
1

Interactive RT on PCsInteractive RT on PCs

Philipp SlusallekPhilipp Slusallek

For almost 20 years some researchers have For almost 20 years some researchers have 
argued that RT will eventually become argued that RT will eventually become 

faster than rasterizationfaster than rasterization
And nothing happenedAnd nothing happened

Answering Some LongAnswering Some Long--Standing Questions:Standing Questions:
• Could RT ever be faster than rasterization?
• Where would the crossover point be?
• What would be a good RT architecture (HW & SW)?
• What algorithms and data structure are required?



2

OverviewOverview

•• GoalsGoals
•• Why should IRT on PCs be possible today?Why should IRT on PCs be possible today?
•• Coherent RayCoherent Ray--TracingTracing

• General Optimizations
• Data Parallel SIMD Computation
• Coherent Algorithms

•• ComparisonsComparisons
• Software Ray-Tracers & OpenGL Hardware

•• ResultsResults

Why should IRT be possible at all?Why should IRT be possible at all?

•• PC hardware has changed dramaticallyPC hardware has changed dramatically
• Processors became much faster

•But increase was gradual
• Increasing gap between speed of CPU and memory

•But ray-tracing algorithm did not change
• SIMD extensions

•But difficult to take advantage of in ray-tracing
• Fast networking & network of PCs

•But good distribution of scene data is hard



3

Coherent Ray-TracingCoherent Ray-Tracing

•• Redesign of the rayRedesign of the ray--tracing algorithmtracing algorithm
• Adapt the algorithms to today's hardware
• Avoiding incoherent algorithms & implementation
• Exposing hidden coherence

•• OptimizationsOptimizations
• General optimization techniques (Factor: > 5)
• SIMD-extensions (Factor: > 2)
• Distributed computing (Factor: ~#computers)

General Optimizations: SimplificationGeneral Optimizations: Simplification

Today's CPUs have very long pipelinesToday's CPUs have very long pipelines
•• Simplify the code Simplify the code to avoid pipeline stallsto avoid pipeline stalls

• Choose simple algorithms
•E.g. BSP-tree traversal simpler than grids
•Easier to maintain and optimize (e.g. prefetching)

• Write tight inner loops
•E.g. better caching and handling of branches

• Avoid conditionals in inner loops 
•E.g. only triangles are supported



4

General Optimizations: CacheGeneral Optimizations: Cache

Main memory is too slow for CPU (1:10)Main memory is too slow for CPU (1:10)
(bandwidth and latency)(bandwidth and latency)

•• Keep relevant data in cachesKeep relevant data in caches
• Design algorithms for cache reuse à coherence
• Align data to cache lines (32 bytes)
• Separate data according to usage

•Store intersection data separate from shading data
• Prefetch data

General Optimizations: MailboxGeneral Optimizations: Mailbox

Writes to mailbox in triangle destroys cacheWrites to mailbox in triangle destroys cache
•• Separate mailbox from triangle dataSeparate mailbox from triangle data

• Build small hash table with (rayId, triangleId)
•Only few triangles are touched for each ray
•Hash table can mainly stay in first-level cache

• Simple hash function is enough
• Important for large multiprocessor systems



5

General Optimizations: Ray PacketsGeneral Optimizations: Ray Packets

Many rays are very similarMany rays are very similar
e.g. primary and shadow rays, others tooe.g. primary and shadow rays, others too

•• Handle rays together in ray packetsHandle rays together in ray packets
• Coherence increases with image resolution
• Reorder computations to be partly breadth-first
• Load data once and use it for all rays

•Reduces memory bandwidth
• Allows use of SIMD extensions

SIMD Optimization: SIMD Optimization: 

Most CPUs provide SIMD extensionsMost CPUs provide SIMD extensions
Intel: SSE (Others: 3DIntel: SSE (Others: 3D--Now!,Now!, AltiVecAltiVec, ...), ...)

•• Use SIMD: higher speed & lower bandwidthUse SIMD: higher speed & lower bandwidth
• Up to four parallel floating point operations
• Fetch data once to reduce bandwidth to cache
• Overhead due to restricted instruction set
• Program in assembly language



6

Coherent Algorithms: IntersectionCoherent Algorithms: Intersection

•• SIMD best used in data parallel fashionSIMD best used in data parallel fashion
• Little instruction-level parallelism
• Data parallel: 1 ray  ↔ 4 triangles

•Hard to always have four triangles ready
• Data parallel: 4 rays ↔ 1 triangle

•Must traverse rays in parallel à ray packets
•Standard intersection code
•Overhead for terminated rays

Coherent Algorithms: IntersectionCoherent Algorithms: Intersection

•• Performance Performance ResultsResults

• Comparison against already optimized C code
• Amortized cost for SSE code
• 20-36 million intersections/s (P-III, 800 MHz)

3.73.74040148148Max. Max. CyclesCycles

3.53.522227878Min. Min. CyclesCycles
SpeedupSpeedupSSESSECC



7

Coherent Algorithms: BSP-TraversalCoherent Algorithms: BSP-Traversal

•• Recursive Traversal AlgorithmRecursive Traversal Algorithm

Coherent Algorithms: BSP-TraversalCoherent Algorithms: BSP-Traversal

•• SIMDSIMD--TraversalTraversal
• Perform intersection and decision in parallel
• Combine decisions flags

•Make sure order is consistent
•Same ray origin or sign of direction

• Optimize recursion : Maintain own stack



8

Coherent Algorithms: BSP-TraversalCoherent Algorithms: BSP-Traversal

•• Overhead of SIMDOverhead of SIMD--Traversal Traversal (in %)(in %)

• Fixed resolution at 10242 (l), fixed 2x2 packet (r)
• Traversal still dominates rendering cost
• Overall speedup factor: 2 to 2.3

3.23.212.212.228.228.210.610.63.23.2MGF MGF confconf..
2.62.610.410.421.621.68.28.22.62.6MGF MGF officeoffice

1.41.45.85.811.811.84.44.41.41.4Shirley 6Shirley 6
1024102422256256228x88x84x44x42x22x2

Coherent Algorithms: ShadingCoherent Algorithms: Shading

•• SIMD PhongSIMD Phong--ShadingShading
• Fixed cost per image
• Rearrange data from ray packets

•Different depth: non-coherent shadow rays
•Different materials: different shaders

• Algorithm
•Parallel shadow rays to light sources
•SIMD shading using shadow flags

• Constant shading & texturing cost (<10%)
• Procedural shading is easy (noise)



9

Coherent Ray-Tracing : SummaryCoherent Ray-Tracing : Summary

•• SpeedupSpeedup
• Factor >5: General optimizations
• Factor >2: SIMD computations
• Further optimizations

•Better prefetching, more efficient shading

•• PerformancePerformance
• 200K to 1.5M primary rays/s
• Almost linear in # of reflection & shadow rays

Comparison: Test ScenesComparison: Test Scenes



10

Comparison: Software Ray-TracersComparison: Software Ray-Tracers

•• Time per primary ray (1 CPU, 512Time per primary ray (1 CPU, 51222, in , in µµµµs)s)

• Main memory: RTRT 256MB, others up 1GB
• Rayshade: Best grid resolution

∞∞∞∞
∞∞∞∞

14.814.8
15.515.5
12.812.8
10.910.9

FactorFactor

0.80.84.54.5OOMOOMOOMOOM8M8MSoda HallSoda Hall
1.51.52.92.9OOMOOMOOMOOM2.5M2.5MSoda, Floor5Soda, Floor5
1.11.13.43.450.550.572.172.1907K907KLibraryLibrary
1.11.13.63.657.257.256.056.0680K680KMGF theaterMGF theater
1.61.62.32.329.629.636.136.1256K256KMGF confMGF conf

2.12.1
RTRTRTRT

1.81.822.922.929.029.040K40KMGF officeMGF office
fpsfpsPOVPOVRayshadeRayshadeTrisTris

Comparison: OpenGL HardwareComparison: OpenGL Hardware

•• Frame rate with SGIFrame rate with SGI--Performer (512Performer (51222, fps), fps)

• HW: Octane V8, Onyx3/IR3, Geforce II GTS
• CPUs: Onyx: 8, PC: 2, Other: 1

0.80.8
1.51.5
1.11.1
1.11.1
1.61.6

1.81.8
RTRTRTRTPCPCOnyxOnyxOctaneOctaneTrisTris

OOMOOMOOMOOMOOMOOM8M8MSoda HallSoda Hall
0.60.61.51.50.50.52.5M2.5MSoda, Floor5Soda, Floor5
1.61.6441.51.5907K907KLibraryLibrary
1.51.566--12120.40.4680K680KMGF theaterMGF theater
5.45.4>10>10>5>5256K256KMGF confMGF conf

12.712.7>36>36>24>2440K40KMGF officeMGF office



11

Comparison: Scaling with Scene SizeComparison: Scaling with Scene Size
•• Render time ofRender time of subsampledsubsampled terrain (terrain (spfspf))

• Typical linear scaling of rasterization HW
• No occlusion to take advantage of

ConclusionsConclusions

•• Interactive RayInteractive Ray--Tracing is here to stayTracing is here to stay
• Huge speedup to other SW implementation

•Coherent algorithms, caching, and SIMD
• Logarithmic complexity in model size
• SW beats hardware for > 1M triangles (512x512)
• RT no longer limited by memory bandwidth

èè RayRay--Tracing is faster for large modelsTracing is faster for large models
Even if comparing SW to HW


