Interactive RT on PCs

Philipp Slusallek

For almost 20 years some researchers have
argued that RT will eventually become
faster than rasterization

And nothing happened

Answering Some Long-Standing Questions:
® Could RT ever be faster than rasterization?
* Where would the crossover point be?
* What would be a good RT architecture (HW & SW)?
* What algorithms and data structure are required?

Overview

® Goals
e \Why should IRT on PCs be possible today?
® Coherent Ray-Tracing

® General Optimizations

® Data Parallel SIMD Computation

® Coherent Algorithms

e Comparisons
* Software Ray-Tracers & OpenGL Hardware

* Results -SIGGRAPH -

Why should IRT be possible at all?

® PC hardware has changed dramatically

® Processors became much faster
® But increase was gradual

® Increasing gap between speed of CPU and memory
* But ray-tracing algorithm did not change

® SIMD extensions
* But difficult to take advantage of in ray-tracing

® Fast networking & network of PCs
* But good distribution of scene data is hard

Coherent Ray-Tracing

* Redesign of the ray-tracing algorithm
® Adapt the algorithms to today's hardware
® Avoiding incoherent algorithms & implementation
® Exposing hidden coherence
e Optimizations
® General optimization techniques (Factor: > 5)
* SIMD-extensions (Factor: > 2)
® Distributed computing (Factor: ~#computers)___

- r

General Optimizations: Simplification

Today's CPUs have very long pipelines

e Simplify the code to avoid pipeline stalls
® Choose simple algorithms
* E.g. BSP-tree traversal simpler than grids
® Easier to maintain and optimize (e.g. prefetching)
* Write tight inner loops
* E.g. better caching and handling of branches
® Avoid conditionals in inner loops

*E.g. only triangles are supported --SMIGRAPH

General Optimizations: Cache

Main memory is too slow for CPU (1:10)
(bandwidth and latency)
e Keep relevant data in caches

® Design algorithms for cache reuse - coherence
® Align data to cache lines (32 bytes)

® Separate data according to usage
e Store intersection data separate from shading data

® Prefetch data

General Optimizations: Mailbox

Writes to mailbox in triangle destroys cache

e Separate mailbox from triangle data

® Build small hash table with (rayld, triangleld)
* Only few triangles are touched for each ray
* Hash table can mainly stay in first-level cache

® Simple hash function is enough
® Important for large multiprocessor systems

General Optimizations: Ray Packets

Many rays are very similar
e.g. primary and shadow rays, others too

e Handle rays together in ray packets
® Coherence increases with image resolution
® Reorder computations to be partly breadth-first
® Load data once and use it for all rays
* Reduces memory bandwidth
* Allows use of SIMD extensions

SIMD Optimization:

Most CPUs provide SIMD extensions
Intel: SSE (Others: 3D-Now!, AltiVec, ...)
e Use SIMD: higher speed & lower bandwidth

® Up to four parallel floating point operations

® Fetch data once to reduce bandwidth to cache
® Overhead due to restricted instruction set

® Program in assembly language

Coherent Algorithms: Intersection

e SIMD best used in data parallel fashion
® Little instruction-level parallelism
® Data parallel: 1 ray « 4 triangles
* Hard to always have four triangles ready
® Data parallel: 4 rays « 1 triangle
* Must traverse rays in parallel - ray packets
e Standard intersection code
* Overhead for terminated rays

Coherent Algorithms: Intersection

e Performance Results

| |c |ssE_|Speedup|
i cycies [ENZZRI[Es)
Ve Cycles |46 [0 |37

* Comparison against already optimized C code

* Amortized cost for SSE code
® 20-36 million intersections/s (P-11l, 800 MHz)

Coherent Algorithms: BSP-Traversal

® Recursive Traversal Algorithm

Coherent Algorithms: BSP-Traversal

e SIMD-Traversal

® Perform intersection and decision in parallel

® Combine decisions flags
* Make sure order is consistent
e Same ray origin or sign of direction

® Optimize recursion : Maintain own stack

Coherent Algorithms: BSP-Traversal

e Overhead of SIMD-Traversal (in %)

| [2x2 [4x4 |8x8 2567

MGF conf. |8.2

® Fixed resolution at 10242 (1), fixed 2x2 packet (r)
® Traversal still dominates rendering cost

© Overall speedup factor: 2t0 2.3 -SMGRAPH

Coherent Algorithms: Shading

e SIMD Phong-Shading

® Fixed cost per image

® Rearrange data from ray packets
* Different depth: non-coherent shadow rays
e Different materials: different shaders

® Algorithm
* Parallel shadow rays to light sources
* SIMD shading using shadow flags

® Constant shading & texturing cost (<10%)

= Procedural shading is easy (noise) ~SIGGRAPH"

Coherent Ray-Tracing : Summary

® Speedup
® Factor >5: General optimizations
® Factor >2: SIMD computations
® Further optimizations
* Better prefetching, more efficient shading
® Performance
® 200K to 1.5M primary rays/s
® Almost linear in # of reflection & shadow rays

Comparison: Test Scenes
——] —]

T

.r.._‘..-ln.'.-. &k I'lrulf:.
"rin T
e bl w1

i L LR
i i I!‘ i] .I'l
|

Comparison: Software Ray-Tracers

® Time per primary ray (1 CPU, 5122, in)

[7ris |Rayshade POV [RTRT [Factor [fps
\

Soda il JRBMI 0oM[oo 48|

® Main memory: RTRT 256MB, others up 1GB
* Rayshade: Best grid resolution —W_

Comparison: OpenGL Hardware

® Frame rate with SGI-Performer (5122, fps)

~ Tiris Joctane Jomyx [[RTRT
05| 15| o6 15

® HW: Octane V8, Onyx3/IR3, Geforce Il GTS
® CPUs: Onyx: 8, PC: 2, Other: 1 - SICGRAPH

10

Comparison: Scaling with Scene Size

* Render time of subsampled terrain (spf)

® Typical linear scaling of rasterization HW
* No occlusion to take advantage of

Conclusions

® |nteractive Ray-Tracing is here to stay

® Huge speedup to other SW implementation
* Coherent algorithms, caching, and SIMD

® Logarithmic complexity in model size
® SW beats hardware for > 1M triangles (512x512)
* RT no longer limited by memory bandwidth
=» Ray-Tracing is faster for large models
Even if comparing SW to HW

11

