
1

SHARP Ray Tracing ArchitectureSHARP Ray Tracing Architecture

Timothy J. PurcellTimothy J. Purcell
Stanford UniversityStanford University

IntroductionIntroduction

SHARP Project GoalsSHARP Project Goals
•• Identify performance limiting factorsIdentify performance limiting factors

• Influence of the memory hierarchy and caching

• Identify compute to bandwidth ratios

•• Define a ray tracing architectureDefine a ray tracing architecture
• Targeting Stanford Smart Memories 



2

Time Has Been KindTime Has Been Kind

Computing Around 1985Computing Around 1985
• 80386DX, R2000, VAX/750

Coming Soon to your desktopComing Soon to your desktop
• Billion Transistors on a chip

• Transition from single processor per chip to 
multiple processors per chip
•Smart Memories, Pirhana, etc.

Smart Memories ChipSmart Memories Chip

Chip
Tile Quad

Processor

Interconnect

16 x 8Kb SRAM

64 GB/s Processor to local memory bw

64 GB/s Tile to tile memory bw (same quad)

8 GB/s Tile to tile memory bw (different quads)

8 GB/s Off chip memory bw

Quad Network



3

AssumptionsAssumptions

•• Simple OpenGLSimple OpenGL--style ray tracingstyle ray tracing
• Simple case is the hardest to do!

• Don’t preclude complex shaders and global 
illumination

•• API IssuesAPI Issues
• Appropriate scene graph API may be designed

• Support for time-varying geometry, etc.

Quantitative ApproachQuantitative Approach

Design system based on key metricsDesign system based on key metrics
• Computation to Bandwidth ratio

• Memory Locality

• Others as they are identified

Relatively simple initial systemRelatively simple initial system
• Design iterations based on measured bottlenecks

•Eliminates unnecessary optimizations



4

SHARP Architecture DescriptionSHARP Architecture Description

SHARP ArchitectureSHARP Architecture

Exploit parallelism by replicating unitsExploit parallelism by replicating units
Communication via (distributed) global Communication via (distributed) global 

task queuestask queues

Ray Gen ShaderTraverser Intersector

Camera Grid Triangles & Materials
Lights, Normals,

Rays Ray/Vox Hits

Rays

Rays

Pixels



5

Example SHARP ConfigurationsExample SHARP Configurations

ERG IT
S

S
Pixels

ERG I
T S Pixels

T

T
IERG

Operation CountsOperation Counts

All op counts based on RISC instruction setAll op counts based on RISC instruction set
• Measured on R10K

• Assume CPI of 1.0 à cycles == ops

Optimizing Smart Memories compiler should Optimizing Smart Memories compiler should 
be able to squeeze these downbe able to squeeze these down
• Sufficient for estimating computation



6

Eye Ray GeneratorEye Ray Generator

Ray Data StructureRay Data Structure
• 112 bytes:  52 bytes plus 

60 bytes of state for grid 
traversal

Simple ComputationSimple Computation
• 100 instructions

Ray Gen

Camera

Rays

TraverserTraverser

Ray/Ray/voxvox Data StructureData Structure
• Ray and voxel_id

• 113 bytes

3D3D--DDA traversalDDA traversal
• No geometry access

• Scene bitmap plus grid 
parameters

• 350 instructions to set-up

• 60 instructions to walk

Traverser

Grid

Rays Ray/Vox

RaysRays



7

Grid Acceleration StructureGrid Acceleration Structure

Simple:  Traversal code is compactSimple:  Traversal code is compact
Efficient:  Hardware Efficient:  Hardware rasterizersrasterizers
Reasonable:  No clear ‘best’ Reasonable:  No clear ‘best’ accelaccel. structure . structure 

anyway;  Grid can be tuned to be efficientanyway;  Grid can be tuned to be efficient
Start with basic grid Start with basic grid –– no optimizationsno optimizations

• Mailboxing, blocking, and hierarchies will be 
addressed later

IntersectorIntersector

Data StructuresData Structures
• Triangles are 44 bytes: 

9 floats plus material and 
normal indices

• Hits are 60 Bytes:  
Location, texture coords, 
ray contribution, etc.

MöllerMöller--TrumboreTrumbore style style 
triangle intersectiontriangle intersection

• 200 instructions

Intersector

Triangles

Work Hits

Rays



8

ShaderShader

Shading InputsShading Inputs
• Normals 40 bytes

• Materials 90 bytes

PhongPhong--style shadingstyle shading
• 100 instructions

Shadow and secondary Shadow and secondary 
rays generated hererays generated here

Shader

& Materials
Lights, Normals,

Rays

Pixels

Hits

Caching StudiesCaching Studies



9

Smart Memories – Memory 
System
Smart Memories – Memory 
System

•• Treat entire chip as giant shared memory Treat entire chip as giant shared memory 
with three level cachewith three level cache
• 16Kb per tile I-cache, 64Kb per tile D-cache

•• Individual processing elements don’t have Individual processing elements don’t have 
enough memory for complete data enough memory for complete data 
replicationreplication
• Bitmap for traversal
• Scene databases (geometry, shading info)

Cache ConfigurationCache Configuration

Chip

Tile
Quad

Processor

Interconnect

16 x 8Kb SRAM

L0:  Local tile SRAM is first checked. 

L1:  On L0 miss, check the other three tiles in the quad.

L2:  On L1 miss, all other tiles on chip checked. 

On L2 miss, data is brought in from off chip.



10

SHARP ConfigurationSHARP Configuration

System utilizes 32 intersection units with System utilizes 32 intersection units with 
45K (1024 triangle) cache45K (1024 triangle) cache
• Random or LRU replacement policy

Data is delivered to each compute unit in a Data is delivered to each compute unit in a 
packetpacket
• Takes advantage of eye-ray coherence

Packets distributed on demandPackets distributed on demand

Triangle Caching StudiesTriangle Caching Studies

L2 miss ratesL2 miss rates
• 3% to 0.1%

Compute boundCompute bound
• Average triangle access 

time is less than ¼ 
intersection test time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bunny Quake Conf Rm

L0 hit L2 hit L2 miss



11

Computation and Bandwidth 
Measurement
Computation and Bandwidth 
Measurement

Computing Metrics From 
Statistics
Computing Metrics From 
Statistics

BandwidthBandwidth
• #objects loaded * size of object = total bandwidth

• 640,000 rays generated * 44 bytes per ray = 72MB

Computation Computation 
• #actions * avg ops per action = total ops

• 640,000 rays generated * 100 ops per ray = 64 Mops



12

Architecture MeasurementsArchitecture Measurements

480K

Ray Gen ShaderTraverser Intersector
11.3M

Camera Grid Triangles

640K

Rays Work Hits

Rays

Rays
Pixels

2.8M

0

190,978 Triangles

684K Voxels

Eye Rays Only

1 frame @ 800x800 pixels

& Materials
Lights, Normals,

640K 640K640K 172M 3.4M

Computation and BandwidthComputation and Bandwidth

21MB

Ray Gen ShaderTraverser Intersector
402MB

Camera Grid Triangles

72MB 38MB

Rays Work Hits

Rays

Rays
Pixels

<< 59MB

316MB

0MB

11Gops 2.2Gops 64Mops

190,978 Triangles

684K Voxels

Eye Rays Only

1 frame @ 800x800 pixels

& Materials
Lights, Normals,

64Mops

<< 1MB



13

Compute Limited!Compute Limited!

3:1 compute to internal bandwidth ratio for 3:1 compute to internal bandwidth ratio for 
intersectorintersector

10:1 compute to internal bandwidth ratio for 10:1 compute to internal bandwidth ratio for 
traversertraverser

Smart Memories has bandwidth to burnSmart Memories has bandwidth to burn
•• Use caution when designing systemsUse caution when designing systems

• Ray tracing generally thought to be bandwidth 
limited

Balancing the SystemBalancing the System

Make the Make the shaders shaders more expensivemore expensive
• Increase shading complexity by a factor of 100

Reduce intersection computationsReduce intersection computations
• Intersection test code is pretty tight…

• Reduce number of intersection tests

Reduce traversal computationsReduce traversal computations
• Reduce empty voxel walks



14

Reduce Intersection 
Computations
Reduce Intersection 
Computations

MailboxingMailboxing AlgorithmAlgorithm
• Each triangle has id of 

last ray that visited

• If current ray visited, 
don’t do intersection

ProblemsProblems
• Mailbox associated with 

triangle makes triangle 
data volatile

• Single triangle may be 
accessed by multiple rays 
simultaneously

• Ray processing done in 
stages

Parallel MailboxingParallel Mailboxing

ParallelParallel MailboxingMailboxing
• Mailbox associated with ray instead of triangle

•Triangle data read-only
• Implemented as extra table of memory with one 

hash table per ray
•Accessed by the intersection units only
•Can alternately be tacked on as additional ray data

• Ideal implementation still undecided



15

Reduce Traversal Computation –
The Obvious Fixes to the Grid
Reduce Traversal Computation –
The Obvious Fixes to the Grid

BrickingBricking
• Traversal bitmap arranged in 4x4x4 bricks

•Layout reflects traversal order
• Walk bricks for efficient empty space traversal

HierarchyHierarchy
• Each object in scene allowed its own grid

• Nearby grids of similar size joined together

Architecture Measurements -
Bricking and Mailboxing
Architecture Measurements -
Bricking and Mailboxing

Ray Gen ShaderTraverser Intersector
4.5M

Camera Grid

640K

Rays Work Hits

Rays

Rays
Pixels

2.8M

0

190,978 Triangles

684K Voxels

Eye Rays Only

1 frame @ 800x800 pixels

& Materials
Lights, Normals,

640K 640K640K 53M 3.4M

Triangles
Mailboxes

105K



16

Computation and Bandwidth -
Bricking and Mailboxing
Computation and Bandwidth -
Bricking and Mailboxing

4.5MB

Ray Gen ShaderTraverser Intersector
402MB

Camera Grid Triangles

72MB 38MB

Rays Work Hits

Rays

Rays
Pixels

<< 59MB

316MB

0MB

64Mops 4.4Gops 1.1Gops 64Mops

190,978 Triangles

684K Voxels

Eye Rays Only

1 frame @ 800x800 pixels

& Materials
Lights, Normals,

Mailboxes

200MB<< 1MB

Architecture Design ConclusionsArchitecture Design Conclusions

Memory access patternMemory access pattern
• Off chip bandwidth low with simple caching 

scheme

Computation to bandwidth ratio is keyComputation to bandwidth ratio is key
• Surprising to be compute limited rather than 

bandwidth limited

Smart Memories is well suited for ray tracingSmart Memories is well suited for ray tracing



17

SHARP on Smart MemoriesSHARP on Smart Memories

Smart Memories “Quad” 
Simulation Results
Smart Memories “Quad” 
Simulation Results

Memory stalls account for less than 10% of Memory stalls account for less than 10% of 
the total execution timethe total execution time
• Small triangle cache sufficient

• No need for complex triangle memory 
management algorithms

• Optimizing memory bandwidth will yield little 
improvement – focus on reducing computation



18

Smart Memories Chip –
Performance Estimates
Smart Memories Chip –
Performance Estimates

Conference Room @512x512 (eye rays only)Conference Room @512x512 (eye rays only)
•Assumes reasonable speedups from data pre-

fetching, optimizing compiler, and dual-issue FP 
units (64-bit unit à 2x 32-bit FP unit)

• With simple shading model
•50Hz (nearly 100M isect/s and 13M pixels/s)

• With 100x shading costs
•18Hz

Final ThoughtsFinal Thoughts

Ray tracing fits nicely into the oncoming Ray tracing fits nicely into the oncoming 
multiprocessormultiprocessor--onon--aa--chip frameworkchip framework

Ray tracing needs more theoretical workRay tracing needs more theoretical work
• Key metrics determining performance

• Acceleration structure behavior

• Cost analysis for realistic scenes



19

Future WorkFuture Work

Complete Smart Memories simulationsComplete Smart Memories simulations
• Optimize mapping to Smart Memories

More complex shading algorithmsMore complex shading algorithms
• Global illumination

Ray Tracing APIsRay Tracing APIs
• Scene description

• Time varying geometry

Thanks…Thanks…

Pat Pat HanrahanHanrahan
Stanford Graphics LabStanford Graphics Lab
Smart Memories Project GroupSmart Memories Project Group

Funded by Funded by 
NSF Graduate Research Fellowship and NSF Graduate Research Fellowship and 

DARPADARPA


