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Abstract

This course is intended for attendees with simultaneous interests in the concepts of
relativistic physics and in the practical extension of computer graphics methods to rel-
ativity. The first half of the course will focus on how relativistic effects can be intuitively
understood starting from extremely simple Euclidean 2D geometry. The concept of
object vertices as world-lines moving in a space that can be mixed with time is ex-
plained first in this context. Relativistic imaging is then explained in three dimensions,
two space plus one time, exploiting analogies with Euclidean 3D geometry. Finally, four-
dimensional spacetime is introduced to make the transition to the real world simulations
treated in the final part of the course.

The second half will concentrate on recent advances in visualization and photorealis-
tic simulation of relativistic scenes and phenomena using computer graphics to show
features that could never be seen in real life at human time and space scales. Proper-
ties of light under the extreme conditions of both special and general relativity will be
discussed, including changes of color, intensity, and direction of light, and gravitational
light bending. A survey of state-of-the-art rendering techniques will be presented and
selected animations produced using recently developed methods for relativistic ren-
dering will be shown. An introduction to user interaction in special relativistic virtual
environments will conclude the presentation.
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Course Schedule

1. 13:30-14:20 Introduction (Hanson)

(a) Motivation

(b) 2D Euclidean vs Minkowski: Build Relativity concepts from 2D Graphics
(c) Spacetime points and the twin paradox

(d) Relativistic objects, cameras, and imaging

2. 14:20-15:00 Visualization Methods in 3D and 4D (Hanson)

(a) 3D =2 Space + 1 Time: Transformations

(b) Multiple transformations and Thomas Precession
(c) Aberration of Light

(d) Object Viewing: Occlusion, IBR, Terrell effect

(e) 4D = 3 space + 1 time

3. 15:00-15:15 Break
4. 15:15-15:50 Light (Weiskopf)

(a) Fundamentals (electromagnetic wave, photons, plenoptic function)

(b) Relativistic effects on light (aberration, Doppler and searchlight effects, trans-
formation of the plenoptic function)

(c) General relativistic effects (bending light by gravity, gravitational lensing)
5. 15:50-16:35 Rendering (Weiskopf)

(a) Special relativistic rendering methods (polygon rendering, radiosity, ray trac-
ing, image-based rendering, texture-based rendering)

(b) General relativistic rendering (ray tracing, image-based rendering)
6. 16:35-16:45 Interaction Techniques (Weiskopf)

(a) Accelerated motion of an observer in special relativity
(b) Interactive virtual environment

7. 16:45-16:50 Conclusion (Weiskopf)
8. 16:50-17:00 Questions and Answers (Hanson, Weiskopf)
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GRAND PLAN

I: Introduction: Hanson, 50 min
[I: Visualization Methods:  Hanson, 40 min
< 15 minute Break >
Ill: Light: Weiskopf, 30 min
IV: Rendering: Weiskopf, 30 min
V: Interaction Techniques:  Weiskopf, 30 min
VI: Conclusion and Questions: 15 min
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I: Introduction to Special Relativity

e Motivation

e 2D Euclidean vs Minkowski:  Build Relativity con-

cepts from 2D Graphics concepts.
e Spacetime Points and the Twin Paradox.

e Relativistic Objects and Cameras:  What hap-

pens to graphics modeling near the speed of light.

[I: Visualization Methods in 3D and 4D

e 2 Space + 1 Time: Transformations.

e Rolling the Relativistic Ball
Thomas Precession

e Aberration of Light:

e Object Viewing: Occlusion, IBR, and the Ter-
rell Cube

e 4D = 3 space + 1 time:

llI: Light

e Directions in Relativity
e Frequency Transformations
e Relativistic Radiance Transforms

e Bending Light with General Relativity

IV: Rendering

e From the Z buffer to the T buffer
e Special Relativistic Ray Tracing
e Texture and Relativistic IBR

e Gravitational Lensing




V: Interaction Techniques

VI: Conclusion

Visualizing Relativity

Part I: Introduction
to Special Relativity

Andrew J. Hanson
Indiana University

I: Introduction to Special Relativity

e Motivation

e 2D Euclidean vs Minkowski:  Build Relativity con-

cepts from 2D Graphics concepts.
e Spacetime Points and the Twin Paradox.

e Relativistic Objects and Cameras:  What hap-

pens to graphics modeling near the speed of light.

Motivation

WHY ARE YOU HERE? Let's guess:

= You know about Graphics

= You know about Visualization

= You DO NOT know much about Relativity.

* You WOULD LIKE to know how these three things

are CONNECTED...
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Motivation, contd.

What is Graphics?

e Graphics: is the art of simulating the physics
of the interaction of material and light.
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Motivation, contd.

What is Visualization?

e Visualization: is the art of creating insights into
non-self-explanatory data and geometry using
graphics.

12




Motivation, contd.

What is Relativity?

e Relativity: is the mathematics describing the
interaction of material and light UNDER EXTREME
PHYSICAL CONDITIONS.

Therefore, this course is the logical extension of

everything graphicists and visualizers already do!

13

Euclidean Transformations

We begin with what we all know — 2D Rotations.

y=rsin ¢

X =T COS @

' = xCcosf —ysinh

y = xsSinf + ycosh

14

Euclidean Transformations, contd.

Explicit 2D rotations are realized by a 2D matrix

cosf —sind
RO = | Gng cose}
where
10 . 10
Rw){o 1}3(9) —{0 1}

because‘(cos 6)2 4 (sin6)2 = 1‘
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Euclidean Transformations, contd.

Main feature: The Radius is unchanged under
[x'] = R(0) - [x]:

= \/w2+y2= ¢x/2+y/2

In other words, | Euclidean distances| do not vary
under the action of rotations.
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Euclidean Transformations, contd.

Similarly, the Euclidean Inner Productis unchanged
under [x'] = R(9) - [x], [¥] = R(0) - [%]

10
01

z

Y

x'Xx=x'% = [z y][

= i+ yj = ricos(¢ — ¢)

In other words, Euclidean angles\ do not vary un-
der the action of rotations.
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Euclidean Transformations, contd.

Properties we know and love:

e Rotations have a fixed point at origin.

e Rotations leave segment lengths and inner
products unchanged.

e Rotations are orthogonal = RIR! =T

e NOTE: The PROJECTIONS may change, yet we
“know” the segment length is constant.

18




Lorentz Transformations

Special Relativity is just “Rotations with hyperboloids
instead of circles.”

Euclidean Rotations = Lorentz Transformations.
Let x be a space interval and ¢ be a time interval:

' = xzcosh& +tsinhég
t' = zsinhé 4 tcoshe

19

Lorentz Transformations, contd.

When we apply this transform to a vector from the
origin to a point (z, t), the new point (', ¢') lies on

a 'hyperboloid | instead of a circle!
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Lorentz Transformations, contd.

Explicit 1-space + 1-time Lorentz transformations
are realized by a 2D “boost” matrix

__ | cosh¢ sinhg
B&) = sinh¢ coshé¢ | -
where
B@| g OB =g

B(¢) preserves the length of proper time due to
‘(cosh £)2 — (sinh¢)2 = 1‘

21

Lorentz Transformations, contd.

Compare Euclidean and Lorentz functions:
_ L0 —in S S R T/
cose_E(e + e ) sme_z(e —e )
cos? +sin? = 1
cosh¢ = L (e5 + e*’5) sinh¢ = 1 (ef - 6*5)
2 2

cosh? —sinh? = 1

where the MINUS SIGN is all-important!
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Lorentz Transformations, contd.

Main feature of Lorentz-transformed vectors is very
close to rotations: Instead of the Radius, depend-
ing on sign inside root,

e THE PROPER TIME is unchanged.

;= \/tz_wz _ \/t/2 _ g2

e Alternatively, THE PROPER DISTANCE is unchanged.

5 — %,62 2= ﬁa _ 42
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Lorentz Transformations, contd.

e ...and instead of the Euclidean dot product, the
THE MINKOWSKI SPACE INNER PRODUCT

{ =z —tt
t

x-x=[z t]

IS UNCHANGED.

24




Lorentz Transformations, contd.

Now let’s visualize a typical invariant:

22 22 2

describes a |hyperbola, x = 0 =t = :

z#=0 = t:\fr2+x2
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Lorentz Transformations, contd.

An alternative view showing geometry of proper
time, emphasizing interval property.

dt

N 2 2 2
______ s dt=dT + dx
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Lorentz Transformations, contd.

What are cosh £ and sinh £ anyway?

Suppose tg = 1.0 and zg = 0O:

dx = xzgcosh§& + tgsinhé =sinh¢
dt = zgsinh§ 4+ tgcosh& = coshé.

27

Lorentz Transformations, contd.

Thus \ (dz/dt) = sinh £/ cosh ¢|is the inverse slope
of the interval (0.0, dr) after the transformation:
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Lorentz Transformations, contd.

We identify this slope as the

velocity = v = %% = tanhf‘

Simple algebra and |cosh? — sinh2 = 1/ give us:

1.0
V1.0 — 22
v

V1.0 — 22

cosh¢ =

sinh¢ =

29

Lorentz Transformations and velocity of light

OOps! Where did the velocity of light go?

Simple answer: we set it to unity to make (z,t)
plots work!

Better answer: Replace v = v/c‘ whenever you

need it.

What happens as [c = oo?? This is ORDINARY
GALILEAN SPACETIME, where NO mixing of space
and time can occur!

30




Lorentz Transformations and velocity of light

Check Galilean limit: as [c = oo

1.0

he = — ~— =1
cosh¢ /1.0 = (v/c)? -

sinh¢ = _vle

/1.0 — (v/c)?

So we get B(¢) = identity matrix and the effects
of the Lorentz transform disappear!
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Lorentz Transformations, contd

Note: Euclidean intervals do not care if you start
with (z, y) = (r, 0) or (x, y) = (O, r) before
you rotate: = r is always positive.

xy)=(r)

"

/) (xy)=(r.0)

32

Lorentz Transformations, contd

Relativistic intervals do care :

(z,t) = (0, 7), t2—x2>0 = Timelike interval
(z,t) = (1, 7), t2—x2=0 = Lightlike interval
(z,t) = (6,0), t2—x2 <0 =Spacelike interval

Furthermore, these distinctions are |invariant
under the Lorentz transform!

z' =xcoshé+tsinhe ¢ =axsinhé+tcoshé

33

Lorentz Transformations for timelike intervals

Define a timelike interval , with x = 0.0 and ¢t =
1.0, and transform:

2’ =xzcoshé+tsinhe ¢ =asinhé+tcoshé
z' =sinh¢ ¢ =cosh¢

W W 5 Space \V Space - \V Space

v=0.5 v=0.9
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Lorentz Transformations for time-like intervals

Lett = 1.0, z = 0.0 as before, but let velocity

be negative:

2’ =xcoshé —tsinhe ¢ = —xzsinhé 4+ tcoshe

= —sinhé ¢ =cosh¢

Time Time Time Time

2 2 2 2
15 15 15 15
5|
Space Space Space v 5 Space

Z -1 12 71 12 Z-1 12 71 T

v=20.0 v=-0.1 v = —-0.5 v=-0.9
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Lorentz Transformations: different velocity signs

You already know this difference:

Euclidean: angle > 0 means | object interval is rotated
Euclidean: angle < 0 means | viewer is rotated
Lorentz: velocity > O means | object interval is boosted
Lorentz: velocity < O means | viewer is boosted

36




Lorentz Transformations for lightlike intervals

Define a lightlike interval,
withz =1.0and ¢t = 1.0,
and observe that 22 — t2 = /2 — ¢2 = ©;

' = cosh¢é +sinh¢é ¢ =sinhé 4+ coshé

me

Tim
4
3
2
1
5 Space 5 Space 5 Space -

7T 7 -1 z T2 3 4

v—OO ’U—Ol v =0. v—0.9

Space
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Lorentz Transformations for spacelike intervals

Define a spacelike interval:
with (z =1.0,t=0) = 22 —t2>0
so z’ = cosh¢, t' =sinh¢.

Téme Téme Téme Téme
15 15 15 15
1 1 1 1
05 0.5 0.5 0.5
05| 15 2°Pace 05 | 15 2°Pace 05 | 15 2°Pace
-05 -05 -05 - 0.5]
o1 -1 -1 -1
-15 -15 -15 - 1.5]
-2 -2 -2 -2

v=0.0 v=0.1 v=0.5 v=0.9

05 { 15 25Pace
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Lorentz Transformations: fixed points

Every graphicist knows that |x’ = R - x has a
fixed pointat x = 0.

Relativity is the same: translate to ¢ = 0.0 and
x = 0.0 before transforming:

' = xg+ (z —xg) cosh ¢ + (t —tg) sinh ¢

t' = tg+ (z —xzg)sinh &+ (t —tg) cosh &
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Lorentz Transformations: fixed points

Transform with Lorentz Fixed Pointat xg = (zq, tg):

[f/l] = T(+4=g, +to) - B(§) - T(—z0, —to) - {j]

t axis

X axis

X0
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Lorentz Transformations: whole plane

Every point inthe (z,t) plane Lorentz transforms
to one light cone or the other along a hyperboloid
asv — £1:

41

Lorentz Transformations: world lines

Every timelike line inthe (z, t) plane Lorentz trans-
forms to a slanted line as v — 1:

42




What is a Minkowski frame?

Let xq, tgp be the basis vectors of a Minkowski-
space frame:

e Space-Like: xg = (1,0) whose length is
%0 %0 = 1.

e Time-Like: o = (0, 1) whose length is
to-tg = —1.

43

What is a Minkowski frame?

Compare a Euclidean frame to a Minkowski frame:

The Euclidean axes stay at right angles under rota-
tions. What happens to the Minkowski axes under
Lorentz transforms??

44

How do the frame axes transform?

The usual Three Othonormality Conditions  are
preserved in any coord system.

e Space-Like: xg = (1, 0) has unit length:
%0 %o = 1.

e Time-Like: tg = (0, 1) has unit length:
to-to = —1.

e Orthogonality: %g = (1,0) and tg = (0,1)
have vanishing inner product: tg - xg = O.

45

Frame axis transforms, contd

The picture seems to show axes coming together,
but orthonormality is automatically preserved :

Boost =

46

Lorentz Frame Axes

If we did not know about cosh?¢ — sinh2¢ = 1,
we might represent the frame differently, e.g., as:

oio] = | p -

where the constraint A2 — B2 = 1 guarantees or-
thonormality in the the Minkowski space; the columns
are orthogonal, and of length +1 and -1, respec-
tively.

47

Lorentz Frame axes, contd

As for 2D rotations, we can define a double-valued
parameterization (a, b) of the frame:

a2 +b2  2ab

B A 2ab a2+ b2

AB}Z

where A2 - B2=1IFa2 b2 =1, and (a, b) is
precisely the same frame as (—a, —b).

These are hyperbolic half angle formulas,
a = cosh(£/2), b = sinh(&/2)!

48




1+1 “Quaternion” Frames!

Differentiating both X and fb, our eqns reduce to

HE I8

\ This is the square root of Lorentz frame equations.\

(Quaternion frame equations have [ 2 —OH } )

49

Lorentz Transformations, summarized.

Properties we will know and love:
e Boosts have fixed point at origin.

e Boosts leave proper times, proper lengths, and Minkowski
inner products  unchanged.
e Boosts are orthogonal on a negative signature iden-

1 0 1 0
0 -1 0 -1

e As in Euclidean space: The PROJECTED PARTS OF A

tity matrix = B [ } Bt =

VECTOR may change, yet we know the inner product lengths

are CONSTANT.

50

What is an object?

In Relativity, a point object is a world line .

e Standing still at one point: world line still ticks
away: Equation = (§ = const t).

e Moving curve x(t) must obey |dz/dt| < 1.

e Communication can only occur using light or
slower media.

e So all possibility of image data is restricted es-
sentially to rays with paths having |dz/dt| = 1.

51

Point Objects ...

What do point objects look like in spacetime?

Relativistic equations have space and time com-
ponents, so think of a static point as the paramet-
ric line (4, t).

52

Twin Paradox

A world line represents an object, e.g., a person,
evolving in time, possibly moving through space.

?

x(t) paths corresponding
proper times

53

Twin Paradox, contd.

Consider two twins |, one living on path Pi, the

other on path P,. Their ages |in any frame | are
the proper lengths of their world lines:

Agel = Ty = /P1 dr
Age2 = T» dr

Jp,

54




Twin Paradox, contd.

Graphical picture of twin ages: go to rest frame of

each leg of journey to visualize true proper time:
T1

T2=a2+bh2

" rest frame
of 2nd leg

rest frame\ Y
of 1st leg

55

Time Dilation of Point Clocks

Since the point (0, 7) is transformed to z = 7sinh €,
t = T cosh &, we can solve for 1, yielding x = vt,
so the invariant proper time  can be written:

T=\/t27$2=t\/171)2

Since the measured time t = 7//1 — v2 > 7,

this is | Time Dilation .

56

Time Dilation, contd.

Now visualize change in apparent tick rate of mov-
ing clock , as well as how you would measure it

A cameratimeline

57

Lorentz Contraction of Spacelike
Intervals

For spacelike intervals, the situation is trickier. Let

z1(t) = (0,1)
zo(t) = (6,1)
be the ends of a line segment.

58

Lorentz Contraction, contd.

Under a Lorentz transform, the origin stays fixed,
but

ah(t) = (X(1), T(1))
= (§cosh¢ +tsinh &, §sinh € + tcosh €)

becomes a curve with the old (5, 0) pushed far up
the hyperboloid to

X(0) =6cosh¢ T(0) =4sinh¢
for large v = sinh &/ cosh &.

59

Lorentz Contraction, contd.

We must take the line (X (t), T'(t) and extrapo-
late backwards to 7'(t) = 0 to find the new inter-
val as seen by the observer. Solving

T(t) =dsinhé+tcoshé =0
for t = tg, we find

to = —dsinh &/ cosh§

60




Lorentz Contraction, contd.

Thus tg is negative and we must have a length reduction .
The numbers come out to be:

X(tg) = bcosh¢& +tgsinhé
sinh2¢
cosh ¢
(cosh?¢ — sinh?¢)

= éfcosh& — 6

= cosh ¢
6

=6V1 -2
cosh ¢

Therefore the observed interval X (tg) — origin = §/1 — v2

is Lorentz Contracted in the moving frame relative to the
rest frame interval §.
61

Lorentz Contraction, contd.

We may visualize the Lorentz contraction as a back-
wards sliding of the intercept of the Lorentz trans-

formed worldline, X (tg) = 6/ cosh ¢ = §V/1 — v

Endpoint timelineA

T(t0) = O intercept Xt)=Ad+ Bt

TM)=B5+ At

'y

, t

-- -
X(t0) = 5/A

62

What is a solid object?

In 2D relativity, a solid object is a line segment .

e Each end tracks timelike world line.
e Segment itself is spacelike interval.
e Simultaneity is tricky; after Lorentz transform,

observer time cuts a skewed slice.

63

What is an object, contd

Watch the points — spacelike and unable to com-
municate sideways — as they each evolve on a
timelike worldline.

t1 time

Observer Time

to’ . "
to ¢ ¢ Object with spatial extent

Object with spatial extent after Lorentz transform

After Lorentz transform, Simultaneity is modified.

64

What is an observation?
Observation of object is only possible via lightlike
rays striking CAMERA.

These rays must strike observing camera’s world
line at SAME TIME!

Object with spatial extent

65

What is an observation, contd.

Since emitted rays must arrive |simultaneously| at
camera on forward light cone to create a shapshot,

we have an alternate method:

Shoot a light cone of rays backwards from camera\

All relativistic pictures then come from time-reversed
ray tracing:

66




What is an observation, contd

Camera world line

tl
4 ~
4 ~
H 4 N
time ’ N
4 ~
’ ~
4 ~
l" N
4 ~
4 ~
4 ~
4 ~
4 N
’ ~
4 ~
4 A Y
t0

Object with spatial extent
seen by camera rays
at earlier times
67

Summary So Far:

e Ccos to cosh and sin to sinh make rotations
change to Lorentz transformations.

e Invariants are inner products with minus sign.

e Slope = tan to Velocity = tanh: helps visu-
alize the meaning of the Lorentz parameters.

e Objects: spacelike intervals, endpoints track
timelike worldlines, emitting lightlike signals.

e Cameras: constructimages by back-tracing light
rays to intersect object worldlines.

68
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Visualizing Relativity

Part II: Visualization Methods
for Special Relativity in 3D and 4D

Andrew J. Hanson
Indiana University
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Part Il: Visualization Methods
for Special Relativity in 3D and 4D

e 2 Space + 1 Time: Transformations.

¢ Rolling the Relativistic Ball
Thomas Precession

e Aberration of Light
e Object Viewing: Occlusion, IBR, Terrell

e 4D = 3 space + 1 time

74

From 2D (1+1) to 3D (2+1)
We need at least two space dimensions to make
interesting pictures. In 2 space + 1 time:
e Objects are polygons (at one time)
e Polygon vertices sweep out proper-time lines.
e Whole spacetime object is tube-like.

e Cameras see cones intersecting these tubes.

== |[First, revisit transforms:|

75

2 + 1 Spacetime Boost Matrices

cosh sinh

i ?
sinh cosh n 2+17

What happens to good old

B(v) =

1+ vp2(cosh€ —1)  wpvy(coshé —1)  wgsinhé
vgvy(coshé —1) 1+ w,2(coshé — 1) vysinhé
vgSinh € vy sinh & cosh ¢

Note: Vv - Vv = vgvz + vyvy = 1 and we define velocity as

v = ¥ tanh ¢/ (units: velocity of light = 1), and det B = 1.

76

|

Pursue 3D space analogy:

things happen when you perform

sequences of rotations in Euclidean 3D space:

R(é, i)-R(Ea §) - R(G, S;)R(ea )’E) =
0-10
(EE+0()|1 0o o
0O 0O
This generates an infinitesimal Z-axis rotation!

7

3D space analogy:

Sequences of rotations in Euclidean 3D space
counter-rotate:

Euclidean:
Clockwise Circuit
-> Counterclockwise spin

R(+y)

v I R(+x)
R(-x)
R(-y) | J

z

This is the Rolling Ball effect.
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2 + 1 spacetime: properties

\Very Interesting \things happen when you perform

sequences of Boosts in 2 space + 1 time:

0
B(x)B() - BG)B®E) = (2+0(3)) | -1
0

O O
O O O

This is an infinitesimal negative Z-axis rotation!

79

2 + 1 spacetime: Thomas Precession

This observed \Spatial Rotation | is the origin of

Thomas precession: in 3D:

Minkowski:
Clockwise Circuit
-> Clockwise spin

B(+x)

C
B(+y) B(-y)
B(-X) y
z -+

This is a Relativistic Rolling Ball Effect.

80

Thomas Precession, contd.

Thomas Precession is the exact analog of the Eu-
clidean 3D “Rolling Ball” effect.
This relativistic effect modifies magnetic coupling
of atomic electrons in accelerated circular motion
by causing an angular velocity

VXV .
N ——V XD
02 2

w = —(cosh&—-1)

to be applied to the rest frame of an orbiting elec-
tron.
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... recall 3D Euclidean Quaternion Frames ...

e Quaternion Correspondence.  The unit quaternions ¢
and —q correspond to a single 3D rotation R3(q):
@B+ad3—a3-4d3 2q102—29093 29193+ 24002

29192+ 29093 @@ a3+ B - a3 249243 — 2q0a1
2q193 — 29092 24293 + 2q0q1 93 — 4% — 43 + 43

o Rotation Correspondence.
If ¢ = (cosd,fisin), with & a unit 3-vector, fi - fi =
1, then R(6,11) is usual 3D rotation by 6 in the plane
perpendicular to n.
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2 + 1 spacetime quaternion-like form

In 2 space + 1 time, we can construct exactly the same type
of quadratic form for the boost :

h3+h2 —h2  2hghy 2hohy
B(v) = Dhghy h3 + h2 — h2 2hohy
2hoha 2hghy h3 + h2 + h2

f[h = (ho, ha, hy) = (cosh¢/2,¥sinh £/2)|
with v = sinh £/ cosh € and |¥| = 1, then this is exactly the
standard 2+1 Lorentz transformation!
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2 + 1 spacetime quaternion-like form

Caveat: Because of the Thomas Precession, even though
h = (cosh¢/2,vsinh&/2) generates B(v), the full group
of 2+1 transformations is not quite there, and the algebra is
incomplete.

No time for details here, but the full treatment is straightfor-
ward using Clifford Algebra to generate Spin(2, 1).
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Features of Light in 2+1 Spacetime
Lorentz transforming a light ray can change its di-
rection. Let

2’ =xcoshé+tsinhe  t =asinh¢é+tcoshé

Thus even if z < 0,

|2/ >0 if tsinh¢ >z cosh ¢l
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Light in 2+1, contd

Let 8 describe an isotropic distribution of light-like
vectors with (z,vy,t) = (cos#@, sin@, 1), and Boost

with v in z direction:

2’ = cos@coshé +sinh¢
y = sin@
t' = cos@sinh& 4 coshé

Slice t in observer frame, so observed tand’ = 3/ /x’.
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Light Aberration: summary

|Aberration Formulas we know and love: |

After boosting to v = sinh / coshin units of ¢ = 1,
the isotropic light ray distribution

(z,y,t) = (cos@, sinf, 1) deforms to:

cing — sin@

(14 vcos®)coshé¢
cosd — v+ cosé

1+ vcoso
tand — sing

(v 4 cosf) cosh &

87

Light in 2+1, contd
Observations on relativistic light distortion:

etan® x 1/coshé = V1 — o2
e So,as v = sinh /cosh — 1...

e ...the|aberration of light | (resembling a search-

light ) swings all the rays to the forward direc-
tion!
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Visualizing aberration: light cones

Looking down on boosted spacetime cones repre-
senting symmetric Light Ray distributions:

.

v=0.5¢ v=0.75¢ v =0.9¢ v = 0.95¢

89

Visualizing aberration: circular distrib.

Looking down on boosted 2D symmetric Light Ray
distributions:

“ne

v =0.0c v=0.20c v=0.50c

v=0.90c v=0.95¢c v=0.99¢c




Seeing 2+1 Spacetime

e Points: Still World Lines tracing Proper Time

e Objects: Segments (slabs) = Polygons (tubes)
e Light: Diagonals = Cones

e Images/Cameras: Trace inverse Cones

e Transformations: Completely new features, anal-
ogous to 3D rotations
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2 + 1 Spacetime Image Construction

At one instant, camera receives back-traced light
from a single inverted cone in 2+1 spacetime:

2
TIME advances UP to zero at the apex, the cam-
era focal point.
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2 + 1 Spacetime Object Viewing

How front and back of polygon side emit light to-
wards camera:

Now vary velocity ...
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2 + 1 spacetime object viewing

When velocity is 0.90 times the speed of light, light
escapes from back side in a almost a full circle:
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2 + 1 Spacetime Object Viewing

How is light from a moving slab distributed to the
camera?

Light cone is invariant but world-sheet of a polygon
tilts: visibility of front and back sides varies drasti-
cally with véelocity.
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2 + 1 Spacetime Object Viewing
How face’s light distribution changes with velocity:

v=050 v=075 v=090 wv»=0.99

The front side is visible only under more and more
restricted conditions.

The back side becomes visible from practically
EVERYWHERE as v — 1!
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2 + 1 spacetime object viewing

Simple model: square in 2+1 spacetime: with one side re-
moved so we can seg- inside:

:
\\
N

Here, velocity v = 0.50 times the speed of light.
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2 + 1 spacetime object viewing

Simple model: square in 2+1 spacetime: with one side re-
moved so we can see inside:

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.

Note Lorentz Contraction.
98

2 + 1 spacetime object viewing

Looking down from the camera’s spacetime viewpoint:

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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2 + 1 spacetime object viewing

Add a stationary camera: at each time step, the camera sees
what the cone intersects:
N\

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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2 + 1 spacetime object viewing

Stationary camera, looking down on the camera’s spacetime
viewpoint:

10 5 0

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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Occlusion in Relativistic Scenes

Study occlusion using polygons aligned with cam-
era rays:

2
Observe: Once an occlusion edge, ALWAYS an
occlusion edge!
102




2 + 1 occlusion, contd

Even at extreme velocities, occluding edges per-
sist, so boosts will never add face material to a
static scene.

7.9

Velocity: 0.50, 0.75, 0.90 times the speed of light.
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Static Scenes and Image-Based Rendering

As long as a scene is STATIC, you can take the light
distribution in any frame, and use that to make a
relativistically distorted scene.

THIS IS THE BASIS OF RELATIVISTIC IMAGE-BASED
RENDERING! (See later in Weiskopf lectures).

e The angles and frequencies may change, but the
geometric transformations conspire to keep all in-
visible polygon faces perpetually invisible.
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2 + 1 Moving Scenes and the Terrell Effect

In moving scenes , the delay of light rays reach-
ing us from a rapidly moving object causes bizarre
effects

\Only the back side \of a cube moving towards us

at v &~ 1 is seen under normal conditions.
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Moving Scenes and the Terrell Effect

Tube: camera world line.
Disk: oo light velocity would make FRONT visible.
Cones: finite light velocity shows only BACK.
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2 + 1 Moving Scenes and the Terrell Effect

This effect went virtually unnoticed until Terrell (1959)
pointed it out. Intuitively, it arises as follows:

e As v = 1, aberration reduces the visibility of
front edge to a single ray .

e Simultaneously, back edge becomes visible at
some time to any camera in the world.

107

2 + 1 Moving Scenes and the Terrell Effect

Front only visible along single ray for finite light ve-
locity.

Would be visible everywhere in a half-plane with
infinitelight velocity!

108




3 Space + 1 Time: The Real World!

Goal so far: build intuition in 1+1 and 2+1 dimen-

sions of spacetime. Now do 3 Space and 1 Time:

e Transformations:  Six Parameters: 3 boosts
(v), 3 Euler angles (6,n). Most significant fea-
tures occurred already in 2+1.

e Aberration: Same form, spun about boost axis.
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3 Space + 1 Time: The Real World!

e Imaging: Still the light cone, but now harder to
draw; think of as a growing sphere surrounding
light source.

e IBR, Terrell effect, etc:  All just about the same
as in 2 space + 1 time, only objects are like
swept spheres instead of tubes = swept cir-
cles.

110

3 + 1 spacetime Full Boost

In real-world spacetime, a Lorentz transform with
velocity v = v(sinh £/ cosh &) becomes:

]_+’U%C VzVy C vgevz C vz Sinh &
vzuyC 14 1)5 C vyvC wysinhg
vV, C vyv; C 1+v§C vz Sinh &
vz Sinh§ vysinh§ wvysinh§ cosh{

B(v) =

where C = (cosh& — 1). Here det[B] = 1 and
B(v) leaves the matrix diag(1, 1, 1, —1) invari-
ant.
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3 + 1 spacetime quaternion-like form

Defining Dy = h3 +h2 — h2 — h2, cyclic, 4D boosts acquire
a quaternion-like form:

B(v) =
Du  2hshy 2hshe 2hoha
Ohghy Dy 2hyhs 2hohy
2hgh. 2hyh. D 2hoh.

2hohg 2hohy 2hohs h3 + hZ + h2 + b2

where h = (hg, ha, hy, hz) = (cosh&/2,¥sinh&/2) with
|¥] = 1 generates a standard Lorentz transformation!
Note: det[B] = (cosh? — sinh2)4 = 1.
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3 + 1 spacetime quaternion-like form

Caveat: Even though h = (cosh¢/2,vsinh&/2) gener-
ates B(v), this is also incomplete, since rotations (e.g., Thomas
precession) must be merged in with boosts in the full theory

of 3+1 spacetime.

Footnote: The full group SO(3, 1) has a quadratic form cor-
responding to its “double covering group.” This group is di-
rectly derivable from Clifford algebra methods, and is written
Spin(3,1). It corresponds to the six parameter group of
complex 2 x 2 matrices SL(2, C), and eventually leads to
the Dirac Equation for the relativistic spin 1/2 electron.
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Seeing 3+1 Spacetime

3D spatial light ray distributions for a symmetric
source are very similar to the 2D spatial distribu-
tions:

114




Seeing 3+1 Spacetime

Alternative Visualization: Solid sphere plot of 3D

space lig

ht ray dis

v = 0.5¢ v = 0.90c¢ v = 0.99c¢

Texture Maps on these distorted spheres provide
an implementation of Relativistic IBR .
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Summary of 3+1 effects:

e B(v) is an orthogonal 4 x 4 matrix, mostly cosh’s and
sinh’s as usual!

e Quaternion-like forms exist, rigorously corresponding to
the representations and algebra of SL(2, C).

e Occlusion invariance and light aberration allow relativistic
IBR to be implemented.

e Objects are made up of vertices tracing world lines, linked
into edges, polygons, and polyhedra.

e Camera images can be formed by tracing light rays back-
ward in time on negative light cone until they hit scene

objects.
116

Intuition Overview

Orthogonal Matrices:  Did you understand that cos, sin
matrices leave dot products unchanged?

If so, NOW you understand that cosh, sinh matrices
leave proper-time dot products unchanged!

Rigidity: Did you understand that 3D rotations change
2D length of projected components, yet radius is con-
stant?

If so, NOW you understand that Lorentz matrices change
(x,t) coordinate components, yet proper-lengths are un-
changed!
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Intuition Overview, contd.

e Non-Commuting Matrices:  Did you understand that z, y
3D rotation matrices generate extra z-spin?

If so, NOW you understand that circular Lorentz transfor-
mations generate Thomas Precession.

e Relativistic IBR Theorem: Did you understand that oc-
clusion of light rays by polygons is relativistically invariant
due to invariance of dot product?

If so, NOW you understand how relativistic IBR is possi-

ble with real world image sources.
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Transition:

Algebraic thinking was the focus of the course so far,
learning to understand behavior of light, geometry, and
matter under relativistic conditions.

Rendering Virtual Relativistic Reality  will be demon-
strated in the final part of the course.

Together, the two techniques combine to let you SEE and
UNDERSTAND how Relativity works.

‘Time for a 15 minute break!|
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Visualizing Relativity

Daniel Weiskopf
University of Stuttgart

2001

Outline

Physical fundamentals

Plenoptic function

 Directions and relativistic aberration
» Frequencies and the Doppler shift

Radiance transformation & Searchlight
effect

Bending light with gravity

2001

Wave

* Amplitude, Phase, Wavelength

/\ mAmplltude
Phase \/ \/

Wavelength

mm

Part IlI:

LIGHT

2001

Light

* Wave-particle dualism
— Electromagnetic wave
— Photons

« Carries all visual information on our
surrounding environment

2001

Electromagnetic Wave

+ Continuous electric and magnetic fields
(perpendicular)

* Amplitude — energy
« Direction
* (Polarization)

2001




Radiance

do

L= Solid angle dQ
dt dA dQ

2001

Projected solid angle
dQ, =dQ cos 6

Wavelength-Dependent
Radiance

» Spectral distribution
» Depends on wavelength

L :L
Y dt dA dQ dA

2001

Plenoptic Function

» Compact description of photon field
» Radiance depending on:
— position
—time P(x.y.2.6,0.4)
— direction

— wavelength

2001

Radiance

. L= do _ do
dt dAAdQ_, dtdAdQcos6
* Energy per
—Time
— Projected solid angle
—Area

» Constant along light ray in vacuum (in
Newtonian physics)

2001

Plenoptic Function

* Photon
field

» Particle 1

picture f

2001

Color from Spectral Power
Distribution

 Color vision: psychophysics
+ Standards by CIE

* Measurement of spectral sensitivity of
the human eye

* C = [f(MP(A)dA, i=R,GB (colors)

Color matching function

2001




Special Relativity

Einstein 1905

« Basis for all modern physical theories
No gravitation

» Spacetime structure

Flat spacetime

Light travels along straight lines

2001

Relativistic Aberration of Light

» Change of direction of light

* Apparent geometry Velocity
» Motion along z axis &
+ Spherical coordinates (6,¢) B :%
. cos@'= cos8—f
1-Bcosé Speed of light
v=0 ~SIGGRAPH

2001

Relativistic Aberration of Light

» Non-relativistic
(for comparison)

2001

C-3

Lorentz Transformation

* Transformation between inertial frames

of reference

Frame S’

Frame S

2001

Relativistic Aberration of Light

2001

» v=0.6¢c
* Increased field

* Distortion to

Relativistic Aberration of Light

of view

hyperbolae

2001




Doppler Effect

« Changes wavelength
« Affects color
* Red or blue shift

2001

Doppler Effect

« v=0.6¢c
* Blue shift

2001

Searchlight Effect

 Searchlight or headlight effect
» Changes radiance
« Affects brightness

2001
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Doppler Effect

* A'=DA

1

* Doppler factor: p=—
y(1-BcosB)

2001

Doppler Effect

No color shift
(comparison)

Doppler shift

2001

Searchlight Effect

« L')(X,6.¢')=D"L,(A6,9)

» Highly non-linear
« Extremely bright objects ahead

2001




» v=0.6¢c
* Overall

+ Objects ahead

Searchlight Effect

brightness: 10%

become brighter

2001

Searchlight Effect

Combining

— Aberration of light
— Sweeping effect
— Doppler effect

— Time dilation

L'y (X,6',9")=D"L,(A6,0)

2001

General Relativity

Einstein 1915
Theory of gravitation
Curved spacetime
Differential geometry

2001

Searchlight Effect

Searchlight effect
(brightness: 10%)

No color/brightness
shift (comparison)

2001

Lorentz Transformation of the
Plenoptic Function

» Combination of aberration, Doppler &
searchlight effects
, 0+B A
P'(0',¢',N)=D"P _CoseFP » 4
(0',9",A") (arccosﬂﬁcosel 0] )

« Additional rotations allow for a direction
of motion different from z axis

2001

General Relativity

« Light is influenced by gravitation

* Bending of light rays

» Experimental confirmation: solar eclipse
expedition (Eddington 1919)

* Gravitational lensing in astronomy

2001




Gravitational Lensing

Galaxy Cluster Abell 2218
NASA, A. Fruchter and the ERO Team (STScl, SFECF) » STScl-PRC00-08

Credits: NASA, STScl (A. Fruchter, ERO Team)

2001

Curved Manifold

Map

Coordinate system

Curved manifold

2001

Geodesics

» Photons (and particles) travel along
geodesic lines in 4D spacetime

» Geodesic: “straightest line” in curved
manifold

2001

Gravitational Lensing

_—
To observer

Black hole

2001

Curvature of Spacetime

* Metricg,(x) , k/=0,123

* Line element
ds? = 23 g, (x)dx*dx’

k,I=0
* Local measurement of distances

» Fundamental, intrinsic description of
curvature

2001

Geodesics

» Geodesic equation

d2x“(f)+ 23: v (X)dXV(C) dx” () _

vo -

a5 a¢  d¢
) ( Affine parameter

Christoffel symbols
(calculated from metric) J—

2001




Geodesics

* Initial value problem for ordinary
differential equations (ODE)

Initial position Rt

What Else?

« Shift of wavelength in general relativity:
— Gravitational redshift
— Cosmological redshift
— Doppler redshift
— Unified treatment of all these
» Transformation of radiance

* (More in the references/literature)

2001

Summary

* General relativity:
— Light bending
— Gravitational lensing
— Geodesic equation

— (Transformation of wavelength and
radiance)

2001
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Geodesics

* Initial values:
— Camera parameters
— Time component fixed by null-condition
(for light rays):
3 dx*(Z) dx"
3 g, (020 Q) g
pv=0 d( d(

» Numerical integration (e.g. Runge-Kutta)

2001

Summary

 Special relativity:
— Lorentz transformation
— Aberration of light
— Doppler effect
— Searchlight effect
— Transformation of the plenoptic function

2001

2001




Part IV:

RENDERING

2001

Outline

* General relativistic rendering:
— Ray tracing
— Image-based rendering

2001

Relativistic Polygon Rendering

» Compute intersection

Lorentz transformation of the emission
event

* Projection onto image plane

« Transformation for each vertex
= “photo-surface”

2001

Outline

 Special relativistic rendering:
— Polygon rendering (T-buffer)
— Relativistic radiosity
— Ray tracing
— Image-based rendering
— Texture-based rendering

2001

Relativistic Polygon Rendering
(T-Buffer)

Light source

Observer

\ Emission event

. \ K J
Light cone \ \/_\/
\

2001

Polygon Rendering:
Rendering Pipeline

%

viewing trafo
v
clipping

scene traversal

modeling trafo

[ relativistic trafo ]
v rasterization

[ lighting 2

l displ)lay

[ )
[ )
[ mapto ;/iewport ]
[ ]
[ )

2001




Polygon Rendering: Cube

Polygon Rendering: Cube

Polygon Rendering: Cube

Polygon Rendering:
Hardware Update...

» Exploit state-of-the-art graphics
hardware:

» Vertex programs (vertex shaders) for
relativistic transformation

Polygon Rendering: Caveats

“Flatten” scene graph:

— Remove shared instancing

— Remove transformation nodes
Reduce geometric artifacts by:

— Fine remeshing in preprocessing step
— Adaptive subdivision

Polygon Rendering:
What else?

» Secondary processes

* Reflections

» Shadows

+ Extension: relativistic radiosity

* (Further information in the references/
literature)




T-Buffer:
Key Features & Issues

» Adapted to rendering-pipeline of current
hardware

» Fast

* Problems:
— Geometric artifacts
— lllumination?

3D Relativistic Ray Tracing

» Transforms moving observer into rest
frame of the scene

* Relativistic aberration

» Performs standard non-relativistic ray
tracing

* Only static scenes (unless special
modifications)

2001

3D Relativistic Ray Tracing:
Example — Chain of Cubes

* Apparent
geometry

* Penrose-
Terrell rotation

* v=0.95c
Moving

Relativistic Ray Tracing

[Relativistic ray tracing]

Pseudo 3D RT Full 4D RT

3D Relativistic Ray Tracing

Ray Projector

Non-rel. RT

Apply
Searchlight &
Doppler

4D Relativistic Ray Tracing

» Keep track of different frames of
reference

* Perform Lorentz transformation of all
relevant light properties when changing
frames

* Moving objects




Relativistic Ray Tracing:
Key Features

 High image quality
» High computational costs

« Static scene (3D RT),
Moving objects (4D RT)

2001

Image-Based Rendering (IBR)

5 S

Relativistic image
Non-relativistic

plenoptic function

Lorentz transformation

of plenoptic
function

2001

IBR: Data acquisition

Fork arm
construction

2001

Image-Based Rendering (IBR)

 Lorentz transformation of plenoptic
function

« Extension of all non-relativistic IBR
methods

« Static scene

» Reconstruction of power spectrum from
RGB input data

2001

IBR: Magnification and
Anti-Aliasing

» Scaling due to aberration
« Higher resolution for back view
* Anti-aliasing for front view

— Supersampling

— Texture filtering

2001

IBR: Data acquisition

2001




IBR: Example

N

i

* Non-
relativistic

2001

IBR: Example

* Relativistic
illumination

* v=0.2¢c

* Overall

brightness:
10 %

2001

IBR: Movie Production

2001

C-12

IBR: Example

* Apparent
geometry

* v=0.9c

2001

IBR: Relativistic Movie

2001

IBR: Key Features

* Relativistic transformation of plenoptic
function

< All IBR methods can be modified

« All relativistic effects on visual
perception

* No geometric modeling needed
* Photo-realism

2001




IBR: Issues

» Data (image) acquisition with

— Wide field of view

— High resolution
* Acquisition of full power spectrum?
» Moving objects?

TBR: Rendering Steps

1. Generation of non-relativistic panorama
2. Apparent geometry by texture-warping
3. Color and brightness via LUT

TBR:
Non-Relativistic Panorama

A

» Covering of sphere
by several images

+ Similar to
environment or
reflection mapping

Camera/observer

Texture-Based Rendering

» Based on aberration of light and
searchlight & Doppler effects

» Exploits graphics hardware

TBR:
Non-Relativistic Panorama

» Sampling of plenoptic function P(6,¢,A)

» Wavelength-dependent radiance wrt. n
basis functions: .

P(6,9.4) = be(e,fp)B,-(/\)

* Image projected onto unit sphere
= radiance map

2001

+ Aberration of light
* Texture-warping by

TBR: Apparent Geometry

modified texture
coordinates




TBR: Color & Brightness

» Parameters for final RGB color:
— Doppler factor D
— Coefficient b;

P(A)= 3 bB,(4)

2001

TBR: Color & Brightness

» Parameters for final RGB color:
— Doppler factor D
— Coefficient b;

<P<A> =368

2001

TBR: Rendering Pipeline

[P
. [blend Doppler factors]

[non-relativistic image] v
[ read pixels ]

[ calculate tex coords ]

[ set pixel texture ]

[ render sphere ]

draw/bletld pixels
[

for each RGB channel

v
(for SGI Maximum Impact) ol

TBR: Color & Brightness

» Parameters for final RGB color:
— Doppler factor D
— Coefficient b;

<P<A> =3 bB(A)

o/=3 [[(A)bB () dN =3 X, (b,D)

i=1

2001

TBR: Color & Brightness

* Non-linear function via LUT
* Pixel textures (SGI)
» Dependent textures (GeForce)
— Texture coordinates on per-pixel basis
— Generated in preprocessing step
— 2 Parameters: D , b;
— Output: Final RGB

* Sum over n basis function B;

2001

General Relativistic
Ray Tracing

* 4D curved spacetime
» Photons travel along geodesic lines

« 3D straight light rays
- 4D bent ray (polygonal approx.)

2001




General Relativistic
Ray Tracing

« Initial value problem for ODE
* Initial values:

— Camera parameters

— Time component fixed by null-condition
* Numerical integration (e.g. RK4)

» Ray projector: integration of geodesic
equations

2001

Example: Schwarzschild

» Spherically symmetric
« Static
* Vacuum solution (outer space)

» Example: Non-rotating, non-charged
black hole

2001

Schwarzschild: Einstein Ring

[\_/ Einstein ring

Image
source

Observer

Deflecting

object “SIGGRAPH -

2001
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Structure of the System

e
Projector

4

Description of Spacetime
Integration of Photon Path

A4

Sample Manager

2001

Schwarzschild: Einstein Ring

2001

Example: Warp Metric

» Super-fast travel
» Spaceship is at rest in warp bubble
* Dynamic metric

2001




Example: Warp Metric

2001

Reduce Complexity:
Space Confinement

» Curved region confined within closed
area around observer

» Use ray-tracing inside curved area

Approximate plenoptic function at
boundary by plenoptic function taken at
one selected location

Static scenes

2001

General Aberration

» Changes in apparent geometry between
flat and curved spacetimes:

(6’,9) =1(6,9)
* For rotational symmetry: 6’ =f(6)

» Analogous to special relativistic IBR

» Generation of LUT for general
aberration in preprocessing step

2001

General Relativistic IBR

» Can image-based methods be applied
to general relativistic rendering?
* Problem:

— Plenoptic function is local to each point in
spacetime

— Rendering needs information about
emission/absorption

2001

General Aberration

Observer

2001

* Front view
* Atrest

Warp (Inside): Example

2001




Warp (Inside): Example

* Front view
* Warp 0.8¢c

2001

Warp (Inside): Example

* Back view
« Atrest

2001

Warp (Inside): Example

* Back view
* Warp -1c

2001
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Warp (Inside): Example
NN Wy

* Front view
* Warp 10c

2001

* Back view
« Warp —0.8c

2001

Warp (Inside): Example

* Back view
* Warp -1.2¢c

2001




Part V:

INTERACTION
TECHNIQUES

2001

Motivation

 So far: only uniform motion within
special relativistic visualization

» Goal: navigation by user interaction

» Prerequisite: acceleration of the
observer

2001

Accelerated Observer

» Coupled system of ordinary differential
equations

* Initial value problem

Initial position Rty

Outline

» Accelerated observer
¢ User interaction model

« Virtual reality/virtual environment for
special relativity

2001

Accelerated Observer

» Equation of motion
_du” _d*x*
dr  dr?

aﬂ

¢ User interaction — acceleration

2001

Accelerated Observer

* Numerical integration
* Example: Runge-Kutta

* Trajectory Trajectory

2001




Acceleration & Rendering

* Rendering a single snapshot is not
influenced by acceleration of camera

» Use current position and velocity for
rendering

» Co-moving frame of reference

All relativistic rendering techniques can
be used

2001

Accelerated Motion

v=0.817c

v=0.975¢c

(Motion towards the end of the box) - SICGRAPH -

2001

User Interaction

» Motion of fast vehicle controlled by
acceleration

» User can walk within the vehicle
Tracking of position and velocity
Relativistic-vehicle-control metaphor

2001
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Accelerated Motion

v=0.3c

v=0.623c

(Motion towards the end of the box) - SIGGRAPH -
2001

Accelerated Motion

» Objects ahead seem to move away
when accelerating, although the
observer gets closer

» Due to increasing aberration of light
» Objects subtend a smaller solid angle
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User Interaction

» 3 frames of reference
—head of the observer
—vehicle
— outside world

 Tracking of position and velocity wrt.
frame of the vehicle

 Lorentz transformation to “outside
world”
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Virtual Environment

» Benefits:
— Immersion
— Active and passive locomotion
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Part VI:

GRAND CONCLUSION
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What Have We Learned?

* Relativistic rendering is based on
— Aberration of light or
— Transformation of events  and
— Doppler effect and
— Searchlight effect
+ Acceleration
is possible within special relativity
» Light bends
in interesting ways in the presence of gravity
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What Have We Learned?

« Scene and illumination transformations
under extreme conditions of relativity have
much in common with familiar graphics

» Relativistic objects
must be modeled with world lines

» Relativistic IBR is possible
because tracing light rays to occlusion edges
is invariant under Lorentz transforms
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Applications

* Visualization as a research tool
» Education and public relations

» Entertainment, e.g., science fiction
movies
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Additional Information on
Relativistic Visualization

D. Weiskopf A. Hanson
University of Stuttgart Indiana University

Additional Information on the Web

A web site with additional information and resources for this course can be accessed
on http://wwwis.informatik.uni-stuttgart.de/relativity.

Literature on Relativistic Visualization

Einstein’s original work on the special theory of relativity was published in 1905 [9]. Its
title “Zur Elektrodynamik bewegter Korper” (“On the electrodynamics of moving bodies”)
shows that the focus is on the connection between the description of electromagnetic
phenomena (based on Maxwell's equations) and the kinematics of moving objects.
Miller's book [22] contains a translation of Einstein’s paper into English, along with
more background information and historic remarks.

There exist numerous textbooks on special relativity, see, e.g., Mgller [24] or Rindler
[31]. The books by Misner et al. [23], Weinberg [36], d'Inverno [8], and Wald [35]
primarily focus on general relativity, but contain some information on special relativity
as well.

Remarkably, the issue of visual appearance and perception in special relativity was
ignored for a long time, and consequently numerous misleading statements and inter-
pretations persisted. Apart from a previously disregarded article by Lampa [21] in 1924
on the invisibility of the Lorentz contraction, it was only in 1959 that the first coherent
solutions to this problem were described by Penrose [29] and Terrell [34]. (Reference
[29] is included in the course notes, pages E-1-E-3; reference [34] is included on pages
F-1-F-5). Later, more detailed descriptions of the geometrical appearance of fast mov-
ing objects were given by Weisskopf [44], Boas [4], Scott and Viner [33], and Scott and
van Driel [32].

The first published work of which we are aware that used advanced graphics tech-
nigues to produce shaded images of fast-moving objects was that of Hsiung and Dunn
[14] and Hsiung and Thibadeau [15]. (Reference [15] is included in the course notes,
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pages G-1-G-8.) They proposed an extension of normal three-dimensional ray tracing
for image shading of fast moving objects. This technique accounts for relativistic effects
on the apparent geometry as seen by the observer. Hsiung et al. [17] investigated rel-
ativistic ray tracing in more detail and included the visualization of the Doppler effect.
Exploiting relativistic ray tracing, Hsiung et al. [16] used the viewer-dependent variation
of the observed color of objects in the scene for the visualization of relativistic time
dilation.

Real-time visualization of relativistic effects exploiting the time-buffer method was
introduced by Hsiung et al. [18]. (Reference [18] is included in the course notes, pages
H-1-H-7). The time-buffer technique resembles and can be mapped onto the normal
z-buffer. It allows for relativistic polygon rendering using a scan-line technique suitable
for real-time applications, and makes use of contemporary computer graphics hardware
to achieve interactive frame rates. Gekelman et al. [12], Chang et al.[6], and Betts
[3] study the polygon rendering approach in more detail and present comprehensive
treatments.

Weiskopf et al. [42, 43] investigated special relativistic effects on illumination in de-
tail, considering both the Doppler and the searchlight effects. (Reference [42] is in-
cluded in the course notes, pages I-1-I-15). They showed how ray tracing and poly-
gon rendering can be adapted to correctly incorporate relativistic illumination effects.
Weiskopf et al. [42] contains a derivation of the transformation of radiance and irradi-
ance, giving the complete mathematical basis for simulating the searchlight effect.

Texture-based special relativistic rendering was proposed by Weiskopf [37] in order
to exploit modern graphics hardware—especially, texturing and pixel fragment opera-
tions—for the real-time visualization of relativistic effects on geometry and illumination.
Image-based special relativistic rendering was introduced by Weiskopf et al. [41], al-
lowing for the production of photo-realistic images and movies without the need for
laborious three-dimensional geometric modeling. (Reference [41] is included in the
course notes, pages J-1-J-9).

Another issue in special relativistic visualization is user interaction and navigation.
Usually, a user navigates through a virtual world by moving a virtual camera. The
velocity or direction of motion of the camera is changed by acceleration. Therefore,
acceleration is a prerequisite for an interactive virtual environment for special relativity.
It is important to point out that special relativity is perfectly capable of describing the
accelerated motion of object, as long as gravitation can be neglected. (Gravitation
is described by general relativity.) Rau et al. [30] described how acceleration can be
incorporated into special relativistic visualization and presented a simple relativistic
flight simulator. Weiskopf [38] extends relativistic interaction techniques to support an
immersive virtual environment for special relativity.

A comprehensive introduction to the general theory of relativity can be found, e.g.,
in the textbooks by Misner et al. [23], Weinberg [36], d'Inverno [8], or Wald [35].

D-2



The following articles are concerned with the appearance of objects under the in-
fluence of gravitational light deflection. Typically, well-known metrics with closed-form
solutions are investigated. The most prominent example is the so-called Schwarzschild
solution for a spherically symmetric, static distribution of matter. Nollert et al. [28], Ertl
et al. [10], and Nemiroff [25], for example, investigated the appearance of a neutron
star or the flight to a black hole. Nollert et al. [27] and Kraus [20] described general rel-
ativistic ray tracing in more detail. Groller[13] gave a generic approach to non-linear ray
tracing as a visualization technique. Bryson[5] presented a virtual environment for the
visualization of geodesics in general relativity, where examples of the Schwarzschild
and Kerr solutions are shown. (The Kerr solution describes the spacetime of a rotating
black hole.) Weiskopf [39] showed how general relativistic ray tracing can be used as
a visualization tool in gravitational research. (Reference [39] is included in the course
notes, pages K-1-K-5).

Some specific examples for general relativistic objects and their corresponding
curved spacetimes used in this course are the rigidly rotating disk of dust and the warp
metric. Neugebauer and Meinel [26] and Ansorg [2] presented background informa-
tion on the physics of the rigidly rotating disk of dust. The warp metric was proposed
by Alcubierre [1] in 1994; Clark et al. [7] investigated the view from inside the warp
spaceship. Ford and Roman [11] presented a comprehensible discussion of the prob-
lems of negative energy, “exotic” matter, and causality, which occur for the metric of
the warp drive and traversable wormholes. Kobras et al. [19] proposed a method for
imaged-based rendering in a general relativistic setting, presenting the visualization of
the warp metric as an example.

A comprehensive presentation of techniques for special and general relativistic vi-
sualization can be found in Weiskopf [40].
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“Searchlight and Doppler effects in the visualization of special relativity: a cor-
rected derivation of the transformation of radiance”, ACM Transactions on Graph-
ics, vol. 18, no. 3, 1999, pages 278-292.
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Research Notes 137

THE APPARENT SHAPE OF A RELATIVISTICALLY
MOVING SPHERE

By R. PENROSE
Recetved 29 July 1958

It would be natural to assume that, according to the special theory of relativity, an
object moving with a speed comparable with that of light should appear to be flattened
in the direction of motion on account of its FitzGerald~Lorentz contraction. It will be
shown here, however, that this is by no means generally the case. It turns out, in
particular, that the appearance of a sphere, no matter how it is moving, is always such
as to present a circular outline to any observer. Thus an instantaneous photograph* of
a rapidly moving sphere has the same outline as that of a stationary sphere.

This result may seem paradoxical at first. For example, it might be thought that for
a distant sphere moving perpendicularly to the line joining its centre to the observer,
the flattening in its direction of motion would certainly be apparent. As the tangents
from the observer to the flattened sphere are all nearly the same length, it might seem
that the finite velocity of lightisirrelevant here. However, the light which appears to the
observer to be coming from the leading part of the sphere leaves the sphere at a later

ime, in the observer’s frame, than that which appears to come from the trailing part.

In fact the light from the trailing part reaches the observer from behind the sphere,
which it can do since the sphere is continually moving out of its way.) The length of the
image of the sphere in the direction of motion is thus greater than might otherwise be
expected, so that if it were not for the flattening the sphere would appear to be
elongated.

In order to prove the exact result that the sphere always presents a circular outline,
it is more convenient to consider the sphere as being at rest and the observer moving,
this being allowable according to the special principle of relativity. If the sphere is
accelerating, in order that it may reasonably be said to remain a sphere throughout its
motion, it must be always instantaneously at rest and spherical in some Lorentz frame.
The sphere will then satisfy the Born conditions for a rigid body (see Synge (3), p. 36).
Now the light received by the observer, O, at an instant of his time, from what appears
to him to be the outline of the sphere, comes from the sphere at one instant of s time.
This shows that the acceleration of the sphere is irrelevant. Furthermore, a stationary
observer at O clearly sees something with a circular outline. All this is evident from the
symmetry. It is therefore only necessary to consider what transformation of the field
of vision must be employed when passing from a stationary to a moving observer at the
same point, and to show that this transformation is one which sends apparent cireles
into apparent circles.

* This is not a ‘snapehot’ in the sense of Synge ((3), p. 120) in which the sphere would indeed
appear flattened. I am concerned, here, with a world-picture rather than a world-map (see
Milne (1), p. 107), so that the finite velocity of the light coming from the sphere must be taken
into account.
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One way of doing this is to use the relativistic aberration formula*

. c—v
tan 40’ = tan }0 ppsy

A stereographic projection of the unit sphere with centre O, from the point for which
& = 7, sends circles into circles, and the above formula leads simply to an expansion of
the plane of projection by an amount ,/{(c—v)/(c +2)}.

Alternatively, the following purely geometrical (space-time) argument, suggested to
me by J. L. Synge, may be used. Consider the intersection of the past null cone of the
event O with any hyperplane through O containing a time-like vector. The hyperplane
represents the history of a plane moving with a constant velocity and the past null cone
of O represents the history of a sphere with fixed centre and uniformly decreasing
radius. They interseot in & circle which converges on O along a right circular cone.
Hence, a stationary observer at the event O sees a circle only. Now this holds equally
well in any Lorentz frame and therefore shows that a cone of light which appears as a
circle to a stationary observer at O also appears as a circle to any moving observer at 0.

There is yet another way of obtaining this result, namely by using properties of
two-component spinors. Any past null vector (¢, z, y, z) with ¢t < 0,2 —22—y2—~22 = 0
can be represented as a hermitian matrix which is minus the product of a two-com-
ponent spinor (a, b) with its conjugate (see Veblen (4)). Thus,

(t -z xz+ iy) (Zza, Eb)
Tty t+z ba bb/°
A direction along the past light cone is then uniquely associated with the corresponding

spinor ray, i.e. with the ratio A = b/a. Now the points of the light cone at timef = —1
constitute a sphere &, whose equations are

2?+yt+t=1; t= -1

The field of vision of a stationary observer at the origin may be conveniently repre-
sented by this sphere. But & may be projected stereographically from the point
(—1,0,0, —1)into the planez = 0,¢ = — 1, with the point (- 1, 2, y, 2) projecting into
(=1, /(1 +2), y/(1 +2), 0). This plane may be taken as the Argand plane of the com-
plex number

x .y _x+iy @b

= ——= =A,
1+z+1'1+z z—1 aa

The sphere & can then be regarded as the Argand sphere of —A. But a proper
Lorentz transformation of the directions through the origin corresponds to a linear
transformation of the spinors (a, b), i.e. to a bilinear transformation of A. This sends
circles into circles on & as required, so that the result follows.

* This is not the usual formula, which is cos 6 = ~— 9"~ vje (see Synge(3), p. 147). The two

1—(ufc) cos &
forms are easily shown to be equivalent.
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It is perhaps worth remarking here that the fact that any proper homogeneous
Lorentz transformation is determined by its effect on any three null directions (see
Synge (3), p. 99) is here seen to be equivalent to the corresponding property for complex
numbers under bilinear transformations (or points of a projective line under a
projectivity).

These considerations can also be applied to non-spherical objects moving with
uniform velocity. The appearance of such an object is always a circular transform (i.e.
produet of inversions) of what it would appear in some orientation when stationary.
Thus, straight lines appear gircular (or straight). Since a stationary circle may appear
elliptical, & moving circle can appear boomerang shaped (inverse of an ellipse), In view
of this, it is doubtful whether it would be correct to say that a sphere always appears
spherical rather than just saying it has a circular outline, since the intersection of two
spheres does not necessarily appear circular. Nevertheless, there is no other consistent
shape which presents a circular outline when stationary, to any observer.

Finally, it may be remarked that all the above considerations apply equally well to
a de Sitter space (Minkowski 4-sphere, see Schrédinger (2)) owing to its symmetry. The
foregoing arguments apply almost without change.
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Invisibility of the Lorentz Contraction*
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It is shown that, if the apparent directions of objects are plotted as points on a sphere surrounding the
observer, the Lorentz transformation corresponds to a conformal transformation on the surface of this
sphere. Thus, for sufficiently small subtended solid angle, an object will appear—optically—the same shape
to all observers. A sphere will photograph with precisely the same circular outline whether stationary or in
motion with respect to the camera. An object of less symmetry than a sphere, such as a meter stick, will
appear, when in rapid motion with respect to an observer, to have undergone rotation, not contraction.
The extent of this rotation is given by the aberration angle (§—6'), in which 8 is the angle at which the
object is seen by the observer and ¢’ is the angle at which the object would be seen by another observer at
the same point stationary with respect to the object. Observers photographing the meter stick simul-
taneously from the same position will obtain precisely the same picture, except for a change in scale given
by the Doppler shift ratio, irrespective of their velocity relative to the meter stick. Even if methods of
measuring distance, such as stereoscopic photography, are used, the Lorentz contraction will not be visible,
although correction for the finite velocity of light will reveal it to be present.

INTRODUCTION

VER since Einstein presented his special theory of

relativity! in 1905 there seems to have been a
general belief that the Lorentz contraction should be
visible to the eye. Indeed, Lorentz stated? in 1922 that
the contraction could be photographed. Similar state-
ments appear in other references too numerous to be
mentioned, and even Einstein’s first paper leaves the
impression,® perhaps unintentionally, that the contrac-
tion due to relativistic motion should be visible. The
usual statement is that moving objects “appear con-
tracted,” which is somewhat ambiguous. The special
theory predicts that the contraction can be observed
by a suitable experiment, and the words ‘“‘observe”
and “see” seem to be used interchangeably in this
connection.

There is, however, a clear distinction between ob-
serving and seeing. An observation of the shape of a fast-
moving object involves simultaneous measurement of
the position of a number of points on the object. If done
by means of light, all the quanta should leave the
surface simultaneously, as determined in the observer’s
system, but will arrive at the observer’s position at
different times. Similar restrictions would apply to the

* This work was supported by the U. S. Atomic Energy
Commission.

1 A. Einstein, Ann. Physik 17, 891 (1905).

2H. A. Lorentz, Lectures on Theoretical Physics (Macmillan
and Company, Ltd., London, 1931; translated from Dutch edition
of 1922), Vol. 3, p. 203.

3In reference 1 [English translation from The Principle of
Relativity (Dover Publications, Inc., New York, reprinted from
1923 Methuen edition)] Einstein stated: “A rigid body which,
measured in a state of rest, has the form of a sphere, there-
fore has in a state of motion—viewed [betrachtet] from the
stationary system—the form of an ellipsoid of revolution with
the axes R(1—1?/c?)}, R,R. Thus, whereas the ¥ and Z dimensions
of the sphere (and therefore of every rigid body of no matter
what form) do not appear [nicht erscheinen] modified by the
motion, the X dimension appears [erscheint] shortened in the
ratio 1: (1—1*/c®?}, i.e., the greater the value of v, the greater
the shortening. For vy=¢ all moving objects—viewed [betrachtet]
from the “stationary” system—shrivel up into plane figures.”

use of radar as an observational method. In such ob-
servations the data received must be corrected for the
finite velocity of light, using measured distances to
various points of the moving object. In seeing the object,
on the other hand, or photographing it, all the light
quanta arrive simultaneously at the eye (or shutter),
having departed from the object at various earlier
times. Clearly this should make a difference between
the contracted shape which is in principle observable
and the actual visual appearance of a fast-moving
object.

CONFORMALITY OF ABERRATION

The basic question of the visibility of the Lorentz
contraction may be stated as that of the appearance of
a rapidly moving object in an instantaneous photo-
graph. The object, of known shape when at rest, is
assumed to have a high uniform speed relative to the
camera. The camera is assumed to be at rest in a
Galilean (unaccelerated) frame of reference. Of course
it would make no difference if the camera were, instead,
considered to move at high speed past the stationary
object, but the photograph produced must be examined
at rest, so it is simpler to consider the camera as
stationary. The mechanism of the camera must be such
as to give it essentially instantaneous shutter speed
and sharp focus over the necessary depth of field.

The questions of whether to use photographic film
which lies in a plane or is curved so that all points are
at the same distance from the lens (or pinhole), and
whether to use a lens corrected to eliminate optical
distortions, could be troublesome. To simplify matters,
it is assumed that the object subtends a visual solid
angle sufficiently small that these matters need not be
considered. It is assumed that the camera is pointed
directly at the apparent position of the object, so that
the light rays strike the film in a perpendicular direc-
tion, producing an image in the center of the photo-
graphic film. The camera is assumed, also for simplicity,
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not to be rotating to follow the motion of the object,
but this is an unessential restriction and would make
no difference in the results so long as distortion of the
camera due to relativistic angular motion is negligible.

With these assumptions and restrictions defined, the
problem of the photographic (or visual) appearance of a
rapidly moving object is not a difficult one. The optical
image produced by a pinhole lens on a photographic
emulsion at constant distance from the aperture is
identical with the picture produced by plotting, on a
spherical surface centered at the point of observation
(eye or camera lens), the apparent visual directions of
all points of the object as seen by observer O. For an
observer O’ having zero velocity relative to the object,
this would clearly result in an uncontracted image. If
this particular observer is located instantaneously at
the same position as that of observer O, with respect to
whom the object is not at rest, it is possible to calculate
the apparent directions of these same points, as seen by
O, from the equation for relativistic aberration.

Spherical polar coordinate angles 8 and ¢, forming
an orthogonal coordinate system (f is the polar angle
and ¢ the azimuthal angle), are to be used by observer
O in plotting on the spherical surface the apparent in-
stantaneous direction of various points of the moving
object. Let the object be moving at constant velocity 2,
relative to O, in the direction §=0. Let observer O be
receiving light from some particular point of the object
which appears to be in the direction (8,¢). Let observer
O’ be instantaneously at the position of O, using the
coordinate system (¢',¢'), and moving with velocity v
relative to O in the direction §=0=¢". The relation
between these two sets of coordinate angles is that of
the aberration equation, derived! from the Lorentz
transformation, and given by

(1—1%/c®? sind’
sinf=————, (1)
1—(3/c) cost’
or
cost’ —v/¢c

cosf =——-r.
1—(v/c) cosb’

(1)

In these equations ¢ is, of course, the velocity of light.
The azimuthal angles are not affected by the Lorentz
transformation, so that

o=9¢". @

It may be shown that this transformation of the
angles of observation is equivalent to a conformal trans-
formation on the spherical surfaces centered on the
observers. This fact and its consequences were appat-
ently first pointed out quite recently.*

Consider a small rectangular area of differential
extent on the surface centered on observer O, oriented

4J. Terrell, Bull. Am. Phys. Soc. Ser. II, 4, 294 (1959), and
unpublished paper on The Clock “Paradox”, Los Alamos Docu-
ment LADC-2842 (April 1957).

JAMES TERRELL

along lines of constant § and ¢. The angles subtended
by the sides of this rectangle are df and sinfdg. As seen
by observer O the corresponding angles are d¢’ and
sinf’d¢’ =sinf'd$. Differentiation of Eq. (1) gives the
simple relation

de’ 3 sin’ 1—(v/c) cost’ 3 (1—22/c?)} B
(1—2/)t  14(0/c) cosd

dé sinf

Thus the two rectangles have identical ratios between
their length and width. This, with the perpendicularity
between sides which is true for both rectangles, is
sufficient to establish the conformality of the transfor-
mation of angles of observation. The factor M is the
magnification, the ratio between subtended angles as
seen by observers O’ and O, or the ratio of apparent
distances of the object from the two observers. It is
interesting that M is precisely the Doppler shift factor,
becoming [[(1—v/c)/(1+v/c) ]t for 6=0=0".

The property of conformality in this sense, which is
intrinsic to relativistic aberration, is sufficient to ensure
that observers O and O’ will obtain pictures which are
identical, except for a magnification factor, over com-
parable regions of small subtended solid angle. Thus a
spherical object will produce a perfectly round image®
for both observers O and O, in spite of the Lorentz con-
traction which O may observe by suitable methods.
Quite generally, objects will appear the same shape,
visually, to all observers, no matter what the relative
motion of object and unaccelerated observer may be.
Obviously these conclusions also extend to accelerated
objects. Although acceleration will in general change
the shape of the object, all observers at a given point
will agree as to what this shape is, as revealed in their
photographs. Even accelerated observers will obtain
similar photographs, provided that the cameras are
not appreciably distorted by the acceleration. In this
way the apparent shape of any object is invariant to
the Lorentz transformation, although the ‘“actual”
shape, as given by careful measurement, will vary due
to the Lorentz contraction.

Thus the Lorentz contraction is effectively invisible.
Only when stereoscopic vision or photography is used,
combining observations from two different locations,
can any distortion of the object due to motion be seen,
and even this is not the expected contraction, as will be
discussed in a later section.

8 R. Penrose, Proc. Cambridge Phil. Soc. 55, 137 (1959), has
recently proved that a sphere will be seen as having a circular
outline by all observers, regardless of the relative velocity of
sphere and observer. Penrose gives several proofs, of which the
simplest involves the stereographic projection of a sphere centered
at the point of observation onto its equatorial plane from the
pole 6=m. This transformation sends circles into circles, and
aberration merely expands the plane of projection by the factor
[(c—v)/(c+v)]t. Penrose’s conclusions agree with some given
in this paper, although his paper deals almost exclusively with
spherical objects. For this special case there is no restriction as to
subtended visual angle. For finite subtended angle the surface of
a moving sphere would appear somewhat distorted, although its
outline would be precisely circular.

3)
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APPEARANCE OF MOVING METER STICK 120° T T T T T
APPARENT ROTATION DUE TO
At this point it may be objected that a meter stick RELATIVISTIC MOTION

in motion past the observer in such a way that it is so| (¥ro.8) WETER STICK SEEN
moving parallel to its length, and is momentarily seen ROTATION AND BROADSIDE (8° « 90%)
by the observer at its point of closest approach, will . CONTRACTION 8+ cos™!(-¥)
surely be seen as contracted. This case, probably the °|° 60 (6% 539)'&?: ! .
first to come to mind, is illustrated in Fig. 1 for the @
case 9/¢=0.8. Two meter sticks, S and S’, are shown
here in such positions as to be seen instantaneously by 3or ]
observer O at 90°. Meter stick S is stationary with DIRECTION OF MOTION
respect to observer O; meter stick S’ is moving with o \ ) \ \ \
velocity v in the direction 6=0°; both meter sticks are 0 30 60 90 120 180 180°

aligned along the direction §=0°. At the earlier time
when the light which reaches observer O left S, both
ends of the front face of the meter stick were at the same
distance from O, so that he does indeed see them as
they were at simultaneous earlier times, and the length
of the meter stick S’ appears contracted by comparison
with S, which was at the same distance. However, at
the still earlier time when light left the back side of the
meter stick, stick S’ was displaced farther to the left.
This results in the visibility of the left-hand end of S,
if it is assumed to be a physical stick having three
dimensions. Thus the meter stick gives the appearance
of having undergone rotation rather than contraction.

Consider how this situation appears to observer O,
who is also moving with velocity v, with respect to O,
in the direction §=0=¢". To O’ both meter sticks will
appear to be in the direction ¢ =cos™(v/c). Stick S’
will appear stationary and turned through the angle
(0—¢’) with respect to his line of sight. Stick § will
appear to be moving at high speed v to the left, but
will not appear contracted. Because the right-hand
side of S was much farther away from O’ at the time
light seen by O’ left it than was the left-hand side when
light left it, the time lags increase the apparent length
of S in such a way that its contracted length appears
quite normal (in two dimensions, as in the photograph).

y.

(0.8
APPARENT APPARENT
POSITION POSITION

=38! — Y . \ ¥
S22 s VY s s :S:.u':-'—‘:::
-1
8= cot™ (V)
8:90°

8's cos~!(vrc)

0 8':0°
o COORDINATE SYSTEM Of O .Lgl

COORDINATE SYSTEM OF O'

) N, ‘ .
! = =g 5

AS PHOTOGRAPHED BY O'

AS PHOTOGRAPHED BY O

F16. 1. Two meter sticks, S and S’, as seen by observers O and
0’, who are located momentarily at the same point. In the coordi-
nate system of observer O, 0’, and S’ are moving to the right
with velocity v, while S is stationary.

8 (ANGLE OF OBSERVATION)

F16. 2. Apparent rotation from known orientation as seen for
relativistic motion of a meter stick with respect to an observer.
The meter stick is assumed to be moving in the direction §=0°
and to be oriented along its direction of motion.

In fact, as has been shown, both observers O and 0’
see the same things, except for the apparent distance.
Thus the photographs taken by O and O’, shown in
Fig. 1, are identical, or could be made identical by the
use of an enlarger. It is probable that observers O and
O’ will put different interpretations on what they see,
but the conformality of aberration ensures that, at
least over small solid angles, each will see precisely
what the other sees. No Lorentz contractions will be
visible, and all objects will appear normal.

APPARENT ROTATION DUE TO
RELATIVISTIC MOTION

It is apparent from the discussion above that objects
in rapid motion appear visually to have undergone a
rotation of extent (f—6’), the aberration angle, from
their “true” or known orientations. The angle 6 is the
angle at which the object appears to be, with the
coordinate system chosen so that the object is moving
past the observer O (considered stationary) in the
direction 6=0. The angle ¢’ is the apparent direction
of the object as perceived by another observer O’,
located at the same position at the same time, to whom
the object appears stationary. The angles 8 and ¢’ are
related by the aberration equation, Eq. (1).

The dependence of the apparent rotation on the angle
of observation is shown in Fig. 2 for the case 1/¢=0.8.
For =0 and 6=, the apparent rotation is zero. Two
other angles are of special interest. For =w/2 the
rotation is such that cos(§—6)=(1—12/c®)} and a
linear object which was oriented in the direction §=0,
at the earlier time when light left it, will appear con-
tracted by the rotation just to the extent of the Lorentz
contraction. This does not constitute a proof of the
visibility of the contraction, as this relation does not
hold for other orientations, angles of observation, and
shapes, and since the appearance of the object is normal
at all times. The apparent rotation would, to observer
0', be a real rotation. The other angle of interest is that
for which cosf= —v/c; for this angle ¢’=m/2, and the

F-3



J. Terrell, “Invisibility of the Lorentz contraction”, Phys. Rev. 116 (4):1041-1045, (1959), 00 1959 by the American
Physical Society, reprinted with kind permission from James Terrell and APS (American Physical Society)

1044
]
0
r g‘# D(I-g)
~~\ 8, EMISSION OF LIGHT
o'% \ LR FROM A
-_— LORENTZ - CONTRACTED
/ A SPHERE
(g = 0.8

AS PHOTOGRAPHED

Fic. 3. Mechanism by which a Lorentz-contracted moving
:ﬁhere produces a round photographic image. The shaded area is
e visible portion of the spherical surface, with 4 and B the
farthest visible points along the direction of motion. The dashed

ellipse represents the earlier position of the sphere when the light
Xhlx:fh g arrive at the camera simultaneously with light from
t B.

object, if linear and oriented along 6=0, will then be
seen broadside, with no view of the ends.

Thus a meter stick which is traveling, and oriented,
in the direction §=0 will appear to observer O to be
rotating about its line of motion in such a way as to
appear broadside at 0=cos™(—12/c), and to present a
view of its rear end from that time on. For §=x/2 the
rotation will foreshorten the length to the same extent
as the Lorentz contraction, and for a meter stick
traveling nearly at the speed of light little will be seen
at this angle of apparent closest approach, or at most
angles, except the rear end.

For an object of rotational symmetry, such as a
sphere, no possibility of confusing rotation and con-
traction exists. Thus a sphere will always produce a
round photographic image, no matter what its un-
accelerated motion. The mechanism by which this
occurs is shown in Fig. 3. A Lorentz-contracted sphere is .
assumed to be moving to the right with velocity v
relative to the observer; for the purpose of this figure
v/¢=0.8. The sphere is to be viewed at 6==/2. The
uncontracted diameter of the sphere is D, giving a
contracted diameter of D(1—12/c®)}. However, the
farthest visible points on the sphere, 4 and B, as
measured along the direction of motion, are not this
far apart. This corresponds to the visual effect of
apparent rotation. As plotted on the uncontracted
sphere, the visible area is tilted from its position for v=0
by (6—¢'); here §=x/2 so that cos(0—68")= (1—2*/c)%
Thus the distance between the farthest visible points is
reduced to D(1—1%/c?) as measured along the direction
of motion. As measured along the line of sight, perpen-
dicular to the motion, this distance is Dv/c. Thus the
light which reaches the observer from B must leave B
at a time Dy/¢? earlier than the light that leaves A4 in
order to arrive simultaneously with the light from 4.
During this time the sphere moves a distance Di3/c?,

JAMES TERRELL

so that the distance between A and B appears to
be D, as seen or photographed by the observer. Thus
the sphere appears uncontracted in the observer’s
photograph.

Physically, the reason that A is the farthest visible
point is that light leaving points beyond A4 on the
spherical surface will be intercepted by the motion of
the sphere. Similarly, point B is visible, though on the
far side of the sphere, because light emitted from this
point will not be stopped by the sphere, which moves
out of the path of the light.

STEREOSCOPIC VISION

If stereoscopic vision or photography is to be con-
sidered, the situation becomes more complicated.
Simultaneous observations of direction of a given object
from two observation points constitute a valid means of
measuring distance to the object. Thus, with stereo-
scopic vision, all points will appear to be at the proper
distance even with relativistic speeds. However, what
is seen at a given time is the situation which existed at
an earlier time, and not all parts of the object are seen
at the same earlier time. This produces curious visual
distortions of the sort shown in Fig. 1 at the apparent
positions of S and 5, constituting shear and contraction
or elongation, depending on the situation. For instance,
an object coming directly toward the observer is seen
in three dimensions to be elongated along its direction
of motion by the ratio [(143/¢)/(1—v/c) =M (180°),
and incidentally appears farther away, by the same
ratio, than if the observer had the same velocity as the
object.

At other angles of observation the situation is less
simple to describe. In general, if an observer sees two
points on a stationary object which are at precisely
the same visual angle but at different distances, another
observer at the same point but moving in a different
reference frame will see the two points as M times
farther away and M times farther apart. Here M is
given by Eq. (3). In general, this results in apparent
shear of the object, as seen with stereoscopic vision.
Precisely the same effects would occur with the apparent
perspective of the object, even with nonstereoscopic
vision, if the object were near enough to make perspec-
tive noticeable.

CONCLUSIONS

It has been shown that the Lorentz transformation is
conformal in the angles of observation, so that the
photograph obtained by an observer depends only on
the place and time of taking the picture and is inde-
pendent of the relative motion of observer and object
photographed. This statement must be restricted to
small solid angles in the same way that conformal
transformations preserve shapes only for differential
areas. Thus the visual appearance of an object is in-
variant (except for Doppler shifts of frequency), not
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depending on its (unaccelerated) motion. Effectively,
then, the Lorentz contraction is invisible. Any hopes
of seeing the contraction in a rapidly moving space
vehicle or astronomical body must be discarded.
Although apparent distortion due to rapid motion
can be seen by means of steroscopic vision or photo-
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graphy, it is not of the same type as one might expect
from the Lorentz contraction.

None of the statements here should be construed as
casting any doubt on either the observability or the
reality of the Lorentz contraction, as all the results
given are derived from the special theory of relativity.







P.-K. Hsiung, R. H. Thibadeau, “Spacetime visualization of relativistic effects”, Proceedings of the 1990 ACM annual conference on
Cooperation (1990), 236-243, [0 1990 ACM, reprinted with kind permission from Robert H. Thibadeau and ACM

Spacetime Visualization of Relativistic Effects

Ping-Kang Hsiung*
Robert H. Thibadeau®
Camegic Mcllon University
Pittsburgh, Pennsylvania 15213

Abstract

We have developed an innovative ray-tracing algorithm to de-
scribe Relativistic Effects in SpaceTime ("REST"). Our algo-
rithm, called REST-frame, models light rays that have assumed
infinite speed in conventional ray-tracing to have a finite speed ¢
in spacetime, and uses general Lorentz Transformation, which
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inertial coordinate systems (frames) that differ by a constant
velocity, to perform the relativistic translation and aberration
of light rays.

In this paper, we report the extension of our previous work
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tivistic Doppler color shift and the simulation of complex kine-
matic systems in which objects of different relativistic velocities
coexist. Our simulations have produced non-intuitive images
showing anisotropic deformation (warping) of space and in-
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Images of objects undergoing relativistic Doppler shift are also
generated.

By applying state-of-the-art computation technology and
simulation techniques to the earlier quests in Physics that
were conducted mainly by thought experiment, we demonsirate,
through our new revelations, that REST-frame offers a power-
ful experimentation too! to study and explore some of the most
exciting aspects of the natural world; particularly, the rich phys-
ical properties associated with the finite speed of light.
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1 Introduction

1.1 Motivations

The revival of interest in Special Relativity in the early 1960’s
was focused on the appearance of relativistic objects under ad
hoc conditions. Until that time, for nearly fifty-five years since
the inception of the special theory, such phenomena had not
been fully explored.

Qur intent today has been to produce simulation images with
visual realism that incorporate the effects of

¢ object deformation due to relativistic spacetime geometry,
and

s complete intra-object and inter-object optical phenomena,
such as perspective projection, reflection, refraction and
shadow casting.

Flexible selection of simulation paramelers including view-
point, viewing direction, viewing time and relative traveling
velocity between objects and the observer is also essential.
These requirements are accomplished by the application of an
innovative ray-tracing algorithm, which we called REST-frame.

In this paper, we extend our previous work for visualizing
one dimensional (1D) and three dimensional (3D) relativistic
motion in spacetime to include a more general class of prob-
lems, in which the observed objects undergo different 3D mo-
tion relative to the observer. We also model the Doppler color
shift due to relativistic motion.

1.2 Background and previous work

Einstein’s Special Theory of Relativity (1905) postu-
lated [12][13]{9]}:

1. Non-existence of preferred reference system (“The Prin-
ciple of Relativity” ). the laws of physics must be the same
for observers in all inertial reference systems.!

2. Constancy of speed of light: ¢ is constant in a vacuum in
all inertial frames and is independent of the motion of a
light source relative to the observer.

Some consequences of the spacetime model arc:

LA reference system, or reference frame, is inertial in spacetime if it is
nonaccelerating.
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o The measured space and time coordinates are dependent
upon the reference frame from which the measurement is
made.

¢ The Lorentz Transformation relates measured spacetime
coordinates between inertial reference frames.

Lengths perpendicular to relative motion remain the same
measurements for all incrtial observers. Lengths paralicl
to relative motion are measured to have undergone con-
traction in comparison with their rest lengths.

James Terrell (1959)[14] made an early distinction between
the appearance or visibility of relativistic effects and the mea-
surement of relativistic effects. Following the initial work of
Penrose (1959)[10] and Terrell, interest was sparked and a num-
ber of related papers were published.? The extent of this revival
of interest was limited in that scientists lacked the computing
power, ray-tracing technique, and visualization outlook.

Ray-tracing synthesizes images using a model that re-
verses the image formation process in nature [3][2](figure (1)).
Rays are traced from pixels on the image plane through a

object space

Figure 1: Ray-tracing principle

fixed “‘cye-point” (or ‘viewpoint”) into the object space that
forms the scene. Reflection and refraction rays (“secondary
rays”) are recursively spawned when rays meet (“hit”) ob-
jects. Light intensity is computed on the object surface at
every ray-object intersection point according to some illumi-
nation model[11][17][15](1], and contributes to the final pixel
intensity of the synthesized image.

This ray-tracing computation can be modeled as two interact-
ing processes: the intersection process and the shading process
(figure (2))[4]. The former solves for intersection points where
rays hit scene object surfaces, while the latter performs shading
computation.

In the traditional ray-tracing algorithms, a light ray had al-
ways been regarded as if it traveled with infinite speed, and
Galilean-Newtonian transformation was used to model relative
motion between dynamic systems and the observer. When the
scene objects and the observer (or the camera plate) are in
relative motion at speeds comparable to light speed, Special
Relativity requires the time information to be interwoven with
the spatial coordinates in defining the vision formation process.
Light speed must be treated as finite, and reference frames are
1o be connected by Lorentz Transformation.

2Intrested readers can find 2 more exlonsive bibliography in [3] about thase
papers as well as about research in ray-tracing simulation,
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Figure 2: Ray-tracing computation model

In [S], we first treated the subject of visualizing the spacetime
world of Special Relativity using the new ray-wracing technique
REST-frame. Objects were assumed to make 1D motion relative
to the observer. The 3D motion extension of our original work
has since been completed[6). A fast spacetime visualization
method based on the scanline operation has also been designed
and implemented[7].

2 Approach

2.1 REST-frame ray-tracing

The REST-frame technique synthesizes the visual effects in
spacetime by incorporating the finite speed of light in ray-
tracing to simulate the Special Relativity physics. Light-rays
are traced back to their source events in the pas¢t in spacetime
from the observation point, which is itself an event in space-
time. The three key elements in our approach are:

1. Time modeling in the ray-tracing equations: A ray that
passes spacetime event® [xp, Yo, 20, lo] and travels in 3D
direction @ in a frame S is modeled as

r8Yppsy (,¥,2) = (x(to), Y(to), z(to)) +cllo — H@
(¢t < 1) ')

Where t is the time the ray (traveling at light speed
¢) passes the coordimates (x,y,z) in S, starting at
[xo0, Y0, 20, tos.

. Lorentz Transformation of rays between frames: For in-
ertial Cartesian coordinate system §’(z’,y’, z') with time
¢ that travels at a 3D velocity ¥ = (4, v, w) relative 10
system S(x,y,z) and ¢, if its X', ¥’ and Z' axes coincide
with X, Y and Z, respectively, of S at time t =¢' = 0, then
the spatial and time coordinates® X' and 1’ can be derived
from X and 1 in S using Lorentz Transformation[9]

¥ = R+ =Lx.n-
vie
! = - /%Y) @

3We use the symbol (x, y, z) for 3D positional coordinates and [x, y, z, ] fora
spacetime event point. When we designate a specific reference frame S, we use
(x,¥, £)s and [x, y, £, fls. Individually, cach component is written with & subscript
S (e.g. I5). We also use [xp, yq, 20, fpls a5 a shorthand for spacetime cvent
[x{to), ¥t0), 2(#0), tols, and (o, y0, Z0)s for spatial point (x(ig), ¥(f), 2(ig))s-
=y, 2Ny md B = (x,3,2)s.



P.-K. Hsiung, R. H. Thibadeau, “Spacetime visualization of relativistic effects”, Proceedings of the 1990 ACM annual conference on
Cooperation (1990), 236-243, [0 1990 ACM, reprinted with kind permission from Robert H. Thibadeau and ACM

in which || ¥ ||*= i#+v?+w?, and v = 1/1/1 — L2 vec-

tor ¥ is sometimes replaced by vector B = (B, By i) =

(u/c,v/c,wle).

For the ray in eq. (1), the S’ representation of ray origin

can be obtained by applying eq. (2) to the S frame origin

[x0, 0, 20, fo]s. This transformation has the effect that a

1ay appears to have its origin translated when moving

from S to S°.

The ray direction @ in S and @ in§’ satisfy the following

relativistic aberration equation:’
a+1453@- N+

1+

-
¢

3)

3. Ray-object intersection in spacetime: For all objects that

are in motion at a same speed relative to the image for-
mation frame S, we can find a frame S’ such that the
objects are stationary in $°,5 and S’ shares the three Carte-
sian coordinate axes with S at their common origin event
[0,0,0,0].
We transform screen rays defined (“fired”) in § to their
S’ representations, and perform intersection test with the
statjonary objects in S°. Shade calculation and secondary
rays spawning are also conducted conveniently in §°.

2.2 Multiple frame intersection

In order to extend the ray-object intersection method explained
in section 2.1 to systems of objects with multiple velocities,
it is necessary to consider multiple inertial frames Si, S5, ...,
S, Any object or group of objects which travels at a unique

time sort

Figure 3: Multiple frame intersection and time sort

velocity with respect to observer frame S may be placed in its
own proper frame §;. Our object space has thus been divided
into a series of coexistent inertial frames. We then fire rays
into all of the coexistent frames (figure 3). A given ray may
result in one of three cases:

1. The ray misses all objects in all frames. The background
color is returned, as is done for a “ray miss” in the con-
ventional ray-tracing.

$5ee [12](9] for derivation.
8Such an S" is called the proper frame or rest frame for the objects.
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2. The ray hits one object at one spacetime event. The ap-
propriate shade for that event is returned, again as was
done previously.

3. The ray hits objects in more than one frames. This re-
quires the hit events 10 be sorted in order of time in frame
S, so that the most recent event is found; it is this event
which is displayed.

The sort used in the third case is analogous to the visibility
sort performed in conventional ray-tracing. In the latter, there
is one single frame $°=S; any given hit event supersedes thosc
that occurred before it in time.,

We note that this multiple frame intersection method may
be performed recursively, as is required for the computation
of reflection andfor transmission of light in ray tracing. Each
secondary ray, originated from a hit event in some S}, however,
must be translated into the frames 81, S3, ..., S, for the reflected
or transmitted event to be detected amongst the various inertial
frames.

2.3 Relativistic Dappler effect

A light source in relativistic motion is observed to have a fre-
quency shift according to the following formula:

1
= — @)
d YA +e&- V)fn
The symbols used in equation (4) are
f, frequency of light in its proper frame §'.
f [frequency of light observed in S.
é observed direction of light in S.
v Velocity of §' relative to S.
The :’(117,)- part is sometimes called the Doppler shift factor.

We implement the Doppler frequency shift effect by con-
ducting the conventional ray-tracing shading in S’ frame, and
transforming the final color returned to each pi)(el7 by its screen
ray using eq. (4).

3 Implementation and experiments

3.1 Implementation

We have implemented this REST-frame ray-tracing approach
based on the bounding volume intersection acceleration
technique[8)f5). The scene objects are defined in an input
file. Also included in the file are the viewpoint, view lime,
view angle and view direction parameters. For the maultiple
velocity simulations, we partition the objects by their frames,
and specify their respective frame velocity independently. The
tight sources are assumed to be isotropic and stationary in the
objects frame. We performed our experiments on an Apollo
DN-10000 system with 2 CPU boards and 32M byte of physi-
cal memory. Most of our simulations took less than 5 minuies
o produce 512 by 512 images, although for some complex
scenes, the simulations exceeded 2 hours.

7in observer frame S.
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3.2 Experimental results
3.2.1 Headlamp effect

In the first set of experiments, we place a 2 x 2 array of light
sources at a fixed distance in front of a diffusive plane. The
plane and the light sources are in S’ and move towards/faway
from the viewpoint in the viewing direction, which is perpen-
dicular to the plane. Cur results are shown in figures (4), (5),
6), (. (8).

Figure 5: Light sources moving towards observer at 0.5c
(©1989 Hsiung)

The imaging times in all figures are the same: the time when
event [0, 0,0,0] arrives at the imaging plate. Therefore, the
concenirating and flooding of light sources patterns revealed
in these pictures are purely caused by the anisotropic warp-
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Figure 6: Light sources moving towards observer at 0.9¢
((©1989 Hsiung)

ing of spacetime inherent in relativistic imaging, rather than by
changing viewing configurations. This variation of light inten-
sity distribution in space is termed headlamp effect in [16).}

3.2.2 Muitiple frame intersection

The second set of experiments has the scene configuration of an
11 x 11 array of bars, each aligned with the Z axis, spreading
evenly on the X-Y plane in S'. The viewer is located at a fixed
distance away on the positive Z axis in S, and looks towards
the X-Y plane. Figure (9) shows the stationary image.

In figure (10), the bars travel in row formation in the X
direction, The travel speeds of the bar rows increase from 0.0c
at the bottom row to 0.9c at second to top row, in increment of
0.1c; the top row travels at 0.99¢.

Figure (11) shows bar rows waveling in parallel to the +Z
direction towards the observer. The middle row is moving at
0.95¢c, the rows next to it at 0.9¢, and 0.7¢c, 0.5¢, 0.3¢c, 0.0c
subsequently. The lens-like effeci[S) shows up with varying
extent in rows due to the variation in traveling speed.

3.2.3 Relativistic Doppler effect

Qur third set of experiments consists of a tile array that trav-
els at various velocities in simulations. In each simulation, the
Doppler shift factor in eq. (4) is computed at every pixel on the
image plate. These nembers, rather than the absolute pixel colar
values, are then stored as the simulation output. To produce a fi-
nal image, the output pixels are scaled and mapped to grayscale
level of 0-255 in postprocessing. The scaling/mapping serves
as a normalization process to increase the displayable dynamic
range based on 256 grayscale levels; the resulting images thus
show a relative measure of the Doppler shift.
Our results are shown in figures (12), (13), (14), and (15).

BWe noticed that in "Star-Trek [V”, this effect was not donc correcly.



P.-K. Hsiung, R. H. Thibadeau, “Spacetime visualization of relativistic effects”, Proceedings of the 1990 ACM annual conference on
Cooperation (1990), 236-243, [0 1990 ACM, reprinted with kind permission from Robert H. Thibadeau and ACM

Figure 7: Light sources moving away from observer at 0.5¢ Figure 8: Light sources moving away from observer at 0.9¢
(©1989 Hsiung) (©1989 Hsiung)

Figures (13) and (15) are, respectively, figures (12) and (14) o A generalization to the current (constant and linear) mo-
quantized to 15 levels. We make the following remarks about tion model. Specifically, the modeling of acceleration and
these images: angular motion. In the first case, events at different pasts

have different linear velocities. In the second case, points
on a rotating object surface experiences different lincar
velocities relative to the viewer.

e The brighter pixels represent higher Doppler shift lev-
els, and the darker pixels the lower levels, The back-
ground portion of the images is from the void space, and
is pseudo-colored to enhance the images. » Texture mapping — an element necessary to show, for

In the 0.8c sideways motion simulation, the range of the instance, the surface feature distortion on a fast moving

factors is (0.538, 0.703) — a red-shift over the entire image. planet.

A 0.9c sideways motion under the same viewing condition

gimages not shov_vn) gives range of (0.398, 0.50), which 4.2 Color shift

is a narrower shift range. In the simulation of 0.9¢c ob-

jects motion towards the observer, the shift factor range In this paper, we have chosen to show the relative (normalized)
is (3.407, 4.359). scalar values of the Doppler shift factor, instead of the absolutc

RGB color images of the Doppler effect. To perform the latter

o Figure (13) clearly shows the the concentric iso-Doppler- approach, these following issues are involved:

factor rings arisen from the symmetric spacetime geome-

try resulted from the relativistic motion. The central ring s The surface properties of the objects need to be repre-

contains pixels of the highest shift factors. sented in the language of power spectral density, instead
o Figure (15) shows the interesting vertical stripes of iso- of the commonly used RGB or XYZ values.

factor pixels. Each stripe covers pixels that have similar ¢ Dynamic range re-normalization: The Doppler shift in the

@- V) values, more interesting motion conditions tends to be so severe

(ref. section 3.2.3) that

4 Discussion — part or all of the defined object spectrum will be-
come invisible. A re-normalization of the intensity
as well as repair of color components is needed to

4.1 Possible extensions make vision possible.

We are making extensions of our current implementation in the — The resulting dynamic range of the spectrum is al-
following directions: ways wider than the original. This means in the
visible spectral range, the energy is less than the
original energy. In most cases, the resulting imagcs
will be too dim to view. Intensity compensation of
a different type than the one above is necessary lo
9n cither § or the §. restore the visibility of the images.

e A more complete light source model that incorporates
moving light sources and self luminous bodies. Our cur-
rent light sources are static in space and time.?
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Figure 9: Array of bars vicwed at § = 0.0 (©1989 Hsiung,
Dunn & Loofbourrow)

We have completed our initial investigation and software im-
plementation to simulate (power spectral based) relativistic
Doppler shift. Our work in this area will be reported in a
future paper,

5 Conclusion and future work

The REST-frame algorithm is a construct used for the study
of nature. It is a new analytical tool which moves beyond
the root mathematical language of modern physics by means
of an interactive exploratory visualization methodology. The
REST-frame algorithm allows us to create an environment for
empirical simulation. This methodology is a preliminary step
towards expanding the conceptual building-blocks with which
we perceive the world as well as towards increasing the vision-
ary capacity of the mind.

We submit that this visnalization tool and the associated
techniques could have far-reaching impact on future research
in such diverse fields as the following: cosmology, nuclcar
science, space science and exploration, cognitive science and
perceptual studies, computer micro-architecture and networks.
Further work may involve the simulation of visual effects in
accelerated frames of rcference and in animation studies of
macroscopic and microscopic domains.
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T-Buffer:
Fast Visualization of Relativistic Effects in Spacetime

Ping-Kang Hsiung*
Robert H. Thibadeau!
Michael Wut
Camegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

We have developed an innovative ray-tracing simulation algo-
rithm to describe Relativistic Effects in SpaceTime ("REST™).
Our algorithm, called REST-frame, models light rays that have
assumed infinite speed in conventional ray-tracing to have a
finite speed in spacetime, and uses the non-Newtonian Lorentz
Transformation to relate measurements of a single event in dif-
ferent inertial coordinate systems (inertial frames). Our earlier
work [5](6](7] explored the power of REST-frame as an exper-
imentation tool to study the rich visual properties in natural
world modeled by Special Relativity. Non-intuitive images of
the anisotropic deformation ("warping”) of space, the intensity
concentration/spreading of light sources in spacetime, and the
relativistic Doppler shift were visualized from our simulations.

REST-frame simulations are computationally expensive.
Several hours of CPU time may be needed to generate one in-
tricate image on a relatively powerful DECStation 3100. This
high simulation cost of REST-frame precludes its application in
interactive, real-time graphics environments.

In this paper, we report a scanline based REST-frame ren-
dering method that provides a faster alternative to the origi-
nal ray-tracing based REST-frame implementation. This new
method operates in the spirit of the classical Z-buffer in com-
puter graphics[2] and the inter-inertial frames point-mapping
method investigated in physics in the early 1960°s[14][12], and
determines the visibility of points in spacetime by their spa-
tial and temporal visibility. Specifically, all spacetime event
points that are potentially visible from the viewpoint at the
imaging time are geometrically projected in three dimensional
(3D) space to the image plane pixel buffer. Multiple points
with a same pixel affiliation are sorted by their time distance
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from the imaging time, and the most recent spacetime point is
displayed.

This method, which we call "Time-Buffer” or “T-Buffer", of-
fers a significant speed improvement over the original REST-
frame in software, and permits a dedicated Z-buffer-type hard-
ware implementation that promises interactive, real-time rela-
tivistic effects in simulations on a contemporary graphic work-
station.

Motion blur in real world images caused by the non-
infinitesimal exposure time of image-taking can be simulated
by “Stochastic T-Buffer”, which perturbs the time component
of the scan-converted spacetime events that are potentially vis-
ible. The classical A-Buffer technique{1] that models translu-
cency also can be adapted easily in T-Buffer. The limitation of
T-Buffer is its inability to model specular reflection and refrac-
tion in optics,! which our original REST-frame implementation
simulates completely.

1 Introduction

In the conventional rendering algorithms, light had always been
regarded as if it traveled with infinite speed, and Galilean-
Newtonian transformation was used to model relative motion
between dynamic systems and the observer. When the scene
objects and the observer (or the camera plate) are in relative
motion at speeds comparable to light speed, Special Relativity
requires the time information to be interwoven with the spa-
tial coordinates in defining the vision formation process. Light
speed must be treated as finife, and inertial reference frames’
(“frames” in short) are to be connected by the Lorentz Trans-
formation.

In [5], we first treated the subject of visualizing the spacetime
world of Special Relativity with the application of an innovative
ray-tracing technique REST-frame. Objects were assumed to
make one dimensional (1D) motion relative to the observer.
The simulation of 3D relativistic motion was later completed[6].
Extension to simulate kinematic systems containing objects of
different relativistic velocities was reported in [7], which also
included our initial investigation of the relativistic Doppler shift

1although it does render diffusive refl and shadow casting ly.
2 A reference system, or reference frame, is inertial if it is nonaccelerating.



P.-K. Hsiung, R. H. Thibadeau, M. Wu, “T-buffer: fast visualization of relativistic effects in spacetime”, Computer Gra-
phics 24 (2), March 1990, 83-88, [1 1990 ACM, reprinted with kind permission from Robert H. Thibadeau and ACM

effects.

Our original REST-frame implementation took a ray-tracing
based simulation approach? It gave good turn-around times
for simple scenes, but became expensive in computation for
more complex scenes. In a 3D lattice scene that contained
432 diffusive cylinders, 1731 reflective spheres and 12 light
sources, some simulations took over two hours on a DECSta-
tion 3100 workstation to generate non-antialiased images of
512 by 512 in resolution, or a rendering rate of roughly 450
rays per second. Whereas REST-frame simulations reveal in-
tricate images of complete and accurate optical phenomena of
reflection, refraction and shadow casting under relativistic con-
dition, their cost in time precludes most real-time, interactive
graphics applications to benefit from it; a faster, perhaps less
complete, visualization method may be more desirable in the
latter environments. In this paper, we report one such method
— T-Buffer, and discuss its speed advantage and some other
features.

2 Approach

In order to model the physics of high speed motion, the
REST-frame technique synthesizes the visual effects in space-
time by incorporating the true physics of Special Relativity and
finite light-speed in its simulations. Specificially, it includes the
two postulates of Special Relativity[11][13][9]):

1. Non-existence of preferred reference system (“The Prin-
ciple of Relativity” ): the laws of physics must be the same
for observers in all inertial reference systems.

2. Constancy of speed of light: c is constant in a vacuum in
all inertial frames and is independent of the motion of a
light source relative to the observer.

According to these postulates, the measured space and time co-
ordinates are dependent upon the reference frame from which
the measurement is conducted; and the Lorentz Transforma-
tion equations relate measured spacetime coordinates between
inertial reference frames.

2.1 Principle

A block diagram of our T-Buffer implementation of REST-frame
is presented in figure (1). We assume the image plane to be
stationary in a frame S, and the objects to move in unison with
respect to S at a velocity ¥ = (4, v, w). Of the infinits frames
in which the objects are stationary, we can find one frame S’
that has its axes X’, Y’ and Z' coincide with the S frame axes
X, Y and Z, respectively, at time £ = ' = 0. We call S the
imaging frame or the camera frame, and S’ the object frame.
The measurements of every spacetime event* e in S and S’ can
be connected through the Lorentz Transformation[9]:

R S S R
ll"ll2
3Ouuulny-mdutumﬂwhmx¢m5wndm;box[l][4]m¢hodm
lerate ray-object inters

‘Wemdtetymbd(:,y,:)fodbpoumnleoudmumd[x,y,x, ] fora
spacetime event point. When we designate a specific reference fame S, we use
(x,y, 3)s and [x, y, 3, t]s. Individually, each comp is written with a subecript
S(eg. ts). Wealsouse X! = (¢, ¥, 7')g and X = (x,y, 2)s.
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¢ = 1)

in which || ? |P= & +* + W, and v = 1/y/1- L3E,

Vector ¥ is sometimes replaced by vector § = (8s, B, B:) =
(u/c,v/c,w/c). The Inverse Lorentz Transformation is

1(1——)

d =1 "V — d
X )14—[“‘7,"2(1 Viy— WV
t = 1({—%-‘2 )

In which vector V¥ = —P. As a shorthand, we will write eq.
(1) as e} =Les and eq. (2) as es =L~'¢},. L and L! are the
Lorentz Transformation operator and its inverse, respectively,
and es and e stand for the spacetime descriptions of an event
in S and S’, respectively.

Let us denote the viewpoint (the camera position) as
(Xfrem » Yfrem » Zfrem ) ad the imaging time as ¢/,ew in S. Together,
they form the imaging event efrag . If we perform the Lorentz
Transformation to the imaging event, we get its S’ description
Clramg

e}r-‘; =[4n-:’/'b-nz}r-14u-]3' =Lef"": 3)

According to the second postulate of Specid Relalivity
("constancy of light-speed”), all events ¢, = [%, y Z,0lg
that are potentially visible from the imaging event e,,.,‘, in
temporal sense must satisfy

I ‘vycﬁ\-’v lo=cl’' - ‘}'ﬂy | @
That is, all potentially visible events e, satisfy the time con-
straint

=ty = 2\ [ =G PO = Yy P =5, F )

For each spatial point (x',y’,Z) in S°, equation (5) dictates
the time at which event ¢,,, = [x',y’, 7, ¢'] must have occurred
in S’ in order for it to reach the camera plate (at light speed
€) at time {fyumg . For every point on the object surfaces,’ this
equation gives the specific emission time in S' of the photons
from the (steadily illuminated or illuminating) surface point that
precisely make it to the viewpoint® at the imaging time.

For the final geometric visibility test, every such potentially
visible event e, is transformed into the camera frame S by
applying eq. (2) w it:

ex=lnyznds=L"" g, =L" K,y,\ My (©)

In S, the spatial cocxdmus of e is perspectively projected
to the image plane and its associated “Time-Buffer” that regis-
ters a time for each pixel. The value ¢ of e, is then compared
against the Time-Buffer time of the pixel onto which ey is
spatially projected, and a larger t replaces the smaller t in the
Time-Buffer. The replacement rule is based on the observation
that ¢ represents the time in the past that a potentially visible
event occurred, and a 3D point in a more recent past (a larger
t) obscures all points in the more remote past (the smaller ¢'s),
if the point is opaque.”

’Noumnob,eapmnmnmrymS'

S which is measured as in motion in S°.
T This repl rule is the opposite of that of the conventional Z-buffer,
but is consistent with the e i jon of the latter.
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Figure 1: T-Buffer algorithm block diagram

2.2 Algorithm

In summary, the T-Buffer algorithm works as follows (refer to
figure (1)):
1. Initialization:
(a) Initialize the Time-Buffer array to ~-HUGE_VAL.
(b) Use eq. (3) to determine the imaging event in S°,
(Xfrem s Yrem » Srem s w1
2. T-Buffer visibility test:

(2) For each object in S°, scan-convert its surface to
obtain spatial points (<, y,7)s.

(b) From eq. (5). calculate the visible time ¢ asso-
ciated with each point (¥/,y’,?')sr. This gives the
potentially visible event [¥,y, 7, 7']s in spacetime
corresponding to (¢, y,7)s.

(c) Transform each event [¥,y, 7, '] to its S coordi-
nates [x, y, 2, 7] using eq. (6).

(d) Use the time ¢ in [x, y, 2, 1] to do Time-Buffer com-
parison/replacement. When a replacement occurs,
the ID of the scanned object is also stored in the
corresponding image pixel memory.

3. Image rendering: For each image pixel, retrieve the object
ID and render the pixel according to the cosine law of
diffusive reflection.

2.3 Extensions
23.1 Shadow

Shadow casting can be easily added to T-Buffer by applying
shadow-buffering technique{10]. The light sources in each
REST-frame simulation can be stationary in either the camera
frame S or the object frame S°. These two possible configu-
rations result in different relative speeds for the “mirror light
sources” — the imaginary light sources reflected off object sur-
faces — to the imaging event. Note that in either case, the speed
of light is non-additive, and the correct treatment is naturally
accounted for in our algorithm.

232 Motion Blur

Motion blur can be simulated by Stochastic T-Buffer that adds
perturbation to the time component of every scan converted
event [¥,y',2',f']¢ (figure (2)). The foundation for time per-
turbation is the inclusion in the Lorentz Transformation (and its
inverse) of the relative motion between objects and image plane.
Consequently, a time perturbation in S* is correctly transformed
into a spatial displacement in the imaging frame S.

Figure 2: Motion blur modification of T-Buffer
3 Experiments

In this section, we show images generated by our software T-
Buffer implementation, and evaluate the T-Buffer performance.

3.1 T-Buffer images

Figure 3: Array of bars at stationary (§ = (0,0,0))

Figures (3), (4), (5), (6), and (7) are images generated by T-
Buffer. For comparison of image quality, we show in Figure
(8) an image produced by our previous ray-tracing based imple-
mentation under the same viewing condition as in Figure (7).
The reflective highlight apparent in Figure (8) is not reproduced
by T-Buffer in (7), although this difference is not essential.
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Figure 4: Array of bars at § = (0.9,0,0)

teapot (0.0c) | teapot (0.9c) | bars (0.9c)

Polygons 9121 9121 678 |
Scan time 1.366 S 1950 S | 10.883 S
[ T-Buffer time 7.184 § 12533 S | 14605 S
I Shading time 3383 S 4450 S 6433 S
Polygons/sec 733.6 481.8 4.15
Memory usage 17M Byte 17M Byte | 16M Byte

Table 1: Basic characterization (with shadow)
3.2 Performance evaluation

Table 1 shows the basic performance characteristics of T-Buffer
on an Apollo DN-10000 system with 32M Bytes of mem-
ory. Both “teapot” and “bars” in our simulations had 4 light
sources. Shadow casting was not included in the simulations.
The T-Buffer time in the table refers to the T-Buffer compari-
son/replacement time. Note the extremely low efficiency in the
“bars” column. The bars scene refers to the bar array shown in
Figure (3), (4) and (5), which has a high percentage of poly-
gons that are invisible or close to orthogonal to the final image
plane, and thus has many wasted scan-conversion and T-Buffer
operations.

To compare T-Buffer with our ray-tracing based REST-frame
implementation, we ran both programs on a same set of simu-
lation tasks. Some representative timing data are summarized
in Table 2 and 3 (We rate the ray-tracing version based on poly-
gon/second to compare with T-Buffer). Each timing datum in
Table 2 is the sum of its corresponding scan time, T-Buffer time
and shading time. In favorable cases, the speed improvement

teapot (0.0c) | teapot (0.9¢c) | bars (0.9c)
No shadow 1243 S 1893 S 16337 S
Poly/sec 733.6 481.8 a.15
Shadowed 35.72 8 56.17 S 3348 S
Poly/sec 255.4 1624 2.03

Table 2: Performance comparison (T-Buffer)
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Figure 5: Bar ammay at § = (0.9,0,0), with 0.05 second shutter

] teapot (0.0c) | teapot (0.9¢) | bars (0.5c)
No shadow 78.00 S 85.00 S 200.0 S
Poly/sec 11694 10731 339
Shadowed 2183 S 2580 S 7693 S
Poly/sec 41.78 35.35 0.88

Table 3: Performance comparison (Ray-traced)

of the software T-Buffer over our ray-tracing based REST-frame
is 6-7 times.

4 Discussion and future work

4.1 Execution efficiency

Our preliminary T-Buffer implementation can be further opti-
mized for better time and memory efficiencies. Two possible
improvements are to perform scan-conversion in screen (pixel)
space, rather than in object space in our current coding, and to
employ orthographic projection, instead of perspective projec-
tion, to screen space.

4.2 Hardware acceleration

Hardware acceleration of T-Buffer can easily be realized. With
some minor design modifications, an existing hardware Z-
buffer circuitry can be converted into a T-Buffer engine. The
changes involve adding the ¢ calculation circuit that computes
eg. (5) (the second step in fig. (1)), and inverting the compar-
ison/replacement rule for buffered values.

4.3 Multiple velocity system

To extend the T-Buffer method to simulate systems of objects
with multiple velocities, it is necessary to consider multiple
inertial frames Sj, S3, ... Sa. Any object or group of objects
which travels at a unique velocity with respect to imaging frame
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S

Figure 6: Bar array traveling towards viewer at 0.99c

S may be placed in its own proper frame S}, and be related to S
by a unique Lorentz Transformation L;. The object space is thus
divided into a series of co-existent inertial frames. All objects
in every frame are scan-converted, and the events transformed
to § to perform the final T-Buffer operation.

4.4 Features and limitation

The classical A-Buffer technique[1] that models translucency
also can be adapted in T-Buffer. The limitation of T-Buffer is
its inability to model specular reflection and refraction in optics.

4.5 Future work

We plan to test T-Buffer on a hardware graphics accelerator
that we are constructing. At the heart of this accelerator is the
new Intel processor i860{3). We plan to explore the fast float-
ing point processing facilities as well as the Z-buffer hardware
support on this processor.

5 Conclusion

The REST-frame simulation technique fills in a void in past re-
search, and provides one opportunity for exploring the historical
fascination with visualizing Special Relativity effects that exist
in physics as well as in many segments of our popular cultures.

Our previous ray-tracing based REST-frame implementation
generated very high quality images that incorporated fine opti-
cal effects of reflection, refraction and shadow casting, but took
long times to complete. In some time-critical applications, c.g.
flight simulation, computer animation and video games, abso-
lute realism and optical precision that this earlier REST-frame
implementation offers is not essential. Rather, the emphasis is
the speed of simulations — preferably at real-time.

The T-Buffer technique this paper presents provides a de-
sirable solution to such applications by optimizing image syn-

87

H-5

Figure 7: Teapot at ﬁ =(0.9,0,0)

thesis speed at the expense of lower optical complexity in the
resulting images. The advantage of T-Buffer over our previous
implementation is twofold:

1. The software T-Buffer implementation runs over six times
faster than the earlier REST-frame in favorable cases.

2. Furthermore, it can be mapped onto the well-developed
Z-buffer based rendering pipeline that resides in most of
the contemporary graphics workstations.

The availability of this latter hardware option makes the ulti-
mate real-time simulation and animation of relativistic effects
technologically feasible.
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Searchlight and Doppler Effects in the
Visualization of Special Relativity:

A Corrected Derivation of the
Transformation of Radiance
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We demonstrate that a photo-realistic image of a rapidly moving object is dominated by the
searchlight and Doppler effects. Using a photon-counting technique, we derive expressions for
the relativistic transformation of radiance. We show how to incorporate the Doppler and
searchlight effects in the two common techniques of special relativistic visualization, namely
ray tracing and polygon rendering. Most authors consider geometrical appearance only and
neglect relativistic effects on the lighting model. Chang et al. [1996] present an incorrect
derivation of the searchlight effect, which we compare to our results. Some examples are given
to show the results of image synthesis with relativistic effects taken into account.

Categories and Subject Descriptors: 1.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Color, shading, shadowing, and texture; J.2 [Computer Applications]:
Physical Sciences and Engineering—Physics

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Aberration of light, Doppler effect, illumination, Lorentz
transformation, searchlight effect, special relativity

1. INTRODUCTION

Einstein’s Theory of Special Relativity is widely regarded as a difficult and
almost incomprehensible theory. One important reason for this is that the
properties of space, time, and light in relativistic physics are totally
different from those in classical, Newtonian physics. In many respects they
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are contrary to human experience and everyday perception, which is based
on low velocities.

Mankind is limited to very low velocities compared to the speed of light.
For example, the speed of light is a million times faster than the speed of
an airplane and 40,000 times faster than the speed at which the space
shuttle orbits the earth. Even in the long term, there is no hope of
achieving velocities comparable to the speed of light. Computer simulations
are the only means of visually exploring the realm of special relativity, and
thus can help the intuition of physicists.

The visual appearance of rapidly moving objects shows intriguing effects
of special relativity. Apart from a previously disregarded article by Lampa
[1924] about the invisibility of the Lorentz contraction, the first solutions to
this problem were given by Penrose [1959] and Terrell [1959]. Various
aspects were discussed by Weisskopf [1960]; Boas [1961]; Scott and Viner
[1965]; Scott and van Driel [1970]; and Kraus [2000].

Hsiung and Dunn [1989] were the first to use advanced visualization
techniques for image shading of fast moving objects. They propose an
extension of normal three-dimensional ray tracing. Hsiung and Thibadeau
[1990] and Hsiung et al. [1990a] add the visualization of the Doppler effect.
Hsiung et al. [1990b] and Gekelman et al. [1991] describe a polygon
rendering approach based on the apparent shapes of objects as seen by a
relativistic observer. Polygon rendering was also used as a basis for a
virtual environment for special relativity [Rau et al. 1998; Weiskopf 1999].

Most authors concentrate their efforts on geometrical appearance and,
apart from the Doppler effect, neglect relativistic effects on the lighting
model. Chang et al. [1996], however, present a complete description of
image shading which takes relativistic effects into account. We agree with
most parts of their article, but would like to correct their derivation of the
relativistic transformation of radiance. We show how the correct transfor-
mation of radiance fits in their shading process. The combination of Chang
et al.’s work and this article gives a comprehensive presentation of special
relativistic rendering.

We demonstrate that a photo-realistic image is dominated by the search-
light and Doppler effects, which are greatly underestimated when we view
the examples given by Chang et al. The Doppler effect causes a shift in
wavelength of the incoming light, which results in a change of color. The
searchlight effect increases the apparent brightness of the objects ahead
when the observer approaches these objects at high velocity. The Doppler
effect, the relativistic aberration of light, and time dilation, among others,
contribute to the searchlight effect.

2. DERIVATION OF THE TRANSFORMATIONS

2.1 The Transformation of Radiance

The following derivation of the searchlight effect is based on a photon-
counting technique. A similar approach can be found in articles by Peebles
and Wilkinson [1968]; McKinley [1979; 1980]; and Kraus [2000].

ACM Transactions on Graphics, Vol. 18, No. 3, July 1999.
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(D

Fig. 1. A photon with wave vector k.

Consider two inertial frames of reference S and S’, with S’ moving with
velocity v along the z axis of S. Suppose the observer O is at rest relative to
S and the observer O’ is moving with speed v along the z axis of S. The
usual Lorentz transformation along the z axis connects frames S and S’.

In reference frame S, consider a photon with circular frequency o,
wavelength A, energy E, and wave vector £ = (wsinf cos¢}, wsinfsing,
w cosh)/c with spherical coordinates 6 and ¢, as shown in Figure 1.

In frame S’, the circular frequency is o, the wavelength is A’, the energy
is E’, and the wave vector is £’ = (w'sinf’ cos¢’, w'sinb’singd’, o' cosd’)/c.
The expressions for the Doppler effect and the aberration connect these two
representations, cf., McKinley [1979] and Mgller [1972]:

N =AD (D
o = w/D (2)
E =E/D (3)

¢ =4 (5)

1

D=——— (6)
v(1 — Bcosbh)

where D is the Doppler factor, y = 1/\3’/1 — B% B =v/c, and c is the
speed of light.
Radiance is the radiant power per unit of foreshortened area emitted into

a unit solid angle. A detector at rest in S measures the energy-dependent
radiance

ACM Transactions on Graphics, Vol. 18, No. 3, July 1999.
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do

Ly, ¢)=—
w6, ¢) dE dA, dO

where @ is the radiant power or radiant flux, E is the energy, d{) is the
solid angle, and dA, is the area dA of the detector projected along the

radiation direction (0, ¢). The radiant flux ® is the radiant energy per unit
time. Accordingly, the wavelength-dependent radiance is

do
Ly(6, ) = ———— (7

d\dA | dQ)
with the wavelength A.
In reference frame S, consider a group of photons, dN in number, with
energies between £ and E + dE and propagation directions in the element
of solid angle d() around (6, ¢). Here, the energy-dependent radiance is

b g ONE
50, & " dE dA, dQ dt
or
L0,
an = %9 p dA dQ dt

We choose the area dA to be perpendicular to the z axis, so that

dA, = dA cos6

The z component of the velocity of the photons is ccosf. The photons
passing dA between time ¢, and time ¢, + d¢ are contained in the shaded
volume dV in Figure 2:

dV = dA dt ¢ cosf

Consider another area dA with the same size and orientation as dA. Still
in reference frame S, suppose dA is moving with velocity v along the z

axis. The photons passing dA between ¢, and ¢, + dt are contained in the
shaded volume in Figure 3:

- cosf — B
dV = dA dt(c cos0 —v) = —dV
cosf

The ratio of the number of photons passing dA in the time interval d¢ and
the number of photons passing dA is the same as the ratio of the volume

dV and the volume dV:

ACM Transactions on Graphics, Vol. 18, No. 3, July 1999.
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dt c cosB

iy

Fig. 2. Photons with propagation direction along the wave vector %. The area of the detector
is denoted dA and is perpendicular to the z axis; dA, is the projection of dA along the
radiation direction. The shaded volume dV contains the photons passing dA between time ¢,
and time ¢, + dt.

. cosb —
dE dQ dt cos0 dA ——— (8)
cosO

Now consider the same situation in reference frame S’. The area dA is at
rest in S’. The time interval is

dt =dt/y 9)
The number of photons counted does not depend on the frame of reference,
ie.,
o LpO,d)
dN =dN = ——dE'dQ'dt'cosfdA (10)

’

From Eqs. (8) and (10), we obtain

Ly6,¢) EdE dOdt cosd dA an
L'p(0,¢) E dE dQ dt cosd — B 4A

Since the area dA is perpendicular to the separating velocity, it is not
changed by Lorentz transformations:

dA' = dA (12)
With Eqgs. (4) and (5), the transformed solid angle is

aqy 3 sin® do¢ 3 d(cos®) 3 1
dQ  sinf d6  d(cosf) A1 — Bcosh)?

= D? (13)

Using Eqgs. (3), (4), (9), (12), (13), and (11), we obtain
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dt c cosB

v dt

Fig. 3. Photons with propagation direction along the wave vector k. The area dA moves with

velocity v along the z axis. The shaded volume dV contains the photons passing dA between t,
and ¢, + dt.

Lio,¢) . E°

3

With the relation between energy and wavelength,

he he
AN=—, d\=— —=dE
E E?
and with
L,(0, ¢)IdAl = Lg(0, ¢)IdE|
we get

E2

Ultimately, then, the transformation expression for the wavelength-depen-
dent radiance is

L/\(07 (b) _ 5
L'\(#, ¢)
The transformation law for the following integrated quantity is easily

obtained from this equation. With the use of Eq. (1), the transformed
radiance is

(14)

L,(6, $)d\ = D“f L'(0,¢)dN =D'L'(0, ¢) (15)

0

L(6, ) = f

0
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2.2 Incident Irradiance from a Point Light Source

The measure for radiant power leaving a point light source in an element of
solid angle d() and in a wavelength interval is called the wavelength-
dependent intensity I,:

dd

I)\:
dQ d\

(16)

The wavelength-dependent irradiance E' is the radiant power per unit area
in a wavelength interval:

4o
E = 17
MdA da 17

For a surface patch on the object, the wavelength-dependent irradiance E,
coming from a moving point light source is

; 1 cos o
E; :E 2 I, (18)

with the angle «' between the normal vector to the surface and the
direction of the incident photons and with the apparent distance r’ of the
light source from the surface patch. These quantities are measured in the
reference frame of the object, whereas the wavelength-dependent intensity
I, is measured in the reference frame of the light source. Accordingly, the
integrated, wavelength-independent irradiance is

. 1 cos o
E :E r’z I (19)

The derivation of these equations is presented in the Appendix. Observe
that for an isotropic point source in one frame of reference, we get an
anisotropic source in the other frame of reference due to the implicit angle
dependency in the Doppler factor D.

3. COMPARISON WITH DERIVATION BY CHANG ET AL.

Chang et al. [1996] present a complete treatment of relativistic image
shading, which contains apparent geometry, the searchlight and Doppler
effects, and a detailed description of the shading process. However, their
derivation of the transformation properties of radiance is based on mis-
taken interpretations of the Theory of Special Relativity and leads to a
tremendous divergence from our correct results, presented above.

Chang et al. derive their expressions based on the assumption that the
same amount of radiant power is emitted from a surface patch on the object
and the corresponding surface patch on the apparent surface. Hence, they
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compute the relation between the area of the surface patch on the object
and the area of the corresponding surface patch on the apparent surface, as
well as the relation between the respective normal vectors. They treat the
apparent surface as an object at rest with respect to the observer.

Their derivation is not correct for the following reasons:

Radiant power depends on time intervals and on the energy of photons,
both of which are subject to Lorentz transformations. These transforma-
tions are missing in Chang et al.’s work.

The observer is moving with respect to the surface patch of the object.
Approaching the object, the observer’s detector sweeps up photons so that
the rate at which radiant energy is received is increased by the observer’s
motion. This increase is absent for radiation from the apparent surface,
which is stationary in the observer’s rest frame. Chang et al. ignore this
effect as well.

In Chang et al’s Eq. (36), the transformation of a solid angle is not
correct. The mistake is in their calculation of the partial derivatives
00'/900, 90’ /oD, 0®' /90, and 9P’ /9P with the use of their Eq. (31) for
the transformation of the direction of the light ray. Equation (31) is valid
for the special case of polar angle ® = 7/2 only, and cannot be used to
calculate partial derivatives.

Both wavelength and wavelength intervals are subject to Lorentz trans-
formations. When calculating the radiance per wavelength interval in their
Eq. (39) from Eq. (38), Chang et al. apply the Lorentz transformation to the
wavelength, but not to the wavelength interval.

In their Eq. (38), they ultimately end up with a factor of D in the
transformation of radiance, and also in in their Eq. (39) in the transforma-
tion of wavelength-dependent radiance, which differs from the correct
result by a factor of D? and D*, respectively. Similarly, the calculation of
irradiance in their Eq. (46) and of wavelength-dependent irradiance in
their Eq. (47) differs from the correct result by the same factor of D3 and
D*, respectively.

4. THE SHADING PROCESS

The searchlight and Doppler effects can be readily incorporated in the two
common techniques of special relativistic visualization, i.e., ray tracing and
polygon rendering.

Relativistic ray tracing as described by Hsiung and Dunn [1989] is an
extension of normal 3D-ray tracing. The ray starting at the eye point and
intersecting the viewing plane is transformed according to special relativ-
ity, i.e., the direction of light is turned due to relativistic aberration. At this
point the transformed properties of light can be included by calculating the
transformed radiance as well as the transformed wavelength.

In this framework it is not sufficient to consider only three tristimulus
values, such as RGB, but the wavelength-dependent energy distribution of
light has to be taken into account. The spectral energy distribution has to
be known over an extensive range so that the Doppler-shifted energy
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distribution can be calculated for wavelengths in the visible range. For
final image synthesis, the tristimulus values can easily be obtained from
the wavelength-dependent radiance that gets to the eye point.

Relativistic polygon rendering is based on the apparent shapes of objects
with respect to the observer. The shading process is described by Chang et
al. in full detail. In this process, the expressions for irradiance in step
(2)(d)(iv) and for the transformation of radiance in step (2)(f) have merely
to be replaced by our Egs. (18) and (14), respectively. The Doppler factor in
Eq. (18) depends on the direction of the photons that reach the object and
on the relative velocity of the frame of the point light source and the frame
of the object, whereas the Doppler factor in Eq. (14) depends on the
direction of the photons that reach the observer and on the relative velocity
of the frame of the object and of the frame of the observer.

5. EXAMPLES

The appearance of a scene similar to Chang et al.’s STREET in Figures 4 to
7 shows the tremendous effects of the transformation of radiance on image
synthesis. These pictures show the apparent geometry and the radiance
transformation, but neglect color changes due to the Doppler effect. Since
the spectral energy distribution of the light reflected by the objects in the
STREET is unknown, we only show gray-scale images that take the total
energy of the whole spectral energy distribution into account. In this case,
Eq. (15) is applied. If we used a speed as high as Chang et al.’s, 0.99¢, we
would not be able to display the high intensities in Figure 7 properly. So we
choose a velocity of 0.8c. These images were generated by using the
ray-tracing method described above. The relativistic extensions are imple-
mented into RayViS [Grone 1996], a normal 3D-ray-tracing program.

Figures 8 and 9 show the appearance of the sun moving at a speed of
0.5¢ to illustrate color changes due to relativistic lighting. We used the
polygon-rendering technique described above to produce these images. A
detailed presentation of the rendering software can be found in our previ-
ous work [Rau et al. 1998; Weiskopf 1999].

6. CONCLUSION

We have demonstrated that, aside from the apparent geometry, the search-
light and Doppler effects play dominant roles in special relativistic visual-
ization. Ray tracing and polygon rendering, two standard techniques in
computer graphics, can easily be modified and extended to take into
account the searchlight and Doppler effects.

The transformation of radiance could serve as an important element in
even more sophisticated shading algorithms in order to generate photo-
realistic and physically correct images of fast moving objects. For example,
radiosity could be extended to visualize relativistic flights through station-
ary scenes.
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Fig. 4. Original appearance of the street.

Fig. 5. Appearance of the street with respect to a moving observer. The viewer is rushing into
the street with a speed of 0.8c. The light sources are at rest in the street’s coordinate system.
The searchlight and Doppler effects are ignored.
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T

[

Fig. 6. Visualization of the searchlight effect based on the incorrect derivation by Chang et
al. The viewer is rushing into the street with a speed of 0.8c. The light sources are at rest in
the street’s coordinate system.

.

Fig. 7. Visualization of the searchlight effect based on the correct Eq. (15) for the transfor-
mation of radiance. The difference from Figure 6 is significant. The viewer is rushing into the
street with a speed of 0.8c. The light sources are at rest in the street’s coordinate system.
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Fig. 8. Visualization of the Doppler effect only: the Doppler-shifted spectral energy distribu-
tion is shown with no further transformations. The sun passes by with a speed of 0.5¢. The
sun is the only light source and emits blackbody radiation with a temperature of 5762 Kelvin.

Fig. 9. Visualization of the searchlight and Doppler effects based on Eq. (14). The sun passes
by with a speed of 0.5¢. The sun is the only light source and emits blackbody radiation with a
temperature of 5762 Kelvin.

APPENDIX

A. INCIDENT IRRADIANCE

The derivation of Eqs. (18) and (19) is presented in this Appendix.
First, consider a finite light source which is at rest in frame S. With Eq.

(7), the radiant flux emitted by the light source can be obtained in terms of
the wavelength-dependent radiance:
d® = L, dA""d 0% dx (20)
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where dA'¢" is the area of the projected surface patch of the light source
and dQ°% is the solid angle of the illuminated surface patch of the object as
seen from the position of the light source.

Now consider the same situation in frame S’ in which the object is at
rest. The radiant flux on the surface patch of the object is

dd®' = L'y dA°Y dQlieht g (21)

with the projected area dA°Y on the object and the solid angle d /" of
the surface patch of the light source as seen from the position of the object.
Using Eqgs. (14) and (21), we obtain

1 L
d® = — L, dAY dQb s d N
D5
With the definition in Eq. (17), the incident irradiance emitted from the

small solid angle d'é"* onto the surface patch of the object is

) da’ L, dA%
dEi, = ———— =~ _ dQylieht (22)
dAY'dN D5 dAY

The area dA°Y of the surface patch is related to the projected area dA%" by

dA%Y = dA°Y cosa/ (23)

with the angle o' between the surface normal and the incident light.

With Eq. (13), the solid angle dQ'#"" is transformed into the frame S of
the light source. Furthermore, d )/ is expressed in terms of the projected
area on the light source and of the distance between the light source and
the surface patch, as shown in Figure 10:

light 2
dQlisht — D2 JQlight — D2 ; _ dAljght (D) (24)
r r

The light-like connection of the emission event at the light source and the
absorption event at the object has the same direction as the wave vector
that describes the photons. Therefore, the distance r is transformed in the
same way as the circular frequency o (see Eq. (2)). By following this
reasoning or by explicit Lorentz transformation of the separating vector
between the emission event and the absorption event, we get

r =r/D (25)

Using Eqgs. (22), (23), (24), and (25), we obtain the incident wavelength-
dependent irradiance originating from a small area of the light source:
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light liah
dA ANt

light source

object

Fig. 10. Geometry of the surface patch of the light source in its rest frame S. The solid angle
is given by dQ's" = dA'€" /2 The distance between the light source at emission time and
the surface patch of the object at absorption time is denoted r.

y_ 1 cosd light
dE', = ETL)\ dA’}
By integrating over the area of the whole light source, we get the wave-
length-dependent irradiance produced by this finite light source:

., 1 cosd liht
E, = E L, dA"® (26)

r/2

Now consider a very small, yet finite, light source, described by its

wavelength-dependent intensity I,. With Eqs. (16) and (20), the wave-
length-dependent radiance and the wavelength-dependent intensity from
the area dA"¢" are related by

dI, = L, dA"" (27)

With Eq. (26) and after integrating over the area of the small light source,
we find the wavelength-dependent irradiance on the object

. 1 cosd liaht 1 cosd liaht 1 cosd
E/\,: L)\dALg ZE L/\dAlg =D77[/\

D5 ’,.r 2 r/ 2 5 rr 2

This equation even holds for the limit of an infinitesimal light source.
Hence we obtain the wavelength-dependent irradiance due to a point light
source:

B 1 cosa’I
X = s A
D5 7"2
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Accordingly, the irradiance is

1 cosd

E'=—
D4 r/Z

where [ is the intensity of the light source.
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Real-World Relativity: Image-Based Special Relativistic Visualization

Daniel Weiskopf, Daniel Kobras, and Hanns Ruder

Institute for Astronomy and Astrophysits
University of Tubingen

Abstract means of directly exploring the realm of special relativity and may
help to stimulate intuition and motivation of people interested in the
This paper describes a novel rendering technique for special rel-theory.
ativistic visualization. It is an image-based method which allows  There exist well-known rendering techniques for special relativ-
to render high speed flights through real-world scenes filmed by ity. However, these methods use a standard geometry-based re-
a standard camera. The relativistic effects on image generation arepresentation of three-dimensional scenes and hence require time-
determined by the relativistic aberration of light, the Doppler effect, consuming geometrical modeling and costly rendering. The cru-
and the searchlight effect. These account for changes of apparential shortcoming of the geometry-based methods is missing photo-
geometry, color, and brightness of the objects. It is shown how realism. In discussions with editors and producers from TV indus-
the relativistic effects can be taken into account by a modification try, the demand for relativistic flights through real-world scenes was
of the plenoptic function. Therefore, all known image-based non- strongly expressed. Accordingly, special relativistic visualization
relativistic rendering methods can easily be extended to incorporatehas not been widely used in professional TV and film productions
relativistic rendering. Our implementation allows interactive view- for edutainment and education yet, although there exist numerous
ing of relativistic panoramas and the production of movies which TV documentations about Einstein and his special theory of relativ-
show super-fast travel. Examples in the form of snapshots and film ty.
sequences are included. In this paper, we propose a novel image-based approach to spe-

CR Categories: 1.3.3 [Computer Graphics]: Picture/lmage cial relativistic rendering. This approach overcomes problems of

Generation—Viewing algorithms 1.3.7 [Computer Graphics]: 9€0metry-based rendering and has the following important advan-
Three-Dimensional Graphics and Realism—Color, shading, shad-tages: No three-dl'm.ensmnal geometnc_modellng'ls needed, render-
owing, and texture 1.3.8 [Computer Graphics]: Applications— "9 costs are negligible, and photo-realism is easily achieved.

Special relativity J.2 [Physical Sciences and Engineering]; _1Ne basic idea of the image-based approach to relativistic visu-
Physics—Theoretical astrophysics alization is presented in Sect. 3. We show how all relativistic ef-

fects on image generation can be covered by a modification of the
Keywords: image-based rendering, plenoptic function, scientific plenoptic function[1]. Therefore, the full three-dimensional infor-
visualization, special relativity mation about the scene is not required for relativistic rendering. In
this framework, only one additional step is appended to the nor-
mal non-relativistic rendering pipeline, which is otherwise left un-
changed. Hence, the relativistic transformation can easily be incor-
porated in all known image-based rendering methods.
We present two implementations of image-based relativistic ren-
ring. The firstimplementation is an interactive panorama viewer
which creates snapshots of a panorama with the camera moving at
arbitrary speed. The second implementation is a batch job-oriented
Mool for the production of relativistic movies playing in real-world
scenes. It stitches and blends series of views taken by different

pared to the speed of light. For example, the speed of light is a cameras in order to generate a sequence of images for a relativistic

million times faster than the speed of an airplane and 40,000 timesﬂ'ght'
faster than the speed at which the Space Shuttle orbits the earth.

Even in the long term, there is no hope of achieving velocities com- 2 Previous and Related Work
parable to the speed of light. Therefore, visualization is the only

* {weiskopf,kobras,rud¢@tat.physik.uni-tuebingen.de Remarkably, the issue of visual perception in special relativity was

Tinstitute for Astronomy and Astrophysics, Section Theoretical As- ignored for a long time, or wrong interpretations were given. Apart
trophysics, University of Tibingen, Auf der Morgenstelle 10, D-72076 from a previously disregarded article by Lampa[17] in 1924 about
Tubingen, Germany the invisibility of the Lorentz contraction, it was only in 1959 that

1 Introduction

Special relativity is widely regarded as a difficult and hardly com-
prehensible theory, mainly because the properties of space, timede
and light in relativistic physics are totally different from those in
classical, Newtonian physics. In many respects, they are contrary
to human experience and everyday perception, which is based o
low velocities.

In the real world, mankind is limited to very slow velocities com-
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the first solutions to this problem were described by Penrose[23] mation. Here, all relevant physical properties are contained in the
and Terrell[32]. Later, more detailed descriptions of the geometri- plenoptic function. Therefore, only the Lorentz transformation of

cal appearance of fast moving objects were given by Weisskopf[35], the plenoptic function has to be known. This transformation is dis-
Boas[2], Scott and Viner[29], and Scott and van Driel[28]. cussed in the next section.

Hsiung and Dunn[13] were the first to use advanced visualization ~ Once the plenoptic functiod® (9, ¢, A) with respect toSo; is
techniques for image shading of fast moving objects. They pro- transformed toP’ (¢, ¢', \') with respect toSobseres the normal
posed an extension of normal three-dimensional I‘ay tI’aCir‘Ig. This rendering process can generate the image seen by the fast moving
technigue accounts for relativistic effects on the apparent geometry ., mera becausB’ (¢',¢', \') is the plenoptic function at rest rel-
as seen by the observer. Hsiung et al.[14] investigated relativis- 4ve to this camera. (The primed quantities are with respect to
tic ray tracing in more detail and included the visualization of the Sopserver) In this way, all relativistic effects are isolated in the form
Doppler effect. . . o of the Lorentz transformation of the plenoptic function. The local-

_ Hsiung et al.[15] introduced the time-buffer for fast visualiza- v hroperty of this transformation allows us to generate relativistic
tion of relativistic effects. The time-buffer tgchnlque_ resembles the images without knowledge of the depth, or three-dimensional, in-
normal z-buffer and can be mapped onto it. The time-buffer tech- ¢, mation about the surrounding scene. Due to the relativity prin-

nique allows for relativistic polygon rendering, a scan-line method. ¢iyje the transformation of the plenoptic function can account for
It is based on the apparent shapes of objects as seen by a relativis;in 5 fast camera and rapidly moving objects.

tic observer. Gekelman et al.[9] and Chang et al.[3] investigated
the polygon rendering approach in detail and gave a comprehensive
presentation. ;

Weiskopf[33] introduced texture-based relativistic rendering for 4 Lorentz Transformation
visualizing the apparent geometry of fast moving objects. This ap-
proach performs the relativistic transformation on the image plane
by texture mapping.

A lot of research has been conducted on the field of
non-relativistic image-based rendering.QuickTime V] is 27]
Sa\rl]vgrlgrﬁnaovg?ctmg;hOdeO% Ig:j?/%i_cbeiisigclﬁ?(?ue;sn?ﬁ szfhplgﬁg;_ The relativistic aberration of light causes a rotation of the direc-
tic modeling[20], light fields[18], the Iumigraph[12], view tion of light when one is changing from one inertial frame of refer-

PorBhnGD)and i geomey and mage sase endenngll, 1285 oer, The aberton o gt s suffcnt o completely

ure 1 illustrates the aberration of light.

In this section, the Lorentz transformation of the plenoptic function
is described. Relevant for this transformation are the relativistic
aberration of light, the Doppler effect, and the searchlight effect.
For a detailed presentation of special relativity we refer to [21, 22,

3 Basic ldea

One basic feature of special relativity is the absence of a single

universal frame of reference and of a universal time. Any inertial \ / \ /

frame is equally valid to describe the physical world. —_ L
Often an egocentric point of view is adopted to derive the prop-

erties of relativistic rendering, i.e., the camera is at rest and the //1 \\

objects are moving. In this paper, we rather take an exocentric
point of view. Here, the objects are considered to be at rest and the
observer—the camera—is moving at high speed. In the appendix,
the equivalence of both points of view is shown explicitly. Figure 1: Relativistic aberration of light. The left image shows
The essence of all image-based rendering methods is the evalsome of the light rays registered by an observer at rest. The right
uation of the plenoptic function[1]. The full plenoptic function jmage shows the same light rays with the observer moving upwards
P(z,y,2,t,0, ¢, \) is the radiance of the light depending on the di-  at 90 percent of the speed of light.
rection(6, ¢) in spherical coordinates, the spatial positieny, z),
the time¢, and the wavelengtii. The definition ofwavelength- The Doppler effect accounts for the transformationwatve-
‘?'elo‘?”de”t radiance can be found, e.g., in[11, Chapt. 13]. I:)C)l"’lr'z"’l'length from one inertial frame of reference to another and causes
tion is usually neglected. a change in color
We restrict ourselves to a static world, in which all objects and The searchii 'ht offect is based on the transformation of
light sources are at rest relative to each other and relative to the 9 . A
objects’ frame denotedos;. In Son; the plenoptic function can be wavelength-dependent radiance from one inertial frame of refer-

determined by standard image-based rendering algorithms, sincegpiCﬁt;gszn;tgg.r'ect-srgi;;%nvsvfﬁernm?;g’gbgferﬁ'?snge Irggsﬁiestrfgge
the finite speed of light can be neglected in this static situation. 9 J PP 9

First, consider the generation of a snapshot taken by a cam-ObjLectts at hlgh(;/elc;cny._ tial f  ref 4’ with
era at rest inSop;. The spatial position of the cameraf(is, y, z) et us consider two inertial frames of referenSeand ', wi

, X . . .
and the time ist. All the information needed for this snap- tS m?vmg \;\."th Vleloc'%“ alo_ng the a>t<|sf0fS.e'€l;he 32},13' Lorentz
shot is contained in the reduced three-parameter plenoptic function ransiormation along the axis connects frames and.'.

5 o : L : In reference frameS, consider a light ray with the direction
P(6, ¢, ), which is evaluated at the respective position and time. ’ : . .
Then, let us bring special relativity back into the game. Consider (6, ¢) and the wavelength. In frame5', the light ray is described

H H / ’ ’
another observer that is moving relative to the objects. His or her ggr:g?igrl]rsegtrlgggnynic):tzgdbttlﬁgvgxerlgggg-s fT) ??ﬁ: rt;zl\llgtiz/?gtrig aber-
rest frame is denotefonserver This observer is taking a snapshot at Y P

the same position and time as the first observer that is at résjin ration of light, cf. [22],
What is the plenoptic function for this moving observer and how is

it connected to the plenoptic function for the observer at rest? cosd = M, 1)
In general, physical properties can be transformed from one 1 —fBcosd
frame of reference to another by the so-called Lorentz transfor- ¢ = ¢ 2

J-2



D. Weiskopf, D. Kobras, H. Ruder, “Real-world relativity: image-based special relativistic visualization”,
IEEE Visualization 2000, 303—-310, © 2000 IEEE, reprinted with kind permission from IEEE

and for the Doppler effect, end of the rendering pipeline, just before the final image is gener-
ated. All other parts of the rendering pipeline are unaffected.
N=DX\ (3) In the following, some variations of relativistic rendering are de-
) ) scribed. In particular, we address the issue of missing data, since the
The Doppler factoD is defined as wavelength dependency of the plenoptic function cannot be mea-
1 sured by standard cameras. In most cases, data for image-based
= = y(14+fcosf), 4) rendering is acquired by cameras which are sensitive to only three
Y(1 = Bcosb) RGB colors and not to the full power spectrum of the incoming
light.
wherey = 1/4/1 — 82, 8 = v/c, andc is the speed of light. ont
Wavelength-dependent radiandg, is transformed from one
frame of reference to another according to 5.1 Completely Relativistic Rendering
LA\, 8, ¢') = D™PLy(\, 6, ). (5) If the wavelength-dependent plenoptic functiB@, ¢, ) is pro-

vided in the non-relativistic situation, the transformed plenoptic
A derivation of this relation can be found in [34]. Please note that function P'(¢’,¢’, \') can be computed according to Sect. 4. It is
the subscrip# is only attached to indicatwavelength dependency  important thatP (8, ¢, \) is known for an extended range whve-
_of _radiance; itis not a parameter. The propawvelength parameter lengths, so thafa’(g’, ¢',\') can be evaluated fawavelengths in
is included as a function parameter. the visible range after Doppler-shifting.

The _relativistic aberration of _Iight, the Doppler effect, anc_i the Each pixel on the image plane has corresponding spherical co-
searchlight effect can be combined to form the transformation of ordinates(#’, ¢'), which are transformed t(9, ¢) in the objects’

the plenoptic function fron§' to S": frame. Therefore, each pixel is associated with weelength-

~ ot g 5= dependent radiance,
P(0,¢,X) = DP(0,¢,7)

/ ’ ’ N _ Dl iy
D p (arccos cost +8 A)(e) L\(\)=P'(#, ¢, \).

1+Bc059”¢’5 ) _ o
For the final display on the screen, three tristimulus values such as
By inverting Egs. (1)—(3), the paramet#rsp, and\ are substituted RGB have to be calculated from thigavelength-dependent radi-

by terms containing’, ¢', and\’. ance. The RGB valuggr, ca, cg) can be obtained by
Usually, the direction of motion is not identical to theaxis.

Therefore, additional rotations of the coordinate system have to be o Y IGY N, .

considered before and after the aberration transformation. These ro- “= /LA()\ Mi(X)dX, t=k,G,B,

tations are identical to the standard rotations in three-dimensional ~
Euclidean space. By including these rotations, we obtain the com-where f; are the respective color-matching functions for RGB,
plete Lorentz transformation of the plenoptic function. cf. [38].
With the notation from the previous section, fratfiecoincides
with Sopj and frameS’ with Sopserver Please note that the trans-
formed plenoptic function depends only on the original plenoptic 2-2 Apparent Geometry

function, the observer's velocity and direction of motion, and the g rgativistic effects on the apparent geometry can be visualized
orientations of the_two ref_erence frames. , . by using only a partial transformation of the plenoptic function.

_All the information registered by the observer's camera is car- Here, solely the effects of the aberration of light are taken into ac-
ried from the surrounding environment to the observer’s position ., nt and the searchlight and Doppler effects are neglected, i.e.,

via light rays—there is no direct interaction between the camera o the direction(d, ¢) of the incoming light is transformed and
and the outside objects. The process of image generation is local-

: S . ) all other effects are ignored.
ized at the observer’s position, where the actual interaction between  this visualization technique is useful when the full spectral in-
the incoming photons and the detector (camera) takes place. 1N mation of the plenoptic function is not available, since this in-
geometric optics, directiowavelength, radiance, and polarization - ¢, mation is not needed for the visualization of apparent geome-
completely determine the incoming light. The relativistic transfor- . “Nevertheless, even this restricted relativistic rendering provides
mation of the first three quantities is exactly and uniquely described 1,0 insight into the special theory of relativity and creates impres-
by the aberration, and the Doppler and searchlight effects. Polariza-;a visual effects. as shown in Sect. 7
tion is neglected because it is not registered by standard cameras. ' Y

The plenoptic function combines the information about direc-
tion, wavelength, and radiance. Accordingly, the Lorentz trans- 5.3 Reconstruction of the Power Spectrum
formation of the plenoptic function is just the combination of the . . )
aberration, and the Doppler and searchlight effects. Bearing the |o-In most cases, data forimage-based rendering does not comprise the
cality of light detection in mind, it can be seen that the transformed full power spectrum, but only three RGB values. The power spec-
plenoptic function provides all the information that is registered by trum has to be reconstructed from RGB values in order to include
the moving camera. Therefore, the method of this paper generateéh_e relativistic ef_fect_s on geometry and |Ilum|_na_t|(_)n. Unfortunately,
images which are in total compliance with the physics of special this reconstruction is not unique because infinitely many spectra

relativity. map to one RGB triplet. This phenomenon is called metamerism,
cf. [38].
o ) However, a possible spectrum can always be determined and
5 Relativistic Renderlng metamerism gives a lot of freedom of doing so. A straightforward

approach models the three RGB values by the line spectrum con-
Image-based relativistic rendering extends the standard non-sisting of the corresponding primaries[10]. Sun et al.[31] propose
relativistic techniques by a transformation of the plenoptic function the representation by Gaussian functions with adapted width. An-
according to the previous section. This extension is located at theother approach uses Fourier functions[10].
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We find the dominanwavelength model[7] useful because itpro- 5.5 Magnification and Anti-Aliasing
vides a smooth change of color and brightness for a wide range ) ) )
of Doppler factors. The corresponding spectral power distribution The aberration of light does not conserve the element of solid angle.
consists of a spike at the dominavavelength and of a uniform dis- In fact, the infinitesimal solid angle is transformed according to
tribution, i.e., white light. The luminance and excitation purity de-

termine the levels of the two parts of the spectrum. The parameters @’ sin®' db’ d¢' _ d(cost') d¢’

for the dominantwavelength model can be computed from RGB dQ sinf df d¢ d(cos ) do

values according to [7]. The relativistic situation requires only one d(cos ) )

slight extension of the original model. Here, the uniform part of the = W =L, (7)

spectrum is not restricted to the range of visiblavelengths, but
comprises a larger interval. In this way, the spectrum is still present with the use of Egs. (1), (2), and (4)
after Doppler-shifting. P :

With the reconstructedvavelength-dependent plenoptic func-
tion, the algorithm from Sect. 5.1 can generate the fully relativistic
image.

Therefore, the transformation of the plenoptic function causes a
magnification opposite to the direction of motion, whereas objects
ahead are scaled down. The demand for a higher resolution towards
the back has to be taken into account when the original data for
the plenoptic function is acquired. In the rendering process, the
5.4 Rendering of a Film Sequence sampled data is accessed by bilinear interpolation.

. ) ) . The image contraction for the front view might cause aliasing ef-
So far, the generation of just a single snapshot has been describedects, especially for extremely high velocities. These effects can be
But how can a film sequence with a fast camera be produced?  requced by standard supersampling and postfiltering on the image

In principle, it works the same way as in the non-relativistic sit- plane.
uation. The path of the camera is discretized into a finite set of * gjnce the sampled plenoptic function can be stored in the form
positions. For every element of this set the plenoptic function is ot 5 two-dimensional texture for the coordinat@sand 6, anti-
evaluated. Therefore, the plenoptic function has to be known at aliasing can alternatively be based on texture filtering techniques.
these positions. Th_en, _the relgtlwstlc transforr_natlon is computed Textyure mapping can be considered as the process of calculating
and the corresponding image is generated. Finally, a list of snap-ihe projection of a screen pixel onto the texture image—which is
shots which represent the film sequence is obtained. _ calledfootprint—and computing an average value which best ap-

For the film to be physically sound, not only the generation of proximates the correct pixel color. There exist a couple of filtering
each single snapshot has to be correct, but also the path of the camygthods, the most prominent of which is MIPmapping[36]. This
era itself. As long as the camera is moving uniformly—at constant standard technique supports only a quadratic footprint. Hence, it
speed and with a constant direction of motion—the camera is triv- jg not very well suited for our application. The mapping by the
ially placed at equidistant positions. However, even an acceleratedaperration equation can generate prolate, anisotropic, and distorted
camera can be described by special relativity. In [26] it is shown footprints because it substantially changes the afiglehereas it
how the trajectory of an accelerating observer can be computed.|ggyes the angle invariant.

Therefore, the positions and velocities of the camera for each snap-  Therefore techniques which support more complex footprints

shot can be calculgted, and ir_nage_—based relativistic rende_ring Calyre required. Summed-area tables[5] (SAT), for example, allow
be performed. This method is valid because the generation of apgjate rectangular footprints. We have adopted the idea of rect-
single image is only determined by the position and velocity of the 5qy1ar axes-aligned footprints for the relativistic situation. In con-
viewer and by the standard camera parameters, but not by the *hisa5 1o SAT, we leave out the computation of prefiltered data tables,
tory” of the trajectory or the acceleration of the observer. since each texture is used only once in the rendering process. Fil-
Our everyday experience is based on length scales in the ranggering provides fair image-quality, even for velocities as high as
of meters, time scales in the range of seconds, and velocity scaless _ (.99 and for images with high spatial frequencies. Respective
in the range o_f meters per second, i.e., the_ velocities we are use(zxampbs are shown in Sect. 7. The main advantage of a rectan-
to are approximately eight orders of magnitude smaller than the gjar footprint over more complex footprints is faster computation
speed of light. Lengtlh, timet, and velocityv are related by = and rendering.
dl/dt. Therefore, one has to change the length, time, or velocity Fast footprint MIPmapping[16] is based on quadrilateral foot-

scales in order to notice relativistic effects. For example, the time _ . Pt
s P prints and makes use of precomputed MIPmaps and weighting
scales could be reduced to the orders®f” seconds. We canthink  (,pjaq Quadrilateral footprints are an improved approximation

of playing a respective recording at super slow-motion, so that we ¢omhared to rectangular axes-aligned footprints. They support
are able to watch processes which involve time spans of tniy anisotropic, rotated, and distorted footprints. Despite the associated
seconds. Another option is to artificially reduce the speed of lightin complexity, fast footprint MIPmapping should be able to achieve

vacuum, for example, to walking speed. An instructive illustration 4,44 rendering performance. Its relativistic adaption will be imple-
of reduced speed of light can be found in Mr Tompkins’ world by g’lented in futugr]epwork. ’ P P

Gamow[8}. In the third approach, length scales are increased to
the range of light seconds.

The change of scales is the reason why we can only support static6 Im plementation
scenes. The real-world camera image is recorded using the true val-
ues for the length, time, and velocity scales. In particular, the true
speed of light is effectively infinite in all practical situations. The
relativistic simulation of a dynamic scene would use images which
are instantaneously transported from the object to the camera, in-
stead of the correct, retarded images which take into account the
reduced speed of light.

We have implemented the relativistic panorama vieweagine
(IMAge-based special relativistic rendering enGINE), which can
read panoramas in thavePictureformat[19]. This format is sim-
ilar to QuickTime VRbut uses a spherical projection instead of a
cylindrical projection. Therefore, a complete sterad view is sup-
ported.

please note that the illustrations in Mr Tompkins do not show visual ~ The interactive viewer is written in C++ and is based on standard
perception within special relativity, but only the measurements of Lorentz- OpenGL 1.1[37] andQGLViewef24]. The virtual camera is sur-
contracted lengths. rounded by a sphere onto which the panorama texture is mapped.

J-4



D. Weiskopf, D. Kobras, H. Ruder, “Real-world relativity: image-based special relativistic visualization”,
IEEE Visualization 2000, 303—-310, © 2000 IEEE, reprinted with kind permission from IEEE

Figure 3: Non-relativistic view.

Figure 2: Digital video camera mounted on fork arm.

Texture mapping hardware is used to achieve high rendering per-
formance. The relativistic effects on the apparent geometry are
implemented by transforming the texture coordinates according to
the relativistic aberration of light. The non-interactive part of the
viewer uses software rendering to implement completely relativistic _ L o
visualization by reconstructing the spectrum according to Sect. 5.3. Figure 4: Relativistic visualization of apparent geometry vtk
Texture filtering as described in the previous section is not imple- 0-99-

mented yet.

Another implementation iOff-Terdingen which is an off- 7 Results
screen, batch job-oriented relativistic movie renderer. It is able to
produce movies of relativistic flights through real-world scenes. It
is a C++-based software renderer which stitches and blends serie
of views taken by different cameras in order to generate a sequenc
of images for a relativistic flight. The parameters and orientations
of the cameras are supplied manua®jf-Terdingerprovides anti-
aliasing by means of texture filtering, as described in Sect. 5.5.
Additionally, standard supersampling on the image plane can be

applied. The data of the original images is accessed by bilinearview—the objects seem to move away. Furthermore, straight lines
interpolation. o o ) which are perpendicular to the direction of motion become distorted

Adequate data acquisition for the non-relativistic panorama is an to hyperbolae.
issue, since relativistic image-based rendering demands for higher  Figure 5 shows completely relativistic rendering with= 0.3.
quality of the initial data than standard panorama techniques. First,Here, the power spectrum is reconstructed by using the dominant
the resolution of original images has to suffice the magnification \avelength model. Changes in brightness due to the searchlight
by the aberration formula, Eq. (7), when the observer looks into effect are noticeable. Color changes due to the Doppler effect are
the backward direction. Secondly, a complétesterad panorama  present, but cannot be reproduced on the gray-scale image. The
should be recorded. Most commercially available panorama sys-searchlight effect heavily brightens the image, so the overall inten-
tems, however, are based on cylindrical projection, QgickTime ity has to be reduced to one half of that in Figs. 3 and 4 in order to
VR avoid extreme clamping of the final gray-scale values.

Therefore, we built a camera system which can automatically = The pictures on the first page and in Color Plate 10 show the
film a 47 sterad field of view. A standard digital video camera is apparent geometry for a snapshot of Yosemite Valle§ at 0.95.
mounted on a fork arm which was originally designed for a tele- They exhibit the same effects as in Fig. 4, for example the distortion
scope. Figure 2 shows the fork arm with camera. The fork arm is of straight lines to hyperbolae.
controlled by a mobile computer. Due to the specific geometry of  Color Plate 11 compares non-relativistic view, apparent geome-
the fork arm the camera can be placed in a way that avoids paral-try, and completely relativistic visualization, analogous to Figs. 3—
lax artifacts when the camera is turned in different directions. The 5. In Color Plate 11(c), the color shift due to the Doppler effect is
camera system is DV-based. Images are transferred to the mobileeproduced and a noticeable blueshift is shown.
computer via IEEE 1394 (Firewire) link. The calibrated image data  Color Plate 12 compares filtering and supersampling techniques.
is stitched byOff-Terdingerto render spherical panoramas or rela- This example shows the visualization of apparent geometry at
tivistic views. B8 = 0.99. Image 12(a) is rendered without filtering and super-

Figures 3-5 and Color Plates 10-12 provide examples of image-
Hased relativistic rendering. These images were producedfay
el'erdingem

Figures 3-5 show a long corridor. Figure 3 provides the non-
relativistic view of the scene. Figure 4 illustrates the effects on
apparent geometry when the viewer is rushing into the scene with
B = 0.99. A dominant effect is the increased apparent field of
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to aberration in order to achieve high-quality final pictures. The

stitching software will be extended to automatically correct color

and brightness variations and small misalignments of the original
images. Furthermore, advanced texture filtering techniques will be
investigated and implemented.
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A Equivalence of Exocentric and A.2 Direction of Incoming Light
EgOCGhtI’IC View First, it will be shown that the direction of the incoming light is
identical for both points of view. The light emitted by a single
point-light source is considered. Figures 6 and 7 show the respec-
tive Minkowski diagrams. A Minkowski diagram is a spacetime
diagram without the spatial coordinatesndy.
In Sop, the event of light emission is

One basic feature of special relativity is the absence of a single
universal frame of reference and of a universal time. Any inertial
frame is equally valid to describe the physical world. Therefore, an
egocentric point of view (the camera is at rest and the objects are
moving) and an exocentric point of view (the objects are at rest and

the camera is moving) are totally equivalent. u > > ,)
Nevertheless, we would like to explicitly show how both points 2y = (=\/2% + Y& + 25,28, YB, 28),
of view can be matched. Only the issues related to the geometrlca} the light source is located at the spatial positions, yz, 2i).

appearance are discussed. The Doppler and searchlight effects art he component, reflects the time of flight from the emission

neglected because they are usually presented in a way equivalent tevent to the absorption event at the camera. Alternatively, the emis-
the exocentric point of view and thus need no further presentation. _. P ; . o Y,
sion event can be expressed in spherical coordinates,

A1 Lorentz Transformation oy = (=7E, 75 cosppsinbp, rpsingpsinbp, rr cos ),
©)
Events i_n spacetime are described by fouy-vectors_. A four-vector with rp = /2% + Y% + 25
" consists of one temporal and three spatial coordinates, In Sobserves the emission event is obtained by the Lorentz trans-
o 1 2 3 formation,
1-“:(1- 71. 71. 71.):(Ct7x7y7z)7 ’
. . ey’ = (= (re + Bze),vE, Y5, (28 + BrE)).
wherec is the speed of light and € {0, 1, 2, 3}. . ) i
For an observer moving with velocity = B¢ along the posi- The comparison to the analog of Eg. (9) in the observer’s frame of
tive z axis, the four-vector for the same event can be calculated ac-réference yields the transformed angles:
cording to the respective Lorentz transformation. The transformed , cos — B
2 i coshf = — (10)
four-vector is 1—Bcosf’
e = (y(ct — Bz),z,y,7(z = Bet)), ®) ¢ = ¢ (11)
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Figure 8: Egocentric view, three snapshotsfoe 0.7.
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E (emission event) Figure 9: Exocentric view, three snapshotsfot 0.7.

aberration in order to allow a direct comparison to the egocentric

Figure 7: Minkowski diagram for exocentric view. view.

A.4 Apparent Rotation

Therefore, the direction of the incoming light is identical for the h . ‘1 . . is closelv rel
egocentric and the exocentric point of view which is based on theTh e ap?arem ro_tatlr?n of fast moving ObJeCthS IS closely re "?“ed to
aberration equations (1) and (2). the explanation in the previous section. In the egocentric view, an

object seems to be rotated because light emitted from the normally
o invisible back of the object is outrun by the object and can thus
A.3 Visibility reach the observer. In the exocentric view, the observer is already
behind the object and can thus see its back. However, from the
observer’s point of view the object seems to still be ahead because
of the aberration of the incoming light. Seeing the back side of an
object is interpreted as an apparent rotation of the object.

The next concern is the issue of visibility. If one object is hidden
by another object in one frame of reference, is it as well hidden in
all other frames? Are we allowed to compute visibilitySe,; and
then use the result iSopserver?

Light travels along straight lines in four-dimensional spacetime
with respect to every frame. Therefore, the order of emission eventsA.5 Summary

along a light ray is independent of the chosen frame of reference . L .
and so is the visibility property. We have shown that the egocentric and exocentric view are equiva-

The explicit calculation is as follows. Let us consider two emis- lent with respect to the apparent geometry in special relativistic ren-

sion eventsE; and E. In Sey, let B> be hidden byE;. The dering. _The main difficulty in matching t_)oth vi_ews is to tran_sform
respective coordinates are related by all physical components of the system, in particular the position of
the observer and the objects.
mgz = ‘”E%p (12) Usually, the egocentric view is regarded more natural and hence

) ) _ is a widely used model of explanation. In fact, we deem the exo-
with a constant. > 1. With the use of the Lorentz transformation  centric view to be more appropriate for the following reasons. First,

(8), the coordinates of the emission eventSigserverfollow: the exocentric view allows for the transformation of all relevant
o u information about the light field in one operation, as described in
Tg, =aTp, - Sect. 4. Secondly, an accelerated motion of the observer can be

incorporated in the exocentric view without any modification, cf.
[26]. Thirdly, the exocentric view better reflects the physical real-
ity. There is no direct interaction between the observer and remote
objects. All the information about the surrounding environment is
carried to the observer via photons. The generation of a snapshot
is based on a local interaction between the photons and the detector
(camera). Therefore, itis closer to physics to transform the photons
which have reached the observer than to transform emission events
far away from the camera.

Combined with the fact that the aberration formulae (10) and (11)
are invertible, the invariance of visibility under Lorentz transforma-
tions is proven. Since the inverse Lorentz transformation is just a
Lorentz transformation with opposite direction of motion, the in-
variance of invisibility is valid for the transformation froSbbserver

to Sobj as well.

After all these abstract calculations, how can it be explained that
we are able to look “around” relativistic objects and see their back?
Figures 8 and 9 clarify the situation for the example of a moving
cube. In the egocentric view, Fig. 8, the camera is at rest and the
cube is moving withv = 0.7c¢ to the left. The cube is Lorentz-
contracted along the direction of motion. Here, the back of the
cube becomes visible because the cube outruns the light rays emit-
ted from its back. In the exocentric view, Fig. 9, the cube is at rest
and the camera is moving with= 0.7¢ to the right. Here, the back
of the cube becomes visible because the observer is behind the cube
when she or he is registering the incoming light. The rightmost im-
age in Fig. 9 also illustrates the direction of the light ray based on
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(b) o ©

Figure 11: Image (a) shows the non-relativistic view, image (b) the apparent geomefty=fob.9, and image (c) completely relativistic
rendering with3 = 0.2. The overall intensity in (c) is reduced to 10 percent of that in (a) and (b) to avoid extreme clamping of the final RGB
values.

(b)

Figure 12: Comparison of filtering and supersampling techniques for the visualization of apparent geohetry)89. Image (a) is ren-
dered without filtering and supersampling, image (b) illustrates filtering with rectangular footprint, and image (c) documents the combination
of filtering and2 x 2 supersampling.
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Four-Dimensional Non-Linear Ray Tracing as a
Visualization Tool for Gravitational Physics

Daniel Weiskopf

Institute for Astronomy and Astrophysits
University of Tubingen

Abstract is the so-called Schwarzschild solution for a spherically symmetric,
static distribution of matter. In [16, 7, 14], for example, the appear-
In this paper, general relativistic ray tracing is presented as a tool for ance of a neutron star or the flight to a black hole are investigated.
gravitational physics. It is shown how standard three-dimensional Gréller[9] gives a generic approach to non-linear ray tracing as a
ray tracing can be extended to allow for general relativistic visu- visualization technique. Bryson[4] presents a virtual environment
alization. This visualization technique provides images as seen byfor the visualization of geodesics in general relativity, where exam-
an observer under the influence of a gravitational field and allows ples of the Schwarzschild and Kerr solutions are shown. (The Kerr
to probe spacetime by null geodesics. Moreover, a technique issolution describes the spacetime of a rotating black hole.)
proposed for visualizing the caustic surfaces generated by a grav-
itational lens. The suitability of general relativistic ray tracing is
demonstrated by means of two examples, namely the visualization3 Background

of the rigidly rotating disk of dust and the warp drive metric. ) ) ] ) )
In this section, only a very brief overview of the mathematical back-

CR Categories:  1.3.8 [Computer Graphics]: Applications—  ground of general relativity can be given. For a detailed presenta-
General relativity J.2 [Physical Sciences and Engineering]: tion we refer, e.g., to [13, 19].
Physics—Theoretical astrophysics A basic concept of differential geometry is the infinitesimal dis-

Keywords: differential geometry, four-dimensional spacetimes, tanceds,

eneral relativity, ray tracing, scientific visualization 5 > Y
g v ey g ds® = Z guv(x) dz"dz”,

=0

1 Introduction whereg,., (x) is an entry in al « 4 matrix—the metric tensor at the

pointx in spacetime—andz* is an infinitesimal distance in the
direction of the coordinate system.

Paths of objects under the influence of gravitation are identical to
so-called geodesics. Geodesics are the “straightest” lines in curved
spacetime and have extreme lengths. Geodesics are solutions to
a set of ordinary second-order differential equations, the geodesic

Within Einstein’'s general theory of relativity, gravitation is de-

scribed geometrically in the form of a four-dimensional curved
spacetime which is formulated by the mathematical theory of dif-
ferential geometry. Light rays are deflected by gravitational sources
because of the curvature of spacetime. The bending of light rays
can be taken into account by non-linear ray tracing. In this way,

images as seen by an observer—a camera—under the influence o?quatlons,
a gravitational field can be generated. 2 3 v

The intent of this paper is to show how general relativistic ray M + Z %, (x) dz”(X) dz” () =0, (1)
tracing can be the basis for various visualization techniques in grav- dA? oo dA dA

itational physics. First, ray tracing provides an intuitive approach

to numerical or analytical results of gravitational physics, which is where) is an affine parameter for the geodesic line. The Christoffel
especially useful for presentations to colleagues or a wider public. symbolsI™, are determined by the metric according to

Secondly, it allows a systematic investigation of light rays and the

underlying geometry of spacetime. Thirdly, fractal structures for 18 dguy (x d x dgu,(x

light rays can be identified. Fourthly, the properties of a gravita- L', (x) = 5 > ¢"*(x) o (x) + gop(x) _ dgup(x) ,

. . : . 2 dxP dxv dx™

tional lens can be explored, especially its caustic structure. The ap- a=0

titude of these visualization techniques is demonstrated by means of

two examples—the rigidly rotating disk of dust and the warp drive With ¢ (x) being the inverse of.. (x). _ .
metric. This paper is focused on a special type of geodesics which are

denoted lightlike or null geodesics. The null geodesics are of great
importance because they determine the causal structure of space-
2 Previous and Related Work time, i.e., they separate regions which cannot have any causal influ-
ence on a given point in spacetime. Light rays are identical to these
In the physics and computer graphics literature, there are some arti-null geodesics. They obey the null condition
cles concerned with the appearance of objects under the influence of
dz"(X\) dz” (M)

gravitational light deflection. Usually, only well-known metrics are e =0. @)
investigated, which are provided in closed form. The first example . dX dX
*weiskopf@tat.physik.uni-tuebingen.de In the ray tracing program, the initial position in spacetime and the

Tinstitute for Astronomy and Astrophysics, Section Theoretical As- initial spatial direction of the light ray are determined by the po-
trophysics, University of Tibingen, Auf der Morgenstelle 10, D-72076  sition, orientation, and field of view of the observer's camera and
Tubingen, Germany by the coordinates of the corresponding pixel on the image plane.
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The time component of the initial direction is fixed by the null con- rays and objects. This is not true for general relativistic ray trac-
dition (2). Therefore, the geodesic equations (1) yield an initial ing because here the generation of bent light rays by solving the
value problem for ordinary differential equations. There exist well- geodesic equations plays an even more dominant role. Usually,
known numerical methods for solving this problem, cf., e.g., [17]. general relativistic ray tracing is a couple of magnitudes slower than
A common problem in general relativity is that many terms de- non-relativistic ray tracing. Therefore, parallelization is an urgent
pend on the chosen coordinate system and do not have a direct physieed for general relativistic ray tracing. Fortunately, the computa-
ical or geometric interpretation; for example, this is true for the tion of the null geodesics and the ray—object intersections for one
spatial and temporal coordinates or the metric itself. A major ad- pixel is independent of those for the other pixels. Hence, paral-
vantage of ray tracing is its independence of the coordinate systemlelization is performed on a per-pixel basis and utilizes a domain

The final images are results ofyedankenexperimenivhat would decomposition on the image plane. The granularity can be as fine
an observer see, what would a camera measure? Hence, the imagess a single pixel in order to achieve good load balancing. The imple-
have an immediate physical meaning and are coordinate-free. mentation makes use of MPI[12] and thus is platform-independent.

This paper is focused on visualizing the geometric structure of It scales well, even up to a several hundred nodes on a massive-
light rays in a gravitational field. Therefore, only visual distor- parallel architecture such as the CRAY T3E.
tions due to gravitational light bending are considered. Changes

of color due to the Doppler effect and gravitational redshift, as well . . . .
as changes of the intensity of the incoming light are neglected. ~ ©  Gravitational Lensing and Caustics

Gravitational fields bend light rays and can thus play the role of

4 General Relativistic Ray Tracing a lens—a gravitational lens. Gravitational lensing was early pre-
dicted by Einstein himself. In fact, the light deflection measured
The implementation of general relativistic ray tracing is based on during the total eclipse of the sun in 1919 was the first experimen-
RayVi$10], which is an object-oriented and easily extensible ray tal evidence for general relativity. Today gravitational lenses are a
tracing program written in C++. IRayViS all relevant parts of the ~ hot topic in astronomy and are extensively used in observations in
visualization system are derived from abstract basis classes whichvarious ways. A comprehensive presentation of gravitational lens-
allow the extension of the original functionality by subclassing. ~ ing can be found in [18]. _ o
Figure 1 shows the basic structure of the program. The im- The main difference between optical Ien§es and g_rawtatlonal
age plane is sampled by t!8anpl e Manager which uses the  lenses is that the deflection caused by a typical, spherical convex,
Proj ect or to generate &ay corresponding to the pixel under ~ OPtical lens increases with the distance of the ray from the optical
consideration. Th&ay communicates with th&cene in order axis, whereas the deflection caused by a gravitational lens decreases
to find intersections with scene objects, calculate secondary raysWith the impact parameter. A standard optical lens has a focal point

and shadow rays, and determine illumination. Finally, the resulting ©Nto which rays parallel to the optical axis are focused. In contrast,
color is stored in the image by ti8anpl e Manager . a gravitational lens has no focal point. However, the qualitative

behavior of a gravitational lens can be described by its caustic sur-

faces. A gravitational lens might bend light rays in a way that the

light emitted by the same source can follow different trajectories to

reach the observer, i.e., the light source is projected onto multiple

points on the observer's image plane. A caustic surface separates
regions where the image multiplicity changes.

Standard gravitational lensing theory uses a couple of approxi-
mations which are valid for most astrophysical objects. For exam-
ple, only small angles of deflection are allowed, the mass distribu-
tion is assumed to be nearly stationary, and the mass of the lens and
the image source are considered to be projected onto planes—the
lens plane and the source plane, respectively. Based on these ap-

Relativistic rendering requires two major extensions of the stan- proximations, the observed data is normally analyzed to reconstruct
dard three-dimensional Euclidean ray tracing system. the properties of the source or the lens, e.g., its mass distribution.
First, the standard ray class which represents a straight light ray  In this paper, a different approach is pursued. First, image syn-
in three dimensions is replaced by a class which represents a benthesis is used instead of analysis. We aim at visualizing a known
light ray in four dimensions. This bent ray is approximated by a gravitational field to gain further insight in its characteristics. Sec-
polygonal line whose points possess one temporal and three spatiabndly, the approximations from above are dropped and the geodesic
coordinates. equations are completely solved. In this way, one can deal with
Secondly, the standard ray projector which generates a light ray phenomena related to strong gravitational fields, large angles of de-
corresponding to a pixel on the image plane has to be modified. Theflection, and extended and rotating gravitating objects.
new projector provides the interface to the physics of spacetime and We have studied two means of visualizing gravitational lenses.
communicates with the solver for the geodesic equations (1). This The first technique directly utilizes general relativistic ray tracing.
system of ordinary differential equations can be solved by numer- Here, objects are placed around the gravitational lens as image
ical integration. The standard technique in our implementation is sources. The mapping of these background objects reveals distor-
the Runge-Kutta method of fourth order[17]. Here, any physical tions due to gravitational light deflection and a possible multiplicity
configuration can be examined by replacing the module which sup- of points in the image plane. In this way, it provides some informa-
plies the information about the metric and the Christoffel symbols. tion about the structure of the caustics.
The advantage of this modular and object-oriented conceptis afree- We propose a second technique which targets at a more system-
dom of choice of the simulated system, combined with a complete, atic analysis of the caustic surfaces. The deficiency of the first
sophisticated rendering environment and only minimal extra imple- method is that the background objects are only two-dimensional
mentation costs. and thus cannot visualize the caustic surfaces embedded in three-
In standard three-dimensional ray tracing, rendering time is sig- dimensional space. This problem can be overcome by a three-
nificantly determined by the computation of intersections between dimensional volumetric object which determines the image mul-

Description of Spacetime
Integration of Photon Path

Figure 1: Structure of the ray tracing system.
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tiplicity for points inside and thus samples the volume for caustic 6.1 Outside View

structures. The first and straightforward approach to visualizing a given grav-
The procedure is as follows. RayVi$ both surface and volume itational field is to adopt an outside position. Figure 2 illustrates

objects are supported. A standard volume object is subclassed to . . . . . .
additionally store the number and the initial directions of the light such an outside view. The three images show the disk with varying

rays crossing a voxel of the object. Whenever a voxel is traversed parametey:. This parameter describes the relativistic “character

by a ray, a counter is incremented and the position of the pixel on of the disk. For = 0 the Newtonian, non-relativistic limit is ob-
y aray, . POSItio P ! tained, fory =~ 4.6 the ultra-relativistic limit. The parameteris
the image plane corresponding to the current ray is attached to thlzdefined in [15]
ii?exilijrlr?birpgfsi;rg%%ﬁigg ?rt(?nri’ ;?fg?eﬂpg:ee;:é?lthseﬁ\rﬁ;uaete?aﬁg The left image presents an almost Newtonian, classical situation
are accumulatedyln this V\iga unintentional counting of nergrb pra sWith p = 0.1 The top side of the disk is colored blue. An ar-
which cross the éame voxei/is avoided. The minimgal re uirei; di)é- tificial “pie slice” texture is applied in order to visualize rotational
. X e . q distortions. The middle image shows a slightly relativistic case with
tance on the image plane is specified by the user; usual values are

some ten pixels. Currently, only a regular grid is implemented as a * - 0.7. Due to gravitational light bending, both the top and the
caustic finger ' Y, only 9 9 P bottom faces are simultaneously visible. The bottom side is col-

) - . o . ored green and brown. The right image shows a more relativistic
The scalar field containing the image multiplicities is written to gt ,ation withu = 3. Here, multiple images of the top and the bot-
a file and visualized by an external program. There exist numerousq, emerge. Moreover, rotational distortions which are caused by

techniques for volume visualization. We tested isosurface repre- qame dgragging (a general relativistic effect) and by the finite speed
sentations based on the marching cube algorithm, and direct vol-¢ light and the rotation of the disk are prominent.

ume rendering based on ray casting or, alternatively, shear warp " thg quside view gives a first, intuitive approach to the gravitat-
factorization. Isosurfaces directly _|nd|cate a change of multiplicity ing object. This visualization technique can easily be used for any
and thus are useful for representing caustic surfaces. Converselymeric and provides a coordinate-independent result. Furthermore,
volume rendering is able to show several caustic structures embeds; s most useful for presenting the theoretical research to the pub-
ded in one another. Here, shear warp rendering is mainly used forjic “For example, pictures of the rigidly rotating disk of dust were
interactive explorations, whereas the ray casting program pro"'despublished in a scientific calendar[6].

images of higher quality, as for illustrations.

In contrast to general relativistic ray tracing of the previous sec-
tion, the caustic finder provides coordinate-dependent data. This6-2 Parameter Study
might give interpretation problems in regions of high curvature. agier these first visualization steps a systematic investigation of
Therefore, thls_wsuallzatlon technlqt_Je is best su_lteq for almost flat 4,6 properties of the light rays in the metric of the rigidly rotating
parts of spacetime, for example behind the gravitational lens at ad-gjsk of dust is required in order to obtain reliable scientific results.
equate distance. High computational and memory costs for a finenerefore, a sampling of the parameter space for the null geodesics
sampling of_t_hg volume grl(_j are _another problem, which could be 55 to be considered.
solved by utilizing an adaptive grid. The null geodesics are determined by two types of parameters.

Parameters of the first kind describe the gravitational source. The
properties of the disk of dust are completely determined by the pa-
6 Application: Rigidly Rotating Disk of rameteru. The position of the observer and the direction of the
Dust in_coming Iight constitute parameters o_f the second kind. The sam-
pling of the direction of the light rays is implemented in the form of
) o . ) ) . o a4r sterad camera, i.e., an observer looking in all directions simul-
The first application presented in this paper is the visualization of taneously. Here, the projection onto a virtual sphere surrounding
the so-called general relativistic rigidly rotating disk of dust, which  the opserver is used instead of the standard projection onto an im-
is a simple model for a galaxy or a galaxy cluster. This projectis age plane. Therefore, the parameter space is completely sampled by
joint work with the group for gravitational theory at the University  generatingir sterad images for various valuesofand positions
of Jena, in particular, with M. Ansorg. of the observer.

In 1995, Neugebauer and Meinel[15] from Jena succeeded in  The produced panorama images are viewed with a simple, exter-
finding the global, analytical solution of Einstein’s equations forthe nal, OpenGL-based rendering program which maps these images
gravitational field of a rigidly rotating (i.e., the angular velocity is  onto a sphere. The viewpoint is located at the center of the sphere.
independent of the radial position) pressure-free ideal fluid disk—  The parameter study confirms the qualitative results from the
the rigidly rotating disk of dust. The researchers in Jena studied theprevious subsection, i.e., multiple images of the top and the bot-
properties of the corresponding geometry of spacetime, for exam-tom side and rotational distortions. In addition, new interesting re-
ple, by investigating the trajectories of particles[2]. sults were found for disks with sufficiently large valueg.ofThese

The cooperation between the theoretical relativists from Jena andresults are described in the following subsection.
our visualization group is motivated by the following reasons. First,
there is great interest in “seeing” the results of theoretical work
in order to gain some intuitive feeling. Secondly, visualization al-
lows a compact representation of a vast number of null geodesicsThe most interesting finding of the parameter study is the existence
which are used as another means of probing the gravitational field.of fractal structures created by the gravitational field of the rigidly
Thirdly, the communication of the theoretical research to colleagues rotating disk of dust. Figure 3 shows a typical example. Here, the
and to the public should be facilitated. position of the observer and the parametet 3 are fixed. The ob-

Results[20] of the cooperation were presented to the relativity server is located on the axis of symmetry and looking towards the
community at the Jous®s Relativistes '99[11], an international edge of the disk. The leftmost picture shows a snapshot with a wide
conference on gravitation. The film shown at the JeemRela- angle field of view. Parts of the top side of the disk are visible in
tivistes '99 is also included in the accompanying video. Several the lower part of the picture. An image of the bottom side is found
visualization techniques which were applied to the rigidly rotating directly above this first image of the top side. Further above, alter-
disk of dust are presented in the following. nating images of the top and the bottom faces follow. The pictures

6.3 Fractal Structure

K-3



D. Weiskopf, “Four-dimensional non-linear ray tracing as a visualization tool in gravitational physics”,
IEEE Visualization 2000, 445-448, © 2000 IEEE, reprinted with kind permission from IEEE

to the right document increasing zooming in on the original picture, especially its causal structure. Moreover, an extension has been
whereas the rightmost image shows a part of the leftmost image proposed to visualize the caustic surfaces of a gravitational lens.

which has a size approximately ten orders of magnitude smaller

By means of two applications the usability of general relativistic

than the original image. This series reveals self-similarity and a ray tracing has been demonstrated both for obtaining further insight

fractal structure.

by the researcher and for presenting results to colleagues and the

public.
In future work, the change of color due to the Doppler effect

6.4 Caustics

Figure 4 shows the structure of the caustic surfaceg.fer 0.3,
based on the volumetric method from Sect. 5. The regular grid of
the caustic finder has a size2i#6® voxels. The red colors represent

and gravitational redshift, as well as the change of intensity of the
incoming light will be implemented. Furthermore, adaptive algo-
rithms and data structures for the caustic finder will be investigated.

regions with many image multiplicities, the green colors represent Acknowledgments

regions with fewer image multiplicities, and the blue colors show
regions with an image multiplicity of one.
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7 Application: Warp Drive
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The second application presented in this paper is the visualization
of the warp drive metric. Alcubierre’s solution[1] of Einstein’s field
equations allows to travel faster than the speed of light, as measure
in an outside, flat region of spacetime. Ford and Roman([8] give a [y
comprehensible introduction the warp metric and a discussion of
some issues related to energy conditions and causality. 2

Basically, the warp drive constructs a warp bubble which sepa-
rates two flat parts of spacetime. The warp bubble is able to move
faster than the speed of light with respect to an outside, flat region [3]
of spacetime. A spaceship which is at rest inside the warp bubble
would then travel faster than the speed of light.

The visualization of the warp drive was produced for “Seven [4]
Hills”[3]. This exhibition intends to give an inkling of what the fu-
ture of mankind may look like in the next millennium. A leading-
edge topic of physics like the visualization of the warp metric is [5]

very well suited for such an exhibition and allows to bring aspects
of a complex scientific content to a wide public.

Figure 5 and the accompanying video show examples of the vi- 6
sualization of the warp metric. Here, the warp spaceship travels
in front of the earth and moon, and Saturn. The light deflection at [7]
its warp bubble causes astonishing visual distortions on the back-
ground objects. In addition to this outside view, a position inside
the warp bubble can be adopted. Respective images are shown at®
the exhibition “Seven Hills”. The view from inside the warp space-
ship was independently investigated by Clark et al.[5] on a more [9]

theoretical footing. (10]

8 Conclusion and Future Work (1]

In this paper, non-linear ray tracing has been presented as a toof*?!
for gravitational physics. It has been shown how standard three-[13]
dimensional ray tracing can be extended to general relativistic ray
tracing. Furthermore, a parallel implementation has been described /14
which is extremely useful for extensive parameter studies or pro-
duction of movies. (15]
General relativistic ray tracing offers several important features.
First, it gives an intuitive approach to the structure of a gravitational
field and allows a simple and straightforward use. Secondly, the 16]
generated images are coordinate-independent and can be regarded
as the result of an experiment. This is of great importance in the
context of general relativity because many properties of spacetime
can be hidden by the normally used coordinate-dependent reprellg]
sentation. Many other visualization techniques are based on spe-
cific coordinate systems, e.g., the visualization of geodesics with (19]
respect to pseudo-Euclidean coordinates in [4]. Thirdly, the ray-
traced images are a compact representation of a vast number of nulf?]
geodesics. These null geodesics probe the properties of spacetime,
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Figure 2: Visualization of the rigidly rotating disk of dust. The relativistic parameter0.1, 0.7, 3, from left to right.

Figure 3: Fractal structures and self-similarity in the gravitational field of the rigidly rotat
disk of dust withu = 3. The observer is located on the symmetry axis and is zooming i

the image. . .
Figure 4: Caustic structure far = 0.3.

Figure 5: Visualization of the warp metric. The warp bubble and the spaceship are moving at a speedldic in the left and middle
image, ancb = 2.5¢ in the right image.






Color Plates

Special Relativistic Flight to Saturn

Special relativistic visualization of apparent geometry. The observer is moving at 99 percent of
the speed of light.
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Special Relativistic Radiosity
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Special relativistic radiosity. The objects are illuminated at temperatures of 2600 Kelvin, 5800
Kelvin, and 15000 Kelvin. The upper left image shows the scene at low speed, the upper right
image visualizes apparent geometry at v=0.6c¢, the lower left image adds the visualization of the
Doppler effect, and the lower right image shows completely relativistic rendering. In this last
image, the overall brightness is reduced to ten percent of that in the other images.
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Special Relativistic Image-Based Rendering

Non-relativistic view

Visualization of apparent geometry.
The observer is moving at v=0.99c

Visualization of apparent geometry
and illumination. The observer is
moving at v=0.3c. Here, the overall
brightness is reduced to one half of
that in the other images.
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Acceleration in Special Relativistic Visualization

Visualization of an accelerated motion of the camera. From left to right and top to bottom, the
speed of the observer is increased from v=0.3c to v=0.623c, v=0.817c, and v=0.975c,
respectively.

© 2001 Daniel Weiskopf



The “Real” Einstein Ring

Visualization of the Schwarzschild metric. A portrait of Einstein is moving behind a black hole;
due to gravitational light bending, an Einstein ring is generated.

© 2000 Daniel Weiskopf



Visualization of the Warp Metric

A spaceship is traveling inside a warp bubble at a speed of v=1.5c.

© 2001 Daniel Weiskopf



Visualization of the Rigidly Rotating Disk of Dust

Visualization of the rigidly rotating disk of dust. The relativistic parameter pis 0.1, 0.7, 2, 3, from
left to right and top to bottom. For small values of y, the Newtonian (classical) limit is obtained.
Higher values for p indicate a more relativistic situation: Multiple images of the top and the
bottom side emerge due to gravitational light bending; rotational distortions are caused by frame
dragging—a general relativistic effect. Detailed information on the physics of the rigidly rotating
disk of dust can be found in: G. Neugebauer, R. Meinel, Phys. Rev. Lett. 75:3046 (1995).
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