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ABSTRACT 
 
Very large polyhedral models, which are used in more and more graphics 
applications today, are routinely generated by a variety of methods such as surface 
reconstruction algorithms from 3D scanned data, isosurface construction algorithms 
from volumetric data, and photogrametric methods from aerial photography. The 
course will provide an overview of several closely related methods designed to 
smooth, denoise, edit, compress, transmit, and animate very large polygonal 
models, based on signal processing techniques, constrained energy minimization, 
and the solution of diffusion differential equations. 
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Dr. Leif Kobbelt is Professor of Computer Science, and head of the Computer 
Graphics group at the University of Aachen, Germany. Previously, he was a senior 
researcher at the Max-Planck-Institute for computer sciences in Saarbrücken, 
Germany. His major research interests include Multiresolution and free-form 
modeling, as well as the efficient handling of large polygonal mesh data sets. He 
received his habilitation degree from the University of Erlangen, Germany where he 
worked from 1996 to 1999. In 1995/96 he spent one post-doc year at the University 
of Wisconsin, Madison. He received his master's (1992) and Ph.D. (1994) degrees 
from the University of Karlsruhe, Germany. During the last 8 years he did research in 
various fields of computer graphics and CAGD, and published 50 journal and 
reviewed conference papers. 
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Gabriel Taubin is a Research Staff Member and former manager of the Visual and 
Geometric Computing group at the IBM Thomas J. Watson Research Center. He 
joined IBM Research in 1990. He is currently on sabbatical at the California Institute 
of Technology, in Pasadena, California, as Visiting Professor of Electrical Engineering. 
He holds a "Licenciado en Ciencias Matemáticas" degree (MSc. in Pure Mathematics) 
from the University of Buenos Aires, Argentina, and a Ph.D. in Electrical Engineering 
from Brown University, Providence, Rhode Island. Gabriel has published more than 
35 book chapters, refereed journal or conference papers, 25 other conference papers 
and technical reports, and 25 patents (20 issued). He has presented the 
Eurographics'2000 State of the Art Report on Geometric Signal Processing on 
Polygonal Meshes, the Eurographics'99 State of the Art Report on 3D Geometry 
Compression and Progressive Transmission, and organized and taught four courses 
on 3D Geometry Compression at Siggraph'98,  Siggraph'99, Siggraph’2000, and ACM 
Solid Modeling 2001. Gabriel was granted an IBM Research 1998 Computer Science 
Best Paper Award for his paper Geometry Compression through Topological Surgery.  
The IEEE Board of Directors elected Gabriel as an IEEE Fellow, effective Jan 1 2001, 
for his contributions to the development of three-dimensional geometry compression 
technology and multimedia standards. As manager of the Visual and Geometric 
Computing Group at IBM Research he lead three main projects. The MPEG-4 3D 
Mesh Coding project, where his 3D geometry compression technology was adopted 



by the MPEG-4 standard; the HotMedia project, where he transfered his 3D geometry 
compression technology to the award winning (PC Expo'2000 Best of Show Sofware) 
IBM HotMedia product. And the Pieta project, where Michaelangelo's Florentine Pieta 
was 3D scanned and a 3D model was reconstructed to support art historian Jack 
Wasserman in his comprehensive study of the statue. 



Course Syllabus and Timeline 
 
1:30 INTRODUCTION (5") 
 
1:35 TAUBIN (85") 

• Representation of polygonal models 
• Operations on large polygonal meshes 
• Laplacian smoothing 
• The shrinkage problem 
• Fourier analysis on meshes 
• Smoothing by partial Fourier expansion 
• Smoothing as low-pass filtering 
• Taubin smoothing 
• FIR/IIR filter design 
• Implicit Fairing / Multi-resolution modeling 
• Smoothing with constraints 
• Preventing tangential drift by curvature flow 
• Applications to 3D geometry compression 
• Optimal mesh sampling rate conversion 
• Adaptive curvature-based resampling 
• Filtering of normal and tensor fields 
• Non-linear filtering / anisotropic diffusion 

 
3:00 BREAK (15") 
 
3:15 KOBBELT (85") 

• Multiresolution representations 
• Coarse-to-fine (refinement, remeshing) 
• Fine-to-coarse (simplification) 
• Detail encoding 
• Fairing by constrained energy minimization 
• General set-up 
• Multi-level smoothing 
• Fairing by solving PDEs 
• Linear PDEs 
• Non-linear PDEs 
• Practical aspects 
• Multiresolution editing 
• Static connectivity 
• Dynamic connectivity 

 
4:40 QUESTIONS AND ANSWERS (15") 
 
5:00 ADJURN 
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Geometric Signal Processing on Large Polygonal Meshes

Leif Kobbelt� Gabriel Taubiny

Since hierarchical methods in geometric modelling have
emerged as a key tool to handle highly complex 3D data sets, the
term multiresolutionhas been adapted from signal processing the-
ory to emphasize the notion of decomposing a given shape into ge-
ometric frequency bands just like arbitrary (scalar or multi-modal)
signals can be expressed by a superposition of different frequencies.
The descriptive and functional power of these techniques is largely
due to the intuitive correlation between high frequencies and fine
detail on one side and low frequencies and global shape features on
the other side.

Naturally, the operators to analyze or synthesize geometric
shapes and their multi-resolution spectra, are very similar to the
digital filters that are used in standard signal processing applica-
tions. The main difference is that the graph- or surface topology of
a polygonal mesh is more complicated than the temporal or spatial
domains on which conventional signals are usually defined (typi-
cally IRd). Hence the major difficulty in applying signal processing
techniques to geometric shapes is their generalization with respect
to the domain topology.

The approach taken by Taubin [18] is to generalize the notion of
frequencyto triangle meshes by considering the vertex positions of
a given mesh as a set of point samples from the underlying shape.
The resulting piecewise linear surface is then an approximative re-
construction of the continuous shape from those samples.

In order to obtain a definition of frequencyor wavelengthwhich
is independent from the specific geometric shape, we can measure
the distance between mesh vertices by their topological distance,
i.e., by the number of edges we have to follow to describe a path
from vertex A to vertex B. For this definition, the highest fre-
quency signal (i.e., the shortest wavelength) is achieved if the geo-
metric location of directly neighboring vertices varies strongly and
lower frequencies are characterized by vertex positions such that
local minima and maxima are several edges apart.

The general task of analyzing the spectrum of a given signal is
a global problem and hence computationally involved. For the ef-
ficient processing of large triangle meshes we have to find a lo-
cal approximations – ideally leading to filter algorithms with linear
complexity.

Consider, e.g., a triangle mesh which consists of one center
vertex p and its surrounding neighbors q0; : : : ;qn�1. Then the
smoothest possible geometric configuration (in terms of topologi-
cal wavelength) is achieved if the center vertex lies at the center of
gravity of its neighbors, i.e.,

p =
1

n

n�1X

i=0

qi:

For all other configuration, the amount of higher frequency compo-
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nents can be measured by the difference vector

U(p) =
1

n

n�1X

i=0

qi � p: (1)

An effective low-pass filter applied to the considered mesh will shift
the position of the center vertex such that the length of the vector
U(p) is reduced.

In a larger mesh each vertex can be understood as the center ver-
tex to its directly adjacent neighbors. Consequently (1) gives a lo-
cal estimate of the highest frequency at that location on the surface.
Again, a low-pass can be implemented which moves each vertex
towards the center of gravity of its neighbors and thus attenuates
the highest frequency components.

After applying such a low-pass filter to a given mesh, the piece-
wise linear surface will become less rough. Hence to local geome-
try (= the local signal) could be reconstructed from fewer samples
without losing significant geometric information. This is very sim-
ilar to standard results from signal processing which state that the
necessary sampling rate for correct reconstruction of a given signal
depends on the highest frequency component.

In the context of multiresolution techniques a decomposition of
a geometric data set M0 is usually obtained by first applying a low-
pass filter operation Lwhich preserves only the low frequency com-
ponents. Hence the difference of the vertex positions in the original
mesh and the filtered mesh M 0

0 = L(M0) contains all the high
frequency information. Since M 0

0 is oversampledin the sense that
fewer samples would be sufficient for reliable reconstruction, we
can apply a sub-sampling operator such as mesh decimation which
yields a coarser mesh M1.

Applying (1) to this mesh, again, measures the high frequency
components but since the samples are distributed more sparsely,
those frequencies belong to a different frequency band. This band
can be isolated by computing the difference between the vertex po-
sitions in M1 and a filtered version M 0

1 = L(M1).
By repeating this procedure of alternating low-pass filtering and

subsampling, we generate a sequence of coarser and coarser meshes
Mi with the total shape information decomposed into different fre-
quency bands represented by the differences Mi �M 0

i .
The basic ingredient for the above algorithm is a linear low-pass

filter which is derived from the local ”noise-estimator” (1). From a
geometric point of view there are several interpretations for this
vector U(p). Usually it is considered as some kind of discrete
Laplace vector or Mean Curvature vector. An obvious generaliza-
tion of (1) is

U(p) =
1

n

n�1X

i=0

�i(qi � p) (2)

where the coefficients �i can be used to adapt the operator to the lo-
cal mesh distortion, i.e., to the varying edge lengths or to the angles
between edges and normals. In [4] a number of possible choices is
presented. From this perspective the low-pass filter operation turns
out to be a diffusion operator that moves the vertices (= particles)
along the direction given by (2).

A completely different interpretation emerges from the observa-
tion that a solution to the equation U(p) = 0 is in fact a discrete



approximation to a continuous surface f satisfying the partial dif-
ferential equation

4f = 0: (3)

Hence the application of the low-pass filter can be considered as
one step in an iterative algorithm to solve the linear system which
characterizes the solution of the PDE (3). Moreover, the PDE (3) is
the Euler-Lagrange equation to the membrane optimization prob-
lem that minimizes the surface area while respecting prescribed
boundary conditions.

Analoguously, if we control the low-pass filtering by higher or-
der Laplace vectors

U
2
(p) =

1

n

n�1X

i=0

�i(U(qi) � U(p))

we iteratively solve the fourth order PDE

4
2
f = 0

whose solutions minimizes the thin plate energy [9].
It turns out that the alternative interpretation of the low-pass filter

as an iterative PDE solver naturally enables the inclusion of interpo-
lation constraints to the multiresolution decomposition. For exam-
ple, all meshes Mi can be forced to interpolate the same boundary
curve which is useful when locally modifying the mesh model [9].

Geometrically more sophisticated generalizations of the curva-
ture estimator (2) can be derived, if we allow the coefficients �i
to be non-linear functions of the local geometry and that they are
updated in every step of the iteration [15]. By this we can gener-
ate discrete approximations to continuous solutions of non-linear
PDEs whose shape is almost completely independent from the ac-
tual mesh connectivity.
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[24] D. Zorin, P. Schröder, and W. Sweldens. Interactive multireso-
lution mesh editing. In Siggraph’97 Conference Proceedings,
pages 259–268, August 1997.



 
 

Geometric Signal Processing on Large Polygonal Meshes 
COURSE NOTES FOR SIGGRAPH'2001 

LOS ANGELES, CALIFORNIA 
AUGUST 12, 2001 

 
 
 

Gabriel Taubin 

IBM T.J. Watson Research Center 
California Institute of Technology



8/12/2001

Taubin / Siggraph 2001 Course 17 1

8/12/2001 Taubin / Siggraph 2001 Course 17 1

Geometric Signal Processing
on Polygonal Meshes

IBM T.J.Watson Research Center
http://www.research.ibm.com/people/t/taubin

California Institute of Technology

http://mesh.caltech.edu/taubin

Gabriel Taubin

8/12/2001 Taubin / Siggraph 2001 Course 17 2

Large dense polygonal meshes

� Are becoming standard representation for surface data
� 3D Scanning (Reverse engineering, Art)

� Isosurfaces (Scientific Visualization, Medical)

� Subdivision Surfaces (Modeling, Animation)

� But have too many degrees of freedom (vertices)

� How to ?
� Smooth / De-noise

� Edit / Deform / Constrain / Animate

� Represent / Compress / Transmit

� BUT FAST !
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Digital Signal Processing on Meshes
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Polygonal Meshes

� Components 
� Connectivity (Vertices, Edges, Faces)

� Geometry (Vertex Coordinates)

� Properties (Normals, Colors, Texture Coordinates)

� Connectivity ( combinatorial algorithms )
� Boundary / Regular / Singular Edges and Vertices

� Connected Components

� Manifold / Non-manifold

� Orientable / Oriented

� Topology
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3D Representations

� Surfaces 
� Polygonal meshes

�Disconnected triangles (STL file format)

� IndexedFaceSet (VRML file format)

�Half-Edge data structure (manifold meshes)

� Boundaries of solid objects

� Volumes (solid objects)
� Implicit surfaces

�Defined by inside-outside function

� Iso-surfaces : convertion to polygonal mesh
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Disconnected Triangles

� Triangle Mesh with T triangles
� Each triangle specified by 3 vectors = 9T floats

� No connectivity information

� STL file format used for Rapid Prototyping

(1,4,0)

(2,0,0)

(0,3,0)
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IndexedFaceSet

� Array of vertex coordinates

� Each 3D vertex has an associated vertex index
in {0,…,V-1}

� A triangle is defined by three vertex indices (i,j,k)

� A polygonal face without holes is defined by more indices

� coordIndex [ 0,1,2,-1,2,1,3,4,-1]
� VRML’97 file format

i

jk

0

1

2

3

4
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Polygonal Mesh Components

� Connectivity
� coordIndex (faces)

� Geometry
� coord (vertex coordinates)

� Properties
� color/colorIndex/colorPerVertex

� normal/normalIndex/normalPerVertex

� texCoord/texCoordIndex
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Connectivity / Classification of Elements

� Edges
� Boundary (1 incident face)

� Regular (2 incident faces)

� Singular (3 or more incident faces)

� Vertices
� Regular / Singular

� Connected components
� Connected Components of Dual Graph
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Manifold Meshes

� No singular edges
� Boundary

�Edge with 1 incident face
� Regular

�Edge with 2 incident faces

� No singular vertices
� Boundary

�dual graph of set of incident faces form a path
� Regular

�dual graph of set of incident faces form a cycle

� Data Structure to represent and operate on ?
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Doubly-linked data structure

� Planar subdivisions

� Orientation

� Vertices / Faces / Half-Edges

halfEdge {
face
srcVertex
nextEdge
prevEdge
twinEdge

}face

srcVertex

dstVertex

twinEdge

nextEdge

prevEdge

Oriented egde

Non-oriented egde
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Doubly-linked data structure

� One half-edge per corner of mesh

� Simple Face
� closed loop of half-edges

� Multiply connected face
� 1 external loop + one or more internal loops

face

vertex

face

vertex
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Orientation

� Consistent if edge is added or removed

� Counterclockwise for outer loop
� Clockwise for inner loops

� Twin edges have opposite orientations
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Doubly-linked data structure

� Operations
� Traversal / triangle strips / compression

� Surgery / Euler operations

� Simplification / subdivision

� How to construct from IndexedFaceSet ?
� Simply connected faces

� Geometric intersections ignored

� Conversion to manifold
� Removal of singular edges and vertices
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Mesh Graph

� G=(V,E)

� V set of mesh vertex indices {0,…,V-1}

� F set of faces f=[i,j,k,…]

� E set of mesh edges e={i,j}

� i* = { j : {i,j} is in E }

� Signals Defined on the

vertices of a graph

i

j
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Different approaches

� Signal Processing

� Physics-based / PDE Surfaces

� Variational / Regularization 

� Multiresolution

� Subdivision Surfaces
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Classical Digital Signal Processing

� Signals defined on regular grids
� 1D : music / speech

� 2D : images / video

� 3D : medical imaging

� Shannon Sampling Theorem

� DFT/FFT Fourier Analysis 

� FIR/IIR Linear Filters

� Convolution

� Multi-rate filtering / upsampling / downsampling …
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The Signal Processing Approach

� Laplacian smoothing
� The shrinkage problem

� Fourier analysis on meshes

� Smoothing by partial Fourier expansion 

� Smoothing as low-pass filtering
� Taubin l|m smoothing

� FIR/IIR filter design

� Implicit Fairing / Multiresolution modeling

� Weights / Hard and soft constraints

� Compression of geometry information
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Main references
� Taubin l|m smoothing (SG’95)

� Taubin-et-al FIR filter design (ECCV’96)

� Desbrun-et-al Implicit smoothing (SG’99)

� Kobelt-et-al Multiresolution smoothing (SG’98)

� Tani-Gotsman Spectral compression (SG’00) 

� Balan-Taubin prediction by filtering (CAD’00)

� Khodakovsky-Schroder-Sweldens
Progressive Geometry Compression (SG’00) 

� Guskov-et-al Multiresolution Signal Processing (SG’99)

� …
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Laplacian smoothing in mesh generation

� Used to improve quality of 2D meshes for FE computations

� Move each vertex to the barycenter of its neighbors
� But keep boundary vertices fixed

j
j i

1
v ' vi ni ∗∈

= ∑

jv
vi
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The 1D Discrete Fourier Transform

� For 1D periodic signals 

� There is a fast algorithm to compute the DFT : the FFT

� Ideal Low-Pass filter can be implemented

� Complexity is O(n log(n))

i

i+1

i-11

n

…

…
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Laplacian smoothing of 1D discrete signals

� Known as Gaussian smoothing

� Convolution of 1D signal with Gaussian kernel

� Also for 2D discrete and continuous signals

v ' v ( ) v vi i i i
λ λ= + − λ +− +11 12 2vi−1

vi

vi+1

< λ <0 1
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Laplacian smoothing of 1D discrete signals

v ' v v vi i ( ) i i= + − λ− +
λ + λ1

212 1

v ' v (v v ) (v v )i i i i i i
 = + λ − + −− + 
 

1 1
1 12 2

vi
vi+1vi−1

• Preserves DC
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Laplacian smoothing with general weights

i ij j i
j

v w (v v )∆ = −∑

ij
j

w=∑1

ij
w0 £

i i i
v ' v v= + λ ∆

jv

vi

wij
wji
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The Laplacian operator

i ij j i
j

v w (v v )∆ = −∑

jv

vi

vi∆

i i i
v ' v v= + λ ∆

v 'i
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Laplacian smoothing : advantages

� Linear time

� Linear storage

� Edge length equalization (depending on the application)

� Constraints and special effects by weight control
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Shrinkage of Laplacian smoothing

� DEMO !!!
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Laplacian smoothing : disadvantages

� Shrinkage
� Solved by scale adjustment for closed shapes ?

� What is going on? Fourier analysis

� Solved by Taubin’s algorithm for general shapes

� Solved by Low-Pass filtering

� Edge length equalization (depending on the application)
� Fujiwara weights

� Desbrun-et-al weights
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Fixing shrinkage by renormalizing scale

� Adjust scale s to keep distance to barycenter v constant

vi v 'iv v

2 2v v s(v ' v)i i
i i

− = −∑ ∑

v " v s(v ' v)i i= + −
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Fixing shrinkage by renormalizing scale

� It is a global solution

� Local perturbation changes shape everywhere

� Does not work !!!

� For a better solution we need to understand why 
shrinkage occurs

� Fourier Analysis

8/12/2001 Taubin / Siggraph 2001 Course 17 32

Fourier analysis on meshes

i i ij j i
j

x ' x w (x x )= + λ −∑ x ' (I K) x= −λ

� Eigenvalues of   K = I-W                           (FREQUENCIES)

� Right eigenvectors of K           (NATURAL VIBRATION MODES)

0 k k k 20 1 N= ≤ ≤ ≤ ≤�

e , e , , e0 1 N…
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Geometry of low and high frequencies

� Low frequency

� High frequency

ij hj hi
j

k e Ke ' w (e e )h hi hi= = − −∑
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Natural vibration modes
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The Discrete Fourier Transform

� Eigenvectors form a basis of N-space 

� Every signal can be written as a linear combination

� � �x x e x e x e0 1 N0 1 N
= + + +�

� Discrete Fourier Transform (DFT)

� � � � tx (x , x , , x )
0 1 N

= …
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The Ideal Low-Pass Filter

� � �x ' x e x e x e0 1 L0 1 L
= + + +�

k kL PB≤

� Truncated Fourier expansion 
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The Discrete Fourier Transform

� Ideal low-pass filtering = truncated Fourier expansion 

� �x ' x e x00 L
1 eL1= + +�

� But eigenvectors cannot be computed !

� Compute an approximation instead : Linear filtering

� �x e x eL 1 NL
0

1
0

N
+ + +++

�
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Polynomial Functions of Matrices

� f(k) univariate polynomial

� K square matrix

� f(K) square matrix

� To evaluate f(K)x only need to know how two multiply 
a matrix by a vector, a number by a vector, and how to 
add two vectors  
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Analysis of Laplacian smoothing

N Nx (I K) x f(K)x= − λ =

f(k ) , f(k ) , , f(k )0 1 N…

� f(k) univariate polynomial (rational later)

� f(K) matrix

� K and f(K) have same eigenvectors

� Eigenvalues of f(K)

� Laplacian smoothing transfer function
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Laplacian Smoothing is a Linear Filter
� After filtering

� �f(K)x f(k ) x e f(k ) x e
0 0 N NN0

= + +�

� For Laplacian smoothing

� Laplacian smoothing is not a low-pass filter !

Nf(k ) (1 k ) 0
j j

= − λ → 0 1≤ λ <j 0≠

f(k ) 10 =
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Linear Filtering
� After filtering

� �f(K)x f(k ) x e f(k ) x e
0 0 N NN0

= + +�

� Evaluation of   f(K) x is matrix multiplication

� It does not require the computation of eigenvalues and 
eigenvectors (DFT)
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Low-Pass Linear Filtering
� After filtering

� �f(K)x f(k ) x e f(k ) x e
0 0 N NN0

= + +�

� Need to find univariate polynomial f(k) such that

k kL PB≤f(k ) 1h ≈

f(k ) 0h ≈ k kL PB>

� Need to define efficient evaluation algorithm
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Taubin smoothing (Siggraph’95)

� Two steps of Laplacian smoothing

� First shrinking step with positive factor

� Second unshrinking step with negative factor

� Use inverted parabola as transfer function 

Nf(k) ((1 k)(1 k)) with 0= −µ − λ − µ > λ >
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Taubin smoothing (Siggraph’95)

� DEMO !!!
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Taubin-Zhang-Golub (ECCV’96)
FIR filter design

� Efficient algorithm to evaluate any polynomial transfer 
function

� Based on Chebyshev polynomials defined by three term 
recursion

� All classical Finite Impulse Response (FIR) filter design 
techniques can be used with no modifications

� Implemented method of “windows” based on truncated 
Fourier series expansion of ideal transfer function and 
coefficient weighting to remove Gibbs phenomenon

� DEMO !!!
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FIR filters vs. IIR filters

� Sharp transitions and narrow pass-bands require very 
high degree polynomial transfer functions

� Infinite Inpulse Response (IIR) filters with rational 
transfer functions can produce good approximations 
using polynomials of low degree

� But require the solution of sparse linear systems

� Is it worth the effort ?
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IIR filters

� If  f(k)=g(k)/h(k), with h(k) non-zero in [0,2]

� Filtering a signal x requires solving the system

h(K)x ' g(K)x=

� y = g(K) x    is an FIR filter

� With H = h(K) solving  H x’ = y with the 
Preconditioned Biconjugate Gradients algorithm 
(PBCG) only requires methods to multiply a vector z 
by H and by Ht and a preconditioner H’
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Desbrun-Meyer-Schroder-Barr (SG’99) 
Implicit fairing

� Corresponds to the classical Butterworth filter with transfer 
function

N
PB

1
f(k)

1 (k /k )
=

+

� But with PDE formulation in the paper

N N
PB(I (1/ k ) K )x ' x+ =

� Need to solve sparse (for small N) linear system
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Implicit fairing
� Laplacian smoothing corresponds to the numerical solution of

x
dt x

t
∂ = λ ∆
∂

� using the forward Euler method

x ' x dt x (I dt )x= +λ ∆ = +λ ∆
� They use the backward Euler method instead

(I dt ) x ' x− λ ∆ =
� Stable for large time steps (true or false ?)

� DEMO !!!

8/12/2001 Taubin / Siggraph 2001 Course 17 50

Kobelt-et-al Multiresolution modeling 
(Siggraph’98)

� Minimize membrane energy

� or thin plate energy

� Requires boundary vertex position constraints

� Speed-up by multi-grid approach

� Jacobi updates similar to Laplacian and Taubin updates

� How does it compare with single-res FIR filters ?

� DEMO !!!

2

ME x= ∆
22

TPE x= ∆
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What can be done with the weights ?

� Weights
� Neighborhoods = non-zero weights

� Prevention of Tangencial drift

� Edge-length equalization

� Boundaries and creases / hierarchical smoothing

� Vertex-dependent smoothing parameters

i ij j i
j

v w (v v )∆ = −∑
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Preventing tangencial drift
� Fujiwara (P-AMS’95)

� Weights inversely proportional to edge length

� Desbrun-Meyer-Schroder-Barr (SG’99)
� Based on better approximation of curvature normal

ij
c cot( ) cot( ) '

ij ij
= α + β

ij
α

ij
β

i
v

j
v

� Guskov-et-al (SG’99) based on divided differences and 
second order neighborhood
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Smoothing with Constraints

� Boundaries
� Creases
� Singular edges
� Imposing Vertex Constraints / Discrete Fairing

� Lack of normal control
� Imposing Normal Constraints
� Detecting and Enhancing Creases

� Anisotropic Difussion
� Non-Linear filtering
� Evolution of Weights
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Hierarchical neighborhoods

� Assign a numeric label to each vertex

� Vertex j is a neighbor of vertex i only if i and j are 
connected by an edge, and the label of i is less or equal 
than the label of j
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Boundaries and creases
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Vertex Constraints and Surface Design
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Boundaries and creases

� Use hierarchical neighborhoods

� Assign label 1 to boundary and crease vertices

� Assign label 0 to all internal vertices

� The graph defined by the boundary and crease edges 
and vertices is smoothed independently of the rest of 
the mesh

� The rest of the mesh “follows” the graph defined by the 
boundary and crease edges and vertices
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Position and normal constraints

� Hard vs. soft constraints

� Hard vertex position constraints are easy to impose

� General hard linear constraints require solving small 
linear systems

� Yamada-et-al Discrete Spring Model (PCCGA’98) 
impose soft normal constraints with a spring model 
that adds an extra term to the smoothing step

� Slow convergence and/or high computational cost

� Multi-resolution helps

� More work needed
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Curvature-based Sampling 

� Silva-Taubin Curvature-based sampling (SIAM-GD’99)

� Taubin Tensor of curvature (ICCV’95)

jv
iv

ijr

i ij iv r n−

in 2 2
j i ij i ijv v r n r− + =

t
j i i j i

ij
ij j i

v v 2 n (v v )

r v v

− −
σ = =

−

8/12/2001 Taubin / Siggraph 2001 Course 17 60

Geometry compression

� Static or single-resolution vs. progressive

� Connectivity, geometry, and properties

� Geometry and properties cost much more than 
connectivity

� Commercial grade single-resolution methods available
� Taubin-Rossignac Topological Surgery (MPEG-4/ IBM 

HotMedia)

� Touma-Gotsman (Virtue Ltd.)

� Need better geometry prediction/compression 
schemes 
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Tani-Gotsman (Siggraph’00)
Spectral Compression
� Based on partial DFT expansion

� Connectivity is transmitted first

� Encoder computes Eigenvalues/Eigenvectors of matrix 
K to evaluate Fourier coefficients

� Fourier coefficients are transmitted

� Decoder computes Eigenvalues/Eigenvectors of matrix 
K to reconstruct the partial sum

� Mesh partition into smaller submeshes to be able to 
deal with the numerical restrictions

� Need to compute lots of Eigenvalues/Eigenvectors
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Balan-Taubin
prediction by filtering (CAD’00)

� Based on a vertex clustering hierarchy (PM, PFS, etc.)

� Connectivity is transmitted progressively interlieved 
with geometry data

� Fine Geometry is predicted from coarse geometry by 
filtering the coarse geometry on the fine mesh

� Filter coefficients are determined by solving a LS 
problem

� Corrections are not transmitted

2

f F Cmin x f(K)x−
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Khodakovsky-Schroder-Sweldens
Progressive Geometry Compression 
(SG’00)

� Good for large densely sampled meshes with low 
topological complexity (3D scanning, etc.)

� MAPS Remeshing produces subdivision surface

� Wavelet compression

� Zero-tree encoding

� Very good results reported
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Conclusion / To Do 

� Fast and efficient methods to smooth with hard and 
soft constraints

� Relation to subdivision surfaces

� Global vs. local behavior of smoothing operators

� Goal: interactive free-form modeling based on intuitive 
user interface to manipulate constraints, remesh, 
simplify, etc.

� Goal: practical and effective methods for the 
compression of geometry data.

� Implementation of other popular SP operations
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A Signal Processing Approach To Fair Surface Design

Gabriel Taubin1

IBM T.J.Watson Research Center
ABSTRACT

In this paper we describe a new tool for interactive free-form fair
surface design. By generalizing classical discrete Fourier analysis
to two-dimensional discrete surface signals – functions defined on
polyhedral surfaces of arbitrary topology –, we reduce the prob-
lem of surface smoothing, or fairing, to low-pass filtering. We
describe a very simple surface signal low-pass filter algorithm that
applies to surfaces of arbitrary topology. As opposed to other exist-
ing optimization-based fairing methods, which are computationally
more expensive, this is a linear time and space complexity algo-
rithm. With this algorithm, fairing very large surfaces, such as
those obtained from volumetric medical data, becomes affordable.
By combining this algorithm with surface subdivision methods we
obtain a very effective fair surface design technique. We then
extend the analysis, and modify the algorithm accordingly, to ac-
commodate different types of constraints. Some constraints can
be imposed without any modification of the algorithm, while others
require the solution of a small associated linear system of equations.
In particular, vertex location constraints, vertex normal constraints,
and surface normal discontinuities across curves embedded in the
surface, can be imposed with this technique.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/image generation - display algorithms; I.3.5
[Computer Graphics]: Computational Geometry and Object Mod-
eling - curve, surface, solid, and object representations; J.6 [Com-
puter Applications]: Computer-Aided Engineering - computer-
aided design

General Terms: Algorithms, Graphics.

1 INTRODUCTION

The signal processing approach described in this paper was origi-
nally motivated by the problem of how to fair large polyhedral sur-
faces of arbitrary topology, such as those extracted from volumetric
medical data by iso-surface construction algorithms [21, 2, 11, 15],
or constructed by integration of multiple range images [36].

Since most existing algorithms based on fairness norm opti-
mization [37, 24, 12, 38] are prohibitively expensive for very large
surfaces – a million vertices is not unusual in medical images –,
we decided to look for new algorithms with linear time and space
complexity [31]. Unless these large surfaces are first simplified
[29, 13, 11], or re-meshed using far fewer faces [35], methods
based on patch technology, whether parametric [28, 22, 10, 20, 19]
or implicit [1, 23], are not acceptable either. Although curvature

1IBM T.J.Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598,
taubin@watson.ibm.com
continuous, a patch-based surface interpolant is far more complex
than the original surface, more expensive to render, and worst of all,
does not remove the high curvature variation present in the original
mesh.

As in the fairness norm optimization methods and physics-based
deformable models [16, 34, 30, 26], our approach is to move the
vertices of the polyhedral surface without changing the connectivity
of the faces. The faired surface has exactly the same number of
vertices and faces as the original one. However, our signal process-
ing formulation results in much less expensive computations. In
these variational formulations [5, 24, 38, 12], after finite element
discretization, the problem is often reduced to the solution of a large
sparse linear system, or a more expensive global optimization prob-
lem. Large sparse linear systems are solved using iterative methods
[9], and usually result in quadratic time complexity algorithms. In
our case, the problem of surface fairing is reduced to sparse matrix
multiplication instead, a linear time complexity operation.

The paper is organized as follows. In section 2 we describe how
to extend signal processing to signals definedon polyhedral surfaces
of arbitrary topology, reducing the problem of surface smoothing to
low-pass filtering, and we describe a particularly simple linear time
and spacecomplexity surface signal low-pass filter algorithm. Then
we concentrate on the applications of this algorithm to interactive
free-form fair surface design. As Welch and Witkin [38], in section
3 we design more detailed fair surfaces by combining our fairing
algorithm with subdivision techniques. In section 4 we modify our
fairing algorithm to accommodate different kinds of constraints.
Finally, in section 5 we present some closing remarks.

2 THE SIGNAL PROCESSING APPROACH

Fourier analysis is a natural tool to solve the problem of signal
smoothing. The space of signals – functions defined on certain
domain – is decomposed into orthogonal subspacesassociated with
different frequencies, with the low frequency content of a signal
regarded as subjacent data, and the high frequency content as noise.

2.1 CLOSED CURVE FAIRING

To smooth a closed curve it is sufficient to remove the noise from
the coordinate signals, i.e., to project the coordinate signals onto the
subspace of low frequencies. This is what the method of Fourier
descriptors, which dates back to the early 60’s, does [40]. Our ap-
proach to extend Fourier analysis to signals defined on polyhedral
surfaces of arbitrary topology is based on the observation that the
classical Fourier transform of a signal can be seen as the decompo-
sition of the signal into a linear combination of the eigenvectors of
the Laplacian operator. To extend Fourier analysis to surfaces of
arbitrary topology we only have to define a new operator that takes
the place of the Laplacian.

As a motivation, let us consider the simple case of a discrete time
n-periodic signal – a function defined on a regular polygon ofn ver-
tices –, which we represent as a column vector x = (x1; : : : ; xn)

t.
The components of this vector are the values of the signal at the
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vertex vi
neighbors vj : j 2 i?

new position v0i = vi + f�; �g
P

j2i?
wij (vj � vi)

Figure 1: The two weighted averaging steps of our fairing algo-
rithm. (A) A first step with positive scale factor � is applied to all
the vertices. (B) Then a second step with negative scale factor � is
applied to all the vertices.

vertices of the polygon. The discrete Laplacian of x is defined as

�xi =
1

2
(xi�1 � xi) +

1

2
(xi+1 � xi) ; (1)

where the indices are incremented and decremented modulo n. In
matrix form it can be written as follows

�x = �Kx ; (2)

where K is the circulant matrix

K =
1

2

0
BBB@

2 �1 �1

�1 2 �1

. . .
. . .

. . .
�1 2 �1

�1 �1 2

1
CCCA :

Since K is symmetric, it has real eigenvalues and eigenvectors.
Explicitly, the real eigenvalues k1; : : : ; kn of K , sorted in non-
decreasing order, are

kj = 1� cos(2�bj=2c=n) ;

and the corresponding unit length real eigenvectors, u1; : : : ; un,
are

(uj)h =

8<
:
p

1=n if j = 1p
2=n sin(2�hbj=2c=n) if j is evenp
2=n cos(2�hbj=2c=n) if j is odd :

Note that 0 � k1 � � � � � kn � 2, and as the frequency kj
increases, the corresponding eigenvectoruj , as a n-periodic signal,
changes more rapidly from vertex to vertex.

To decompose the signal x as a linear combination of the real
eigenvectors u1; : : : ; un

x =

nX
i=1

�i ui ; (3)

is computationally equivalent to the evaluation of the Discrete
Fourier Transform of x. To smooth the signal x with the method
of Fourier descriptors, this decomposition has to be computed, and
then the high frequency terms of the sum must be discarded. But
k =
1
�

f(k)
1:0

k =
1
�

0 kPB2 0 kPB 2

f(k)N1:0

A B

Figure 2: (A) Graph of transfer function f(k) = (1��k)(1��k)
of non-shrinking smoothing algorithm.

this is computationally expensive. Even using the Fast Fourier
Transform algorithm, the computational complexity is in the order
of n log(n) operations.

An alternative is to do the projection onto the space of low
frequencies only approximately. This is what a low-pass filter
does. We will only consider here low-pass filters implemented as a
convolution. A more detailed analysis of other filter methodologies
is beyond the scope of this paper, and will be done elsewhere [33].
Perhaps the most popular convolution-based smoothing method for
parameterized curves is the so-called Gaussian filtering method,
associated with scale-space theory [39, 17]. In its simplest form, it
can be described by the following formula

x0i = xi + ��xi ; (4)

where 0 < � < 1 is a scale factor (for � < 0 and � � 1 the
algorithm enhances high frequencies instead of attenuating them).
This can be written in matrix form as

x0 = (I � �K)x : (5)

It is well known though, that Gaussian filtering producesshrink-
age, and this is so because the Gaussian kernel is not a low-pass
filter kernel [25]. To define a low-pass filter, the matrix I � �K
must be replaced by some other function f(K) of the matrix K .
Our non-shrinking fairing algorithm, described in the next section,
is one particularly efficient choice.

We now extend this formulation to functions defined on surfaces
of arbitrary topology.

2.2 SURFACE SIGNAL FAIRING

At this point we need a few definitions. We represent a polyhedral
surface as a pair of lists S = fV;Fg, a list of n vertices V , and a
list of polygonal faces F . Although in our current implementation,
only triangulated surfaces, and surfaces with quadrilateral faces are
allowed, the algorithm is defined for any polyhedral surface.

Both for curves and for surfaces, a neighborhood of a vertex
vi is a set i? of indices of vertices. If the index j belongs to
the neighborhood i?, we say that vj is a neighbor of vi. The
neighborhood structure of a polygonal curve or polyhedral surface
is the family of all its neighborhoods fi? : i = 1; 2; : : : ; ng. A
neighborhood structure is symmetric if every time that a vertex vj
is a neighbor of vertex vi, also vi is a neighbor of vj . With non-
symmetric neighborhoods certain constraints can be imposed. We
discuss this issue in detail in section 4.

A particularly important neighborhood structure is the first order
neighborhood structure, where for each pair of vertices vi and vj
that share a face (edge for a curve), we makevj a neighborof vi, and
vi a neighbor of vj . For example, for a polygonal curve represented
as a list of consecutive vertices, the first order neighborhood of a
vertex vi is i? = fi � 1; i + 1g. The first order neighborhood
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Figure 3: (A) Sphere partially corrupted by normal noise. (B)
Sphere (A) after 10 non-shrinking smoothing steps. (C) Sphere (A)
after 50 non-shrinking smoothing steps. (D) Sphere (A) after 200
non-shrinking smoothing steps. Surfaces are flat-shaded to enhance
the faceting effect.

structure is symmetric, and since it is implicitly given by the list
of faces of the surface, no extra storage is required to represent
it. This is the default neighborhood structure used in our current
implementation.

A discrete surface signal is a function x = (x1; : : : ; xn)
t de-

fined on the vertices of a polyhedral surface. We define the discrete
Laplacian of a discrete surface signal by weighted averages over
the neighborhoods

�xi =
X
j2i?

wij (xj � xi) ; (6)

where the weights wij are positive numbers that add up to one ,P
j2i?

wij = 1, for each i. The weights can be chosen in many
different ways taking into consideration the neighborhood struc-
tures. One particularly simple choice that produces good results is
to set wij equal to the inverse of the number of neighbors 1=ji?j
of vertex vi, for each element j of i?. Note that the case of the
Laplacian of a n-periodic signal (1) is a particular case of these
definitions. A more general way of choosing weights for a sur-
face with a first order neighborhood structure, is using a positive
function �(vi; vj) = �(vj; vi) defined on the edges of the surface

wij =
�(vi; vj)P

h2i?
�(vi; vh)

:

For example, the function can be the surface area of the two faces
that share the edge, or some power of the length of the edge
�(vi; vj) = kvi � vjk

�. In our implementation the user can
choose any one of these weighting schemes. They produce similar
results when the surface has faces of roughly uniform size. When
using a power of the length of the edges as weighting function, the
exponent� = �1 produces good results.

If W = (wij) is the matrix of weights, with wij = 0 when
j is not a neighbor of i, the matrix K can now be defined as
A B

C D

Figure 4: (A) Boundary surface of voxels from a CT scan. (B)
Surface (A) after 10 non-shrinking smoothing steps. (C) Surface
(A) after 50 non-shrinking smoothing steps. (D) Surface (A) after
100 non-shrinking smoothing steps. kPB = 0:1 and � = 0:6307 in
(B), (C), and (D). Surfaces are flat-shaded to enhance the faceting
effect.

K = I � W . In the appendix we show that for a first order
neighborhood structure, and for all the choices of weights described
above, the matrix K has real eigenvalues 0 � k1 � k2 � � � � �
kn � 2 with corresponding linearly independent real unit length
right eigenvectors u1; : : : ; un. Seen as discrete surface signals,
these eigenvectors should be considered as the natural vibration
modes of the surface, and the corresponding eigenvalues as the
associated natural frequencies.

The decomposition of equation (3), of the signal x into a linear
combination of the eigenvectorsu1; : : : ; un, is still valid with these
definitions, but there is no extension of the Fast Fourier Transform
algorithm to compute it. The method of Fourier descriptors – the
exact projection onto the subspace of low frequencies – is just
not longer feasible, particularly for very large surfaces. On the
other hand, low-pass filtering – the approximate projection – can be
formulated in exactly the same way as forn-periodic signals, as the
multiplication of a function f(K) of the matrix K by the original
signal

x0 = f(K)x ;

and this process can be iterated N times

xN = f(K)
N x :

The function of one variable f(k) is the transfer function of the
filter. Although many functions of one variable can be evaluated in
matrices [9], we will only consider polynomials here. For example,
in the case of Gaussian smoothing the transfer function is f(k) =
1� �k. Since for any polynomial transfer function we have

x0 = f(K)x =

nX
i=1

�i f(ki)ui ;

because Kui = kiui , to define a low-pass filter we need to find
a polynomial such that f(ki)N � 1 for low frequencies, and



f(ki)
N � 0 for high frequencies in the region of interest k 2 [0; 2].

Our choice is
f(k) = (1� �k)(1� �k) (7)

where 0 < �, and� is a new negative scale factor such that� < ��.
That is, after we perform the Gaussian smoothing step of equation
(4) with positive scale factor � for all the vertices – the shrinking
step –, we then perform another similar step

x0i = xi + ��xi (8)

for all the vertices, but with negative scale factor � instead of � –
the un-shrinking step –. These steps are illustrated in figure 1.

The graph of the transfer function of equation (7) is illustrated
in figure 2-A. Figure 2-B shows the resulting transfer function after
N iterations of the algorithm, the graph of the function f(k)N .
Since f(0) = 1 and �+ � < 0, there is a positive value of k, the
pass-band frequencykPB, such that f(kPB) = 1. The value of kPB is

kPB =
1

�
+

1

�
> 0 : (9)

The graph of the transfer function f(k)N displays a typical low-
pass filter shape in the region of interest k 2 [0; 2]. The pass-band
region extends from k = 0 to k = kPB, where f(k)N � 1. As k
increases from k = kPB to k = 2, the transfer function decreases to
zero. The faster the transfer function decreases in this region, the
better. The rate of decrease is controlled by the number of iterations
N .

This algorithm is fast (linear both in time and space), extremely
simple to implement, and produces smoothing without shrinkage.
Faster algorithms can be achieved by choosing other polynomial
transfer functions, but the analysis of the filter design problem is
beyond the scope of this paper, and will be treated elsewhere [33].
However, as a rule of thumb, the filter based on the second degree
polynomial transfer function of equation (7) can be designed by first
choosing a values of kPB. Values from 0:01 to 0:1 produce good
results, and all the examples shown in the paper where computed
with kPB � 0:1. Once kPB has been chosen, we have to choose� and
N (� comes out of equation (9) afterwards). Of course we want to
minimize N , the number of iterations. To do so, � must be chosen
as large as possible, while keeping jf(k)j < 1 for kPB < k � 2

(if jf(k)j � 1 in [kPB; 2], the filter will enhance high frequencies
instead of attenuating them). In some of the examples, we have
chosen � so that f(1) = �f(2). For kPB < 1 this choice of �
ensures a stable and fast filter.

Figures 3 and 4 show examples of large surfaces faired with this
algorithm. Figures 3 is a synthetic example, where noise has been
added to one half of a polyhedral approximation of a sphere. Note
that while the algorithm progresses the half without noise does not
change significantly. Figure 4 was constructed from a CT scan of
a spine. The boundary surface of the set of voxels with intensity
value above a certain threshold is used as the input signal. Note
that there is not much difference between the results after 50 and
100 iterations.

3 SUBDIVISION

A subdivision surface is a smooth surface defined as the limit of
a sequence of polyhedral surfaces, where the next surface in the
sequence is constructed from the previous one by a refinement
process. In practice, since the number of faces grows very fast, only
a few levels of subdivision are computed. Once the faces are smaller
than the resolution of the display, it is not necessary to continue. As
Welch and Witkin [38], we are not interested in the limit surfaces,
but rather in using subdivision and smoothing steps as tools to design
fair polyhedral surfaces in an interactive environment. The classical
A

B

C

D

Figure 5: Surfaces created alternating subdivision and different
smoothing steps. (A) Skeleton surface. (B) One Gaussian smooth-
ing step (� = 0:5). Note the hexagonal symmetry becauseof insuf-
ficient smoothing. (C) Five Gaussian smoothing steps (� = 0:5).
Note the shrinkage effect. (D) Five non-shrinking smoothing steps
(kPB = 0:1 and � = 0:6307) of this paper. (B),(C), and (D) are
the surfaces obtained after two levels of refinement and smoothing.
Surfaces are flat-shaded to enhance the faceting effect.

subdivision schemes [8, 4, 12] are rigid, in the sense that they have
no free parameters that influence the behavior of the algorithm as
it progresses trough the subdivision process. By using our fairing
algorithm in conjunction with subdivision steps, we achieve more
flexibility in the design process. In this way our fairing algorithm
can be seen as a complement of the existing subdivision strategies.

In the subdivision surfaces of Catmull and Clark [4, 12] and
Loop [18, 6], the subdivision process involves two steps. A re-
finement step, where a new surface with more vertices and faces is
created, and a smoothing step, where the vertices of the new sur-



face are moved. The Catmull and Clark refinement process creates
polyhedral surfaces with quadrilateral faces, and Loop refinement
process subdivides each triangular face into four similar triangular
faces. In both cases the smoothing step can be described by equa-
tion (4). The weights are chosen to ensure tangent or curvature
continuity of the limit surface.

These subdivision surfaces have the problem of shrinkage,
though. The limit surface is significantly smaller overall than the
initial skeleton mesh – the first surface of the sequence –. This is so
because the smoothing step is essentially Gaussian smoothing, and
as we have pointed out, Gaussian smoothing produces shrinkage.
Because of the refinement steps, the surfaces do not collapse to the
centroid of the initial skeleton, but the shrinkage effect can be quite
significant.

The problem of shrinkage can be solved by a global operation.
If the amount of shrinkage can be predicted in closed form, the
skeleton surface can be expanded before the subdivision process is
applied. This is what Halstead, Kass, and DeRose [12] do. They
show how to modify the skeleton mesh so that the subdivision sur-
face associated with the modified skeleton interpolates the vertices
of the original skeleton.

The subdivision surfaces of Halstead, Kass, and DeRose in-
terpolate the vertices of the original skeleton, and are curvature
continuous. However, they show a significant high curvature con-
tent, even when the original skeleton mesh does not have such
undulations. The shrinkage problem is solved, but a new problem
is introduced. Their solution to this second problem is to stop the
subdivision process after a certain number of steps, and fair the
resulting polyhedral surface based on a variational approach. Their
fairness norm minimization procedure reduces to the solution of a
large sparse linear system, and they report quadratic running times.
The result of this modified algorithm is no longer a curvature con-
tinuous surface that interpolates the vertices of the skeleton, but a
more detailed fair polyhedral surface that usually does not interpo-
late the vertices of the skeleton unless the interpolatory constraints
are imposed during the fairing process.

We argue that the source of the unwanted undulations in the
Catmull-Clark surface generated from the modified skeleton is the
smoothing step of the subdivision process. Only one Gaussian
smoothing step does not produce enough smoothing, i.e., it does
not produce sufficient attenuation of the high frequency compo-
nents of the surfaces, and these high frequency components persist
during the subdivision process. Figure 5-B shows an example of
a subdivision surface created with the triangular refinement step
of Loop, and one Gaussian smoothing step of equation (4). The
hexagonal symmetry of the skeleton remains during the subdivision
process. Figure 5-C shows the same example, but where five Gauss-
ian smoothing steps are performed after each refinement step. The
hexagonal symmetry has been removed at the expense of significant
shrinkage effect. Figure 5-D shows the same example where the
five non-shrinking fairing steps are performed after each refinement
step. Neither hexagonal symmetry nor shrinkage can be observed.

4 CONSTRAINTS

Although surfaces created by a sequence of subdivision and smooth-
ing steps based on our fairing algorithm do not shrink much, they
usually do not interpolate the vertices of the original skeleton. In
this section we show that by modifying the neighborhood structure
certain kind of constraints can be imposed without any modification
of the algorithm. Then we study other constraints that require minor
modifications.

4.1 INTERPOLATORY CONSTRAINTS
A B C D

Figure 6: Example of surfaces designed using subdivision and
smoothing steps with one interpolatory constraint. (A) Skeleton.
(B) Surface (A) after two levels of subdivision and smoothing with-
out constraints. (C) Same as (B) but with non-smooth interpolatory
constraint. (D) Same as (B) but with smooth interpolatory con-
straint. Surfaces are flat-shaded to enhance the faceting effect.

As we mentioned in section 2.2, a simple way to introduce interpola-
tory constraints in our fairing algorithm is by using non-symmetric
neighborhoodstructures. If no other vertex is a neighbor of a certain
vertex v1, i.e., if the neighborhood of v1 is empty, then the value x1
of any discrete surface signal x does not change during the fairing
process, because the discrete Laplacian �x1 is equal to zero by
definition of empty sum. Other vertices are allowed to have v1 as
a neighbor, though. Figure 6-A shows a skeleton surface. Figure
6-B shows the surface generated after two levels of refinement and
smoothing using our fairing algorithm without constraints, i.e., with
symmetric first-order neighborhoods. Although the surface has not
shrunk overall, the nose has been flattened quite significantly. This
is so because the nose is made of very few faces in the skeleton, and
these faces meet at very sharp angles. Figure 6-C shows the result
of applying the same steps, but defining the neighborhood of the
vertex at the tip of the nose to be empty. The other neighborhoods
are not modified. Now the vertex satisfies the constraint – it has
not moved at all during the fairing process –, but the surface has
lost its smoothness at the vertex. This might be the desired effect,
but if it is not, instead of the neighborhoods, we have to modify the
algorithm.

4.2 SMOOTH INTERPOLATION

We look at the desired constrained smooth signal xNC as a sum of
the corresponding unconstrained smooth signal xN = F x after N
steps of our fairing algorithm (i.e. F = f(K)

N), plus a smooth
deformation d1

xNC = xN + (x1 � xN1 )d1 :

The deformation d1 is itself another discrete surface signal, and the
constraint (xNC )1 = x1 is satisfied if (d1)1 = 1. To construct such
a smooth deformation we consider the signal �1, where

(�i)j =
n
1 j = i
0 j 6= i

:

This is not a smooth signal, but we can apply the fairing algorithm
to it. The result, let us denote it Fn1, the first column of the matrix
F , is a smooth signal, but its value at the vertex v1 is not equal to
one. However, since the matrixF is diagonally dominated,F11, the
first element of its first column, must be non-zero. Therefore, we
can scale the signal Fn1 to make it satisfy the constraint, obtaining
the desired smooth deformation

d1 = Fn1F
�1
11 :
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Figure 7: Examples of using subdivision and smoothing with
smooth interpolatory constraints as a design tool. All the sur-
faces have been obtained by applying two levels of subdivision and
smoothing with various parameters to the skeleton surface of figure
5-A . Constrained vertices are marked with red dots. Surfaces are
flat-shaded to enhance the faceting effect.

Figure 6-D shows the result of applying this process.
When more than one interpolatory constraint must be imposed,

the problem is slightly more complicated. For simplicity, we
will assume that the vertices have been reordered so that the in-
terpolatory constraints are imposed on the first m vertices, i.e.,
(xNC )1 = x1; : : : ; (x

N
C )m = xm. We now look at the non-smooth

signals �1; : : : ; �m, and at the corresponding faired signals, the first
m columns of the matrix F . These signals are smooth, and so, any
linear combination of them is also a smooth signal. Furthermore,
sinceF is non-singular and diagonally dominated, these signals are
linearly independent, and there exists a linear combination of them
that satisfies the m desired constraints. Explicitly, the constrained
smooth signal can be computed as follows

xNC = xN + Fnm F�1mm

0
@ x1 � xN1

...
xm � xNm

1
A ; (10)

where Frs denotes the sub-matrix of F determined by the first r
rows and the first s columns. Figure 7 shows examples of surfaces
constructed using subdivision and smoothing steps and interpolating
some vertices of the skeleton using this method. The parameter of
the fairing algorithm have been modified to achieve different effects,
including shrinkage.

To minimize storage requirements, particularly whenn is large,
and assuming that m is much smaller than n, the computation
can be structured as follows. The fairing algorithm is applied to
�1 obtaining the first column F�1 of the matrix F . The first m
elements of this vector are stored as the first column of the matrix
Fmm. The remaining m� n elements of F�1 are discarded. The
same process is repeated for �2; : : : ; �m, obtaining the remaining
columns of Fmm . Then the following linear system

Fmm

0
@ y1

...
ym

1
A =

0
@ x1 � xN1

...
xm � xNm

1
A

is solved. The matrixFmm is no longerneeded. Then the remaining
components of the signal y are set to zero ym+1 = � � � = yn = 0.
Now the fairing algorithm is applied to the signal y. The result
is the smooth deformation that makes the unconstrained smooth
signal xN satisfy the constraints

xNC = xN + F y :

4.3 SMOOTH DEFORMATIONS

Note that in the constrained fairing algorithm described above the
fact that the values of the signal at the vertices of interest are
constrained to remain constant can be trivially generalized to allow
for arbitrary smooth deformations of a surface. To do so, the values
x1; : : : ; xm in equation (10) must be replaced by the desired final
values of the faired signal at the corresponding vertices. As in in the
Free-form deformation approaches of Hsu, Hughes, and Kaufman
[14] and Borrel [3], instead of moving control points outside the
surface, surfaces can be deformed here by pulling one or more
vertices.

Also note that the scope of the deformation can be controlled by
changing the number of smoothing steps applied while smoothing
the signals �1; : : : ; �n. To make the resulting signal satisfy the
constraint, the value of N in the definition of the matrix F must
be the one used to smooth the deformations. We have observed
that good results are obtained when the number of iterations used to
smooth the deformations is about five times the number used to fair
the original shape. The examples in figure 7 have been generated
in this way.

4.4 HIERARCHICAL CONSTRAINTS

This is another application of non-symmetric neighborhoods. We
start by assigning a numeric label li to each vertex of the surface.
Then we define the neighborhood structure as follows. We make
vertex vj a neighbor of vertex vi if vi and vj share an edge (or
face), and if li � lj . Note that if vj is a neighbor of vi and
li < lj , then vi is not a neighbor of vj . The symmetry applies only
to vertices with the same label. For example, if we assign label
li = 1 to all the boundary vertices of a surface with boundary, and
label li = 0 to all the internal vertices, then the boundary is faired
as a curve, independently of the interior vertices, but the interior
vertices follow the boundary vertices. If we also assign label li = 1

to a closed curve composed of internal edges of the surface, then
the resulting surface will be smooth along, and on both sides of
the curve, but not necessarily across the curve. Figure 8-D shows
examples of subdivision surface designed using this procedure. If
we also assign label li = 2 to some isolated points along the curves,
then those vertices will in fact not move, because they will have
empty neighborhoods.

4.5 TANGENT PLANE CONSTRAINTS

Although the normal vector to a polyhedral surface is not defined
at a vertex, it is customary to define it by averaging some local
information, say for shading purposes. When the signal x in equa-
tion (6) is replaced by the coordinates of the vertices, the Laplacian
becomes a vector

�vi =
X
j2i?

wij (vj � vi) :
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Figure 8: (A) Skeleton with marked vertices. (B) Surface (A) after
three levels of subdivision and smoothing without constraints. (C)
Same as (B) but with empty neighborhoods of marked vertices. (D)
Same as (B) but with hierarchical neighborhoods, where marked
vertices have label 1 and unmarked vertices have label 0. Surfaces
are flat-shaded to enhance the faceting effect.

This vector average can be seen as a discrete approximation of the
following curvilinear integral

1

j
j

Z
v2


(v� vi) dl(v) ;

where 
 is a closed curve embedded in the surface which encircles
the vertex vi, and j
j is the length of the curve. It is known that, for
a curvature continuous surface, if the curve 
 is let to shrink to to
the point vi, the integral converges to the mean curvature ��(vi) of
the surface at the point vi times the normal vector Ni at the same
point [7]

lim
�!0

1

j
�j

Z
v2
�

(v� vi)dl(v) = ��(vi)Ni :

Because of this fact, we can define the vector �vi as the normal
vector to the polyhedral surface at vi. If Ni is the desired normal
direction at vertex vi after the fairing process, and Si and Ti are
two linearly independent vectors tangent to Ni, The surface after
N iterations of the fairing algorithm will satisfy the desired normal
constraint at the vertex vi it the following two linear constraints

Sti�vNi = T t
i�vNi = 0

are satisfied. This leads us to the problem of fairing with general
linear constraints.

4.6 GENERAL LINEAR CONSTRAINTS

We consider here the problem of fairing a discrete surface signal x
under general linear constraintsCxNC = c, whereC is a m�nma-
trix of rank m (m independent constraints), and c = (c1; : : : ; cm)

t

is a vector. The method described in section 4.1 to impose smooth
interpolatory constraints, is a particular case of this problem, where
the matrix C is equal the upper m rows of the m � m identity
matrix. Our approach is to reduce the general case to this particular
case.

We start by decomposing the matrix C into two blocks. A first
m�m block denoted C(1) , composed of m columns of C , and a
second block denoted C(2) , composed of the remaining columns.
The columns that constitute C(1) must be chosen so that C(1) be-
come non-singular, and as well conditioned as possible. In practice
this can be done using Gauss elimination with full pivoting [9], but
for the sake of simplicity, we will assume here that C(1) is com-
posed of the first m columns of C . We decompose signals in the
same way. x(1) denotes here the first m components, and x(2) the
last n�m components, of the signal x. We now define a change
of basis in the vector space of discrete surface signals as follows

�
x(1) = y(1) �C�1

(1)
C(2) y(2)

x(2) = y(2)
:

If we apply this change of basis to the constraint equationC(1)x(1)+
C(2)x(2) = c, we obtain C(1)y(1) = c, or equivalently

y(1) = C�1(1) c ;

which is the problem solved in section 4.2.

5 CONCLUSIONS

We have presented a new approach to polyhedral surface fairing
based on signal processing ideas, we have demonstrated how to
use it as an interactive surface design tool. In our view, this new
approach represents a significant improvement over the existing
fairness-norm optimization approaches, because of the linear time
and space complexity of the resulting fairing algorithm.

Our current implementation of these ideas is a surface modeler
that runs at interactive speeds on a IBM RS/6000 class workstation
under X-Windows. In this surface modeler we have integrated
all the techniques described in this paper and many other popular
polyhedral surface manipulation techniques. Among other things,
the user can interactively define neighborhood structures, select
vertices or edges to impose constraints, subdivide the surfaces, and
apply the fairing algorithm with different parameter values. All the
illustrations of this paper where generated with this software.

In terms of future work, we plan to investigate how this approach
can be extended to provide alternatives solutions for other impor-
tant graphics and modeling problems that are usually formulated
as variational problems, such as surface reconstruction or surface
fitting problems solved with physics-based deformable models.

Some related papers [31, 32] can be retrieved from the IBM
web server (http://www.watson.ibm.com:8080).
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[24] H.P. Moreton and C.H. Séquin. Functional optimization for fair surface
design. Computer Graphics, pages 167–176, July 1992. (Proceedings
SIGGRAPH’92).

[25] J. Oliensis. Local reproducible smoothing without shrinkage.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(3):307–312, March 1993.

[26] A. Pentland and S. Sclaroff. Closed-form solutions for physically
based shape modeling and recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(7):715–729, July 1991.

[27] E. Seneta. Non-Negative Matrices, An Introduction to Theory and
Applications. John Wiley & Sons, New York, 1973.
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APPENDIX

We first analyze those cases where the matrix W can be factorized as a
product of a symmetric matrix E times a diagonal matrix D. Such is the
case for the first order neighborhood of a shape with equal weights wij =
1=ji?j in each neighborhood i?. In this case E is the matrix whose ij-th.
element is equal to 1 if vertices vi and vj are neighbors, and 0 otherwise,
and D is the diagonal matrix whose i-th. diagonal element is 1=ji?j.
Since in this case W is a normal matrix [9], because D1=2WD�1=2 =

D1=2ED1=2 is symmetric, W has all real eigenvalues, and sets of n
left and right eigenvectors that form respective bases of n-dimensional
space. Furthermore, by construction, W is also a stochastic matrix, a
matrix with nonnegative elements and rows that add up to one [27]. The
eigenvalues of a stochastic matrix are bounded above in magnitude by 1,
which is the largest magnitude eigenvalue. It follows that the eigenvalues
of the matrix K are real, bounded below by 0, and above by 2. Let
0 � k1 � k2 � � � � � kn � 2 be the eigenvalues of the matrixK, and let
u1; u2; : : : ; un a set of linearly independent unit length right eigenvectors
associated with them.

When the neighborhood structure is not symmetric, the eigenvaluesand
eigenvectors of W might not be real, but as long as the eigenvalues are not
repeated, the decomposition of equation (3), and the analysis that follows,
are still valid. However, the behavior of our fairing algorithm in this case
will depend on the distribution of eigenvalues in the complex plane. The
matrix W is still stochastic here, and so all the eigenvalues lie on a unit
circle jki�1j < 1. If all the eigenvaluesofW are very close to the real line,
the behavior of the fairing algorithm should be essentially the same as in the
symmetric case. This seems to be the case when very few neighborhoods
are made non-symmetric. But in general, the problem has to be analyzed
on a case by case basis.



Optimal Surface Smoothing as Filter Design, 
by G. Taubin, T. Zhang, and G. Golub, 

IBM Technical Report RC-20404, March 1996; and 
Fourth European Conference on Computer Vision 

(ECCV'96). 



RC-20404(#90237) 3/12/96
Computer Sciences 22pages

Research Report
OPTIMAL SURFACE SMOOTHING AS FILTER DESIGN

Gabriel Taubin
IBM T.J.Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598
email:taubin@watson.ibm.com
.
Tong Zhang and Gene Golub
Computer Science Department
Stanford University
Stanford, CA 94305
email:ftzhang,golubg@cs.stanford.edu

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents and will be distributed outside of ibm up to one
year after the date indicated at the top of the page. In view of the transfer of copyright to the outside publisher, its distribution
outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research Division
Yorktown Heights, New York � San Jose, California � Zurich, Switzerland



OPTIMAL SURFACE SMOOTHING AS FILTER DESIGN

Gabriel Taubin
IBM T.J.Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598
email:taubin@watson.ibm.com
.
Tong Zhang and Gene Golub
Computer Science Department
Stanford University
Stanford, CA 94305
email:ftzhang,golubg@cs.stanford.edu

ABSTRACT:

For a number of computational purposes, including visualization, smooth surfaces are approxi-
mated by polyhedral surfaces. An inherent problem of these approximation algorithms is that the
resulting polyhedral surfaces appear faceted. A signal processing approach to smoothing polyhedral
surfaces was recently introduced [10, 11]. Within this framework surface smoothing corresponds to
low-pass filtering. In this paper we look at the filter design problem in more detail. We analyze the
stability properties of the low-pass filter described in [10, 11], and show how to minimize its running
time. Then we show that most classical techniques used to design finite impulse response (FIR)
digital filters can also be used to design significantly faster smoothing filters. Finally, we describe an
algorithm to estimate the power spectrum of a signal, and use it to evaluate the performance of the
different filter design techniques described in the paper.



1. Introduction

The signal processing framework introduced in [10, 11], extends Fourier analysis to discrete
surface signals, functions defined on the vertices of polyhedral surfaces. As in the method of
Fourier Descriptors [12], where a closed curve is smoothed by truncating the Fourier series of its
coordinate signals, a very large polyhedral surface of arbitrary topology is smoothed here by low-pass
filtering its three surface coordinate signals. And although the formulation was developed mainly
for signals defined on surfaces, it is in fact valid for discrete graph signals, functions defined on the
vertices of directed graphs. Since this general formulation provides a unified treatment of polygonal
curves, polyhedral surfaces, and even three-dimensional finite elements meshes, we start this paper
by reviewing this formulation in its full generality.

Then we look at the filter design problem in more detail, with the main goal of minimizing the
execution time of the low-pass filtering algorithm, given a desired frequency response specification.
But we also take into consideration numerical issues, such as stability. We first study the tradeoffs
that exists between minimizing execution time and maintaining the filter stable for the low-pass filter
design of [10, 11]. Then we show that most classical finite impulse response (FIR) digital filter design
techniques can be applied, with minor or no modifications in most cases, to the design of discrete
graph signal filters. FIR filters, which in this framework correspond to sparse matrix multiplication,
yield acceptable linear time and space complexity algorithms. Five to ten-fold speedups with respect
to the low-pass filter design of [10, 11] can easily be obtained.

Then, we compare the performance of the different filter design methodologies with an algorithm to
estimate the power spectrum of a discrete graph signal. This power spectrum estimator is implemented
as a bank of high order band-pass filters, designed with the same techniques as the surface low-pass
smoothing filters. However, the goal here is to design very sharp band-pass filters, not necessarily to
minimize the order of the filter. We also use the power spectrum estimator to determine the pass-band
frequency of the filter in such a way that shrinkage is prevented.

We end the paper with some experimental results and our conclusions.

2. Fourier Analysis of Discrete Graph Signals

In this section we describe the signal processing formulation of [10, 11] in its most general form,
i.e., for discrete graph signals, functions defined on directed graphs. We represent a directed graph
on the set f1; : : : ; ng of n nodes as a set of neighborhoods fi? : i = 1; : : : ; ng, where i? is a subset
of nodes that we call the neighborhood of node i. If j is an element of i? we say that j is a neighbor
of i, and we visualize it as an arrow from i to j. In principle, except for prohibiting a node from
being a neighbor of itself, we do not impose any other constraint on the neighborhoods. Note that j
is allowed to be a neighbor of i without requiring i to be a neighbor of j, and neighborhoods can also
be empty. We call a vector x = (x1; : : : ; xn)t, with one component per node of the graph, a discrete
graph signal.

We represent a polyhedral surface as a pair of arrays S = fV; Fg, an array of n vertices V , and an
array of faces F . A vertex is a three-dimensional vector of real coordinates, and a face is a sequence
of non-repeated indices of vertices representing a closed three-dimensional polygon. Triangulated
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surfaces are the most common, where all faces are triangles. We look at a polyhedral surface of n
vertices as a directed graph, by labeling the vertices with distinct node numbers ranging from 1 to n,
and defining a neighborhood for each node. We normally use first order neighborhoods, were node j
is a neighbor of node i if i and j share an edge (or face), but other neighborhood structures can be used
for other purposes, such as to impose certain types of constraints [11]. A discrete surface signal is a
discrete graph signal defined on the associated graph. We visualize a discrete surface signal defined
on a polyhedral surface as a piece-wise linear function defined on the surface. Discrete surface signals
defined on polygonal curves, and on simplicial complexes of higher dimension, can be interpreted in
a similar way.

The Fourier transform of a discrete graph signal cannot be defined in the traditional way because
there is no notion of convolution. However, there is an alternative definition that can be generalized.
Computing the Discrete Fourier Transform (DFT) of a signal defined on a closed polygon of n vertices
is equivalent to decomposing the signal as a linear combination of the eigenvectors of the Laplacian
operator

�xi =
1

2
(xi�1 � xi) +

1

2
(xi+1 � xi) ; (2.1)

were the Fourier transform is the vector of coefficients of the sum. To define the Fourier transform of
a signal defined on an arbitrary directed graph we only have to define a linear operator that we will call
the Laplacian operator. This is the same idea behind the method of eigenfunctions of Mathematical
Physics [1].

We define the Laplacian of a discrete graph signal x by the formula

�xi =
X
j2i?

wij (xj � xi) (2.2)

where the weights wij are positive numbers that add up to one for each vertexX
j2i?

wij = 1 :

These weights can be chosen in many different ways taking into consideration the neighborhoods,
but in this paper we will assume that they are not functions of the signal x. Otherwise, the resulting
operator is non-linear, and so, beyond the scope of this paper. One particularly simple choice that
produces good results is to set wij equal to the inverse of the number of neighbors 1=ji?j of node i, for
each element j of i?. Other choices of weights are discussed in [10, 11]. Note that the Laplacian of a
signal defined on a closed polygon, described in equation (2.1), is a particular case of these definitions,
with wij = 1=2, for j 2 i? = fi� 1; i+ 1g, for each node i.

If W = (wij) denotes the matrix of weights, with wij = 0 when j is not a neighbor of i, and
K = I �W , the Laplacian of a discrete signal can be written in matrix form as

�x = �Kx : (2.3)

Although the method applies to general neighborhood structures, in this paper we will restrict our
analysis to those cases where the matrixW can be factorized as a product of a symmetric matrix times
a diagonal matrix W = ED. In this case the matrix W is a normal matrix [4], because the matrix

D1=2WD�1=2 = D1=2ED1=2 (2.4)
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is symmetric. Note that such is the case for the first order neighborhoods of a surface with equal
weights wij = 1=ji?j in each neighborhood i?, where E is the incidence matrix of the neighborhood
structure (a symmetric matrix for first order neighborhoods), the matrix whose ij-th. element is equal
to 1 if the nodes i and j are neighbors, and 0 otherwise; and D is the diagonal positive definite matrix
whose i-th. diagonal element is 1=ji?j. When W is a normal matrix it has all real eigenvalues, and
sets of n left and right eigenvectors that form dual bases of n-dimensional space. Furthermore, by
construction, W is also a stochastic matrix, a matrix with nonnegative elements and rows that add up
to one [9]. The eigenvalues of a stochastic matrix are bounded above in magnitude by 1. It follows that
the eigenvalues of the matrix K are real, bounded below by 0, and above by 2. Seen as discrete graph
signals, the right eigenvectors of the matrixK can be considered as the natural vibration modes, and
the corresponding eigenvalues as the associated natural frequencies. In our case, a vibration mode of
high natural frequency corresponds to a rapid oscillation in the space domain. For example, for any
directed graph, the constant signal (1; : : : ; 1) is an eigenvector of K associated with the frequency
k = 0, and the values of a natural vibration mode associated with a low natural frequency varies
slowly when we move from a vertex to a neighbor vertex.

In the simple cases of signals defined on regular polygons, or more generally on graphs with group
structure [3], the eigenvectors and eigenvalues of K have analytic expressions. The Fast Fourier
Transform algorithm for signals defined on closed polygons is a good example of how this structure
can be exploited. However, for the typical large graphs that we are interested in processing here, there
are no analytic expressions for the eigenvalues and eigenvectors of K . And although a few extremal
eigenvalues and eigenvectors of K can be computed with the Lanczos method [4], it is numerically
impossible to reliably compute all of them. However, and this is the most significant observation, for
filtering operations it is not necessary to compute the eigenvectors explicitly.

If 0 � k1 � � � � � kn � 2 are the eigenvalues of K , e1; : : : ; en a set of corresponding right
eigenvectors, and �1; : : : ; �n the associated dual basis of e1; : : : ; en, the identity matrix I , and the
matrix K can be written as follows

I =
nX
i=1

ei�
t
i K =

nX
i=1

ki ei�
t
i ;

and every discrete graph signal x has a unique decomposition as a linear combination of e1; : : : ; en

x = I x =
nX
i=1

x̂i ei ; (2.5)

where x̂i = �tix. We call the vector x̂ = (x̂1; : : : ; x̂n)
t the Discrete Fourier Transform (DFT) of

x, generalizing the classical definition for signals defined on closed polygons. Note, however, that
this definition does not identify a unique object yet. If a different set of right eigenvectors of K is
chosen, a different DFT is obtained. To complete the definition, if W = ED with E symmetric,
and D diagonal, The formula hx; yiD = xtDy defines an inner product in our space of signals, and
normalizing the right eigenvectors ofK to unit length with respect to the associated norm is equivalent
to orthonormalizing them with respect to the inner product, and Parseval’s formula is satisfied

kxk2D = kx̂k2 ; (2.6)

3



where the norm on the right hand side is the Euclidean norm. That is, the frequency components x̂iei
of the signal x are orthogonal with respect to the inner product defined by D. We will assume from
now on that the right eigenvectors of K are normalized in this fashion. These results will be used in
sections 7 and 8.

To filter the signal x is to change its frequency distribution according to a transfer function f(k)

x0 =
nX
i=1

f(ki) x̂iei =

 
nX
i=1

f(ki) ei�
t
i

!
x : (2.7)

The frequency component of x corresponding the the natural frequency ki is enhanced or attenuated
by a factor f(ki). For example, the transfer function of an ideal low-pass filter, illustrated in figure 1,
is

fLP =
�
1 for 0 � k � kPB

0 for kPB < k � 2
; (2.8)

where kPB is the pass-band frequency. In this case, all the frequencies above the pass-band frequencies

0 kPB 2

1:0

Figure 1: Graph of the ideal low-pass filter fLP.

are removed, leaving only the low frequency components. The method of Fourier Descriptors
[12] consists in filtering a discrete graph signal with an ideal low-pass filter transfer function. An
efficient algorithm (O(n log(n))) to ideal low-pass filter a signal defined on a closed polygon can be
implemented using the Fast Fourier Transform algorithm. But in the general case of discrete graph
signals, there is no efficient numerical method to compute its DFT, particularly when the number of
nodes of the graph is very large. The computation can only be performed approximately, which is
the main subject of this paper. To do this the ideal low-pass filter transfer function is replaced by an
analytic approximation, usually a polynomial or rational function, for which the computation can be
performed in an efficient manner. A wide range of analytic functions of one variable f(k) can be
evaluated in a matrix such as K [4]. The result is another matrix f(K) with the same left and right
eigenvectors, but with eigenvalues f(k1); : : : ; f(kn)

f(K) =
nX
i=1

f(ki) ei�
t
i :
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The main reason why the filtering operation x0=f(K)x of equation (2.7) can be performed efficiently
for a polynomial transfer function of low degree, is that when K is sparse, which is the case here,
the matrix f(K) is also sparse (but of wider bandwidth), and so, the filtering operation becomes the
multiplication of a vector by a sparse matrix.

In Gaussian smoothing the transfer function is the polynomial fN (k) = (1��k)N , with 0 < � < 1.
But this transfer function produces shrinkage

lim
N!1

(1� �k)N =
�
1 for k = 0
0 for 0 < k � 2 :

That is, as N grows, the shape asymptotically converges to its centroid.

k = 1

�

N = 2
1:0

k = 1

�

0 kPB 2 0 kPB 2

N > 21:0

A B

Figure 2: Graph of transfer function f(k) = ((1 � �k)(1 � �k))N=2. (A) N = 2. (B) N > 2. (out of
scale)

The algorithm introduced in [10, 11] is escentially Gaussian smoothing with the difference that
the scale factor � changes from iteration to iteration, alternating between a positive value � and a
negative value �. This simple modification still produces smoothing, but prevents shrinkage. The
transfer function is the polynomial fN (k) = ((1 � �k)(1 � �k))N=2, with 0 < � < �� and N even,
illustrated in figure 2-A forN = 2, and in 2-B forN > 2. This displays a typical low-pass filter shape
in the region of interest, from k = 0 to k = 2. The pass-band frequency of this filter is defined as the
unique value of k in the interval (0; 2) such that fN (k) = 1. Such a value exists when 0 < � < ��,
and turns out to be equal to kPB = 1=� + 1=�. This polynomial transfer function of degree N results
in a linear time and space complexity algorithm, which is very simple to implement, and produces
smoothing without shrinkage. From now on we will refer to this algorithm as the ��� algorithm.
However, as we will see below, faster algorithms can be achieved by choosing as transfer function a
beter polynomial approximation of the same degree of the ideal low-pass filter.

3. Fast Smoothing as Filter Design

We are faced with the classical problem of digital filter design in signal processing [8, 5], but
with some restrictions. Note that because of the linear complexity constraint discussed above, only
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polynomial transfer functions (FIR filters) are allowed. With rational transfer functions (IIR filters)
better approximations of the ideal low-pass filter could be achieved with lower degrees of polynomials,
but in our context a rational transfer function f(k) = g(k)=h(k) involves solving the sparse linear
system h(K)x0 = g(K)x, which is not a linear complexity operation. Because of this reason, we
leave the study of rational transfer functions for the future.

Because of space restrictions, of all the traditional FIR filter design methods available in the signal
processing literature, we only cover here in some detail the method of windows, which is the simplest
one. With this method we can design filters which are significantly faster, or sharper, than those obtain
with the � � � algorithm for the same degree.

4. Optimizing the ��� algorithm

The ��� algorithm can be described in a recursive fashion as follows

fN (k) =
�

1 N = 0
(1� �N k) fN�1(k) N > 0

where �N = �, for N odd, and �N = � for N even. Note that this algorithm requires minimum
storage, only one array of dimension n to store the Laplacian of a signal if computed in place, and two
arrays of dimension n in general. The algorithm is described in figure 3, where x is the input signal,
and x0 is the result of the filtering operation.

filter(N;�1; : : : ; �N ;K; x; x0)
x0 = x

for j = 1 to N step 1 do
x1 = Kx0

x0 = x0 � �jKx1

end
x0 = x0

return

Figure 3: The �� � filtering algorithm.

To maintain the minimum storage property and the same simple algorithmic structure, one could
try to generalize by changing the scale factors �N from iteration to iteration in a different way. But
if we start with a given pass-band frequency kPB = 1=� + 1=�, as it is usually the case when one
wants to design the filter, there are many values of � and � such that 0 < � < ��, that define a filter
with the same pass-band frequency. In order for the polynomial f(k) = (1 � �k)(1 � �k) to define
a low-pass filter in the interval [0; 2] it is necessary that jf(k)j < 1 in the stop-band region, so that
fN (k) = f(k)N ! 0 when N grows. Since f(kPB) = 1 and f(k) is strictly decreasing for k > kPB,
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this condition is equivalent to f(2) > �1, which translates into the following constraint on �

� <
�kPB +

q
(2�kPB)2 + 4

2(2�kPB)
: (4.1)

Figure 4 shows examples of transfer functions of filters designed for the same pass-band frequency,
but with different values of �. As � increases, the slope of the filter immediately after the pass-band
frequency increases, i.e., the filter becomes sharper, but at the same time instability starts to develop
at the other end of the spectrum, close to k = 2. If the maximum eigenvalue kn of the matrix K

is significantly less than 2 (which is not usually the case) we only need the filter to be stable in the
interval [0; kn] (i.e., 1 > f(kn) > �1), and larger values of � are acceptable. A good estimate of
the maximum eigenvalue of K can be obtained with the Lanczos method [4]. Even if the maximum
eigenvalue kn is not known, the signal x to be smoothed might be band-limited, i.e., the coefficients
x̂i in equation (2.5) associated with high frequencies are all zero, or very close to zero. This condition
might be difficult to determine in practice for a particular signal, but if we apply the algorithm with
small � for a certain number of iterations, the resulting signal becomes in effect band-limited. At
this point � can be increased keeping the pass-band frequency constant, maybe even making the filter
unstable, and the algorithm can be applied again with the new values of � and � for more iterations.
This process of increasing � keeping the pass-band frequency constant can now be repeated again and
again. A moderate speed-up is obtained in this way. Figure 5 show some examples of this process.
All the filters in this figure produce almost the same response, but filter (F) is five times faster than
filter (A).

5. Filter Design with Windows

The most straightforward approach to traditional digital filter design is to obtain a trigonometric
polynomial approximation of the ideal filter transfer function by truncating its Fourier series. The
resulting trigonometric polynomial minimizes the L2 distance to the ideal filter transfer function
among all the trigonometric polynomials of the same degree. Note that it is sufficient to know how
to construct low-pass filters. A band-pass filter can be constructed as the difference of two low pass
filters, and a high-pass filter can be constructed in a similar way. To obtain regular polynomials, not
trigonometric ones, we first apply the change of variable k = 2(1 � cos(�)). This change of variable
is a 1� 1 mapping [0; �=2] ! [0; 2]. Then we extend the resulting function to the interval [��; �] as
follows

hLP(�) =

8><
>:
0 �=2 � � � �

fLP(2(1 � cos(�))) 0 � � � �=2
h(��) �� � � � 0 :

Note that this function, periodic of period 2� and even, is also an ideal low-pass filter as a function of
�

hLP(�) =
�
1 if j�j < �PB

0 otherwise
;
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0 kPB 2

�1

N=2

N=20

1

0 kPB 2

�1

N=2

N=20

A B

1

0 kPB 2

�1

N=2

N=20

1

0 kPB 2

�1

N=2

N=20

C D

Figure 4: Graphs of transfer function ((1 � �k)(1 � �k))N=2 for N = 2 and N = 20 and pass-band
frequency kPB = 1=� + 1=� = 0:09. (A) � = 0:5 : stable. (B) � = 0:6 : stable. (C) � = 0:7 : limit
case. (D) � = 0:8 : unstable.
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1

0 kPB 2

1

0 kPB 2

A B

1

0 kPB 2

1

0 kPB 2

C D

1

0 kPB 2

1

0 kPB 2

E F

Figure 5: Different combinations of parameters in ((1 � �k)(1 � �k))N=2 produce almost indistin-
guishable transfer functions. The pass-band frequency kPB = 1=�+ 1=� = 0:1 is the same in the four
cases. (A) � = 0:3, � = �0:3093, N = 120. (B) � = 0:5, � = �0:5263, N = 40. (C) � = 0:7,
� = �0:7527, N = 20. (D) � = 0:9, � = �0:9890, N = 12. (E) � = 0:3, � = �0:3093, N = 12,
followed by � = 0:5, � = �0:5263, N = 12, followed by � = 0:7, � = �0:7527, N = 12. (F)
� = 0:3, � = �0:3093, N = 6, followed by � = 0:5, � = �0:5263, N = 6, followed by � = 0:7,
� = �0:7527, N = 6, followed by � = 0:9, � = �0:9890, N = 6. Note that (C) and (D) are unstable
by themselves, but preceded by stable filters become stable. The degrees of the polynomials are (A)
120, (B) 40, (C) 20, (D) 12, (E) 36, and (F) 24.
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where �PB is the unique solution of kPB = 2(1 � cos(�PB)) in [0; �=2]. Since h(�) is an even function,
it has a Fourier series expansion in terms of cosines only

hLP(�) = h0 + 2
1X
n=0

hn cos(n�) ;

where hn is

hn =
1

2�

Z �

��
h(�) cos(n�) d� =

�
�PB=� n = 0

sin(n �PB)=n� n > 0
:

Now, it is well known that cos(n �) = Tn(cos(�)), where Tn is the n-th. Chebyshev polynomial [2],
defined by the three term recursion

Tn(w) =

8><
>:
1 n = 0
w n = 1
2w Tn�1(w) � Tn�2(w) n > 1

The N -th. polynomial approximation of fLP for k 2 [0; 2] is then

fN (k) =
�PB

�
T0(1 � k=2) +

NX
n=1

2 sin(n �PB)

n�
Tn(1� k=2) : (5.1)

Figure 6 shows some of these polynomials compared with the polynomials ((1��k)(1��k))N=2 for
the same pass-band frequency.

As can be easily observed in figure 6, direct truncation of the series leads to the well-known
Gibbs phenomenon, i.e., a fixed percentage overshoot and ripple before and after the discontinuity.
As it is shown in section 9, this is one of the problems that makes this technique unsatisfactory. The
other problem is that the resulting polynomial approximation does not necesarily satify the constraint
fN (0) = 1, which is required to preserve the average value of the signal (DC level in classical signal
processing, centroid in the case of surfaces). Our experiments show that a desirable surface smoothing
filter transfer function should be as close as possible to 1 within the pass-band as possible, and then
decrease to zero in the stop-band ([kPB; 2]).

Another classical technique to control the convergence of the Fourier series is to use a weighting
function to modify the Fourier coefficients. In our case the polynomial approximation of equation
(5.1) is modified as follows

fN (k) = w0

�PB

�
T0(1 � k=2) + wn

NX
n=1

2 sin(n �PB)

n�
Tn(1 � k=2) ; (5.2)

where w0; w1; : : : ; wN are the weights that constitute a so called window. Since the multiplication of
Fourier coefficients by a window corresponds to convolving the original frequency response with the
Fourier series defined by the window, a design criterion for windows is to find a finite window whose
Fourier transform has relatively small side lobes. The polynomial approximation of equation (5.1) is
a particular case of (5.2), where the weights are all equal to 1. This is called the Rectangular window.
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A B

N = 10

1

0 kPB 2

1

0 kPB 2

N = 20

1

0 kPB 2

1

0 kPB 2

N = 40

1

0 kPB 2

1

0 kPB 2

N = 80

1

0 kPB 2

1

0 kPB 2

Figure 6: (A) Polynomial transfer function f(k) = ((1 � �k)(1 � �k))N=2 with kPB = 0:1 and
� = 0:6307. (B) Truncated Fourier series approximation of the ideal low-pass filter (Rectangular
window).
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Other popular windows are, the Hanning window, the Hamming window, and the Blackman window.

wn =

8>>><
>>>:
1:0 Rectangular
0:5 + 0:5 cos(n�=(N + 1)) Hanning
0:54 + 0:46 cos(n�=(N + 1)) Hamming
0:42 + 0:5 cos(n�=(N + 1)) + 0:08 cos(2n�=(N + 1)) Blackman :

(5.3)

The Fourier series of the rectangular window has a narrow center lobe, but its side lobes contain a
large part of the total energy, and decay very slowly. The Hamming window has 99:96 percent of its
energy in its main lobe, but the width of the main lobe is twice the width of the rectangular window’s
main lobe. The Blackman window further reduces the peak side lobe ripple at the expense of a main
lobe whose width is about triple the width of the rectangular window’s main lobe. There are other
window designs that are optimal in one way or another [7, 6, 5], but the window coefficients are in
some cases difficult to compute, and as we will see below, we can design satisfactory filters with the
windows described above.

If the low-pass filter must have a very narrow pass-band region, which is usually the case in the
surface smoothing application, then a high degree polynomial is necessary to obtain a reasonable
approximation. This is in fact a consequence of the uncertainty principle. The phenomenon can be
observed even in the case of the rectangular window, illustrated in figure 6. The problem is even
worse for the other windows, because they have wider main lobes. To obtain a reasonably good
approximation of degree N , the pass-band must be significantly wider than the width of the main
lobe of the window. If � is the width of the main lobe of the window, the resulting filter will be
approximately equal to one for � 2 [0; �PB � �], approximately equal to zero for � 2 [�PB + �; �], and
approximately decreasing for � 2 [�PB � �; �PB + �]. Our solution in this case of narrow pass-band
frequency, is to design the filter for a small value of N , but with the pass-band frequency increased
by � (no longer the width of the main lobe of the window)

fN(k) = w0

(�PB + �)

�
T0(1 � k=2) + wn

NX
n=1

2 sin(n(�PB + �))

n�
Tn(1� k=2) ; (5.4)

and then, eventually iterate this filter (f(k) = fN(k)M ). The value of � can be determined numerically
by maximizing f(kPB) under the constraints jf(k)j < 1 for kPB < k � 2. In our implementation, we
compute the optimal�with a local root finding algorithm (a few Newton iterations) so that fN(kPB) = 1,
starting from an interactively chosen initial value. Figure 7 shows some examples of filters designed
in this way, compared with filters of the same degree and � = 0, and with � � � filters of the same
degree. Figure 8 shows several views of the filter design control panel of our interactive surface
editing system.

6. Implementation

Figure 9 describes our algorithmic implementation of the filtering operation x0 = fN(K)x, where
f(k) is the transfer function

f(k) =
NX
j=0

fj Tj(1 � k=2) :
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A B

C D

Figure 7: Filters fN(k) for kPB = 0:1 and � > 0:0. (A) Rectangular window, N = 10, � = 0:1353.
(B) Rectangular window, N = 20, � = 0:0637. (C) Hamming window, N = 10, � = 0:5313. (D)
Hamming window, N = 20, � = 0:2327. In each of the four cases the thick black line corresponds
to the filter described above, the thin black line to the same filter with � = 0:0, and the gray line is a
� � � filter of the same degree and � = 0:5.
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Figure 8: Interactive filter design subsystem.
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This algorithm applies not only to low-pass filters, but to any polynomial transfer function expressed
as linear combination of Chebyshev polynomials (every polynomial can be written in this way). From
the numerical point of view, the Chebyshev polynomials constitute a better basis than the power basis
because they are orthogonal in the interval [�1; 1], Furthermore, the design techniques described
above produce polynomial coefficients with respect to this basis. In terms of storage, the algorithm
only requires four auxiliary arrays x0; x1; x2; x3 of dimension n. In terms of computation, the most
expensive operation is the multiplication of a vector by the matrix K , an operation that is executed
N times. This is the evaluation of the Laplacian, described in equation (2.2), which is also a linear
complexity operation, because K is sparse.

filter(N; f0; : : : ; fN ;K; x; x0)
x0 = x

x1 = Kx0

x1 = x0 � 1

2
x1

x3 = f0x
0 + f1x

1

for j = 2 to N step 1 do
x2 = Kx1

x2 = (x1 � x0) + (x1 � x2)
x3 = x3 + fix

2

x0 = x1

x1 = x2

end
x0 = x3

return

Figure 9: The filtering algorithm x0 = f(K)x.

7. How to Choose The Pass-Band Frequency

So far in our discussion of how to design low-pass filters, the pass-band frequency kPB was given.
In this section we are concerned with how to choose the pass-band frequency to prevent shrinkage. If
the signals are the coordinates of the vertices of a closed surface, preservation of the enclosed volume
is a natural criterion. But even in this case, normalizing the filtered signal to make it satisfy the
criterion is an expensive global operation that requires the evaluation of a surface integral. And since
the criterion does not have a natural generalization to arbitrary discrete graph signals, we will use a
different criterion, more related to the signal processing formulation. As in the classical case, since
the DFT x̂ of a signal x satisfies Parseval’s formula, the value of x̂2i can be interpreted as the energy
content of x in the frequency ki. Similarly, the sum

X
ki�kPB

x̂2i
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measures the energy content of x in the pass-band. Our criterion is to choose the minimum pass-band
frequency such that most of the energy of the signal falls in the pass-band, i.e., we choose kPB such
that X

ki�kPB

x̂2i � (1� �) kxk2D ;

where � is a very small number. Of course, since we cannot compute the DFT of x, we cannot minimize
this expression exactly. We can only get a rough estimate of the minimizer using the power spectral
estimator described in the next section. What value of � to use, and how accurate the estimation should
be is application dependent, but in general it should be determined experimentally for a set of typical
signals.

8. Power Spectrum Estimation

Ideally, to evaluate the performance of the different low-pass filter algorithms we should measure
the DFT of the filter outputs, and check that the high frequency energy content is very small. Since
we do not have any practical way of computing the DFT, we estimate the power spectrum, or energy
distribution, of a signal as follows. We partition the interval [0; 2] into a small number of non-
overlapping intervals I1; : : : ; IM , and for each one of this intervals we estimate the energy content
of the signal within the interval. We do so by designing a very sharp (high degree) pass-band filter
f j(k) for each interval Ij . The energy content of the signal x within the interval Ij can be estimated
by measuring the total energy of the output of corresponding filter applied to the signal

kf j(K)xk2D �
X
ki2Ij

x̂2i :

By designing all these FIR filters of the same degree, a filter-bank, we can evaluate all of them
simultaneously at a greatly reduced computational cost. The only disadvantage is that we need M

arrays of the same dimension as the input signal x to accumulate the filter outputs before their norms
are evaluated. If the pass-band filters were ideal, Parseval’s formula implies that the sum of the total
energies of the filter outputs must be equal to the total energy of the input signal. Since the transfer
functions of the filters overlap, this condition is only approximately satisfied. But the error can be
made arbitrarily small by increasing the degree of the polynomials.

Figure 8 shows several views of the spectrum estimation control panel of our interactive surface
editing system. In this figure N is the degree of the filters in the filter bank, M is the number of
bands, and K0 is the width of each band. We recommend using filters designed with the Hanning or
Hamming windows of a degree at lest ten times the number of spectrum bands.

9. Experimental Results

We have integrated all the methods described above within our surface editing and visualization
system, illustrated in figure 11. Figure 12 shows the result of applying the filters of figure 7 to the
same input surface. The spectrum estimate for the input surface yields the 99:88% of the energy in
the band [0; 0:1]. This is a typical result for relatively large surfaces, and we have found that a default
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Figure 10: Interactive power spectrum estimation subsystem.
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Figure 11: Interactive surface editing system.
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A B C D

E F G H

I J K L

Figure 12: Filters of Figure 7 applied to the same surface. In all these examples kPB = 0:1. (A) Input
surface (2565 vertices, 5138 triangles). (B) � � � filter � = 0:5 n = 10. (C) � � � filter � = 0:5
n = 20. (D) � � � filter � = 0:5 n = 60. (E) Rectangular window � = 0:0 n = 10. (F) Rectangular
window � = 0:0 n = 20. (G) Rectangular window � = 0:01353 n = 10. (H) Rectangular window
� = 0:06374 n = 20. (I) Hamming window � = 0:0 n = 10. (J) Hamming window � = 0:0 n = 20.
(K) Hamming window � = 0:5313 n = 10. (L) Hamming window � = 0:2327 n = 20.
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value kPB = 0:1 produces very good results. But as we pointed out before, the appropriate value for a
family of similar signals must be determined experimentally by estimating the spectrum of a typical
sample.

The � � � algorithm produces very good results, but to significantly reduce high frequencies, a
relatively large number of iterations might be necessary. The results obtained with rectangular filters
are unsatisfactory. They are somehow better when we increase the value of �, as described in section
5, but although they are faster, they change the low frequencies components too much, altering the
shape quite significantly.

The ideal transfer function should be as flat as possible in the pass-band region (f(k) � 1 for
k 2 [0; kPB]), and then decrease as fast as possible in the stop-band region (k 2 [kPB; 2]). The transfer
function of the ��� algorithm has this shape, but does not decrease fast enough in the stop-band. The
filters designed with the other three windows (Hanning, Hamming, and Blackman), and with increased
� produce transfer functions of similar shape. The Blackman window produces transfer functions that
are much flatter in the pass-band, but at the expense of a slower rate of decrease in the stop-band.
Hanning and Hamming windows produce similar results, but the Hamming window produces transfer
functions with less oscillations. As figure 12 shows, filters designed with the Hamming window
produce filters of similar quality as the �� � algorithm, but much faster.

10. Conclusions

Generalizing the signal processing formulation of [10, 11], in this paper we formulated the most
significant concepts of Fourier analysis for signals defined on oriented graphs, and showed that linear
filters with polynomial transfer function can be implemented in an efficient manner, and designed with
classical digital filter design methods. In particular, we have shown how to design surface smoothing
filters that produce almost the same effect as the filter described in [10, 11], but in a fraction of the
time. We have also described a method to estimate the power spectrum of a signal, and used this
power spectrum estimate to determine the pass-band frequency for a surface smoothing filter, and as
a tool to evaluate the performance of different filter designs. We have also given a formal definition
of the shrinkage problem, which is valid not only for closed surfaces, but for any signal.
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Abstract
We describe a multiresolution representation for meshes based on
subdivision, which is a natural extension of the existing patch-based
surface representations. Combining subdivision and the smooth-
ing algorithms of Taubin [26] allows us to construct a set of algo-
rithms for interactive multiresolution editing of complex hierarchi-
cal meshes of arbitrary topology. The simplicity of the underly-
ing algorithms for refinement and coarsification enables us to make
them local and adaptive, thereby considerably improving their effi-
ciency. We have built a scalable interactive multiresolution editing
system based on such algorithms.

1 Introduction
Applications such as special effects and animation require creation
and manipulation of complex geometric models of arbitrary topol-
ogy. Like real world geometry, these models often carry detail at
many scales (cf. Fig. 1). The model might be constructed from
scratch (ab initio design) in an interactive modeling environment or
be scanned-in either by hand or with automatic digitizing methods.
The latter is a common source of data particularly in the entertain-
ment industry. When using laser range scanners, for example, indi-
vidual models are often composed of high resolution meshes with
hundreds of thousands to millions of triangles.

Manipulating such fine meshes can be difficult, especially when
they are to be edited or animated. Interactivity, which is crucial in
these cases, is challenging to achieve. Even without accounting for
any computation on the mesh itself, available rendering resources
alone, may not be able to cope with the sheer size of the data. Pos-
sible approaches include mesh optimization [15, 13] to reduce the
size of the meshes.

Aside from considerations of economy, the choice of represen-
tation is also guided by the need for multiresolution editing se-
mantics. The representation of the mesh needs to provide con-
trol at a large scale, so that one can change the mesh in a broad,
smooth manner, for example. Additionally designers will typi-
cally also want control over the minute features of the model (cf.
Fig. 1). Smoother approximations can be built through the use of
patches [14], though at the cost of loosing the high frequency de-
tails. Such detail can be reintroduced by combining patches with
displacement maps [17]. However, this is difficult to manage in the

�dzorin@gg.caltech.edu
yps@cs.caltech.edu
zwim@bell-labs.com

arbitrary topology setting and across a continuous range of scales
and hardware resources.

Figure 1: Before the Armadillo started working out he was flabby,
complete with a double chin. Now he exercises regularly. The orig-
inal is on the right (courtesy Venkat Krischnamurthy). The edited
version on the left illustrates large scale edits, such as his belly, and
smaller scale edits such as his double chin; all edits were performed
at about 5 frames per second on an Indigo R10000 Solid Impact.

For reasons of efficiency the algorithms should be highly adap-
tive and dynamically adjust to available resources. Our goal is to
have a single, simple, uniform representation with scalable algo-
rithms. The system should be capable of delivering multiple frames
per second update rates even on small workstations taking advan-
tage of lower resolution representations.

In this paper we present a system which possesses these proper-
ties

� Multiresolution control: Both broad and general handles, as
well as small knobs to tweak minute detail are available.

� Speed/fidelity tradeoff: All algorithms dynamically adapt to
available resources to maintain interactivity.

� Simplicity/uniformity: A single primitive, triangular mesh, is
used to represent the surface across all levels of resolution.

Our system is inspired by a number of earlier approaches. We
mention multiresolution editing [11, 9, 12], arbitrary topology sub-
division [6, 2, 19, 7, 28, 16], wavelet representations [21, 24, 8, 3],
and mesh simplification [13, 17]. Independently an approach simi-
lar to ours was developed by Pulli and Lounsbery [23].

It should be noted that our methods rely on the finest level mesh
having subdivision connectivity. This requires a remeshing step be-
fore external high resolution geometry can be imported into the ed-
itor. Eck et al. [8] have described a possible approach to remeshing
arbitrary finest level input meshes fully automatically. A method
that relies on a user's expertise was developed by Krishnamurthy
and Levoy [17].

1.1 Earlier Editing Approaches
H-splines were presented in pioneering work on hierarchical
editing by Forsey and Bartels [11]. Briefly, H-splines are obtained
by adding finer resolution B-splines onto an existing coarser resolu-
tion B-spline patch relative to the coordinate frame induced by the
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coarser patch. Repeating this process, one can build very compli-
cated shapes which are entirely parameterized over the unit square.
Forsey and Bartels observed that the hierarchy induced coordinate
frame for the offsets is essential to achieve correct editing seman-
tics.

H-splines provide a uniform framework for representing both the
coarse and fine level details. Note however, that as more detail
is added to such a model the internal control mesh data structures
more and more resemble a fine polyhedral mesh.

While their original implementation allowed only for regular
topologies their approach could be extended to the general setting
by using surface splines or one of the spline derived general topol-
ogy subdivision schemes [18]. However, these schemes have not
yet been made to work adaptively.

Forsey and Bartels' original work focused on the ab initio de-
sign setting. There the user's help is enlisted in defining what is
meant by different levels of resolution. The user decides where to
add detail and manipulates the corresponding controls. This way
the levels of the hierarchy are hand built by a human user and the
representation of the final object is a function of its editing history.

To edit an a priori given model it is crucial to have a general pro-
cedure to define coarser levels and compute details between levels.
We refer to this as theanalysisalgorithm. An H-spline analysis al-
gorithm based on weighted least squares was introduced [10], but
is too expensive to run interactively. Note that even in an ab initio
design setting online analysis is needed, since after a long sequence
of editing steps the H-spline is likely to be overly refined and needs
to be consolidated.

Wavelets provide a framework in which to rigorously de-
fine multiresolution approximations and fast analysis algorithms.
Finkelstein and Salesin [9], for example, used B-spline wavelets
to describe multiresolution editing of curves. As in H-splines, pa-
rameterization of details with respect to a coordinate frame induced
by the coarser level approximation is required to get correct edit-
ing semantics. Gortler and Cohen [12], pointed out that wavelet
representations of detail tend to behave in undesirable ways during
editing and returned to a pure B-spline representation as used in
H-splines.

Carrying these constructions over into the arbitrary topology sur-
face framework is not straightforward. In the work by Lounsbery et
al. [21] the connection between wavelets and subdivision was used
to define the different levels of resolution. The original construc-
tions were limited to piecewise linear subdivision, but smoother
constructions are possible [24, 28].

An approach to surface modeling based on variational methods
was proposed by Welch and Witkin [27]. An attractive character-
istic of their method is flexibility in the choice of control points.
However, they use a global optimization procedure to compute the
surface which is not suitable for interactive manipulation of com-
plex surfaces.

Before we proceed to a more detailed discussion of editing we
first discuss different surface representations to motivate our choice
of synthesis (refinement) algorithm.

1.2 Surface Representations
There are many possible choices for surface representations.
Among the most popular are polynomial patches and polygons.

Patches are a powerful primitive for the construction of coarse
grain, smooth models using a small number of control parameters.
Combined with hardware support relatively fast implementations
are possible. However, when building complex models with many
patches the preservation of smoothness across patch boundaries can
be quite cumbersome and expensive. These difficulties are com-
pounded in the arbitrary topology setting when polynomial param-
eterizations cease to exist everywhere. Surface splines [4, 20, 22]
provide one way to address the arbitrary topology challenge.

As more fine level detail is needed the proliferation of control
points and patches can quickly overwhelm both the user and the
most powerful hardware. With detail at finer levels, patches become
less suited and polygonal meshes are more appropriate.

Polygonal Meshes can represent arbitrary topology and re-
solve fine detail as found in laser scanned models, for example.
Given that most hardware rendering ultimately resolves to triangle
scan-conversion even for patches, polygonal meshes are a very ba-
sic primitive. Because of sheer size, polygonal meshes are difficult
to manipulate interactively. Mesh simplification algorithms [13]
provide one possible answer. However, we need a mesh simpli-
fication approach, that is hierarchical and gives us shape handles
for smooth changes over larger regions while maintaining high fre-
quency details.

Patches and fine polygonal meshes represent two ends of a spec-
trum. Patches efficiently describe large smooth sections of a surface
but cannot model fine detail very well. Polygonal meshes are good
at describing very fine detail accurately using dense meshes, but do
not provide coarser manipulation semantics.

Subdivisionconnects and unifies these two extremes.

Figure 2: Subdivision describes a smooth surface as the limit of a
sequence of refined polyhedra. The meshes show several levels of
an adaptive Loop surface generated by our system (dataset courtesy
Hugues Hoppe, University of Washington).

Subdivision defines a smooth surface as the limit of a sequence
of successively refined polyhedral meshes (cf. Fig. 2). In the reg-
ular patch based setting, for example, this sequence can be defined
through well known knot insertion algorithms [5]. Some subdi-
vision methods generalize spline based knot insertion to irregular
topology control meshes [2, 6, 19] while other subdivision schemes
are independent of splines and include a number of interpolating
schemes [7, 28, 16].

Since subdivision provides a path from patches to meshes, it can
serve as a good foundation for the unified infrastructure that we
seek. A single representation (hierarchical polyhedral meshes) sup-
ports the patch-type semantics of manipulationandfinest level de-
tail polyhedral edits equally well. The main challenge is to make
the basic algorithms fast enough to escape the exponential time and
space growth of naive subdivision. This is the core of our contribu-
tion.

We summarize the main features of subdivision important in our
context
� Topological Generality: Vertices in a triangular (resp. quadri-

lateral) mesh need not have valence 6 (resp. 4). Generated sur-
faces are smooth everywhere, and efficient algorithms exist for
computing normals and limit positions of points on the surface.

� Multiresolution: becausethey are the limit of successiverefine-
ment, subdivision surfaces support multiresolution algorithms,
such as level-of-detail rendering, multiresolution editing, com-
pression, wavelets, and numerical multigrid.



� Simplicity: subdivision algorithms are simple: the finer mesh
is built through insertion of new vertices followed bylocal
smoothing.

� Uniformity of Representation: subdivision provides a single
representation of a surface at all resolution levels. Boundaries
and features such as creases can be resolved through modified
rules [14, 25], reducing the need for trim curves, for example.

1.3 Our Contribution
Aside from our perspective, which unifies the earlier approaches,
our major contribution—and the main challenge in this program—
is the design of highly adaptive and dynamic data structures and
algorithms, which allow the system to function across a range of
computational resources from PCs to workstations, delivering as
much interactive fidelity as possible with a given polygon render-
ing performance. Our algorithms work for the class of 1-ring sub-
division schemes (definition see below) and we demonstrate their
performance for the concrete case of Loop's subdivision scheme.

The particulars of those algorithms will be given later, but Fig. 3
already gives a preview of how the different algorithms make up
the editing system. In the next sections we first talk in more detail
about subdivision, smoothing, and multiresolution transforms.

Adaptive render

Initial mesh

Render

Select group of vertices
at level i

Adaptive analysis

Begin dragging

Create dependent
submesh

DragRelease selection

Local analysis Local synthesis

Render

Adaptive synthesis

Figure 3: The relationship between various procedures as the user
moves a set of vertices.

2 Subdivision
We begin by defining subdivision and fixing our notation. There are
2 points of view that we must distinguish. On the one hand we are
dealing with an abstractgraphand perform topological operations
on it. On the other hand we have ameshwhich is the geometric
object in 3-space. The mesh is the image of a map defined on the
graph: it associates apoint in 3D with everyvertex in the graph
(cf. Fig. 4). A triangledenotes a face in the graph or the associated
polygon in 3-space.

Initially we have a triangular graphT 0 with verticesV 0. By
recursivelyrefiningeach triangle into 4 subtriangles we can build
a sequence of finer triangulationsT i with verticesV i, i > 0
(cf. Fig. 4). The superscripti indicates thelevel of triangles and
vertices respectively. A trianglet 2 T i is a triple of indices
t = fva; vb; vcg � V i.

The vertex sets are nested asV j � V i if j < i. We define
oddvertices on leveli asM i = V i+1 n V i. V i+1 consists of two
disjoint sets:evenvertices (V i) andoddvertices (M i). We define
the levelof a vertexv as the smallesti for whichv 2 V i. The level
of v is i+ 1 if and only if v 2M i.
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Figure 4: Left: the abstract graph. Vertices and triangles are mem-
bers of setsV i andT i respectively. Their index indicates the level
of refinement when they first appeared. Right: the mapping to the
mesh and its subdivision in 3-space.

With each setV i we associate a map, i.e., for each vertexv and
each leveli we have a 3D pointsi(v) 2 R3. The setsi contains
all points on leveli, si = fsi(v) j v 2 V ig. Finally, asubdivision
schemeis a linear operatorS which takes the points from leveli to
points on thefiner level i+ 1: si+1 = S si

Assuming that the subdivision converges, we can define a limit
surface� as

� = lim
k!1

S
k
s
0
:

�(v) 2 R3 denotes the point on the limit surface associated with
vertexv.

In order to define our offsets with respect to a local frame we also
need tangent vectors and a normal. For the subdivision schemes
that we use, such vectors can be defined through the application of
linear operatorsQ andR acting onsi so thatqi(v) = (Qsi)(v)

andri(v) = (Rsi)(v) are linearly independent tangent vectors at
�(v). Together with an orientation they define a local orthonormal
frameF i(v) = (ni(v); qi(v); ri(v)). It is important to note that
in general it is not necessary to use precise normals and tangents
during editing; as long as the frame vectors are affinely related to
the positions of vertices of the mesh, we can expect intuitive editing
behavior.

1-ring at level i 1-ring at level i+1

Figure 5: An even vertex has a 1-ring of neighbors at each level of
refinement (left/middle). Odd vertices—in the middle of edges—
have 1-rings around each of the vertices at either end of their edge
(right).

Next we discuss two common subdivision schemes, both of
which belong to the class of1-ring schemes. In these schemes
points at leveli+1 depend only on 1-ring neighborhoods of points



at leveli. Let v 2 V i (v even) then the pointsi+1(v) is a function
of only thosesi(vn), vn 2 V i, which are immediate neighbors
of v (cf. Fig. 5 left/middle). Ifm 2 M i (m odd), it is the vertex
inserted when splitting an edge of the graph; we call such vertices
middle verticesof edges. In this case the pointsi+1(m) is a func-
tion of the 1-rings around the vertices at the ends of the edge (cf.
Fig. 5 right).
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Figure 6: Stencils for Loop subdivision with unnormalized weights
for even and odd vertices.

Loop is a non-interpolating subdivision scheme based on a gen-
eralization of quartic triangular box splines [19]. For a given even
vertex v 2 V i, let vk 2 V i with 1 � k � K be itsK 1-
ring neighbors. The new pointsi+1(v) is defined assi+1(v) =

(a(K)+K)�1(a(K) si(v) +
PK

k=1
si(vk)) (cf. Fig. 6),a(K) =

K(1��(K))=�(K),and�(K) = 5=8�(3+2 cos(2�=K))2=64.
For odd v the weights shown in Fig. 6 are used. Two inde-
pendent tangent vectorst1(v) and t2(v) are given bytp(v) =PK

k=1
cos(2�(k + p)=K) si(vk).

Features such as boundaries and cusps can be accommodated
through simple modifications of the stencil weights [14, 25, 29].

Butterfly is an interpolating scheme, first proposed by Dyn et
al. [7] in the topologically regular setting and recently general-
ized to arbitrary topologies [28]. Since it is interpolating we have
si(v) = �(v) for v 2 V i even. The exact expressions for odd
vertices depend on the valenceK and the reader is referred to the
original paper for the exact values [28].

For our implementation we have chosen the Loop scheme, since
more performance optimizations are possible in it. However, the
algorithms we discuss later work for any 1-ring scheme.

3 Multiresolution Transforms
So far we only discussed subdivision, i.e., how to go from coarse to
fine meshes. In this section we describe analysis which goes from
fine to coarse.

We first needsmoothing, i.e., a linear operationH to build a
smooth coarse mesh at leveli� 1 from a fine mesh at leveli:

s
i�1

= H s
i
:

Several options are available here:
� Least squares:One could define analysis to be optimal in the

least squares sense,

min
si�1

ksi � S s
i�1k2:

The solution may have unwanted undulations and is too expen-
sive to compute interactively [10].

� Fairing: A coarse surface could be obtained as the solution to
a global variational problem. This is too expensive as well. An
alternative is presented by Taubin [26], who uses alocal non-
shrinking smoothing approach.

Because of its computational simplicity we decided to use a version
of Taubin smoothing. As before letv 2 V i haveK neighbors
vk 2 V i. Use the average,si(v) = K�1

PK

k=1
si(vk), to define

the discrete LaplacianL(v) = si(v)� si(v). On this basis Taubin
gives a Gaussian-like smoother which does not exhibit shrinkage

H := (I + �L) (I + �L):

With subdivision and smoothing in place, we can describe the
transform needed to support multiresolution editing. Recall that
for multiresolution editing we want the difference between succes-
sive levels expressed with respect to a frame induced by the coarser
level, i.e., the offsets are relative to the smoother level.

With each vertexv and each leveli > 0 we associate adetail
vector,di(v) 2 R3. The setdi contains all detail vectors on leveli,
di = fdi(v) j v 2 V ig. As indicated in Fig. 7 the detail vectors
are defined as

d
i
= (F

i
)
t
(s
i � S s

i�1
) = (F

i
)
t
(I � S H) s

i
;

i.e., the detail vectors at leveli record how much the points at level
i differ from the result of subdividing the points at leveli� 1. This
difference is then represented with respect to the local frameF i to
obtain coordinate independence.

Since detail vectors are sampled on the fine level meshV i, this
transformation yields an overrepresentation in the spirit of the Burt-
Adelson Laplacian pyramid [1]. The only difference is that the
smoothing filters (Taubin) are not the dual of the subdivision filter
(Loop). Theoretically it would be possible to subsample the detail
vectors and only record a detail per odd vertex ofM i�1. This is
what happens in the wavelet transform. However, subsampling the
details severely restricts the family of smoothing operators that can
be used.

t
(F  )

id

SubdivisionSmoothing

s -Ssis

i-1s

i-1i
i

Figure 7: Wiring diagram of the multiresolution transform.

4 Algorithms and Implementation
Before we describe the algorithms in detail let us recall the overall
structure of the mesh editor (cf. Fig 3). The analysis stage builds
a succession of coarser approximations to the surface, each with
fewer control parameters. Details or offsets between successive
levels are also computed. In general, the coarser approximations
are not visible; only their control points are rendered. These con-
trol points give rise to avirtual surfacewith respect to which the
remaining details are given. Figure 8 shows wireframe representa-
tions of virtual surfaces corresponding to control points on levels 0,
1, and 2.

When an edit level is selected, the surface is represented inter-
nally as an approximation at this level, plus the set of all finer level
details. The user can freely manipulate degrees of freedom at the
edit level, while the finer level details remain unchanged relative
to the coarser level. Meanwhile, the system will use the synthesis
algorithm to render the modified edit level with all the finer details
added in. In between edits, analysis enforces consistency on the
internal representation of coarser levels and details (cf. Fig. 9).

The basic algorithmsAnalysis and Synthesis are very
simple and we begin with their description.

Let i = 0 be the coarsest andi = n the finest level withN
vertices. For each vertexv and all levelsi finer than the first level



Figure 8: Wireframe renderings of virtual surfaces representing the
first three levels of control points.

Figure 9: Analysis propagates the changes on finer levels to coarser
levels, keeping the magnitude of details under control. Left: The
initial mesh. Center: A simple edit on level 3. Right: The effect of
the edit on level 2. A significant part of the change was absorbed
by higher level details.

where the vertexv appears, there are storage locationsv:s[i] and
v:d[i], each with 3 floats. With this the total storage adds to2 � 3 �
(4N=3) floats. In general,v:s[i] holdssi(v) andv:d[i] holdsdi(v);
temporarily, these locations can be used to store other quantities.
The local frame is computed by callingv:F (i).

Global analysis and synthesis are performed level wise:

Analysis

for i = n downto 1
Analysis( i)

Synthesis

for i = 1 to n
Synthesis( i)

With the action at each level described by

Analysis( i)

8v 2 V i�1 : v:s[i� 1] := smooth (v; i)

8v 2 V i : v:d[i] := v:F (i)t � (v:s[i]� subd (v; i� 1))

and

Synthesis( i)

8v 2 V i : s:v[i] := v:F (i) � v:d[i] + subd (v; i� 1)

Analysis computes points on the coarser leveli� 1 using smooth-
ing (smooth ), subdividessi�1 (subd ), and computes the detail
vectorsdi (cf. Fig. 7). Synthesis reconstructs leveli by subdividing
level i� 1 and adding the details.

So far we have assumed that all levels are uniformly refined, i.e.,
all neighbors at all levels exist. Since time and storage costs grow
exponentially with the number of levels, this approach is unsuitable
for an interactive implementation. In the next sections we explain
how these basic algorithms can be made memory and time efficient.

Adaptiveand local versions of these generic algorithms (cf.
Fig. 3 for an overview of their use) are the key to these savings.
The underlying idea is to use lazy evaluation and pruning based on

thresholds. Three thresholds control this pruning:�A for adaptive
analysis,�S for adaptive synthesis, and�R for adaptive rendering.
To make lazy evaluation fast enough several caches are maintained
explicitly and the order of computations is carefully staged to avoid
recomputation.

4.1 Adaptive Analysis
The generic version of analysis traverses entire levels of the hierar-
chy starting at some finest level. Recall that the purpose of analysis
is to compute coarser approximations and detail offsets. In many
regions of a mesh, for example, if it is flat, no significant details
will be found.Adaptive analysisavoids the storage cost associated
with detail vectors below some threshold�A by observing that small
detail vectors imply that the finer level almost coincides with the
subdivided coarser level. The storage savings are realized through
tree pruning.

For this purpose we need an integerv:�nest :=
maxifkv:d[i]k � �Ag. Initially v:�nest = n and the fol-
lowing precondition holds before callingAnalysis(i) :
� The surface is uniformly subdivided to leveli,
� 8v 2 V i : v:s[i] = si(v),

� 8v 2 V i j i < j � v:�nest : v:d[j] = dj(v).
Now Analysis(i) becomes:

Analysis( i)

8v 2 V i�1 : v:s[i� 1] := smooth (v; i)

8v 2 V i :
v:d[i] := v:s[i]� subd (v; i� 1)
if v:�nest > i or kv:d[i]k � �A then
v:d[i] := v:F (i)t � v:d[i]

else
v:�nest := i� 1

Prune( i � 1)

Triangles that do not contain details above the threshold are unre-
fined:

Prune( i)

8t 2 T i : If all middle verticesm havem:�nest = i� 1
and all children are leaves, delete children.

This results in an adaptive mesh structure for the surface with
v:d[i] = di(v) for all v 2 V i, i � v:�nest. Note that the re-
sulting mesh is not restricted, i.e., two triangles that share a vertex
can differ in more than one level. Initial analysis has to be followed
by a synthesis pass which enforces restriction.

4.2 Adaptive Synthesis
The main purpose of the general synthesis algorithm is to rebuild
the finest level of a mesh from its hierarchical representation. Just
as in the case of analysis we can get savings from noticing that in
flat regions, for example, little is gained from synthesis and one
might as well save the time and storage associated with synthe-
sis. This is the basic idea behindadaptive synthesis, which has two
main purposes. First, ensure the mesh is restricted on each level,
(cf. Fig. 10). Second, refine triangles and recompute points until
the mesh has reached a certain measure of local flatness compared
against the threshold�S.

The algorithm recomputes the pointssi(v) starting from the
coarsest level. Not all neighbors needed in the subdivision stencil
of a given point necessarily exist. Consequently adaptive synthesis
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Figure 10: A restricted mesh: the center triangle is inT i and its
vertices inV i. To subdivide it we need the 1-rings indicated by the
circular arrows. If these are present the graph is restricted and we
can computesi+1 for all vertices and middle vertices of the center
triangle.

lazily creates all triangles needed for subdivision by temporarily re-
fining their parents, then computes subdivision, and finally deletes
the newly created triangles unless they are needed to satisfy the
restriction criterion. The following precondition holds before en-
teringAdaptiveSynthesis :

� 8t 2 T j j 0 � j � i : t is restricted

� 8v 2 V j j 0 � j � v:depth : v:s[j] = sj(v)

wherev:depth := maxifs
i(v)has been recomputedg.

AdaptiveSynthesis

8v 2 V 0 : v:depth := 0
for i = 0 to n� 1
temptri := fg
8t 2 T i :
current := fg
Refine (t; i; true )

8t 2 temptri : if not t:restrict then
Delete children oft

The list temptri serves as a cache holding triangles from levels
j < i which are temporarily refined. A triangle is appended to the
list if it was refined to compute a value at a vertex. After processing
level i these triangles are unrefined unless theirt:restrict flag is
set, indicating that a temporarily created triangle was later found
to be needed permanently to ensure restriction. Since triangles are
appended totemptri, parents precede children. Deallocating the
list tail first guarantees that all unnecessary triangles are erased.

The functionRefine (t; i;dir ) (see below) creates children of
t 2 T i and computes the valuesSsi(v) for the vertices and mid-
dle vertices oft. The results are stored inv:s[i+ 1]. The boolean
argumentdir indicates whether the call was made directly or recur-
sively.

Refine (t; i;dir)

if t:leaf then Create children fort
8v 2 t : if v:depth < i+ 1 then

GetRing (v; i)
Update (v; i)
8m 2 N(v; i+ 1; 1) :

Update (m; i)
if m:�nest � i+ 1 then
forced := true

if dir and Flat (t) < �S and not forced then
Delete children oft

else
8t 2 current : t:restrict := true

Update (v; i)
v:s[i+ 1] := subd (v; i)
v:depth := i+ 1
if v:�nest � i+ 1 then
v:s[i+ 1] += v:F (i+ 1) � v:d[i+ 1]

The conditionv:depth = i+ 1 indicates whether an earlier call to
Refine already recomputedsi+1(v). If not, call GetRing (v; i)
andUpdate (v; i) to do so. In case a detail vector lives atv at level
i (v:�nest � i + 1) add it in. Next computesi+1(m) for mid-
dle vertices on leveli + 1 aroundv (m 2 N(v; i + 1; 1), where
N(v; i; l) is the l-ring neighborhood of vertexv at level i). If m
has to be calculated, computesubd (m; i) and add in the detail if it
exists and record this fact in the flagforced which will prevent unre-
finement later. At this point, allsi+1 have been recomputed for the
vertices and middle vertices oft. Unrefinet and delete its children
if Refine was called directly, the triangle is sufficiently flat, and
none of the middle vertices contain details (i.e.,forced = false ).
The listcurrent functions as a cache holding triangles from level
i � 1 which are temporarily refined to build a 1-ring around the
vertices oft. If after processing all vertices and middle vertices of
t it is decided thatt will remain refined, none of the coarser-level
triangles fromcurrent can be unrefined without violating restric-
tion. Thust:restrict is set for all of them. The functionFlat (t)
measures how close to planar the corners and edge middle vertices
of t are.

Finally, GetRing (v; i) ensures that a complete ring of triangles
on leveli adjacent to the vertexv exists. Because triangles on level
i are restricted triangles all triangles on leveli � 1 that containv
exist (precondition). At least one of them is refined, since other-
wise there would be no reason to callGetRing (v; i). All other
triangles could be leaves or temporarily refined. Any triangle that
was already temporarily refined may become permanently refined
to enforce restriction. Record such candidates in thecurrent cache
for fast access later.

GetRing (v; i)

8t 2 T i�1 with v 2 t :
if t:leaf then

Refine (t; i� 1; false ); temptri:append(t)
t:restrict := false ; t:temp := true

if t:temp then
current:append(t)



4.3 Local Synthesis
Even though the above algorithms are adaptive, they are still run ev-
erywhere. During an edit, however, not all of the surface changes.
The most significant economy can be gained from performing anal-
ysis and synthesis only over submeshes which require it.

Assume the user edits levell and modifies the pointssl(v) for
v 2 V �l � V l. This invalidates coarser level valuessi anddi for
certain subsetsV �i � V i, i � l, and finer level pointssi for subsets
V �i � V i for i > l. Finer level detail vectorsdi for i > l remain
correct by definition. Recomputing the coarser levels is done by
local incremental analysisdescribed in Section 4.4, recomputing
the finer level is done bylocal synthesisdescribed in this section.

The set of verticesV �i which are affected depends on the support
of the subdivision scheme. If the support fits into anm-ring around
the computed vertex, then all modified vertices on leveli + 1 can
be found recursively as

V
�i+1

=
[

v2V �i

N(v; i+ 1;m):

We assume thatm = 2 (Loop-like schemes) orm = 3 (Butterfly
type schemes). We define thesubtriangulationT �i to be the subset
of triangles ofT i with vertices inV �i.

LocalSynthesis is only slightly modified from
AdaptiveSynthesis : iteration starts at levell and iter-
ates only over the submeshT �i.

4.4 Local Incremental Analysis
After an edit on levell local incremental analysiswill recompute
si(v) anddi(v) locally for coarser level vertices (i � l) which are
affected by the edit. As in the previous section, we assume that
the user edited a set of verticesv on levell and callV �i the set of
vertices affected on leveli. For a given vertexv 2 V �i we define
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Figure 11: Sets of even vertices affected through smoothing by ei-
ther an evenv or oddm vertex.

Ri�1(v) � V i�1 to be the set of vertices on leveli � 1 affected
by v through the smoothing operatorH. The setsV �i can now be
defined recursively starting from leveli = l to i = 0:

V
�i�1

=
[

v2V �i

R
i�1

(v):

The setRi�1(v) depends on the size of the smoothing stencil and
whetherv is even or odd (cf. Fig. 11). If the smoothing filter
is 1-ring, e.g., Gaussian, thenRi�1(v) = fvg if v is even and
Ri�1(m) = fve1; ve2g if m is odd. If the smoothing filter is 2-
ring, e.g., Taubin, thenRi�1(v) = fvg [ fvk j 1 � k � Kg
if v is even andRi�1(m) = fve1; ve2; vf1; vf2g if v is odd. Be-
cause of restriction, these vertices always exist. Forv 2 V i and
v0 2 Ri�1(v) we letc(v; v0) be the coefficient in the analysis sten-
cil. Thus

(H s
i
)(v

0
) =

X

vjv02Ri�1(v)

c(v; v
0
)s
i
(v):

This could be implemented by running over thev0 and each time
computing the above sum. Instead we use the dual implementation,
iterate over allv, accumulating (+=) the right amount tosi(v0) for
v0 2 Ri�1(v). In case of a 2-ring Taubin smoother the coefficients
are given by

c(v; v) = (1� �) (1� �) + ��=6

c(v; vk) = � �=6K

c(m;ve1) = ((1� �)�+ (1� �)�+ ��=3)=K

c(m;vf1) = � �=3K;

where for eachc(v; v0), K is the outdegree ofv0.
The algorithm first copies the old pointssi(v) for v 2 V �i and

i � l into the storage location for the detail. If then propagates
the incremental changes of the modified points from levell to the
coarser levels and adds them to the old points (saved in the detail
locations) to find the new points. Then it recomputes the detail
vectors that depend on the modified points.

We assume that before the edit, the old pointssl(v) for v 2
V �l were saved in the detail locations. The algorithm starts out by
building V �i�1 and saving the pointssi�1(v) for v 2 V �i�1 in
the detail locations. Then the changes resulting from the edit are
propagated to leveli � 1. Finally S si�1 is computed and used to
update the detail vectors on leveli.

LocalAnalysis( i)

8v 2 V �i : 8v0 2 Ri�1(v) :

V �i�1 [= fv0g
v0:d[i� 1] := v0:s[i� 1]

8v 2 V �i : 8v0 2 Ri�1(v) :

v0:s[i� 1] += c(v; v0) � (v:s[i]� v:d[i])

8v 2 V �i�1 :

v:d[i] = v:F (i)t � (v:s[i]� subd (v; i� 1))
8m 2 N(v; i; 1) :

m:d[i] = m:F (i)t � (m:s[i]� subd (m;i� 1))

Note that the odd points are actually computed twice. For the Loop
scheme this is less expensive than trying to compute a predicate to
avoid this. For Butterfly type schemes this is not true and one can
avoid double computation by imposing an ordering on the triangles.
The top level code is straightforward:

LocalAnalysis

8v 2 V �l : v:d[l] := v:s[l]
for i := l downto 0

LocalAnalysis( i)

It is difficult to make incremental local analysis adaptive, as it is
formulated purely in terms of vertices. It is, however, possible to
adaptively clean up the triangles affected by the edit and (un)refine
them if needed.

4.5 Adaptive Rendering
Theadaptive renderingalgorithm decides which triangles will be
drawn depending on the rendering performance available and level
of detail needed.

The algorithm uses a flagt:draw which is initialized tofalse ,
but set totrue as soon as the area corresponding tot is drawn.
This can happen either whent itself gets drawn, or when a set of
its descendents, which covert, is drawn. The top level algorithm
loops through the triangles starting from the leveln� 1. A triangle



is always responsible for drawing its children, never itself, unless it
is a coarsest-level triangle.

AdaptiveRender

for i = n� 1 downto 0
8t 2 T i : if not t:leaf then

Render (t)

8t 2 T 0 : if not t:draw then
displaylist:append(t)

T-vertex

Figure 12: Adaptive rendering: On the left 6 triangles from leveli,
one has a covered child from leveli + 1, and one has a T-vertex.
On the right the result from applyingRender to all six.

TheRender (t) routine decides whether the children oft have to be
drawn or not (cf. Fig.12). It uses a functionedist (m)which mea-
sures the distance between the point corresponding to the edge's
middle vertexm, and the edge itself. In the when case any of the
children oft are already drawn or any of its middle vertices are far
enough from the plane of the triangle, the routine will draw the rest
of the children and set the draw flag for all their vertices andt. It
also might be necessary to draw a triangle if some of its middle
vertices are drawn because the triangle on the other side decided
to draw its children. To avoid cracks, the routinecut (t) will cut
t into 2, 3, or 4, triangles depending on how many middle vertices
are drawn.

Render (t)

if (9 c 2 t:child j c:draw = true
or 9m 2 t:mid vertex j edist (m) > �D) then
8c 2 t:child :

if not c:draw then
displaylist:append(c)
8v 2 c : v:draw := true

t:draw := true
else if 9m 2 t:mid vertex j m:draw = true
8t0 2 cut (t) : displaylist:append(t0)
t:draw := true

4.6 Data Structures and Code
The main data structure in our implementation is a forest of trian-
gular quadtrees. Neighborhood relations within a single quadtree
can be resolved in the standard way by ascending the tree to the
least common parent when attempting to find the neighbor across a
given edge. Neighbor relations between adjacent trees are resolved
explicitly at the level of a collection of roots, i.e., triangles of a
coarsest level graph. This structure also maintains an explicit rep-
resentation of the boundary (if any). Submeshes rooted at any level
can be created on the fly by assembling a new graph with some set
of triangles as roots of their child quadtrees. It is here that the ex-
plicit representation of the boundary comes in, since the actual trees

are never copied, and a boundary is needed to delineate the actual
submesh.

The algorithms we have described above make heavy use of
container classes. Efficient support for sets is essential for a fast
implementation and we have used the C++ Standard Template Li-
brary. The mesh editor was implemented using OpenInventor and
OpenGL and currently runs on both SGI and Intel PentiumPro
workstations.

Figure 13: On the left are two meshes which are uniformly sub-
divided and consist of 11k (upper) and 9k (lower) triangles. On
the right another pair of meshes mesh with approximately the same
numbers of triangles. Upper and lower pairs of meshes are gen-
erated from the same original data but the right meshes were op-
timized through suitable choice of�S. See the color plates for a
comparison between the two under shading.

5 Results
In this section we show some example images to demonstrate vari-
ous features of our system and give performance measures.

Figure 13 shows two triangle mesh approximations of the Ar-
madillo head and leg. Approximately the same number of triangles
are used for both adaptive and uniform meshes. The meshes on the
left were rendered uniformly, the meshes on the right were rendered
adaptively. (See also color plate 15.)

Locally changing threshold parameters can be used to resolve an
area of interest particularly well, while leaving the rest of the mesh
at a coarse level. An example of this “lens” effect is demonstrated
in Figure 14 around the right eye of the Mannequin head. (See also
color plate 16.)

We have measured the performance of our code on two plat-
forms: an Indigo R10000@175MHz with Solid Impact graphics,
and a PentiumPro@200MHz with an Intergraph Intense 3D board.



We used the Armadillo head as a test case. It has approximately
172000 triangles on 6 levels of subdivision. Display list creation
took 2 seconds on the SGI and 3 seconds on the PC for the full
model. We adjusted�R so that both machines rendered models at
5 frames per second. In the case of the SGI approximately 113,000
triangles were rendered at that rate. On the PC we achieved 5
frames per second when the rendering threshold had been raised
enough so that an approximation consisting of 35000 polygons was
used.

The other important performance number is the time it takes to
recompute and re-render the region of the mesh which is changing
as the user moves a set of control points. This submesh is rendered
in immediate mode, while the rest of the surface continues to be
rendered as a display list. Grabbing a submesh of 20-30 faces (a
typical case) at level 0 added 250 mS of time per redraw, at level 1
it added 110 mS and at level 2 it added 30 mS in case of the SGI.
The corresponding timings for the PC were 500 mS, 200 mS and
60 mS respectively.

Figure 14: It is easy to change�S locally. Here a “lens” was applied
to the right eye of the Mannequin head with decreasing�S to force
very fine resolution of the mesh around the eye.

6 Conclusion and Future Research
We have built a scalable system for interactive multiresolution edit-
ing of arbitrary topology meshes. The user can either start from
scratch or from a given fine detail meshwith subdivision connec-
tivity. We use smooth subdivision combined with details at each
level as a uniform surface representation across scales and argue
that this forms a natural connection between fine polygonal meshes
and patches. Interactivity is obtained by building both local and
adaptive variants of the basic analysis, synthesis, and rendering al-
gorithms, which rely on fast lazy evaluation and tree pruning. The
system allows interactive manipulation of meshes according to the
polygon performance of the workstation or PC used.

There are several avenues for future research:
� Multiresolution transforms readily connect with compression.

We want to be able to store the models in a compressed format
and use progressive transmission.

� Features such as creases, corners, and tension controls can easily
be added into our system and expand the users' editing toolbox.

� Presently no real time fairing techniques, which lead to more
intuitive coarse levels, exist.

� In our system coarse level edits can only be made by dragging
coarse level vertices. Which vertices live on coarse levels is
currently fixed because of subdivision connectivity. Ideally the
user should be able to dynamically adjust this to make coarse
level edits centered at arbitrary locations.

� The system allows topological edits on the coarsest level. Algo-
rithms that allow topological edits on all levels are needed.

� An important area of research relevant for this work is genera-
tion of meshes with subdivision connectivity from scanned data
or from existing models in other representations.
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Abstract

During the last years the concept of multi-resolution modeling has
gained special attention in many fields of computer graphics and
geometric modeling. In this paper we generalize powerful multi-
resolution techniques to arbitrary triangle meshes without requiring
subdivision connectivity. Our major observation is that the hierar-
chy of nested spaces which is the structural core element of most
multi-resolution algorithms can be replaced by the sequence of in-
termediate meshes emerging from the application of incremental
mesh decimation. Performing such schemes with local frame cod-
ing of the detail coefficients already provides effective and efficient
algorithms to extract multi-resolution information from unstruc-
tured meshes. In combination with discrete fairing techniques, i.e.,
the constrained minimization of discrete energy functionals, we ob-
tain very fast mesh smoothing algorithms which are able to reduce
noise from a geometrically specified frequency band in a multi-
resolution decomposition. Putting mesh hierarchies, local frame
coding and multi-level smoothing together allows us to propose
a flexible and intuitive paradigm for interactive detail-preserving
mesh modification. We show examples generated by our mesh
modeling tool implementation to demonstrate its functionality.

1 Introduction

Traditionally, geometric modeling is based on piecewise polyno-
mial surface representations [8, 16]. However, while special poly-
nomial basis functions are well suited for describing and modify-
ing smooth triangular or quadrilateral patches, it turns out to be
rather difficult to smoothly join several pieces of a composite sur-
face along common (possibly trimmed) boundary curves. As flex-
ible patch layout is crucial for the construction of non-trivial geo-
metric shapes, spline-based modeling tools do spend much effort to
maintain the global smoothness of a surface.

Subdivision schemes can be considered as an algorithmic gen-
eralization of classical spline techniques enabling control meshes
with arbitrary topology [2, 5, 6, 18, 22, 39]. They provide easy
access to globally smooth surfaces of arbitrary shape by iteratively
applying simple refinement rules to the given control mesh. A se-
quence of meshes generated by this process quickly converges to a
smooth limit surface. For most practical applications, the refined
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meshes are already sufficiently close to the smooth limit after only
a few refinement steps.

Within a multi-resolution framework, subdivision schemes pro-
vide a set of basis functions φi � j � φ

�
2i ��� j � which are suitable to

build a cascade of nested spaces Vi
� span

�
	
φi � j � j � [4, 33]. Since the

functions φi � j are defined by uniform refinement of a given control
mesh M0 �� V0, the spaces Vi have to be isomorphic to meshes Mi
with subdivision connectivity.

While being much more flexible than classical (tensor-product)
spline techniques, the multi-resolution representation based on the
uniform refinement of a polygonal base mesh is still rather rigid.
When analyzing a given mesh Mk, i.e., when decomposing the
mesh into disjoint frequency bands Wi

� Vi 
 1 � Vi, we have to invert
the uniform refinement operation Vi � Vi 
 1. Hence, the input mesh
always has to be topologically isomorphic to an iteratively refined
base grid. In general this requires a global remeshing/resampling
of the input data prior to the multi-resolution analysis [7]. More-
over, if we want to fuse several separately generated subdivision
meshes (e.g. laser range scans) into one model, restrictive compat-
ibility conditions have to be satisfied. Hence, subdivision schemes
are able to deal with arbitrary topology but not with arbitrary con-
nectivity!

The scales of subdivision based multi-resolution mesh represen-
tations are defined in terms of topological distances. Since every
vertex pi � j on each level of subdivision Mi represents the weight
coefficient of a particular basis function φi � j with fixed support, its
region of influence is determined by topological neighborhood in
the mesh instead of geometric proximity. Being derived from the
regular functional setting, the refinement rules of stationary subdi-
vision schemes only depend on the valences of the vertices but not
on the length of the adjacent edges. Hence, surface artifacts can
occur when the given base mesh is locally strongly distorted.

Assume we have a subdivision connectivity mesh and want to
apply modifications on a specific scale Vi. The usual way to im-
plement this operation is to run a decomposition scheme several
steps until the desired resolution level is reached. On this level
the mesh Mi is modified and the reconstruction starting with M �i
yields the final result. The major draw-back of this procedure is the
fact that coarse basis functions exist for the coarse-mesh vertices
only and hence all low-frequency modifications have to be aligned
to the grid imposed by the subdivision connectivity. Shifted low-
frequency modifications can be faked by moving a group of vertices
from a finer scale simultaneously but this annihilates the mathemat-
ical elegance of multi-resolution representations.

A standard demo example for multi-resolution modeling is
pulling the nose tip of a human head model. Depending on the
chosen scale either the whole face is affected or just the nose is
elongated. On uniformly refined meshes this operation only works
if a coarse-scale control vertex happens to be located right at the
nose tip. However, for an automatic remeshing algorithm it is very
difficult, if not impossible, to place the coarse-scale vertices at the
semantically relevant features of an object.

In this paper we present an alternative approach to multi-
resolution modeling which avoids these three major difficulties, i.e.
the restriction to subdivision connectivity meshes, the restriction to
basis functions with fixed support and the alignment of potential
coarser-scale modifications.



The first problem is solved by using mesh hierarchies which
emerge from the application of a mesh decimation scheme. In Sec-
tion 2 we derive the necessary equipment to extract multi-resolution
information from arbitrary meshes and geometrically encode detail
information with respect to local frames which adapt to the local
geometry of the coarser approximation of the object.

To overcome the problems arising from the fixed support and
aligned distribution of subdivision basis functions, we drop the
structural concept of considering a surface in space to be a linear
combination of scalar-valued basis functions. On each level of de-
tail, the lower-frequency components of the geometric shape are
simply characterized by energy minimization (fairing). In Section 3
we overview the discrete fairing technique [19, 38] and show how a
combination with the non-uniform mesh hierarchy leads to highly
efficient mesh optimization algorithms. Due to the local smoothing
properties of the fairing operators, we are able to define a geomet-
ric threshold for the wavelength up to which a low-pass filter should
remove noise.

With an efficient hierarchical mesh smoothing scheme available,
we propose a flexible mesh modification paradigm in Section 4.
The basic idea is to let the designer freely define the region of in-
fluence and the characteristics of the modification which both can
be adapted to the surface geometry instead of being determined by
the connectivity. The selected region defines the ”frequency” of the
modification since it provides the boundary conditions for a con-
strained energy minimization. Nevertheless the detail information
within the selected region is preserved and does change according
to the global modification. Exploiting the efficient schemes from
Section 3 leads to interactive response times for moderately com-
plex models.

Throughout the paper, we consider a modeling scenario where
a triangle mesh M with arbitrary connectivity is given (no from-
scratch design). All modifications just alter the position of the ver-
tices but not their adjacency. In particular, we do not consider ad
infinitum subdivision to establish infinitesimal smoothness. The
given mesh M � Mk represents per definition the finest level of
detail.

2 Multi-resolution representations

Most schemes for the multi-resolution representation and modifica-
tion of triangle meshes emerge from generalizing harmonic analysis
techniques like the wavelet transform [1, 23, 30, 33]. Since the fun-
damentals have been derived in the scalar-valued functional setting
IRd � IR, difficulties emerge from the fact that manifolds in space
are in general not topologically equivalent to simply connected re-
gions in IRd .

The philosophy behind multi-resolution modeling on surfaces
is hence to mimic the algorithmic structure of the related func-
tional transforms and preserve some of the important properties
like locality, smoothness, stability or polynomial precision which
have related meaning in both settings [9, 12, 40]. Accordingly, the
nested sequence of spaces underlying the decomposition into dis-
joint frequency bands is thought of being generated bottom-up from
a coarse base mesh up to finer and finer resolutions. This implies
that subdivision connectivity is mandatory on higher levels of de-
tail. Not only the mesh has to consist of large regular regions with
isolated extra-ordinary vertices in between. Additionally, we have
to make sure that the topological distance between the singulari-
ties is the same for every pair of neighboring singularities and this
topological distance has to be a power of 2.

Such special topological requirements prevent the schemes from
being applicable to arbitrary input meshes. Global remeshing and
resampling is necessary to obtain a proper hierarchy which gives
rise to alias-errors and requires involved computations [7].

Luckily, the restricted topology is not necessary to define dif-
ferent levels of resolution or approximation for a triangle mesh.

In the literature on mesh decimation we find many examples for
hierarchies built on arbitrary meshes [11, 15, 20, 24, 27, 31, 35].
The key is always to build the hierarchy top-down by eliminating
vertices from the current mesh (incremental reduction, progressive
meshes). Running a mesh decimation algorithm, we can stop, e.g.,
every time a certain percentage of the vertices is removed. The in-
termediate meshes can be used as a level-of-detail representation
[15, 23].

In both cases, i.e., the bottom-up or the top-down generation
of nested (vertex-) grids, the multi-resolution concept is rigidly at-
tached to topological entities. This makes sense if hierarchies are
merely used to reduce the complexity of the representation. In the
context of multi-resolution modeling, however, we want the hierar-
chy not necessarily to rate meshes according to their coarseness but
rather according to their smoothness (cf. Fig 1).

We will use multi-resolution hierarchies for two purposes. First
we want to derive highly efficient algorithms for mesh optimiza-
tion. In Section 3 we will see that topologically reduced meshes are
the key to significantly increase the performance (levels of coarse-
ness). On the other hand, we want to avoid any restrictions that are
imposed by topological peculiarities. In particular, when interac-
tively modifying a triangle mesh, we do not want any alignment.
The support of a modification should have no influence on where
this modification can be applied (levels of smoothness).

To describe the different set-ups for multi-resolution repre-
sentation uniformly, we define a generic decomposition scheme
A � �

AΦ
�
AΨ � T (analysis) as a general procedure that transforms a

given mesh Mi into a coarser/smoother one Mi � 1
� AΦMi plus de-

tail coefficients Di � 1
� AΨMi. In the standard wavelet setting the

cardinalities satisfy #Di � 1 � #Mi � 1
� #Mi since decomposition is

a proper basis transform.
If a (bi-orthogonal) wavelet basis is not known, we have to

store more detail information (#Di � 1 � #Mi � 1 � #Mi) since the
reconstruction operator A � 1 might be computationally expensive
or not even uniquely defined. Well-known examples for this kind
of decomposition with extra detail coefficients are the Laplacian-
pyramid type of representation in [40] and the progressive mesh
representation [15].

When AΦ is merely a smoothing operator which does not change
the topological mesh structure of Mi we have AΨ

� Id � AΦ and
#Di � 1

� #Mi � 1
� #Mi.

2.1 Local Frames

In a multi-resolution representation of a geometric object M � Mk,
the detail coefficients Di � 1 describe the difference between two ap-
proximations Mi � 1 and Mi having different levels of detail. For
parametric surfaces, the detail coefficients, i.e., the spatial location
of the vertices in Mi have to be encoded relative to the local ge-
ometry of the coarser approximation Mi � 1. This is necessary since
modifications on the coarser level should have an intuitive effect on
the geometric features from finer scales.

First proposed by [10] it has become standard to derive local
coordinate frames from the partial derivative information of the
coarse representation Mi � 1. Since we do not assume the existence
of any global structure or auxiliary information in the sequence of
meshes Mi, we have to rely on intrinsic geometric properties of
the triangles themselves. Depending on the intended application
we assign the local frames to the triangles or the vertices of Mi � 1.
A detail vector is then defined by three coordinate values

	
u � v � n �

plus an index i identifying the affine frame Fi
� 	

pi � Ui � Vi � Ni � with
respect to which the coordinates are given.

2.1.1 Vertex-based frames

We can use any heuristic to estimate the normal vector Ni at a vertex
pi in a polygonal mesh, e.g., taking the average of the adjacent tri-
angle normals. The vector Ui

� E � �
ET Ni � Ni is obtained by pro-



Figure 1: The well-known Stanford-Bunny. Although the original mesh does not have subdivision connectivity, mesh decimation algorithms
easily generate a hierarchy of topologically simplified meshes. On the other hand, multi-resolution modeling also requires hierarchies of
differently smooth approximations. Notice that the meshes in the lower row have identical connectivity.

jecting any adjacent edge E into the tangent plane and Vi : � Ni
� Ui.

The data structure for storing the mesh Mi � 1 has to make sure that
E is uniquely defined, e.g. as the first member in a list of neighbors.

2.1.2 Face-based frames

It is tempting to simply use the local frame which is given by two
triangle edges and their cross product. However, this will not lead to
convincing detail reconstruction after modifying the coarser level.
The reason for this is that the local frames would be rigidly attached
to one coarse triangle. In fact, tracing the dependency over several
levels of detail shows that the original mesh is implicitly partitioned
into sub-meshes being assigned to the same coarse triangle T . Ap-
plying a transformation to T implies the same transformation for all
vertices being defined relative to T . This obviously leads to artifacts
between neighboring sub-meshes in the fine mesh.

A better choice is to use local low order polynomial interpolants
or approximants that depend on more than one single triangle. Let
p0, p1, and p2 be the vertices of a triangle T � Mi � 1 and p3, p4,
and p5 be the opposite vertices of the triangles adjacent to T (cf.
Fig. 2). To construct a quadratic polynomial

F
�
u � v � � f � u fu � v fv �

u2

2
fuu � uv fuv �

v2

2
fvv

approximating the pi we have to define a parameterization first.
Note that the particular choice of this parameterization controls the
quality of the approximant. Since we want to take the geometric
constellation of the pi into account, we define a parameterization
by projecting the vertices into the supporting plane of T .

Exploiting the invariance of the polynomial interpolant with re-
spect to affine re-parameterizations, we can require F

�
0 � 0 � : � p0,

F
�
1 � 0 � : � p1, and F

�
0 � 1 � : � p2 which implies

f � p0

fu
� p1

� p0
� 1

2 fuu

fv
� p2

� p0
� 1

2 fvv � (1)

Let the vertices p3, p4, and p5 be projected to
�
u3 � v3 � , � u4 � v4 � , and�

u5 � v5 � according to the frame
	
p0 � p1 � p2 � . To additionally stabilize

the interpolation scheme, we introduce a tension parameter τ � 	
0 � 1 �

which trades approximation error at p3, p4, and p5 for minimizing
the bending energy f2

uu � 2 f2
uv � f2

vv. Using (1) we obtain���������
1
2 u3

�
u3

� 1 � u3 v3
1
2 v3

�
v3

� 1 �
1
2 u4

�
u4

� 1 � u4 v4
1
2 v4

�
v4

� 1 �
1
2 u5

�
u5

� 1 � u5 v5
1
2 v5

�
v5

� 1 �
τ 0 0
0 2τ 0
0 0 τ

���������	 

fuu
fuv
fvv � �

������
�
p3

� p0 � � u3
�
p0

� p1 � � v3
�
p0

� p2 ��
p4

� p0 � � u4
�
p0

� p1 � � v4
�
p0

� p2 ��
p5

� p0 � � u5
�
p0

� p1 � � v5
�
p0

� p2 �
0
0
0

� ����	
which has to be solved in a least squares sense.

To compute the detail coefficients
	
û � v̂ � h � for a point q with re-

spect to T , we start from the center
�
u � v � � � 1

3 � 1
3 � and simple New-

ton iteration steps
�
u � v �
� �

u � v � �
���

u �
�

v � with d � q � F
�
u � v �

and �
FT

u Fu FT
u Fv

FT
u Fv FT

v Fv � � �
u�
v � �

�
FT

u d
FT

u d �
quickly converge to the point F

�
û � v̂ � with the detail vector d per-

pendicular to the surface F
�
u � v � . The third coefficient is then

h � sign
�
dT �

Fu
� Fv � ��� d � .

Although the parameter values
�
û � v̂ � can lie outside the unit tri-

angle (which occasionally occurs for extremely distorted configu-
rations) the detail coefficient

	
û � v̂ � h � is still well-defined and recon-

struction works. Notice that the scheme might produce counter-
intuitive results if the maximum dihedral angle between T and one
of its neighbors becomes larger than π

2 . In this case the parameter-



ization for p3, p4, and p5 could be derived by rotation about T ’s
edges instead of projection.

P0

P2

P1

P3

P4

P5

Q

Figure 2: Vertex labeling for the construction of a local frame.

Obviously, the detail coefficient
	
û � v̂ � h � is not coded with respect

to a local frame in the narrow sense. However, it has a similar se-
mantics. Recovering the vertex position q � requires to construct the
approximating polynomial F � � u � v � for the possibly modified ver-
tices p �i, evaluate at

�
û � v̂ � and move in normal direction by h. The

distance h is a measure for the ”size” of the detail.
In our current implementation on a SGI R10000/195 MHz work-

station the analysis q � 	
û � v̂ � h � takes about 20µS while the recon-

struction
	
û � v̂ � h � � q takes approximately 8µS. Since a progressive

mesh representation introduces two triangles per vertex split, this
means that for the reconstruction of a mesh with 105 triangles, the
computational overhead due to the local frame representation is less
than half a second.

2.2 Decomposition and reconstruction

To complete our equipment for the multi-resolution set-up we have
to define the decomposition and reconstruction operations which
separate the high-frequency detail from the low-frequency shape
and eventually recombine the two to recover the original mesh.
We apply different strategies depending on whether decomposition
generates a coarser approximation of the original geometry or a
smoother approximation.

In either case the decomposition operator A is applied to the orig-
inal mesh Mi and the details Di � 1 are coded in local frame coordi-
nates with respect to Mi � 1. Since the reconstruction is an extrapo-
lation process, it is numerically unstable. To stabilize the operation
we have to make the details as small as possible, i.e., when encod-
ing the spatial position of a point q � IR3 we pick that local frame
on Mi � 1 which is closest to q.

Usually the computational complexity of generating the detail
coefficients is higher than the complexity of the evaluation during
reconstruction. This is an important feature since for interactive
modeling the (dynamic) reconstruction has to be done in real-time
while the requirements for the (static) decomposition are not as de-
manding.

2.2.1 Mesh decimation based decomposition

When performing an incremental mesh decimation algorithm, each
reduction step removes one vertex and retriangulates the remain-
ing hole [15, 31]. We use a simplified version of the algorithm
described in [20] that controls the reduction process in order to op-
timize the fairness of the coarse mesh while keeping the global ap-
proximation error below a prescribed tolerance.

The basic topological operation is the half edge collapse which
shifts one vertex p into an adjacent vertex q and removes the two
degenerate triangles. In [20] a fast algorithm is presented to deter-
mine that triangle T in the neighborhood of the collapse which lies

closest to the removed vertex p. The position of p is then coded
with respect to the local frame associated with this triangle.

The inverse operation of an edge collapse is the vertex split [15].
Since during reconstruction the vertices are inserted in the reverse
order of their removal, it is guaranteed that, when p is inserted, the
topological neighborhood looks the same as when it was deleted
and hence the local frame to transform the detail coefficient for p
back into world coordinates is well-defined.

During the iterative decimation, each intermediate mesh could
be considered as one individual level of detail approximation. How-
ever, if we want to define disjoint frequency bands, it is reasonable
to consider a whole sub-sequence of edge collapses as one atomic
transformation from one level Mi to Mi � 1.

There are several criteria to determine which levels mark the
boundaries between successive frequency bands. One possibility
is to simply define Mi to be the coarsest mesh that still keeps a
maximum tolerance of less than some εi to the original data. Al-
ternatively we can require the number of vertices in Mi � 1 to be a
fixed percentage of the number of vertices in Mi. This simulates
the geometric decrease of complexity known from classical multi-
resolution schemes. We can also let the human user decide when
a significant level of detail is reached by allowing her to browse
through the sequence of incrementally reduced meshes.

In order to achieve optimal performance with the multi-level
smoothing algorithm described in the next section, we decided in
our implementation to distribute the collapses evenly over the mesh:
When a collapse p � q is performed, all vertices adjacent to q are
locked for further collapsing (independent set of collapses). If no
more collapses are possible, the current mesh defines the next level
of detail and all vertices are un-locked. One pass of this reduction
scheme removes about 25% of the vertices in average.

2.2.2 Mesh smoothing based decomposition

For multi-resolution modeling we have to separate high frequency
features from the global shape in order to modify both individu-
ally. Reducing the mesh complexity cannot help in this case since
coarser meshes do no longer have enough degrees of freedom to
be smooth, i.e., to have small angles between adjacent triangles.
Hence, the decomposition operator AΦ becomes a mere smooth-
ing operator that reduces the discrete bending energy in the mesh
without changing the topology (cf. Section 3).

A natural way to define the detail coefficients would be to store
the difference vectors between the original vertex position q and
the shifted position q � with respect to the local frame defined at
q � . However, in view of numerical stability this choice is not op-
timal. Depending on the special type of smoothing operator AΦ
the vertices can move ”within” the surface such that another vertex
p ��� Mi � 1

� AΦMi could lie closer to q than q � (cf. Fig. 3).

Figure 3: Although the bending energy minimizing smoothing op-
erator AΦ is applied to a plane triangulation, the vertices are moved
within the plane since linear operators always do the fairing with re-
spect to a specific parameterization (cf. Section 3).

To stabilize the reconstruction, i.e., to minimize the length of the
detail vectors, we apply a simple local search procedure to find the



nearest vertex p � � Mi � 1 to q and express the detail vector with
respect to the local frame at p � or one of its adjacent triangles. This
searching step does not noticeably increase the computation time
(which is usually dominated by the smoothing operation AΦ) but
leads to much shorter detail vectors (cf. Fig 4).

Figure 4: The shortest detail vectors are obtained by representing
the detail coefficients with respect to the nearest local frame (left)
instead of attaching the detail vectors to the topologically corre-
sponding original vertices.

3 Discrete fairing

From CAGD it is well-known that constrained energy minimization
is a very powerful technique to generate high quality surfaces [3, 13,
25, 28, 37]. For efficiency, one usually defines a simple quadratic
energy functional E

�
f � and searches among the set of functions

satisfying prescribed interpolation constraints for that function f
which minimizes E .

Transferring the continuous concept of energy minimization to
the discrete setting of triangle mesh optimization leads to the dis-
crete fairing approach [19, 38]. Local polynomial interpolants are
used to estimate derivative information at each vertex by divided
difference operators. Hence, the differential equation characteriz-
ing the functions with minimum energy is discretized into a linear
system for the vertex positions.

Since this system is global and sparse, we apply iterative solving
algorithms like the Gauß-Seidel-scheme. For such algorithms one
iteration step merely consists in the application of a simple local
averaging operator. This makes discrete fairing an easy accessible
technique for mesh optimization.

3.1 The umbrella-algorithm

The most prominent energy functionals that are used in the theory
and practice of surface design are the membrane energy

EM
�
f � : �

�
f 2
u � f 2

v (2)

which prefers functions with smaller surface area and the thin plate
energy

ET P
�
f � : �

�
f 2
uu � 2 f 2

uv � f 2
vv (3)

which punishes strong bending. The variational calculus leads to
simple characterizations of the corresponding minimum energy sur-
faces �

f � fuu � fvv
� 0 (4)

or � 2 f � fuuuu � 2 fuuvv � fvvvv
� 0 (5)

respectively. Obviously, low degree polynomials satisfy both differ-
ential equations and hence appropriate (Dirichlet-) boundary condi-
tions have to be imposed which make the semi-definite functionals
EM and ETP positive-definite.

The discrete fairing approach discretizes either the energy func-
tionals (2–3) [19, 38] or the corresponding Euler-Lagrange equa-
tions (4–5) [17, 36] by replacing the differential operators with di-
vided difference operators. To construct these operators, we have to
choose an appropriate parameterization in the vicinity of each ver-
tex. In [38] for example a discrete analogon to the exponential map
is chosen. In [17] the umbrella-algorithm is derived by choosing a
symmetric parameterization

�
ui � vi � : ��� cos

�
2π

i
n
� � sin

�
2π

i
n
��� � i � 0 � � � � � n � 1 (6)

with n being the valence of the center vertex p (cf. Fig 5). This pa-
rameterization does not adapt to the local geometric constellation
but it simplifies the construction of the corresponding difference
operators which are otherwise obtained by solving a Vandermonde
system for local polynomial interpolation. With the special param-
eterization (6) the discrete analogon of the Laplacian

�
f turns out

to be the umbrella-operator

U
�
p � � 1

n

n � 1

∑
i � 0

pi
� p

with pi being the direct neighbors of p (cf. Fig. 5). The umbrella-
operator can be applied recursively leading to

U2 � p � � 1
n

n � 1

∑
i � 0

U
�
pi � � U

�
p �

as a discretization of
� 2 f .

...

P

P

P
P

P

2

1

0

n−1

Figure 5: To compute the discrete Laplacian, we need the 1-
neighborhood of a vertex p ( � umbrella-operator).

The boundary conditions are imposed to the discrete problem
by freezing certain vertices. When minimizing the discrete version
of EM we hold a closed boundary polygon fixed and compute the
membrane that is spanned in between. For the minimization of ETP
we need two rings of boundary vertices, i.e., we keep a closed strip
of triangles fixed. This imposes a (discrete) C1 boundary condition
to the optimization problem (cf. Fig 6). All internal vertices can
be moved freely to minimize the global energy. The properly cho-
sen boundary conditions imply positive-definiteness of the energy
functional and guarantee the convergence of the iterative solving
algorithm [29].

The characteristic (linear) system for the corresponding uncon-
strained minimization problem has rows U

�
pi � � 0 or U2 � pi � � 0

respectively for the free vertices pi. An iterative solving scheme
approaches the optimal solution by solving each row of the system
separately and cycling through the list of free vertices until a stable
solution is reached. In case of the membrane energy EM this leads
to the local update rule

pi � pi � U
�
pi � (7)



and for the thin plate energy ET P , we obtain

pi � pi
� 1

ν
U2 � pi � (8)

with the ”diagonal element”

ν � 1 �
1
ni

∑
j

1
ni � j

where ni and ni � j are the valences of the center vertex pi and its jth
neighbor respectively.

Figure 6: A closed polygon or a closed triangle strip provide C0

or C1 boundary conditions for the discrete fairing. On the left the
triangle mesh minimizes EM on the right it minimizes ET P.

Although the rule (8) can be implemented recursively, the perfor-
mance is optimized if we use a two step process where all umbrella
vectors U

�
pi � are computed in a first pass and U2 � pi � in the sec-

ond. This avoids double computation but it also forces us to use in
fact a plain Jacobi-solver since no intermediate updates from neigh-
boring vertices can be used. However the

�
n � 2 � : 2 speed-up for

a vertex with valence n amortizes the slower convergence of Jacobi
compared to Gauß-Seidel.

3.2 Connection to Taubin’s signal processing ap-
proach

The local update operator (7) in the iterative solving scheme for
constrained energy minimization is exactly the Laplace smoothing
operator proposed by Taubin in [34] where he derived it (also in the
context of mesh smoothing) from a filter formalism based on gener-
alized Fourier analysis for arbitrary polygonal meshes. In his paper,
Taubin starts with a matrix version of the scaled update rule (7)

	
p �i � : � �

I � λU � 	 pi �
where λ is a damping factor and formally rewrites it by using a
transfer function notation

f
�
k � : � 1 � λk

with respect to the eigenbasis of the (negative) Laplace operator.
Since no proper boundary conditions are imposed, the continued
filtering by f

�
k � leads to severe shrinking and hence he proposes

combined filters

f
�
k � : � �

1 � λk � � 1 � µk � (9)

where λ and µ are set in order to minimize the shrinking. A feasible
heuristic is to choose a pass-band frequency

kPB
� 1

λ �
1
µ

� 	
0 � 01 � � � 0 � 1 �

and set λ and µ while observing the stability of the filter.

Obviously, the update rule for the difference equation U
�
pi � � 0

which characterizes meshes with minimum membrane energy cor-
responds to a special low-pass filter with transfer function fU

�
k � ��

1 � k � . For the minimization of the total curvature, characterized
by U2 � pi � � 0, the iteration rule (8) can be re-written in transfer
function notation as

fU2
�
k � � �

1 � 1
ν

k2 � � �
1 �

1
�

ν
k � � 1 � 1

�
ν

k �

which corresponds to a combined Laplace filter of the form (9)
with pass-band frequency kPB

� 0. Although this is not optimal
for reducing the shrinking effect, we observe that the transfer func-
tion happens to have a vanishing derivative at k � 0. From sig-
nal processing theory it is known that this characterizes maximal
smoothness [26], i.e., among the two step Laplace filters, the U2-
filter achieves optimal smoothing properties. To stabilize the filter
we might want to introduce a damping factor 0 � σ � 1

2 ν into the
update-rule

pi � pi
� σ

ν
U2 � pi �

3.3 Multi-level smoothing

A well-known negative result from numerical analysis is that
straight forward iterative solvers like the Gauß-Seidel scheme are
not appropriate for large sparse problems [32]. More sophisticated
solvers exploit knowledge about the structure of the problem. The
important class of multi-grid solvers achieve linear running times
in the number of degrees of freedom by solving the same problem
on grids with different step sizes and combining the approximate
solutions [14].

For difference ( � discrete differential) equations of elliptic type
the Gauß-Seidel iteration matrices have a special eigenstructure that
causes high frequencies in the error to be attenuated very quickly
while for lower frequencies no practically useful rate of conver-
gence can be observed. Multi-level schemes hence solve a given
problem on a very coarse scale first. This solution is used to predict
initial values for a solution of the same problem on the next refine-
ment level. If these predicted values have only small deviations
from the true solution in low-frequency sub-spaces, then Gauß-
Seidel performs well in reducing the high-frequency error. The
alternating refinement and smoothing leads to highly efficient varia-
tional subdivision schemes [19] which generate fair high-resolution
meshes with a rate of several thousand triangles per second (linear
complexity!).

As we saw in Section 2, the bottom-up way to build multi-
resolution hierarchies is just one of two possibilities. To get rid
of the restriction that the uniform multi-level approach to fairing
cannot be applied to arbitrary meshes, we generate the hierarchy
top-down by incremental mesh decimation.

A complete V-cycle multi-grid solver recursively applies opera-
tors Φi

� ΨPΦi � 1 RΨ where the first (right) Ψ is a generic (pre-
)smoothing operator — a Gauß-Seidel scheme in our case. R is a
restriction operator to go one level coarser. This is where the mesh
decimation comes in. On the coarser level, the same scheme is ap-
plied recursively, Φi � 1, until on the coarsest level the number of
degrees of freedom is small enough to solve the system directly (or
any other stopping criterion is met). On the way back-up, the pro-
longation operator P inserts the previously removed vertices to go
one level finer again. P can be considered as a non-regular subdi-
vision operator which has to predict the positions of the vertices in
the next level’s solution. The re-subdivided mesh is an approxima-
tive solution with mostly high frequency error. (Post-)smoothing
by some more iterations Ψ removes the noise and yields the final
solution.

Fig 7 shows the effect of multi-level smoothing. On the left you
see the original bunny with about 70K triangles. In the center left,



Figure 7: Four versions of the Stanford bunny. On the left the original data set. In the center left the same object after 200 iterations of the
non-shrinking Laplace-filter. On the center right and far right the original data set after applying the multi-level umbrella filter with three or
six levels respectively.

we applied the Laplace-filter proposed in [34] with λ � 0 � 6307 and
µ � � 0 � 6732. The iterative application of the local smoothing op-
erator

pi � pi �
	
λ

�
µ � U

�
pi � (10)

removes the highest frequency noise after a few iterations but does
not have enough impact to flatten out the fur even after several hun-
dred iterations. On the right you see the meshes after applying a
multi-level smoothing with the following schedule: Hierarchy lev-
els are generated by incremental mesh decimation where each level
has about 50% of the next finer level’s vertices. The pre-smoothing
rule (8) is applied twice on every level before going downwards
and five times after coming back up. On the center right model
we computed a three level V-cycle and on the far right model a
six level V-cycle. Notice that the computation time of the multi-
level filters (excluding restriction and prolongation) corresponds to
about

�
2 � 5 � � 1 � 0 � 5 � 0 � 52 � � � � � � 14 double-steps of the one-

level Laplace-Filter (10).

3.4 Geometric filtering

The bunny example in Fig. 7 is well suited for demonstrating the
effect of multi-level smoothing but we did not impose any bound-
ary conditions and thus we applied the smoothing as a mere filter
and not as a solving scheme for a well-posed optimization prob-
lem. This is the reason why we could use the number of levels to
control the impact of the smoothing scheme on the final result. For
constrained optimization, it does not make any sense to stop the
recursion after a fixed number of decimation levels: we always re-
duce the mesh down to a small fixed number of triangles. Properly
chosen boundary condition will ensure the convergence to the true
solution and prevent the mesh from shrinking.

Nevertheless, we can exploit the effect observed in Fig. 7 to de-
fine more sophisticated geometric low-pass filters. Since the sup-
port of the Laplace-filters is controlled by the neighborhood relation
in the underlying mesh, the smoothing characteristics are defined
relative to a ”topological wavelength”. Noise which affects every
other vertex is removed very quickly independent from the length
of the edges while global distortions affecting a larger sub-mesh are
hardly reduced. For geometric filters however we would like to set
the pass-band frequency in terms of Euclidian distances by postu-
lating that all geometric features being smaller than some threshold
ε are considered as noise and should be removed.

Such filters can be implemented by using an appropriate mesh
reduction scheme that tends to generate intermediate meshes with
strong coherence in the length of the edges. In [20] we propose a
mesh decimation scheme that rates the possible edge collapses ac-
cording to some generic fairness functional. A suitable objective
function for our application is to maximize the roundness of trian-
gles, i.e., the ratio of its inner circle radius to its longest edge. If
the mesh decimation scheme prefers those collapses that improve
the global roundness, the resulting meshes tend to have only little

variance in the lengths of the edges. For the bunny example, we can
keep the standard deviation from the average edge length below one
percent for incremental decimation down to about 5K triangles.

By selecting the lowest level M0 down to which the V-cycle
multi-level filtering iterates, we set the threshold ε � ε

�
M0 � for

detail being removed by the multi-level smoothing scheme. The
thresholding works very well due to the strong local and poor global
convergence of the iterative update rule (8). Fig. 8 shows the base
meshes for the multi-level smoothing during the computation of the
two right bunnies of Fig. 7.

Figure 8: Base meshes where the V-cycle recursion stopped when
generating the right models in Fig. 7. The final meshes do not loose
significant detail (watch the silhouette). Notice how in the left ex-
ample the fur is removed but the bunny’s body preserved while in
the right example the leg and the neck start to disappear.

4 Multi-resolution modeling on triangle
meshes

In this section we describe a flexible and intuitive multi-resolution
mesh modeling metaphor which exploits the techniques presented
in the last two sections. As we discussed in the introduction, our
goal is to get rid of topological restrictions for the mesh but also
to get rid of difficulties emerging from the alignment of the basis
functions in a hierarchical representation and the rigid shape of the
basis function’s support.

From a designer’s point of view, we have to distinguish three se-
mantic levels of detail. These levels are defined relative to a specific
modeling operation since, of course, in a multi-resolution environ-
ment the features that are detail in a (global) modification become
the global shape for a minute adjustment.

� The global shape is that part of the geometry that is the subject
of the current modification. Intuitively, the designer selects a
piece of the global shape and applies a transformation to it.

� The structural detail are features that are too small to be mod-
ified by hand but still represent actual geometry. This detail
should follow the modification applied to the global shape in a



Figure 9: The wooden cat model Mk (178K triangles, left) is in progressive mesh representation. The high resolution is necessary to avoid
alias errors in the displacement texture. The center left model Mi (23K triangles) is extracted by stopping the mesh reduction when a
prescribed complexity is reached. On this level interactive mesh modification is done which yields the model M �i (center right). The final
result M �k (right) is obtained by running the reconstruction on the modified mesh.

geometrically intuitive manner. The preservation of structural
detail during interactive modeling is crucial for plausible vi-
sual feed-back (cf. the eyes and ears of the wooden cat model
in Fig. 9).

� The textural detail does not really describe geometric shape.
It is necessary to let the surface appear more realistic and is
often represented by displacement maps [21]. In high qual-
ity mesh models it is the source for the explosive increase in
complexity (cf. the wood texture in Fig. 9).

Having identified these three semantic levels of detail, we suggest a
mesh modeling environment which provides flexible mesh modifi-
cation functionality and allows the user to adapt the mesh complex-
ity to the available hardware resources.

In an off-line preprocessing step, an incremental mesh decima-
tion algorithm is applied and the detail coefficients are stored with
respect to local frames as explained in Section 2.2.1. This trans-
forms the highly complex input model into a progressive-mesh type
multi-resolution representation without any remeshing or resam-
pling. The representation allows the user to choose an appropriate
number of triangles for generating a mesh model that is fine enough
to contain at least all the structural detail but which is also coarse
enough to be modified in realtime. This pre-process removes the
textural detail prior to the actual interactive mesh modification.

Suppose the original mesh model Mk is transformed into the pro-
gressive mesh sequence

	
Mk � � � � � M0 � with M0 being the coarsest

base mesh. If the user picks the mesh Mi and applies modifications
then this invalidates the subsequence

	
Mi � 1 � � � � � M0 � . If the work-

ing resolution is to be reduced afterwards to M j ( j � i) then the in-
termediate meshes have to be recomputed by online mesh decima-
tion. The textural detail encoded in the subsequence

	
Mk � � � � � Mi 
 1 �

however remains unchanged since it is stored with respect to local
frames such that reconstruction starting from a modified mesh M �i
leads to the intended result M �k . Fig. 9 shows an example of this
procedure.

4.1 Interactive mesh modeling by discrete fairing

The most important feature in the proposed multi-resolution mesh
modeling environment is the modification functionality itself (mod-
eling metaphor) which hides the mesh connectivity to the designer.

The designer starts by marking an arbitrary region on the mesh
Mi. In fact, she picks a sequence of surface points (not necessarily
vertices) on the triangle mesh and these points are connected either
by geodesics or by projected lines. The strip of triangles S which
are intersected by the geodesic (projected) boundary polygon sep-
arates an interior region M � and an exterior region Mi � �

M ��� S � .

The interior region M � is to be affected by the following modifica-
tion.

A second polygon (not necessarily closed) is marked within the
first one to define the handle. The semantics of this arbitrarily
shaped handle is quite similar to the handle metaphor in [37]: when
the designer moves or scales the virtual tool, the same geometric
transformation is applied to the rigid handle and the surrounding
mesh M � follows according to a constrained energy minimization
principle.

The freedom to define the boundary strip S and the handle geom-
etry allows the designer to build ”custom tailored” basis functions
for the intended modification. Particularly interesting is the defini-
tion of a closed handle polygon which allows to control the char-
acteristics of a bell-shaped dent: For the same region M � , a tiny
ring-shaped handle in the middle causes a rather sharp peak while a
bigger ring causes a wider bubble (cf. Fig 10). Notice that the mesh
vertices in the interior of the handle polygon move according to the
energy minimization.

Figure 10: Controlling the characteristics of the modification by the
size of a closed handle polygon.

Since we are working on triangle meshes, the energy minimiza-
tion on M � is done by discrete fairing techniques (cf. Section 3).
The boundary triangles S provide the correct C1 boundary condi-
tions for minimizing the thin plate energy functional (3).

The handle imposes additional interpolatory constraints on the
location only — derivatives should not be affect by the handle.
Hence, we cannot have triangles being part of the handle geome-
try. We implemented the handle constraint in the following way:
like the boundary polygon, the handle polygon defines a strip of
triangles being intersected by it. Whether the handle polygon is
open or closed, we find two polygons of mesh edges on either side
of that strip. We take any one of the two polygons and collect ev-
ery other mesh vertex in a set of handle vertices. Keeping these
handle vertices fixed during the mesh optimization is the additional
interpolatory constraint.



The reason for freezing only every other handle vertex is that
three fixed vertices directly connected by two edges build a rigid
constellation leaving no freedom to adjust the angle between them.
During discrete optimization this would be the source of undesired
artifacts in the smooth mesh.

With the boundary conditions properly set we perform the thin
plate energy minimization by using the umbrella algorithm de-
scribed in Section 3.1. To obtain interactive response times, we
exploit the multi-level technique: a mesh decimation algorithm is
applied to the mesh M � � S to build up a hierarchy. Then starting
from the coarsest level, we apply the U2 smoothing filter alternat-
ing with mesh refinement. This process is fast enough to obtain sev-
eral frames per second when modeling with meshes of #M � � 5K
triangles (SGI R10000/195MHz). Typically, we set the ratio of the
complexities between successive meshes in the hierarchy to 1 : 2 or
1 : 4 and iterate the smoothing filter 3 to 5 times on each level.

During the interactive mesh smoothing we do not compute the
full V-cycle algorithm of Sect. 3.3. In fact, we omit the pre-
smoothing and always start from the coarsest level. When a ver-
tex is inserted during a mesh refinement step we place it initially
at its neighbor’s center of gravity unless the vertex is a handle ver-
tex. Handle vertices are placed at the location prescribed by the
designer’s interaction (handle interpolation constraint). Hence the
mesh is computed from scratch in every iteration instead of just up-
dating the last position. This is very important for the modeling
dialog since only the current position, orientation and scale of the
handle determines the smoothed mesh and not the whole history of
movements.

For the fast convergence of the optimization procedure it turns
out to be important that the interpolation constraints imposed by the
handle vertices show up already on rather coarse levels in the mesh
hierarchy. Otherwise their impact cannot propagate far enough
through the mesh such that cusps remain in the smoothed mesh
which can only be removed by an excessive number of smoothing
iterations. This additional requirement can easily be included into
the mesh reduction scheme by lowering the priority ranking of col-
lapses involving handle vertices.

4.2 Detail preservation

If the modified mesh M �� is merely defined by constrained energy
minimization, we obviously loose all the detail of the originally
selected submesh M � . Since only the boundary and the handle ver-
tices put constraints on the mesh, all other geometric features are
smoothed out.

To preserve the detail, we use the multi-resolution representa-
tion explained in Section 2.2.2. After the boundary S and the han-
dle polygon are defined but before the handle is moved by the de-
signer, we apply the multi-level smoothing scheme once. Although

the original mesh M � and the smoothed mesh
�

M � are topologically
equivalent, they do have different levels of (geometric) resolution
and hence constitute a two-scale decomposition based on varying
levels of smoothness. We encode the difference D � between the
two meshes, i.e., the detail coefficients for the vertices pi � M � by
storing the displacement vectors with respect to the local frame as-

sociated with the nearest triangle in
�

M � .
When the designer moves the handle, the bottom-up mesh

smoothing is performed to re-adjust the mesh to the new interpo-

lation conditions. On the resulting smooth mesh
�

M �� , the detail D �

is added and the final mesh M �� is rendered on the screen. Due to
the geometric coding of the detail information, this leads to intuitive
changes in the surface shape (cf. Figs. 11, 12). The ”frequency” of
the modification is determined by the size of the area, i.e., by the
boundary conditions and the fact that the supporting mesh is opti-
mal with respect to the thin-plate functional.

5 Conclusions and future work

We presented a new approach to multi-resolution mesh represen-
tation and modeling which does not require the underlying trian-
gle mesh to have subdivision connectivity. By adapting multi-level
techniques known from numerical analysis to the non-regular set-
ting of arbitrary mesh hierarchies, we are able to approximately
solve constrained mesh optimization in realtime. Combining the
two results allows us to present a flexible metaphor for interactive
mesh modeling where the shape of the modification is controlled
by energy minimization while the geometric detail is preserved and
updated according to the change of the global shape.

Our current implementation of an experimental mesh model-
ing tool already provides sufficient functionality to apply sophis-
ticated realtime modifications to arbitrary input meshes with up to
100K triangles. However, all changes do affect the geometry of the
meshes only. So far we did not consider topological modifications
of triangle meshes. In the future, when modifying a given mesh,
we would like new vertices to be inserted where the mesh is locally
stretched too much and, on the other hand, we would like vertices
to be removed when strong global modification causes local self-
intersection of the reconstructed detail.
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Abstract

Theuseof polygonalmeshesfor therepresentationof highly com-
plex geometricobjectshasbecomethe de factostandardin most
computergraphicsapplications.Especiallytrianglemeshesarepre-
ferreddueto theiralgorithmicsimplicity, numericalrobustness,and
efficient display. The possibility to decomposea given triangle
meshinto a hierarchyof differently detailedapproximationsen-
ablessophisticatedmodelingoperationslikethemodificationof the
globalshapeunderpreservationof thedetail features.

So far, multiresolutionhierarchieshave beenproposedmainly
for mesheswith subdivision connectivity. This typeof connectiv-
ity resultsfrom iteratively applyinga uniform split operatorto an
initially givencoarsebasemesh.In this paperwe demonstratehow
a similar hierarchicalstructurecanbederivedfor arbitrarymeshes
with norestrictionsontheconnectivity. Sincesmooth(subdivision)
basisfunctionsareno longeravailablein this generalizedcontext,
weuseconstrainedenergy minimizationto associatesmoothgeom-
etry with coarse levels of detail. As the energy minimizationre-
quiresoneto solve aglobalsparsesystem,we investigatetheeffect
of variousparametersandboundaryconditionsin orderto optimize
theperformanceof iterative solvingalgorithms.

Another crucial ingredientfor an effective multiresolutionde-
compositionof unstructuredmeshesis the flexible representation
of detail information.We discussseveralapproaches.

1 Introduction

Subdivision techniquesprovide very efficient and flexible algo-
rithms for the generationof free form surfacegeometry[2, 5, 6,
18, 25, 39]. Startingwith an arbitrarycontrol mesh

�
0 we can

apply thesubdivision rulesto computefiner andfiner meshes
�

m
with control verticespm

i becomingmoreandmoredenseuntil the
desiredapproximationtolerancerequiredfor a givenapplicationis
reached.Theresult is a smoothsurfacehaving thesametopology
astheinitial controlmesh.

The distinct subdivision levels
�

m give rise to powerful mul-
tiresolutionsemanticssincewe canconsidera subdivision scheme
asthelow passreconstructionoperatorin thefilter bankalgorithm
for awavelet-typedecompositionof thegeometricshape.Thesub-
division basisfunctionswhich areassociatedwith thecontrol ver-
ticesgeneralizetheconceptof dyadicscalingfunctionsto polyhe-
dral parameterdomains[26, 31, 40].�
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However, subdivision techniquesare genuinelybasedon the
coarse-to-finegenerationof hierarchicalgeometryrepresentations:
a coarsebasemeshwith only few facesis iteratively refinedby
introducinganexponentiallyincreasingnumberof degreesof free-
dom for capturingfiner andfiner detail information. As a conse-
quence,the control meshesmust have so-calledsubdivisioncon-
nectivity which meansthat sub-regions of the refinedmesh

�
m

whichcorrespondto onesinglefaceof theoriginalbasemesh
�

0,
have theconnectivity of regulargrids(cf. Fig. 1).

It turnsout thatthisrestrictionis notsuitablefor severalstandard
applicationscenarios.In practiceoneis oftengivensomeexisting
geometricmodelwhich is to bemodifiedby makinglocalor global
adjustments.Sincesuch triangularmeshesusually do not come
with the ratherspecialsubdivision connectivity, we cannotapply
subdivision techniqueswithoutpreprocessing.

Thispreprocessinghastoperformaglobalremeshingof thedata.
Althoughseveralflexibleandrobustalgorithmshavebeenproposed
for this problem[7, 24, 22] therearestill difficultieswith automat-
ically finding a suitablelayout for thebasemesh.Semi-automatic
approacheslike [23, 24] with constraintssetby the useronly par-
tially solve this problem.Moreover, theremeshingis alwaysa re-
samplingprocessandhenceevenanoptimal remeshingalgorithm
cannotrecover theoriginal shapeexactly. High frequency artifacts
dueto aliaserrorsareratherlikely to appear.

The rigidity of subdivision connectivity meshesemergesfrom
the fact that the classificationof the detail coefficientsinto prede-
finedrefinementlevelsisdonetopologically. Theactualsizeor geo-
metricfrequencyassociatedwith a detailcoefficient hencestrongly
dependson thesizeof thecorrespondingbasetrianglein theunre-
finedcontrolmesh.As it is usuallynotpossibleto haveall triangles
in thebasemeshof unit size,detailfeaturesonthesamerefinement
level andtheir correspondingsupportcanvary by oneor moreor-
dersof magnitude.Avoiding thisproblemby usingadaptive refine-
mentstrategiesis notappropriatein someapplications.

Anotherproblemwhich is inherentto the multiresolutionrep-
resentationof freeform geometrybasedon subdivision surfacesis
thefixedsupportof themodifications.If controlverticesareusedas
handlesto modify thesurfacegeometryon a certainlevel of detail
thentheregion of themeshwhich actuallychanges,is determined
by thesupportof theassociatedbasisfunction. We couldsimulate
moreflexibility in thedefinition of thesupportby moving several
controlverticesfrom somefinerlevel simultaneouslybut thiswould
diminishtheadvantagesof amultiresolutionrepresentation.

Moreover, thecoarsescalecontrolverticesin a subdivision rep-
resentationarealignedto thecoarsescalegrid. Thismeansthatwe
losespatialresolutionif we modify a surfaceon a low frequency
band.Consequently, wecanapplymodificationsof theglobalshape
only at a very limited numberof locations. In fact, asevery con-
trol vertex c in a subdivision connectivity meshis introducedon a
certainrefinementlevel l � c � the supportof the modificationwhen
moving c is boundedby thesizeof thebasisfunctionsonthatlevel.

For example,if wemoveacontrolvertex c0 which topologically
correspondsto a vertex in the basemeshthenwe canchoosethe
basisfunctioncontrollingtheedit from any refinementlevel. How-
ever, moving a directly adjacentvertex cm on refinementlevel m
canonly affect thefinestscalesincecm doesnot have a represen-
tationon any coarserlevel. Hence,a coarsescalemodificationcan
becenteredat c0 but not at cm which lies only ε away. This is not
intuitive for thedesignerto whomtheactualsurfacerepresentation



Figure1: Subdivision connectivity meshesresultfrom iteratively applyinga uniform split operationto the facesof an initial controlmesh.
Only a fixednumberof isolatedextraordinaryverticeswith valence�� 6 remainin themesh.

Figure2: In a multiresolutionmodelingenvironment,the support
of themodificationandits characteristicshapeshouldadaptto the
givengeometry(here: thebust’s hair). Thelow-frequency modifi-
cationaffectsexactly theregion definedby thedesigner. Thehigh
frequency detail is preservedin a naturalway.

shouldbeopaque.
With all thesedifficultiesenumerated,weunderstandthatcoarse-

to-finehierarchiesemergingfromsubdivisiontechniquesmightcer-
tainly be the bestway to effectively representsmoothfree form
geometryin applicationslike surfacereconstruction,scattereddata
interpolation,or ab initio designwherethefacelayoutfor thebase
meshis definedby thedesigner. However, it doesnot appearto be
theoptimalsolutionfor flexibly modifyingexistingmodelslike the
onesobtainedfrom capturingreal objectgeometryby laserscan-
ning devices.

Our goal is to enabletruefreeform multiresolutioneditswhere
thesupportandthecharacteristicsof amodificationcanadaptto the
surfacegeometry(cf. Fig. 2). In [21] we generalizedthe concept
of multiresolutiondecompositionandmodelingto mesheswith ar-
bitrary topologyandconnectivity. The key observation is that we
canno longerstick to thenotionof surfacegeometrybeingrepre-
sentedby thesuperpositionof smoothscalarvaluedbasisfunctions
over a nestedsequenceof grids.Thereasonfor this is thatwe can-

not make any assumptionson the actualdistribution of the mesh
verticesa priori. Hence,imposingany kind of vectorspacestruc-
turewould requireusto constructexplicitly acustomtailoredbasis
functionfor eachvertex.

Leaving theclassicalset-up,it turnsout thatfor merepolygonal
meshes(not control meshes),coarsenessand smoothnessare no
longer synonyms. While in the subdivision framework the basis
functionson the coarsescalesarealsosmootherin the sensethat
they have lesscurvature,we find that for plain polygonalmeshes
theeffect of shifting a controlvertex on a coarsescalestill causes
a sharpfeature.To speakaboutsmoothpolygonalmesheswe need
moredegreesof freedomsincesmoothmeshesaretypically rather
fine tesselations.

Figure3: For plain trianglemesheswe have to distinguishcoarse
andsmoothapproximations(upperandlower row). If meshesare
consideredas control mesheswith respectto scalarvaluedbasis
functionsthentheconnectionbetweentheupperanthe lower row
is providedby evaluatingtheweightedsuperpositionof thecontrol
vertices’influence.

Wehave to solve two centralproblemsin orderto developeffec-
tive multiresolutionalgorithmsfor arbitrarymeshes.First we have
to constructa topological hierarchyof differentresolutionswith the
finestresolutionbeingtheoriginal mesh.This hierarchymustnot
rely on any assumptionsabouttheconnectivity of thegivenmesh.

Besidesthetopologicallevelsof detailwe needa geometrichi-
erarchy, i.e., we needa propercharacterizationof smoothcoarse-
scalegeometry. In the subdivision basedmultiresolutionsetting,



we have the associatedscalingfunctionswhich fill in the smooth
geometry� betweenthecoarsescalecontrolvertices.In thegeneral-
ized settingwe have to find analternative definitionsincea priori
definedscalingfunctionsareno longeravailable. A possibleso-
lution to this problemis to usediscreteenergy minimizationtech-
niquesto obtainsmoothlow-detail approximationsto the original
model.

While thebasicprinciplesof this approachhave beenpresented
in [21], we discussmoretechnicaldetailsin this paper. After ex-
plaining the generationof coarse-to-finehierarchiesand fine-to-
coarsehierarchies,we comparedifferentwaysto representthede-
tail informationbetweenthe resolutionlevels. The crucial issues
areherehow to definethe local frameswith respectto which the
detail is encodedandhow to chosethenumberof hierarchylevels.
In the context of discreteenergy minimizationwe investigatethe
effect of variousparametersin the multi-level solving algorithm,
namelythe numberof hierarchylevels and the numberof Gauß-
Seideliterationsoneachlevel. Wedemonstratethatimposinginter-
polationconstraintsat thecentersof thetriangularfacesaccelerates
theglobalconvergenceof theiterativesolvercomparedto imposing
theconstraintsat thevertices.

2 Multiresolution representations

Most schemesfor themultiresolutionrepresentationandmodifica-
tion of trianglemeshesemerge from generalizingharmonicanal-
ysis techniqueslike the wavelet transform[1, 26, 31, 34]. Since
thefundamentalsarederivedin thescalar-valuedfunctionalsetting
IRd � IR, difficultiesemerge from the fact thatmanifoldsin space
arein generalnot topologicallyequivalentto simply connectedre-
gionsin IRd.

Thephilosophybehindmultiresolutionmodelingon surfacesis
henceto mimic the algorithmicstructureof the relatedfunctional
transformsandpreserve someof the importantpropertieslike lo-
cality, smoothness,stability or polynomial precisionwhich have
relatedmeaningin both settings[8, 13, 40]. Accordingly, the
nestedsequenceof spacesunderlyingthe decompositioninto dis-
joint frequency bandsis thoughtof beinggeneratedbottom-upfrom
a coarsebasemeshup to finer andfiner resolutions.This implies
that subdivision connectivity is mandatoryon higherlevels of de-
tail, i.e., themeshhasto consistof large regular regionswith iso-
latedextra-ordinaryvertices. Additionally, we have to make sure
that the topologicaldistancebetweenthe singularitiesis the same
for every pair of neighboringsingularitiesandthis topologicaldis-
tancehasto be a power of 2. Obviously, sophisticatedmodeling
operationslike booleanoperationsnecessarilyrequirea complete
restructuringof theresultingmeshto re-establishsubdivision con-
nectivity.

Thesespecialtopologicalrequirementspreventsuchtechniques
from beingapplicableto arbitraryinputmeshes.To obtainaproper
hierarchy, global remeshingand resamplingis necessarywhich
givesriseto alias-errorsandrequiresinvolvedcomputations[7, 24].

Luckily, therestrictedconnectivity is notnecessaryto definedif-
ferent levels of resolutionor approximationfor a triangle mesh.
In the literatureon meshdecimationwe find many examplesfor
hierarchiesbuilt on arbitrarymeshes[12, 17, 20, 27, 29, 32, 36].
The key is alwaysto build the hierarchytop-down by eliminating
verticesfrom thecurrentmesh(incrementalreduction, cf. Fig. 4).
Runningameshdecimationalgorithm,wecanstop,e.g.,everytime
a certainpercentageof the verticesis removed. The intermediate
meshescanbeusedasa level-of-detailrepresentation[17, 26].

In bothcases,i.e.,thecoarse-to-fineor thefine-to-coarsegenera-
tion of nested(vertex-) grids,themultiresolutionconceptis rigidly
attachedto topologicalentities.This makessenseif hierarchiesare
merelyusedto adjustthecomplexity of therepresentation.Wewill
exploit thesequenceof nestedgridsemergingfrom this topological
hierarchyto generalizethe conceptof multi-grid solversfor large
sparsesystems.

In thecontext of multiresolutionmodeling, however, wewantthe

hierarchynot necessarilyto ratemeshesaccordingto their coarse-
nessbut ratheraccordingto theirsmoothness. For thisweneedage-
ometrichierarchyaccompanying thetopologicalone.To complete
our basicequipmentfor themultiresolutionset-upon unstructured
mesheswe henceneed(besidesthestaticlevelsof detail)to define
thedecompositionandreconstructionoperationswhichseparatethe
high-frequency detailfrom thelow-frequency shapeandeventually
recombinethe two to recover the original mesh. Here,the recon-
structionoperatorhasto generatethesmoothlow-frequency shape
if thedetail informationis suppressedduringreconstruction.This
is wherediscretefairing techniquescomein. Further, we have to
encodethedetailinformationrelativeto thelow-frequency shapein
orderto guaranteeintuitive detailpreservationaftera globalmodi-
fication(local frames).

2.1 Coarse-to-fine Hierarchies

For subdivision basedmultiresolution representationthe recon-
structionoperatoris given by the underlyingsubdivision scheme.
We transform a given mesh

�
m to the next refinementlevel�
	

m� 1
� S
�

m by applying the stationarysubdivision operatorS
andmovetheobtainedcontrolverticesby addingtheassociatedde-
tail vectors:

�
m� 1

� � 	
m� 1 ��
 m. Thesupportof thesubdivision

maskimplies that eachcontrol vertex pm
i in

�
m hasinfluenceon

several control verticesin
�
	

m� 1. Consequently, the modification
of pm

i ’s position eventually causesa smoothbump on the result-
ing surface. The actualshapeof this bump can be computedby
applyingthe subdivision operatorS without detail reconstruction,
i.e. 
 m : � 0. Obviously, thesupportof thebump dependson the
refinementlevel mon which themodificationis applied.

The decompositionoperatorhasto be an inverseof the subdi-
vision operator, i.e., given a fine mesh

�
m� 1 we have to find a

mesh
�

m suchthat
�

m� 1 � S
�

m. In this casethedetail vectors
 m : � � m� 1 � S
�

m becomeas small as possible[40]. Due to
the uniform split which is part of the subdivision operatorS, it is
obvious that this techniqueappliesonly if

�
m� 1 hassubdivision

connectivity.

2.2 Fine-to-coarse Hierarchies

If we build thehierarchyby usinganincrementalmeshdecimation
scheme,thedecompositionoperatorD appliesto arbitrarymeshes.
Givena finemesh

�
m� 1 wefind

�
m
� D

�
m� 1, e.g.,by applying

a numberof edgecollapseoperations.However, it is not clearhow
to definethedetailcoefficientssinceinversemeshdecimation(pro-
gressivemeshes) alwaysreconstructstheoriginalmeshandthereis
no canonicalway to generatesmoothlow-frequency geometryby
suppressingthedetail informationduringreconstruction.

To solve thisproblemwe split eachstepof theprogressive mesh
refinementinto atopologicaloperation(vertex insertion)andageo-
metricoperationwhich placesthere-insertedverticesat their orig-
inal position. In analogyto the plain subdivision without detail
reconstruction,we have to figure out a heuristicwhich placesthe
new verticessuchthatthey lie onasmoothsurface(insteadof their
originalposition).Thedifferencevectorbetweenthispredictedpo-
sitionandtheoriginal locationof thevertex canthenbeusedasthe
associateddetailvector.

Sincewe operateon unstructuredmeshes,we cannotusefixed
(stationary)rulesfor theplacementof the re-insertedvertices. In-
steadwe usediscreteenergy minimization which meansthat the
re-insertedverticesareplacedsuchthat someglobal bendingen-
ergy is minimized. In Section3 we review a simpletechniquefor
the effective generationof mesheswith minimum bendingenergy
without specificrequirementson theconnectivity.

2.3 Detail encoding

In orderto guaranteeintuitive detail preservation undermodifica-
tion of theglobalshape,we cannotsimply storethedetail vectors



Figure4: For multiresolutionrepresentationsbasedon subdivision techniques,the hierarchiesarebuilt from coarseto fine by applyinga
uniformsubdivisionoperator(toprow, left to right) while incrementalmeshdecimationgenerateshierarchiesfrom fineto coarseby iteratively
removing vertices(bottomrow, left to right).

with respectto a globalcoordinatesystembut have to definethem
with respectto local frameswhicharealignedto thelow-frequency
geometry[10, 11]. Usually, theassociatedlocal framefor eachver-
tex hasits origin at thelocationpredictedby thereconstructionop-
eratorwith suppresseddetail.This is in analogyto decompositions
basedona globalparameterizationof thesurfaces.

However, in many casesthis canleadto ratherlong detail vec-
torswith asignificantcomponentwithin thelocal tangentplane(cf.
Fig. 5). Sincewe prefershortdetail vectorsfor stability reasons,
it makes senseto use a different origin for the local frame. In
fact, the optimal choiceis to find that point on the low-frequency
surfacewhosenormalvectorpointsdirectly to theoriginal vertex.
In this case,the detail is not given by a threedimensionalvector��� x ��� y��� z� T but ratherby a basepoint p � p � u � v� on the low-
frequency geometryplus a scalarvalueh for the displacementin
normaldirection.If a localparameterizationof thesurfaceis avail-
able thenthe basepoint p canbe specifiedby a two-dimensional
parametervalue � u � v� .

Figure5: The shortestdetail vectorsareobtainedby representing
thedetail coefficientswith respectto thenearestlocal frame(left)
insteadof attachingthe detail vectorsto the topologically corre-
spondingoriginal vertices.

Thegeneralsettingfor detailcomputationis thatwe have given
two meshes

�
m� 1 and

� 	
m� 1 where

�
m� 1 is the original data

while
� 	

m� 1 is reconstructedfrom the low-frequency approxima-
tion

�
m with suppresseddetail, i.e. for coarse-to-finehierachies,

themesh
� 	

m� 1 is generatedby applyinga stationarysubdivision
schemeand for fine-to-coarsehierarchies

� 	
m� 1 is optimal with

respectto someglobal bendingenergy functional. Encodingthe
geometricdifferencebetweenbothmeshesrequiresusto associate
eachvertex p of

�
m� 1 with a correspondingbasepoint q on the

continuous(piecewise linear) surface
� 	

m� 1 suchthat the differ-
encevectorbetweentheoriginalpointandthebasepoint is parallel
to thenormalvectorat thebasepoint. Any point q on

� 	
m� 1 can

bespecifiedby atriangleindex i andbarycentriccoordinateswithin
thereferredtriangle.

To actuallycomputethedetail coefficients,we have to definea
normalfield on themesh

� 	
m� 1. Themostsimpleway to do this

is to usethenormalvectorsof thetriangularfacesfor thedefinition
of a piecewise constantnormalfield. However, sincetheorthogo-
nalprismsspannedby a trianglemeshdo not completelycover the
vicinity of themesh,we have to acceptnegative barycentriccoor-
dinatesfor thebasepointsif anoriginalvertex liescloseto anedge
of
� 	

m� 1 or if
� 	

m� 1 is not smoothenough(cf. Fig 6). This leads
to non-intuitivedetailreconstructionif thelow-frequency geometry
is modified(cf. Fig. 7).

A techniqueused in [21] is basedon the constructionof a
local quadraticinterpolantto the low-frequency geometry. The
basepoint is found by Newton-iteration. Although this technique
reducesthe numberof pathologicalconfigurationswith negative
barycentriccoordinatesfor thebasepoint,we still observe artifacts
in the reconstructedhigh-frequency surfacewhich are causedby
thefactthattheresultingglobalnormalfield of thecombinedlocal
patchesis not continuous.

Wethereforeproposeadifferentapproachwhichadaptsthebasic



Figure6: Thepositionof a vertex in theoriginal mesh(high-frequency geometry)is givenby a basepoint on the low-frequency geometry
plusa displacementin normaldirection.Therearemany waysto definea normalfield on a trianglemesh.With piecewiseconstantnormals
(left) wedonotcover thewholespaceandhencewesometimeshaveto usevirtual basepointswith negativebarycentriccoordinates.Theuse
of local quadraticpatchesandtheir normalfields(center)somewhat improvesthesituationbut problemsstill occursincetheoverall normal
field is not globally continuous.Suchdifficulties arecompletelyavoidedif we generatea Phong-typenormalfield by blendingestimated
vertex normals(right).

Figure7: We modifiedthe original surface(left) by usinga two-bandmultiresolutiondecomposition.Sincein this particularexperiment
thelow-frequency geometrywaschosennot sufficiently smooth,many detailvectorshave basepointswith negative barycentriccoordinates
whenwe usea piecewise constantnormalfield. Consequently, no properdetail reconstructionis possibleafter the modification(center).
Representingthedetailvectorswith respectto thePhongnormalfield on thelow-frequency meshleadsto theexpectedresult(right).

ideaof Phong-shading[9] wherenormalvectorsareestimatedat
theverticesof atrianglemeshandacontinuousnormalfield for the
interiorof thetriangularfacesis computedby linearlyblendingthe
normalvectorsat thecorners.

Supposewe aregiven a triangle ��� a � b � c � with the associated
normalvectorsNa, Nb, andNc. For eachinterior point

q � αa � βb � γc

with α � β � γ � 1 we find theassociatednormalvectorNq by

Nq
� αNa � βNb � γNc �

Whencomputingthedetailcoefficientsfor agivenpointp wehave
to find thebasepoint q suchthat�

p � q ��� Nq

hasall threecoordinatesvanishing. By plugging in the definition
of q andNq andeliminating γ � 1 � α � β we obtaina bivariate
quadraticfunction

F : � u � v� � IR3

andwe have to find theparametervalue � α � β � suchthatF � α � β � �� 0 � 0 � 0� T . Thiscanbeaccomplishedby performingseveralstepsof
Newton-iteration. Notice that F canbe interpretedasa quadratic
surfacepatchin IR3 which passesthroughthe origin. The Taylor-
coefficientsof F canexplicitly begivenby

F � W � WW
Fu

� U � UW � W � 2WW
Fv

� V � VW � W � 2WW
Fuu

� UU � UW � WW
Fuv

� UV � UW � VW � 2WW
Fvv

� VV � VW � WW

where
U � p � Na
V � p � Nb
W � p � Nc
UU � Na � a
VV � Nb � b
WW � Nc � c
UV � � Nb � a � � � Na � b �
UW � � Nc � a � � � Na � c �
VW � � Nc � b � � � Nb � c �

In caseoneof thebarycentriccoordinatesof theresultingpointq is
negative,wecontinuethesearchfor abasepoint in thecorrespond-
ing neighboringtriangle. SincethePhongnormalfield is globally
continuouswe always find a basepoint with positive barycentric
coordinates.Fig. 6 depictsthe situationschematicallyandFig. 7
shows an exampleedit wherethe piecewise constantnormalfield
causesmeshartifactswhich do not occurif thePhongnormalfield
is used.

2.4 Hierarchy levels

For coarse-to-finehierarchiesthelevelsof detailaredeterminedby
theuniform refinementoperator. Startingwith thebasemesh

�
0,

the mth refinementlevel is reachedafter applying the refinement
operatorm times. For fine-to-coarsehierarchiesthereis no such
canonicalchoicefor the levels of resolution. Hencewe have to
figureoutsomeheuristicsto definesuchlevels.

In [21] a simpletwo-banddecompositionhasbeenproposedfor
themodeling,i.e. thehighfrequency geometryis givenby theorig-
inal meshandthelow-frequency geometryis thesolutionof some
constrainedoptimizationproblem.This simpledecompositionper-
formswell if theoriginal geometrycanbeprojectedonto the low-
frequency geometrywithoutself-intersections.Fig.8 schematically



Figure8: Whenthedifferencebetweentwo geometriclevelsof de-
tail is too big, thehigh-frequency geometrycannotbeprojecteddi-
rectly onto the low-frequency geometrywithout self-intersections.
In orderto guaranteecorrectdetailreconstruction,we have to gen-
erateintermediatelevels suchthat the mappingbetweentwo suc-
cessive levelsis one-to-one.

shows a configurationwherethis requirementis not satisfiedand
consequentlythedetail featuredoesnotdeformintuitively with the
changeof theglobalshape.

This effect canbe avoidedby introducingseveral intermediate
levelsof detail,i.e.,by usinga truemulti-banddecomposition.The
numberof hierarchylevelshasto bechosensuchthat the � i � 1� st
level canbeprojectedonto level i without self-intersection.Detail
informationhasto becomputedfor every intermediatelevel.

The intermediatelevels can be generatedby the following al-
gorithm. We startwith the original meshandapply an incremen-
tal meshdecimationalgorithmwhich performsa sequenceof edge
collapseoperations.Whena certainmeshcomplexity is reached,
we performthe reversesequenceof vertex split operationswhich
reconstructstheoriginal meshconnectivity. Thepositionof there-
insertedverticesis foundby solvinga globalbendingenergy mini-
mizationproblem(discretefairing). Themeshthatresultsfrom this
procedureis asmoothedversionof theoriginalmeshwherethede-
greeby whichdetail informationhasbeenremoveddependson the
targetcomplexity of thedecimationalgorithm(cf. Fig 10)

Supposetheoriginal meshhasnm vertices,wherem is thenum-
berof intermediatelevelsthatwewanttogenerate.Wecancompute
the meshes

�
m � ����� � � 0 with fewer detail by applyingthe above

procedurewherethe decimationalgorithm stopsat a target reso-
lution of nm � ����� � n0 remainingverticesrespectively. The resulting
meshesyield amulti-banddecompositionof theorignaldata.When
a modelingoperationchangestheshapeof

�
0 we first reconstruct

thenext level
� 	

1 by addingthestoreddetailvectorsandthenpro-
ceedby successively reconstructing

��	
i � 1 from

� 	
i .

The remainingquestionis how to determinethe numbersni .
A simple way to do this is to build a geometricsequencewith
ni � 1 � ni

� const. This mimics the exponentialcomplexity growth
of the coarse-to-finehierarchies.Anotherapproachis to stopthe
decimationevery time a certainaverageedgelength l̄ i in the re-
mainingmeshis reached.

A morecomplicatedheuristictries to equalizethe sizesof the
differencesbetweenlevels, i.e., thesizesof thedetail vectors.We
first computea multi-banddecompositionwith, say, 100 levels of
detailwherewe choose i

�
n̄i
� const. For every pair of successive

levelswecancomputetheaveragelengthof thedetailvectors(dis-
placementvalues). From this information we can easily choose
appropriatevaluesn j

� n̄i j suchthat the geometricdifferenceis
distributedevenly amongthedetaillevels.

In practiceit turnedout thataboutfive intermediatelevelsis usu-
ally enoughto guaranteecorrectdetail reconstruction.Fig. 9 com-
parestheresultsof a modelingoperationbasedon a two-bandand
a multi-banddecomposition.

3 Constrained discrete fairing

In the previous sectionwe explainedhow to generatetopological
hierarchiesfor mesheswith arbitraryconnectivity by incremental
meshdecimation. An associatedgeometrichierarchycan be ob-
tainedby re-insertingthe removed verticesandmoving themto a
new positionsuchthata globalbendingenergy functionalis mini-
mized.Theideais to computea meshwhich is assmoothaspossi-
blewhile still containingacontrollableamountof geometricdetail.
Fig. 10shows anexample.

FromCAGD it is well-known thatconstrainedenergy minimiza-
tion is a very powerful techniqueto generatehigh quality surfaces
[3, 14, 28, 30, 37]. For efficiency, one usually definesa sim-
ple quadraticenergy functional � � f � andsearchesamongthe set
of functionssatisfyingprescribedinterpolationconstraintsfor that
function f whichminimizes� .

Transferringthe continuousconceptof energy minimization to
the discretesettingof trianglemeshoptimizationleadsto the dis-
cretefairing approach[19, 38]. Local polynomialinterpolantsare
usedto estimatederivative informationat eachvertex by divided
differenceoperators.Hence,the differentialequationcharacteriz-
ing the functionswith minimumenergy is discretizedinto a linear
systemfor thevertex positions.

Sincethissystemis globalandsparse,weapplyiterativesolving
algorithmslike theGauß-Seidel-scheme.For suchalgorithmsone
iterationstepmerelyconsistsin the applicationof a simple local
averagingoperator. This makesdiscretefairing aneasyaccessible
techniquefor meshoptimization.

For the most popularfairing functional, the thin-plate energy,
thisapproachleadsto a simpleupdate-rule[21]

p ! p � 1
ν " 2 � p � (1)

which has to be applied to all verticesof the mesh. Here, the
umbrella-operator" is adiscretizationof theLaplace-operator[35]

" � p � � 1
n

n # 1

∑
j $ 0

p j � p

with p j being the directly adjacentneighbor vertices of p (cf.
Fig. 11). The umbrella-operatorcan be appliedrecursively lead-
ing to

" 2 � p � � 1
n

n # 1

∑
j $ 0 " � p j � � " � p �

asadiscretizationof thesquaredLaplacian.Thecoefficientν in (1)
is givenby

ν � 1 � 1
n ∑

j

1
n j

wheren andn j arethe valencesof the centervertex p andits j th
neighborp j respectively.

...

P

P

P
P

P

2

1

0

n−1

Figure 11: To computethe discreteLaplacian,we needthe 1-
neighborhoodof a vertex p ( � umbrella-operator).

In thecontext of discreteenergy minimization,the iterative ap-
plicationof theupdate-rule(1) implementsaGauß-Seidelsolverfor
theunderlyinglinearsystem.Froma moreabstractpoint of view,
the rule canalsobe consideredasa mererelaxationoperatorthat
effectively filters outhigh frequency noisefrom themesh[35].



Figure 9: Non-projectabledetail featuresare not reconstructedcorrectly. The original geometry(left) is modified by using a two-band
decompositionin thecenteranda multi-banddecompositionwith five intermediatelevelson theright.

Figure10: Four versionsof theStanfordbunny. Thesmootherversionsaregeneratedby applyingmeshdecimationdown to a certaintarget
complexity andthenre-insertingtheverticesunderminimizationof somediscretefairnessfunctional.Thedegreeby which geometricdetail
is removeddependson thecoarsenessof thebasemesh.Noticethatall shown mesheshave exactly thesameconnectivity.

3.1 Multi-level smoothing

A well-known negative result from numerical analysis is that
straightforward iterative solvers like the Gauß-Seidelschemeare
not appropriatefor largesparseproblems[33]. More sophisticated
solversexploit knowledgeaboutthestructure of theproblem.The
importantclassof multi-grid solversachieve linear runningtimes
in thenumberof degreesof freedomby solvingthesameproblem
on grids with differentstepsizesandcombiningthe approximate
solutions[16].

For difference( � discretedifferential)equationsof elliptic type
theGauß-Seideliterationmatriceshaveaspecialeigenstructurethat
causeshigh frequenciesin the error to be attenuatedvery quickly
while for lower frequenciesno practically useful rate of conver-
gencecanbe observed. Multi-level schemeshencesolve a given
problemonaverycoarsescalefirst. Thissolutionis usedto predict
initial valuesfor a solutionof thesameproblemon thenext refine-
ment level. If thesepredictedvalueshave only small deviations
from the true solution in low-frequency sub-spaces,then Gauß-
Seidelperformswell in reducingtheremaininghigh-frequency er-
ror. Thealternatingrefinementandsmoothingleadsto highly effi-
cientvariationalsubdivisionschemes[19] whichgeneratefair high-
resolutionmesheswith a rateof several thousandtrianglespersec-
ond(linearcomplexity!).

We canapplythesameprincipleto hierarchicalmeshstructures
whicharegeneratedfrom fine-to-coarse.Insteadof iteratively solv-
ing the discretizedoptimizationproblem on the finest level, we
solve it on coarserintermediatelevelsfirst andthenusethecoarse
solutionsto estimatebetterstartingvaluesfor theiterativesolveron
thefiner levels.

A completeV-cycle multi-grid solver recursively appliesopera-
torsΦi

� ΨPΦi # 1 RΨ wherethefirst (right) Ψ is a generic(pre-)
smoothingoperator— a Gauß-Seidelschemein our case. R is a
restrictionoperatorto go onelevel coarser. This is wherethemesh
decimationcomesin. On thecoarserlevel, thesameschemeis ap-
plied recursively, Φi # 1, until on the coarsestlevel the numberof
degreesof freedomis smallenoughto solve thesystemdirectly (or
any otherstoppingcriterion is met). On theway back-up,thepro-
longationoperatorP insertsthepreviously removed verticesto go

onelevel finer again. P canbeconsideredasa non-regular subdi-
vision operatorwhich hasto predictthepositionsof theverticesin
thenext level’s solution.There-subdividedmeshis anapproxima-
tive solutionwith mostly high frequency error. (Post-)smoothing
by somemoreiterationsΨ removesthe noiseandyields the final
solution.

In our particularsettingof thin-plateoptimizationon fine-to-
coarsehierarchies,theΨ-operatoris simply theupdate-rule(1) and
the restrictionoperatoris a sequenceof edge-collapseor vertex
removal stepswhich areperformedby the meshdecimationalgo-
rithm. Theprolongationoperatorre-insertsthevertices.Sincethe
prolongationoperatorcanbedesignedto insertthenew verticesto a
locally optimalposition,i.e., thecenterof gravity of its directneig-
borssuchthat " � p � � 0, thereis no needto actuallyperformany
pre-smoothing.In fact,thewholemulti-level smoothingalgorithm
reducesto meshdecimationdown to a certainresolutionandthen
alternatingthe re-insertingand Gauß-Seidelsmoothing. Another
consequenceis thatmoresophisticatedW-cycleschedulesarevery
unlikely to improve theconvergenceof thealgorithm.

Theareseveralalgorithmicparametersin thisgenericmulti-level
scheme.First,we have to choosethenumberof Gauß-Seidelsteps
which areperformedon every level. As this is themosttime con-
sumingstepof thealgorithmandsinceour goal is to run theopti-
mizationin real-timewith a prescribednumberof framespersec-
ond, we cannotallow the iteration to proceeduntil the residuum
dropsbelow somegiventhreshold.Weratherperformafixednum-
ber of iterationson eachlevel. By adjustingthat numberwe di-
rectly tradethe quality of the resultingmeshfor the speedof the
algorithm.

Anotheralgorithmicparameteris thenumberof hierarchylevels.
The two extremepositionsare either to re-insertall verticesand
thenperformGauß-Seidelon the finest level only or to apply (1)
after the insertionof every single vertex. From a practicalpoint
of view, the upperboundfor the granulatityof hierarchylevels is
reachedif theverticeswhichareinsertedwhengoingfrom level

�
i

to
�

i � 1, are independentfrom eachother, i.e., their topological
distanceis larger than somethreshold. This is becausethe local
updateoperation(1) propagatesgeometricchangesveryslowly. An
alternative to combininga sequenceof independentvertex splits



Figure12: Thisdiagramshows thelogarithmof theapproximation
error (vertical axis) vs. the computationtime (horizonticalaxis).
Theknotson eachpolygonmark themeasurementsfor a different
numberof Gauß-Seideliterations(1 � �%��� � 20). The differentpoly-
gonsconnectthemeasurementsfor thesamenumberof hierarchy
levels(from bottomto top: 27� 14� 9 � 7 � 6 levels). Themonotony of
thecurvesshows thatfor a fixedamountof computationtime (ver-
tical line) or a prescribedapproximationerror (horizontalline) the
multi-level smoothingschedulewith the highernumberof levels
alwaysoutperformstheothers.

(or edgecollapses)is proposedin [15] wherethe local smoothing
operatoris appliedonly in thevicinity of thenewly insertedvertex.

Since the eigenstructureof the Gauß-Seideliteration matrix
andhencetheconvergencebehavior of thegeneralizedmulti-level
schemestronglydependson the actualconnectivity of the mesh,
we cannotderive generalestimatesfor theconvergencerates.Nev-
erthelesswe can analyzethe typical behavior of the multi-level
smoothingon fine-to-coarsehierarchiesby numericalexperiments.
We madesomeexperimentswherewe performedthe multi-level
smoothingwith a varying numberof hierarchylevels and Gauß-
Seideliterationsperlevel. Theresultsareshown in Fig. 12.

Obviously the approximationerror decreaseswith increasing
numberof Gauß-Seidelstepsandwith increasingnumberof lev-
els but also the computationalcostsbecomehigher. Whenusing
themulti-level smoothingin practicalapplicationswetypically pre-
scribethemaximumtimeor themaximumapproximationerror, i.e.,
wewanttofind thebestapproximationwithin agivenperiodof time
or we want to find a solutionwith a prescribedapproximationer-
ror as fastaspossible. In Fig. 12 theseconstraintscorrespondto
verticalor horizonticallinesrespectively.

As a generalrule of thumbit turnedout thatmoreGauß-Seidel
iterationsperlevel only marginally improve thefinal result.This is
dueto thebadconvergenceon eachindividual level. Betterresults
canbe achieved if morehierarchylevels areusedbut with fewer
iterationsperlevel.

Noticethatthenumberof topological hierarchylevelsasoneal-
gorithmicparameterin themulti-level smoothingschemehasnoth-
ing to do with thenumberof geometrichierarchylevels in thege-
ometricmulti-banddecomposition(topologicalvs. geometrichier-
archy). Oneis usedto make thedetail reconstructionmorerobust
while theotheris usedto acceleratetheglobaloptimizationproce-
dure.

3.2 Boundary constraints

In orderto enableintuitive modelingfunctionality we have to im-
plementa simpleandeffective interactionmetaphor. As theshape
of the meshis controlledby discretecurvatureminimization, the
mostsimpleway to influencetheresultis by imposingappropriate
boundaryconstraints.Theseconstraintsdeterminethesupportand
theshapeof themodification.

In [21] weproposedasimplemetaphorwherethedesignerstarts
by markinganarbitraryregion on themesh

�
m. In fact,shepicks

a sequenceof surfacepoints(not necessarilyvertices)on thetrian-
gle meshandthesepointsareconnectedeitherby geodesicsor by
projectedlines.Thestripof triangles& whichareintersectedby the
geodesic(projected)boundarypolygonseparatesaninterior region�('

andanexterior region
�

i ) � �('+* &,� . Theinterior region
�('

is
to beaffectedby thefollowing modification.

A secondpolygon(not necessarilyclosed)is markedwithin the
first one to define the handle. The semanticsof this arbitrarily
shapedhandleis quitesimilar to thehandlemetaphorin [37]: when
the designermovesor scalesthe virtual tool, the samegeometric
transformationis appliedto the rigid handleand the surrounding
mesh

�('
follows accordingto a constrainedenergy minimization

principle.
Thefreedomto definetheboundarystrip & andthehandlegeom-

etry allows thedesignerto build ”customtailored” basisfunctions
for theintendedmodification.Particularly interestingis thedefini-
tion of a closedhandlepolygonwhich allows to control the char-
acteristicsof a bell-shapeddent: For the sameregion

�('
, a tiny

ring-shapedhandlein themiddlecausesarathersharppeakwhile a
biggerring causesawiderbubble(cf. Fig 13). Noticethatthemesh
verticesin the interior of thehandlepolygonalsomove according
to theenergy minimization.

Figure13: Controllingthecharacteristicsof themodificationby the
sizeof a closedhandlepolygon.

Sincewe areworking on trianglemeshes,theenergy minimiza-
tion on

� '
is done by discretefairing techniques. To enable

realtimeediting we use the multi-level smoothingapproach(cf.
Fig. 14). While Fig. 15 depictsthe generalmodelingset-upfor
ageometrictwo-banddecomposition,moreintermediatelevelscan
be usedfor the detail reconstructionif the original geometrycan-
notbeprojectedontotheoptimizedmeshwithoutself-intersections.
The boundarytriangles& provide the correctC1 boundarycondi-
tions for minimizing the thin plateenergy functional. The handle
imposesadditionalinterpolatoryconstraintsonthelocationonly —
derivativesshouldnot beaffect by thehandle.

In [21] we proposedto imposethe handleinterpolationcon-
straintsto theoptimizationproblemby simply freezingeveryother
vertex of thehandlepolygon. On onehandthis is a simpleway to
implementinterpolationconstraints,onetheotherhandit prevents
any influenceon thetangentplane.

Anotherway to imposeinterpolationconstraintsis to prescribe
themfor centersof triangles.Suchconstraintscaneasilybeembed-
dedinto theiterativeenergy minimizationby allowing Gauß-Seidel
updatesfor all verticesandre-enforcingtheconstraintsafter each
iteration. This meansthat we shift the constrainedtrianglessuch
that their centerscoincidewith the interpolationpointsafterevery
smoothingcycle. By shifting the triangleswithout rotationwe al-
low the tangentat the interpolationpoint to be controlledby the
optimizationprocess(andhencewedonot imposeaC1 constraint).
Fig 16 demonstratesthat the convergencebehavior is muchbetter
for this kind of interpolationconstraintcomparedto freezingver-
tices.



Figure14: During thereal-timemodeling,themulti-level smoothingalwaysstartson thecoarseslevel down to which
�('

is reduced(left).
We alternatevertex re-insertionandGauß-Seidelsmoothing(centerleft) until themeshwith minimumthin plateenergy with respectto the
currentinterpolationconstraintsis found(centerright). To thissmoothmesh,weaddthedetailcoefficientsto reconstructthemodifiedsurface
(right).

Figure15: A flexible metaphorfor multiresolutionedits. On the left, theoriginal meshis shown. The black line definesthe region of the
meshwhich is subjectto themodification.Thewhite line definesthehandlegeometrywhichcanbemovedby thedesigner. Bothboundaries
canhave anarbitraryshapeandhencethey can,e.g.,bealignedto geometricfeaturesin themesh.TheboundaryandthehandleimposeC1

andC0 boundaryconditionsto themeshandthesmoothversionof theoriginal meshis foundby applyingdiscretefairing while observing
theseboundaryconstraints.Thecenterleft shows the resultof the curvatureminimization(theboundaryandthe handleareinterpolated).
The geometricdifferencebetweenthe two left meshesis storedasdetail informationwith respectto loacalframes.Now the designercan
move thehandlepolygonandthis changestheboundaryconstraintsfor thecurvatureminimization. Hencethediscretefairing generatesa
modifiedsmoothmesh(centerright). Adding thepreviously storeddetail informationyieldsthefinal resulton theright. Sincewe canapply
fastmulti-level smoothingwhensolvingtheoptimizationproblem,themodifiedmeshcanbeupdatedwith several framespersecondduring
themodelingoperation.Noticethatall four mesheshave thesameconnectivity.

4 Conclusions and future work

We explainedhow to addressvarioustechnicalproblemswhenus-
ing the fine-to-coarsemultiresolutionmeshrepresentationwhich
hasbeenproposedin [21]. We presenteda new way to encode
thegeometricdetailinformationby usingacontinuousnormalfield
on the low-frequency geometry. This makesthedetail reconstruc-
tion morerobust thanotherlocal framebasedtechniques.We also
showed how the use of several intermediatelevels of detail en-
ablesthehandlingof geometricconfigurationswhichcannotbepro-
cessedcorrectlywith a plain two-banddecomposition.We further
investigatedthe influenceof variousalgorithmic parametersonto
the overall performanceof multi-level smoothingschemeswhen
appliedto a fine-to-coarsehierarchyon arbitrarymeshes.

In ourcurrentimplementationof themultiresolutionmeshmod-
eling technique,the supportingmeshwhich is controlledby con-
strainedoptimizationduringtheinteractive modelinghasthesame
connectivity astheoriginal mesh.In thefutureit might bepromis-
ing to dropthis restriction.Wecouldimprove thestabilityandcon-
vergencespeedof the multi-level schemeby usingregularly con-
nectedmeshesinstead.Moreover, this couldprovide thepossibil-
ity to use”better” local parameterizationsfor thediscreteLaplace
operatorwith reasonablecomputationaleffort [4, 15]. However,
imposingtheboundaryconditionsinto theoptimizationwould be-
comemoreinvolved.
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Abstract
We generalize basic signal processing tools such as downsampling,
upsampling, and filters to irregular connectivity triangle meshes.
This is accomplished through the design of a non-uniform relax-
ation procedure whose weights depend on the geometry and we
show its superiority over existing schemes whose weights depend
only on connectivity. This is combined with known mesh simpli-
fication methods to build subdivision and pyramid algorithms. We
demonstrate the power of these algorithms through a number of ap-
plication examples including smoothing, enhancement, editing, and
texture mapping.

CR Categories and Subject Descriptors:I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling -hierarchy and geometric transformations, ob-
ject hierarchies; I.4.3 [Image Processing and Computer Vision]: Enhancement -
filtering, geometric correction, sharpening and deblurring, smoothing; G.1.2 [Numer-
ical Analysis]: Approximation -approximation of surfaces and contours, wavelets and
fractals

Additional Keywords: Meshes, subdivision, irregular connectivity, surface parame-
terization, multiresolution, wavelets, Laplacian Pyramid.

1 Introduction
3D range sensing is capable of producing detailed and densely sam-
pled triangular meshes of high quality. Increasing deployment of
this technology in the automotive and entertainment industries, as
well as many other areas, has fueled the need for algorithms to pro-
cess such datasets. Examples include editing, simplification, de-
noising, compression, and finite element simulation.

In the case of regularly sampled data, for example images, basic
signal processing tools such as filtering, subsampling, and upsam-
pling exist. These can be used to build subdivision and pyramid
algorithms, which are useful in many applications. Our goal is the
construction of signal processing style analyses and algorithms for
triangle meshes.

Building the elements of a signal processing toolbox for meshes
is not immediately straightforward since there are essential differ-
ences between images, for example, and meshes. Images are func-
tions defined on Euclidean (“flat”) geometry and are almost always
sampled on a regular grid. Consequently, algorithms such as sub-
sampling and upsampling are straightforward to define, and uni-
form filtering methods are appropriate. This makes Fourier analy-
sis an elegant and efficient tool for the construction and analysis of
signal processing algorithms.

In contrast, triangle meshes of arbitrary connectivity form an in-
herently irregular sampling setting. Additionally we are dealing
with general 2-manifolds as opposed to a Euclidean space. Conse-
quently new algorithms need to be developed which incorporate the
fundamental differences between images and meshes.

A crucial first observation concerns the difference between ge-
ometric and parametric smoothness.Geometricsmoothness mea-
sures how much triangle normals vary over the mesh. Geometric



Terminology
In order to describe our contribution and its relationship to
existing work we need to set some terminology. Among tri-
angulations we distinguish three types
• Regular: every vertex has degree six;

• Irregular: vertices can have any degree;

• Semi-regular: formed by starting with a coarse irregular
triangulation and performing repeated quadrisection on
all triangles. Coarse vertices have arbitrary degree while
all other vertices have degree six.

In all cases we assume that any triangulation is a proper 2-
manifold with boundary. On the boundary regular vertices
have degree four. Each of these triangulations call for differ-
ent filtering and subdivision algorithms:
• Uniform: fixed coefficient stencils everywhere; typically

used only on regular triangulations;

• Non-uniform: filter coefficients depend on the connec-
tivity andgeometry of the triangulation;

• Semi-uniform: coefficients of filters depend only on the
(local) connectivity of the triangulation; typically used on
semi-regular triangulations.

Using our terminology, for example, traditional subdivi-
sion [22] uses semi-uniform filters on semi-regular meshes.

smoothness implies that there existssomesmooth (differentiable)
parameterization of the mesh. However, any particular parameter-
ization may well be non-smooth. The smoothness of the parame-
terizations is important in most numerical algorithms, which work
only with the coordinate functions the user provides. The algo-
rithms’ behavior, such as convergence rates or the quality of the
results, generally depends strongly on the smoothness of the coor-
dinate functions.

In the regular setting of an image, or the knots of a uniform ten-
sor product spline, we may simply use a uniform parameterization
and will get parametric smoothness wherever there is geometric
smoothness. In the irregular triangle mesh setting there is a priori
no such “obvious” parameterization. In this case using a unifor-
mity assumption leads to parametric non-smoothness with undesir-
able consequences for further processing. One approach to remedy
this situation is the use of remeshing [8, 19], which maintains the
original geometric smoothness, but improves the sampling to vary
smoothly. This enables subsequent treatment with a uniform pa-
rameter assumption without detrimental effects. Here we wish to
build tools which work on the original meshes directly.

To understand the role of the parameterization further, consider
traditional subdivision [22], such as Loop or Catmull-Clark. In the
signal processing context, subdivision can be seen as upsampling
followed by filtering. One starts with an arbitrary connectivity mesh
and uses regular upsampling techniques such as triangle quadrisec-
tion to obtain a semi-regular triangulation. The subdivision weights
depend only on connectivity, not geometry. Such stencils can be de-
signed with existing Fourier or spectral techniques. These schemes
result in geometrically smooth limit surfaces with smooth semi-
uniform parameterizations. Because traditional subdivision is only
concerned withrefinementone has the freedom to choose regular
upsampling, and semi-uniform schemes suffice.

The picture changes entirely if we wish to compute a mesh pyra-
mid, i.e., we want to be able tocoarsifya given fine irregular mesh
and laterrefine it again. We then need to filter, downsample, up-
sample and filter again. The downsampling typically involves a
standard mesh simplification hierarchy. When subdividing back,
we want to build a mesh with thesameconnectivity as the original
mesh and a smooth geometry. This time the upsampling procedure
is determined by reversing the previously computed simplification

hierarchy. We no longer have a choice as in the classical subdivision
setting. Consequently the filters used before downsampling and af-
ter upsampling should use non-uniform weights, which depend on
the local parameterization. The challenge is to ensure that these lo-
cal parameterizations are smooth so that subsequent algorithms act
on the geometry and not some potentially bad parameterization.

1.1 Contributions
In this paper we present a series of non-uniform signal process-
ing algorithms designed for irregular triangulations and show their
usefulness in several application areas. Specifically, we make the
following contributions:

• We show how the non-uniform subdivision algorithm of
Guskov [12] can be used for geometric smoothing of triangle
meshes. Our scheme is fast, local, and straightforward to imple-
ment.

• We use the smoothing algorithm combined with existing hier-
archy methods to build subdivision, pyramid, and wavelet algo-
rithms for irregular connectivity meshes.

• We show how these signal processing algorithms can be used in
applications such as smoothing, enhancement, editing, anima-
tion, and texture mapping.

1.2 Related Work
In our approach we draw on observations made by researchers in
several different areas. These include classical subdivision [22],
which we generalize to the irregular setting with the help of mesh
simplification [13] and careful attention to the role of smooth pa-
rameterizations. Parameterizations were examined in the context of
remeshing [19, 8, 9], texture mapping (e.g., [20]), and variational
modeling [16, 28, 21]. One area which employs these elements is
hierarchical editing for semi-regular [29] and irregular meshes [18].

Signal processing as an approach to surface fairing in the irreg-
ular setting was first considered by Taubin [26, 27]. He defines
frequencies as the eigenvectors of a discrete Laplacian general-
ized to irregular triangulations. The resulting smoothing schemes
were used to denoise meshes, apply smooth deformations, and build
semi-uniform subdivision over irregular meshes. Our approach is
related to Taubin’s and can be seen as a generalization to the non-
uniform setting. In particular we build a smoothing method by min-
imizing multivariate finite differences. Together with progressive
mesh simplification [14] we use these to define a non-uniform sub-
division scheme and pyramid algorithm on top of an irregular mesh
hierarchy.

Progressive meshes and a semi-uniform discrete Laplacian were
used by Kobbelt et al. [18] to perform multiresolution editing on
irregular meshes. Given some region of the mesh, discrete fairing
is used to compute a smoothed version with the same connectiv-
ity. This smoothed region is deformed and offsets to the original
mesh are added back in. Kobbelt discusses the issue of geomet-
ric vs. parametric smoothing. Smoothing of irregular meshes based
on uniform approximations of the Laplacian results in vertex mo-
tion “within” the surface, even in a perfectly planar triangulation.
It is geometrically smooth, yet the parameter functions appear non-
smooth due to a non-uniform parameterization. This has undesir-
able effects in a hierarchical setting in which fine levels are de-
fined as offsets (“details”) from a coarse level: using the difference
between topologically corresponding vertices in the original and
smoothed mesh can lead to large detail vectors [18, Figure 4]. To
minimize the size of detail vectors they employed a search proce-
dure to find the nearest vertex on the smoothed mesh to a given ver-
tex on the original mesh. This diminishes the advantage of having a
smoothed version with the exact same connectivity. In contrast, our
non-uniform smoothing scheme affects only geometric smoothness
and so does not need a search procedure. We will present two ways



in which our scheme can be used for editing: one is based on mul-
tiresolution and combines the work of Kobbelt et al. [18] with the
ideas of Zorin et al. [29]. The other method relies on defining vec-
tor displacement fields with controllable decay similar to the ideas
presented in the work of Singh and Fiume [23].

We construct our subdivision scheme by designing a non-
uniform relaxation operator which minimizes second differences.
This is motivated by the smoothness analysis of the 1D irregular
setting [2]. This analysis relies on the decay of divided differ-
ences, carefully designed to respect the underlying parameteriza-
tion. These ideas were extended to the multi-variate setting in [12]
and we employ them here. While the schemes we present have
many nice properties and work very well in practice, we note that
their analytic smoothness is currently unknown.

2 Signal Processing Algorithms
Before describing the actual numerical algorithms we begin with
some remarks regarding different settings and establish our notation
for triangulations and difference operators defined on them.

Coordinate Functions To describe our algorithms we must
distinguish between two settings: the functional and the surface
setting. Thefunctional settingdeals with a functiong(u, v) of
two independent variables in the plane. The dependent variable
g can be visualized as height above the(u, v) parameter plane. In
practice we only have discrete datagi = g(ui, vi). The sample
points (ui, vi) are triangulated in the plane and this connectivity
can be transferred to the corresponding points(ui, vi, gi) in R3.
The canonical example of this is a terrain model.

The surface settingdeals with a triangle mesh of arbitrary
topology and connectivity embedded inR3 with verticespi =
(xi, yi, zi). It is important to treat all three coordinatesx, y, andz
asdependentvariables with independent parametersu andv, giv-
ing us three functional settings. The independent parameters are
typically unknown and must be estimated. Algorithms to estimate
globalsmooth parameterizations are described in [19, 8, 9, 20]. We
require onlylocal parameterizations which are consistent over the
support of a small filter stencil.

Triangulations To talk about local neighborhoods of vertices
within the mesh it is convenient to describe the topological and
geometric aspects of a mesh separately. We use notation inspired
by [24]. A triangle mesh is denoted as a pair(P,K), whereP is a
set ofN point positionsP = {pi ∈ R3 | 1 ≤ i ≤ N} (eitherpi =
(ui, vi, fi) in a functional setting orpi = (xi, yi, zi) in the surface
setting), andK is anabstract simplicial complexwhich contains all
the topological, i.e., adjacency information. The complexK is a set
of subsets of{1, . . . , N}. These subsets are called simplices and
come in three types: verticesv = {i} ∈ V, edgese = {i, j} ∈ E ,

Figure 2:Left: 1-ring neighborhood. The vertices except the center
one formV1(i) and the bold edges formE1(i). Middle: 1-ring with
flaps. The vertices except the center one formV2(i) and the bold
edges formE2(i). Right: Edge neighborhood. The four vertices of
the incident triangles formω(e).

and facesf = {i, j, k} ∈ F , so thatK = V ∪ E ∪ F . Two ver-
ticesi andj areneighborsif {i, j} ∈ E . The 1-ring neighbors of
a vertexi form a setV1(i) = {j | {i, j} ∈ E} (see Figure 2, left).
Ki = #V1(i) is thedegreeof i. The edges fromi to its neighbors
form a setE1(i) = {{i, j} | j ∈ V1(i)}. A 1-ring neighborhood
with flaps is shown in Figure 2 (middle). Its vertices except the cen-
ter vertex form a setV2(i) and its interior edges form a setE2(i).
Finally, the neighborhoodω(e) of an edge (see Figure 2) is formed
by the 4 vertices of its incident triangles.

Thegeometric realizationϕ(s) of a simplexs is defined as the
strictly convex hull of the pointspi with i ∈ s. The polyhedron
ϕ(K) is defined as∪s∈Kϕ(s) and consists of points, segments, and
triangles inR3.

2.1 Divided Differences in the Functional Setting
Our relaxation algorithm relies on minimizing divided differences.
In the one dimensional setting divided differences are straightfor-
ward to define, but for multivariate settings many approaches are
possible (see for example [10, 4, 3]). An approach that was devel-
oped specifically with subdivision in mind is described in [12] and
we use it here for our purposes.

Consider a facef = {i, j, k} and the trianglet = ϕ(f) where
pi = (ui, vi, gi). Then the first order divided difference ofg at f
is simply the gradient of the piecewise linear spline interpolating
g denoted by∇fg = (∂g/∂u, ∂g/∂v). Note that the gradient
depends on the parameter locations(ui, vi) and converges in the
limit to the first partial derivatives. If we create a three vector by
adding a third component equal to 1, we obtain the normalnf =
(−∂g/∂u,−∂g/∂v,1) to the trianglet. Conversely, the gradient is
the projection of the normal in the parameter plane. Consequently
the gradient is zero only if the trianglet is horizontal (gi = gj =
gk).

Second order differences are defined as the difference between
two normals on neighboring triangles and can be associated with
the common edge (see Figure 3, left). Consider an edgee = {j, k}
with its two incident facesf1 = {j, k, l1} and f2 = {j, k, l2}
(see Figure 2, right). Compute the difference between the two nor-
malsme = nf2 − nf1 . Given that the two normals are orthogonal
to ϕ(e) so is their differenceme (see Figure 3, right). But the
third component ofme is zero, henceme itself lies in the parame-
ter plane, which also contains the segment between(uj , vj , 0) and
(uk, vk, 0). This implies thatme is orthogonal to the segment and
hence only its signed magnitude matters (see Figure 3).

difference of normals lies in parameter plane

in 3D

j

triangle normals

common segment

parameter plane

k

l2

l1

right

function

values

plane contains both normals

and their difference;

plane is orthogonal

to 3D segment

angle

Figure 3: In the functional setting triangles are erected over the
parameter plane. Their normals generate a plane orthogonal to
the edge in 3-space. Any vector in that plane which is also in the
parameter plane must be at right angles with the parameter plane
segment. HenceD2

e is orthogonal to(uj , vj)− (uk, vk).



This argument justifies defining the second order differenceD2
eg

as the component ofme orthogonal to the segment in the pa-
rameter plane.D2

eg depends on four function values at vertices
ω(e) = {j, k, l1, l2}. Since all operations to computeD2

eg are lin-
ear (gradient, difference, and projection) so is the entire expression

D2
eg =

∑
l∈ω(e)

ce,lgl.

The coefficients are given by

ce,l1 =
Le

A[l1,k,j]

, ce,l2 =
Le

A[l2,j,k]

,

ce,j = −
LeA[k,l2,l1]

A[l1,k,j] A[l2,j,k]
, ce,k = −

LeA[j,l1,l2]

A[l1,k,j]A[l2,j,k]
, (1)

whereA[k1,k2,k3] is the signed area of the triangle formed by
(uk1 , vk1), (uk2 , vk2), (uk3 , vk3); andLe is the length of the seg-
ment between(uj , vj) and(uk, vk) [12]. All the parameterization
information is captured in the edge length and signed triangle areas.
Given that we later only use squares ofD2

e the actual sign of the ar-
eas is not important as long as the orientations prescribed by (1) are
consistent. Also, note that the second order difference operator is
zero only if the two triangles lie in the same plane.

2.2 Relaxation in the Functional Setting
The central ingredient in our signal processing toolbox is a non-
uniform relaxation operator. It generalizes the usual notion of a
low pass filter. We begin by discussing the construction of such a
relaxation operator in the functional setting.

The purpose of the relaxation operation is the minimization of
second order differences. To this end we define a quadratic energy,
which is an instance of a discrete fairing functional [16]

E =
∑

e∈E(D
2
eg)2.

The relaxation is computed locally, i.e., for a given vertexiwe com-
pute a relaxed function valueRgi based on neighboring function
valuesgj . TreatingE as a function of a givengi the relaxed value
Rgi is defined as the minimizer ofE(gi). Given that the stencil for
D2
e consists of two triangles, all edges which affectE(gi) belong

to E2(i) (see Figure 2, middle)

Rgi = arg min E(gi) = arg min
∑

e∈E2(i)
(D2

eg)2. (2)

Since the functional is quadratic the relaxation operator is linear in
the function values. To find the expression, write each of theD2

eg
with e ∈ E2(i), i.e., all second differences depending ongi, as a
linear function ofgi

D2
eg = ce,igi + αe with αe =

∑
l∈ω(e) \ {i} ce,lgl.

Setting the partial derivative ofE with respect togi equal to zero
yields

Rgi = −
(∑

e∈E2(i)
ce,i αe

)
/

(∑
e∈E2(i)

c2e,i

)
, (3)

which can be rewritten as

Rgi =
∑

j∈V2(i)
wi,jgj, wi,j = −

∑
{e∈E2(i)|j∈ω(e)}

ce,ice,j∑
e∈E2(i)

c2
e,i

.

There are two ways to implementR which trade off speed versus
memory. One can either precompute and store thewi,j and use the
above expression or one can use (3) and computeR on the fly.

Note that if g is a linear function, i.e., all triangles lie in one
plane, the fairing functionalE is zero. Consequently linear func-
tions are invariant underR. In particularR preserves constants
from which we deduce that thewi,j sum to one.

To summarize, given an arbitrary but fixed triangulation in the
parameter plane and function valuesgi with the associated(ui, vi)
coordinates, simple linear expressions describe first and second dif-
ferences. The coefficients of these expressions depend on the pa-
rameterization. The relaxation operatorR acts on individual func-
tion values to minimize the discrete second difference energy over
theE2(i) neighborhood of a givenpi = (ui, vi, gi), leaving linears
invariant.

2.3 Relaxation in the Surface Setting
To apply the above relaxation in the surface setting we need to have
parameter values(u, v) associated with every point in our mesh.
Typically such parameter values are not available and we must com-
pute them. One possible solution is to compute a global parame-
terization to a coarse base domain using approaches such as those
described in [8, 19]. However, specifying parameter values for an
entire region is equivalent to flattening that region and thus invari-
ably introduces distortion. Therefore we wish to keep the parame-
ter regions as small as possible. Typically one computes parameter
values for a certain local neighborhood like a 1-ring. We propose
an even more local scheme in which parameter values are specified
separatelyfor each of theD2

e stencils. The two triangles of theD2
e

stencil get flattened with the so-calledhinge map: using the com-
mon edge as a hinge, rotate one triangle until it lies in the plane
defined by the other triangle and compute the needed edge lengths
and areas from (1). Note that the hinge map leaves the areas of
the trianglesϕ(f1) andϕ(f2) unchanged and only affects the faces
{j, k, l1} and{j, k, l2}. The surface relaxation operator is defined
as before, but acts on points inR3

Rpi =
∑

j∈V2(i)
wi,jpj.

Our minimization is similar to minimizing dihedral angles [21].
However, minimizing exact dihedral angles is difficult as the ex-
pressions depend non-linearly on the points. Instead one can think
of theD2

e as a linear expression which behaves like the dihedral
angle.

Features With our scheme it is particularly easy to deal with
features in the mesh. Examples include sharp edges across which
one does not wish to smooth. In that case theD2

e associated with
those edges are simply removed from the functional.

One may worry what happens with the equations in (1) in case
one of the triangles is degenerate, i.e., two of its points coincide and
its area is zero. Then theD2

e that use this triangle are not defined
and simply can be left out from the optimization. This is similar to
coinciding knots in the case of splines.

Comparison with Existing Schemes The approach fol-
lowed in [18] is to assume that the 1-ring neighborhood of a vertex
i is parameterized over a regularKi-gon. Using this approximation
a discrete Laplacian, dubbed umbrella, is computed as

Lpi = K−1
i

∑
j∈V1(i)

pj − pi.

This discrete Laplacian was used in a relaxation operatorR = I+L
which replaces a vertex with the average of its 1-ring neighbors.

In our setting, we can build a 1-ring relaxation scheme by only
taking the minimum in (2) overE1(i). The relaxation operator is
then computed as in (3) with summations overE1(i) rather than
E2(i). Our 1-ring scheme parameterized on aregularKi-gon leads
to the same relaxation operator as used by Kobbelt. Our scheme can
thus be seen as a natural non-uniform generalization of the umbrella



which is still linear. In general we use theE2(i) (1-ring with flaps)
scheme as it yields visually smoother surfaces.

Taubin [26] presents a two step relaxation operatorR = (I +
µL)(I + λL), with µ andλ tuned to minimize shrinkage of the
mesh.

Both of these schemes are semi-uniform filters since the weights
only depend onKi and not the geometry. Consequently they affect
both geometry and parameterization. Consider again an irregular
triangulation of a plane. Semi-uniform schemes try to make each 1-
ring look as much as possible like a regularK-gon. Thus the trian-
gulation may change globally while the plane remains the same. As
we will see, this will lead to unwanted effects in applications such
as editing and texture mapping. On the other hand our non-uniform
scheme is linearly invariant, leaves the triangles unchanged, and
does not suffer from the problems concerning movement “inside”
the surface observed in [18, Figure 4].

Figure 4 shows the effect on a non-planar triangulation like
the eye of the mannequin head. Our non-uniform scheme (right)
smoothes the geometry without affecting the triangle shapes much.
The semi-uniform scheme (middle) tries to make edge lengths as
uniform as possible which can only be done by effectively destroy-
ing the delicate mesh structure around the eye. This effect also
applies to any other attributes that vertices may carry such as detail
vectors for editing or texture map coordinates causing distortion
during smoothing (see Figure 8).

Taubin [26] also uses a non-uniform discrete Laplacian in which
the weights vary as the powers of the respective edge lengths. While
such an operator can greatly reduce the triangle distortions, it can
be shown that such a scheme can never be linearly invariant.

Figure 4:Smoothing of the eye (left) with our non-uniform (right)
and a semi-uniform scheme (middle). The semi-uniform scheme
tries to make edge lengths as uniform as possible and severely dis-
torts the geometry, while the non-uniform scheme only smoothes the
geometry and does not affect the triangle shapes much.

3 Multiresolution Signal Processing
Up to this point we have only considered operators which act on a
scale comparable to their small finite support. To build more pow-
erful signal processing tools we now consider a multiresolution set-
ting.

Multiresolution algorithms such as subdivision, pyramids, and
wavelets require decimation and upsampling procedures. For im-
ages decimation comes down to removing every other row or col-
umn. The situation for meshes is more complex, but a considerable
body of work is available [13].

We employ Hoppe’s Progressive Mesh (PM) approach [14]. In
the PM setting, an edge collapse provides the atomic decimation
step, while a vertex split becomes the atomic upsampling step. For
simplicity we only employ half-edge collapses in our implementa-
tion. As a priority criterion we use a combination of the Garland-
Heckbert quadric error metric [11] and edge length to favor removal
of long edges (see also [17]).

Each half edge collapse removes one vertex and we number them
in reverse so that the one with highest index gets removed first.
This gives a sequence ofN meshes(Pn,Kn), 1 ≤ n ≤ N , and
Pn = {pi | 1 ≤ i ≤ n}. Later we will consider mesh sequences

(Q(n),K(n)) where the points on coarser meshes do move from
their finest mesh position. These are denotedq

(n)
i , i ≤ n.

In traditional signal processing, downsampling creates a coarser
level through the removal of a constant fraction of samples. This
leads to a logarithmic number of levels. A PM does not have such
a notion of levels. However, one may think of each removed vertex
as living on its own level, and the number of levels being linear.

3.1 Subdivision
Subdivision starts from a coarse mesh and successively builds finer
and smoother versions [22]. In signal processing terms it consists of
upsampling followed by relaxation. So far the word subdivision has
been associated in the literature with either regular or semi-regular
meshes with corresponding uniform or semi-uniform operators. If
one only has an original, coarse mesh and cares about building a
smooth version, then semi-regular is the correct approach.

Our setting is different. The coarse mesh comes from a PM
started at the original, finest level. Hence the connectivity of the
finer levels is fixed and determined by the reverse PM. Our goal
is to use non-uniform subdivision to build ageometricallysmooth
mesh with thesameconnectivity as the original mesh and with as
little triangle shape distortion as possible. Such smoothed meshes
can subsequently be used to build pyramid algorithms.

Subdivision is computed one level at a time starting from level
n0 in the progressive meshQ(n0) = P(n0). Since the reverse PM
adds one vertex per level, our non-uniform subdivision is computed
one vertex at a time. We denote the vertex positions asQ(n) =

{q(n)
i | 1 ≤ i ≤ n} (n ≥ n0) and use meshes(Q(n),K(n)) with

the same connectivity as the PM meshes.
Going fromQ(n−1) toQ(n) involves three groups of vertices. (I)

the new vertexn, which is introduced together with a point position
q

(n)
n to be computed. (II) certain points from theQ(n−1) mesh

change position; these correspond toevenvertices. There is only a
small number of them. (III) the remainder of the points ofQ(n−1),
typically the majority, remains unchanged. Specifically:

• The new positionq(n)
n is computed after upsampling fromKn−1

toKn:
q(n)
n =

∑
j∈Vn

2
(j)
w

(n)
n,j q

(n−1)
j .

The position of the new vertex is computed to satisfy the relax-
ation operator using points fromQn−1 with weights using areas
and lengths of mesh(Pn,K(n)).

• The even points ofQn−1 form a 1-ring neighborhood ofn.
Their respectiveVn2 neighborhoods containn, which has just
received an updated positionq(n)

n

∀j ∈ Vn1 (n) : q
(n)
j =

∑
k∈Vn

2
(j) \{n} w

(n)
j,k q

(n−1)
k +w

(n)
j,n q

(n)
n .

The even vertices are relaxed using the point positions
from Q(n−1) (except forq(n)

n ), using weights coming from
(Pn,K(n)).

• Finally, the remainder of the positions do not change

∀j ∈ Vn−1\Vn1 (n) : q
(n)
j = q

(n−1)
j .

A central ingredient in our construction is the fact that the weights
w

(n)
i,j depend on parameter information from the meshP(n). No

globally or even locally consistent parameterization is required. For
eachD2

e stencil we use the hinge map as described above. In effect
the original mesh provides the parameterizations and in this way
enters into the subdivision procedure. The actualareasandlengths,
which make up the expressions forw(n)

i,j are assembled based on the

connectivityK(n) of leveln, and hence induce the level dependence



of the weights. As a result allw(n)
i,j may be precomputed during the

PM construction and can be stored if desired for later use during
repeated subdivision. It is easy to see that the storage is linear in
the total degree,

∑
i
Ki, of the mesh.

Figure 5:Starting with the irregular triangulation of a sphere (up-
per left) we compute a PM down to 16 triangles (upper right). We
then compute our non-uniform subdivision scheme back to the finest
level (lower left) and obtain a smooth mesh which approximates the
original. For comparison the lower right shows the limit surface of
a semi-uniform subdivision scheme.

To illustrate the behavior of uniform functional subdivision
schemes one considers the so calledscaling functionor fundamen-
tal solution obtained from starting with a Kronecker sequence on
the coarsest level. For surface subdivision, there is no equivalent to
this. To illustrate the behavior of the surface scheme we perform
the following experiment (see Figure 5). We start with an irregular
triangulation of a sphere with 12000 triangles (upper left) and com-
pute a PM down to 16 triangles (upper right). Next the non-uniform
surface subdivision scheme starting from the 16 triangles back to
the original mesh is computed (lower left). We clearly get a smooth
mesh. For comparison the lower right shows the limit function us-
ing a semi-uniform scheme. It is important to understand that the
non-uniform scheme has access to the parameterization information
of the original finest mesh whereas the semi-uniform scheme does
not use this additional information.

While for uniform and semi-uniform subdivision, extensive liter-
ature on regularity of limit functions exists, few results are known
for non-uniform subdivision [2, 12]. The goal of our strategy of
minimizingD2

e is to obtainC1 smoothness. However, there is cur-
rently no regularity result for our scheme in either the functional or
surface setting.

3.2 Burt-Adelson Pyramid
The pyramid proposed by Burt and Adelson [1] (BA) is another
important signal processing tool. We show how to generalize it to
a mesh pyramid. We start from the finest level pointsSN = P and
compute a sequence of meshes(Sn,Kn) (1 ≤ n ≤ N) as well as
oversampled differencesd(n)

i between levels.
To go fromSn to Sn−1, i.e., to remove vertexn, we follow the

diagram in Figure 6. The top wire represents the points ofSn−1

while the bottom wire represent the points ofSn. There are four

(n)s -
(n)

q

SubdivisionPresmooth

d
(n)

s F 
(n)

s
(n-1)

(n-1)

Figure 6:Burt-Adelson style pyramid scheme.

stages: presmoothing, downsampling, subdivision, and computa-
tion of details.
• Presmoothing:Presmoothing in the original BA pyramid is im-

portant to avoid aliasing. We have found that in a PM the pres-
moothing step can often be omitted because the downsampling
steps (edge collapses) are chosen carefully, depending heavily
on the data. In essence vertices are removed mostly in smooth
regions, where presmoothing does not make a big difference.
Thus, no presmoothing was used in our implementation.

• Downsampling: n is removed in a half-edge collapse.

• Subdivision: Using the points fromSn−1 we compute subdi-
vided pointsq(n)

j for the vertex just removed and the surround-
ing even vertices exactly as described in Section 3.1

• Detail Computation: Finally, detail values are computed for
all even vertices as well as the vertexn. These detail vectors are
expressed in a local frameF (n−1)

j which depends on the coarser
level:

∀j ∈ Vn1 (n) ∪ {n} : d
(n)
j = F

(n−1)
j (s

(n)
j − q(n)

j ).

We refer to the entire group ofd(n)
j as an arrayd(n). In the

implementation this array is stored withn.
One of the features of the BA pyramid is that the above procedure
can always be inverted independent of which presmoothing opera-
tor or subdivision scheme is used. For reconstruction, we start with
the points ofSn−1, subdivide valuesq(n)

j for both the new and even

vertices and add in the details to recover the original valuess
(n)
j .

To see the potential of a mesh pyramid in applications it is im-
portant to understand that the detailsd(n) can be seen as an approx-
imate frequency spectrum of the mesh. The detailsd(n) with large
n come from edge collapses on the finer levels and thus correspond
to small scales and high frequencies, while the detailsd(n) with
smalln come from edge collapses on the coarser levels and thus
correspond to large scales and low frequencies.

Oversampling factor A standard image pyramid has an over-
sampling factor of 4/3, while we have an expected oversampling
factor of 7. The advantage of oversampling is that the details are
quite small and lead to natural editing behavior [29]. If needed, a
technique exists to reduce the oversampling factor. The idea is to
use levels with more than one vertex. Say, we divide theN vertices
of V intoM levels withM � N :

V = V0 ∪
⋃

1≤m≤MWm and Vm = Vm−1 ∪Wm.

This can be done, for example, so that the sizes of theVm grow
with a constant factor [7]. The BA pyramid then goes fromVm
to Vm−1. First presmooth all even vertices inVm, then compute
subdivided values for all vertices inWm and their 1-ring neighbors
in Vm. For the subdivided points, which need not be all vertices
of Vm, compute the details as differences with the original values
from Vm. One can see that the above algorithm with oversampling
factor 7 is a special case whenWm = {m}. The other extreme
is the case with only one level containing all vertices. In that case



there is no multiresolution as all details live on the same level. The
oversampling factor is 1. By choosing the levels appropriately one
can obtain any oversampling between 1 and 7. It is theoretically
possible to build a wavelet-like, i.e, critically sampled multiresolu-
tion transform based on the Lifting scheme [25]. However, at this
point it is not clear how to design filters that make the transform
stable.

Caveat Often in this paper we use signal processing terminology
such as frequency, low pass filter, aliasing, to describe operations on
2-manifolds. One has to be extremely careful with this and keep in
mind that unlike in the Euclidean setting, there is no formal def-
inition of these terms in the manifold setting. For example in a
mesh the notion of a DC component strictly does not exist. Also in
connection with the pyramid we often talk about frequency bands.
Again one has to be careful as even in the Euclidean setting the co-
efficients in a a pyramid do not represent exact frequencies due to
the Heisenberg uncertainty principle.

4 Applications
The algorithms we described above provide a powerful signal pro-
cessing toolbox. In this section we demonstrate this claim by con-
sidering a variety of applications that use them. These include
smoothing and filtering, enhancement, texture coordinate genera-
tion, vector displacement field editing, and multiresolution editing.

4.1 Smoothing and Filtering
One way to smooth a mesh is through repeated application of the
relaxation operatorR. Numerically this behaves similarly to tradi-
tional Jacobi iterations for an elliptic PDE solver. The relaxation
rapidly attenuates the highest frequencies in the mesh, but has little
impact on low frequencies. Even though each iteration of the oper-
ator is linear in the number of vertices, the number of iterations to
attenuate a fixed frequency band grows linearly with the mesh size.
This results in quadratically increasing run times as the sample den-
sity increases relative to a fixed geometric scale. One way to combat
this behavior is through the use of appropriate preconditioners, as
was done in [18], or through the use of implicit solvers [6].

Using a mesh pyramid we can build much more direct and flexi-
ble filtering operations. Recall that the details in a pyramid measure
the local deviation from smoothness at different scales. In that sense
they capture the local frequency content of the mesh. This spectrum
can be shaped arbitrarily by scaling particular details. Multiresolu-
tion filtering operators are built by setting certain ranges of detail
coefficients in the pyramid to zero. A low pass filter sets all detail
arraysd(n) with n > nl to zero, while a high pass filter annihilates
d(n) for n < nh. However, for meshes it makes little sense to put
the coarsest details to zero as this would collapse the mesh. More
natural for meshes are stopband filters which zero out detail arrays
d(n) in some intermediate range,nl < n < nh.

Figure 7 shows these procedures applied to the venus head
(N = 50000). On the upper left the original mesh. The upper right
shows the result of applying the non-uniform relaxation operator
20 times at the finest level. High frequency ripples quickly diffuse,
but no attenuation is noticeable at larger length scales. The bottom
left shows the result of a low pass filter which sets all details above
nl = 1000 to zero. Finally the bottom right shows the result of a
stopband filter, annihilating all details1000 < n < 15000. Note
how the last mesh keeps its fine level details, while intermediate
frequencies were attenuated. If desired all these filtering operations
can be performed in a spatially varying manner due to the space-
frequency localization of the mesh pyramid. Figure 8 shows the
difference between non-uniform (left) and semi-uniform smoothing
(right) on the actual vertex positions. By keeping the original finest
level texture coordinates for the vertices of both meshes we can

Figure 7: Smoothing and filtering of the venus head. Original on
the top left; 20 finest level relaxation steps on the top right; low
pass filter on the bottom left; stopband filter on the bottom right.

visualize the effect of movement “within” the surface after smooth-
ing. This hints at another application: if one has a scanned mesh
with color (r,g,b) attributes per vertex then non-uniformgeometry
smoothing will not distort those colors.

4.2 Enhancement
Enhancement provides the opposite operation to smoothing in that
it emphasizes certain frequency ranges. As before this can be done
in a single resolution manner as well as in the more flexible mul-
tiresolution setup.

The single resolution scheme is easy to compute and typically
works best for fairly small meshes, such as those used as control
polyhedra for splines or semi-regular subdivision surfaces. The
main idea is to extrapolate the difference between the original mesh
and a single resolution relaxed mesh. The enhanced points are given
by

Epi = pi + ξ(Rkpi − pi),

whereξ > 1. Figure 9 illustrates the procedure. On the left the
original mannequin head, in the middle the result after 20 relax-
ation steps, and on the right the enhanced version withξ = 2. The
first and last models of Figure 1 show the Loop subdivided meshes
of the original and enhanced head. By using combinations of the
different algorithms peculiar effects can be obtained. The second



Figure 8: Movement “within” the surface due to smoothing visu-
alized by letting the vertices keep their original finest level texture
coordinates. Left non-uniform smoothing and right semi-uniform
smoothing.

Figure 9:Enhancement of control mesh. On the left the original, in
the middle the smoothed mesh, and on the right the enhanced mesh
(see also Figure 1 for the resulting subdivision surfaces).

model in Figure 1 is obtained by extrapolating from a base model
built by 5 semi-uniform relaxation steps followed by 5 non-uniform
relaxation steps (needed to recover the parameterization and “pull”
features back in place). The third model in Figure 1 is extrapolated
from a base built by first simplifying to level 100, then applying 1
relaxation step (which made the chin collapse and ears shrink), and
reconstructing.

The single level scheme is simple and easy to compute, but lim-
ited in its use. For example, it does not compute offsets with respect
to local frames. If the mesh contains fine level detail self intersec-
tions quickly appear. As in image enhancement one must be careful
not to amplify high frequency noise. For these reasons we need the
more flexible setup of multiresolution enhancement. The approach
is simple, we compute a mesh pyramid, scale the desired details and
then reconstruct. As in the filtering application, the user has control
over the different frequency bands. Additionally, the local frames
across the many levels of the mesh pyramid tend to stabilize the
procedure and lead to a more natural behavior. As a result the mul-
tiresolution enhancement scheme deals better with large scanned
meshes which usually contain high frequency noise.

Figure 10 shows Loop subdivided versions of the original cow
head and an enhanced version obtained by multiplying the details
d(n) with 257 < n ≤ 2904 = N by two (see also Figure 15,
right column for an edit of the enhanced model). Finally, Figure 11
shows enhancement on the Stanford bunny (N = 34835). Here
details with indices1000 < n < 7000 were multiplied by 2, and
details with indices7000 < n < 13000 were multiplied by 1.5.

Figure 10:Enhancement of cow head (original on the left).

Figure 11:Enhancement on the bunny. The original is on the left
and the frequency enhanced version on the right.

4.3 Subdivision of Scalar Functions on Manifolds
We can use subdivision to quickly build smooth scalar functions
definedon a manifold. Simply start with scalar values on a coarse
level and use non-uniform subdivision to build a smooth function
defined on the finest level.

We present two applications. The first creates smoothly varying
texture coordinate assignments for the finest level mesh from some
user supplied texture coordinate assignments at a coarse level. The
second creates a smoothly varying function over a limited region of
an irregular mesh and then uses this function to generate a smooth
vector displacement field for shape editing purposes.

Texture Coordinate Generation DeRose et al. [5] discuss
this problem in the context of classical, semi-uniform subdivision.
Their goal was the construction of smooth texture coordinates for
Catmull-Clark surfaces. Beginning with user supplied texture co-
ordinates at some coarse level they subdivide these parameter as-
signments to the finest subdivision level using the same subdivision
operator for texture coordinates as for the vertices.

Figure 12 shows the application of this idea to our setting. Ini-
tial texture coordinate assignments were made using a cylindrical
projection of all vertices inP1000. The left image shows a test tex-
ture on the coarse polygonal mesh. We then reconstruct the original
finest level mesh and concurrently subdivide the texture coordinates
to the finest level. The resulting mapping is shown on the right.
Even though the geometry has much geometric detail and uneven
triangle sizes the final texture coordinates vary smoothly over the
entire surface.

Displacement Vector Field Editing Singh and Fiume [23]
present an algorithm for deformation edits based on vector displace-
ment fields. These fields are defined through a smooth falloff func-
tion around a “wire” which drags the surface along. The region of
influence is a function of distance inR3. Controlling this behavior
in regions of high curvature or in the vicinity of multiple close ob-
jects can be tricky. In our setting we have the opportunity to define
the falloff functiononly on the surface itself. A similar idea was
used in [15] for feature editing.



Figure 12: A test texture is mapped to a coarse level of the mesh
pyramid under user control. The resulting texture coordinates are
then subdivided to the finest level and the result shown on the right.

We illustrate this idea with an example. Consider the horse to
“giraffe” edit in Figure 13. The user first outlines three regions
by drawing closed curves on the mesh. A region that remains un-
changed (A); a region that will be gradually stretched (B); and a
region that will undergo a translation (C). In our example, region
(A) is the back body and the four legs; (B) are the neck and torso;
and (C) is the head. The boundary between (A) and (B) consists
of three closed curves. Next we define a scalar parameterθ, which
is 0 on the boundary between (A) and (B), and 1 on the boundary
between (B) and (C). The algorithm computes values forθ that vary
smoothly between 0 and 1 in region (B).

This is accomplished by running a PM on the interior of region
(B) to a maximally coarse level. Then the initial valueθ = 1/2
is assigned to all interior vertices of the coarse region (B). Next
we apply relaxation toθ on the coarsest level within (B). This con-
verges quickly because there are few triangles; three steps suffice.
Theseθ values are then used as the starting values for subdivision
from the coarsest level back to the original region (B) while keeping
the θ values on the boundary fixed. The resultingθ values on the
finest region (B) vary smoothly between 0 and 1. The only prob-
lem is that at the boundary they meet in aC0 and not aC1 fashion.
This is because we only imposed Dirichlet like conditions and no
Neumann condition. We address this with the following smoothing
transformation,θ := 1/2− 1/2 cos(πθ).

On the left of Figure 13 the red lines are specified by the user
and the black lines show theθ isolines, visualizing howθ varies
smoothly. The edit is now done by letting the user drag the head.
Every vertex in region B is subjected toθ times the displacement
vector of the head. This requires very little computation. The right
side of Figure 13 shows the result.

4.4 Multiresolution Editing
The displacement vector editing is simple and fast, but has limited
use. We next discuss full fledged multiresolution editing for irreg-
ular meshes. Our algorithm combines ideas of Zorin et al. [29] and
Kobbelt et al. [18]. The former used multiresolution details and
semi-regular meshes, while the latter used single resolution details
and irregular meshes. We combine the best of both approaches by
using multiresolution details with the irregular mesh setting.

The algorithm is straightforward. The user can manipulate a
group of pointss(n)

i in the mesh pyramid and the system adds
the finer level details back in. This is exactly the same use of the
pyramid as Zorin et al. only now for irregular meshes. Kobbelt et
al. used amultiresolution/multigridapproach to define a smoothed
mesh over a user selected region, but then computesingle resolution
details between the original and smoothed mesh.

Figure 13:Horse to giraffe edit using a surface based smooth dis-
placement vector field.

Figure 14:Cow leg editing sequence: original, coarsest scale, edit,
reconstruction with multiresolution details, reconstruction with sin-
gle resolution details.

The use of multiresolution details is important when the user
wishes to make large scale edits in regions with complicated fine
scale geometry. Because the multiresolution details are all de-
scribed in local frames, they have more flexibility to adjust them-
selves to a coarse scale edit.

We illustrate this with an edit on the leg of the cow (Figure 14).
The sequence shows the original leg, the coarse leg, a coarse edit,
and two reconstructions. The first used multiresolution details
while the second used single resolution details.

Finally, Figure 15 shows some additional edits. The horse was
edited at a level containing only 34 vertices (compare to the origi-
nal shape shown in Figure 13). The cow edit on the right column
involves both manipulation at coarse levels (snout, horns, leg, tail)
and overall enhancement.

Dataset Venus Horse Bunny Cow Mann.

Size (fine) 50000 48485 34835 2904 689
Size (coarse) 4 34 19 57 5

Timings (s)

Simpl. & Anal. 79 75 55 3.6 0.8

Reconstruction 9 8 5.8 .37 0.1

Analysis 9 8 5.8 .37 0.1

Table 1:Timings for mesh pyramid computation assuming storage
rather then recomputation of all areas and length needed in stencil
weight computations. The size field counts the total vertices (N).
Face counts are generally twice as large. All times are given in
seconds on an SGI R10k O2 @175Mhz.



Figure 15:Multiresolution edits.

5 Conclusions and Future Work
We have shown how basic signal processing tools such as up and
down sampling and filtering can be extended to irregular meshes.
These tools can be built into powerful algorithms such as subdivi-
sion and mesh pyramids. We have demonstrated their use in textur-
ing, editing, smoothing and enhancement.

Further research can be pursued in several directions. On the al-
gorithms side there is incorporation of various boundary conditions,
construction of positive weight schemes, and extensions to tetrahe-
dralizations. On the applications side there is adaptive gridding for
time dependent PDE’s, computing globally smooth parameteriza-
tions, extracting texture maps from scanned textures, and space-
frequency morphing.

Compression Another potential future application is compres-
sion. However, one needs to be extremely careful: our subdivision
weights depend on the parameterization which in turn depends on
the geometry of the original mesh. Thus one cannot use the sub-
division scheme as a predictor in a compression framework unless
sender and receiver share parameter information, i.e., the needed
areas and lengths to compute the subdivision. Only a setting where
one repeatedly has to communicate functions or attributes defined
over a fixed triangulation would justify this overhead.

This touches upon a deeper issue. In some sense for a geomet-
rically smooth irregular mesh only one dimension can effectively
be predicted by a subdivision scheme. Even for a geometrically
smooth mesh, no subdivision scheme can compress the informa-
tion implicitly present in the parameterization. Ideally for smooth
surfaces one would like to use meshes with as little parametric in-
formation as possible.

A typical example are semi-uniform meshes. This argument
strongly makes the case for resampling onto semi-regular meshes
using smooth parameterizations [8, 19] before compression.
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Abstract
In this paper, we develop methods to rapidly remove rough features
from irregularly triangulated data intended to portray a smooth sur-
face. The main task is to remove undesirable noise and uneven
edges while retaining desirable geometric features. The problem
arises mainly when creating high-fidelity computer graphics objects
using imperfectly-measured data from the real world.

Our approach contains three novel features: animplicit integra-
tion method to achieve efficiency, stability, and large time-steps; a
scale-dependent Laplacian operator to improve the diffusion pro-
cess; and finally, a robust curvature flow operator that achieves a
smoothing of the shape itself, distinct from any parameterization.
Additional features of the algorithm include automatic exact vol-
ume preservation, and hard and soft constraints on the positions of
the points in the mesh.

We compare our method to previous operators and related algo-
rithms, and prove that our curvature and Laplacian operators have
several mathematically-desirable qualities that improve the appear-
ance of the resulting surface. In consequence, the user can easily
select the appropriate operator according to the desired type of fair-
ing. Finally, we provide a series of examples to graphically and
numerically demonstrate the quality of our results.

1 Introduction
While the mainstream approach in mesh fairing has been to enhance
the smoothness of triangulated surfaces by minimizing computa-
tionally expensive functionals, Taubin [Tau95] proposed in 1995 a
signal processing approach to the problem of fairing arbitrary topol-
ogy surface triangulations. This method is linear in the number of
vertices in both time and memory space; large arbitrary connectiv-
ity meshes can be handled quite easily and transformed into visually
appealing models. Such meshes appear more and more frequently
due to the success of 3D range sensing approaches for creating com-
plex geometry [CL96].

Taubin based his approach on defining a suitable generalization
of frequency to the case of arbitrary connectivity meshes. Using
a discrete approximation to the Laplacian, its eigenvectors become
the “frequencies” of a given mesh. Repeated application of the re-
sulting linear operator to the mesh was then employed to tailor the
frequency content of a given mesh.

Closely related is the approach of Kobbelt [Kob97], who consid-
ered similar discrete approximations of the Laplacian in the con-
struction of fair interpolatory subdivision schemes. In later work
this was extended to the arbitrary connectivity setting for purposes
of multiresolution editing [KCVS98].

The success of these techniques is largely based on their sim-
ple implementation and the increasing need for algorithms which
can process the ever larger meshes produced by range sensing tech-
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(a) (b)
Figure 1: (a): Original 3D photography mesh (41,000 vertices).
(b): Smoothed version with the scale-dependent operator in two
integration step withλdt = 5 · 10−5, the iterative linear solver
(PBCG) converges in 10 iterations. All the images in this paper
are flat-shaded to enhance the faceting effect.
niques. However, a number of issues in their application remain
open problems in need of a more thorough examination.

The simplicity of the underlying algorithms is based on very ba-
sic, uniform approximations of the Laplacian. For irregular con-
nectivity meshes this leads to a variety of artifacts such as geomet-
ric distortion during smoothing, numerical instability, problems of
slow convergence for large meshes, and insufficient control over
global behavior. The latter includes shrinkage problems and more
precise shaping of the frequency response of the algorithms.

In this paper we consider more carefully the question of numeri-
cal stability by observing that Laplacian smoothing can be thought
of as time integration of the heat equation on an irregular mesh.
This suggests the use ofimplicit integration schemes which lead
to unconditionally stable algorithms allowing for very large time
steps. At the same time the necessary linear system solvers run
faster than explicit approaches for large meshes. We also consider
the question of mesh parameterization more carefully and propose
the use of discretizations of the Laplacian which take the underly-
ing parameterization into account. The resulting algorithms avoid
many of the distortion artifacts resulting from the application of
previous methods. We demonstrate that this can be done at only a
modest increase in computing time and results in smoothing algo-
rithms with considerably higher geometric fidelity. Finally a more
careful analysis of the underlying discrete differential geometry is
used to derive a curvature flow approach which satisfies crucial ge-
ometric properties. We detail how these different operators act on
meshes, and how users can then decide which one is appropriate in
their case. If the user wants to, at the same time, smooth the shape
of an object and equalize its triangulation, a scale-dependent diffu-
sion must be used. On the other hand, if only the shape must be
filtered without affecting the sampling rate, then curvature flow has
all the desired properties. This allows us to propose a novel class of
efficient smoothing algorithms for arbitrary connectivity meshes.

2 Implicit fairing
In this section, we introduceimplicit fairing, an implicit integra-
tion of the diffusion equation for the smoothing of meshes. We will
demonstrate several advantages of this approach over the usual ex-



plicit methods. While this section is restricted to the use of a linear
approximation of the diffusion term, implicit fairing will be used as
a robust and efficient numerical method throughout the paper, even
for non-linear operators. We start by setting up the framework and
defining our notation.

2.1 Notation and definitions
In the remainder of this paper,X will denote a mesh,xi a vertex of
this mesh, andei j the edge (if existing) connectingxi to xj . We will
call N1(i) the “neighbors” (or 1-ring neighbors) ofxi , i.e., all the
verticesxj such that there exists an edgeei j betweenxi andxj (see
Figure 9(a)).

In the surface fairing literature, most techniques use constrained
energy minimization. For this purpose, different fairness function-
als have been used. The most frequent functional is the total curva-
ture of a surfaceS :

E(S) =
∫

S
κ2

1 +κ2
2 dS . (1)

This energy can be estimated on discrete meshes [WW94, Kob97]
by fitting local polynomial interpolants at vertices. However, prin-
cipal curvaturesκ1 andκ2 depend non-linearly on the surfaceS .
Therefore, many practical fairing methods prefer the membrane
functional or the thin-plate functional of a meshX:

Emembrane(X) =
1
2

∫
Ω

X2
u +X2

v dudv (2)

Ethin plate(X) =
1
2

∫
Ω

X2
uu+2X2

uv+X2
vv dudv. (3)

Note that the thin-plate energy turns out to be equal to the total
curvature only when the parameterization(u,v) is isometric. Their
respective variational derivatives corresponds to the Laplacian and
the second Laplacian:

L(X) = Xuu+Xvv (4)

L2(X) = L ◦L(X) = Xuuuu+2Xuuvv+Xvvvv. (5)

For smooth surface reconstruction in vision, a weighted aver-
age of these derivatives has been used to fair surfaces [Ter88].
For meshes, Taubin [Tau95] used signal processing analysis to
show that a combination of these two derivatives of the form:
(λ + µ)L − λµL2 can provide a Gaussian filtering that minimizes
shrinkage. The constantsλ andµ must be tuned by the user to ob-
tain this non-shrinking property. We will refer to this technique as
theλ|µ algorithm.

2.2 Diffusion equation for mesh fairing
As we just pointed out, one common way to attenuate noise in a
mesh is through adiffusion process:

∂X
∂t

= λL(X). (6)

By integrating equation 6 over time, a small disturbance will dis-
perse rapidly in its neighborhood, smoothing the high frequencies,
while the main shape will be only slightly degraded. The Lapla-
cian operator can be linearly approximated at each vertex by the
umbrella operator (we will use this approximation in the current
section for the sake of simplicity, but will discuss its validity in
section 4), as used in [Tau95, KCVS98]:

L(xi) =
1
m ∑

j∈N1(i)

xj −xi (7)

wherexj are the neighbors of the vertexxi , andm = #N1(i) is the
number of these neighbors (valence). A sequence of meshes(Xn)

can be constructed by integrating the diffusion equation with a sim-
pleexplicit Eulerscheme, yielding:

Xn+1 = (I +λdtL)Xn. (8)

With the umbrella operator, the stability criterion requiresλdt < 1.
If the time step does not satisfy this criterion, ripples appear on the
surface, and often end up creating oscillations of growing magni-
tude over the whole surface. On the other hand, if this criterion is
met, we get smoother and smoother versions of the initial mesh as
n grows.

2.3 Time-shifted evaluation
The implementation of this previous explicit method, calledfor-
ward Euler method, is very straightforward [Tau95] and has nice
properties such as linear time and linear memory size for each fil-
tering pass. Unfortunately, when the mesh is large, the time step
restriction results in the need to perform hundreds of integrations to
produce a noticeable smoothing, as mentioned in [KCVS98].

Implicit integration offers a way to avoid this time step limi-
tation. The idea is simple: if we approximate the derivative us-
ing the new mesh (instead of using the old mesh as done in ex-
plicit methods), we will get to the equilibrium state of the PDE
faster. As a result of this time-shifted evaluation, stability is ob-
tained unconditionally [PTVF92]. The integration is now:Xn+1 =
Xn + λdtL(Xn+1). Performing an implicit integration, this time
calledbackward Euler method, thus means solving the following
linear system:

(I −λdtL)Xn+1 = Xn. (9)

This apparently minor change allows the user not to worry about
practical limitations on the time step. Consequent smoothing will
then be obtained safely by increasing the valueλdt. But solving a
linear system is the price to pay.

2.4 Solving the sparse linear system
Fortunately, this linear system can be solved efficiently as the ma-
trix A = I − λdtL is sparse: each line contains approximately six
non-zero elements if the Laplacian is expressed using Equ. (7) since
the average number of neighbors on a typical triangulated mesh is
six. We can use a preconditioned bi-conjugate gradient (PBCG) to
iteratively solve this system with great efficiency1. The PBCG is
based on matrix-vector multiplies [PTVF92], which only require
linear time computation in our case thanks to the sparsity of the
matrixA. We review in Appendix A the different options we chose
for the PBCG in order to have an efficient implementation for our
purposes.

2.5 Interpretation of the implicit integration
Although this implicit integration for diffusion is sound as is, there
are useful connections with other prior work. We review the analo-
gies with signal processing approaches and physical simulation.

2.5.1 Signal processing
In [Tau95], Taubin presents the explicit integration of diffusion with
a signal processing point of view. Indeed, ifX is a 1D signal of a
given frequencyω: X = eiω, thenL(X) =−ω2X. Thus, the transfer
function for Equ. (8) is 1−λdtω2, as displayed in Figure 2(a) as a
solid line. We can see that the higher the frequencyω, the stronger
the attenuation will be, as expected.

The previous filter is called FIR (for Finite Impulse Response)
in signal processing. When the diffusion process is integrated using
implicit integration, the filter in Equ. (9) turns out to be an Infinite
Impulse Response filter. Its transfer function is now 1/(1+λdtω2),
depicted in Figure 2(a) as a dashed line. Because this filter is always
in [0,1], we have unconditional stability.

1We use a bi-conjugate gradient method to be able to handle non sym-
metric matrices, to allow the inclusion of constraints (see Section 2.7).
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Figure 2:Comparison between (a) the explicit and implicit transfer
function forλdt = 1, and (b) their resulting transfer function after
10 integrations.

By rewriting Equ. (9) as:Xn+1 = (I −λdtL)−1Xn, we also note
that our implicit filtering is equivalent toI +λdtL +(λdt)2L2 + ...,
i.e., standard explicit filtering plus an infinite sequence of higher
order filtering. Contrary to the explicit approach, one single implicit
filtering step performs global filtering.

2.5.2 Mass-spring network
Smoothing a mesh by minimizing the membrane functional can be
seen as a physical simulation of a mass-spring network with zero-
rest length springs that will shrink to a single point in the limit.
Recently, Baraff and Witkin [BW98] presented an implicit method
to allow large time steps in cloth simulation. They found that the
use of an implicit solver instead of the traditional explicit Euler in-
tegration considerably improves computational time while still be-
ing stable for very stiff systems. Our method compares exactly to
theirs, but used for meshes and for a different PDE. We therefore
have the same advantages of using an implicit solver over the usual
explicit type: stability and efficiencywhen significant filtering is
called for.

2.6 Filter improvement
Now that the method has been set up for the usual diffusion equa-
tion, we can consider other equations that may be more appropriate
or may give better visual results for smoothing when we use im-
plicit integration.

We have seen in Section 2.1 that bothL andL2 have been used
with success in prior work [Ter88, Tau95, KCVS98]. When we use
implicit integration, as Figure 3(a) shows, the higher the power of
the Laplacian, the closer to alow-pass filterwe get. In terms of
frequency analysis, it is a better filter. Unfortunately, the matrix
becomes less and less sparse as more and more neighbors are in-
volved in the computation. In practice, we find thatL2 is a very
good trade-off between efficiency and quality. Using higher orders
affects the computational time significantly, while not always pro-
ducing significant improvements. We therefore recommend using
(I +λdtL2)Xn+1 = Xn for implicit smoothing (a precise definition
of the umbrella-like operator forL2 can be found in [KCVS98]).
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Figure 3: (a): Comparison between filters usingL, L2, L3, and
L4. (b): The scaling to preserve volume creates an amplification
of all frequencies; but the resulting filter (diffusion+scaling) only
amplifies low frequencies to compensate for the shrinking of the
diffusion.

We also tried to use a linear combination of bothL andL2. We
obtained interesting results like, for instance, amplification of low
or middle frequencies to exaggerate large features (refer to [GSS99]
for a complete study of feature enhancement). It is not appropriate

in the context of a fixed mesh, though: amplifying frequencies re-
quires refinement of the mesh to offer a good discretization.

2.7 Constraints
We can put hard and soft constraints on the mesh vertex positions
during the diffusion. For the user, it means that a vertex or a set of
vertices can be fixed so that the smoothing happens only on the rest
of the mesh. This can be very useful to retain certain details in the
mesh.

A vertexxi will stay fixed if we imposeL(xi) = 0. More compli-
cated constraints are also possible [BW98]. For example, vertices
can be constrained along an axis or on a plane by modifying the
PBCG to keep these constraints enforced during the linear solver
iterations.

We can also easily implementsoft constraints: each vertex can
be weighted according to the desired smoothing that we want. For
instance, the user may want to smooth a part of a mesh less than
another one, in order to keep desirable features while getting a
smoother version. We allow the assignment of a smoothing value
between 0 and 1 to attenuate the smoothing spatially: this is equiv-
alent to choosing a variableλ factor on the mesh, and happens to
be very useful in practice. Entire regions can be “spray painted”
interactively to easily assign this special factor.

2.8 Discussion
Even if adding a linear solver step to the integration of the diffusion
equation seems to slow down the problem at first glance, it turns
out that we gain significantly by doing so. For instance, the implicit
integration can be performed with an arbitrary time step. Since
the matrix of the system is very sparse, we actually obtain com-
putational time similar or better than the explicit methods. In the
following table, we indicate the number of iterations of the PBCG
method for different meshes and it can be seen that the PBCG is
more efficient when the smoothing is high. These timings were per-
formed on an SGI High Impact Indigo2 175MHz R10000 processor
with 128M RAM.

Mesh Nb of faces λdt = 10 λdt = 100

Horse 42,000 8 iterations (2.86s) 37 iterations (12.6s)
Dragon 42,000 8 iterations (2.98s) 39 iterations (13.82s)
Isis 50,000 9 iterations (3.84s) 37 iterations (15.09s)
Bunny 66,000 7 iterations (4.53s) 35 iterations (21.34s)
Buddha 290,000 5 iterations (13.78s) 28 iterations (69.93s)

To be able to compare the results with the explicit method, one
has to notice that one iteration of the PBCG is only slightly more
time consuming than one integration step using an explicit method.
Therefore, we can see in the following results that our implicit fair-
ing takes about 60% less time than the explicit fairing for a filtering
of λdt = 100, as we get about 33 iterations compared to the 100 in-
tegration steps required in the explicit case. We have found this be-
havior to be true for all the other meshes as well. The advantage of
the implicit method in terms of computational speed becomes more
obvious forlarge meshesand/orhigh smoothingvalue. In terms of
quality, Figure 4(b) and 4(c) demonstrate that both implicit and ex-
plicit methods produce about the same visual results, with a slightly
better smoothness for the implicit fairing. Note that we use 10 ex-
plicit integrations of the umbrella operator withλdt = 1, and 1 inte-
gration using the implicit integration withλdt = 10 to approximate
the same results. Therefore, there is a definite advantage in the use
of implicit fairing over the previous explicit methods. Moreover,
the remainder of this paper will make heavy use of this method and
its stability properties.

3 Automatic anti-shrinking fairing
Pure diffusion will, by nature, induce shrinkage. This is inconve-
nient as this shrinking may be significant for aggressive smooth-
ing. Taubin proposed to use a linear combination ofL andL ◦L
to amplify low frequencies in order to balance the natural shrink-
ing. Unfortunately, the linear combination depends heavily on the
mesh in practice, and this requires fine tuning to ensure both stable



(a) (b) (c) (d)
Figure 4:Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations withλdt = 1, (c) 1 implicit integration withλdt = 10 that takes
only 7 PBCG iterations (30% faster), and (d) 20 passes of theλ|µ algorithm, withλ = 0.6307and µ= −0.6732. The implicit integration
results in better smoothing than the explicit one for the same, or often less, computing time. If volume preservation is called for, our technique
then requires many fewer iterations to smooth the mesh than theλ|µ algorithm.

and non-shrinking results. In this section, we propose an automatic
solution to avoid this shrinking. We preserve the zeroth moment,
i.e., the volume, of the object. Without any other information on
the mesh, we feel it is the most reasonable invariant to preserve,
although surface area or other invariants can be used.

3.1 Volume computation
As we have a mesh given in terms of triangles, it is easy to compute
the interior volume. This can be done by summing the volumes of
all the oriented pyramids centered at a point in space (the origin, for
instance) and with a triangle of the mesh as a base. This computa-
tion has a linear complexity in the number of triangles [LK84]. For
the reader’s convenience, we give the expression of the volume of
a mesh in the following equation, wherex1

k,x
2
k andx3

k are the three
vertices of thekth triangle:

V =
1
6

nbFaces

∑
k=1

gk ·Nk (10)

whereg = (x1
k +x2

k +x3
k)/3 andNk = ~x1

kx2
k∧

~x1
kx3

k

3.2 Exact volume preservation
After an integration step, the mesh will have a new volumeVn. We
then want to scale it back to its original volumeV0 to cancel the
shrinking effect. We apply a simple scale on the vertices to achieve
this. By multiplying all the vertex positions byβ = (V0/Vn)1/3,
the volume is guaranteed to go back to its original value. As this
is a simple scaling, it is harmless in terms of frequencies. To put it
differently, this scaling corresponds to a convolution with a scaled
Dirac in the frequency domain, hence it amplifies all the frequen-
cies in the same way to change the volume back. The resulting
filter, after the implicit smoothing and the constant amplification
filter, amplifies the low frequencies of the original mesh toexactly
compensate for the attenuation of the high frequencies, as sketched
on Figure 3(b).

The overall complexity for volume preservation is then linear.
With such a process, we do not need to tweak parameters: the
anti-shrinking filter isautomaticallyadapted to the mesh and to
the smoothing, contrary to previous approaches. Note that hard
constraints defined in the previous section are applied before the
scaling and do not result in fixed points anymore: scaling alters the
absolute, but not the relative position.

We can generalize this re-scaling phase to different invariants.
For instance, if we have to smooth height fields, it is more appropri-
ate to take the invariant as being the volume enclosed between the
height field and a reference plane, which changes the computations
only slightly. Likewise, for surfaces of revolution, we may change
the way the scaling is computed to exploit this special property. We
can also preserve the surface area if the mesh is a non-closed sur-
face. However, in the absence of specific characteristics, preserving
the volume gives nice results. According to specific needs, the user
can select the appropriate type of invariant to be used.

3.3 Discussion
When we combine both methods of implicit integration and anti-
shrinking convolution, we obtain an automatic and efficient method

for fairing. Indeed, no parameters need be tuned to ensure stability
or to have exact volume preservation. This is a major advantage
over previous techniques. Yet, we retain all of the advantages of
previous methods, such as constraints [Tau95] and the possibility
of accelerating the fairing via multigrid [KCVS98], while addition-
ally offering stability and efficiency. This technique also dramati-
cally reduces the computing time over Taubin’s anti-shrinking al-
gorithm: as demonstrated in Figure 4(c) and 4(d), using theλ|µ
algorithm may preserve the volume after fine tuning, but one itera-
tion will only slightly smooth the mesh. The rest of this paper ex-
ploits both automatic anti-shrinking and implicit fairing techniques
to offer more accurate tools for fairing.

4 An accurate diffusion process
Up to this section, we have relied on the umbrella operator
(Equ. (7)) to approximate the Laplacian on a vertex of the mesh.
This particular operator does not truly represent a Laplacian in the
physical meaning of this term as we are about to see. Moreover,
simple experiments on smooth meshes show that this operator, us-
ing explicit or implicit integration, can create bumps or “pimples”
on the surface, instead of smoothing it. This section proposes a
sounder simulation of the diffusion process, by defining a new ap-
proximation for the Laplacian and by taking advantage of the im-
plicit integration.

4.1 Inadequacy of the umbrella operator
The umbrella operator, used in the previous sections corresponds
to an approximation of the Laplacian in the case of a specific pa-
rameterization [KCVS98]. This means that the mesh is supposed
to have edges of length 1 and all the angles between two adjacent
edges around a vertex should be equal. This is of course far from
being true in actual meshes, which contain a variety of triangles of
different sizes.

Treating all edges as if they had equal length has significant un-
desired consequences for the smoothing. For example, the Lapla-
cian can be the same for two very different configurations, corre-
sponding to different frequencies as depicted in Figure 5. This dis-
torts the filtering significantly, as high frequencies may be consid-
ered as low ones, and vice-versa. Nevertheless, the advantage of
the umbrella operator is that it is normalized: the time step for inte-
gration is always 1, which is very convenient. But we want a more
accurate diffusion process to smooth meshes consistently, in order
to more carefully separate high from low frequencies.

(a) (b)
Figure 5: Frequency confusion: the umbrella operator is evalu-
ated as the vector joining the center vertex to the barycenter of its
neighbors. Thus, cases (a) and (b) will have the same approximated
Laplacian even if they represent different frequencies.



We need to define a discrete Laplacian which is scale dependent,
to better approximate diffusion. However, if we use explicit inte-
gration [Tau95], we will suffer from a very restricted stability crite-
rion. It is well known [PTVF92] that the time step for a parabolic
PDE like Equ. (6) depends on the square of the smallest length scale
(here, the smallest edge lengthmin(|e|)):

dt ≤ min(|e|)2

2 λ

This limitation is a real concern for large meshes with small de-
tails, since an enormous number of integration steps will have to
be performed to obtain noticeable smoothing. This isintractablein
practice.

With implicit integration explained in Section 2, we can over-
come this restriction and use a much larger time step while still
achieving good smoothing, saving considerable computation. In
the next two paragraphs we present one design of a good approxi-
mation for the Laplacian.

4.2 Simulation of the 1D heat equation
The 1D case of a diffusion equation corresponds to the heat equa-
tion xt = xuu. It is therefore worth considering this example as a
test problem for higher dimensional filtering. To do so, we use
Milne’s test presented in [Mil95]. Milne compared two cases of
the same initial problem: first, the problem is solved on a regular
mesh on[0,1], and then on an irregular mesh, taken to consist of a
uniform coarse grid of cells on[0,1] with each of the cells in[ 1

2 ,1]
subdivided into two fine cells as depicted in Figure 6(a) and 6(b).
With such a configuration, classical finite difference coefficients for
second derivatives can be used on each cell, except for the middle
one which does not have centered neighbors. Milne shows that if
no particular care is taken for this “peripheral” cell, it introduces a
noise termthat creates large inaccuracies — larger than if the mesh
was represented uniformly at the coarser resolution! But if we fit
a quadratic spline at this cell to approximate the second derivative,
then the noise source disappears and we get more accurate results
than with a constant coarse resolution (see the errors created in each
case in one iteration of the heat equation in Figure 6(c)).

This actually corresponds to the extension of finite difference
computations for irregular meshes proposed by Fornberg [For88]:
to compute the FD coefficients, just fit a quadratic function at the
sample point and its two immediate neighbors, and then return
the first and second derivative of that function as the approximate
derivatives. For three points spaced∆ andδ apart (see Figure 6(d)),
we get the 1D formula:

(xuu)i =
2

δ +∆

(
xi−1−xi

δ
+

xi+1−xi

∆

)
.

Note that when∆ = δ, we find the usual finite difference formula.

4.3 Extension to 3D
The umbrella operator suffers from this problem of large inaccura-
cies for irregular meshes as the same supposedly constant parame-
terization is used (Figure 7 shows such a behavior). Surprisingly,
a simple generalization of the previous formula valid in 1D corre-
sponds to a known approximation of the Laplacian. Indeed, Fuji-
wara [Fuj95] presents the following formula:

L(xi) =
2
E ∑

j∈N1(i)

xj −xi

|ei j |
, with E = ∑

j∈N1(i)

|ei j |. (11)

where|ei j | is the length of the edgeei j . Note that, when all edges
are of size 1, this reduces to the umbrella operator (7). We will then
denote this new operator as thescale-dependent umbrella operator.

Unfortunately, the operator is no longer linear. But during a typi-
cal smoothing, the length of the edges does not change dramatically.
We thus make the approximation that the coefficients of the matrix
A = (I − λdtL) stay constant during an integration step. We can
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Figure 6: Test on the heat equation: (a) regular sampling vs. (b)
irregular sampling. Numerical errors in one step of integration (c):
using the usual FD weight on an irregular grid to approximate sec-
ond derivatives creates noise, and gives a worse solution than on
the coarse grid, whereas extended FD weights offer the expected
behavior. (d) Three unevenly spaced samples of a function and cor-
responding quadratic fitting for extended FD weights.

compute them initially using the current edges’ lengths and keep
their values constant during the PBCG iterations. In practice, we
have not noted any noticeable drawbacks from this linearization.
We can even keep the same coefficients for a number of (or all)
iterations: it will correspond to a filtering “relative” to the initial
mesh instead if the current mesh. For the same reason as before, we
also recommend the use of the second Laplacian for higher qual-
ity smoothing without significant increase in computation time. As
demonstrated in Figure 7, the scale-dependent umbrella operator
deals better with irregular meshes than the umbrella operator: no
spurious artifacts are created. We also applied this operator to noisy
data sets from 3D photography to obtain smooth meshes (see Fig-
ure 1 and 12).

The number of iterations needed for convergence depends heav-
ily on the ratio between minimum and maximum edge lengths. For
typical smoothing and for meshes over 50000 faces, the average
number of iterations we get is 20. Nevertheless, we still observe
undesired behavior on flat surfaces: vertices in flat areas still slide
during smoothing. Even though this last formulation generally re-
duces this problem, we may want to keep a flat areaintact. The
next section tackles this problem with a new approach.

5 Curvature flow for noise removal
In terms of differential equations, diffusion is a close relative of
curvature flow. In this section, we first explore the advantages of
using curvature flow over diffusion, and then propose an efficient
algorithm for noise removal using curvature flow.

5.1 Diffusion vs. curvature flow
The Laplacian of the surface at a vertex has both normal and tan-
gential components. Even if the surface is locally flat, the Lapla-
cian approximation will rarely be the zero vector [KCVS98]. This
introduces undesirable drifting over the surface, depending on the
parameterization we assume. We in effect fair the parameterization
of the surface as well as the shape itself (see Figure 10(b)).

We would prefer to have a noise removal procedure that does not
depend on the parameterization. It should use onlyintrinsic prop-
ertiesof the surface. This is precisely what curvature flow does.
Curvature flow smoothes the surface by moving along the surface
normaln with a speed equal to the mean curvatureκ:

∂xi

∂t
=−κi ni . (12)



(a) (b) (c) (d)
Figure 7:Application of operators to a mesh: (a) mesh with differ-
ent sampling rates, (b) the umbrella operator creates a significant
distortion of the shape, but (c) with the scale-dependent umbrella
operator, the same amount of smoothing does not create distortion
or artifacts, almost like (d) when curvature flow is used. The small
features such as the nose are smoothed but stay in place.

Other curvatures can of course be used, but we will stick to the
mean curvature:κ = (κ1 + κ2)/2 in this paper. Using this proce-
dure, a sphere with different sampling rates should stay spherical
under curvature flow as the curvature is constant. And we should
also not get any vertex “sliding” when an area is flat as the mean
curvature is then zero.

There are already different approaches using curvature
flow [Set96], and even mixing both curvature flow and volume
preservation [DCG98] to smooth object appearance, but mainly in
the context of level-set methods. They are not usable on a mesh as
is. Next, we show how to approximate curvature consistently on a
mesh and how to implement this curvature flow process with our
implicit integration for efficient computations.

5.2 Curvature normal calculation
It seems that all the formulations so far have a non-zero tangential
component on the surface. This means that even if the surface is flat
around a vertex, it may move anyway. For curvature flow, we don’t
want this behavior. A good idea is to check the divergence of the
normal vector, as it is the definition of mean curvature (κ = div n):
if all the normals of the faces around a vertex are the same, this
vertex should not move then (zero curvature). Having this in mind,
we have selected the following differential geometry definition of
thecurvature normalκ n:

∇A
2 A

= κ n (13)

whereA is the area of a small region around the pointP where
the curvature is needed, and∇ is the derivative with respect to the
(x,y,z) coordinates ofP. With this definition, we will have the zero
vector for a flat area. As proven in Figure 8, we see that moving the
center vertexxi on a flat surface does not change the surface area.
On the other hand, moving it above or below the plane will always
increase the local area. Hence, we have the desired property of a
null area gradient for a locally flat surface, whatever the valence,
the aspect ratio of the adjacent faces, or the edge lengths around the
vertex.
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Figure 8: The area around a vertex xi lying in the same plane as
its 1-ring neighbors does not change if the vertex moves within the
plane, and can only increase otherwise. Being a local minimum,
it thus proves that the derivative of the area with respect to the
position of xi is zero for flat regions.

To derive the discrete version of this curvature normal, we se-
lect the smallest area around a vertexxi that we can get, namely the

area of all the triangles of the 1-ring neighbors as sketched in Fig-
ure 9(a). Note that this areaA uses cross products of adjacent edges,
and thus implicitly contains information on local normal vectors.
The complete derivation from the continuous formulation to the dis-
crete case is shown in Appendix B. We find the following discrete
expression through basic differentiation:

−κ n =
1

4 A ∑
j∈N1(i)

(cot α j +cot β j )(xj −xi) (14)

whereα j and β j are the two angles opposite to the edge in the
two triangles having the edgeei j in common (as depicted in Fig-
ure 9(b)), andA is the sum of the areas of the triangles havingxi as
a common vertex.
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Figure 9:A vertex xi and its adjacent faces (a), and one term of its
curvature normal formula (b).

Note the interesting similarity with [PP93]. We obtain almost
the same equation, but with a completely different derivation than
theirs, which was using energies of linear maps. The same remark
stands for [DCDS97] since they also find the same kind of expres-
sion as Equ. (14) for their functional, but using this time piecewise
linear harmonic functions.

5.3 Boundaries
For non-closed surfaces or surfaces with holes, we can define a spe-
cial treatment for vertices on boundaries. The notion of mean cur-
vature does not make sense for such vertices. Instead, we would
like to smooth the boundary, so that the shape of the hole itself
gets rounder and rounder as iterations go. We can then use for in-
stance Equ. (11) restricted to the two immediate neighbors which
will smooth the boundary curve itself.

Another possible way is to create a virtual vertex, stored but not
displayed, initially placed at the barycenter of all the vertices placed
on a closed boundary. A set of faces adjacent to this vertex and con-
necting the boundary vertices one after the other are also virtually
created. We can then use the basic algorithm without any special
treatment for the boundary as now, each vertex has a closed area
around it.

5.4 Implementation
Similarly to Section 4, we have a non-linear expression defining
the curvature normal. We can however proceed in exactly the same
way, as the changes induced in a time step will be small. We simply
compute the non-zero coefficients of the matrixI −λdtK, whereK
represents the matrix of the curvature normals. We then succes-
sively solve the following linear system:

(I −λdtK) Xn+1 = Xn.

We can use preconditioning or constraints, just as before as every-
thing is basically the same except for the local approximation of
the speed of smoothing. As shown on Figure 10, a sphere with dif-
ferent triangle sizes will remain the same sphere thanks to both the
curvature flow and the volume preservation technique.

In order for the algorithm to be robust, an important test must be
performed while the matrixK is computed: if we encounter a face
of zero area, we must skip it. As we divide by the area of the face,
degenerate triangles are to be treated specially. Mesh decimation
to eliminate all degenerate triangles can also be used as suggested
in [PP93].



(a) (b) (c) (d)

Figure 10:Smoothing of spheres: (a) The original mesh containing
two different discretization rates. (b) Smoothing with the umbrella
operator introduces sliding of the mesh and unnatural deformation,
which is largely attenuated when (c) the scale-dependent version is
used, while (d) curvature flow maintains the sphere exactly.

5.5 Normalized version of the curvature operator
We can now write the equivalent of the umbrella operator, but for
the curvature normal. Since the new formulation has nice proper-
ties, we can create a normalized version that could be used in an
explicit integration for quick smoothing. The normalization will
bring the eigenvalues back in[−1,0] so that a time step up to 1 can
be used in explicit integration methods. Its expression is simply:

(κ n)normalized=
1

∑ j (cot αl
j +cot αr

j )
∑

j
(cot αl

j +cot αr
j)(Xi−Xj)

5.6 Comparison of results
Figures 7, 10, and 11 compare the different operators we have used:

• For significant fairing, the umbrella operator changes the
shape of the object substantially: triangles drift over the sur-
face and tend to be uniformly distributed with an equal size.

• The scale-dependent umbrella operator allows the shape to
stay closer to the original shape even after significant smooth-
ing, and almost keeps the original distribution of triangle
sizes.

• Finally, the curvature flow just described achieves the best
smoothing with respect to the shape, as no drift happens and
only geometric properties are used to define the motion.

Knowing these properties, the user can select the type of smoothing
that fits best with the type of fairing that is desired. Diffusion will
smooth the shape along with the parameterization, resulting in a
more regular triangulation. If only the shape is to be affected, then
the curvature operator should be used.

(a) (b) (c) (d)

Figure 11: Significant smoothing of a dragon: (a) original mesh,
(b) implicit fairing using the umbrella operator, (c) using the scale-
dependent umbrella operator, and (d) using curvature flow.

6 Discussion and conclusion
In this paper, we have presented a comprehensive set of tools for
mesh fairing. We first presented animplicit fairing method, us-
ing implicit integration of a diffusion process that allows for both
efficiency, quality, and stability. Additionally we guarantee volume
preservation during smoothing. Since the umbrella operator used in
the literature appears to have serious drawbacks, we defined a new
scale-dependent umbrella operator to overcome undesired effects
such as large distortions on irregular meshes. Finally, since using
a diffusion process leads always to vertex “sliding” on the mesh,

we developed a curvature flow process. The same implicit inte-
gration is used for this new operator that now offers a smoothing
only depending on intrinsic geometric properties, without sliding
on flat areas and with preserved curvature for constant curvature ar-
eas. The user can make use of all these different tools according to
the mesh to be smoothed.

We believe the computational time for this approach can still
be improved upon. We expect that multigrid preconditioning for
the PBCG in the case of the scale-dependent operator for diffu-
sion and for curvature flow would speed up the integration process.
This multigrid aspect of mesh fairing has already been mentioned
in [KCVS98], and could be easily extended to our method. Like-
wise, subdivision techniques can be directly incorporated into our
method to refine or simplify regions according to curvature for in-
stance. Other curvature flows, for example along the principal cur-
vature directions, are also worth studying.
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Figure 12:Faces: (a) The original decimated Spock mesh has 12,000 vertices. (b) We linearly oversampled this initial mesh (every visi-
ble triangle on (a) was subdivided in 16 coplanar smaller ones) and applied the scale-dependent umbrella operator, observing significant
smoothing. One integration step was used,λdt = 10, converging in 12 iterations of the PBCG. Similar results were achieved using the
curvature operator. (c) curvature plot for the mannequin head (obtained using our curvature operator), (d) curvature plot of the same mesh
after a significant implicit integration of curvature flow (pseudo-colors).

[WW94] Willian Welch and Andrew Witkin. Free-form shape design using triangu-
lated surfaces. InSIGGRAPH 94 Conference Proceedings, pages 247–256,
July 1994.

Appendix
A Preconditioned Bi-Conjugate Gradient
In this section, we enumerate the different implementation choices
we made for the PBCG linear solver.

A.1 Preconditioning
A good preconditioning, and particularly a multigrid precondition-
ing, can drastically improve the convergence rate of conjugate gra-
dient solver. The umbrella operator (7) has all its eigenvalues in
[−1,0]: in turn, the matrixA is always well conditioned for typical
values ofλdt. In practice, the simpler the conditioning the better.
In our examples, we used the usual diagonal preconditionerÃ with:
Ãii = 1/Aii , which provides a significant speedup with almost no
overhead.

A.2 Convergence criterion
Different criteria can be used to test whether or not further iterations
are needed to get a more accurate solution of the linear system.
We opted for the following stopping criterion after several tests:
||AXn+1−Xn|| < ε||Xn||, where||.|| can be either theL2 norm, or, if
high accuracy is needed, theL∞ norm.

A.3 Memory requirements
An interesting remark is that we don’t even need to store the matrix
A in a dedicated data structure. The mesh itself provides a sparse
matrix representation, as the vertexxi and its neighbors are the only
non-zero locations inA for row i. Computations can thus be carried
directly within the mesh structure. ComputingAX can be imple-
mented by gathering values from the 1-ring neighbors of each ver-
tex, whileATX can be achieved by “shooting” a value to the 1-ring
neighbors.

With these simple setups, we obtain an efficient linear solver for
the implicit integration described in Section 2.

B Curvature normal approximation
From the continuous definition of the curvature normal (Equ. (13)),
we must derive a discrete formulation when the surface is given as
a mesh. Let’s consider a pointP of the mesh. Its neighbors, in
counterclockwise order aroundP, are the points{Qn}. An adjacent
face is then of the formP,Qn,Qn+1. The edge vectorPQn is the
difference betweenQn andP:

PQn = Qn−P.

Now, we take the neighboring area as being the union of the
adjacent faces. The total adjacent areaA is then equal to the sum
of every adjacent face’s area:A = ∑n An, the area of each adjacent
face being: An = 1

2 ||PQn×PQn+1||. So, using Einstein summation
notation [Bar89], we have:

A2
n =

1
4

εi jk PQn
j PQn+1

k εilm PQn
l PQn+1

m ,

whereεi jk is the permutation symbol. Using the Kronecker delta
δi j , and using∂Pi

∂Pq
= δiq as well as∇ = ∂/∂Pq, we derive:

∂A2
i

∂Pq
= 2 Ai

∂Ai

∂Pq

=
1
4

εi jkεilm

[
−δ jq PQn+1

k PQn
l PQn+1

m −δkq PQn
j PQn

l PQn+1
m

−δlq PQn
j PQn+1

k PQn+1
m −δmq PQn

j PQn+1
k PQn+1

l

]
Using theε-δ rule statingεi jkεilm = δ jl δkm−δ jmδkl , we obtain:

∂A2
i

∂Pq
=

1
2

[
−||PQn+1||2 PQn +(PQn ·PQn+1) PQn+1

−||PQn||2 PQn+1 +(PQn+1 ·PQn) PQn
]

q

=
1
2

[
(PQn+1 ·Qn+1Qn) PQn +(PQn ·QnQn+1) PQn+1

]
q
.

Consequently:

∂Ai

∂P
=

1
4 Ai

(
(PQn+1 ·Qn+1Qn) PQn +(PQn ·QnQn+1) PQn+1

)
.

(15)
Using Equ. (13), we find:

∇A
2 A

=
1

2 A ∑
i

∂Ai

∂P
(16)

From equations (15) and (16), we find the equations used in Sec-
tion 5.2 since the dot product ofPQn by QnQn+1 divided by their
cross product simplifies into a cotangent.
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Keywords: Compression , Geometry, Multi Resolution , Filter

ABSTRACT

A number of static and multi-resolution methods have been introduced in recent years to compress 3D meshes. In most of
these methods the connectivity information is encoded without loss of information, but user-controllable loss of information
is tolerated while compressing the geometry and property data. All these methods are very efficient at compressing the con-
nectivity information, in some cases to a fraction of a bit per vertex, but the geometry and property data typically occupies
much more room in the compressed bitstream than the compressed connectivity data. In this paper we investigate the use of
polynomial linear filtering as studied in [Taubin95, TaZhGo96], as a global predictor for the geometry data of a 3D mesh in
multi-resolution 3D geometry compression schemes. Rather than introducing a new method to encode the multi-resolution
connectivity information, we choose one of the efficient existing schemes depending on the structure of the multi-resolution
data. After encoding the geometry of the lowest level of detail with an existing scheme, the geometry of each subsequent
level of detail is predicted by applying a polynomial filter to the geometry of its predecesor lifted to the connectivity of the
current level. The polynomial filter is designed to minimize the l 2-norm of the approximation error but other norms can be
used as well. Three properties of the filtered mesh are studied next: accuracy, robustness and compression ratio. The Zeroth
Order Filter (unit polynomial) is found to have the best compression ratio. But higher order filters achieve better accuracy and
robustness properties at the price of a slight decrease of the compression ratio.

1 Introduction

Polygonal models are the primary 3D representations for the manufacturing, architectural, and entertainment industries. They
are also central to multimedia standards such as VRML and MPEG-4. In these standards, a polygonal model is defined by the
position of its vertices (geometry); by the association between each face and its sustaining vertices (connectivity); and optional
colors, normals and texture coordinates (properties).

Several single-resolution [TaRo98, LiKuo98] and multi-resolution methods [Hoppe96, PoHo97, TaGuHoLa98, Ross99]
have been introduced in recent years to represent 3D meshes in compressed form for compact storage and transmission over
networks and other communication channels. In most of these methods the connectivity information is encoded without loss
of information, and user-controllable loss is tolerated while compressing the geometry and property data. In fact, some of
these methods only addressed the encoding of the connectivity data [GuSt98]. Multi-resolution schemes reduce the burden
of generating hierarchies of levels on the fly, which may be computationally expensive, and time consuming. In some of the
multi-resolution schemes the levels of detail are organized in the compressed data in progressive fashion, from low to high
resolution. This is a desirable property for applications which require transmission of large 3D data sets over low bandwith
communication channels. Progressive schemes are more complex and typically not as efficient as single-resolution methods,
but reduce quite significantly the latency in the decoder process.

In this paper we investigate the use of polynomial linear filtering [Taubin95, TaZhGo96], as a global predictor for the
geometry data of a 3D mesh in multi-resolution 3D geometry compression schemes. As in other multi-resolution geometry
compression schemes, the geometry of a certain level of detail is predicted as a function of the geometry of the next coarser
level of detail. However, other 3D geometry compression schemes use simpler and more localized prediction schemes.

�Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, USA, rvbalan@scr.siemens.com. This paper was written while the
first author was a postdoctoral associate at IBM (T.J.Watson Research Center) and IMA (University of Minnesota)

yIBM T.J.Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598, taubin@us.ibm.com
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Although we concentrate on the compression of geometry data, property data may be treated similarly. The methods
introduced in this paper apply to the large family of multi-resolution connectivity encoding schemes. These linear filters are
defined by the connectivity of each level of detail and a few parameters, which in this paper are obtained by minimizing a
global criterion related to certain desirable properties. Our simulations present the least square filters compared with some
other standard filters.

In [PaRo99] the Butterfly subdivision scheme is used for the predictor. In [GuSwSc99], a special second order local crite-
rion is minimized to refine the coarser resolution mesh. The latter class of algorithms have concentrated on mesh simplification
procedures and efficient connectivity encoding schemes. For instance in the Progressive Forest Split scheme [TaGuHoLa98],
the authors have used a technique where the sequence of splits is determined based on the local volume conservation criterion.
Next, the connectivity can be efficiently compressed as presented in the aformentioned paper or as in [Ross99].

Mesh simplification has been also studied in a different context. Several works address the remeshing problem, usually
for editing purposes. For instance in [Eck&all95] the harmonic mapping is used to resample the mesh. Thus the remashing
is obtained by minimizing a global curvature-based energy criterion. A conformal map is used in [Lee&all98] for similar
purposes, whereas in [MaYaVe93] again a global length based energy criterion is used to remesh.

The organization of the paper is the following: in section 2 we review the mesh topology based filtering and introduce the
basic notions; in section 3 we present two geometry encoding algorithms; in section 4 we analyze three desirable properties,
accuracy, robustness and compression ratio; in section 5 we present numerical and graphical results; finally, the conclusions
are contained in section 6 and are followed by the bibliography.

2 Mesh Topology Based Filtering

Consider a mesh (V ;F) given by a list of vertex coordinates V (the mesh geometry) of the nV vertices, and a list of polygonal
faces F (the mesh connectivity). The mesh geometry can be thought of as a collection of three vectors (x; y; z) of length nV
containing, respectively, the three coordinates of each vertex; alternatively we can see V as representing a collection of nV
vectors (r0; r1; : : : ; rnV ) of length 3, each of them being the position vector of some mesh vertex. To the list F we associate
the symmetric nV � nV vertex to vertex incidence matrix M , and the nV � nV matrix K defined by:

K = I �DM (1)

where D is the nV � nV diagonal matrix whose (i; i) element is the inverse of the number of first order neighbors the vertex
i has. As shown in [Taubin95], K has nV real eigenvalues all in the interval [0; 2].

Consider now a collection P = (Px(X); Py(X); Pz(X)) of three polynomials each of degree d, for some positive integer
d.

Definition We call P a polynomial filter of length d + 1 (and degree or order d), where its action on the mesh (V ;F) is
defined by a new mesh (V 0;F) of identical connectivity but of geometry V 0 = (x0; y0; z0) given by:

x0 = Px(K)x ; y0 = Py(K)y ; z0 = Pz(K)z (2)

A rational filter (Q;P ) of orders (m;n) is defined by two collections of polynomials (Qx; Qy; Qz) and (Px; Py; Pz) of
degrees m, respectively n, whose action on the mesh (V ;F) is defined by the new mesh (V 0;F) through:

Qx(K)x0 = Px(K)x ; Qy(K)y0 = Py(K)y ; Qz(K)z0 = Pz(K)z (3)

To avoid possible confusions, we assume Qx(K); Qy(K) and Qz(K) invertible. We point out the filtered mesh has the same
connectivity as the original mesh; only the geometry changes. Note also the filter works for non-manifold connectivity as well.

In this report we consider only polynomial filters, i.e. rational filters of the form (1; P ). In [DeMeScBa99], the authors
considered the case (Q; 1). Note the distinction between polynomial and rational filters is artificial. Indeed, any rational
filter is equivalent to a polynomial filter of length nV , in general, and in fact, any polynomial filter of degree larger than nV
is equivalent to a polynomial filter of degree at most nV � 1. These facts are results of the Cayley-Hamilton theorem (see
[FrInSp79], for instance) that says the characteristic polynomial of K vanishes when applied on K. Therefore:

Q(K)�1P (K) = P0(K) (4)

for some polynomial P0 of degree at most nV � 1. Hence the notion of IIR (Infinite Impulse Response) filter does not have
any correspondence in the mesh topology based filtering, because any polynomial of higher order or rational filter is equivalent
to a polynomial filter of degree at most nV � 1, thus a FIR (Finite Impulse Response) filter. However, the difference between
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polynomial and rational filters lays in their implementation. The polynomial filter is easily implemented by a forward iteration
scheme. The rational filter can be implemented by a forward-backward iteration scheme:

w = Px(K)x (5)

Qx(K)x0 = w

involving the solution of a linear system of size nV . For small degrees m;n compared to nV (when the rational form has an
advantage), the backward iteration turns into a sparse linear system, and thus efficient methods can be applied to implement it.

Two particular filtering schemes are of special importance to us and are studied next. The first scheme is called the Zeroth
Order Filter and is simply defined by the constant polynomial 1:

PZ(X) = (1; 1; 1) (6)

Technically speaking, with the order definition given before, this is a zero order filter, but the most general form of zero order
filters would be constant polynomials, not necessary 1. However, throughout this paper we keep this convention to call the
constant polynomial 1, the Zeroth Order Filter. Note its action is trivial: it does not change anything.

The second distinguished filtering scheme is called Gaussian Smoothing and it is a first order filter defined by:

PG(X) = (1�X; 1�X; 1�X) (7)

Using the definition of K and the filter action on the mesh geometry, the geometry of the Gaussian filtered mesh is given by:

x0 = DMx ; y0 = DMy ; z0 = DMz (8)

which turns into the following explicit form (using the position vectors r i and the first order neighborhood i� of vertex i):

r
0

i
=

1

ji�j

X

v2i�

rv (9)

In other words, the new mesh geometry is obtained by taking the average of the first order neighbors positions on the original
mesh.

3 The Progressive Approximation Algorithms

In Progressive Transmission schemes, the original mesh is represented as a sequence of succesively simplified meshes obtained
by edge collapsing and vertex removal. Many simplification techniques have been proposed in the literature. For instance in
[TaGuHoLa98] the Progressive Forest Split method is used. It consists of partitioning the mesh into disjoint patches and in
each patch a connected sequence of edge collapsing is performed.

The meshes we are using here have been simplified by a clustering procedure. First all the coordinates are normalized so
that the mesh is included in a 3D unit cube. Next the cube is divided along each coordinate axis into 2 B segments (B is the
quantizing rate, representing the number of bits per vertex and coordinate needed to encode the geometry), thus obtaining 2 3B

smaller cubes. In each smaller cube all the edges are collapsed to one vertex placed in the center of the corresponding cube.
The mesh such obtained represents the quantized mesh at the finest resolution level. The coarsening process proceeds now
as follows: 23K smaller cubes are replaced by one of edge size 2K times bigger, and all the vertices inside are removed and
replaced by one placed in the middle of the bigger cube. Next, the procedure is repeated until we obtain a sufficiently small
number of vertices (i.e. a sufficient coarse resolution).

At each level of resolution, the collapsing ratio (i.e. the number of vertices of the finer resolution, divided by the number
of vertices of the coarser resolution) is not bigger than 2 3K . In practice, however, this number could be much smaller than this
bound, in which case some levels may be skipped. After l steps, the number of bits needed to encode one coordinate of any
such vertex is B � lK. Thus, if we consider all the levels of detail and a constant collapsing ratio R, the total number of bits
per coordinate needed to encode the geometry becomes:

Mb = NB +
N

R
(B �K) +

N

R2
(B � 2K) + � � �+

N

RL
(B � LK)

where N is the initial number of vertices and L the numbers of levels. Assuming 1
RL � 1 we obtain Mb = NB R

R�1
+

NK R

(R�1)2
. Thus, the number of bits per vertex (of initial mesh) and coordinate turns into:

Nbits '
R

R � 1
(B +

K

R� 1
) [bits=vertex � coordinate] (10)
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Thus, if we quantize the unit cube using B = 10 bits and we resample at each level with a coarsening factor of 2K = 2
and a collapsing ratio R = 2, we obtain the sequence has B=K = 10 levels of details encoded using an average of 22
bits=vertex �coordinate, or 66 bits=vertex (including all three coordinates). Thus a single resolution encoding would require
only B (10, in this example) bits per vertex and coordinate in an uncompressed encoding. Using the clustering decomposition
algorithm, the encoding of all levels of details would require N bits (given by (10)), about 22 in this example, which is more
than twice the single resolution rate.

In this scenario no information about the coarser resolution mesh has been used to encode the finer resolution mesh. In a
progressive transmission, the coarser approximation may be used to predict the finer approximation mesh and thus only the
differences should be encoded and transmitted. Moreover, the previous computations did not take into account the internal
redundancy of the bit stream. An entropic encoder would perform much better than (10). In this paper we do not discuss the
connectivity encoding problem, since we are interested in the geometry encoding only. Yet, we assume at each level of detail
the decoder knows the connectivity of that level mesh.

Suppose that

(MeshnL�1;mapnL�2;nL�1;MeshnL�2;mapnL�3;nL�2; : : : ;map1;2;Mesh1;map0;1;Mesh0)

is the sequence of meshes obtained by the coarsening algorithm, where Mesh nL�1 is the coarsest resolution mesh, Mesh0
the finest resolution mesh, and mapl�1;l : f0; 1; : : : ; nVl�1 � 1g ! f0; 1; : : : ; nVl � 1g is the collapsing map that associates
to the nVl�1 vertices of the finer resolution mesh the nVl vertices of the coarser resolution mesh where they collapse. Each
mesh Meshl has two components (Geoml; Connl), the geometry and connectivity respectively, as explained earlier. We are
concerned with the encoding of the sequence of geometries

(GeomnL�1; GeomnL�2; : : : ; Geom1; Geom0):

Our basic encoding algorithm is the following:
The Basic Encoding Algorithm
Step 1. Encode GeomnL�1 using an entropic or arithmetic encoder;
Step 2. For l = nL� 1 down to 1 repeat:

Step 2.1 Based on mesh Meshl and connectivity Connl�1 find a set of parameters Paraml�1 and construct a predictor
of the geometry Geoml�1:

^Geoml�1 = Predictor(Meshl; Connl�1;mapl�1;l;Paraml�1)

Step 2.2 Encode the parameters Param l�1;
Step 2.3 Compute the approximation error Diff l�1 = Geoml�1 � ^Geoml�1 and encode the differences. 3

The decoder will reconstruct the geometry at each level by simply adding up the difference to his prediction:

Geoml�1 = Predictor(Meshl; Connl�1;mapl�1;l;Paraml�1) +Diffl�1

It is clear that different predictors yield different performance results. In the next section we present several desirable properties
of the encoding scheme.

The data packet structure is represented in Table 1.

MeshnL�1 MapnL�2;nL�1&ConnnL�2 ParamnL�2 DiffnL�2 � � �

� � � Map0;1&Conn0 Param0 Diff0

Table 1: The data packet structure for the basic encoding algorithm

The Predictor consists of applying the sequence of operators extension, where the geometry of level l is extended to level
l � 1, and update, where the geometry is updated using a polynomial filter whose coefficients are called parameters of the
predictor and whose matrix is the finer resolution incidence matrix K l�1.

The extension step is straightforwardly realized using the collapsing maps:

r
l�1;ext
i

= rl
mapl�1;l(i)

(11)

Thus the first “prediction” of the new vertex i is on the same point where it collapses, i.e. the position of the vertexmap l�1;l(i)
in mesh l. Next, the updating step is performed by polynomial filtering as in (2). The filter coefficients are the predictor
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parameters and have to be found and encoded. On each coordinate we use a separate filter. In the next section we introduce
different criteria to measure the prediction error associated to a specific property. In [TaGuHoLa98] Taubin filters (i.e. of the
form P (X) = (1� �X)(1 + �X)) have been used as predictors, but no optimization of the parameters has been done. Here
we use more general linear filters taking into account several performance criteria as well.

More specific, let us denote by xl�1;ext
i

the nVl�1-vector of x-coordinates obtained by extension (11), and by x l�1;updt the
filtered vector with the polynomial Px(X) =

P
d

k=0 ckX
k of degree d,

xl�1;updt = Px(Kl�1)x
l�1;ext (12)

Let rl�1 denote the nVl�1 � 3 matrix containing all the coordinates in the natural order, r l�1 = [xl�1jyl�1jzl�1]. Similar for
rl�1;updt. The update is our prediction for the geometryGeom l�1. Then the coefficients are chosen to minimize some lp-norm
of the prediction error:

min
Filters Coefficients

J l�1 = krl�1 � rl�1;updtk
lp

(13)

Note the optimization problem decouples into 3 independent optimization problems, because we allow different filters on each
coordinate. The polynomial Px(X) can be represented either in the power basis, i.e. Px(X) =

P
d

k=0 ckX
k, or in another

basis. We tried the Chebyshev basis as well, in which case Px(X) =
P

d

k=0 ckTk(X) with Tk the kth Chebyshev polynomial.
On each coordinate, the criterion J l�1 decouples as follows:

J l�1 = k(J l�1
x

; J l�1
y

; J l�1
z

)k
lp

; J l�1
x

= kAxc
l�1
x

� xl�1k
lp
; J l�1

y
= kAyc

l�1
y

� yl�1k
lp
; J l�1

z
= kAzc

l�1
z

� zl�1k
lp
;

(14)
where the nV � d+ 1 matrix Ax is either

Ax = [xl�1;updtjKl�1x
l�1;updtj � � � jKd

l�1x
l�1;updt] (15)

in the power basis case, or
Ax = [xl�1;updtjT1(Kl�1)x

l�1;updtj � � � jTd(Kl�1)x
l�1;updt] (16)

in the Chebyshev basis case. cl�1
x

is the d + 1 - vector of the x-coordinate filter coefficients and x l�1 the nVl�1-vector of the
actual x-coordinates all computed at level l � 1. Similar for Ay; Az , cy; cz, and yl�1; zl�1.

The Basic Encoding Algorithm can be modified to a more general context. The user may select the levels for which the
differences are sent. Then, for those levels the differences are not sent, the extension step to the next level has to use the
predicted values instead of the actual values of the current level. In particular we may want to send the differences starting with
level nL� 1 and going down to some level S + 1; then, from level S down to level 0 we do not send any difference but just
the parameters, excepted for the level 0 when we send the differences as well. The algorithm just described is presented next:

The Variable Length Encoding Algorithm
Step 1. Encode MeshnL�1;
Step 2. For l = nL� 1 down to S repeat:

Step 2.1 Estimate the parameters Paraml�1 by minimizing J l�1, where the predictor uses the true geometry of level l,
Geoml:

^Geoml�1 = f(Connl; Connl�1;mapl�1;l; Geoml;Paraml�1)

Step 2.2 Encode the parameters Param l�1;
Step 2.3 If l 6= S, encode the differences Diff l�1 = Geoml�1 � ^Geoml�1 ;

Step 3. For l = S � 1 down to 1
Step 3.1 Estimate the parameters Paraml�1 by minimizing J l�1 where the predictor uses the estimated geometry of level

l:
^Geoml�1 = f(Connl; Connl�1;mapl�1;l; ^Geoml;Paraml�1)

Step 3.2 Encode the parameters Param l�1;
Step 4. Using the last prediction of level 0, encode the differences, Diff 0 = Geom0 � ^Geom0. 3
In this case the data packet structure is the one represented in Table 2. In particular, for S = nL only the last set of

differences is encoded. This represents an alternative to the single-resolution encoding scheme.
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MeshnL�1 MapnL�2;nL�1&ConnnL�2 ParamnL�2 DiffnL�2 � � � Maps+2;2+1&Conns+1

Params+1 Diffs+1 Maps+1;s&Conns Params Maps;s�1&Conns�1 Params�1 � � �

� � � Map2;1&Conn1 Param1 Map0;1&Conn0 Param0 Diff0

Table 2: The data packet structure for the variable encoding algorithm

4 Desired Properties

In this section we discuss three properties we may want the encoding scheme to possess. The three peoperties, accuracy,
robustness, compression ratio, yield different optimization problems all of the type mentioned before. The l p-norm to be
minimized is different in each case. For accuracy the predictor has to minimize the l1 norm, for robustness the l2 norm should
be used, whereas the compression ratio is optimized for p 2 [1; 2] in general. Thus a sensible criterion should be a trade-off
between these various norms. Taking the computational complexity into account, we have chosen the l 2-norm as our criterion
and in the following section of examples we show several results we have obtained.

4.1 Accuracy

Consider the following scenario: Suppose we choose S = nL, the number of levels, in the Variable Length Encoding Al-
gorithm. Suppose also the data block containing the level zero differences is lost (note this is the only data block containing
differences because S = nL) In this case we would like to predict the finest resolution mesh as accurately as possible based on
the available information. Equivalently, we would like to minimize the distance between Mesh 0 and the prediction ^Mesh0,
under the previous hypotheses. There are many ways of measuring mesh distances. One such measure is the Haussdorf
distance. Although it describes very well the closeness of two meshes, the Haussdorf distance yields a computational expen-
sive optimization problem. Instead of Haussdorf distance one can consider the maximum distance between vertices (i.e. the
l1-norm, see [Al&all88]):

"a = max
0�i�nV0�1

kr0
i
� r̂0

i
k =: kr0 � r̂0k

l1

Note the l1-norm is an upper bound for the Haussdorf distance. Consequently " a controls the meshes closeness as well. As
mentioned in the previous section, the optimization problem (13) decouples in three independent optimization problems. For
p =1, these have the following form:

inf
c

kAc� bk
l1

(17)

where A was introduced by (15) and (16), depending on the basis choice, c is the nf -vector of unknown fiter coefficients, and
b is one of the three vectors x, y or z. For 0 � i � nV � 1; 0 � j � fL � 1, A = [aij ], b = (bi) and writing cj = fj � gj
with fj � 0, the positive part, and gj � 0, the negative part of cj (thus at least one of them is always zero), the optimization
problem (17) turns into the following linear programming problem:

max
w;fj ;gj ;ui;vi

[�w � "
P

d

j=0(fj + gj)] (18)

subject to : w; fj ; gj ; ui; vi � 0

bi = ui +
P

d

j=0 aij(fj � gj)� w

bi = �vi +
P

d

j=0 aij(fj � gj) + w

with " a small number to enforce at least one of fj or gj to be zero (for instance " = 10�6). With the standard simplex
algorithm, this problem requires the storage of a (2nV + 2) � (2nV + 2d + 2)-matrix (the so called tableaux) which is
prohibitive for large number of vertices (nV of order 10 5, for instance). In any case, the moral of this subsection is to point out
that the more accurate predictor is the one that achieves a lower l1-norm error.

4.2 Robustness

Consider now the following scenario: the differences associated to the prediction algorithm are not set to zero but perturbed
by some random quantities. This may be due to several causes. We can either imagine irretrievable transmission errors or
even a resampling process at the transmitter to reduce the code length of the entire object. In any case we assume the true
difference di is perturbed by some stochastic process �i. Thus the reconstructed geometry has the form x

l�1;reconstr
i

=
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x
l�1;updt
i

+ diffi+ �i. We assume the perturbations are about of the same size as the prediction differences. Next suppose we
want to minimize in average the effect of these perturbations. Then one such criterion is the noise varianceE[� 2

i
]. Assuming the

stochastic process is ergodic, it follows the noise variance can be estimated by the average of all the coordinate perturbations:
E[�2

i
] = 1

N

P
N�1

i=0 �2
i

. Next, since the perturbation is of the same order as the prediction error, the later term can be replaced
by the average of the differences. Hence we want to minimize:

E[�2
i
] '

1

N

N�1X

i=0

d2
i

This shows that a criterion of robustness is the total energy of the differences. In this case our goal to increase the robustness of
the algorithm is achieved by decreasing the l2-norm of the prediction errors. Thus the filters are the solvers of the optimization
problem (13) for p = 2. The solution in terms of filter coefficients is very easily obtained by using the pseudoinverse matrix.
Thus the solution of:

inf
c

kAc� bk
l2

is given by:
c = (ATA)�1AT b (19)

4.3 Compression Ratio

The third property we discuss now is the compression ratio the algorithm achieves. In fact, if no error or further quantization
is assumed, the compression ratio is perhaps the most important criterion in judging and selecting an algorithm. In general
estimating compression ratios is a tough problem due to several reasons. First of all one should assume a stochatic model of
the data to be encoded. In our case we encode the vectors of prediction errors, which in turn depend on the mesh geometry
and the way we choose the filters coefficients. Next one should have an exact characterization of the encoder’s compression
ratio. The best compression ratio, assuming a purely stochastic data, is given by Shannon’s entropic formula and consequently
by the entropic encoder which strives to achieve this bound (Shannon-Fano and Huffman codings - see [ZiTr90] or [DaGr76]).
However the entropic encoder requires some a priori information about the data to be sent, as well as overhead information
that may affect the global compression ratio. Alternatively one can use adaptive encoders like the adaptive arithmetic encoder
as in the JPEG/MPEG standards (see [PeMi93]). This encoder may perform better in practice than blind entropic or arithmetic
encoders, however it has the important shortcoming that its compression ratio is not characterized by a closed formula. In any
case, for purely stochastic data the best compression ratio is bounded by Shannon’s formula which we discuss next. We thus
assume our bit sequence encoding scheme achieves this optimal bound. Suppose the quantized differences x i, 0 � i � N � 1,
are independently distributed and have a known probability distribution, say p(n), �2 B�1 � n � 2B . Thus p(n) is the
probability that a difference is n. In this case the average (i.e. expected value) of the number of bits needed to encode one such
difference is not less than:

RShannon = �

2B�1X

n=�2B�1

p(n)log2p(n)

where 2B is the number of quantization levels (see [ZiTr90]). Assuming now the ergodic hypothesis holds true, p(n) can be
replaced by the repetition frequency p(n) = f(n)

N
, where f(n) is the repeatition number of the value n and N is the total

number of values (presumably N = 3nV ). Thus, if we replace the first p(n) in the above formula by this frequency, the sum
turns into

R = �
1

N

N�1X

i=0

log2p(n = xi)

Note the summation index has changed. At this point we have to asssume a stochastic model for the prediction errors. We
consider the power-type distribution that generalizes both the Gaussian and Laplace distributions, that are frequently used in
computer graphics models (see [PaRo99], for instance):

p(x) =
a

1

��

2�( 1
�
)
exp(�ajxj�) (20)

where �(x) is the Euler’s Gamma function (to normalize the expression) and a is a parameter. For � = 1 it becomes the
Laplace distribution, whereas for � = 2 it turns into the Gauss distribution. Then, the previous rate formula turns into:

R = R0 +
alog2e

N

N�1X

i=0

jxij
� ; R0 = 1 + log2�(

1

�
)� log2��

1

�
log2 a
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Now we replace the parameter a by an estimate of it. An easy computation shows the expected value of jxj � for the �-power
p.d.f. (20) is E[jxj�] = 1

�a
. Thus we get the following estimator for the parameter a:

â =
1

�

N
P

N�1
i=0 jxij�

and the above formula of the rate becomes:

R = �0(�) +
1

�
log2[

N�1X

i=0

jxij
�] ; �0(�) = 1 + log2

�( 1
�
)

�
+

1

�
log2

e�

N
(21)

Consider now two linear predictors associated to two different linear filters. Each of them will have different prediction
errors. If we assume the prediction errors are independent in each case and distributed by the same power law with exponent
� but maybe different parameters a1, respectively a2, then the prediction scheme that yields the sequence of differences with
smaller l�-norm has a better (entropic) compression bound and therefore is more likely to achieve a better compression ratio.
Equivalently, the p.d.f. that has a larger parameter a, or is narrower, would be encoded using fewer bits.

The argument we presented here suggests that a better compression ratio is achieved by the prediction scheme that mini-
mizes the l�-norm of the prediction error, where � is the p.d.f.’s characteristic exponent (when it is a power-type law), usually
between 1 (the Laplace case) and 2 (the Gaussian case). For p = 2 the optimizing filter is found by using the pseudoinverse of
A as in (19). For p = 1, the optimizer solves the linear programming problem:

max
fj ;gj ;ui;vi

P
N�1
i=0 [�ui � vi � "

P
d

j=0(fj + gj)] (22)

subject to : fj ; gj ; ui; vi � 0

bi = ui � vi +
P

d

j=0 aij(fj � gj)

with " as in (18), which involves (in the simplex algorithm) a (N + 2) � (2N + 2d+ 1) matrix and the same computational
problems as (18).

5 Examples

In this section we present a number of examples of our filtering algorithm. For several meshes we study the accuracy the fine
resolution mesh is approximated, and also the compression ratio obtained for different filter lengths.

First we analyze the Basic Encoding Algorithm presented in section 3. The filters coefficients are obtained by solving the
optimal problem (13) for p = 2, i.e. we use the least squares solution.

The car mesh represented in Figure 1 (left) having nV0 = 12784 vertices and 24863 faces is decomposed into a sequence
of 8 levels of details. The coarsest resolution mesh of nV7 = 219 vertices is rendered in Figure 1 (right). We used several
filter lengths to compress the meshes. In particular we study four types of filters, namely the Zeroth Order Filter, the Gaussian
Smoother and filters of order d = 1 and d = 3 (decomposed in power basis). The last two filters will be termed as “higher order
filters”, although their order is relatively low. To check the accuracy of the approximation we used the prediction algorithm
assuming the differences are zero at all levels. The four meshes corresponding to the four filters are represented in Figure 2.

Figure 1: The car mesh at: the finest resolution (left) and the coarsest resolution (right) after 7 levels of reduction.
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Figure 2: The car mesh at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth
Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least squares
filter of order 3 (bottom right).

Note the Zeroth Order Filter does not change the geometry at all (because of its pure extension nature). It gives the worst
approximation of the mesh, yet it has the best compression ratio (see below). The Gaussian filter smoothes out all the edges, a
natural consequence since it really corresponds to a discrete diffusion process. The higher order filters (i.e. first order and third
order) trade-off between smoothing and compression.

In terms of the compression ratio, the four filters have performed as shown in Table 3. Varying the filter length we found
the compression ratios indicated in Table 4. All the results apply to the geometry component only. The connectivity is not
presented here.

Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 795 795 795 795

Coefficients 0 0 168 336
Differences 21840 64611 22520 22574
Total (bytes) 22654 65425 23503 23725

Rate (bits/vertex) 14.17 40.94 14.71 14.82

Table 3: Compression ratio results for several filtering schemes applied to the car mesh rendered in Figure 1.

Filter’s Degree 1 2 3 4 5 6 7
bits/vertex 14.71 14.82 14.85 14.89 14.96 15.04 15.11

Table 4: Compression ratios for different filter lengths in power basis.

Next we study the Variable Length Encoding Algorithm for the four particular filters mentioned before with the parameter
S = nL (i.e. in the Single Resolution case). Thus the mesh geometry is obtained by successively filtering the extensions of
the coarser mesh and, at the last level, the true differences are encoded. In terms of accuracy we obtained very similar meshes.
More significantly are the compression ratios, shown in Table 5. To analyse the compression ratios of these four filters, we
have also plotted the histogram of the errors on a semilogarithmic scale in Figure 3. Note the power-type p.d.f. hypothesis is
well satisfied by the Zeroth, LS 1st and LS 3rd order filters, and less by the Gaussian smoother. Also as smaller the l 2-norm
error gets, as narrower the p.d.f. and as smaller the rate becomes, in accordance with the conclusions of Section 4.3.
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Equally important is how these errors are distributed on the mesh. In Figure 4 we convert the actual differences into a scale
of colors and set this color as an attribute for each vertex. Darker colors (blue,green) represent a smaller error, whereas lighter
colors (yellow, red) represent a larger prediction error. The darker the color the better the prediction and also the accuracy. All
the errors are normalized with respect to the average l 2-norm error per vertex for that particular filter. The average l 2-norm
error is given on the last row in Table 5.

Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 795 795 795 795

Coefficients 0 0 168 336
Differences 27489 27339 25867 25532

Total (bytes) 28306 28156 26859 26690
Rate (bits/vertex) 17.71 17.62 16.81 16.68

l2 error=vertex(�10�4) 11.96 18.64 9.33 8.44

Table 5: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the car mesh rendered in Figure 1.

Note in the Single Resolution case there is no much difference among the filtering schemes considered. In particular the
higher order filters perform better than the Zeroth Order Filter, and the Gaussian filter behaves similarly to the other filters.
This is different to the Multi Resolution case in Table 3. There, the Gaussian filter behaves very poorly, and the Zeroth Order
Filter gives the best compression ratio. In fact it is better to the Single Resolution case. On the other hand, with respect to the
accuracy, the higher order filters give a more accurate approximation than the Zeroth Order Filter.

About the same conclusions hold for three other meshes we used: the round table, the skateboard and the piping construc-
tion.

The round table rendered in Figures 5, left, has nV0 = 11868 vertices and 20594 faces. The coarsest resolution mesh
(at level 8, pictured on the right side) has nV7 = 112 vertices. The predicted mesh after 8 levels of decomposition when no
difference is used, is rendered in Figure 6.

The skateboard mesh at the finest resolution (left, in Figure 9) has nV 0 = 12947 vertices and 16290 faces. At the coarsest
resolution (right, in the same figure) it has nV7 = 125 vertices.

The piping construction has nV0 = 18138 vertices, and after 7 levels of details it is reduced to nV0 = 147 vertices. The
first simplification step achieves almost the theoretical bound: from 18138 vertices, the mesh is simplified to 2520 vertices.
The original mesh and its approximations are rendered in Figures 13-14.

Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 438 438 438 438

Coefficients 0 0 168 336
Differences 22739 51575 23645 23497
Total (bytes) 23196 52032 24274 24295

Rate (bits/vertex) 15.63 35.07 16.36 16.37

Table 6: Compression ratio results for several filtering schemes applied to the round table mesh rendered in Figure 5.

Filter’s Degree 1 2 3 4 5 6 7
bits/vertex 16.36 16.34 16.37 16.50 16.62 16.73 16.88

Table 7: Compression ratios for different filter lengths, in power basis, for the round table.
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Figure 3: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to
the car mesh rendered in Figure 1.

Figure 4: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).
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Figure 5: The round table mesh at: the finest resolution (left) and the coarsest resolution (right) after 7 levels of reduction.

Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 438 438 438 438

Coefficients 0 0 168 336
Differences 30386 29138 27972 27377

Total (bytes) 30847 29599 28609 28146
Rate (bits/vertex) 20.79 19.95 19.28 18.97

l2 error=vertex(�10�2) 15.85 17.38 11.17 9.97

Table 8: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the round table mesh rendered in Figure 5.
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Figure 6: The round table mesh at the finest resolution level when no difference is used and the filtering is performed by: the
Zeroth Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least
squares filter of order 3 (bottom right).
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Figure 7: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied to
the round table rendered in Figure 5.
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Figure 8: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).
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Figure 9: The skateboard mesh at: the finest resolution (left) and the coarsest resolution (right) after 8 levels of reduction.

Figure 10: The skateboard mesh at the finest resolution level when no difference is used and the filtering is performed by: the
Zeroth Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least
squares filter of order 3 (bottom right).

16



Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 444 444 444 444

Coefficients 0 0 168 336
Differences 22735 46444 22627 22443
Total (bytes) 23199 46908 23259 23247

Rate (bits/vertex) 14.33 28.98 14.37 14.36

Table 9: Compression ratio results for several filtering schemes applied to the skateboard rendered in Figure 9.

Filter’s Degree 1 2 3 4 5 6 7
bits/vertex 14.37 14.32 14.36 14.45 14.48 14.54 16.01

Table 10: Compression ratios for different filter lengths, in power basis, for the round table.

Zeroth Order Filter Gaussian Smoothing LS Filter of Degree 1 LS Filter of Degree 3
Coarsest mesh 444 444 444 444

Coefficients 0 0 168 336
Differences 28931 27082 26542 26436

Total (bytes) 29397 27549 27184 27250
Rate (bits/vertex) 18.16 17.02 16.80 16.84

l2 error=vertex(�10�4) 43.87 51.83 38.82 36.12

Table 11: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the skateboard rendered in Figure 9.
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Figure 11: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied
to the mesh rendered in Figure 9.
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Figure 12: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).

Figure 13: The piping mesh at: the finest resolution (left) and the coarsest resolution (right) after 7 levels of reduction.

Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 522 522 522 522

Coefficients 0 0 144 288
Differences 2605 31595 2625 2673
Total (bytes) 3146 32136 3311 3503

Rate (bits/vertex) 1.38 14.17 1.46 1.54

Table 12: Compression ratio results for several filtering schemes applied to the piping construction mesh rendered in Figure
13.

Filter’s Degree 1 2 3 4 5 6 7
bits/vertex 1.46 1.50 1.54 1.58 1.61 1.65 1.69

Table 13: Compression ratios for different filter lengths, in power basis, for the piping construction.
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Figure 14: The piping mesh at the finest resolution level when no difference is used and the filtering is performed by: the
Zeroth Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least
squares filter of order 3 (bottom right).

Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 522 522 522 522

Coefficients 0 0 168 336
Differences 19160 41278 21009 21573

Total (bytes) 19704 41823 21701 22458
Rate (bits/vertex) 8.69 18.44 9.57 9.90

l2 error=vertex(�10�2) 1.21 22.96 1.20 1.20

Table 14: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the piping construction rendered in Figure 13.

19



1

0.1

0.01

0.001

0.0001

-30 -20 -10 0 10 20 30

lo
g(

P
ro

ba
bi

lit
y)

Prediction Error

PIPING - Single Resolution Histogram- Zeroth Order Filter
1

0.1

0.01

0.001

0.0001

-60 -40 -20 0 20 40 60

lo
g(

P
ro

ba
bi

lit
y)

Prediction Error

PIPING - Single Resolution Histogram- Gaussian Filter

1

0.1

0.01

0.001

0.0001

-30 -20 -10 0 10 20 30

lo
g(

P
ro

ba
bi

lit
y)

Prediction Error

PIPING - Single Resolution Histogram- Optimal First Order Filter
1

0.1

0.01

0.001

0.0001

-30 -20 -10 0 10 20 30

lo
g(

P
ro

ba
bi

lit
y)

Prediction Error

PIPING - Single Resolution Histogram- Optimal Third Order Filter

Figure 15: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied
to the mesh rendered in Figure 13.

Figure 16: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).
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The last mesh we discuss is somewhat different to the other. It is a sphere of nV0 = 10242 vertices and 20480 faces that
reduces after 4 levels to nV3 = 224 vertices. The striking difference is the compression ratio of the Zeroth Order filter: it
is the worst of all the filters we checked. Even the Gaussian filter fares better than this filter. Snapshots of the approximated
meshes are pictured in Figures 17-18. The mesh used is non-manifold but this is not a problem for the geometry encoder. The
histograms shown in Figure 19 are in accordance with the rate results presented in Table 17: the narrower the distribution the
better the rate. Note also how well a power-type low fits the 3rd order filtered distribution.

Figure 17: The sphere at: the finest resolution (left) and the coarsest resolution (right) after 4 levels of reduction.

Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 881 881 881 881

Coefficients 0 0 72 144
Differences 29770 22614 19762 13395
Total (bytes) 30673 23518 20738 14440

Rate (bits/vertex) 23.96 18.37 16.20 11.28

Table 15: Compression ratio results for several filtering schemes applied to the sphere rendered in Figure 17.

Filter’s Degree 1 2 3 4 5 6 7
bits/vertex 16.20 12.90 11.28 10.59 10.36 10.42 10.69

Table 16: Compression ratios for different filter lengths, in power basis, for sphere.

These examples show that in terms of compression ratio, the Zeroth Order Filter compresses best the irregular and less
smooth meshes, whereas higher order filter are better for smoother and more regular meshes. However, in terms of accuracy
and robustness, the higher order filters perform much better than its main “competitor”, the Zeroth Order Filter. Note, except
for highly regular meshes (like sphere, for instance), relatively low order filters are optimal. The range [1::5] seems enough for
most of the encoding schemes.

6 Conclusions

In this paper we study the 3D geometry filtering using the discrete Laplace operator. We next apply the filtering technique
to Multi Resolution Analysis where the original mesh is converted into a sequence of successive refinements. Based on the
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Figure 18: The sphere at the finest resolution level when no difference is used and the filtering is performed by: the Zeroth
Order Filter (top left), the Gaussian Smoother (top right), the least squares filter of order 1 (bottom left) and the least squares
filter of order 3 (bottom right).
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Filter Zeroth Order Gaussian Smoothing LS of Degree 1 LS of Degree 3
Coarsest mesh 881 881 881 881

Coefficients 0 0 168 336
Differences 28904 22152 20904 17920

Total (bytes) 29806 23055 21885 18971
Rate (bits/vertex) 23.28 18.00 17.09 14.82

l2 error=vertex(�10�4) 6.85 2.36 1.81 1.11

Table 17: Compression ratios in the Single Resolution implementation of the Variable Length Encoding Algorithm applied to
the sphere rendered in Figure 17.
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Figure 19: Semilog histograms of the prediction errors associated to the four filters for the Single Resolution scheme applied
to the sphere mesh rendered in Figure 17.
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Figure 20: The color plot of the single resolution approximation errors for the four different filters: Zeroth Order Filter (upper
left), Gaussian Smoothing (upper right), LS first order (lower left) and LS third order (lower right).
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coarser resolution mesh, the finer resolution mesh is predicted using an extension map followed by filtering. At each level,
the coordinate vectors are filtered separately using different filters. These filters are optimizers of some prediction error norm.
Thus the geometry of a sequence of successively refined meshes is encoded in the following format: first the coarsest resolution
mesh geometry and next for each successive level, the filters coefficients and prediction errors. The connectivity information
is supposed known at each level separately.

Next we study several desirable properties of any encoding scheme, finding for each one the appropriate criterion to be
optimized. Thus for a better accuracy of the predicted mesh when no difference is available, the filter coefficients should
minimize the l1-norm of the prediction errors. For robustness, as understood in signal processing theory, the filters should
minimize the l2-norm of the differences. The third property, the compression rate, is maximized when the l 1-norm is replaced
by a l�-norm with � usually between 1 and 2, depending on the prediction error’s p.d.f. Thus, if the differences are Laplace
distributed, the l1-norm should be minimized, whereas if they are Gaussian, then the l 2-norm should be used. In any case, each
of the three extreme cases (l1; l2 or l1) can be solved exactly. The l2-norm case is the simplest and reltively computational
inexpensive, and is solved by a linear system. The other two cases turn into linear programming problems which are very
computational expensive to solve.

These theoretical results are next applied to concrete examples. In general for large, non-smooth and irregular meshes the
Zeroth Order Filtering scheme yields the best compression ratio, but the poorest accuracy or, for the same reason, robustness.
Instead, by paying a small price in the compression ratio, a least square filter give a better rendering accuracy and superior
robustness. At the other end of the scale, for very smooth and regular meshes, the Gaussian filter (which in general behaves
very poorly) gives a better compression ratio than the Zeroth Order filter.

The Basic Encoding Algorithm can be modified to allow a variable structure. The user can choose for what levels the
differences are encoded and, by choosing a limit case, only the highest resolution level errors are encoded. Thus the MRA
scheme becomes a Single Resolution encoding scheme. Examples in terms of accuracy and compression ratio are shown in the
Examples section.

The novelty of this study consists in using linear filter in Multi Resolution encoding schemes and finding appropriate
optimization criteria for specific compression or rendering properties. We hope this compression scheme will prove effective
in Progressive Transmission protocols as MPEG4.
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[TaGuHoLa98] G.Taubin, A.Guézier, W.Horn, F.Lazarus, Progressive Forest Split Compression, SIGGRAPH Proceedings ,
1998,

[TaHoBo99] G.Taubin, W.Horn, P.Borrel, Compression and Transmission of Multi-Resolution Clustered Meshes, IBM Re-
search report RC-21398, February 1999

[TaRo98] G.Taubin, J.Rossignac, Geometry Compression through Topological Surgery, ACM Transaction on Graphics 17,
no.2 April 1998, 84–115

[ZiTr90] R.E.Ziemer, W.H.Tranter, Principles of Communications - System, Modulation, and Noise, Houghton Mifflin
Comp. 1990

26



Geometric Signal Processing on Polygonal Meshes 
by G. Taubin 

Eurographics 2000 State of The Art Report (STAR) 



EUROGRAPHICS ’2000 STAR – State of The Art Report

Geometric Signal Processing on Polygonal Meshes

G. Taubiny

IBM T.J. Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598
http://www.research.ibm.com/people/t/taubin

Abstract

Very large polygonal models, which are used in more and more graphics applications today, are routinely gen-
erated by a variety of methods such as surface reconstruction algorithms from 3D scanned data, isosurface con-
struction algorithms from volumetric data, and photogrametric methods from aerial photography. In this report
we provide an overview of several closely related methods developed during the last few yers, to smooth, denoise,
edit, compress, transmit, and animate very large polygonal models.

1. Introduction

The geometric signal processing approach was originally
motivated by the problem of smoothing large irregular
polygonal meshes of arbitrary topology36, such as those
extracted from volumetric medical data by iso-surface con-
struction algorithms, or constructed by integration of multi-
ple range images, and the related problem of fair surface de-
sign. Because of the size of the typical data sets, only linear
time and space algorithms can be considered, particularly
for applications such as surface design and mesh editing,
where interactive rates are a primary concern. This constraint
on the complexity of the algorithms discards most early
algorithms based on fairness norm optimization42; 28; 13; 43,
parametric31; 26; 11; 25; 24 and implicit 1; 27 patch technology,
physics-based deformable models20; 41; 33; 30, and variational
formulations5; 28; 43; 13. In these approaches, the problem is
often reduced to the solution of a large sparse linear sys-
tem, or a more expensive global optimization problem. Large
sparse linear systems are solved using iterative methods10,
and usually result in quadratic time complexity algorithms.
However, more recent work formulations have shown effi-
cient solutions to the variational formulation based on multi-
grid algorithms21; 22, and stable implicit sparse solvers that
are competitive when agressive smoothing is required7.

Most smoothing algorithms move the vertices of the

y On sabbatical from 08/01/2000 to 07/31/2001, Dept. of Electrical
Engineering, California Institute of Technology Mail Code 136-93,
Pasadena, CA 91125

polygonal mesh without changing the connectivity of the
faces. The smoothed mesh has exactly the same number of
vertices and faces as the original one. The simplest smooth-
ing algorithm that satisfies the linear complexity require-
ment is Laplacian smoothing, described in detail in section
2. Laplacian smoothing is an iterative process, where in each
step every vertex of the mesh is moved to the barycenter of
its neighbors.

The only problem with Laplacian smoothing isshrinkage.
When a large number of Laplacian smoothing steps are iter-
atively performed, the shape undergoes significant deforma-
tions, eventually converging to the centroid of the original
data. The algorithm introduced by Taubin36 solves this prob-
lem and introduced the signal processing machinery neces-
sary to analyze the behavior of these smoothing processes.
This work was followed by a number of extensions40; 7 and
applications to interactive shape design46; 23; 21; 44; 22; 12, 3D
geometry compression37; 2; 19, and shape reconstruction from
multiple 3D scans3.

Within the context of interactive shape design, Zorin46 de-
fines a multi-resolution subdivision structure over an irregu-
lar mesh, using the signal processing smoothing algorithms
as the basis of his analysis process.

Guskov12 follows a different signal processing approach
over the Progressive Meshes16 structure, wherefrequency
has a completely different meaning. He is able to perform
similar filtering operations, as with the methods described in
this paper.
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In 3D geometry compression38; 39, Taubin et.al.37 use
these signal processing smoothing algorithms to predict the
position of high resolution vertices from their low resolution
counterparts in their progressive transmission scheme. Balan
and Taubin2, study the problem of constructing optimal fil-
ters in this context. Karni and Gotsman19 use the partial
Fourier expansion applied to the vertices of a mesh partition
to define a JPEG-like compression scheme for meshes.

In the area of shpe reconstruction from multiple 3D scans,
Bernardini et.al.3 define aconformingprocess to estimate
the average shape of several overlaping meshes by allowing
them to deform at very low frequency, while preserving the
details. This process is based on applying a very aggressive
smoothing filter to the deformation field that would make
each vertex of each overlapping mesh move to the average
position of vertices of other meshes in a neighborhood.

The paper is organized as follows. In section 2 we intro-
duce Laplacian smoothing withing the context of meshes. In
section 3 we show how Fourier Analysis can be performed
on signals defined on meshes and graphs. In section 4 we
discuss methods to smooth or denoise signals defined on
meshes and graphs as low-pass filtering. In section 5 we de-
scribe Taubin’sλjµ algorithm. In section 6 we discuss how
edge weights can be manipulated to compensate for irregu-
lar edge lengths and face angles. In section 7 we show that
classic filter design methods can be used to construct faster
smoothing algorithms, and other feature enhancing filters.
In section 8 we discuss how different constraints can be im-
posed to the smoothing algorithms and their relation to in-
teractive shape design. Finally, in section 9 we present our
conclusions.

2. Laplacian Smoothing

Laplacian smoothing is a well established technique to im-
prove the geometric irregularity of a 2D mesh in the field of
finite-elements meshing15. In this context, boundary vertices
of the mesh are constrained not to move, but internal vertices
are simultaneously moved to the barycenter of its neighbor-
ing vertices. And then the process is iterated a number of
times.

When Laplacian smoothing is applied to a noisy 3D
polygonal mesh without constraints, noise is removed, but
significant shape distortion may be introduced. The main
problem is that Laplacian smoothing producesshrinkage,
because in the limit, all the vertices of the mesh converge
to their barycenter.

To understand why the Laplacian smoothing algorithm re-
moves high frequency noise, why it produces shrinkage, and
how to solve the shrinkage problem, we need to develop the
basic concepts of signal processing on meshes, or more gen-
erally, on graphs.

3. Fourier Analysis on Meshes and Graphs

A graphG= (V;E), composed of a set ofn verticesV, and a
set of edgesE can be directed or undirected. The undirected
graph of a MeshM is composed of the set of mesh vertices
and the set of mesh edges as unordered pairs. In the directed
case, where the edges ofG are ordered pairs of vertices, ev-
ery edge ofM corresponds to two oriented edges ofG.

We look at the vertices ofM as a three-dimensional
graph signal v= (v1; : : :;vn)

t defined onG. In general, a
d-dimensional graph signal on a graphG is a d�n matrix
x= (x1; : : :;xn)

t , where each row ofx is regarded as the sig-
nal value at thei-th. vertex of the graph.

A neighborhoodor star of a vertex indexi in the graph
G is the seti? of vertex indicesj connected toi by an edge
(i; j).

i? = f j : (i; j) 2 Eg :

If the index j belongs to the neighborhoodi?, we say thatj
is a neighborof i. The neighborhood structure of an undi-
rected graph, such as the graph of a mesh defined above, are
symmetric. That is, every time that a vertexj is a neighbor
of vertex i, also i is a neighbor ofj. With non-symmetric
neighborhoods, which are associated with directed graphs,
certain constraints can be imposed. We discuss this issue in
detail in section 8.

The set of displacements∆vi produced by the Laplacian
smoothing step that moves each vertex to the barycenter of
its neighbors can be described as the result of applying the
Laplacian operator to the vertices of the mesh.

The Laplacian operator is defined on a graph signalx by
weighted averages over the neighborhoods

∆xi = ∑
j2i?

wi j (xj �xi) ; (1)

where the weightswi j are non-negative numbers that add up
to one for each vertex star

∑
j2i?

wi j = 1 : (2)

Since the Laplacian operatorx! ∆x is linear on the space of
graph signals defined onG, and operates on the coordinates
of x independently, it is sufficient to consider the case of one-
dimensional graph signals.

In section 6 we discuss in detail different ways of choos-
ing weights. For the time being, lets assume that the edge
weights are determined by first choosing an edge costci j =

cji � 0 for each graph edge, and then settingwi j = ci j =ci ,
whereci is the average cost of edges incident toi

ci = ∑
j2i?

ci j > 0 :

For example, if all the edges have unit costci j = 1, then for
each neighborj of i, the weightwi j is equal to the inverse of
the number of neighbors 1=ji?j of v. We organize the edge
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costs and weights as matricesC = (ci j ), W = (wi j ), with
elements equal to zero ifj is not a neighbor ofi. We also
assume that once set, the weights are kept constant during
the iterative smoothing process. We will relax this asumption
in section 6.

This choice of weights is independent of the vertex po-
sitions, orgeometry, of the mesh, and only function of the
structure of the graphG, i.e. theconnectivityof the mesh.
Note that as a result of the neighborhood normalization con-
straint of equation 2, although then�n matrix of edge costs
C is symmetric, in general the matrix of edge weigthsW is
not. We consider edge weights that are function of the ge-
ometry in section 6.

If we define the matrixK = I �W, with I the identity
matrix, the Laplacian operator applied to a graph signalx
can be written in matrix form as follows

∆x=�K x : (3)

For undirected graphs and the choice of weights described
above, the matrixK has real eigenvalues 0� k1 � k2 �
�� � � kn � 2 with corresponding linearly independent real
unit length right eigenvectorse1

; : : :;en 36. In matrix form

K E = Ediag(k) ; (4)

with E = (e1
; : : :;en

), k= (k1; : : :;kn)
t , and diag(k) the diag-

onal matrix withki in its i-th. diagonal position. Seen as one-
dimensional graph signals, these eigenvectors can be con-
sidered as thenatural vibration modesof the graph, and the
corresponding eigenvalues as the associatednatural frequen-
cies.

Sincee1
; : : :;en form a basis ofn-dimensional space, ev-

ery graph signalx can be written as a linear combination

x=
n

∑
j=1

x̂ j ej
= E x̂ : (5)

The vector of coefficients ˆx is the Discrete Fourier Transform
(DFT) of x, andE is the Fourier Matrix.

If instead of being derived from the vertices and edges
of a mesh, the graphG is a closed polygonal curve withn
vertices and edges, i.e., a cycle, we are in the classical case
of discrete-timen-periodic signals.

Fourier analysis is a natural tool to solve the problem of
signal smoothing. The space of signals is decomposed into
orthogonal subspaces associated with different frequencies,
with the low frequency content of a signal regarded as sub-
jacent data, and the high frequency content as noise. To de-
noise a signal it is sufficient to compute its DFT, discard its
high frequency coefficients, and compute the linear combi-
nation of remaning terms as the result. This is exatly what
the method ofFourier descriptors45 does to smooth a closed
curve.

In the case of closed polygonal curves the DFT of a

Laplacian(G;W;x)
new ∆x= 0;
for(e= (i; j) 2 E)

∆xi = xi +wi j (xi �xj);
end;

return ∆x;

Figure 1: Algorithm to evaluate the Laplacian operator. G=
(V;E) directed graph, W matrix of weights defined on the
edges of G, x input signal on G,∆x output signal.

LaplacianSmoothing(G;W;N;λ;x)
new ∆x
for(i = 0 ; i < N ; i = i +1)

∆x=Laplacian(G;W;x);
x= x+λ∆x;

end;
return;

Figure 2: The Laplacian Smoothing Algorithm. G graph, W
matrix of weights defined on the edges of G, N number of
iterations,λ scaling factor, x signal on G to be smoothd.

signal x can be computed very efficiently using the Fast
Fourier Transform (FFT) algorithm32, and the eigenvalues
and eigenvectors ofK can be computed analytically. In gen-
eral, the matrixK is large, and although sparse, it is almost
impossible to reliably compute its eigenvalues and eigenvec-
tors. This makes it impractical to smooth vertex positions of
large meshes with the Fourier descriptors method.

Note that even using the FFT algorithm in the closed
polygonal curve case, the computational complexity is
O(nlog(n)), i.e., not linear.

4. Smoothing as Low Pass Filtering

Figure 4 describes the algorithm to evaluate the Laplacian
operator on a signalx defined on a directed graphG, with
given weight matrixW. And figure 4 describes the Laplacian
smoothing algorithm, with a scaling factor 0< λ < 1 which
is used to control the speed of the diffusion process. With this
parameter, one step of the Laplacian smoothing algorithm
can be described in matrix form as follows

x1
= x+λ∆x= (I �λK) x= f (K)x ; (6)

where f (K) is a matrix obtained by evaluating the univari-
ate polynomial f (k) = 1� λk in the matrixK. If the pro-
cess is iteratedN times, the output can still be expressed
asxN

= f (K)x, but with a different univariate polynomial
f (k) = (1�λk)N.

A Linear Filter is defined by a univariate functionf (k)
that can be evaluated on the square matrixK to produce an-
other matrix of the same size. Although many functions of
one variable can be evaluated in matrices10, in this section
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TaubinSmoothing(G;W;N;λ;µ;x)
new ∆x
for(i = 0 ; i < N ; i = i +1)

∆x= Laplacian(G;W;x);
if i is even

x= x+λ∆x;
else

x= x+µ∆x;
end;

return;

Figure 3: The Taubin Smoothing Algorithm. G graph, W ma-
trix of weights defined on the edges of G, N number of itera-
tions,λ and µ scaling factors, x signal on G to be smoothd.

we only consider polynomials. In section 7 we also con-
sider rational functions. The functionf (k) is the transfer
functionof the filter. It is well known that for any of these
functions, the matrixf (K) has as eigenvectors the eigenvec-
torse1

; : : :;en of the matrixK, and as eigenvalues the result
f (k1); : : :; f (kn) of evaluating the function on the eigenval-
ues ofK. Since for any polynomial transfer function

x0 = f (K)x=
n

∑
i=1

f (ki)x̂i e
i
;

becauseKei
= kie

i , to define a low-pass filter we need to
find a polynomial such thatf (ki) � 1 for low frequencies,
and f (ki) � 0 for high frequencies in the region of interest
k2 [0;2].

In the case of Laplacian smoothing, where the transfer
function is f (k) = (1� λk)N, with 0 < λ < 1, we see that
for everyk 2 (0;2], we have(1� λk)N ! 0whenN !1
becausej1� λkj < 1. This means that all the frequency
components, other than the zero frequency component (the
barycenter of all the vertices), are atenuated for largeN. On
the other hand, the neighborhood normalization constraint
of equation 2 implies that the matrixK always has 0 as its
first eigenvalue with associated eigenvector(1; : : :;1)t , and
the zero frequency component is preserved without changes
becausef (0) = 1 independently of the values ofλ andN.
In conclusion Laplacian smoothing filters out too many fre-
quencies.

5. The λjµ Algorithm

Taubin 36 proposed the following second degree transfer
function to solve the problem of shrinkage

f (k) = (1�λk)(1�µk) ; (7)

which can be implemented as two consecutive steps of
Laplacian smoothing with different scaling factors; the first
one withλ > 0, and the second one withµ< �λ < 0. That
is, after the Laplacian smoothing step with positive scale
factor λ is performed (shrinking step), a second Laplacian

k=
1
µ

f (k)
1:0

k =
1
λ

0 kPB2 0 kPB 2

f (k)1:0

A B

Figure 4: Graph of transfer functions for theλjµ algo-
rithm. (A) f(k) = (1�µk)(1�λk). (B) f(k) = ((1�µk)(1�
λk))N=2 with N> 1.

smoothing step with negative scale factorµ is performed (un-
shrinking step). Figure 5 describes the algorithm.

The graph of the transfer function of equation (7) is illus-
trated in figure 4-A. Figure 4-B shows the resulting transfer
function afterN iterations of the algorithm. Sincef (0) = 1
andµ+ λ < 0, there is a positive value ofk, let us denote
it kPB (thepass-band frequency), such thatf (kPB) = 1. The
value ofkPB is

kPB =
1
λ
+

1
µ
> 0 : (8)

The graph of the transfer functionf (k) shown in Figure 4-
B displays a typicallow-pass filtershape in the region of
interestk2 [0;2]. Thepass-band regionextends fromk = 0
to k = kPB, where f (k)� 1. As k increases fromk = kPB to
k = 2, the transfer function decreases to zero. The faster the
transfer function decreases in this region, the better. The rate
of decrease is controlled by the number of iterationsN.

For example, choosingλ so thatf (1) =� f (2), i.e.,

0= f (1)+ f (2) = 1�3(λ +µ)+5λµ ; (9)

ensures a stable and fast filter40. A typical value forkPB is
0:1. The corresponding typical scaling factor values are then
computed from equations 8 and 9.

Figures 5 and 6 show examples of large surfaces smoothed
with this algorithm. Figures 5 is a synthetic example, where
noise has been added to one half of a polyhedral approxi-
mation of a sphere. Note that while the algorithm progresses
the half without noise does not change. Figure 6 was con-
structed from a CT scan of a spine. The boundary surface of
the set of voxels with intensity value above a certain thresh-
old is used as the input signal. Note that there is not much
difference between the results after 50 and 100 iterations.

6. Weights

With Equal weights, determined by unit edge costs, very sat-
isfactory results are obtained on meshes which display very
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A B

C D

Figure 5: (A) Sphere partially corrupted by normal noise.
(B) Sphere (A) after 10 non-shrinking smoothing steps. (C)
Sphere (A) after 50 non-shrinking smoothing steps. (D)
Sphere (A) after 200 non-shrinking smoothing steps. Sur-
faces are flat-shaded to enhance the faceting effect.

small variation in edge length and face angles across the
whole mesh, such as those shown in figures 5 and 6. When
these assumptions are not met, local distortions are intro-
duced. The edge weights can be used to compensate for the
irregularities of the teselation, and produce results which are
function of the local geometry of the signal, rather than the
local parameterization.

Fujiwara weightstry to compensate for irregular edge
lengths by determining the edge costs as a function of the
edge lengthci j = φ(kvj � vik). For example, both Taubin
36 and Fujiwara9 propose choosing the inverse of the edge
lengthφ(t) = 1=t as the function, which makes the Laplacian
operator independent of the edge lengths, and only depen-
dent on the directions of the vectors pointing to the neigh-
boring vertices. This weighting scheme does not solve the
problems arising from unequal face angles.

Desbrun weightscompensate not only for unequal edge
lengths, but also for unequal face angles. Laplacian smooth-
ing with equal edge costs tends to equalize the lengths of
the edges, and so, tends to make the triangular faces equi-
lateral. The vertex displacements produced by the Laplacian
operator can be decomposed into a normal and a tangencial
component. In some cases the edge equalization may be the
desired effect. This is the case when mesh smoothing is used
to improve the quality of finite-elements mesh. But in other

A B

C D

Figure 6: (A) Boundary surface of voxels from a CT scan.
(B) Surface (A) after 10 non-shrinking smoothing steps. (C)
Surface (A) after 50 non-shrinking smoothing steps. (D) Sur-
face (A) after 100 non-shrinking smoothing steps. kPB = 0:1
andλ = 0:6307in (B), (C), and (D). Surfaces are flat-shaded
to enhance the faceting effect.

cases, such as when a texture is mapped onto the mesh, hav-
ing a non-zero tangencial component is undesirable. Based
on a better approximation to the curvature normal, Desbrun7

proposes the following choice of edge costs

ci j = cotαi j +cotβi j ; (10)

whereαi j andβi j are the two angles opposite to the edgee=
(i; j) in the two triangles havinge in common. This choice
of weights produces no tangencial drift when all the faces
incident to the vertex are coplanar.

The three weighting schemes described in this section can
be applied to both Laplacian smoothing and Taubin smooth-
ing, but bot Fujiwara weights and Desbrun weights must be
recomputed after each iteration, or after a small number of
iterations. This makes the whole smoothing process a non-
linear operation, and computationally more expensive.

An interactive implementation of these techniques is
available as a Java applet34. Figure 7 shows a screen shot
of this applet.

Guskov12 proposed another weighting scheme based on
divided differences, but applies to a smoothing process based
on a second order neighborhood.
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Figure 7: Implementation of some of the techniques de-
scribed in this paper as a Java applet34.

FirFilter(G;W;N; f ;x)
new x0

= x
new x1

= Laplacian(G;W;x0
);

new x2
= x0�0:5x1

new x= f0x0
+ f1x1

for(i = 2 ; i < N ; i = i +1)
x2

=Laplacian(G;W;x1
);

x= x+ fix
2;

x0
= x1;

x1
= x2;

end;
return;

Figure 8: The FIR Filter Algorithm of Taubin et.al.40. G
graph, W matrix of weights defined on the edges of G, N
number of iterations, f= ( f0; : : :; fN�1) polynomial coeffi-
cients in Chebyshev basis, x signal on G to be filtered.

7. Fast Smoothing as Filter Design

In the λjµ algorithm different combinations of the parame-
tersλ, µ, andN produce almost identical transfer functions
f (k). For example if the scaling factorsλ is reduced in mag-
nitude, and thenµ is recomputed to keep the pass-band fre-
quency unchanged using equation 8, an equivalent result can
be achieved with more iterations40.

Taubin et.al.40 showed how to efficiently implement any
polynomial transfer function expressed as a linear combina-
tion of Chebyshev polynomials6. Figure 7 describes the al-
gorithm. Chebyshev polynomials are numerically more sta-
ble than the power basis, and are defined by a three term
recursion that results in an algorithm with low storage use

IirFilter(G;W;Ng;g;Nh;h;x)
FirFilter(G;W;Ng;g;x)
new x1

= x;
new H = h(K);
solve Hx= x1;

return;

Figure 9: The IIR Filter Algorithm Taubin et.al.40. G graph,
W matrix of weights defined on the edges of G, N number
of iterations, g= (g0; : : :;gNg�1) and h= (h0; : : :;hNh�1)

polynomial coefficients in Chebyshev basis, x signal on G to
be filtered.

and linear complexity8<
:

T0(w) = 1
T1(w) = w
Tj(w) = 2wTj�1(w)�Tj�2(w)

(11)

Since the domain of Chebyshev polynomials isw 2 [0;1],
the following change of variable is necessaryw= 1�k=2.

The ability to efficiently implement any polynomial trans-
fer function, reduces the problem of minimizing the num-
ber of iterations to a univariate polynomial approximation
problem, i.e., to the classical problem of Finite Impulse Re-
sponse (FIR) filter desgin in signal processing29. As an ex-
ample, Taubin et.al.40 showed how to design filters based
on the classical Window-based method14, but other polyno-
mial approximation technique can be used to design stable
FIR filters. For example, The Parks-McClellan algorithm18

uses the Remez exchange algorithm and Chebyshev approx-
imation theory to design filters with an optimal fit between
the desired and actual frequency responses. The filters are
optimal in the sense that the maximum error between the de-
sired frequency response and the actual frequency response
is minimized. Filters designed this way exhibit an equirip-
ple behavior in their frequency responses and are sometimes
called equiripple filters.

The only problem with FIR filters is that high degrees are
usually needed to obtain a good approximations of ideal fre-
quency responses with sharp transitions, such as low-pass
filters with a narrow pass-band. Infinite Impulse Response
filters (IIR), with rational transfer functions with polynomi-
als of low degree, solve this problem. In our case, if the trans-
fer function is a ratio of two polynomialsf (k) = g(k)=h(k),
with h(k) 6= 0 for k 2 [0;2], filtering a signalx corresponds
to solving the following system of equations

h(K)x0 = g(K)x : (12)

Evaluation of this filter can be performed in three steps. First,
if g(k) is not constant, the right hand side of this equation is
evaluated with the FIR algorithm of Taubin et.al.x1

= g(K)x.
Then the the matrixH = h(K) has to be constructed, and fi-
nally the linear system of equationsHx = x1 is solved. Fig-
ure 7 describes this algorithm. In this context, IIR filters only
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makes sense if the polynomialh(k) is of very low degree,
i.e., if the matrixH is sparse. Some sparse linear solvers only
need the to evaluate the product of the matrixH by a vector.
In that case the matrixH does not need to be constructed
explicitly, and the FIR algorithm of Taubin et.al. can be used
again to evaluate this filter as many times as necessary by
the linear solver.

The Implicit Fairing method of Desbrun et.al.7 is a par-
ticular case this type of filter. It corresponds to the classical
Butterworth filter with transfer function

f (k) =
1

1+(k=kPB)
N : (13)

Desbrun et.al. development is based on a PDE formulation.
They show that the Laplacian smoothing algorithm corre-
sponds the solution of the diffusion process

∂x
∂t

= λdt∆x ;

using theforward Euler method

x0 = x+λdt∆x= (I +λdt∆)x ;

with unit time stepdt = 1. They use thebackward Euler
methodinstead, which requires the solution of the linear sys-
tem

(I �λdt∆)x0 = x ;

but is stable for arbitrary large time steps, as opposd to the
explicit scheme which is stable only forjλdtj< 1. Although
having to solve a sparse linear system per step, as apposed
to multiplying by a sparse matrix, seems to slow down the
computation, they report computational time similar or bet-
ter than the explicit method.

8. Constraints

The ability to impose constraints to the smoothing process,
such as specifying the positions of some vertices, or nor-
mal vectors, specifying ridge curves, or the behavior of the
smoothing process along the boundaries of the mesh, is
needed in the context of free-form interactive shape design.

All the methods described so far allows the signals to
freely evolve without imposing any constraint. For example,
although shrinkage prevention minimizes the problem in the
λjµalgorithm, all the smooth signal values are different from
the original ones.

Taubin 36 shows that by modifying the neighborhood
structure certain kind of constraints can be imposed without
any modification of the algorithm, while other constraints
that require minor modifications and the solution of small
linear systems.

Kobbelt 21; 22 formulates the problem as an energy min-
imization problem, and solves it efficiently with a multi-
resolution approach on levels of detail hierachies generated
by decimation.

Kuriyama 23 and Yamada44 impose hard constraints on
vertex positions, but modify the displacement produced by
the Laplacian operator to impose soft normal constraints.

We will only discuss here some of these methods.

8.1. Interpolatory Constraints

A simple way to introduce interpolatory constraints in the
smoothing algorithm is by using non-symmetric neighbor-
hood structures. If no other vertex is a neighbor of a certain
vertexv1, i.e., if the neighborhood ofv1 is empty, then the
valuex1 of any signalx does not change during the smooth-
ing process, because the Laplacian operator∆x1 is equal to
zero by definition of empty sum. Other vertices are allowed
to havev1 as a neighbor, though.

Figure 10: Example of surfaces designed using subdivi-
sion and smoothing steps with one interpolatory constraint.
(A) Skeleton. (B) Surface (A) after two levels of subdivi-
sion and smoothing without constraints. (C) Same as (B) but
with non-smooth interpolatory constraint. (D) Same as (B)
but with smooth interpolatory constraint. Surfaces are flat-
shaded to enhance the faceting effect.

Figure 10-A shows a skeleton surface. Figure 10-B shows
the surface generated after two levels of refinement and
smoothing using our smoothing algorithm without con-
straints, i.e., with symmetric first-order neighborhoods. Al-
though the surface has not shrunk overall, the nose has been
flattened quite significantly. This is so because the nose is
made of very few faces in the skeleton, and these faces meet
at very sharp angles. Figure 10-C shows the result of ap-
plying the same steps, but defining the neighborhood of the
vertex at the tip of the nose to be empty. The other neigh-
borhoods are not modified. Now the vertex satisfies the con-
straint – it has not moved at all during the smoothing process
–, but the surface has lost its smoothness at the vertex. This
might be the desired effect, but if it is not, instead of the
neighborhoods, we have to modify the algorithm.

8.2. Smooth Interpolation

We look at the desired constrained smooth signalxN
C as a sum

of the corresponding unconstrained smooth signalxN
= F x
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afterN steps of our smoothing algorithm (i.e.F = f (K)
N),

plus a smooth deformationd1

xN
C = xN

+(x1�xN
1 )d1 :

The deformationd1 is itself another discrete surface signal,
and the constraint(xN

C)1 = x1 is satisfied if(d1)1 = 1. To
construct such a smooth deformation we consider the signal
δ1, where

(δi) j =

�
1 j = i
0 j 6= i

:

This is not a smooth signal, but we can apply the smoothing
algorithm to it. The result, let us denote itFn1, the first col-
umn of the matrixF, is a smooth signal, but its value at the
vertexv1 is not equal to one. However, since the matrixF is
diagonally dominated,F11, the first element of its first col-
umn, must be non-zero. Therefore, we can scale the signal
Fn1 to make it satisfy the constraint, obtaining the desired
smooth deformation

d1 = Fn1F�1
11 :

Figure 10-D shows the result of applying this process.

When more than one interpolatory constraint must be im-
posed, the problem is slightly more complicated. For sim-
plicity, we will assume that the vertices have been reordered
so that the interpolatory constraints are imposed on the first
mvertices, i.e.,(xN

C)1 = x1; : : :; (x
N
C)m = xm. We now look at

the non-smooth signalsδ1; : : :;δm, and at the corresponding
faired signals, the firstm columns of the matrixF = f (K)

N.
These signals are smooth, and so, any linear combination of
them is also a smooth signal. Furthermore, sinceF is non-
singular and diagonally dominated, these signals are linearly
independent, and there exists a linear combination of them
that satisfies them desired constraints. Explicitly, the con-
strained smooth signal can be computed as follows

xN
C = xN

+FnmF�1
mm

0
B@

x1�xN
1

...
xm�xN

m

1
CA ; (14)

whereFrs denotes the sub-matrix ofF determined by the first
r rows and the firsts columns.

To minimize storage requirements, particularly whenn is
large, and assuming thatm is much smaller thann, the com-
putation can be structured as follows. The smoothing algo-
rithm is applied toδ1 obtaining the first columnFδ1 of the
matrix F. The firstm elements of this vector are stored as
the first column of the matrixFmm. The remainingm�n ele-
ments ofFδ1 are discarded. The same process is repeated for
δ2; : : :;δm, obtaining the remaining columns ofFmm. Then
the following linear system

Fmm

0
B@

y1
...

ym

1
CA =

0
B@

x1�xN
1

...
xm�xN

m

1
CA

is solved. The matrixFmm is no longer needed. Then the re-
maining components of the signaly are set to zeroym+1 =

� � �= yn = 0. Now the smoothing algorithm is applied to the
signaly. The result is the smooth deformation that makes the
unconstrained smooth signalxN satisfy the constraints

xN
C = xN

+F y :

8.3. Smooth Deformations

Note that in the constrained smoothing algorithm described
above the fact that the values of the signal at the vertices of
interest is constraint to remain constant can be trivially gen-
eralized to allow for arbitrary smooth deformations of a sur-
face. To do so, if in equation (14), the valuesx1; : : :;xm must
be replaced by the desired final values of the faired signal at
the corresponding vertices. As in in the Free-form deforma-
tion approaches of Hsu, Hughes, and Kaufman17 and Borrel
4, instead of moving control points outside the surface, sur-
faces can be deformed here by pulling one or more vertices.

Also note that the scope of the deformation can be con-
trolled by changing the number of smoothing steps applied
while smoothing the signalsδ1; : : :;δn. To make the resulting
signal satisfy the constraint, the value ofN in the definition
of the matrixF must be the one used to smooth the deforma-
tions. We have observed that good results are obtained when
the number of iterations used to smooth the deformations is
about five times the number used to fair the original shape.

8.4. Hierarchical Constraints

This is another application of non-symmetric neighbor-
hoods. We start by assigning a numeric labelli to each vertex
of the surface. Then we define the neighborhood structure as
follows. We make vertexvj a neighbor of vertexvi if vi and
vj share an edge (or face),and if li � l j . Note that ifvj is a
neighbor ofvi andli < l j , thenvi is not a neighbor ofvj . The
symmetry applies only to vertices with the same label. For
example, if we assign labelli = 1 to all the boundary ver-
tices of a surface with boundary, and labelli = 0 to all the
internal vertices, then the boundary is faired as a curve, in-
dependently of the interior vertices, but the interior vertices
follow the boundary vertices. If we also assign labelli = 1
to a closed curve composed of internal edges of the surface,
then the resulting surface will be smoothalong, and on both
sides of the curve, but not necessarilyacrossthe curve. Fig-
ure 11-D shows examples of subdivision surface designed
using this procedure. If we also assign labelli = 2 to some
isolated points along the curves, then those vertices will in
fact not move, because they will have empty neighborhoods.

8.5. Tangent Plane Constraints

Although the normal vector to a polyhedral surface is not
defined at a vertex, it is customary to define it by averaging
some local information, say for shading purposes. When the
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A B

C D

Figure 11: (A) Skeleton with marked vertices. (B) Surface
(A) after three levels of subdivision and smoothing without
constraints. (C) Same as (B) but with empty neighborhoods
of marked vertices. (D) Same as (B) but with hierarchical
neighborhoods, where marked vertices have label 1 and un-
marked vertices have label 0. Surfaces are flat-shaded to en-
hance the faceting effect.

signalx in equation (1) is replaced by the coordinates of the
vertices, the Laplacian becomes a vector

∆vi = ∑
j2i?

wi j (vj �vi) :

This vector average can be seen as a discrete approximation
of the following curvilinear integral

1
jγj

Z
v2γ

(v�vi)dl(v) ;

whereγ is a closed curve embedded in the surface which
encircles the vertexvi , andjγj is the length of the curve. It is
known that, for a curvature continuous surface, if the curve
γ is let to shrink to to the pointvi , the integral converges to
the mean curvaturēκ(vi) of the surface at the pointvi times
the normal vectorNi at the same point8

lim
ε!0

1
jγεj

Z
v2γε

(v�vi)dl(v) = κ̄(vi)Ni :

The expression on the right hand side is thecurvature nor-
mal, whereκ̄(vi) is the mean curvature of the surface atvi
andNi is the surface normal atvi . It follows that the length
of the laplacian vector is equal to the product of the average

edge length times the mean curvature

∆vi =

 
∑
j2i?

wi j k(vj �vi)k

!
κ̄(vi)Ni ;

which can be used as a definition of discrete mean curvature
35.

It follows that imposing normal constraints atvi is
achieved by imposing linear constraints on∆vi . If Ni is the
desired normal direction at vertexvi after the smoothing pro-
cess, andSi andTi are two linearly independent vectors tan-
gent toNi , the surface afterN iterations of the smoothing
algorithm will satisfy the normal desired constraint at the
vertexvi it the following two linear constraints

St
i ∆vN

i = Tt
i ∆vN

i = 0

are satisfied. This leads us to the problem of smoothing with
general linear constraints.

8.6. General Linear Constraints

We consider here the problem of smoothing a discrete sur-
face signalx under general linear constraintsCxNC = c, where
C is a m�n matrix of rankm (m independent constraints),
andc = (c1; : : :;cm)

t is a vector. The method described in
section 8.1 to impose smooth interpolatory constraints, is a
particular case of this problem, where the matrixC is equal
the upperm rows of them�m identity matrix. Our approach
is to reduce the general case to this particular case.

We start by decomposing the matrixC into two blocks.
A first m�m block denotedC(1), composed ofm columns
of C, and a second block denotedC(2), composed of the re-
maining columns. The columns that constituteC(1) must be
chosen so thatC(1) become non-singular, and as well condi-
tioned as possible. In practice this can be done using Gauss
elimination with full pivoting10, but for the sake of simplic-
ity, we will assume here thatC(1) is composed of the firstm
columns ofC. We decompose signals in the same way.x(1)
denotes here the firstm components, andx(2) the lastn�m
components, of the signalx. We now define a change of basis
in the vector space of discrete surface signals as follows�

x(1) = y(1)�C�1
(1)C(2) y(2)

x(2) = y(2)
:

If we apply this change of basis to the constraint equation
C(1)x(1) +C(2)x(2) = c, we obtainC(1)y(1) = c, or equiva-
lently

y(1) =C�1
(1) c ;

which is the problem solved in section 8.2.

9. Conclusions

In this paper I described the basic elements of the signal pro-
cessing approach on meshes. It started as a solution to the
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shrinkage problem of Laplacian smoothing, and has evolved
quite significantly during the last five years, with many im-
portant contributions and extensions by many authors, and
applications to other areas. In my opinion, the main reason
for this interest has been the simplicity of the algorithms and
the good qulity of the results produced. I believe that this
area will continue evolving in the near future, with theoreti-
cal advances, new efficient algorithms, and important appli-
cations. Many concepts of classical signal processing may
see usefull applications in computer graphics and geometric
design, if efficient implementations become available. I look
forward to continue contributing to this field myself.
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