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Abstract

This course is intended for attendees with simultaneous interests in the concepts of
relativistic physics and in the practical extension of computer graphics methods to rel-
ativity. The first half of the course will focus on how relativistic effects can be intuitively
understood starting from extremely simple Euclidean 2D geometry. The concept of
object vertices as world-lines moving in a space that can be mixed with time is ex-
plained first in this context. Relativistic imaging is then explained in three dimensions,
two space plus one time, exploiting analogies with Euclidean 3D geometry. Finally, four-
dimensional spacetime is introduced to make the transition to the real world simulations
treated in the final part of the course.
The second half will concentrate on recent advances in visualization and photorealis-
tic simulation of relativistic scenes and phenomena using computer graphics to show
features that could never be seen in real life at human time and space scales. Proper-
ties of light under the extreme conditions of both special and general relativity will be
discussed, including changes of color, intensity, and direction of light, and gravitational
light bending. A survey of state-of-the-art rendering techniques will be presented and
selected animations produced using recently developed methods for relativistic ren-
dering will be shown. An introduction to user interaction in special relativistic virtual
environments will conclude the presentation.
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Speaker Biographies

Andrew J. Hanson is a professor of computer science at Indiana University, and has
regularly taught courses in computer graphics, computer vision, and scientific visual-
ization. He received a BA in chemistry and physics from Harvard College in 1966 and
a PhD in theoretical physics from MIT in 1971. Before coming to Indiana University, he
did research in theoretical physics at the Institute for Advanced Study, Stanford, and
Berkeley, and then in computer vision at the SRI Artificial Intelligence Center in Menlo
Park, CA. He has published in IEEE Computer, CG&A, TVCG, ACM Computing Sur-
veys, and has over a dozen papers in the IEEE Visualization Proceedings. He has also
contributed three articles to the Graphics Gems series dealing with user interfaces for
rotations and with techniques of N-dimensional geometry. Previous experience with
conference tutorials includes a Siggraph ’98 tutorial on N-dimensional graphics, a Visu-
alization ’98 course on Clifford Algebras and Quaternions, and a tutorial on Visualizing
Quaternions presented at both Siggraph ’99 and Siggraph 2000. Major research inter-
ests include scientific visualization, machine vision, computer graphics, perception, and
the design of interactive user interfaces for virtual reality and visualization applications.
Particular visualization applications currently being studied include an astrophysical
treatment of the local galactic neighborhood of the sun, the exploitation of constrained
navigation for visualization environments, and applications of graphics in dimensions
greater than three to mathematics and theoretical physics.

Daniel Weiskopf is researcher and teacher of computer science at the Visualization
Group (led by Prof. Thomas Ertl) at the University of Stuttgart (Germany). He studied
physics at the University of Tübingen (Germany), San Francisco State University, and
the University of California at Berkeley. He received a Diplom (M.S.) in physics from the
University of Tübingen in 1997 and a Ph.D. in theoretical astrophysics in 2001. Daniel
Weiskopf authored several articles on special and general relativistic visualization. In
addition to his research on relativistic visualization, he is interested in communicating
complex physical concepts to the public via visualization: several of his films were
featured at major European festivals of scientific animations and TV broadcasts; he is a
scientific collaborator in a couple of film projects; his visualizations have been included
in a number of popular-science publications. Major research interests include scientific
visualization, virtual reality, interaction techniques, special and general relativity.
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Course Schedule

1. 13:30–14:20 Introduction (Hanson)

(a) Motivation

(b) 2D Euclidean vs Minkowski: Build Relativity concepts from 2D Graphics

(c) Spacetime points and the twin paradox

(d) Relativistic objects, cameras, and imaging

2. 14:20–15:00 Visualization Methods in 3D and 4D (Hanson)

(a) 3D = 2 Space + 1 Time: Transformations

(b) Multiple transformations and Thomas Precession

(c) Aberration of Light

(d) Object Viewing: Occlusion, IBR, Terrell effect

(e) 4D = 3 space + 1 time

3. 15:00–15:15 Break

4. 15:15–15:50 Light (Weiskopf)

(a) Fundamentals (electromagnetic wave, photons, plenoptic function)

(b) Relativistic effects on light (aberration, Doppler and searchlight effects, trans-
formation of the plenoptic function)

(c) General relativistic effects (bending light by gravity, gravitational lensing)

5. 15:50–16:35 Rendering (Weiskopf)

(a) Special relativistic rendering methods (polygon rendering, radiosity, ray trac-
ing, image-based rendering, texture-based rendering)

(b) General relativistic rendering (ray tracing, image-based rendering)

6. 16:35–16:45 Interaction Techniques (Weiskopf)

(a) Accelerated motion of an observer in special relativity

(b) Interactive virtual environment

7. 16:45–16:50 Conclusion (Weiskopf)

8. 16:50–17:00 Questions and Answers (Hanson, Weiskopf)
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Visualizing Relativity

Andrew J. Hanson
Indiana University

and

Daniel Weiskopf
University of Stuttgart

Siggraph 2001 Tutorial

1

GRAND PLAN

I: Introduction: Hanson, 50 min

II: Visualization Methods: Hanson, 40 min

< 15 minute Break >

III: Light: Weiskopf, 30 min

IV: Rendering: Weiskopf, 30 min

V: Interaction Techniques: Weiskopf, 30 min

VI: Conclusion and Questions: 15 min

2

I: Introduction to Special Relativity

� Motivation

� 2D Euclidean vs Minkowski: Build Relativity con-

cepts from 2D Graphics concepts.

� Spacetime Points and the Twin Paradox.

� Relativistic Objects and Cameras: What hap-

pens to graphics modeling near the speed of light.

3

II: Visualization Methods in 3D and 4D

� 2 Space + 1 Time: Transformations.

� Rolling the Relativistic Ball :

Thomas Precession

� Aberration of Light:

� Object Viewing: Occlusion, IBR, and the Ter-

rell Cube

� 4D = 3 space + 1 time:

4

III: Light

� Directions in Relativity

� Frequency Transformations

� Relativistic Radiance Transforms

� Bending Light with General Relativity

5

IV: Rendering

� From the Z buffer to the T buffer

� Special Relativistic Ray Tracing

� Texture and Relativistic IBR

� Gravitational Lensing
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V: Interaction Techniques

VI: Conclusion

7

Visualizing Relativity

Part I: Introduction
to Special Relativity

Andrew J. Hanson

Indiana University

8

I: Introduction to Special Relativity

� Motivation

� 2D Euclidean vs Minkowski: Build Relativity con-

cepts from 2D Graphics concepts.

� Spacetime Points and the Twin Paradox.

� Relativistic Objects and Cameras: What hap-

pens to graphics modeling near the speed of light.

9

Motivation

WHY ARE YOU HERE? Let’s guess:

) You know about Graphics

) You know about Visualization

) You DO NOT know much about Relativity.

� You WOULD LIKE to know how these three things
are CONNECTED. . .

10

Motivation, contd.

What is Graphics?

� Graphics: is the art of simulating the physics

of the interaction of material and light.

11

Motivation, contd.

What is Visualization?

� Visualization: is the art of creating insights into

non-self-explanatory data and geometry using

graphics.

12



Motivation, contd.

What is Relativity?

� Relativity: is the mathematics describing the

interaction of material and light UNDER EXTREME

PHYSICAL CONDITIONS.

Therefore, this course is the logical extension of

everything graphicists and visualizers already do!
13

Euclidean Transformations

We begin with what we all know — 2D Rotations.

r
θ

r

x’

x

y = r sin φ
r

φ

x = r cos φ

x0 = x cos � � y sin �

y0 = x sin �+ y cos �
14

Euclidean Transformations, contd.

Explicit 2D rotations are realized by a 2D matrix

R(�) =

2
64 cos � � sin �

sin � cos �

3
75

where
R(�)

2
64 1 0

0 1

3
75R(�)t =

2
64 1 0

0 1

3
75

because (cos �)2+ (sin �)2 = 1

15

Euclidean Transformations, contd.

Main feature: The Radius is unchanged under

[x0] = R(�) � [x]:

r =
r
x2+ y2 =

r
x02+ y02

In other words, Euclidean distances do not vary
under the action of rotations.

16

Euclidean Transformations, contd.

Similarly, the Euclidean Inner Product is unchanged

under [x0] = R(�) � [x], [~x0] = R(�) � [~x]

x � ~x = x
0 � ~x0 = [ x y ]

2
64 1 0

0 1

2
64
2
64 ~x
~y

3
75

= x~x+ y~y = r~r cos(�� ~�)

In other words, Euclidean angles do not vary un-
der the action of rotations.

17

Euclidean Transformations, contd.

Properties we know and love:

� Rotations have a fixed point at origin.

� Rotations leave segment lengths and inner

products unchanged.

� Rotations are orthogonal ) RI Rt = I

� NOTE: The PROJECTIONS may change, yet we

“know” the segment length is constant.
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Lorentz Transformations

Special Relativity is just “Rotations with hyperboloids

instead of circles.”

Euclidean Rotations ) Lorentz Transformations.

Let x be a space interval and t be a time interval:

x0 = x cosh �+ t sinh �

t0 = x sinh �+ t cosh �

19

Lorentz Transformations, contd.

When we apply this transform to a vector from the

origin to a point (x; t), the new point (x0; t0) lies on

a hyperboloid instead of a circle!

20

Lorentz Transformations, contd.

Explicit 1-space + 1-time Lorentz transformations

are realized by a 2D “boost” matrix

B(�) =

2
64 cosh � sinh �

sinh � cosh �

3
75 :

where

B(�)

2
64 1 0

0 �1

3
75B(�)t =

2
64 1 0

0 �1

3
75

B(�) preserves the length of proper time due to
(cosh �)2 � (sinh �)2 = 1

21

Lorentz Transformations, contd.

Compare Euclidean and Lorentz functions:

cos � =
1

2

�
ei� + e�i�

�
sin � =

1

2i

�
ei� � e�i�

�

cos2+ sin2 = 1

cosh � =
1

2

�
e� + e��

�
sinh � =

1

2

�
e� � e��

�

cosh2 � sinh2 = 1

where the MINUS SIGN is all-important!
22

Lorentz Transformations, contd.

Main feature of Lorentz-transformed vectors is very

close to rotations: Instead of the Radius, depend-

ing on sign inside root,
� THE PROPER TIME is unchanged.

� =
r
t2 � x2 =

r
t02 � x02

� Alternatively, THE PROPER DISTANCE is unchanged.

� =
r
x2 � t2 =

r
x02 � t02

23

Lorentz Transformations, contd.

� . . . and instead of the Euclidean dot product, the

THE MINKOWSKI SPACE INNER PRODUCT

x � ~x = [ x t ]

2
64 1 0

0 �1

3
75
2
64 ~x
~t

3
75 = x~x� t~t

IS UNCHANGED.

24



Lorentz Transformations, contd.

Now let’s visualize a typical invariant:

�2 = t2 � x2 = t02 � x02

describes a hyperbola , x = 0) t = �:

x 6= 0 ) t =
r
�2+ x2

x

τ

25

Lorentz Transformations, contd.

An alternative view showing geometry of proper

time, emphasizing interval property.

2

dx

dt

d

dt
2

dt  =          +  dx
2

τ

2
=  dt  -  dxd τ

d τ

2 2

26

Lorentz Transformations, contd.

What are cosh � and sinh � anyway?

Suppose t0 = 1:0 and x0 = 0:

dx = x0 cosh �+ t0 sinh � = sinh �

dt = x0 sinh �+ t0 cosh � = cosh �:

27

Lorentz Transformations, contd.

Thus (dx=dt) = sinh �= cosh � is the inverse slope
of the interval (0:0; d�) after the transformation:

dt

τ

(dx, dt)

τ(0,d   )

τ

dx

d
d

28

Lorentz Transformations, contd.

We identify this slope as the

velocity = v = sinh �
cosh � = tanh �

Simple algebra and cosh2� sinh2 = 1 give us:

cosh � =
1:0q

1:0� v2

sinh � =
vq

1:0� v2

29

Lorentz Transformations and velocity of light

OOps! Where did the velocity of light go?

Simple answer: we set it to unity to make (x; t)

plots work!

Better answer: Replace v ) v=c whenever you

need it.

What happens as c)1 ?? This is ORDINARY

GALILEAN SPACETIME, where NO mixing of space

and time can occur!
30



Lorentz Transformations and velocity of light

Check Galilean limit: as c)1

cosh � =
1:0r

1:0� (v=c)2
) 1

sinh � =
v=cr

1:0� (v=c)2
) 0

So we get B(�)) identity matrix and the effects
of the Lorentz transform disappear!

31

Lorentz Transformations, contd

Note: Euclidean intervals do not care if you start
with (x; y) = (r; 0) or (x; y) = (0; r) before
you rotate: ) r is always positive.

r

r
r

r

(x,y) = (r,0)

(x,y) = (0,r)

32

Lorentz Transformations, contd

Relativistic intervals do care :

(x; t) = (0; �), t2 � x2 > 0 = Timelike interval
(x; t) = (�; �), t2 � x2 � 0 = Lightlike interval
(x; t) = (�; 0), t2 � x2 < 0 = Spacelike interval

Furthermore, these distinctions are invariant

under the Lorentz transform!

x0 = x cosh �+ t sinh � t0 = x sinh �+ t cosh �

33

Lorentz Transformations for timelike intervals

Define a timelike interval , with x = 0:0 and t =

1:0 , and transform:

x0 = x cosh �+ t sinh � t0 = x sinh �+ t cosh �

x0 = sinh � t0 = cosh �

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

v = 0:0 v = 0:1 v = 0:5 v = 0:9
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Lorentz Transformations for time-like intervals

Let t = 1:0; x = 0:0 as before, but let velocity

be negative:

x0 = x cosh � � t sinh � t0 = �x sinh �+ t cosh �

x0 = � sinh � t0 = cosh �

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

v = 0:0 v = �0:1 v = �0:5 v = �0:9
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Lorentz Transformations: different velocity signs

You already know this difference:

Euclidean: angle > 0 means object interval is rotated
Euclidean: angle < 0 means viewer is rotated
Lorentz: velocity > 0 means object interval is boosted
Lorentz: velocity < 0 means viewer is boosted
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Lorentz Transformations for lightlike intervals

Define a lightlike interval,

with x = 1:0 and t = 1:0,

and observe that x2 � t2 = x02 � t02 � 0:

x0 = cosh �+ sinh � t0 = sinh �+ cosh �

-2 -1 1 2
Space

0.5

1

1.5

2
Time

-2 -1 1 2
Space

0.5

1

1.5

2
Time

-2 -1 1 2
Space

0.5

1

1.5

2
Time

-2 -1 1 2 3 4
Space

1

2

3

4

Time

v = 0:0 v = 0:1 v = 0:5 v = 0:9
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Lorentz Transformations for spacelike intervals

Define a spacelike interval:
with (x = 1:0; t = 0) ) x2 � t2 > 0
so x0 = cosh �; t0 = sinh �.

0.5 1 1.5 2Space

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Time

0.5 1 1.5 2Space

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Time

0.5 1 1.5 2Space

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Time

0.5 1 1.5 2Space

-2

-1.5

-1

-0.5

0.5

1

1.5

2
Time

v = 0:0 v = 0:1 v = 0:5 v = 0:9
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Lorentz Transformations: fixed points

Every graphicist knows that x0 = R � x has a

fixed point at x = 0.

Relativity is the same: translate to t = 0:0 and

x = 0:0 before transforming:

x0 = x0+ (x� x0) cosh �+ (t� t0) sinh �

t0 = t0+ (x� x0) sinh �+ (t� t0) cosh �

39

Lorentz Transformations: fixed points

Transform with Lorentz Fixed Point at x0 = (x0; t0):

2
4 x0

t0

3
5 = T (+x0;+t0) �B(�) � T (�x0;�t0) �

2
4 x
t

3
5

t0

x0

x axis

t axis

40

Lorentz Transformations: whole plane

Every point in the (x; t) plane Lorentz transforms
to one light cone or the other along a hyperboloid
as v ! �1:

-4 -2 2 4

-4

-2

2

4

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2
Space

-2

-1

1

2
Time

-2 -1 1 2

-2

-1

1

2

-4 -2 2 4

-4

-2

2

4

v = �0:9 v = �0:5 v = 0:0 v = 0:5 v = 0:9
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Lorentz Transformations: world lines

Every timelike line in the (x; t) plane Lorentz trans-
forms to a slanted line as v ! 1:

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2
Space

-2

-1

1

2
Time

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

v = �0:5 v = �0:2 v = 0:0 v = 0:2 v = 0:5
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What is a Minkowski frame?

Let x̂0; t̂0 be the basis vectors of a Minkowski-

space frame:

� Space-Like: x̂0 = (1;0) whose length is

x̂0 � x̂0 = 1.

� Time-Like: t̂0 = (0;1) whose length is

t̂0 � t̂0 = �1.

43

What is a Minkowski frame?

Compare a Euclidean frame to a Minkowski frame:

θ

The Euclidean axes stay at right angles under rota-
tions. What happens to the Minkowski axes under
Lorentz transforms??

44

How do the frame axes transform?

The usual Three Othonormality Conditions are

preserved in any coord system.

� Space-Like: x̂0 = (1;0) has unit length:

x̂0 � x̂0 = 1.

� Time-Like: t̂0 = (0;1) has unit length:

t̂0 � t̂0 = �1.

� Orthogonality: x̂0 = (1;0) and t̂0 = (0;1)

have vanishing inner product: t̂0 � x̂0 = 0.

45

Frame axis transforms, contd

The picture seems to show axes coming together,
but orthonormality is automatically preserved :

Boost )

46

Lorentz Frame Axes

If we did not know about cosh2 � � sinh2 � = 1,

we might represent the frame differently, e.g., as:

�
x̂0 t̂0

�
=

2
64 A B

B A

3
75 :

where the constraint A2�B2 = 1 guarantees or-
thonormality in the the Minkowski space; the columns
are orthogonal, and of length +1 and -1, respec-
tively.

47

Lorentz Frame axes, contd

As for 2D rotations, we can define a double-valued

parameterization (a; b) of the frame:

�
x̂0 t̂0

�
=

2
64 A B

B A

3
75 =

2
64 a

2+ b2 2ab

2ab a2+ b2

3
75 :

where A2�B2 = 1 IF a2� b2 = 1, and (a; b) is
precisely the same frame as (�a; �b).

These are hyperbolic half angle formulas,
a = cosh(�=2), b = sinh(�=2)!
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1+1 “Quaternion” Frames!

Differentiating both _̂x0 and _̂t0, our eqns reduce to
2
4 _a
_b

3
5 = 1

2

2
4 0 �
� 0

3
5 �

2
4 a
b

3
5

This is the square root of Lorentz frame equations.

(Quaternion frame equations have

2
4 0 ��
� 0

3
5.)

49

Lorentz Transformations, summarized.

Properties we will know and love:

� Boosts have fixed point at origin.

� Boosts leave proper times, proper lengths, and Minkowski

inner products unchanged.

� Boosts are orthogonal on a negative signature iden-

tity matrix ) B

2
4 1 0
0 �1

3
5Bt =

2
4 1 0
0 �1

3
5

� As in Euclidean space: The PROJECTED PARTS OF A

VECTOR may change, yet we know the inner product lengths

are CONSTANT.

50

What is an object?

In Relativity, a point object is a world line .

� Standing still at one point: world line still ticks

away: Equation ) (� = const; t).

� Moving curve x(t) must obey jdx=dtj < 1.

� Communication can only occur using light or

slower media.

� So all possibility of image data is restricted es-

sentially to rays with paths having jdx=dtj = 1.

51

Point Objects . . .

What do point objects look like in spacetime?

dx
/dt

 =
 1

t

x

x = 
x(t)

δ

dx/dt = -1

Relativistic equations have space and time com-
ponents, so think of a static point as the paramet-
ric line (�; t).

52

Twin Paradox

A world line represents an object, e.g., a person,
evolving in time, possibly moving through space.

x(t) paths corresponding
proper times

53

Twin Paradox, contd.

Consider two twins , one living on path P1, the

other on path P2. Their ages in any frame are

the proper lengths of their world lines:

Age 1 = T1 =
Z
P1

d�

Age 2 = T2 =
Z
P2

d�

54



Twin Paradox, contd.

Graphical picture of twin ages: go to rest frame of
each leg of journey to visualize true proper time:

P2P1

a2

b2

rest frame

T2 = a2 + b2

T1

of 1st leg
rest frame

of 2nd leg

55

Time Dilation of Point Clocks

Since the point (0; �) is transformed to x = � sinh �,

t = � cosh �, we can solve for � , yielding x = vt,

so the invariant proper time can be written:

� =
r
t2 � x2 = t

r
1� v2

Since the measured time t = �=
q
1� v2 > � ,

this is Time Dilation .

56

Time Dilation, contd.

Now visualize change in apparent tick rate of mov-
ing clock , as well as how you would measure it :

τ
t

x = v t

Camera timeline

57

Lorentz Contraction of Spacelike
Intervals

For spacelike intervals, the situation is trickier. Let

x1(t) = (0; t)

x2(t) = (�; t)

be the ends of a line segment.

58

Lorentz Contraction, contd.

Under a Lorentz transform, the origin stays fixed,

but

x02(t) = (X(t); T (t))

= (� cosh �+ t sinh �; � sinh �+ t cosh �)

becomes a curve with the old (�;0) pushed far up

the hyperboloid to

X(0) = � cosh � T (0) = � sinh �

for large v = sinh �= cosh �.
59

Lorentz Contraction, contd.

We must take the line (X(t); T (t) and extrapo-

late backwards to T (t) = 0 to find the new inter-

val as seen by the observer. Solving

T (t) = � sinh �+ t cosh � = 0

for t = t0, we find

t0 = �� sinh �= cosh �
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Lorentz Contraction, contd.

Thus t0 is negative and we must have a length reduction .

The numbers come out to be:

X(t0) = � cosh �+ t0 sinh �

= � cosh � � �
sinh2 �

cosh �

=
�

cosh �

�
cosh2 � � sinh2 �

�

=
�

cosh �
= �

q
1� v2

Therefore the observed interval X(t0)�origin = �
q
1� v2

is Lorentz Contracted in the moving frame relative to the
rest frame interval �.
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Lorentz Contraction, contd.

We may visualize the Lorentz contraction as a back-
wards sliding of the intercept of the Lorentz trans-
formed worldline, X(t0) = �= cosh � = �

q
1� v2:

X(t) = A    +  B t

δ

,  tδ

δ

X(t0) =    /A

Endpoint timeline

T(t0) = 0 intercept

T(t) = B    +  A tδ
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What is a solid object?

In 2D relativity, a solid object is a line segment .

� Each end tracks timelike world line.

� Segment itself is spacelike interval.

� Simultaneity is tricky; after Lorentz transform,

observer time cuts a skewed slice.
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What is an object, contd

Watch the points — spacelike and unable to com-
municate sideways — as they each evolve on a
timelike worldline.

time

Object with spatial extent

t0

t1

t0’
Object with spatial extent

after Lorentz transform

time

Observer Time

t1’

After Lorentz transform, Simultaneity is modified.
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What is an observation?

Observation of object is only possible via lightlike
rays striking CAMERA.
These rays must strike observing camera’s world
line at SAME TIME!

t1

t0

Object with spatial extent

time
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What is an observation, contd.

Since emitted rays must arrive simultaneously at

camera on forward light cone to create a snapshot,

we have an alternate method:

Shoot a light cone of rays backwards from camera

All relativistic pictures then come from time-reversed
ray tracing:
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What is an observation, contd

Object with spatial extent

at earlier times

Camera world line

seen by camera rays

t0

time

t1

67

Summary So Far:

� cos to cosh and sin to sinh make rotations

change to Lorentz transformations.

� Invariants are inner products with minus sign.

� Slope = tan to Velocity = tanh: helps visu-

alize the meaning of the Lorentz parameters.

� Objects: spacelike intervals, endpoints track

timelike worldlines, emitting lightlike signals.

� Cameras: construct images by back-tracing light

rays to intersect object worldlines.
68
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Visualizing Relativity

Part II: Visualization Methods
for Special Relativity in 3D and 4D

Andrew J. Hanson

Indiana University
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Part II: Visualization Methods
for Special Relativity in 3D and 4D

� 2 Space + 1 Time: Transformations.

� Rolling the Relativistic Ball :

Thomas Precession

� Aberration of Light

� Object Viewing: Occlusion, IBR, Terrell

� 4D = 3 space + 1 time

74

From 2D (1+1) to 3D (2+1)

We need at least two space dimensions to make

interesting pictures. In 2 space + 1 time:

� Objects are polygons (at one time)

� Polygon vertices sweep out proper-time lines.

� Whole spacetime object is tube-like.

� Cameras see cones intersecting these tubes.

=) First, revisit transforms:
75

2 + 1 Spacetime Boost Matrices

What happens to good old

2
4 cosh sinh
sinh cosh

3
5 in 2+1?

B(v) =
2
6664
1+ vx2(cosh � � 1) vxvy(cosh � � 1) vx sinh �

vxvy(cosh � � 1) 1 + vy2(cosh � � 1) vy sinh �
vx sinh � vy sinh � cosh �

3
7775

Note: v̂ � v̂ = vxvx + vyvy = 1 and we define velocity as
v = v̂ tanh � (units: velocity of light = 1), and detB = 1.
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Pursue 3D space analogy:

Interesting things happen when you perform

sequences of rotations in Euclidean 3D space:

R(�; x̂)R(�; ŷ)�R(�; ŷ)R(�; x̂) =

(�2+O(�3))

2
666664

0 �1 0

1 0 0

0 0 0

3
777775

This generates an infinitesimal Z-axis rotation!
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3D space analogy:

Sequences of rotations in Euclidean 3D space

counter-rotate:

R(+y)

R(+x)

y

x

Euclidean:

z
R(-y)

R(-x)

   -> Counterclockwise spin
  Clockwise Circuit

This is the Rolling Ball effect.
78



2 + 1 spacetime: properties

Very Interesting things happen when you perform

sequences of Boosts in 2 space + 1 time:

B(x̂)B(ŷ)�B(ŷ)B(x̂) = (�2+O(�3))

2
666664

0 1 0

�1 0 0

0 0 0

3
777775

This is an infinitesimal negative Z-axis rotation!
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2 + 1 spacetime: Thomas Precession

This observed Spatial Rotation is the origin of

Thomas precession: in 3D:

  Clockwise Circuit
Minkowski:

y

x

   -> Clockwise spin

B(-y)

B(+x)

B(+y)
B(-x)

z

This is a Relativistic Rolling Ball Effect.
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Thomas Precession, contd.

Thomas Precession is the exact analog of the Eu-

clidean 3D “Rolling Ball” effect.

This relativistic effect modifies magnetic coupling

of atomic electrons in accelerated circular motion

by causing an angular velocity

! = �(cosh � � 1)
v � _v

v2
� �

1

2
v � _v

to be applied to the rest frame of an orbiting elec-
tron.
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. . . recall 3D Euclidean Quaternion Frames . . .

� Quaternion Correspondence. The unit quaternions q

and �q correspond to a single 3D rotation R3(q):2
6664
q2
0
+ q2

1
� q2

2
� q2

3
2q1q2 � 2q0q3 2q1q3+2q0q2

2q1q2+2q0q3 q2
0
� q2

1
+ q2

2
� q2

3
2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3+2q0q1 q2
0
� q2

1
� q2

2
+ q2

3

3
7775

� Rotation Correspondence.

If q = (cos �
2
; n̂ sin �

2
), with n̂ a unit 3-vector, n̂ � n̂ =

1 , then R(�; n̂) is usual 3D rotation by � in the plane

perpendicular to n̂.
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2 + 1 spacetime quaternion-like form

In 2 space + 1 time, we can construct exactly the same type

of quadratic form for the boost :

B(v) =

2
6664
h2
0
+ h2x � h2y 2hxhy 2h0hx
2hxhy h2

0
+ h2y � h2x 2h0hy

2h0hx 2h0hy h2
0
+ h2x + h2y

3
7775 :

If h = (h0; hx; hy) = (cosh �=2; v̂ sinh �=2)

with v = sinh �= cosh � and jv̂j = 1, then this is exactly the
standard 2+1 Lorentz transformation!
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2 + 1 spacetime quaternion-like form

Caveat: Because of the Thomas Precession, even though
h = (cosh �=2; v̂ sinh �=2) generates B(v), the full group
of 2+1 transformations is not quite there, and the algebra is
incomplete.

No time for details here, but the full treatment is straightfor-
ward using Clifford Algebra to generate Spin(2;1).
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Features of Light in 2+1 Spacetime

Lorentz transforming a light ray can change its di-

rection. Let

x0 = x cosh �+ t sinh � t0 = x sinh �+ t cosh �

Thus even if x < 0,

x0 > 0 if t sinh � > x cosh �!
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Light in 2+1, contd

Let � describe an isotropic distribution of light-like

vectors with (x; y; t) = (cos �; sin �; 1), and Boost

with v̂ in x direction:

x0 = cos � cosh �+ sinh �

y0 = sin �

t0 = cos � sinh �+ cosh �

Slice t in observer frame, so observed tan�0 = y0=x0.
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Light Aberration: summary

Aberration Formulas we know and love:

After boosting to v = sinh = cosh in units of c = 1,

the isotropic light ray distribution

(x; y; t) = (cos �; sin �; 1) deforms to:

sin �0 =
sin �

(1 + v cos �) cosh �

cos �0 =
v+ cos �

1+ v cos �

tan �0 =
sin �

(v+ cos �) cosh �
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Light in 2+1, contd

Observations on relativistic light distortion:

� tan �0 / 1= cosh � =
q
1� v2.

� So, as v = sinh = cosh! 1 . . .

� . . . the aberration of light (resembling a search-

light ) swings all the rays to the forward direc-

tion!
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Visualizing aberration: light cones

Looking down on boosted spacetime cones repre-
senting symmetric Light Ray distributions:

v = 0:5c v = 0:75c v = 0:9c v = 0:95c
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Visualizing aberration: circular distrib.

Looking down on boosted 2D symmetric Light Ray
distributions:

v = 0:0c v = 0:20c v = 0:50c

v = 0:90c v = 0:95c v = 0:99c 90



Seeing 2+1 Spacetime

� Points: Still World Lines tracing Proper Time

� Objects: Segments (slabs) ) Polygons (tubes)

� Light: Diagonals ) Cones

� Images/Cameras: Trace inverse Cones

� Transformations: Completely new features, anal-

ogous to 3D rotations
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2 + 1 Spacetime Image Construction

At one instant, camera receives back-traced light
from a single inverted cone in 2+1 spacetime:

-2
-1

0
1

2
x

-2
-1

0 1 2y

-2
-1.5

-1

-0.5

0

time

-2
-1

0
1x

2
-1

0 1

TIME advances UP to zero at the apex, the cam-
era focal point.
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2 + 1 Spacetime Object Viewing

How front and back of polygon side emit light to-
wards camera:

Now vary velocity . . .
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2 + 1 spacetime object viewing

When velocity is 0.90 times the speed of light, light
escapes from back side in a almost a full circle:
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2 + 1 Spacetime Object Viewing

How is light from a moving slab distributed to the
camera?

Light cone is invariant but world-sheet of a polygon
tilts: visibility of front and back sides varies drasti-
cally with velocity.
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2 + 1 Spacetime Object Viewing

How face’s light distribution changes with velocity:

v = 0:50 v = 0:75 v = 0:90 v = 0:99
The front side is visible only under more and more
restricted conditions.
The back side becomes visible from practically
EVERYWHERE as v ! 1!
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2 + 1 spacetime object viewing

Simple model: square in 2+1 spacetime: with one side re-
moved so we can see inside:

-2-1012
x

-2
-1
0

1
2

y

-2

-1

0

1

2

time

012

-2
-1
0

1
y

Here, velocity v = 0:50 times the speed of light.
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2 + 1 spacetime object viewing

Simple model: square in 2+1 spacetime: with one side re-
moved so we can see inside:

-505

x

-4-2024
y

-5

0

5

t

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
Note Lorentz Contraction.
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2 + 1 spacetime object viewing

Looking down from the camera’s spacetime viewpoint:

-505

x

-4

-2

0

2

4

y

-5

0

5

t

-

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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2 + 1 spacetime object viewing

Add a stationary camera: at each time step, the camera sees
what the cone intersects:

-10-50510

x

-5
0
5
y

-10

-5

0

5

10

t

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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2 + 1 spacetime object viewing

Stationary camera, looking down on the camera’s spacetime
viewpoint:

-10-50510

x

-5

0

5

y

-10

-5

0

5

10

t

-

0

-10-50510

x

-5

0

5

y

-10-505
10

t

-

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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Occlusion in Relativistic Scenes

Study occlusion using polygons aligned with cam-
era rays:

-2

-1

0

1

2

-2

-1

0

1

2

-4

-3

-2

-1

0

-2

-1

0

1

-2

-1

0

1 -2

0

2

-2

-1

0
1

2

-4

-2

0

2

-1

0
1

Observe: Once an occlusion edge, ALWAYS an
occlusion edge!
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2 + 1 occlusion, contd

Even at extreme velocities, occluding edges per-
sist, so boosts will never add face material to a
static scene.

-4
-2

0
2

-2
-1

0
1

2

-4

-2

0

2
-1

0
1

-7.5 -5 -2.5 0 2.5-2-1012

-7.5

-5

-2.5

0

2.5 2.5 0 2.5

-10

-5

0

5

-2
-10

12

-10

-5

0

2
-10

1

-10

-5

0

Velocity: 0.50, 0.75, 0.90 times the speed of light.
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Static Scenes and Image-Based Rendering

As long as a scene is STATIC, you can take the light

distribution in any frame, and use that to make a

relativistically distorted scene.

THIS IS THE BASIS OF RELATIVISTIC IMAGE-BASED

RENDERING! (See later in Weiskopf lectures).

� The angles and frequencies may change, but the
geometric transformations conspire to keep all in-
visible polygon faces perpetually invisible.
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2 + 1 Moving Scenes and the Terrell Effect

In moving scenes , the delay of light rays reach-

ing us from a rapidly moving object causes bizarre

effects

Only the back side of a cube moving towards us

at v � 1 is seen under normal conditions.
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Moving Scenes and the Terrell Effect

-5
0

5 x

-4-20 2 4

y

0

2

4

6

time

-5
0

5

2 4

-5-2.502.55 x

-4-20 2 4

y

0

2

4

6

8

time

-5-2.502 5

0 2 4

Tube: camera world line.
Disk: 1 light velocity would make FRONT visible.
Cones: finite light velocity shows only BACK.
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2 + 1 Moving Scenes and the Terrell Effect

This effect went virtually unnoticed until Terrell (1959)

pointed it out. Intuitively, it arises as follows:

� As v ) 1, aberration reduces the visibility of

front edge to a single ray .

� Simultaneously, back edge becomes visible at

some time to any camera in the world.
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2 + 1 Moving Scenes and the Terrell Effect

-5-2.502.55 x

-4-20 2 4

y

0

2

4

6

8

time

-5-2.502 5

0 2 4

Front only visible along single ray for finite light ve-
locity.

Would be visible everywhere in a half-plane with
infinitelight velocity!
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3 Space + 1 Time: The Real World!

Goal so far: build intuition in 1+1 and 2+1 dimen-

sions of spacetime. Now do 3 Space and 1 Time:

� Transformations: SIX Parameters: 3 boosts

(v), 3 Euler angles (�; n̂). Most significant fea-

tures occurred already in 2+1.

� Aberration: Same form, spun about boost axis.
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3 Space + 1 Time: The Real World!

� Imaging: Still the light cone, but now harder to

draw; think of as a growing sphere surrounding

light source.

� IBR, Terrell effect, etc: All just about the same

as in 2 space + 1 time, only objects are like

swept spheres instead of tubes = swept cir-

cles.
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3 + 1 spacetime Full Boost

In real-world spacetime, a Lorentz transform with

velocity v = v̂(sinh �= cosh �) becomes:

B(v) =

2
6666666664

1+ v2x C vxvy C vxvz C vx sinh �

vxvy C 1+ v2y C vyvzC vy sinh �

vxvz C vyvz C 1+ v2z C vz sinh �

vx sinh � vy sinh � vz sinh � cosh �

3
7777777775

where C = (cosh � � 1). Here det[B] = 1 and
B(v) leaves the matrix diag(1; 1; 1; �1) invari-
ant.
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3 + 1 spacetime quaternion-like form

Defining Dx = h2
0
+h2x�h2y �h2z, cyclic, 4D boosts acquire

a quaternion-like form:

B(v) =
2
666664

Dx 2hxhy 2hxhz 2h0hx
2hxhy Dy 2hyhz 2h0hy
2hxhz 2hyhz Dz 2h0hz
2h0hx 2h0hy 2h0hz h2

0
+ h2x + h2y + h2z

3
777775

where h = (h0; hx; hy; hz) = (cosh �=2; v̂ sinh �=2) with
jv̂j = 1 generates a standard Lorentz transformation!
Note: det[B] = (cosh2� sinh2)4 � 1.
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3 + 1 spacetime quaternion-like form

Caveat: Even though h = (cosh �=2; v̂ sinh �=2) gener-

atesB(v), this is also incomplete, since rotations (e.g., Thomas

precession) must be merged in with boosts in the full theory

of 3+1 spacetime.

Footnote: The full group SO(3;1) has a quadratic form cor-
responding to its “double covering group.” This group is di-
rectly derivable from Clifford algebra methods, and is written
Spin(3;1). It corresponds to the six parameter group of
complex 2 � 2 matrices SL(2;C), and eventually leads to
the Dirac Equation for the relativistic spin 1/2 electron.
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Seeing 3+1 Spacetime

3D spatial light ray distributions for a symmetric
source are very similar to the 2D spatial distribu-
tions:
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v = 0:5c v = 0:90c v = 0:99c
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Seeing 3+1 Spacetime

Alternative Visualization: Solid sphere plot of 3D
space light ray distributions for symmetric source:
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v = 0:5c v = 0:90c v = 0:99c
Texture Maps on these distorted spheres provide
an implementation of Relativistic IBR .
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Summary of 3+1 effects:

� B(v) is an orthogonal 4 � 4 matrix, mostly cosh’s and

sinh’s as usual!

� Quaternion-like forms exist, rigorously corresponding to

the representations and algebra of SL(2;C).

� Occlusion invariance and light aberration allow relativistic

IBR to be implemented.

� Objects are made up of vertices tracing world lines, linked

into edges, polygons, and polyhedra.

� Camera images can be formed by tracing light rays back-

ward in time on negative light cone until they hit scene

objects.
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Intuition Overview

� Orthogonal Matrices: Did you understand that cos; sin

matrices leave dot products unchanged?

If so, NOW you understand that cosh; sinh matrices

leave proper-time dot products unchanged!

� Rigidity: Did you understand that 3D rotations change

2D length of projected components, yet radius is con-

stant?

If so, NOW you understand that Lorentz matrices change

(x; t) coordinate components, yet proper-lengths are un-

changed!
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Intuition Overview, contd.

� Non-Commuting Matrices: Did you understand that x; y

3D rotation matrices generate extra z-spin?

If so, NOW you understand that circular Lorentz transfor-

mations generate Thomas Precession.

� Relativistic IBR Theorem: Did you understand that oc-

clusion of light rays by polygons is relativistically invariant

due to invariance of dot product?

If so, NOW you understand how relativistic IBR is possi-

ble with real world image sources.
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Transition:

� Algebraic thinking was the focus of the course so far,

learning to understand behavior of light, geometry, and

matter under relativistic conditions.

� Rendering Virtual Relativistic Reality will be demon-

strated in the final part of the course.

� Together, the two techniques combine to let you SEE and

UNDERSTAND how Relativity works.

Time for a 15 minute break!
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C-1

Visualizing Relativity

Daniel Weiskopf
University of Stuttgart

Part III:

LIGHT

Outline

� Physical fundamentals
� Plenoptic function
� Directions and relativistic aberration
� Frequencies and the Doppler shift
� Radiance transformation & Searchlight 

effect
� Bending light with gravity

Light

� Wave-particle dualism
� Electromagnetic wave
� Photons

� Carries all visual information on our 
surrounding environment

Wave

� Amplitude, Phase, Wavelength

Wavelength

Amplitude

Phase

Electromagnetic Wave

� Continuous electric and magnetic fields 
(perpendicular)

� Amplitude → energy
� Direction 
� (Polarization)
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Radiance

Area dA

Solid angle dΩ

⊥

=
Ω

Φ
ddAdt

dL

θ
θdd cosΩΩ =⊥

Projected solid angle

Radiance

�

� Energy per
� Time
� Projected solid angle
� Area

� Constant along light ray in vacuum (in 
Newtonian physics)

θddAdt
d

ddAdt
dL

cosΩ
Φ

Ω
Φ ==

⊥

Wavelength-Dependent 
Radiance

� Spectral distribution
� Depends on wavelength

�
λdddAdt

dL λ
⊥

=
Ω
Φ

Plenoptic Function

� Photon 
field

� Particle 
picture

Plenoptic Function

� Compact description of photon field
� Radiance depending on:

� position
� time
� direction
� wavelength

P(x,y,z,θ,φ,λ)

Color from Spectral Power 
Distribution

� Color vision: psychophysics
� Standards by CIE
� Measurement of spectral sensitivity of 

the human eye

� (colors),,, )()( BGRiλdλPλfC ii == �

Color matching function
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Special Relativity

� Einstein 1905
� Basis for all modern physical theories
� No gravitation
� Spacetime structure
� Flat spacetime
� Light travels along straight lines

Lorentz Transformation

� Transformation between inertial frames 
of reference

Frame S Frame S�

Relativistic Aberration of Light

� Change of direction of light
� Apparent geometry
� Motion along z axis
� Spherical coordinates (θ,φ)

� θβ
βθθ

cos1
cos'cos
−

−=

φφ ='

c
vβ =

Speed of light

Velocity

Relativistic Aberration of Light

Relativistic Aberration of Light

� Non-relativistic 
(for comparison)

Relativistic Aberration of Light

� v=0.6c
� Increased field 

of view
� Distortion to 

hyperbolae
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Doppler Effect

� Changes wavelength
� Affects color
� Red or blue shift

Doppler Effect

�

� Doppler factor:

λDλ ='

)cos1(
1

θβγ
D

−
=

Doppler Effect

� v=0.6c
� Blue shift

Doppler Effect

Doppler shift No color shift
(comparison)

Searchlight Effect

� Searchlight or headlight effect
� Changes radiance
� Affects brightness

Searchlight Effect

�

� Highly non-linear
� Extremely bright objects ahead

),,()',','(' 5 φθλLDφθλL λλ
−=
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Searchlight Effect

� v=0.6c
� Overall 

brightness: 10%
� Objects ahead 

become brighter

Searchlight Effect

No color/brightness 
shift (comparison)

Searchlight effect
(brightness: 10%)

Searchlight Effect

� Combining
� Aberration of light
� Sweeping effect
� Doppler effect
� Time dilation

� ),,()',','(' 5 φθλLDφθλL λλ
−=

Lorentz Transformation of the 
Plenoptic Function

� Combination of aberration, Doppler & 
searchlight effects

� Additional rotations allow for a direction 
of motion different from z axis

��
�

�
��
�

�

+
+= −

D
λφ

θβ
βθPDλφθP ',',

'cos1
'cosarccos)',','(' 5

General Relativity

� Einstein 1915
� Theory of gravitation
� Curved spacetime
� Differential geometry

General Relativity

� Light is influenced by gravitation
� Bending of light rays
� Experimental confirmation: solar eclipse 

expedition (Eddington 1919)
� Gravitational lensing in astronomy
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Gravitational Lensing

Credits: NASA, STScI (A. Fruchter, ERO Team)

Gravitational Lensing

Black hole To observer

Curved Manifold

Curved manifold

Map

du

dv

Coordinate system

ds

Curvature of Spacetime

� Metric gkl (x) ,      k,l = 0,1,2,3
� Line element

� Local measurement of distances
� Fundamental, intrinsic description of 

curvature

lk
lk kl dxdxgds )(3

0,
2 x� =

=

Geodesics

� Photons (and particles) travel along 
geodesic lines in 4D spacetime

� Geodesic: �straightest line� in curved 
manifold 

Geodesics

� Geodesic equation

0)()()(Γ)( 3

0,
2

2

=+ �
= ζd

ζdx
ζd
ζdx

ζd
ζxd ρ

ρν

ν
µ
νρ

µ

x

Christoffel symbols
(calculated from metric)

Affine parameter
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Geodesics

� Initial value problem for ordinary 
differential equations (ODE)

Ini
tia

l d
ire

cti
on

Initial position

Geodesics

� Initial values:
� Camera parameters
� Time component fixed by null-condition

(for light rays):

� Numerical integration (e.g. Runge-Kutta)

0)()()(
3

0,
=�

= ζd
ζdx

ζd
ζdxg

ν

νµ

µ

µν x

What Else?

� Shift of wavelength in general relativity:
� Gravitational redshift
� Cosmological redshift
� Doppler redshift
� Unified treatment of all these

� Transformation of radiance
� (More in the references/literature)

Summary

� Special relativity:
� Lorentz transformation
� Aberration of light
� Doppler effect
� Searchlight effect
� Transformation of the plenoptic function

Summary

� General relativity:
� Light bending
� Gravitational lensing
� Geodesic equation
� (Transformation of wavelength and 

radiance)
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Part IV:

RENDERING

Outline

� Special relativistic rendering:
� Polygon rendering (T-buffer)
� Relativistic radiosity
� Ray tracing
� Image-based rendering
� Texture-based rendering

Outline

� General relativistic rendering:
� Ray tracing
� Image-based rendering

Relativistic Polygon Rendering 
(T-Buffer)

t�t

z�

z

Li
gh

t s
ou

rc
e

Observer

Light cone

Emission event

Relativistic Polygon Rendering

� Compute intersection
� Lorentz transformation of the emission 

event
� Projection onto image plane 
� Transformation for each vertex 
� �photo-surface�

Polygon Rendering: 
Rendering Pipeline

scene traversal

modeling trafo

relativistic trafo

viewing trafo

clipping

lighting
rasterization

display

map to viewport
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Polygon Rendering: Cube

v=0.95c

Polygon Rendering: Cube

v=0.95c

Polygon Rendering: Cube

Artifacts

Polygon Rendering: Caveats

� �Flatten� scene graph: 
� Remove shared instancing
� Remove transformation nodes

� Reduce geometric artifacts by:
� Fine remeshing in preprocessing step
� Adaptive subdivision

Polygon Rendering:
Hardware Update�

� Exploit state-of-the-art graphics 
hardware:

� Vertex programs (vertex shaders) for 
relativistic transformation

Polygon Rendering:
What else?

� Secondary processes
� Reflections
� Shadows
� Extension: relativistic radiosity

� (Further information in the references/ 
literature)
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T-Buffer: 
Key Features & Issues

� Adapted to rendering-pipeline of current 
hardware

� Fast
� Problems:

� Geometric artifacts
� Illumination?

Relativistic Ray Tracing

Relativistic ray tracing

Pseudo 3D RT Full 4D RT

3D Relativistic Ray Tracing

� Transforms moving observer into rest 
frame of the scene

� Relativistic aberration
� Performs standard non-relativistic ray 

tracing
� Only static scenes (unless special 

modifications)

3D Relativistic Ray Tracing

Ray Projector

Aberration

Non-rel. RT

Apply 
Searchlight & 

Doppler

Final image

3D Relativistic Ray Tracing:
Example � Chain of Cubes

� Apparent 
geometry

� Penrose-
Terrell rotation

� v = 0.95c

At rest

Moving

4D Relativistic Ray Tracing

� Keep track of different frames of 
reference

� Perform Lorentz transformation of all 
relevant light properties when changing 
frames

� Moving objects
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Relativistic Ray Tracing:
Key Features

� High image quality
� High computational costs
� Static scene (3D RT),

Moving objects (4D RT)

Image-Based Rendering (IBR)

� Lorentz transformation of plenoptic
function

� Extension of all non-relativistic IBR 
methods

� Static scene
� Reconstruction of power spectrum from 

RGB input data

Image-Based Rendering (IBR)

Non-relativistic
plenoptic function

Lorentz transformation

of plenoptic
function

Relativistic image

IBR: Magnification and 
Anti-Aliasing

� Scaling due to aberration
� Higher resolution for back view
� Anti-aliasing for front view

� Supersampling
� Texture filtering

IBR: Data acquisition

Fork arm 
construction

IBR: Data acquisition
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IBR: Example

� Non-
relativistic

� Apparent 
geometry

� v=0.9c

IBR: Example

IBR: Example

� Relativistic 
illumination

� v=0.2c
� Overall 

brightness: 
10 %

IBR: Relativistic Movie

IBR: Movie Production IBR: Key Features

� Relativistic transformation of plenoptic
function

� All IBR methods can be modified
� All relativistic effects on visual 

perception
� No geometric modeling needed
� Photo-realism
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IBR: Issues

� Data (image) acquisition with 
� Wide field of view
� High resolution

� Acquisition of full power spectrum? 
� Moving objects?

Texture-Based Rendering

� Based on aberration of light and 
searchlight & Doppler effects

� Exploits graphics hardware

TBR: Rendering Steps

1. Generation of non-relativistic panorama 
2. Apparent geometry by texture-warping
3. Color and brightness via LUT

TBR: 
Non-Relativistic Panorama

� Sampling of plenoptic function P(θ,φ,λ)
� Wavelength-dependent radiance wrt. n

basis functions:

� Image projected onto unit sphere
� radiance map

�
=

=
n

i
ii λBφθbλφθP

1
)(),(),,(

TBR: 
Non-Relativistic Panorama

� Covering of sphere 
by several images

� Similar to 
environment or 
reflection mapping

Camera/observer

TBR: Apparent Geometry

� Aberration of light
� Texture-warping by 

modified texture 
coordinates
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TBR: Color & Brightness

� Parameters for final RGB color:
� Doppler factor D
� Coefficient bi

�
=

=
n

i
ii λBbλP

1
)()(

TBR: Color & Brightness

� Parameters for final RGB color:
� Doppler factor D
� Coefficient bi

�
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=
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i
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TBR: Color & Brightness

� Parameters for final RGB color:
� Doppler factor D
� Coefficient bi

�
=
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TBR: Color & Brightness

� Non-linear function via LUT
� Pixel textures (SGI)
� Dependent textures (GeForce)

� Texture coordinates on per-pixel basis
� Generated in preprocessing step
� 2 Parameters: D , bi
� Output: Final RGB

� Sum over n basis function Bi

TBR: Rendering Pipeline

non-relativistic image

calculate tex coords

render sphere

blend Doppler factors

read pixels

set pixel texture

draw/blend pixels

fo
r e

ac
h 

R
G

B 
ch

an
ne

l

(for SGI Maximum Impact)

General Relativistic
Ray Tracing

� 4D curved spacetime
� Photons travel along geodesic lines
� 3D straight light rays 

→ 4D bent ray (polygonal approx.)
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General Relativistic
Ray Tracing

� Initial value problem for ODE
� Initial values:

� Camera parameters
� Time component fixed by null-condition

� Numerical integration (e.g. RK4)
� Ray projector: integration of geodesic 

equations

Structure of the System

Description of Spacetime
Integration of Photon Path Sample Manager

ProjectorRay

RayScene

Example: Schwarzschild

� Spherically symmetric
� Static
� Vacuum solution (outer space)
� Example: Non-rotating, non-charged 

black hole

Schwarzschild: Einstein Ring

Schwarzschild: Einstein Ring

Observer

Deflecting
object

Einstein ring
Image 
source

Example: Warp Metric

� Super-fast travel
� Spaceship is at rest in warp bubble
� Dynamic metric
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Example: Warp Metric General Relativistic IBR

� Can image-based methods be applied 
to general relativistic rendering?

� Problem:
� Plenoptic function is local to each point in 

spacetime
� Rendering needs information about 

emission/absorption

Reduce Complexity:
Space Confinement

� Curved region confined within closed 
area around observer

� Use ray-tracing inside curved area
� Approximate plenoptic function at 

boundary by plenoptic function taken at 
one selected location

� Static scenes

General Aberration

θ� θ

Observer

Scene object

General Aberration

� Changes in apparent geometry between 
flat and curved spacetimes:
(θ�,φ�) = f(θ,φ)

� For rotational symmetry:  θ� = f(θ)

� Analogous to special relativistic IBR
� Generation of LUT for general 

aberration in preprocessing step

Warp (Inside): Example

� Front view
� At rest
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Warp (Inside): Example

� Front view
� Warp 0.8c

Warp (Inside): Example

� Front view
� Warp 10c

Warp (Inside): Example

� Back view
� At rest

Warp (Inside): Example

� Back view
� Warp �0.8c

Warp (Inside): Example

� Back view
� Warp �1c

Warp (Inside): Example

� Back view
� Warp �1.2c
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Part V:

INTERACTION 
TECHNIQUES

Outline

� Accelerated observer 
� User interaction model
� Virtual reality/virtual environment for 

special relativity

Motivation

� So far: only uniform motion within 
special relativistic visualization

� Goal: navigation by user interaction
� Prerequisite: acceleration of the 

observer

Accelerated Observer

� Equation of motion

� User interaction → acceleration

2

2

τd
xd

τd
dua

µµ
µ ==

Accelerated Observer

� Coupled system of ordinary differential 
equations

� Initial value problem

Ini
tia

l v
elo

cit
y

Initial position

Accelerated Observer

� Numerical integration
� Example: Runge-Kutta
� Trajectory

Trajectory
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Acceleration & Rendering

� Rendering a single snapshot is not 
influenced by acceleration of camera

� Use current position and velocity for 
rendering

� Co-moving frame of reference
� All relativistic rendering techniques can 

be used

Accelerated Motion

v=0.3c v=0.623c

(Motion towards the end of the box)

Accelerated Motion

v=0.817c v=0.975c

(Motion towards the end of the box)

Accelerated Motion

� Objects ahead seem to move away 
when accelerating, although the 
observer gets closer

� Due to increasing aberration of light
� Objects subtend a smaller solid angle

User Interaction

� Motion of fast vehicle controlled by 
acceleration

� User can walk within the vehicle 
� Tracking of position and velocity
� Relativistic-vehicle-control metaphor

User Interaction

frame Sworld

frame Svehicle

frame Sobs

motion
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User Interaction

� 3 frames of reference
� head of the observer
� vehicle
� outside world

� Tracking of position and velocity wrt. 
frame of the vehicle

� Lorentz transformation to �outside 
world�

Virtual Environment
3 walls

Floor

LC shutter glass
(active stereo)

Virtual Environment

Magnetic field
emitter

Head/eye tracking

Interaction device

Virtual Environment

Virtual Environment

� Benefits:
� Immersion
� Active and passive locomotion
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Part VI:

GRAND CONCLUSION

What Have We Learned?

� Scene and illumination transformations
under extreme conditions of relativity have 
much in common with familiar graphics

� Relativistic objects
must be modeled with world lines

� Relativistic IBR is possible 
because tracing light rays to occlusion edges 
is invariant under Lorentz transforms

What Have We Learned?

� Relativistic rendering is based on
� Aberration of light    or
� Transformation of events    and
� Doppler effect   and
� Searchlight effect

� Acceleration
is possible within special relativity

� Light bends
in interesting ways in the presence of gravity

Applications

� Visualization as a research tool
� Education and public relations
� Entertainment, e.g., science fiction 

movies



 

 

 
 



Additional Information on
Relativistic Visualization

D. Weiskopf
University of Stuttgart

A. Hanson
Indiana University

Additional Information on the Web

A web site with additional information and resources for this course can be accessed
on http://wwwvis.informatik.uni-stuttgart.de/relativity .

Literature on Relativistic Visualization

Einstein’s original work on the special theory of relativity was published in 1905 [9]. Its
title “Zur Elektrodynamik bewegter Körper” (“On the electrodynamics of moving bodies”)
shows that the focus is on the connection between the description of electromagnetic
phenomena (based on Maxwell’s equations) and the kinematics of moving objects.
Miller’s book [22] contains a translation of Einstein’s paper into English, along with
more background information and historic remarks.

There exist numerous textbooks on special relativity, see, e.g., Møller [24] or Rindler
[31]. The books by Misner et al. [23], Weinberg [36], d’Inverno [8], and Wald [35]
primarily focus on general relativity, but contain some information on special relativity
as well.

Remarkably, the issue of visual appearance and perception in special relativity was
ignored for a long time, and consequently numerous misleading statements and inter-
pretations persisted. Apart from a previously disregarded article by Lampa [21] in 1924
on the invisibility of the Lorentz contraction, it was only in 1959 that the first coherent
solutions to this problem were described by Penrose [29] and Terrell [34]. (Reference
[29] is included in the course notes, pages E-1–E-3; reference [34] is included on pages
F-1–F-5). Later, more detailed descriptions of the geometrical appearance of fast mov-
ing objects were given by Weisskopf [44], Boas [4], Scott and Viner [33], and Scott and
van Driel [32].

The first published work of which we are aware that used advanced graphics tech-
niques to produce shaded images of fast-moving objects was that of Hsiung and Dunn
[14] and Hsiung and Thibadeau [15]. (Reference [15] is included in the course notes,
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pages G-1–G-8.) They proposed an extension of normal three-dimensional ray tracing
for image shading of fast moving objects. This technique accounts for relativistic effects
on the apparent geometry as seen by the observer. Hsiung et al. [17] investigated rel-
ativistic ray tracing in more detail and included the visualization of the Doppler effect.
Exploiting relativistic ray tracing, Hsiung et al. [16] used the viewer-dependent variation
of the observed color of objects in the scene for the visualization of relativistic time
dilation.

Real-time visualization of relativistic effects exploiting the time-buffer method was
introduced by Hsiung et al. [18]. (Reference [18] is included in the course notes, pages
H-1–H-7). The time-buffer technique resembles and can be mapped onto the normal
z-buffer. It allows for relativistic polygon rendering using a scan-line technique suitable
for real-time applications, and makes use of contemporary computer graphics hardware
to achieve interactive frame rates. Gekelman et al. [12], Chang et al.[6], and Betts
[3] study the polygon rendering approach in more detail and present comprehensive
treatments.

Weiskopf et al. [42, 43] investigated special relativistic effects on illumination in de-
tail, considering both the Doppler and the searchlight effects. (Reference [42] is in-
cluded in the course notes, pages I-1–I-15). They showed how ray tracing and poly-
gon rendering can be adapted to correctly incorporate relativistic illumination effects.
Weiskopf et al. [42] contains a derivation of the transformation of radiance and irradi-
ance, giving the complete mathematical basis for simulating the searchlight effect.

Texture-based special relativistic rendering was proposed by Weiskopf [37] in order
to exploit modern graphics hardware—especially, texturing and pixel fragment opera-
tions—for the real-time visualization of relativistic effects on geometry and illumination.
Image-based special relativistic rendering was introduced by Weiskopf et al. [41], al-
lowing for the production of photo-realistic images and movies without the need for
laborious three-dimensional geometric modeling. (Reference [41] is included in the
course notes, pages J-1–J-9).

Another issue in special relativistic visualization is user interaction and navigation.
Usually, a user navigates through a virtual world by moving a virtual camera. The
velocity or direction of motion of the camera is changed by acceleration. Therefore,
acceleration is a prerequisite for an interactive virtual environment for special relativity.
It is important to point out that special relativity is perfectly capable of describing the
accelerated motion of object, as long as gravitation can be neglected. (Gravitation
is described by general relativity.) Rau et al. [30] described how acceleration can be
incorporated into special relativistic visualization and presented a simple relativistic
flight simulator. Weiskopf [38] extends relativistic interaction techniques to support an
immersive virtual environment for special relativity.

A comprehensive introduction to the general theory of relativity can be found, e.g.,
in the textbooks by Misner et al. [23], Weinberg [36], d’Inverno [8], or Wald [35].
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The following articles are concerned with the appearance of objects under the in-
fluence of gravitational light deflection. Typically, well-known metrics with closed-form
solutions are investigated. The most prominent example is the so-called Schwarzschild
solution for a spherically symmetric, static distribution of matter. Nollert et al. [28], Ertl
et al. [10], and Nemiroff [25], for example, investigated the appearance of a neutron
star or the flight to a black hole. Nollert et al. [27] and Kraus [20] described general rel-
ativistic ray tracing in more detail. Gröller[13] gave a generic approach to non-linear ray
tracing as a visualization technique. Bryson[5] presented a virtual environment for the
visualization of geodesics in general relativity, where examples of the Schwarzschild
and Kerr solutions are shown. (The Kerr solution describes the spacetime of a rotating
black hole.) Weiskopf [39] showed how general relativistic ray tracing can be used as
a visualization tool in gravitational research. (Reference [39] is included in the course
notes, pages K-1–K-5).

Some specific examples for general relativistic objects and their corresponding
curved spacetimes used in this course are the rigidly rotating disk of dust and the warp
metric. Neugebauer and Meinel [26] and Ansorg [2] presented background informa-
tion on the physics of the rigidly rotating disk of dust. The warp metric was proposed
by Alcubierre [1] in 1994; Clark et al. [7] investigated the view from inside the warp
spaceship. Ford and Roman [11] presented a comprehensible discussion of the prob-
lems of negative energy, “exotic” matter, and causality, which occur for the metric of
the warp drive and traversable wormholes. Kobras et al. [19] proposed a method for
imaged-based rendering in a general relativistic setting, presenting the visualization of
the warp metric as an example.

A comprehensive presentation of techniques for special and general relativistic vi-
sualization can be found in Weiskopf [40].
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Searchlight and Doppler Effects in the
Visualization of Special Relativity:
A Corrected Derivation of the
Transformation of Radiance

DANIEL WEISKOPF, UTE KRAUS, and HANNS RUDER
University of Tübingen

We demonstrate that a photo-realistic image of a rapidly moving object is dominated by the
searchlight and Doppler effects. Using a photon-counting technique, we derive expressions for
the relativistic transformation of radiance. We show how to incorporate the Doppler and
searchlight effects in the two common techniques of special relativistic visualization, namely
ray tracing and polygon rendering. Most authors consider geometrical appearance only and
neglect relativistic effects on the lighting model. Chang et al. [1996] present an incorrect
derivation of the searchlight effect, which we compare to our results. Some examples are given
to show the results of image synthesis with relativistic effects taken into account.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Color, shading, shadowing, and texture; J.2 [Computer Applications]:
Physical Sciences and Engineering—Physics

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Aberration of light, Doppler effect, illumination, Lorentz
transformation, searchlight effect, special relativity

1. INTRODUCTION
Einstein’s Theory of Special Relativity is widely regarded as a difficult and
almost incomprehensible theory. One important reason for this is that the
properties of space, time, and light in relativistic physics are totally
different from those in classical, Newtonian physics. In many respects they
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are contrary to human experience and everyday perception, which is based
on low velocities.
Mankind is limited to very low velocities compared to the speed of light.

For example, the speed of light is a million times faster than the speed of
an airplane and 40,000 times faster than the speed at which the space
shuttle orbits the earth. Even in the long term, there is no hope of
achieving velocities comparable to the speed of light. Computer simulations
are the only means of visually exploring the realm of special relativity, and
thus can help the intuition of physicists.
The visual appearance of rapidly moving objects shows intriguing effects

of special relativity. Apart from a previously disregarded article by Lampa
[1924] about the invisibility of the Lorentz contraction, the first solutions to
this problem were given by Penrose [1959] and Terrell [1959]. Various
aspects were discussed by Weisskopf [1960]; Boas [1961]; Scott and Viner
[1965]; Scott and van Driel [1970]; and Kraus [2000].
Hsiung and Dunn [1989] were the first to use advanced visualization

techniques for image shading of fast moving objects. They propose an
extension of normal three-dimensional ray tracing. Hsiung and Thibadeau
[1990] and Hsiung et al. [1990a] add the visualization of the Doppler effect.
Hsiung et al. [1990b] and Gekelman et al. [1991] describe a polygon
rendering approach based on the apparent shapes of objects as seen by a
relativistic observer. Polygon rendering was also used as a basis for a
virtual environment for special relativity [Rau et al. 1998; Weiskopf 1999].
Most authors concentrate their efforts on geometrical appearance and,

apart from the Doppler effect, neglect relativistic effects on the lighting
model. Chang et al. [1996], however, present a complete description of
image shading which takes relativistic effects into account. We agree with
most parts of their article, but would like to correct their derivation of the
relativistic transformation of radiance. We show how the correct transfor-
mation of radiance fits in their shading process. The combination of Chang
et al.’s work and this article gives a comprehensive presentation of special
relativistic rendering.
We demonstrate that a photo-realistic image is dominated by the search-

light and Doppler effects, which are greatly underestimated when we view
the examples given by Chang et al. The Doppler effect causes a shift in
wavelength of the incoming light, which results in a change of color. The
searchlight effect increases the apparent brightness of the objects ahead
when the observer approaches these objects at high velocity. The Doppler
effect, the relativistic aberration of light, and time dilation, among others,
contribute to the searchlight effect.

2. DERIVATION OF THE TRANSFORMATIONS

2.1 The Transformation of Radiance

The following derivation of the searchlight effect is based on a photon-
counting technique. A similar approach can be found in articles by Peebles
and Wilkinson [1968]; McKinley [1979; 1980]; and Kraus [2000].
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Consider two inertial frames of reference S and S�, with S� moving with
velocity v along the z axis of S. Suppose the observer O is at rest relative to
S and the observer O� is moving with speed v along the z axis of S. The
usual Lorentz transformation along the z axis connects frames S and S�.
In reference frame S, consider a photon with circular frequency �,

wavelength �, energy E, and wave vector k� � �� sin� cos�, � sin� sin�,
� cos�� � c with spherical coordinates � and �, as shown in Figure 1.
In frame S�, the circular frequency is ��, the wavelength is ��, the energy

is E�, and the wave vector is k�� � ���sin��cos��, ��sin��sin��, ��cos��� � c.
The expressions for the Doppler effect and the aberration connect these two
representations, cf., McKinley [1979] and Møller [1972]:

�� � �D (1)

�� � � �D (2)

E� � E �D (3)

cos�� �
cos� � �

1 � �cos�
(4)

�� � � (5)

D �
1

��1 � �cos��
(6)

where D is the Doppler factor, � � 1 � �1 � �2, � � v � c, and c is the
speed of light.
Radiance is the radiant power per unit of foreshortened area emitted into

a unit solid angle. A detector at rest in S measures the energy-dependent
radiance

x

z

k

θ

y

φ

Fig. 1. A photon with wave vector k� .
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LE��, �� �
d�

dE dA� d�

where � is the radiant power or radiant flux, E is the energy, d� is the
solid angle, and dA� is the area dA of the detector projected along the
radiation direction ��, ��. The radiant flux � is the radiant energy per unit
time. Accordingly, the wavelength-dependent radiance is

L���, �� �
d�

d� dA� d�
(7)

with the wavelength �.
In reference frame S, consider a group of photons, dN in number, with

energies between E and E 	 dE and propagation directions in the element
of solid angle d� around ��, ��. Here, the energy-dependent radiance is

LE��, �� �
dN E

dE dA� d� dt

or

dN �
LE��, ��

E
dE dA�d� dt

We choose the area dA to be perpendicular to the z axis, so that

dA� � dA cos�

The z component of the velocity of the photons is ccos�. The photons
passing dA between time t0 and time t0 	 dt are contained in the shaded
volume dV in Figure 2:

dV � dA dt c cos�

Consider another area dÃ with the same size and orientation as dA. Still

in reference frame S, suppose dÃ is moving with velocity v along the z

axis. The photons passing dÃ between t0 and t0 	 dt are contained in the
shaded volume in Figure 3:

dṼ � dA dt�c cos� � v� �
cos� � �

cos�
dV

The ratio of the number of photons passing dÃ in the time interval dt and
the number of photons passing dA is the same as the ratio of the volume

dṼ and the volume dV:
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dÑ �
LE��, ��

E
dE d� dt cos� dÃ

cos� � �

cos�
(8)

Now consider the same situation in reference frame S�. The area dÃ is at
rest in S�. The time interval is

dt� � dt �� (9)

The number of photons counted does not depend on the frame of reference,
i.e.,

dÑ � dÑ� �
L�E����, ���

E�
dE�d��dt�cos��dÃ� (10)

From Eqs. (8) and (10), we obtain

LE��, ��

L�E����, ���
�

E

E�

dE�

dE

d��

d�

dt�

dt

cos��

cos� � �

dÃ�

dÃ
(11)

Since the area dÃ is perpendicular to the separating velocity, it is not
changed by Lorentz transformations:

dÃ� � dÃ (12)

With Eqs. (4) and (5), the transformed solid angle is

d��

d�
�
sin��

sin�

d��

d�
�

d�cos���

d�cos��
�

1

�2�1 � �cos��2
� D2 (13)

Using Eqs. (3), (4), (9), (12), (13), and (11), we obtain

dA

k

zθ

dt c cosθ

dA

Fig. 2. Photons with propagation direction along the wave vector k� . The area of the detector
is denoted dA and is perpendicular to the z axis; dA� is the projection of dA along the
radiation direction. The shaded volume dV contains the photons passing dA between time t0
and time t0 	 dt.
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LE��, ��

L�E����, ���
� D3 �

E3

E�3

With the relation between energy and wavelength,

� �
hc

E
, d� � �

hc

E2
dE

and with

L���, ��
d�
 � LE��, ��
dE


we get

L���, �� � LE��, ��
E2

hc

Ultimately, then, the transformation expression for the wavelength-depen-
dent radiance is

L���, ��

L������, ���
� D5 (14)

The transformation law for the following integrated quantity is easily
obtained from this equation. With the use of Eq. (1), the transformed
radiance is

L��, �� � �
0

�

L���, ��d� � D4�
0

�

L������, ��� d�� � D4L����, ��� (15)

0

v dt

k

θ

0

z
~

~
dA(t )

dA(t +dt)

θdt c cos

Fig. 3. Photons with propagation direction along the wave vector k� . The area dÃ moves with
velocity v along the z axis. The shaded volume dṼ contains the photons passing dÃ between t0
and t0 	 dt.

Searchlight and Doppler Effects • 283

ACM Transactions on Graphics, Vol. 18, No. 3, July 1999.



D. Weiskopf, U. Kraus, H. Ruder, “Searchlight and Doppler effects in the visualization of special relativity: a corrected derivation of 
the transformation of radiance”, ACM Transactions on Graphics, 18 (3), July 1999, 278-292,   2000 ACM, 
reprinted with kind permission from ACM 

 I-7

2.2 Incident Irradiance from a Point Light Source

The measure for radiant power leaving a point light source in an element of
solid angle d� and in a wavelength interval is called the wavelength-
dependent intensity I�:

I� �
d�

d� d�
(16)

The wavelength-dependent irradiance E�
i is the radiant power per unit area

in a wavelength interval:

E�
i �

d�

dA d�
(17)

For a surface patch on the object, the wavelength-dependent irradiance E��
i�

coming from a moving point light source is

E��
i� �

1

D5
cos ��

r�2
I� (18)

with the angle �� between the normal vector to the surface and the
direction of the incident photons and with the apparent distance r� of the
light source from the surface patch. These quantities are measured in the
reference frame of the object, whereas the wavelength-dependent intensity
I� is measured in the reference frame of the light source. Accordingly, the
integrated, wavelength-independent irradiance is

Ei� �
1

D4
cos ��

r�2
I (19)

The derivation of these equations is presented in the Appendix. Observe
that for an isotropic point source in one frame of reference, we get an
anisotropic source in the other frame of reference due to the implicit angle
dependency in the Doppler factor D.

3. COMPARISON WITH DERIVATION BY CHANG ET AL.

Chang et al. [1996] present a complete treatment of relativistic image
shading, which contains apparent geometry, the searchlight and Doppler
effects, and a detailed description of the shading process. However, their
derivation of the transformation properties of radiance is based on mis-
taken interpretations of the Theory of Special Relativity and leads to a
tremendous divergence from our correct results, presented above.
Chang et al. derive their expressions based on the assumption that the

same amount of radiant power is emitted from a surface patch on the object
and the corresponding surface patch on the apparent surface. Hence, they

284 • D. Weiskopf et al.

ACM Transactions on Graphics, Vol. 18, No. 3, July 1999.

 



D. Weiskopf, U. Kraus, H. Ruder, “Searchlight and Doppler effects in the visualization of special relativity: a corrected derivation of 
the transformation of radiance”, ACM Transactions on Graphics, 18 (3), July 1999, 278-292,   2000 ACM, 
reprinted with kind permission from ACM 

 I-8

compute the relation between the area of the surface patch on the object
and the area of the corresponding surface patch on the apparent surface, as
well as the relation between the respective normal vectors. They treat the
apparent surface as an object at rest with respect to the observer.
Their derivation is not correct for the following reasons:
Radiant power depends on time intervals and on the energy of photons,

both of which are subject to Lorentz transformations. These transforma-
tions are missing in Chang et al.’s work.
The observer is moving with respect to the surface patch of the object.

Approaching the object, the observer’s detector sweeps up photons so that
the rate at which radiant energy is received is increased by the observer’s
motion. This increase is absent for radiation from the apparent surface,
which is stationary in the observer’s rest frame. Chang et al. ignore this
effect as well.
In Chang et al.’s Eq. (36), the transformation of a solid angle is not

correct. The mistake is in their calculation of the partial derivatives
��� � ��, ��� � ��, ��� � ��, and ��� � �� with the use of their Eq. (31) for
the transformation of the direction of the light ray. Equation (31) is valid
for the special case of polar angle � � 	 � 2 only, and cannot be used to
calculate partial derivatives.
Both wavelength and wavelength intervals are subject to Lorentz trans-

formations. When calculating the radiance per wavelength interval in their
Eq. (39) from Eq. (38), Chang et al. apply the Lorentz transformation to the
wavelength, but not to the wavelength interval.
In their Eq. (38), they ultimately end up with a factor of D in the

transformation of radiance, and also in in their Eq. (39) in the transforma-
tion of wavelength-dependent radiance, which differs from the correct
result by a factor of D3 and D4, respectively. Similarly, the calculation of
irradiance in their Eq. (46) and of wavelength-dependent irradiance in
their Eq. (47) differs from the correct result by the same factor of D3 and
D4, respectively.

4. THE SHADING PROCESS

The searchlight and Doppler effects can be readily incorporated in the two
common techniques of special relativistic visualization, i.e., ray tracing and
polygon rendering.
Relativistic ray tracing as described by Hsiung and Dunn [1989] is an

extension of normal 3D-ray tracing. The ray starting at the eye point and
intersecting the viewing plane is transformed according to special relativ-
ity, i.e., the direction of light is turned due to relativistic aberration. At this
point the transformed properties of light can be included by calculating the
transformed radiance as well as the transformed wavelength.
In this framework it is not sufficient to consider only three tristimulus

values, such as RGB, but the wavelength-dependent energy distribution of
light has to be taken into account. The spectral energy distribution has to
be known over an extensive range so that the Doppler-shifted energy
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distribution can be calculated for wavelengths in the visible range. For
final image synthesis, the tristimulus values can easily be obtained from
the wavelength-dependent radiance that gets to the eye point.
Relativistic polygon rendering is based on the apparent shapes of objects

with respect to the observer. The shading process is described by Chang et
al. in full detail. In this process, the expressions for irradiance in step
(2)(d)(iv) and for the transformation of radiance in step (2)(f) have merely
to be replaced by our Eqs. (18) and (14), respectively. The Doppler factor in
Eq. (18) depends on the direction of the photons that reach the object and
on the relative velocity of the frame of the point light source and the frame
of the object, whereas the Doppler factor in Eq. (14) depends on the
direction of the photons that reach the observer and on the relative velocity
of the frame of the object and of the frame of the observer.

5. EXAMPLES

The appearance of a scene similar to Chang et al.’s STREET in Figures 4 to
7 shows the tremendous effects of the transformation of radiance on image
synthesis. These pictures show the apparent geometry and the radiance
transformation, but neglect color changes due to the Doppler effect. Since
the spectral energy distribution of the light reflected by the objects in the
STREET is unknown, we only show gray-scale images that take the total
energy of the whole spectral energy distribution into account. In this case,
Eq. (15) is applied. If we used a speed as high as Chang et al.’s, 0.99c, we
would not be able to display the high intensities in Figure 7 properly. So we
choose a velocity of 0.8c. These images were generated by using the
ray-tracing method described above. The relativistic extensions are imple-
mented into RayViS [Gröne 1996], a normal 3D-ray-tracing program.
Figures 8 and 9 show the appearance of the sun moving at a speed of

0.5c to illustrate color changes due to relativistic lighting. We used the
polygon-rendering technique described above to produce these images. A
detailed presentation of the rendering software can be found in our previ-
ous work [Rau et al. 1998; Weiskopf 1999].

6. CONCLUSION

We have demonstrated that, aside from the apparent geometry, the search-
light and Doppler effects play dominant roles in special relativistic visual-
ization. Ray tracing and polygon rendering, two standard techniques in
computer graphics, can easily be modified and extended to take into
account the searchlight and Doppler effects.
The transformation of radiance could serve as an important element in

even more sophisticated shading algorithms in order to generate photo-
realistic and physically correct images of fast moving objects. For example,
radiosity could be extended to visualize relativistic flights through station-
ary scenes.
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Fig. 4. Original appearance of the street.

Fig. 5. Appearance of the street with respect to a moving observer. The viewer is rushing into
the street with a speed of 0.8c. The light sources are at rest in the street’s coordinate system.
The searchlight and Doppler effects are ignored.
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Fig. 6. Visualization of the searchlight effect based on the incorrect derivation by Chang et
al. The viewer is rushing into the street with a speed of 0.8c. The light sources are at rest in
the street’s coordinate system.

Fig. 7. Visualization of the searchlight effect based on the correct Eq. (15) for the transfor-
mation of radiance. The difference from Figure 6 is significant. The viewer is rushing into the
street with a speed of 0.8c. The light sources are at rest in the street’s coordinate system.
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APPENDIX

A. INCIDENT IRRADIANCE

The derivation of Eqs. (18) and (19) is presented in this Appendix.
First, consider a finite light source which is at rest in frame S. With Eq.

(7), the radiant flux emitted by the light source can be obtained in terms of
the wavelength-dependent radiance:

d� � L� dA�
lightd�obj d� (20)

Fig. 8. Visualization of the Doppler effect only: the Doppler-shifted spectral energy distribu-
tion is shown with no further transformations. The sun passes by with a speed of 0.5c. The
sun is the only light source and emits blackbody radiation with a temperature of 5762 Kelvin.

Fig. 9. Visualization of the searchlight and Doppler effects based on Eq. (14). The sun passes
by with a speed of 0.5c. The sun is the only light source and emits blackbody radiation with a
temperature of 5762 Kelvin.
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where dA�
light is the area of the projected surface patch of the light source

and d�obj is the solid angle of the illuminated surface patch of the object as
seen from the position of the light source.
Now consider the same situation in frame S� in which the object is at

rest. The radiant flux on the surface patch of the object is

d�� � L��� dA�
obj�d�light� d�� (21)

with the projected area dA�
obj� on the object and the solid angle d� light� of

the surface patch of the light source as seen from the position of the object.
Using Eqs. (14) and (21), we obtain

d�� �
1

D5
L� dA�

obj�d�light�d��

With the definition in Eq. (17), the incident irradiance emitted from the
small solid angle d� light� onto the surface patch of the object is

dE��
i� �

d��

dAobj�d��
�

L�

D5
dA�

obj�

dAobj�
d�light� (22)

The area dAobj� of the surface patch is related to the projected area dA�
obj� by

dA�
obj� � dAobj�cos�� (23)

with the angle �� between the surface normal and the incident light.
With Eq. (13), the solid angle d� light� is transformed into the frame S of

the light source. Furthermore, d� light� is expressed in terms of the projected
area on the light source and of the distance between the light source and
the surface patch, as shown in Figure 10:

d�light� � D2 d�light � D2
dA�

light

r2
� dA�

light �Dr �
2

(24)

The light-like connection of the emission event at the light source and the
absorption event at the object has the same direction as the wave vector
that describes the photons. Therefore, the distance r is transformed in the
same way as the circular frequency � (see Eq. (2)). By following this
reasoning or by explicit Lorentz transformation of the separating vector
between the emission event and the absorption event, we get

r� � r �D (25)

Using Eqs. (22), (23), (24), and (25), we obtain the incident wavelength-
dependent irradiance originating from a small area of the light source:
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dE��
i� �

1

D5
cos��

r�2
L� dA�

light

By integrating over the area of the whole light source, we get the wave-
length-dependent irradiance produced by this finite light source:

E��
i� � � 1D5 cos��

r�2
L� dA�

light (26)

Now consider a very small, yet finite, light source, described by its
wavelength-dependent intensity I�. With Eqs. (16) and (20), the wave-
length-dependent radiance and the wavelength-dependent intensity from
the area dA�

light are related by

dI� � L� dA�
light (27)

With Eq. (26) and after integrating over the area of the small light source,
we find the wavelength-dependent irradiance on the object

E��
i� � � 1D5 cos��

r�2
L� dA�

light �
1

D5
cos��

r�2 �L� dA�
light �

1

D5
cos��

r�2
I�

This equation even holds for the limit of an infinitesimal light source.
Hence we obtain the wavelength-dependent irradiance due to a point light
source:

E��
i� �

1

D5
cos��

r�2
I�

object

r

light source

light
dA dA

light
dΩ

light

Fig. 10. Geometry of the surface patch of the light source in its rest frame S. The solid angle
is given by d� light � dA�

light � r2. The distance between the light source at emission time and
the surface patch of the object at absorption time is denoted r.
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Accordingly, the irradiance is

Ei� �
1

D4
cos��

r�2
I

where I is the intensity of the light source.
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Real-World Relativity: Image-Based Special Relativistic Visualization

Daniel Weiskopf, Daniel Kobras, and Hanns Ruder�

Institute for Astronomy and Astrophysicsy
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Abstract

This paper describes a novel rendering technique for special rel-
ativistic visualization. It is an image-based method which allows
to render high speed flights through real-world scenes filmed by
a standard camera. The relativistic effects on image generation are
determined by the relativistic aberration of light, the Doppler effect,
and the searchlight effect. These account for changes of apparent
geometry, color, and brightness of the objects. It is shown how
the relativistic effects can be taken into account by a modification
of the plenoptic function. Therefore, all known image-based non-
relativistic rendering methods can easily be extended to incorporate
relativistic rendering. Our implementation allows interactive view-
ing of relativistic panoramas and the production of movies which
show super-fast travel. Examples in the form of snapshots and film
sequences are included.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture I.3.8 [Computer Graphics]: Applications—
Special relativity J.2 [Physical Sciences and Engineering]:
Physics—Theoretical astrophysics

Keywords: image-based rendering, plenoptic function, scientific
visualization, special relativity

1 Introduction

Special relativity is widely regarded as a difficult and hardly com-
prehensible theory, mainly because the properties of space, time,
and light in relativistic physics are totally different from those in
classical, Newtonian physics. In many respects, they are contrary
to human experience and everyday perception, which is based on
low velocities.

In the real world, mankind is limited to very slow velocities com-
pared to the speed of light. For example, the speed of light is a
million times faster than the speed of an airplane and 40,000 times
faster than the speed at which the Space Shuttle orbits the earth.
Even in the long term, there is no hope of achieving velocities com-
parable to the speed of light. Therefore, visualization is the only

�fweiskopf,kobras,ruderg@tat.physik.uni-tuebingen.de
yInstitute for Astronomy and Astrophysics, Section Theoretical As-

trophysics, University of T¨ubingen, Auf der Morgenstelle 10, D-72076
Tübingen, Germany

means of directly exploring the realm of special relativity and may
help to stimulate intuition and motivation of people interested in the
theory.

There exist well-known rendering techniques for special relativ-
ity. However, these methods use a standard geometry-based re-
presentation of three-dimensional scenes and hence require time-
consuming geometrical modeling and costly rendering. The cru-
cial shortcoming of the geometry-based methods is missing photo-
realism. In discussions with editors and producers from TV indus-
try, the demand for relativistic flights through real-world scenes was
strongly expressed. Accordingly, special relativistic visualization
has not been widely used in professional TV and film productions
for edutainment and education yet, although there exist numerous
TV documentations about Einstein and his special theory of relativ-
ity.

In this paper, we propose a novel image-based approach to spe-
cial relativistic rendering. This approach overcomes problems of
geometry-based rendering and has the following important advan-
tages: No three-dimensional geometric modeling is needed, render-
ing costs are negligible, and photo-realism is easily achieved.

The basic idea of the image-based approach to relativistic visu-
alization is presented in Sect. 3. We show how all relativistic ef-
fects on image generation can be covered by a modification of the
plenoptic function[1]. Therefore, the full three-dimensional infor-
mation about the scene is not required for relativistic rendering. In
this framework, only one additional step is appended to the nor-
mal non-relativistic rendering pipeline, which is otherwise left un-
changed. Hence, the relativistic transformation can easily be incor-
porated in all known image-based rendering methods.

We present two implementations of image-based relativistic ren-
dering. The first implementation is an interactive panorama viewer
which creates snapshots of a panorama with the camera moving at
arbitrary speed. The second implementation is a batch job-oriented
tool for the production of relativistic movies playing in real-world
scenes. It stitches and blends series of views taken by different
cameras in order to generate a sequence of images for a relativistic
flight.

2 Previous and Related Work

Remarkably, the issue of visual perception in special relativity was
ignored for a long time, or wrong interpretations were given. Apart
from a previously disregarded article by Lampa[17] in 1924 about
the invisibility of the Lorentz contraction, it was only in 1959 that
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the first solutions to this problem were described by Penrose[23]
and Terrell[32]. Later, more detailed descriptions of the geometri-
cal appearance of fast moving objects were given by Weisskopf[35],
Boas[2], Scott and Viner[29], and Scott and van Driel[28].

Hsiung and Dunn[13] were the first to use advanced visualization
techniques for image shading of fast moving objects. They pro-
posed an extension of normal three-dimensional ray tracing. This
technique accounts for relativistic effects on the apparent geometry
as seen by the observer. Hsiung et al.[14] investigated relativis-
tic ray tracing in more detail and included the visualization of the
Doppler effect.

Hsiung et al.[15] introduced the time-buffer for fast visualiza-
tion of relativistic effects. The time-buffer technique resembles the
normal z-buffer and can be mapped onto it. The time-buffer tech-
nique allows for relativistic polygon rendering, a scan-line method.
It is based on the apparent shapes of objects as seen by a relativis-
tic observer. Gekelman et al.[9] and Chang et al.[3] investigated
the polygon rendering approach in detail and gave a comprehensive
presentation.

Weiskopf[33] introduced texture-based relativistic rendering for
visualizing the apparent geometry of fast moving objects. This ap-
proach performs the relativistic transformation on the image plane
by texture mapping.

A lot of research has been conducted on the field of
non-relativistic image-based rendering.QuickTime VR[4] is
a well-known method for image-based rendering, which uses
panorama pictures. More advanced techniques include plenop-
tic modeling[20], light fields[18], the lumigraph[12], view
morphing[30], and hybrid geometry and image-based rendering[6].

3 Basic Idea

One basic feature of special relativity is the absence of a single
universal frame of reference and of a universal time. Any inertial
frame is equally valid to describe the physical world.

Often an egocentric point of view is adopted to derive the prop-
erties of relativistic rendering, i.e., the camera is at rest and the
objects are moving. In this paper, we rather take an exocentric
point of view. Here, the objects are considered to be at rest and the
observer—the camera—is moving at high speed. In the appendix,
the equivalence of both points of view is shown explicitly.

The essence of all image-based rendering methods is the eval-
uation of the plenoptic function[1]. The full plenoptic function
P (x; y; z; t; �; �; �) is the radiance of the light depending on the di-
rection(�; �) in spherical coordinates, the spatial position(x; y; z),
the timet, and the wavelength�. The definition ofwavelength-
dependent radiance can be found, e.g., in [11, Chapt. 13]. Polariza-
tion is usually neglected.

We restrict ourselves to a static world, in which all objects and
light sources are at rest relative to each other and relative to the
objects’ frame denotedSobj. In Sobj, the plenoptic function can be
determined by standard image-based rendering algorithms, since
the finite speed of light can be neglected in this static situation.

First, consider the generation of a snapshot taken by a cam-
era at rest inSobj. The spatial position of the camera is(x; y; z)
and the time ist. All the information needed for this snap-
shot is contained in the reduced three-parameter plenoptic function
~P (�; �; �), which is evaluated at the respective position and time.

Then, let us bring special relativity back into the game. Consider
another observer that is moving relative to the objects. His or her
rest frame is denotedSobserver. This observer is taking a snapshot at
the same position and time as the first observer that is at rest inSobj.
What is the plenoptic function for this moving observer and how is
it connected to the plenoptic function for the observer at rest?

In general, physical properties can be transformed from one
frame of reference to another by the so-called Lorentz transfor-

mation. Here, all relevant physical properties are contained in the
plenoptic function. Therefore, only the Lorentz transformation of
the plenoptic function has to be known. This transformation is dis-
cussed in the next section.

Once the plenoptic function~P (�; �; �) with respect toSobj is
transformed to~P 0(�0; �0; �0) with respect toSobserver, the normal
rendering process can generate the image seen by the fast moving
camera because~P 0(�0; �0; �0) is the plenoptic function at rest rel-
ative to this camera. (The primed quantities are with respect to
Sobserver.) In this way, all relativistic effects are isolated in the form
of the Lorentz transformation of the plenoptic function. The local-
ity property of this transformation allows us to generate relativistic
images without knowledge of the depth, or three-dimensional, in-
formation about the surrounding scene. Due to the relativity prin-
ciple the transformation of the plenoptic function can account for
both a fast camera and rapidly moving objects.

4 Lorentz Transformation

In this section, the Lorentz transformation of the plenoptic function
is described. Relevant for this transformation are the relativistic
aberration of light, the Doppler effect, and the searchlight effect.
For a detailed presentation of special relativity we refer to [21, 22,
27].

The relativistic aberration of light causes a rotation of the direc-
tion of light when one is changing from one inertial frame of refer-
ence to another. The aberration of light is sufficient to completely
describe the apparent geometry seen by a fast moving camera. Fig-
ure 1 illustrates the aberration of light.

Figure 1: Relativistic aberration of light. The left image shows
some of the light rays registered by an observer at rest. The right
image shows the same light rays with the observer moving upwards
at 90 percent of the speed of light.

The Doppler effect accounts for the transformation ofwave-
length from one inertial frame of reference to another and causes
a change in color.

The searchlight effect is based on the transformation of
wavelength-dependent radiance from one inertial frame of refer-
ence to another. The transformation of radiance increases the
brightness of objects ahead when the observer is approaching these
objects at high velocity.

Let us consider two inertial frames of reference,S andS0, with
S0 moving with velocityv along thez axis ofS. The usual Lorentz
transformation along thez axis connects framesS andS0.

In reference frameS, consider a light ray with the direction
(�; �) and the wavelength�. In frameS0, the light ray is described
by the direction (�0; �0) and the wavelength�0. These two repre-
sentations are connected by the expressions for the relativistic aber-
ration of light, cf. [22],

cos �0 =
cos � � �

1� � cos �
; (1)

�0 = �; (2)
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and for the Doppler effect,

�0 = D�: (3)

The Doppler factorD is defined as

D =
1


(1 � � cos �)
= 
(1 + � cos �0); (4)

where
 = 1=
p
1� �2, � = v=c, andc is the speed of light.

Wavelength-dependent radianceL� is transformed from one
frame of reference to another according to

L0
�(�

0; �0; �0) = D�5L�(�; �; �): (5)

A derivation of this relation can be found in [34]. Please note that
the subscript� is only attached to indicatewavelength dependency
of radiance; it is not a parameter. The properwavelength parameter
is included as a function parameter.

The relativistic aberration of light, the Doppler effect, and the
searchlight effect can be combined to form the transformation of
the plenoptic function fromS to S0:

~P 0(�0; �0; �0) = D�5 ~P (�; �; �)

= D�5 ~P

�
arccos

cos �0 + �

1 + � cos �0
; �0;

�0

D

�
(6)

By inverting Eqs. (1)–(3), the parameters�, �, and� are substituted
by terms containing�0, �0, and�0.

Usually, the direction of motion is not identical to thez axis.
Therefore, additional rotations of the coordinate system have to be
considered before and after the aberration transformation. These ro-
tations are identical to the standard rotations in three-dimensional
Euclidean space. By including these rotations, we obtain the com-
plete Lorentz transformation of the plenoptic function.

With the notation from the previous section, frameS coincides
with Sobj and frameS0 with Sobserver. Please note that the trans-
formed plenoptic function depends only on the original plenoptic
function, the observer’s velocity and direction of motion, and the
orientations of the two reference frames.

All the information registered by the observer’s camera is car-
ried from the surrounding environment to the observer’s position
via light rays—there is no direct interaction between the camera
and the outside objects. The process of image generation is local-
ized at the observer’s position, where the actual interaction between
the incoming photons and the detector (camera) takes place. In
geometric optics, direction,wavelength, radiance, and polarization
completely determine the incoming light. The relativistic transfor-
mation of the first three quantities is exactly and uniquely described
by the aberration, and the Doppler and searchlight effects. Polariza-
tion is neglected because it is not registered by standard cameras.

The plenoptic function combines the information about direc-
tion, wavelength, and radiance. Accordingly, the Lorentz trans-
formation of the plenoptic function is just the combination of the
aberration, and the Doppler and searchlight effects. Bearing the lo-
cality of light detection in mind, it can be seen that the transformed
plenoptic function provides all the information that is registered by
the moving camera. Therefore, the method of this paper generates
images which are in total compliance with the physics of special
relativity.

5 Relativistic Rendering

Image-based relativistic rendering extends the standard non-
relativistic techniques by a transformation of the plenoptic function
according to the previous section. This extension is located at the

end of the rendering pipeline, just before the final image is gener-
ated. All other parts of the rendering pipeline are unaffected.

In the following, some variations of relativistic rendering are de-
scribed. In particular, we address the issue of missing data, since the
wavelength dependency of the plenoptic function cannot be mea-
sured by standard cameras. In most cases, data for image-based
rendering is acquired by cameras which are sensitive to only three
RGB colors and not to the full power spectrum of the incoming
light.

5.1 Completely Relativistic Rendering

If the wavelength-dependent plenoptic function~P (�; �; �) is pro-
vided in the non-relativistic situation, the transformed plenoptic
function ~P 0(�0; �0; �0) can be computed according to Sect. 4. It is
important that~P (�; �; �) is known for an extended range ofwave-
lengths, so that~P 0(�0; �0; �0) can be evaluated forwavelengths in
the visible range after Doppler-shifting.

Each pixel on the image plane has corresponding spherical co-
ordinates(�0; �0), which are transformed to(�; �) in the objects’
frame. Therefore, each pixel is associated with thewavelength-
dependent radiance,

L0
�(�

0) = ~P 0(�0; �0; �0):

For the final display on the screen, three tristimulus values such as
RGB have to be calculated from thiswavelength-dependent radi-
ance. The RGB values(cR; cG; cB) can be obtained by

ci =

Z
L0
�(�

0) �fi(�
0) d�0; i = R;G;B;

where �fi are the respective color-matching functions for RGB,
cf. [38].

5.2 Apparent Geometry

The relativistic effects on the apparent geometry can be visualized
by using only a partial transformation of the plenoptic function.
Here, solely the effects of the aberration of light are taken into ac-
count and the searchlight and Doppler effects are neglected, i.e.,
only the direction(�; �) of the incoming light is transformed and
all other effects are ignored.

This visualization technique is useful when the full spectral in-
formation of the plenoptic function is not available, since this in-
formation is not needed for the visualization of apparent geome-
try. Nevertheless, even this restricted relativistic rendering provides
some insight into the special theory of relativity and creates impres-
sive visual effects, as shown in Sect. 7.

5.3 Reconstruction of the Power Spectrum

In most cases, data for image-based rendering does not comprise the
full power spectrum, but only three RGB values. The power spec-
trum has to be reconstructed from RGB values in order to include
the relativistic effects on geometry and illumination. Unfortunately,
this reconstruction is not unique because infinitely many spectra
map to one RGB triplet. This phenomenon is called metamerism,
cf. [38].

However, a possible spectrum can always be determined and
metamerism gives a lot of freedom of doing so. A straightforward
approach models the three RGB values by the line spectrum con-
sisting of the corresponding primaries[10]. Sun et al.[31] propose
the representation by Gaussian functions with adapted width. An-
other approach uses Fourier functions[10].
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We find the dominantwavelength model[7] useful because it pro-
vides a smooth change of color and brightness for a wide range
of Doppler factors. The corresponding spectral power distribution
consists of a spike at the dominantwavelength and of a uniform dis-
tribution, i.e., white light. The luminance and excitation purity de-
termine the levels of the two parts of the spectrum. The parameters
for the dominantwavelength model can be computed from RGB
values according to [7]. The relativistic situation requires only one
slight extension of the original model. Here, the uniform part of the
spectrum is not restricted to the range of visiblewavelengths, but
comprises a larger interval. In this way, the spectrum is still present
after Doppler-shifting.

With the reconstructedwavelength-dependent plenoptic func-
tion, the algorithm from Sect. 5.1 can generate the fully relativistic
image.

5.4 Rendering of a Film Sequence

So far, the generation of just a single snapshot has been described.
But how can a film sequence with a fast camera be produced?

In principle, it works the same way as in the non-relativistic sit-
uation. The path of the camera is discretized into a finite set of
positions. For every element of this set the plenoptic function is
evaluated. Therefore, the plenoptic function has to be known at
these positions. Then, the relativistic transformation is computed
and the corresponding image is generated. Finally, a list of snap-
shots which represent the film sequence is obtained.

For the film to be physically sound, not only the generation of
each single snapshot has to be correct, but also the path of the cam-
era itself. As long as the camera is moving uniformly—at constant
speed and with a constant direction of motion—the camera is triv-
ially placed at equidistant positions. However, even an accelerated
camera can be described by special relativity. In [26] it is shown
how the trajectory of an accelerating observer can be computed.
Therefore, the positions and velocities of the camera for each snap-
shot can be calculated, and image-based relativistic rendering can
be performed. This method is valid because the generation of a
single image is only determined by the position and velocity of the
viewer and by the standard camera parameters, but not by the “his-
tory” of the trajectory or the acceleration of the observer.

Our everyday experience is based on length scales in the range
of meters, time scales in the range of seconds, and velocity scales
in the range of meters per second, i.e., the velocities we are used
to are approximately eight orders of magnitude smaller than the
speed of light. Lengthl, time t, and velocityv are related byv =
dl=dt. Therefore, one has to change the length, time, or velocity
scales in order to notice relativistic effects. For example, the time
scales could be reduced to the orders of10�8 seconds. We can think
of playing a respective recording at super slow-motion, so that we
are able to watch processes which involve time spans of only10�8

seconds. Another option is to artificially reduce the speed of light in
vacuum, for example, to walking speed. An instructive illustration
of reduced speed of light can be found in Mr Tompkins’ world by
Gamow[8]1. In the third approach, length scales are increased to
the range of light seconds.

The change of scales is the reason why we can only support static
scenes. The real-world camera image is recorded using the true val-
ues for the length, time, and velocity scales. In particular, the true
speed of light is effectively infinite in all practical situations. The
relativistic simulation of a dynamic scene would use images which
are instantaneously transported from the object to the camera, in-
stead of the correct, retarded images which take into account the
reduced speed of light.

1Please note that the illustrations in Mr Tompkins do not show visual
perception within special relativity, but only the measurements of Lorentz-
contracted lengths.

5.5 Magnification and Anti-Aliasing

The aberration of light does not conserve the element of solid angle.
In fact, the infinitesimal solid angle is transformed according to

d
0

d

=

sin �0

sin �

d�0

d�

d�0

d�
=

d(cos �0)

d(cos �)

d�0

d�

=
d(cos �0)

d(cos �)
= D2; (7)

with the use of Eqs. (1), (2), and (4).
Therefore, the transformation of the plenoptic function causes a

magnification opposite to the direction of motion, whereas objects
ahead are scaled down. The demand for a higher resolution towards
the back has to be taken into account when the original data for
the plenoptic function is acquired. In the rendering process, the
sampled data is accessed by bilinear interpolation.

The image contraction for the front view might cause aliasing ef-
fects, especially for extremely high velocities. These effects can be
reduced by standard supersampling and postfiltering on the image
plane.

Since the sampled plenoptic function can be stored in the form
of a two-dimensional texture for the coordinates� and �, anti-
aliasing can alternatively be based on texture filtering techniques.
Texture mapping can be considered as the process of calculating
the projection of a screen pixel onto the texture image—which is
called footprint—and computing an average value which best ap-
proximates the correct pixel color. There exist a couple of filtering
methods, the most prominent of which is MIPmapping[36]. This
standard technique supports only a quadratic footprint. Hence, it
is not very well suited for our application. The mapping by the
aberration equation can generate prolate, anisotropic, and distorted
footprints because it substantially changes the angle�, whereas it
leaves the angle� invariant.

Therefore, techniques which support more complex footprints
are required. Summed-area tables[5] (SAT), for example, allow
prolate rectangular footprints. We have adopted the idea of rect-
angular axes-aligned footprints for the relativistic situation. In con-
trast to SAT, we leave out the computation of prefiltered data tables,
since each texture is used only once in the rendering process. Fil-
tering provides fair image-quality, even for velocities as high as
� = 0:99 and for images with high spatial frequencies. Respective
examples are shown in Sect. 7. The main advantage of a rectan-
gular footprint over more complex footprints is faster computation
and rendering.

Fast footprint MIPmapping[16] is based on quadrilateral foot-
prints and makes use of precomputed MIPmaps and weighting
tables. Quadrilateral footprints are an improved approximation
compared to rectangular axes-aligned footprints. They support
anisotropic, rotated, and distorted footprints. Despite the associated
complexity, fast footprint MIPmapping should be able to achieve
good rendering performance. Its relativistic adaption will be imple-
mented in future work.

6 Implementation

We have implemented the relativistic panorama viewerImagine
(IMAge-based special relativistic rendering enGINE), which can
read panoramas in theLivePictureformat[19]. This format is sim-
ilar to QuickTime VR, but uses a spherical projection instead of a
cylindrical projection. Therefore, a complete4� sterad view is sup-
ported.

The interactive viewer is written in C++ and is based on standard
OpenGL 1.1[37] andQGLViewer[24]. The virtual camera is sur-
rounded by a sphere onto which the panorama texture is mapped.
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Figure 2: Digital video camera mounted on fork arm.

Texture mapping hardware is used to achieve high rendering per-
formance. The relativistic effects on the apparent geometry are
implemented by transforming the texture coordinates according to
the relativistic aberration of light. The non-interactive part of the
viewer uses software rendering to implement completely relativistic
visualization by reconstructing the spectrum according to Sect. 5.3.
Texture filtering as described in the previous section is not imple-
mented yet.

Another implementation isOff-Terdingen, which is an off-
screen, batch job-oriented relativistic movie renderer. It is able to
produce movies of relativistic flights through real-world scenes. It
is a C++-based software renderer which stitches and blends series
of views taken by different cameras in order to generate a sequence
of images for a relativistic flight. The parameters and orientations
of the cameras are supplied manually.Off-Terdingenprovides anti-
aliasing by means of texture filtering, as described in Sect. 5.5.
Additionally, standard supersampling on the image plane can be
applied. The data of the original images is accessed by bilinear
interpolation.

Adequate data acquisition for the non-relativistic panorama is an
issue, since relativistic image-based rendering demands for higher
quality of the initial data than standard panorama techniques. First,
the resolution of original images has to suffice the magnification
by the aberration formula, Eq. (7), when the observer looks into
the backward direction. Secondly, a complete4� sterad panorama
should be recorded. Most commercially available panorama sys-
tems, however, are based on cylindrical projection, e.g.,QuickTime
VR.

Therefore, we built a camera system which can automatically
film a 4� sterad field of view. A standard digital video camera is
mounted on a fork arm which was originally designed for a tele-
scope. Figure 2 shows the fork arm with camera. The fork arm is
controlled by a mobile computer. Due to the specific geometry of
the fork arm the camera can be placed in a way that avoids paral-
lax artifacts when the camera is turned in different directions. The
camera system is DV-based. Images are transferred to the mobile
computer via IEEE 1394 (Firewire) link. The calibrated image data
is stitched byOff-Terdingento render spherical panoramas or rela-
tivistic views.

Figure 3: Non-relativistic view.

Figure 4: Relativistic visualization of apparent geometry with� =
0:99.

7 Results

Figures 3–5 and Color Plates 10–12 provide examples of image-
based relativistic rendering. These images were produced byOff-
Terdingen.

Figures 3–5 show a long corridor. Figure 3 provides the non-
relativistic view of the scene. Figure 4 illustrates the effects on
apparent geometry when the viewer is rushing into the scene with
� = 0:99. A dominant effect is the increased apparent field of
view—the objects seem to move away. Furthermore, straight lines
which are perpendicular to the direction of motion become distorted
to hyperbolae.

Figure 5 shows completely relativistic rendering with� = 0:3.
Here, the power spectrum is reconstructed by using the dominant
wavelength model. Changes in brightness due to the searchlight
effect are noticeable. Color changes due to the Doppler effect are
present, but cannot be reproduced on the gray-scale image. The
searchlight effect heavily brightens the image, so the overall inten-
sity has to be reduced to one half of that in Figs. 3 and 4 in order to
avoid extreme clamping of the final gray-scale values.

The pictures on the first page and in Color Plate 10 show the
apparent geometry for a snapshot of Yosemite Valley at� = 0:95.
They exhibit the same effects as in Fig. 4, for example the distortion
of straight lines to hyperbolae.

Color Plate 11 compares non-relativistic view, apparent geome-
try, and completely relativistic visualization, analogous to Figs. 3–
5. In Color Plate 11(c), the color shift due to the Doppler effect is
reproduced and a noticeable blueshift is shown.

Color Plate 12 compares filtering and supersampling techniques.
This example shows the visualization of apparent geometry at
� = 0:99. Image 12(a) is rendered without filtering and super-
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Figure 5: Completely relativistic rendering with� = 0:3. The
overall intensity is reduced to one half of that in Figs. 3 and 4 in
order to avoid extreme clamping of the final gray-scale values.

sampling. Aliasing effects are noticeable, especially on the ceil-
ing. Image 12(b) illustrates filtering with rectangular footprint, as
described in Sect. 5.5. Aliasing artifacts are attenuated by texture
filtering. In image 12(c), filtering and2 � 2 supersampling are
combined, yielding a better image quality than mere filtering. This
indicates that more sophisticated footprints might improve filtering
quality.

The accompanying video presents further examples of relativis-
tic visualization. Here, only the relativistic effects on apparent ge-
ometry are taken into account.

The first part of the video shows a relativistic trip across a bridge.
This movie was produced with the use ofOff-Terdingenas well.
The recordings of three cameras were stitched together to form the
final movie. The film was shown on TV as part of a broadcast on
Einstein and special relativity[25]. The first sequence shows the
non-relativistic situation. The second sequence presents the rela-
tivistic case. The observer accelerates from non-relativistic speed to
a maximal velocity of� = 0:9. In the third sequence, the relativis-
tic and the non-relativistic views are compared. The second part
of the video illustrates the interactive relativistic panorama viewer
Imagine. It was recorded from computer screen during a simulation
on an SGI Onyx2 with InfiniteReality graphics board.

8 Conclusion and Future Work

In this paper an image-based approach to special relativistic render-
ing has been introduced. This approach closes the gap between the
well-known non-relativistic image-based techniques and relativis-
tic visualization. We have shown how all relativistic effects on im-
age generation can be covered by a transformation of the plenoptic
function. Therefore, only slight modifications of existing rendering
methods are required to incorporate the physically correct rendering
of super-fast objects.

Photo-realistic images of rapidly moving real-world objects can
be generated with great ease. Therefore, image-based special rela-
tivistic rendering is a powerful tool to generate movies and snap-
shots for both edutainment and educational purposes. We have
specifically addressed aliasing problems caused by relativistic ren-
dering. We have described supersampling and texture filtering
methods to overcome these problems and render high-quality im-
ages.

In future work, we will improve the techniques for data acqui-
sition. In particular, we will build a robot-based camera system
which can automatically record a sequence of panoramas in order
to generate a relativistic film with a large field of view. Resolu-
tion and sampling rate will be adapted to the different scalings due

to aberration in order to achieve high-quality final pictures. The
stitching software will be extended to automatically correct color
and brightness variations and small misalignments of the original
images. Furthermore, advanced texture filtering techniques will be
investigated and implemented.
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A Equivalence of Exocentric and
Egocentric View

One basic feature of special relativity is the absence of a single
universal frame of reference and of a universal time. Any inertial
frame is equally valid to describe the physical world. Therefore, an
egocentric point of view (the camera is at rest and the objects are
moving) and an exocentric point of view (the objects are at rest and
the camera is moving) are totally equivalent.

Nevertheless, we would like to explicitly show how both points
of view can be matched. Only the issues related to the geometrical
appearance are discussed. The Doppler and searchlight effects are
neglected because they are usually presented in a way equivalent to
the exocentric point of view and thus need no further presentation.

A.1 Lorentz Transformation

Events in spacetime are described by four-vectors. A four-vector
x� consists of one temporal and three spatial coordinates,

x� = (x0; x1; x2; x3) = (ct; x; y; z);

wherec is the speed of light and� 2 f0; 1; 2; 3g.
For an observer moving with velocityv = �c along the posi-

tive z axis, the four-vector for the same event can be calculated ac-
cording to the respective Lorentz transformation. The transformed
four-vector is

x�0 = (
(ct� �z); x; y; 
(z � �ct)); (8)

O

E

light source
world line of the

(observer)

observerS

objS

(emission event)

t’

t

z’

z

light

Figure 6: Minkowski diagram for egocentric view.

with 
 = 1=
p
1� �2. The inverse Lorentz transformation origi-

nates from the Lorentz transformation by substituting� by��.
The following considerations are based on relations between the

observer’s rest frameSobserverand the objects’ rest frameSobj. With-
out loss of generality let the origins of the two frame coincide at
the event of image production and the observer be moving with�
along the positivez axis ofSobj. Then, the two frames of reference
are related to each other by the above Lorentz transformation. The
primed terms are with respect toSobserver, the unprimed terms are
with respect toSobj.

A.2 Direction of Incoming Light

First, it will be shown that the direction of the incoming light is
identical for both points of view. The light emitted by a single
point-light source is considered. Figures 6 and 7 show the respec-
tive Minkowski diagrams. A Minkowski diagram is a spacetime
diagram without the spatial coordinatesx andy.

In Sobj, the event of light emission is

x�E = (�
q
x2E + y2E + z2E; xE; yE ; zE);

if the light source is located at the spatial position(xE; yE; zE).
The componentx0E reflects the time of flight from the emission
event to the absorption event at the camera. Alternatively, the emis-
sion event can be expressed in spherical coordinates,

x�E = (�rE; rE cos�E sin �E ; rE sin�E sin �E; rE cos �E);
(9)

with rE =
p
x2E + y2E + z2E.

In Sobserver, the emission event is obtained by the Lorentz trans-
formation,

x�E
0 = (�
(rE + �zE); xE; yE; 
(zE + �rE)):

The comparison to the analog of Eq. (9) in the observer’s frame of
reference yields the transformed angles:

cos �0 =
cos � � �

1� � cos �
; (10)

�0 = �: (11)
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Figure 7: Minkowski diagram for exocentric view.

Therefore, the direction of the incoming light is identical for the
egocentric and the exocentric point of view which is based on the
aberration equations (1) and (2).

A.3 Visibility

The next concern is the issue of visibility. If one object is hidden
by another object in one frame of reference, is it as well hidden in
all other frames? Are we allowed to compute visibility inSobj and
then use the result inSobserver?

Light travels along straight lines in four-dimensional spacetime
with respect to every frame. Therefore, the order of emission events
along a light ray is independent of the chosen frame of reference
and so is the visibility property.

The explicit calculation is as follows. Let us consider two emis-
sion eventsE1 andE2. In Sobj, let E2 be hidden byE1. The
respective coordinates are related by

x�E2 = ax�E1
; (12)

with a constanta > 1. With the use of the Lorentz transformation
(8), the coordinates of the emission events inSobserverfollow:

x�E2

0 = ax�E1

0:

Combined with the fact that the aberration formulae (10) and (11)
are invertible, the invariance of visibility under Lorentz transforma-
tions is proven. Since the inverse Lorentz transformation is just a
Lorentz transformation with opposite direction of motion, the in-
variance of invisibility is valid for the transformation fromSobserver

to Sobj as well.
After all these abstract calculations, how can it be explained that

we are able to look “around” relativistic objects and see their back?
Figures 8 and 9 clarify the situation for the example of a moving
cube. In the egocentric view, Fig. 8, the camera is at rest and the
cube is moving withv = 0:7c to the left. The cube is Lorentz-
contracted along the direction of motion. Here, the back of the
cube becomes visible because the cube outruns the light rays emit-
ted from its back. In the exocentric view, Fig. 9, the cube is at rest
and the camera is moving withv = 0:7c to the right. Here, the back
of the cube becomes visible because the observer is behind the cube
when she or he is registering the incoming light. The rightmost im-
age in Fig. 9 also illustrates the direction of the light ray based on

object

observer

V

observer

object

V

object

observer

V

Figure 8: Egocentric view, three snapshots for� = 0:7.

object

V

observer

object

V

observer

object

observer

V

ray with
aberration

Figure 9: Exocentric view, three snapshots for� = 0:7.

aberration in order to allow a direct comparison to the egocentric
view.

A.4 Apparent Rotation

The apparent rotation of fast moving objects is closely related to
the explanation in the previous section. In the egocentric view, an
object seems to be rotated because light emitted from the normally
invisible back of the object is outrun by the object and can thus
reach the observer. In the exocentric view, the observer is already
behind the object and can thus see its back. However, from the
observer’s point of view the object seems to still be ahead because
of the aberration of the incoming light. Seeing the back side of an
object is interpreted as an apparent rotation of the object.

A.5 Summary

We have shown that the egocentric and exocentric view are equiva-
lent with respect to the apparent geometry in special relativistic ren-
dering. The main difficulty in matching both views is to transform
all physical components of the system, in particular the position of
the observer and the objects.

Usually, the egocentric view is regarded more natural and hence
is a widely used model of explanation. In fact, we deem the exo-
centric view to be more appropriate for the following reasons. First,
the exocentric view allows for the transformation of all relevant
information about the light field in one operation, as described in
Sect. 4. Secondly, an accelerated motion of the observer can be
incorporated in the exocentric view without any modification, cf.
[26]. Thirdly, the exocentric view better reflects the physical real-
ity. There is no direct interaction between the observer and remote
objects. All the information about the surrounding environment is
carried to the observer via photons. The generation of a snapshot
is based on a local interaction between the photons and the detector
(camera). Therefore, it is closer to physics to transform the photons
which have reached the observer than to transform emission events
far away from the camera.
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Figure 10: Flight through Yosemite Valley with� = 0:95.

(a) (b) (c)

Figure 11: Image (a) shows the non-relativistic view, image (b) the apparent geometry for� = 0:9, and image (c) completely relativistic
rendering with� = 0:2. The overall intensity in (c) is reduced to 10 percent of that in (a) and (b) to avoid extreme clamping of the final RGB
values.

(a) (b) (c)

Figure 12: Comparison of filtering and supersampling techniques for the visualization of apparent geometry at� = 0:99. Image (a) is ren-
dered without filtering and supersampling, image (b) illustrates filtering with rectangular footprint, and image (c) documents the combination
of filtering and2� 2 supersampling.
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Four-Dimensional Non-Linear Ray Tracing as a
Visualization Tool for Gravitational Physics

Daniel Weiskopf�

Institute for Astronomy and Astrophysicsy

University of Tübingen

Abstract

In this paper, general relativistic ray tracing is presented as a tool for
gravitational physics. It is shown how standard three-dimensional
ray tracing can be extended to allow for general relativistic visu-
alization. This visualization technique provides images as seen by
an observer under the influence of a gravitational field and allows
to probe spacetime by null geodesics. Moreover, a technique is
proposed for visualizing the caustic surfaces generated by a grav-
itational lens. The suitability of general relativistic ray tracing is
demonstrated by means of two examples, namely the visualization
of the rigidly rotating disk of dust and the warp drive metric.

CR Categories: I.3.8 [Computer Graphics]: Applications—
General relativity J.2 [Physical Sciences and Engineering]:
Physics—Theoretical astrophysics

Keywords: differential geometry, four-dimensional spacetimes,
general relativity, ray tracing, scientific visualization

1 Introduction

Within Einstein’s general theory of relativity, gravitation is de-
scribed geometrically in the form of a four-dimensional curved
spacetime which is formulated by the mathematical theory of dif-
ferential geometry. Light rays are deflected by gravitational sources
because of the curvature of spacetime. The bending of light rays
can be taken into account by non-linear ray tracing. In this way,
images as seen by an observer—a camera—under the influence of
a gravitational field can be generated.

The intent of this paper is to show how general relativistic ray
tracing can be the basis for various visualization techniques in grav-
itational physics. First, ray tracing provides an intuitive approach
to numerical or analytical results of gravitational physics, which is
especially useful for presentations to colleagues or a wider public.
Secondly, it allows a systematic investigation of light rays and the
underlying geometry of spacetime. Thirdly, fractal structures for
light rays can be identified. Fourthly, the properties of a gravita-
tional lens can be explored, especially its caustic structure. The ap-
titude of these visualization techniques is demonstrated by means of
two examples—the rigidly rotating disk of dust and the warp drive
metric.

2 Previous and Related Work

In the physics and computer graphics literature, there are some arti-
cles concerned with the appearance of objects under the influence of
gravitational light deflection. Usually, only well-known metrics are
investigated, which are provided in closed form. The first example

�weiskopf@tat.physik.uni-tuebingen.de
yInstitute for Astronomy and Astrophysics, Section Theoretical As-

trophysics, University of T¨ubingen, Auf der Morgenstelle 10, D-72076
Tübingen, Germany

is the so-called Schwarzschild solution for a spherically symmetric,
static distribution of matter. In [16, 7, 14], for example, the appear-
ance of a neutron star or the flight to a black hole are investigated.
Gröller[9] gives a generic approach to non-linear ray tracing as a
visualization technique. Bryson[4] presents a virtual environment
for the visualization of geodesics in general relativity, where exam-
ples of the Schwarzschild and Kerr solutions are shown. (The Kerr
solution describes the spacetime of a rotating black hole.)

3 Background

In this section, only a very brief overview of the mathematical back-
ground of general relativity can be given. For a detailed presenta-
tion we refer, e.g., to [13, 19].

A basic concept of differential geometry is the infinitesimal dis-
tanceds,

ds
2 =

3X
�;�=0

g��(x)dx
�
dx

�
;

whereg��(x) is an entry in a4 � 4 matrix—the metric tensor at the
pointx in spacetime—anddx� is an infinitesimal distance in the�
direction of the coordinate system.

Paths of objects under the influence of gravitation are identical to
so-called geodesics. Geodesics are the “straightest” lines in curved
spacetime and have extreme lengths. Geodesics are solutions to
a set of ordinary second-order differential equations, the geodesic
equations,

d2x�(�)

d�2
+

3X
�;�=0

����(x)
dx�(�)

d�

dx�(�)

d�
= 0; (1)

where� is an affine parameter for the geodesic line. The Christoffel
symbols���� are determined by the metric according to

����(x) =
1

2

3X
�=0

g
��(x)

�
dg��(x)

dx�
+

dg��(x)

dx�
�

dg��(x)

dx�

�
;

with g��(x) being the inverse ofg��(x).
This paper is focused on a special type of geodesics which are

denoted lightlike or null geodesics. The null geodesics are of great
importance because they determine the causal structure of space-
time, i.e., they separate regions which cannot have any causal influ-
ence on a given point in spacetime. Light rays are identical to these
null geodesics. They obey the null condition

g��(x)
dx�(�)

d�

dx�(�)

d�
= 0: (2)

In the ray tracing program, the initial position in spacetime and the
initial spatial direction of the light ray are determined by the po-
sition, orientation, and field of view of the observer’s camera and
by the coordinates of the corresponding pixel on the image plane.
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The time component of the initial direction is fixed by the null con-
dition (2). Therefore, the geodesic equations (1) yield an initial
value problem for ordinary differential equations. There exist well-
known numerical methods for solving this problem, cf., e.g., [17].

A common problem in general relativity is that many terms de-
pend on the chosen coordinate system and do not have a direct phys-
ical or geometric interpretation; for example, this is true for the
spatial and temporal coordinates or the metric itself. A major ad-
vantage of ray tracing is its independence of the coordinate system.
The final images are results of agedankenexperiment: What would
an observer see, what would a camera measure? Hence, the images
have an immediate physical meaning and are coordinate-free.

This paper is focused on visualizing the geometric structure of
light rays in a gravitational field. Therefore, only visual distor-
tions due to gravitational light bending are considered. Changes
of color due to the Doppler effect and gravitational redshift, as well
as changes of the intensity of the incoming light are neglected.

4 General Relativistic Ray Tracing

The implementation of general relativistic ray tracing is based on
RayViS[10], which is an object-oriented and easily extensible ray
tracing program written in C++. InRayViS, all relevant parts of the
visualization system are derived from abstract basis classes which
allow the extension of the original functionality by subclassing.

Figure 1 shows the basic structure of the program. The im-
age plane is sampled by theSample Manager which uses the
Projector to generate aRay corresponding to the pixel under
consideration. TheRay communicates with theScene in order
to find intersections with scene objects, calculate secondary rays
and shadow rays, and determine illumination. Finally, the resulting
color is stored in the image by theSample Manager.

Integration of Photon Path
Description of Spacetime

Sample Manager

Projector

Scene

Ray

Ray

Figure 1: Structure of the ray tracing system.

Relativistic rendering requires two major extensions of the stan-
dard three-dimensional Euclidean ray tracing system.

First, the standard ray class which represents a straight light ray
in three dimensions is replaced by a class which represents a bent
light ray in four dimensions. This bent ray is approximated by a
polygonal line whose points possess one temporal and three spatial
coordinates.

Secondly, the standard ray projector which generates a light ray
corresponding to a pixel on the image plane has to be modified. The
new projector provides the interface to the physics of spacetime and
communicates with the solver for the geodesic equations (1). This
system of ordinary differential equations can be solved by numer-
ical integration. The standard technique in our implementation is
the Runge-Kutta method of fourth order[17]. Here, any physical
configuration can be examined by replacing the module which sup-
plies the information about the metric and the Christoffel symbols.
The advantage of this modular and object-oriented concept is a free-
dom of choice of the simulated system, combined with a complete,
sophisticated rendering environment and only minimal extra imple-
mentation costs.

In standard three-dimensional ray tracing, rendering time is sig-
nificantly determined by the computation of intersections between

rays and objects. This is not true for general relativistic ray trac-
ing because here the generation of bent light rays by solving the
geodesic equations plays an even more dominant role. Usually,
general relativistic ray tracing is a couple of magnitudes slower than
non-relativistic ray tracing. Therefore, parallelization is an urgent
need for general relativistic ray tracing. Fortunately, the computa-
tion of the null geodesics and the ray–object intersections for one
pixel is independent of those for the other pixels. Hence, paral-
lelization is performed on a per-pixel basis and utilizes a domain
decomposition on the image plane. The granularity can be as fine
as a single pixel in order to achieve good load balancing. The imple-
mentation makes use of MPI[12] and thus is platform-independent.
It scales well, even up to a several hundred nodes on a massive-
parallel architecture such as the CRAY T3E.

5 Gravitational Lensing and Caustics

Gravitational fields bend light rays and can thus play the role of
a lens—a gravitational lens. Gravitational lensing was early pre-
dicted by Einstein himself. In fact, the light deflection measured
during the total eclipse of the sun in 1919 was the first experimen-
tal evidence for general relativity. Today gravitational lenses are a
hot topic in astronomy and are extensively used in observations in
various ways. A comprehensive presentation of gravitational lens-
ing can be found in [18].

The main difference between optical lenses and gravitational
lenses is that the deflection caused by a typical, spherical convex,
optical lens increases with the distance of the ray from the optical
axis, whereas the deflection caused by a gravitational lens decreases
with the impact parameter. A standard optical lens has a focal point
onto which rays parallel to the optical axis are focused. In contrast,
a gravitational lens has no focal point. However, the qualitative
behavior of a gravitational lens can be described by its caustic sur-
faces. A gravitational lens might bend light rays in a way that the
light emitted by the same source can follow different trajectories to
reach the observer, i.e., the light source is projected onto multiple
points on the observer’s image plane. A caustic surface separates
regions where the image multiplicity changes.

Standard gravitational lensing theory uses a couple of approxi-
mations which are valid for most astrophysical objects. For exam-
ple, only small angles of deflection are allowed, the mass distribu-
tion is assumed to be nearly stationary, and the mass of the lens and
the image source are considered to be projected onto planes—the
lens plane and the source plane, respectively. Based on these ap-
proximations, the observed data is normally analyzed to reconstruct
the properties of the source or the lens, e.g., its mass distribution.

In this paper, a different approach is pursued. First, image syn-
thesis is used instead of analysis. We aim at visualizing a known
gravitational field to gain further insight in its characteristics. Sec-
ondly, the approximations from above are dropped and the geodesic
equations are completely solved. In this way, one can deal with
phenomena related to strong gravitational fields, large angles of de-
flection, and extended and rotating gravitating objects.

We have studied two means of visualizing gravitational lenses.
The first technique directly utilizes general relativistic ray tracing.
Here, objects are placed around the gravitational lens as image
sources. The mapping of these background objects reveals distor-
tions due to gravitational light deflection and a possible multiplicity
of points in the image plane. In this way, it provides some informa-
tion about the structure of the caustics.

We propose a second technique which targets at a more system-
atic analysis of the caustic surfaces. The deficiency of the first
method is that the background objects are only two-dimensional
and thus cannot visualize the caustic surfaces embedded in three-
dimensional space. This problem can be overcome by a three-
dimensional volumetric object which determines the image mul-
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tiplicity for points inside and thus samples the volume for caustic
structures.

The procedure is as follows. InRayViS, both surface and volume
objects are supported. A standard volume object is subclassed to
additionally store the number and the initial directions of the light
rays crossing a voxel of the object. Whenever a voxel is traversed
by a ray, a counter is incremented and the position of the pixel on
the image plane corresponding to the current ray is attached to this
voxel. In a post processing step, each single voxel is evaluated and
the number of rays coming from different areas of the image plane
are accumulated. In this way, unintentional counting of nearby rays
which cross the same voxel is avoided. The minimal required dis-
tance on the image plane is specified by the user; usual values are
some ten pixels. Currently, only a regular grid is implemented as a
caustic finder.

The scalar field containing the image multiplicities is written to
a file and visualized by an external program. There exist numerous
techniques for volume visualization. We tested isosurface repre-
sentations based on the marching cube algorithm, and direct vol-
ume rendering based on ray casting or, alternatively, shear warp
factorization. Isosurfaces directly indicate a change of multiplicity
and thus are useful for representing caustic surfaces. Conversely,
volume rendering is able to show several caustic structures embed-
ded in one another. Here, shear warp rendering is mainly used for
interactive explorations, whereas the ray casting program provides
images of higher quality, as for illustrations.

In contrast to general relativistic ray tracing of the previous sec-
tion, the caustic finder provides coordinate-dependent data. This
might give interpretation problems in regions of high curvature.
Therefore, this visualization technique is best suited for almost flat
parts of spacetime, for example behind the gravitational lens at ad-
equate distance. High computational and memory costs for a fine
sampling of the volume grid are another problem, which could be
solved by utilizing an adaptive grid.

6 Application: Rigidly Rotating Disk of
Dust

The first application presented in this paper is the visualization of
the so-called general relativistic rigidly rotating disk of dust, which
is a simple model for a galaxy or a galaxy cluster. This project is
joint work with the group for gravitational theory at the University
of Jena, in particular, with M. Ansorg.

In 1995, Neugebauer and Meinel[15] from Jena succeeded in
finding the global, analytical solution of Einstein’s equations for the
gravitational field of a rigidly rotating (i.e., the angular velocity is
independent of the radial position) pressure-free ideal fluid disk—
the rigidly rotating disk of dust. The researchers in Jena studied the
properties of the corresponding geometry of spacetime, for exam-
ple, by investigating the trajectories of particles[2].

The cooperation between the theoretical relativists from Jena and
our visualization group is motivated by the following reasons. First,
there is great interest in “seeing” the results of theoretical work
in order to gain some intuitive feeling. Secondly, visualization al-
lows a compact representation of a vast number of null geodesics
which are used as another means of probing the gravitational field.
Thirdly, the communication of the theoretical research to colleagues
and to the public should be facilitated.

Results[20] of the cooperation were presented to the relativity
community at the Journ´ees Relativistes ’99[11], an international
conference on gravitation. The film shown at the Journ´ees Rela-
tivistes ’99 is also included in the accompanying video. Several
visualization techniques which were applied to the rigidly rotating
disk of dust are presented in the following.

6.1 Outside View

The first and straightforward approach to visualizing a given grav-
itational field is to adopt an outside position. Figure 2 illustrates
such an outside view. The three images show the disk with varying
parameter�. This parameter describes the relativistic “character”
of the disk. For� = 0 the Newtonian, non-relativistic limit is ob-
tained, for� � 4:6 the ultra-relativistic limit. The parameter� is
defined in [15].

The left image presents an almost Newtonian, classical situation
with � = 0:1. The top side of the disk is colored blue. An ar-
tificial “pie slice” texture is applied in order to visualize rotational
distortions. The middle image shows a slightly relativistic case with
� = 0:7. Due to gravitational light bending, both the top and the
bottom faces are simultaneously visible. The bottom side is col-
ored green and brown. The right image shows a more relativistic
situation with� = 3. Here, multiple images of the top and the bot-
tom emerge. Moreover, rotational distortions which are caused by
frame dragging (a general relativistic effect) and by the finite speed
of light and the rotation of the disk are prominent.

The outside view gives a first, intuitive approach to the gravitat-
ing object. This visualization technique can easily be used for any
metric and provides a coordinate-independent result. Furthermore,
it is most useful for presenting the theoretical research to the pub-
lic. For example, pictures of the rigidly rotating disk of dust were
published in a scientific calendar[6].

6.2 Parameter Study

After these first visualization steps a systematic investigation of
the properties of the light rays in the metric of the rigidly rotating
disk of dust is required in order to obtain reliable scientific results.
Therefore, a sampling of the parameter space for the null geodesics
has to be considered.

The null geodesics are determined by two types of parameters.
Parameters of the first kind describe the gravitational source. The
properties of the disk of dust are completely determined by the pa-
rameter�. The position of the observer and the direction of the
incoming light constitute parameters of the second kind. The sam-
pling of the direction of the light rays is implemented in the form of
a4� sterad camera, i.e., an observer looking in all directions simul-
taneously. Here, the projection onto a virtual sphere surrounding
the observer is used instead of the standard projection onto an im-
age plane. Therefore, the parameter space is completely sampled by
generating4� sterad images for various values of� and positions
of the observer.

The produced panorama images are viewed with a simple, exter-
nal, OpenGL-based rendering program which maps these images
onto a sphere. The viewpoint is located at the center of the sphere.

The parameter study confirms the qualitative results from the
previous subsection, i.e., multiple images of the top and the bot-
tom side and rotational distortions. In addition, new interesting re-
sults were found for disks with sufficiently large values of�. These
results are described in the following subsection.

6.3 Fractal Structure

The most interesting finding of the parameter study is the existence
of fractal structures created by the gravitational field of the rigidly
rotating disk of dust. Figure 3 shows a typical example. Here, the
position of the observer and the parameter� = 3 are fixed. The ob-
server is located on the axis of symmetry and looking towards the
edge of the disk. The leftmost picture shows a snapshot with a wide
angle field of view. Parts of the top side of the disk are visible in
the lower part of the picture. An image of the bottom side is found
directly above this first image of the top side. Further above, alter-
nating images of the top and the bottom faces follow. The pictures
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to the right document increasing zooming in on the original picture,
whereas the rightmost image shows a part of the leftmost image
which has a size approximately ten orders of magnitude smaller
than the original image. This series reveals self-similarity and a
fractal structure.

6.4 Caustics

Figure 4 shows the structure of the caustic surfaces for� = 0:3,
based on the volumetric method from Sect. 5. The regular grid of
the caustic finder has a size of2563 voxels. The red colors represent
regions with many image multiplicities, the green colors represent
regions with fewer image multiplicities, and the blue colors show
regions with an image multiplicity of one.

7 Application: Warp Drive

The second application presented in this paper is the visualization
of the warp drive metric. Alcubierre’s solution[1] of Einstein’s field
equations allows to travel faster than the speed of light, as measured
in an outside, flat region of spacetime. Ford and Roman[8] give a
comprehensible introduction the warp metric and a discussion of
some issues related to energy conditions and causality.

Basically, the warp drive constructs a warp bubble which sepa-
rates two flat parts of spacetime. The warp bubble is able to move
faster than the speed of light with respect to an outside, flat region
of spacetime. A spaceship which is at rest inside the warp bubble
would then travel faster than the speed of light.

The visualization of the warp drive was produced for “Seven
Hills”[3]. This exhibition intends to give an inkling of what the fu-
ture of mankind may look like in the next millennium. A leading-
edge topic of physics like the visualization of the warp metric is
very well suited for such an exhibition and allows to bring aspects
of a complex scientific content to a wide public.

Figure 5 and the accompanying video show examples of the vi-
sualization of the warp metric. Here, the warp spaceship travels
in front of the earth and moon, and Saturn. The light deflection at
its warp bubble causes astonishing visual distortions on the back-
ground objects. In addition to this outside view, a position inside
the warp bubble can be adopted. Respective images are shown at
the exhibition “Seven Hills”. The view from inside the warp space-
ship was independently investigated by Clark et al.[5] on a more
theoretical footing.

8 Conclusion and Future Work

In this paper, non-linear ray tracing has been presented as a tool
for gravitational physics. It has been shown how standard three-
dimensional ray tracing can be extended to general relativistic ray
tracing. Furthermore, a parallel implementation has been described,
which is extremely useful for extensive parameter studies or pro-
duction of movies.

General relativistic ray tracing offers several important features.
First, it gives an intuitive approach to the structure of a gravitational
field and allows a simple and straightforward use. Secondly, the
generated images are coordinate-independent and can be regarded
as the result of an experiment. This is of great importance in the
context of general relativity because many properties of spacetime
can be hidden by the normally used coordinate-dependent repre-
sentation. Many other visualization techniques are based on spe-
cific coordinate systems, e.g., the visualization of geodesics with
respect to pseudo-Euclidean coordinates in [4]. Thirdly, the ray-
traced images are a compact representation of a vast number of null
geodesics. These null geodesics probe the properties of spacetime,

especially its causal structure. Moreover, an extension has been
proposed to visualize the caustic surfaces of a gravitational lens.

By means of two applications the usability of general relativistic
ray tracing has been demonstrated both for obtaining further insight
by the researcher and for presenting results to colleagues and the
public.

In future work, the change of color due to the Doppler effect
and gravitational redshift, as well as the change of intensity of the
incoming light will be implemented. Furthermore, adaptive algo-
rithms and data structures for the caustic finder will be investigated.
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Figure 2: Visualization of the rigidly rotating disk of dust. The relativistic parameter� is 0:1; 0:7; 3, from left to right.

Figure 3: Fractal structures and self-similarity in the gravitational field of the rigidly rotating
disk of dust with� = 3. The observer is located on the symmetry axis and is zooming in on
the image.

Figure 4: Caustic structure for� = 0:3.

Figure 5: Visualization of the warp metric. The warp bubble and the spaceship are moving at a speed ofv = 1:5c in the left and middle
image, andv = 2:5c in the right image.
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Color Plates 
 
 

Special Relativistic Flight to Saturn 
 

    
 

    
 
Special relativistic visualization of apparent geometry. The observer is moving at 99 percent of 
the speed of light. 
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Special Relativistic Radiosity 
 
 

     
 

     
 
 
Special relativistic radiosity. The objects are illuminated at temperatures of 2600 Kelvin, 5800 
Kelvin, and 15000 Kelvin. The upper left image shows the scene at low speed, the upper right 
image visualizes apparent geometry at v=0.6c, the lower left image adds the visualization of the 
Doppler effect, and the lower right image shows completely relativistic rendering. In this last 
image, the overall brightness is reduced to ten percent of that in the other images. 
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Special Relativistic Image-Based Rendering 
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w
Non-relativistic vie
Visualization of apparent geometry. 
The observer is moving at v=0.99c 

Visualization of apparent geometry 
and illumination. The observer is 
moving at v=0.3c. Here, the overall 
brightness is reduced to one half of 
that in the other images. 
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Acceleration in Special Relativistic Visualization 
 
 

    
 

    
 
 
Visualization of an accelerated motion of the camera. From left to right and top to bottom, the 
speed of the observer is increased from v=0.3c to v=0.623c, v=0.817c, and v=0.975c, 
respectively.  
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The “Real” Einstein Ring 
 
 

   
 

   
 
 
Visualization of the Schwarzschild metric. A portrait of Einstein is moving behind a black hole; 
due to gravitational light bending, an Einstein ring is generated.  
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Visualization of the Warp Metric 
 
 

      
 

      
 
 
A spaceship is traveling inside a warp bubble at a speed of v=1.5c.  
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Visualization of the Rigidly Rotating Disk of Dust 
 
 

     
 

     
 
 
Visualization of the rigidly rotating disk of dust. The relativistic parameter µ is 0.1, 0.7, 2, 3, from 
left to right and top to bottom. For small values of µ, the Newtonian (classical) limit is obtained. 
Higher values for µ indicate a more relativistic situation: Multiple images of the top and the 
bottom side emerge due to gravitational light bending; rotational distortions are caused by frame 
dragging—a general relativistic effect. Detailed information on the physics of the rigidly rotating 
disk of dust can be found in: G. Neugebauer, R. Meinel, Phys. Rev. Lett. 75:3046 (1995). 
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