y and let e,
and e, be the coordinates of €7, then the normal curvature can be expressed

as
t
ty ty
Kp = K- , 9)
ty ty
with
-1
K= €r €y ] k1 0 ' €r €y
—€y €y 0 ko —€y €y

The idea of Moreton and Séquin is to use the normal curvatures &; to create a
linear system and find estimates for the unknown principal curvature values by
determining the least square solution. Let ¢;, and ¢;, denote the coordinates
of #; and let m be the valence of g;, then we get by evaluating (9)

AZ =0
where

- - S
e tialiy ti, K1
12 togte, t2 I3
2, “2xb2y L2y —' 2

A= , b=

2 2 ~

_tm,x tmawtm:y tm,y J | Fom |
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and

Zo exk1 + €Ky
T= |z | = | 2esey(k1 — K2)
To 2Ky + €2k

Since xg + T3 = K1 + Ko this means the mean curvature is determined by

H= %(mo + ). (10)

In our case the most efficient method to solve the least square problem is to
use the normal equations approach (Golub and Van Loan, 1989), since this
mainly involves to calculate the inverse of a symmetric 3 x 3 matrix. Using
this approach, the least square solution & can be expressed as

7= (AA)"1A%. (11)

The cases when the matrix A*A becomes singular can be detected by a simple
criterion:

Lemma 1 The Matriz A*A is singular if and only if all points (t;,1t:,) are
intersection points of the unit circle with two straight lines through the origin.

Proof: Since singularity of A*A is equivalent with rank A < 3, singularity
occurs iff any 3 row vectors of A are linear dependent. Therefore, the proof is
complete if we show that a matrix of type

2 2
tl,SC tlawtlay tl,y
2 2
t2,a: t2,wt2,y t2,y

2 2
t3,.’E tS’th,y t3,y

with ¢ + 17 = 1 is singular if and only if the tree points lie on two lines
through the origin. This matrix is singular, if there are coefficients a; which
are not all zero such that

t%,l‘ tl,ztlyy tiay 0
a1 [ 13, | T a2 | toutay [ tas |3, | =0,
t%,w t3,mt3,y tg,y 0
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but this means each point (¢; 4, ;) lies on a curve that satisfies a;2? + agzy +
aszy? = 0. Depending on the coefficients a; this equation charactererizes a
single point (the origin) or two lines through the origin. O

Fig. 5. a) At vertices ¢; with valence 3 or 4, between all ¢;,q;4+1 € N(g;) that
share a common edge, new vertices p; are introduced. The p; lie on a plane E;
determined by g;,gj4+1 and the vector 771 + 72, where 7i;1 and i3 are the triangle
normals of the faces adjacent to the edge g;g;+1. b) Approximation of a spiral (planar
curve with monotone nonzero curvature) by the area enclosed by two arcs. ¢) This
approximation also produces reasonable results for planar curves with monotone
curvature and an inflection point (denoted as I).

6.2 Singularity handling

Perhaps the most obvious strategy to avoid singularities of A'A is to simply
check whether the criterion presented in Lemma 1 is satisfied and to apply
a special method only to such cases near singularity. Such an approach is
straightforward, but it can lead to instabilities. A small perturbation of one
vertex can trigger a special case handling and thus it could switch the mean
curvature discretization method, making the process discontinuous.

An elegant solution to this discontinuity problem is to exploit the connection
between possible singularity of A’A and the vertex valence. Assuming that
all points (t; 4, ,) are distinct, a simple consequence of Lemma 1 is that the
matrix A’A can only become singular, if the valence of g; is 3 or 4.

For all vertices of valence 3 or 4 we increase the data quantity that serves
as input for our algorithm. Instead of enlarging the vertex neighborhood —
which lacks symmetry if the valence of the neighbor vertices varies largely
— we increase the local input data by estimating new vertices p; between
adjacent ¢; € N(g;). The p; and g¢; then serve as input for the mean curvature
discretization as described in section 6.1, making the problem well posed.

Simply setting p; = (¢; + ¢j+1)/2 would be fast and convenient, but such
an approach distorts the resulting mean curvature discretization considerably
and should not be used if high quality results have to be generated. A scheme

13



that has proven to be adequate during our numerical experiments is based on
the idea to determine p; by sampling a planar curve with monotone curvature,
that interpolates the vertices and normals at ¢; and ¢;4; (Fig. 5 a). Since it is
not obvious what type of spiral (or pair of spirals, if the curve has an inflec-
tion point) is most promising and the computation of such an interpolating
curve can be expensive, we exploit a nice approximation property of spirals
(Marciniak and Putz, 1984):

Given two planar points ¢; and ¢, with tangent vectors ¢; and %, let s be
an arbitrary spiral that satisfies this G' interpolation problem. Let ¢; be the
circle defined by g1, g2 and t; and ¢y be the circle defined by g1, g2 and Ty (such
that #; and 7, are circle tangents). Then the spiral s can be approximated by
the area enclosed by the circular arcs of ¢; and cy; between ¢; and ¢o, if the
tangent angle between #; and &, does not change exceedingly (Fig. 5 b). This
argument is also reasonable for planar curves with monotone curvature and
an inflection point (Fig. 5 c).

The tangent vectors t; and %, are computed by intersecting the tangent planes
at the vertices ¢; and g¢j41 (defined by their normal vectors) with the plane
E; (Fig. 5 a), where we choose in each case the direction that has the smaller
angle to the vector g;j11 — ¢;. After intersecting the enclosed area with the
perpendicular bisector of ¢; and g2, we set p; = p to be the center point
of the intersection interval. Each circle has two intersection points with the
perpendicular bisector, here we choose only that intersection point that is
closer to the line defined by ¢; and gs.

7 Construction algorithm

In this section we finally present the construction algorithm for a mesh Mg
that is a discrete solution of equation (4), i.e. it satisfies

ApH(g;) =0 Vg € Vi(Ms) (12)

plus an additional inner fairness criterion. The input data for our algorithm
consists of vertices and unit normals that form the G' boundary condition
and an initial mesh M° that interpolates the boundary vertices. The idea of
the construction algorithm is to create a mesh sequence M* k =0,1,2,... by
iteratively updating the vertices, until the outer and inner fairness conditions
are sufficiently satisfied. Although in our implementation the mesh connec-
tivity varies during the construction algorithm (see section 7.4), let us first
assume that only the position of the vertices changes, while the connectivity
remains constant.
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One possible strategy to transform the initial mesh M?° into the solution Mg
would be to use motion by intrinsic laplacian of curvature (Chopp and Sethian,
1999), exploiting the fact that (4) describes the equilibrium of that flow. Here,
for fine meshes very small time steps are needed to achieve stability and it is
hard to decide what concrete time step values should be used in an application.

To avoid such problems, in this paper we do not use curvature flow by the
laplacian of curvature directly, instead we adapt the ideas presented in (Schnei-
der and Kobbelt, 1999) to our case. In that paper an algorithm for the fast
construction of discrete planar clothoid splines — the planar analogon to our
problem — was presented. The key idea of that algorithm was to factorize the
fourth order problem into two problems of second order. In combination with
a multigrid scheme and an iteration step that alternates between local and
global update strategies, an efficient and reliable algorithm for the discretiza-
tion of planar clothoid splines was presented.

7.1 Factorization

Instead of solving a fourth order problem directly, we factorize it into two
second order problems which are solved sequentially. The factorization idea is
inspired by the following observation: Given a fixed Laplace-Beltrami operator
and fixed mean curvature values at the boundary vertices Vz(M¥) of a mesh
MP*, (12) can be interpreted as a Dirichlet problem for the H;, where the
unknown scalar mean curvature values at the inner vertices are determined by
a nonsingular linear system with a symmetric and positive definite matrix S
whose coefficients are defined in (6) and (7). Solving the resulting nonsingular
linear system yields scalar values H; at all inner vertices g € Vi(M ’“), that
represent a discrete harmonic function. The idea is now to use this calculated
scalar values H; to update each inner vertex g; such that H(¢g5*!) = H;, which
is again a second order problem. Expressed in two formulas, this factorization
of M* — M**+! becomes

IT. H(¢f*") = H;

1

Y ¢f € Vi(MF).

We determine the Laplace-Beltrami operator and the boundary mean curva-
ture values by calculating the according values of the current mesh M¥*. In
practice, it is not necessary to solve the Dirichlet problem exactly. When we
have determined the linear system, we apply some iteration steps of an itera-
tive linear solver, using the current mean curvature values as starting values.
So one step to update a mesh M* — M**! becomes:
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e All mean curvature values H(g¥) at all vertices of the current mesh M*
are calculated, the mean curvature discretization technique depends on the
vertex valence as described in section 6. Also the discrete Laplace-Beltrami
operator is determined, that means we calculate the cotangent weights (6)
and (7) for every inner vertex.

e The mean curvature values at the boundary and the discretized Laplace-
Beltrami operator determine a Dirichlet problem that can be formulated
as a linear system for the interior mean curvature values. Use the mean
curvature values at the interior vertices as initial values and iterate the
linear system n times using an iterative linear system solver.

e The second step results in improved scalar values H; for the interior vertices
and this scalar values are used to update all ¢ € V;(M*). The update is
done in a Gauss-Seidel like manner, that means adjacent vertices that have
already been updated are used with their new position.

While discrete harmonic functions do not always have to share all the mathe-
matical properties of their continuous counterparts, e.g. the convex hull prop-
erty (Pinkall and Polthier, 1993), they will nevertheless approximate contin-
uous harmonic functions. This means our scalar values H; will approximate a
function that does not have local extrema and whose maximal values occur at
the boundary, so the H; will behave well and can be approximately bounded
by the current mean curvature values at the boundary vertices.

As in (Schneider and Kobbelt, 1999), we noticed that we can improve the
convergence rate, if we mix high and low frequency smoothing steps. For that
purpose, in our implementation we used Gauss-Seidel and conjugate gradi-
ent (Golub and Van Loan, 1989) iterations. Both schemes enable especially
efficient coding if applied on meshes and both would converge for n — oo,
since the matrix S is positive definite. We alternate between a mesh update
M* — M**! based on Gauss-Seidel with n = 1 and a conjugate gradient
update where n is chosen larger. As a non interactive criterion to terminate
the fairing algorithm, we can iterate until ||[AgH|| < € at every vertex for a
prescribed e.

7.2 Vertexr updates

The inner vertices are updated ¢F — ¢Ft! using the scalar mean curvature

values H; resulting from the iterative solver described above. The aim of the
update step is to produce a new mesh M**! whose mean curvature values
H(g5*Y) at the vertices ¢; € V;(M**1) are closer to the calculated H; values
than those of the previous mesh M*. In order to be able to separate between
inner and outer fairness, we only allow the vertex to move along the surface

16



normal vector. This means we search a scalar value ¢ such that

H(¢*Y) = H; with ¢**' = ¢F +ti. (13)

2

If we take a look at the mean curvature discretization algorithm presented in
section 6.1, we find that the matrix A does not change if we move g; along the
normal vector. So only the right side of equation (11) is influenced by such a
motion and for the normal curvatures (8) we obtain

) <Qj_%’_tﬁ‘ﬁ>

K,j—2 .
<Qj — G —tﬁ‘q]' — G —tﬁ>

This normal curvature discretization is nonlinear in ¢, but since the position
of ¢; will not change much during the update step, we assume the distance
between ¢; and ¢; to remain constant. With this linearization technique we
get

~ <Qj — 4
K)j ~ 2
<Qj —q;

i) .
— 2t

qj_Qi> <Qj—CIi Qj—CIi>

Using this assumption, the discretization of H(gf™) determined by (10) and

(2
(11), becomes a linear function in ¢. Solving this linear equation for ¢, we

finally update ¢ = ¢* + tii which approximately solves (13).

2

7.8 Inner fairness condition

To control how the vertices are distributed on the surface of the solution, for
every inner vertex ¢; € V; we assign a generalized discrete laplacian A that
determines the local parameterization of the surface. Assigning a scalar weight
Aij to every g; € N(g;) with the constraint 3-; A;; = 1, the discrete laplacian
A is defined as

Alg)=—a+ Y. Nijgj-

4;EN(gi)

A mesh M is said to satisfy the inner fairness condition, if all A(g;) have
vanishing tangential components, so that there are scalar values ¢; such that
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We integrate the inner fairness condition into the construction algorithm by
including it into the update step described in section 7.2. Instead of updating
gF — ¢F*! along the line ¢¥ + ¢7;, we update along the line §¥ + t7i;, where g

is the projection of 3_ \;;¢; onto the plane defined by ¢ and 7i;

In our examples we used two different generalized laplacians A. If we assume
local uniform parameterization, we arrive at a laplacian with weights \;; = %,
where m is the valence of the vertex ¢;. This laplacian leads to meshes that
have a regular vertex distribution on the surface. However, in some important
cases such a kind of mesh parameterization is not wanted. For example in
multiresolution mesh modeling (Kobbelt et al., 1998b; Guskov et al., 1999),
one would like to have a faired mesh that minimizes local distortions when
compared to the original mesh M°.

=Y )\ijqj+<A(Qz)

¢;EN(a:)

For meshes it is usually not possible to get a map that is conformal in the sense
that angles are preserved, but we can use the fact that the discretization of
Apgf = 0 can be interpreted as a discrete harmonic map (Pinkall and Polthier,
1993; Duchamp et al., 1997) and thus approximates a continuous conformal
map. So to minimize local distortions, we use the weights resulting from the
discretization of the Laplace-Beltrami operator of the original mesh M°. The
weights A;; at the vertex g; are then given by

cot a; + cot 3;
quEN(qi)(COt Q; + cot ﬁj),

)\ij =

where «; and f3; are the triangle angles as shown in figure 3.

Other promising parameterizations are e. g. the weighted least square and the
shape-preserving parameterizations presented by Floater (1997). Compared to
the discrete conformal parameterization they have the advantage to be based
on convex combinations only.

7.4  Multigrid approach

It is well known, that the convergence of mesh fairing algorithms can be dra-
matically accelerated, if multigrid techniques are integrated into the construc-
tion process (Kobbelt, 1997; Guskov et al., 1999). In our implementation we
followed this idea. An overview of the algorithm is shown in figure 6. The nec-
essary hierarchy levels are constructed using the progressive mesh approach
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e (Create a progressive mesh representation of the given mesh and
subdivide the vertex splits into hierarchies
e Solve the fairing problem on the base mesh
- Create a smooth initial mesh using an algorithm that can handle
noisy meshes
- Solve intrinsic fairing problem on the base mesh
e For each hierarchy level
- Add vertices of the progressive mesh representation until the
next hierarchy level is reached as described in section 7.4
- Smooth the complete mesh on the current hierarchy level. When
determining the estimated new mean curvature distribution, al-
ternate between local and global iterative schemes
- local: Determine the H; values using one Gauss-Seidel iter-
ation and update the vertices
- global: Determine the H; values using n conjugate gradient
iterations (with diagonal preconditioner) and update the
vertices

Fig. 6. The multigrid fairing algorithm

(Hoppe, 1996) with half-edge collapses (Kobbelt et al., 1998a). However, in-
stead of reducing a mesh while trying to keep the details, we are more inter-
ested in creating a mesh whose smallest edge length is maximal while avoiding
distorted triangles (long triangles with small inner circle). The number of hi-
erarchy levels can be specified by the user. A reasonable strategy to fix the
number of vertices per hierarchy is exponential growth.

Our multigrid algorithm exploits the fact that a coarse mesh already approx-
imates the shape of the smooth surface that is implicitly defined by the PDE,
increasing the mesh size mainly improves the smoothness of the approximation
(Fig. 2 and 8). Therefore, we start with the construction of a discrete solution
on the coarsest level of the progressive mesh representation and then each so-
lution on a coarse level serves as starting point for the iteration algorithm on
the next finer hierarchy level. Between two hierarchy levels we need a prolon-
gation operator that introduces new vertices using the vertex split information
of the progressive mesh. When adding a new vertex g;, we have to take care
that the outer fairness is not destroyed at that position. This is achieved in
three steps, where the first two steps are similar to the prolongation operator
used in (Guskov et al., 1999):

e First we update the mesh topology and introduce g; at the position given
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by its inner fairness criterion

= Y. Mg

4;€N(qi)

e In some cases the first step is not enough to avoid triangle distortions,
therefore in the second step we further update the complete 1-ring of g;.
This means we solve the local linear problem Ag, = 0 for all ¢, € D(g;).

e Since the second step disturbs the outer fairness, we finally solve AgH; = 0
for all ¢ € D(g;) by applying the construction algorithm locally on the
1-disk D(g;).

Our mean curvature discretization (section 6) as well as the update step (sec-
tion 7.2) assume that the mesh is not a noisy surface. Therefore, before start-
ing the multigrid algorithm we first construct at the coarsest level the linear
solution of the problem A%f = 0 using the laplacian defined by the chosen
inner fairness criterion (see Fig. 1 ¢). We further developed an improved bi-
laplacian mesh fairing algorithm (Schneider et al., 2000b) that produces an
initial mesh with superior quality than those resulting from linear schemes.
For sparse meshes with very irregular structure, this scheme is much better
suited to create an initial mesh (Fig. 7). Later at each hierarchy level our mesh
is already presmoothed by the multigrid fairing concept.
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Fig. 7. Comparison of the results from a linear bilaplacian (left), our improved
bilaplacian (middle) and our intrinsic method. In the upper row the mesh has a
regular subdivision connectivity structure and in the lower row it is sparse and has
a very irregular connectivity

7.5 Ezamples and remarks

Because of the importance of the discrete mean curvature at the boundary
vertices for the construction algorithm and the fact that at such points we
only have one-sided vertex information, in our examples we calculated the
mean curvature at every boundary vertex using the special case discretization
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Table 1
Running times of the intrinsic fairing algorithm

Dataset Vertices Triangles Vertices  Time

complete mesh complete mesh base mesh sec.

cylinder blend 920 1746 140 1.9
bust face 2926 5720 256 12
human ear 4665 9220 248 21
tetra thing 13308 26624 308 57
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Fig. 8. 6 circles are used to define a tetra thing. a) and b) show the solution of a
mesh with 500 resp. 13308 vertices. c¢) shows the reflection lines of the mesh b). Due
to the symmetric constellation the final smooth solution would be G? continuous.
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Fig. 9. Feature removal of a mesh with user defined boundary curve.
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as for inner vertices of valence 3 or 4. For coarse meshes, we also used the
special case handling for interior vertices of higher valence.

Instead of updating q(C+1

¥+l = gk + stit with s = 1.0 as described in section 7.2, in
practice s has to lie in the range 0 < s < 1.0. While s = 1.0 usually will work
well, we noticed that in some rare constellations it is possible that vertices can
alternate between two positions. All of our examples presented in this paper

were constructed using s = 0.9.

The conformal inner fairness is only hardly more time consuming to construct
than the uniform parameterization, but requires much more memory. Here the
original mesh has to be reconstructed from the progressive mesh representation
parallel to the faired mesh to be able to update the necessary coefficients of
the laplacian — which also have to be stored in memory — at every hierarchy
level.

The lines of reflection in our example pictures indicate G' continuity at the
boundary (continuous lines) and at least G? continuity in the interior (smooth
lines). As can be seen in examples 9 and 10 the boundary does not have to
be smooth. In such cases the fixed unit normal information at the bound-
ary is derived by averaging the adjacent triangle normal vectors before the
construction.

The concept behind our construction algorithm works best for AgH = 0, but
it is not restricted to that. We also constructed MESs by solving their Euler-
Lagrange equation AgH = —2H(H? — K) and surfaces satisfying AgH =
const. However, these inhomogen problems are more costly to solve and a
stable construction algorithm is more involved.

In this paper we assumed that the final mesh should have a prescribed vertex
connectivity. If this is not the case, flipping of edges should be enabled to avoid
long triangles, new vertices may be introduced where necessary or removed
where the vertex density becomes too high (see Hsu et al., 1992; Welch and
Witkin, 1994).

All shaded pictures are flat shaded to enhance the faceting effect. The con-
struction algorithm was implemented in Java 1.3 and Java 3D for Windows
NT running on a Pentium III with 500MHz. We noticed that our fairing al-
gorithm is very fast for a fairing approach based on intrinsics. The running
times for the examples shown in this paper are presented in table 1, they do
not include the time needed to build the progressive mesh representation. An
optimized C implementation would improve these timings without doubt.

22



8 Conclusion and future work

The technique we presented in this paper shows that it is possible to use higher
order intrinsic PDEs in modeling based on irregular meshes. Since the surface
is completely defined by G' boundary conditions and a PDE, the designer does
not have to take surface parameterization or the actual mesh representation
into account and can freely distribute the vertices on the surface.

One of our future plans is to integrate the presented technique in a multires-
olution mesh modeling tool as those described in (Kobbelt et al., 1998b).
Although the new construction algorithm is obviously slower than the sim-
ple linear fairing algorithm used there, based on the results we got from our
current implementation, it seems possible to achieve interactive frame rates
with a decent mesh complexity. In combination with an inner fairness criterion
that enables local shape preservation, this would lead to a much simpler detail
coding. Because of the intrinsic surface definition, this would also simplify a
mesh modeling that does not fix the connectivity or the mesh size during the
modifications.

We will also explore other curvature and update algorithms and study differ-
ent intrinsic PDEs to introduce new design freedoms. Furthermore, it will be
necessary to integrate surface constraints in the interior of the surface such as
interpolation of points, which might require PDEs of higher order.
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