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Interactive Ray TracingInteractive Ray Tracing

• SGI Origin 2000
• 64 processors
• Display is only graphics hardware used

• Video recorded directly from screen
• 600 x 437 resolution
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Why is this fast?Why is this fast?

• Ray tracing performs well on modern 
processors

• For static scenes, runtime grows slower 
than number of objects rendered

• Parallelism

What we didn’t doWhat we didn’t do

• Reuse of information (from previous 
frames)

• Interpolation between pixels
• Explicitly optimized code (all C++)
• Complex load balancing
• Scan conversion (hardware or software)
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Guiding principlesGuiding principles

• KISS programs are good
• Careful attention to data locality is 

essential
• Careful attention to counting flops is not 

essential

– Most things are re-computed instead of 
stored

Serial EfficiencySerial Efficiency

• Judicious use of C++ features
• Memory locality
• Minimizing expensive operations (sqrt, divide)

• Approximately three hours of optimizing for 
each hour of coding
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Parallel EfficiencyParallel Efficiency

• Dynamic load balancing
• Use Origin fetch&op counter

• Straightforward implementation
• Not tuned to topology of underlying 

architecture (bristled hypercube)

New Ray Tracing MentalityNew Ray Tracing Mentality

• How can one achieve important visual 
cues without impacting interactivity?

• Soft shadows
• Directionally varying ambient term
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Ambient LightingAmbient Lighting

Rich PrimitivesRich Primitives

• Ray tracing can accommodate very large 
and complex data

• Adding complex primitives is just as easy 
as in a batch ray tracer
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Spline modelsSpline models

35 million spheres35 million spheres
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Textured Volume DataTextured Volume Data

Maximum Maximum 
Intensity Intensity 
ProjectionProjection
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PerformancePerformance

• Rendering of isosurfaces from visible 
female CT dataset (900 Megabytes)

• More details of this technique in 
Visualization ‘98 paper
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Efficiency of Data AccessEfficiency of Data Access

For visible female:

L1 cache hits: 99.44%
L2 cache hits: 97.6%
Memory bandwidth: 2.1 MB/sec/processor

Teapot scene: 8 MB/sec/processor

Frameless RenderingFrameless Rendering

• Improves interactivity
• Lowers memory locality
• Relaxes synchronization

• Helpful if off by a factor of 5, but not by 
a factor of 20
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Interactive Ray TracerInteractive Ray Tracer

• Useful tool for interactively exploring 
complex scenes on large machines

• Good research tool for prototyping
• Attention to memory system critical for 

performance

Problems with current systemProblems with current system

• Some scenes and algorithms just too slow
• Preprocessing precludes dynamic scenes
• No Antialiasing
• Variable frame rate
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Planned ImprovementsPlanned Improvements

• New API for scene graph ray tracing
• Dynamic efficiency structures that 

amortize overhead cost
• Parallel front end for pixel reprojection
• 1000+ processor implementation

FuturismFuturism

• Good research tool now, but will it ever 
play video games?

• Obviates many graphics processor 
bottlenecks, but also introduces new ones
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Future 1: Better HardwareFuture 1: Better Hardware

• Moore’s Law-- in ten years CPUs will be 
100x faster with 10x memory bandwidth

• Current system uses only 10% of 
memory bandwidth

• Will likely still perform well in ten years

• Custom hardware?

Future 2: More CPUsFuture 2: More CPUs

• Los Alamos cluster has 48 128CPU 
O2Ks with approximately 125x the raw 
power of our current machine

• Bandwidth to frame buffer would allow 
40 uncompressed HDTV images per 
second to be ray traced

• Not yet practical for the desktop
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ASCI
Blue Mountain

Future 3: Better reuse of Future 3: Better reuse of 
computationcomputation

• Pixels can be reprojected between frames
• New pixels are traced as needed
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Video
Interactive Rendering using the Render Cache

Bruce Walter (iMAGIS)
George Drettakis (iMAGIS)

Steven Parker (Univ. of Utah)

Future 4: HybridFuture 4: Hybrid

• Better CPU’s - just wait
• More CPU’s - just get more money
• More intelligence - gotta work
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EvangelismEvangelism

• This isn’t hard
• This is fun

– A good prototyping tool
• Necessary hardware is becoming 

affordable for research institutions

OverviewOverview

• Isosurfacing is performed implicitly at 
every pixel

• Maps well onto modern architectures
• Interactive for some datasets on some 

machines
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VideoVideo

• SGI Origin 2000 using 50 processors
• 512 x 512 image 
• 512 x 512 x 1734 voxels (900 

Megabytes)
Visible Female data from the National 
Library of Medicine Visible Human 
Project

OutlineOutline

I. Ray tracing isosurfaces

II. Achieving interactivity
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Isosurfacing Isosurfacing for Analytic for Analytic 
FunctionsFunctions

• f(x,y,z)=0
• ray tracing via root finding (e.g. Kalra and 

Barr ‘89)

• explicit polygonalization (e.g. Stander and 
Hart ‘97)

TrilinearTrilinear Cells are EasierCells are Easier
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Isosurfacing Isosurfacing for a for a TrilinearTrilinear CellCell

Marching Cubes  
Lorensen and Cline 

(‘87)
Wyvill and Wyvill (‘86)

Why Not Always Use Marching Why Not Always Use Marching 
Cubes?Cubes?

Marching cubes can generate millions of 
polygons
– Reduce by decimation (e.g. Shekhar et. al 

‘96)
– Reduce by culling (e.g. Livnat and Hansen 

‘98)
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Isosurfacing Isosurfacing for a for a TrilinearTrilinear CellCell
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Isosurfacing Isosurfacing for a Piecewise for a Piecewise 
Linear CellLinear Cell

marching cubes ray tracing
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Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 

Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 
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Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 

Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 
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Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 

Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 
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Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 

Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 
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Effects of Direct Cubic Effects of Direct Cubic 
Solution Solution 

Isosurfacing Isosurfacing for a grid of cellsfor a grid of cells

ray
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Previous Ray Tracing for Previous Ray Tracing for 
IsosurfacesIsosurfaces

• Marschner and Lobb (‘94)
• Lin and Ching (‘96)
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Feature ComparisonFeature Comparison

Ray Tracing
• Implicit geometry
• Software shading

Marching Cubes
• Explicit geometry
• Hardware shading

ShadowsShadows

without with



29

Performance ComparisonPerformance Comparison

Ray Tracing
• Run time 

proportional to 
image size

• Highly scalable

Marching Cubes
• Run time 

proportional to data 
size

• Leverages 
conventional 
graphics hardware
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How Fast is Ray Tracing?How Fast is Ray Tracing?

• A single R10000 (195 Mhz)
• 512 x 512 image 
• 512 x 512 x 1734 voxels (900 Megabytes)

Visible Female data from the National Library 
of Medicine Visible Human Project

• Times vary from 22  to 418 seconds per 
frame

OptimizationsOptimizations

• Parallelism
• Hierarchical data representation
• Data layout for better locality
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Parallel ImplementationParallel Implementation

• Implemented on SGI Origin 2000 
ccNUMA architecture - up to 128 
processors

• Approximately linear speedup

• Load balancing and memory coherence 
are  keys to performance

Hierarchical Data Hierarchical Data 
RepresentationRepresentation

• Skip over cells which do not contain an 
isosurface - Wilhelms and van Gelder 
(‘90)

• Keep “macrocells” which contain the 
min/max values for contained cells
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Two Level RepresentationTwo Level Representation

ray

ray

Two Level RepresentationTwo Level Representation

ray

ray
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Two Level RepresentationTwo Level Representation

ray

ray
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Two Level RepresentationTwo Level Representation

ray

ray

Two Level RepresentationTwo Level Representation

ray

ray



35

Two Level RepresentationTwo Level Representation
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Number of Hierarchy LevelsNumber of Hierarchy Levels

• Traversal from cell to cell is cheaper 
than moving up and down levels

• Would like to skip large empty regions
• We use 3 or 4 levels in practice

Data Layout (Bricking)Data Layout (Bricking)

• Optimizing for memory locality
• Two levels (bricks and metabricks)

• Common trick (e.g. Cox and Ellsworth 
‘97)
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1  2  3  10 11 12

4  5  6  13 14 15

7  8  9  16 17 18

144... 153...

Brick Metabrick

Data Layout (Bricking)Data Layout (Bricking)

• Brick sizes (Cache line and page sized 
cubes)
– 16 bit data:  
– 32 bit data: bricks3ofmetabricks6 33

bricks4ofmetabricks5 33
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Combining Hierarchy and Combining Hierarchy and 
BrickingBricking

• Requirements of hierarchy are different 
than   the brick sizes

• Traversal at finest level of hierarchy can 
cross brick boundaries

• Must compute indices into bricked array

IndexingIndexing

• Consider 6x6x6 bricks of 3x3x3 bricks:
index = (x/3/6)*6*6*6*3*3*3*ny*nz + 
(y/3/6)*6*6*6*3*3*3*nz + 
(z/3/6)*6*6*6*3*3*3 + (x/3%6)*6*6*3*3*3 
+ (y/3%6)*6*3*3*3 + (z/3%6)*3*3*3 + 
(x%3)*3*3 + (y%3)*3 + (z%3)

• Very expensive
– Integer division and modulus
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What about that function?What about that function?

index = (x/3/6)*6*6*6*3*3*3*ny*nz + 
(y/3/6)*6*6*6*3*3*3*nz + 
(z/3/6)*6*6*6*3*3*3 + (x/3%6)*6*6*3*3*3
+ (y/3%6)*6*3*3*3 + (z/3%6)*3*3*3 + 
(x%3)*3*3 + (y%3)*3 + (z%3)

index = fx(x) + fy(y) + fz(z)

Efficiency of Data AccessEfficiency of Data Access

For isosurfacing, lookup 6 index values 
for 8 data value lookups (instead of 24)

L1 cache hits: 99.44%
L2 cache hits: 97.6%
Memory bandwidth: 2.1 MB/sec/processor
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Optimization ResultsOptimization Results

View Initial Bricking Hierarchy
+ Bricking

Skin: front 22.4 20.8 8.5
Bone: front 38.4 33.6 8.3
Bone: close 57.6 56.0 12.2
Bone: from feet 417.6 92.8 9.9

Times in seconds for a 512 x 512 image on 1 processor

Where time is spentWhere time is spent

Isosurface Traversal Intersection Shading
Skin 55% 22% 23%
Bone 66% 21% 13%
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ResultsResults

• Gigabyte dataset (1734x512x512)
• 8-15 Frames per second on 64 

processors
• Compare to Marching Cubes:

– bone isosurface: 9.9 million triangles
– skin isosurface: 6.7 million triangles
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SummarySummary

• Useful tool for interactively exploring 
large datasets on large machines

• Is complementary to marching cubes

• Attention to machine architecture critical 
to performance

Future WorkFuture Work

• Application to unstructured data
• Frameless rendering
• Ray tracing for other types of scientific 

data (streamlines, slices, others?)
• Time varying data (> main memory)
• Higher order interpolation methods
• Distributed implementation
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