

SIGGRAPH 2001

Course 11

Tracking: Beyond 15 Minutes of Thought

Gary Bishop

 1,2

B. Danette Allen

2

University of North Carolina at Chapel Hill
Department of Computer Science
Chapel Hill, NC 27599-3175

http://www.cs.unc.edu/~{bdallen, gb, welch}

Greg Welch

 1,2

1. Organizer
2. Presenter

{bdallen, gb, welch}@cs.unc.edu

©Copyright 2001 by ACM, Inc.
http://info.acm.org/pubs/toc/CRnotice.html

http://info.acm.org/pubs/toc/CRnotice.html

2

Course 11—Tracking: Beyond 15 Minutes of Thought

TABLE OF CONTENTS

TABLE OF CONTENTS . 3
LIST OF ABBREVIATIONS. 5
Preface. 7
Course Syllabus . 8

1. Introduction . 9
1.1 Course Description . 9
1.2 Speaker/Author Biographies. 10
1.3 Acknowledgements. 11

2. Background . 13
2.1 Basic Coordinate Transforms . 13
2.2 Probability and Random Variables . 23

3. Classifications of Devices and Systems. 31
3.1 By Physical Medium. 31
3.2 Sensor Configurations. 52
3.3 Hybrid Systems. 56

4. Approaches. 59
4.1 Traditional Closed-Form Approaches. 59
4.2 Stochastic Approaches . 63

5. Problems and Insights . 71
5.1 Classification of Error. 71
5.2 Total Tracker Error . 75
5.3 Motion Prediction . 77

A. An Introduction to the Kalman Filter . 81
A.1 The Discrete Kalman Filter . 81
A.2 The Extended Kalman Filter (EKF). 86
A.3 An Example: Estimating a Random Constant . 91

B. Tracking Bibliography . 97

C. Related Papers . 117
3

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
4

Course 11—Tracking: Beyond 15 Minutes of Thought

LIST OF ABBREVIATIONS

1D one-dimensional

2D two-dimensional

3D three-dimensional

6D six-dimensional

A/D analog-to-digital

AR Augmented Reality

cm centimeter

CS coordinate system

DLP digital light projector

DOF degree of freedom

EKF extended Kalman filter

ft feet

GPS Global Positioning System

Hz Hertz

HMD head-mounted display

kHz kilohertz

KF Kalman filter

LCD liquid crystal display

LED light emitting diode

m meter

mm millimeter

ms millisecond

MCAAT multiple-constraints-at-a-time

PV position-velocity

RMS root-mean-square

s second

SCAAT single-constraint-at-a-time

UNC-CH University of North Carolina at Chapel Hill

VE virtual environment

VR Virtual Reality
5

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
6

Preface
Nearly everyone of a technical bent who has thought about the problem of tracking for
graphics for 15 minutes or so believes they have an easy answer—“Why don’t you just…”
This course (new for SIGGRAPH 2001) is designed to take you beyond those first few
minutes of thought with an “under the hood” look at how these systems work. Our goal is
to convey a basic understanding of the characteristics of the available technologies, their
fundamental limitations, in what cases those limitations hurt you, and some things you can
do to improve your results.

In putting together this course pack we decided not to simply include copies of the slides
for the course presentation, but to attempt to put together a small booklet of information
that could stand by itself. The course slides and other useful information, including an
electronic bibliographic version of “Tracking Bibliography” on page 97 are available at

http://www.cs.unc.edu/~tracker/ref/s2001/tracker/

We expect that you (the reader) have a basic mathematical background, sufficient to
understand explanations involving beginning statistics, random signals, and geometric
transformations.
7

Course Syllabus

Table 1.1:

Time Speaker Topic Time

1:30 PM Bishop Welcome and Introduction 0:15

1:45 PM Allen Tracking technologies and configurations 0:45

2:30 PM Welch User and sensor uncertainty/information 0:30

3:00 PM - Break 0:15

3:15 PM Welch Pose estimation 1:00

4:15 PM Bishop Motion prediction 0:30

4:45 PM Bishop Conclusions (summary, resources, etc.) 0:15

5:00 PM

Total time 3:30
8

1. Introduction
One of the important problems in Virtual Environment (VE) research today is that of
providing a fast, accurate, and unobtrusive method for reliably tracking a computer user’s
real-world position and orientation or pose. Such tracking is necessary in VE systems
because a user must continually be provided with two-dimensional computer generated
images that match the user’s three-dimensional real-world position and orientation.
Similarly, human motion capture systems are often used for physiological studies (e.g.,
analysis of athletic motion) or special effects in motion pictures. Usually if the user’s
position and orientation are not tracked accurately or fast enough, disturbing or even
harmful effects can be observed.

Systems for tracking and motion capture for interactive computer graphics have been
explored for over 30 years (Sutherland, 1968). Throughout the years commercial and
research teams have explored mechanical, magnetic, acoustic, inertial, and optical
technologies. Complete historical surveys include (Bhatnagar, 1993; Burdea & Coiffet,
1994; Meyer, Applewhite, & Biocca, 1991; Meyer, Applewhite, & Biocca, 1992; Mulder,
1994, 1998). Commercial magnetic tracking systems for example (Ascension, 2000;
Polhemus, 2000) have enjoyed popularity as a result of a small user-worn component and
relative ease of use. Optical systems have been developed for 3D motion capture (MAC,
2000; Woltring, 1974, 1976) and 6D tracking for visual simulations via head-worn
displays (Wang, 1990; Wang et al., 1990; Ward, Azuma, Bennett, Gottschalk, & Fuchs,
1992; Welch et al., 1999, 2001). Recently inertial hybrid systems have been gaining
popularity because of the reduced high-frequency noise and direct measurements of
derivatives (Foxlin, Harrington, & Pfeifer, 1998; Intersense, 2000).

1.1 Course Description

Every year, dozens of vendors display different systems for motion capture and tracking at
the SIGGRAPH exhibition, while researchers continue to pursue new approaches in the
laboratory. Why are there so many different approaches to this seemingly simple problem?
How do the systems differ? What are the strong and weak points of each? How can you
decide which is appropriate for your application?

We will attempt to answer these questions and more in this course on some fundamental
technologies behind tracking and motion-capture systems. We will use actual systems
(commercially available) as examples, describing some algorithms used in popular
magnetic, inertial, and optical tracking systems, relating the pros and cons of the systems
to the fundamental technologies and the algorithms. While there have been previous
SIGGRAPH courses on motion capture, they have primarily concentrated on the graphics
9

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001

application. Instead we will take you “under the hood” of several systems so that you
might better understand the performance (or lack thereof) that you experience with
different applications, and perhaps improve your results by adjusting your setup to better
match the technology.

1.2 Speaker/Author Biographies

Danette Allen is a Ph.D. Candidate in the Department of Computer Science at the
University of North Carolina at Chapel Hill. Her primary research interest is tracking
technologies but her interests also include hardware and software for man-machine
interaction and virtual environments. Allen graduated from North Carolina State
University with degrees in Electrical Engineering and Computer Engineering in 1988 and
1989. She received her Master’s Diploma in Business Administration from Manchester
Business School, U.K. in 1990. In 1997, she received an M.E. in computer engineering
from Old Dominion University. Allen began working at NASA Langley Research Center
(LaRC) in Hampton, Virginia in 1991 where she is currently employed. She is a recipient
of NASA’s Silver Snoopy award, the astronauts’ award for outstanding performance in
flight safety and mission success. She is a member of the IEEE Computer Society and the
Association of Computing Machinery.

Gary Bishop is an Associate Professor in the Department of Computer Science at the
University of North Carolina at Chapel Hill. His research interests include hardware and
software for man-machine interaction, 3D interactive computer graphics, virtual
environments, tracking technologies, and image-based rendering. Bishop graduated with
highest honors from the Southern Technical Institute in Marietta, Georgia, with a degree in
Electrical Engineering Technology in 1976. He completed his Ph.D. in computer science
at UNC-Chapel Hill in 1984. Afterwards he worked for Bell Laboratories and Sun
Microsystems before returning to UNC in 1991.

Greg Welch is a Research Assistant Professor in the Department of Computer Science at
the University of North Carolina at Chapel Hill. His research interests include hardware
and software for man-machine interaction, 3D interactive computer graphics, virtual
environments, tracking technologies, tele-immersion, and projector-based graphics. Welch
graduated with highest distinction from Purdue University with a degree in Electrical
Engineering Technology in 1986 and received a Ph.D. in computer science from UNC-
Chapel Hill in 1996. Before coming to UNC he worked at NASA’s Jet Propulsion
Laboratory and Northrop-Grumman’s Defense Systems Division. He is a member of the
IEEE Computer Society and the Association of Computing Machinery.
10

Course 11—Tracking: Beyond 15 Minutes of Thought

1.3 Acknowledgements

We thank Leandra Vicci (UNC-Chapel Hill), Richard Holloway (3rdTech, Inc.), and
Warren Robinett for their valuable contributions to this course pack. In particular we thank
Leandra for her contributions to Section 3.1 on classifications of tracking approaches by
physical medium, and Rich for permission to make use of material from his Ph.D.
dissertation (Holloway, 1995) in Section 5.1 on tracking error.
11

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
12

2. Background

2.1 Basic Coordinate Transforms

This section briefly discusses the basic 2D and 3D geometrical transformations used in
computer graphics and tracking. Most of the information is taken from (Foley, van Dam,
Feiner, & Hughes, 1997) and (Robinett & Holloway, 1994), the latter of which is included
in Appendix C of this course pack.

We assume a right-handed coordinate system as shown in Figure 2.1.

Translation, rotation and scaling are the essential transformations in computer graphics
and tracking. Translation displaces points by a fixed distance in a given direction. Scaling
increases or decreases the size of an object. Rotation revolves a point around a specified
axis. Figure 2.2 illustrates these transformations in 2D space.

Figure 2.1: Right-handed coordinate system

x

y

z

x

y

x

y

x

y

Figure 2.2: Translation, scaling and rotation (around the x-axis) in 2D
13

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001

In a right-handed coordinate system, positive rotations are defined such that a
counterclockwise rotation transforms one positive axis into another. table 2.1 (Foley et al.,
1997) follows from this convention.

2.1.1 Coordinate Systems

Coordinate systems serve as a 6D basis to which all points, lines, objects, etc. are
referenced. For example, in describing the human head, we might declare a head
coordinate system with its origin at the extreme tip of the nose. From this origin, we can
determine through a series of transformations (translation, rotation and scaling) where the
eyes, ears, mouth, etc. are located. Beyond this we can think about a world coordinate
system which references the origin of the head coordinate system in the world.

Tracker measurements are provided in the tracker coordinate system. Consider an acoustic
tracker that provides a range measurement from room-mounted transmitters to a
sensor mounted on the user. This , measured from the transmitter to the sensor, is
referenced to the tracker’s coordinate system. What we want is the user’s head position in
room or world coordinates. This is further complicated if we want to know the position of
the user’s eyes. We must transform from the trackers’s coordinate frame to the coordinate
frame of the user’s head. If we are rendering in stereo, from the user’s head coordinate
frame, we transform to the both of the user’s eyes.

2.1.2 Affine Transformations

With respect to computer graphics, we use the term transform to refer to the mathematical
operation of modifying a graphics primitive by adding, multiplying, and even dividing its
numerical elements achieve such effects as translation, rotation, and perspective
projection. In particular, translation, rotation and scaling are classified as affine
transformations. They preserve parallelism of lines but not angles and lengths. Another
less often used affine transformation is a form of distortion known as shearing.

Axis of
Rotation

Direction of
Positive
Rotation

x y to z

y z to x

z x to y

Table 2.1: Positive Rotations

90°

d [m]
d

14

Course 11—Tracking: Beyond 15 Minutes of Thought

2.1.2.1 2D Transformations

We define a point in 2D space as a column vector,

and a transformed point as

We left-multiply a point vector, , by a transformation matrix, M, to acquire a new point
vector, , such that .

We can translate points to new positions by adding distances, d, to the coordinates of the
original points. We define a translation vector, T, such that

and the transformed point . where

Points can be scaled (stretched or shrunk) in the x and y directions by a scaling matrix, S,
such that

and

P x

y
=

P′ x′
y′

.=

P
P′ P′ MP=

T
dx

dy

=

P′ P T+=

x′ x dx+=

and

y′ y dy.+=

S
sx 0

0 sy

=

x′ x sx⋅=

and

y′ y sy.⋅=
15

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Points can be rotated around the origin by an angle, , with a rotation matrix, R, where

and

Any and all of the transformations can be applied multiple times and in succession. For
example, we can translate a point, scale it, rotate it and translate it again with

Suppose we have the following object as shown in Figure 2.3 (Foley et al., 1997)

.

The series of transformations described above might appear as shown in Figure 2.4.

2.1.2.2 Homogeneous Coordinates

Notice that rotation, scaling and shearing are all multiplicative transforms while
translation is an additive transform. We would like to be able to treat these transformations
consistently to simplify transformation combinations. Homogeneous coordinates allow us

θ

R θcos θsin–

θsin θcos
=

x′ x θ y θsin⋅–cos⋅=

and

y′ x θ y θ.cos⋅+sin⋅=

P′ T 2 R S T 1 P+()⋅ ⋅().+=

x

y

Figure 2.3: Object to be transformed

x

y

x

y

x

y

x

y

x

y

Figure 2.4: Series of transformations on an object
16

Course 11—Tracking: Beyond 15 Minutes of Thought
to apply all four transformations multiplicatively. In homogeneous coordinates, we add a
third coordinate in 2D space, . Now a single point, , is represented as a three-element
column vector where

When we add an “extra” dimension to the 2D coordinates, every 2D point in 3D
space represents a point along a line that passes through where we want the
specific point where . If does not equal 1, we simply divide all
three elements by to force .

Any two sets of points and represent the same point if one is a
multiple of the other. Dividing and by and respectively will result in the
same coordinates . Points at are points at infinity.

In 2D homogeneous coordinates, we have the following transformation matrices for
translation, scaling and rotation:

w P

P
x

y

w

 where w 0≠ and typically w 1.= =

x y,[] T

x y w, ,[] T

x1 y1 w1, ,[] T w1 1= w
w w 1=

 w = 3
 w = 2
 w = 1

Figure 2.5: 2D homogeneous coordinate space

xi yi wi, ,[] T x j y j w j, ,[] T

Pi P j wi w j
x y 1, ,[] T w 0=

T

1 0 dx

0 1 dy

0 0 1

=

R
θcos θsin– 0

θsin θcos 0

0 0 1

=

S

sx 0 0

0 sy 0

0 0 1

.=
17

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Now we can translate a point, scale it, rotate it and translate it again with

2.1.2.3 3D Transformations

We extend the idea of homogeneous coordinates to 3D space and represent a point as a 4-
element vector, , such that

and we have the following transformation matrices for translation and scaling:

Rotation around a three-coordinate axis is described in the following section.

2.1.3 Representing and working with orientation and rotations

We represent orientation using a rotation from some known orientation just like we
represent positions as a translation from some known position origin. The important
difference between orientation and position is that orientation space is wrapped on itself in
a way that linear position space is not. For example a rotation about the X axis of 45
degrees will produce the same orientation as a rotation of 405 degrees about the X axis. To
make matters more confusing there are also combinations of rotations about Y and Z that
can produce the same final orientation.

This wrapped nature of orientations is a constant source of difficulty when we attempt to
implement even simple operations such as linear interpolation and filtering. We must be
prepared to deal with apparent discontinuities in orientation that are really not
discontinuities at all but rather differing ways to get to the same place.

P′ T 2 R S T 1 P.⋅⋅ ⋅⋅=

P

P

x

y

z

w

 where w 0≠ and typically w 1.= =

T

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

=

S

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

.=
18

Course 11—Tracking: Beyond 15 Minutes of Thought
Rotation Matrix

The most commonly used representation for rotations is the rotation matrix as described in
the previous section on 3D transforms. The upper 3 by 3 sub matrix of the 4 by 4
homogenous rotation transform is a 3D rotation matrix. Its inverse is equal to its transpose
and its determinant is 1. We can usefully interpret the columns of a rotation matrix as the
new coordinate axes projected onto the old (or origin) coordinate axes.

The rotation matrix is the representation of choice for transforming points because only a
simple and efficiently implemented matrix multiply is required. On the other hand, they
are inappropriate for filtering or interpolation. Addition and subtraction of elements will
almost certainly result in a matrix that is not a proper rotation.

Euler Angles

General rotations in 3D can be expressed as three successive rotations about different
axes. For example, a transformation from reference axes to a new coordinate frame may be
expressed as follows:

(2.1)

Finally, the full transformation can be expressed as the product of these three separate
transformations.

(2.2)

Notice the asymmetry in the above matrix in relationship to the three angles. The order of
the composition matters because matrix multiplication is not commutative. The
mathematics is trying to tell us that the axes interact. Unfortunately the three Euler angles
don’t indicate this to us at all. If we attempt to filter or interpolate the three angles
independently we are ignoring exactly this critical interaction.

rotation ψ about z axis, R1

ψcos ψsin 0

ψsin– ψcos 0

0 0 1

=

rotation θ about y axis, R2

θcos 0 θsin–

0 1 0

θsin 0 θcos

=

rotation φ about x axis, R3

1 0 0

0 φcos φsin

0 φsin– φcos

=

R R3R2R1=

R
ψ θcoscos ψ θcossin θsin–

φ ψ θsincossin φ ψsincos– φ ψcoscos φ ψ θsinsinsin+ φ θcossin

φ ψ θsincoscos φ ψsinsin+ φ ψ θsinsincos φ ψcossin– φ θcoscos

=

19

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Yaw, Pitch, and Roll

People often used the words yaw, pitch, and roll to refer to orientations about a self-
referenced coordinate frame. (Historically these terms have been used in navigation such
as on ships and in planes.) Specifically if you are sitting upright, looking straight ahead,
yaw would refer to rotating your head to the left or right around the axis of your neck and
spine, pitch would refer to elevating or declining your chin up or down, and roll would
refer to leaning your head toward one shoulder or the other. In other words if you place a
right-handed coordinate system at the base of your head such that the Z axis is up and you
are looking down the Y axis, yaw, pitch, and roll would correspond to rotation about the Z,
X, and Y axes respectively.

Quaternions

Hamilton (Hamilton, 1853) invented quaternions to enable division of vectors. You can
find excellent introductions to quaternions in a SIGGRAPH paper by Shoemake
(Shoemake, 1985) and in the book “Quaternions and Rotation Sequences” by Kuipers
(Kuipers, 1998). We have also included (Vicci, 2001) in Appendix C.

A quaternion consists of a vector augmented by a real number to make a four-element
entity. It has a real part and a vector part . If is zero, represents an ordinary
vector; if is zero, it represents an ordinary real number. A unit quaternion has the sum
of the squares of its four elements equal to 1.

Unit quaternions represent rotations. The vector part of the quaternion specifies the axis of
rotation. The real part of the quaternion is the cosine of half the rotation angle. Thus, a
quaternion represents a rotation of about the axis following the
right-hand rule.

From the above, we can see that the identity rotation is represented by the quaternion
 which specifies a rotation of 0 degrees about an unspecified axis. Here are

some other simple rotations:

Quaternion addition is accomplished simply by adding like parts; real part to real part and
vector part to vector part.

Multiplication of quaternions is defined as

(2.3)

Q
Qr Qv Qr Q

Qv

Qr Qv,{ } 2 Qracos Qv

1 0 0 0, ,[]{ , }

90 degrees about Y
1

2
------- 0

1

2
------- 0, ,,

,=

270 degrees about Z
1–

2
------- 0 0.

1

2
-------,,

.=

P QR=

Pr Pv{ , } QrRr Qv Rv⋅– , QrRv RtQv Qv Rv⊗+ +{ }=
20

Course 11—Tracking: Beyond 15 Minutes of Thought
This equation says that the real part of the result is the product of the real parts minus the
inner product of the vector parts. The vector part of the result is the real part of times
the vector part of , plus the real part of times the vector part of , plus the cross
product of the vector parts. Quaternion multiplication composes the rotations of the two
quaternions.

The inverse of a quaternion has the same real part and the negative of the vector part.

In order to rotate a point by a quaternion we evaluate where the
multiplication is quaternion multiplication. In this multiplication, think of the vector as
the vector part of a quaternion with zero real part. Though it isn’t obvious, this triple
product will always result in a quaternion with a zero real part. The vector part will be the
rotated point.

To convert a quaternion to an equivalent rotation matrix we can evaluate:

(2.4)

Watch out when you are given four numbers said to represent a quaternion rotation; there
is no agreement on the order of the elements. Some systems specify the real part followed
by the vector part, others specify the real part last. It is impossible to tell by examining the
four elements which is the real part unless the rotation is known.

The unit quaternions can be thought of as points on a 4D sphere. Each point represents a
rotation. Each point would represent a unique orientation except for the difficulty that
points connected by a line through the center of the sphere (that is Q and -Q) represent the
same rotation. In a time sequence of quaternions we sometimes see apparent jumps that
are actually just a result of this ambiguity. When filtering or interpolating in a sequence it
is important to handle these apparent discontinuities.

Interpolations among quaternions are properly carried out with spherical interpolation on
the 4-sphere (Shoemake, 1985). Linear operations are equivalent to moving along a chord
of the sphere rather than on the surface. In a small region, the sphere appears to be flat so
the locally linear operations are a good approximation. Just be sure to renormalize the
quaternions that result. Don’t attempt linear operations on quaternions that are far apart in
orientation. Vicci (Vicci, 2001) introduces a new approach to averaging rotations and
orientations represented as quaternions.

Small Euler Angles

When the angles are very small, the Euler angle rotation matrix above takes on a
particularly simple and useful form. For small angles (expressed in radians)
and . The sine approximation has relative error of about 0.5% at 10 degrees and

Q
R R Q

S Q QSQ
1–

S

w x y z, ,[],{ }

R

1 2y
2

2z
2

–– 2xy 2wz+ 2xz 2wy–

2xy 2wz– 1 2x
2

2z
2

–– 2yz 2wx+

2xz 2wy+ 2yz 2wx– 1 2x
2

2y
2

––

=

αsin α→
αcos 1→
21

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
the error decreases quadratically as the angle gets smaller. The relative error of the cosine
approximation is about 3 times that in the sine approximation. The rotation matrix in
equation (2.2) reduces with the small angle approximation to

In this form, the angles behave linearly allowing simple interpolation and filtering. This
has become our representation of choice. As described in (Welch & Bishop, 1997), we
represent orientation with two terms, a global orientation represented as a quaternion and a
local perturbation of that orientation represented as small Euler angles. All filtering
operations are done on the small angles making use of their local linearity. The filtered
angles are used to update the global orientation so that the small angle property is
preserved.

Small Euler angles also have a simple relationship to quaternions. For small angles the
approximate quaternion is:

2.1.4 Coordinate System Transforms

Let denote a transform (scale, rotation, translation) from coordinate system B to
coordinate system A. We represent points as column vectors, therefore
is the transform of the point in coordinate system B, by , to point in
coo rd ina t e sy s t em A . The compos i t i on o f two t r an s fo rms i s g iven by

 and will transform a point in coordinate system C into coordinate
system A. Figure 2.6 (Robinett & Holloway, 1994) shows a diagram of a point and its
coordinates in coordinate systems A and B.

We need a sequence of transformations to express the target position in the world
coordinate system, a Head_World transform. As described in (Robinett & Holloway,
1994), the primary function of the Head_World transform is to contain the measurement

R
1 ψ θ–

ψ 1 φ
θ φ– 1

=

Q 1 φ
2

– θ
2

– ψ
2

– φ θ ψ, ,[]{ , }=

M A_B
pA M A_B pB⋅=

pB M A_B pA

M A_C M A_B MB_C⋅=
p

A

B

pB
pA

M A_B

Figure 2.6: Transformation M A_B
22

Course 11—Tracking: Beyond 15 Minutes of Thought
made by the tracker of head position and orientation, which is updated each display frame
as the user’s head moves around. The tracker hardware measures the position and
orientation of a small movable sensor with respect to the fixed tracker coordinate frame.

The two components of tracker hardware, the tracker’s base and the tracker’s sensor, have
native coordinate systems associated with them by the tracker’s hardware and software. If
the tracker base is bolted onto the ceiling of the room, this defines a coordinate system for
the room with the origin up on the ceiling and with the X, Y, and Z axes pointing
whichever way it was mechanically convenient to mount the tracker base onto the ceiling.
In a VR environment, the sensor is mounted somewhere on the rigid structure of a head-
mounted display, and the HMD inherits the native coordinate system of the sensor.

So, the Head_World Transform is actually comprised of a series of transforms from World
to Tracker Base to Head Sensor to Head. The transformation is decomposed into

We can transform to the user’s eyes or any other point in the user’s coordinate system with
an additional transformation such as to transform from the head to the left eye.

2.2 Probability and Random Variables

What follows is a very basic introduction to probability and random variables. For more
extensive coverage see for example (Brown & Hwang, 1996; Kailath, Sayed, & Hassibi,
2000; Maybeck, 1979).

2.2.1 Probability and Random Variables

Most of us have some notion of what is meant by a “random” occurrence, or the
probability that some event in a sample space will occur. Formally, the probability that the
outcome of a discrete event (e.g., a coin flip) will favor a particular event is defined as

.

The probability of an outcome favoring either or is given by

. (2.5)

If the probability of two outcomes is independent (one does not affect the other) then the
probability of both occurring is the product of their individual probabilities:

. (2.6)

For example, if the probability of seeing a “heads” on a coin flip is 1/2, then the
probability of seeing “heads” on both of two coins flipped at the same time is 1/4. (Clearly
the outcome of one coin flip does not affect the other.)

MH_W MH_HS MHS_TB MTB_W .⋅ ⋅=

MLE_H

P A() Possible outcomes favoring event A
Total number of possible outcomes
--=

A B

P A B∪() P A() P B()+=

P A B∩() P A()P B()=
23

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Finally, the probability of outcome given an occurrence of outcome is called the
conditional probability of given , and is defined as

. (2.7)

Random Variables

As opposed to discrete events, in the case of tracking and motion capture we are more
typically interested with the randomness associated with a continuous electrical voltage or
perhaps a user’s motion. In each case we can think of the item of interest as a continuous
random variable. A random variable is essentially a function that maps all points in the
sample space to real numbers. For example, the continuous random variable might
map time to position. At any point in time (time is the sample space) would tell us
the expected position.

In the case of continuos random variables, the probability of any single discrete event is
in fact 0. That is, . Instead we can only evaluate the probability of events within
some interval. A common function representing the probability of random variables is
defined as the cumulative distribution function:

. (2.8)

This function represents the cumulative probability of the continuous random variable
for all (uncountable) events up to and including . Important properties of the cumulative
distribution function are

Even more commonly used than equation (2.8) is its derivative, known as the probability
density function:

. (2.9)

Following on the above given properties of the cumulative probability function, the
density function also has the following properties:

A B
A B

P A B() P A B∩()
P B()

------------------------=

X t()
t X t()

A
P A() 0=

FX x() P ∞– x],(=

X
a

1. FX x() 0 as x ∞–→→

2. FX x() 1 as x +∞→→

3. FX x() is a non-decreasing function of x.

f X x()
xd

d
FX x()=

1. f X x() is a non-negative function

2. f X x() xd
∞–

∞
∫ 1.=
24

Course 11—Tracking: Beyond 15 Minutes of Thought
Finally note that the probability over any interval is defined as

.

So rather than summing the probabilities of discrete events as in equation (2.5), for
continuous random variables one integrates the probability density function over the
interval of interest.

Mean and Variance

Most of us are familiar with the notion of the average of a sequence of numbers. For some
 samples of a discrete random variable , the average or sample mean is given by

.

Because in tracking we are dealing with continuous signals (with an uncountable sample
space) it is useful to think in terms of an infinite number of trials, and correspondingly the
outcome we would expect to see if we sampled the random variable infinitely, each time
seeing one of possible outcomes . In this case, the expected value of the discrete
random variable could be approximated by averaging probability-weighted events:

.

In effect, out of trials, we would expect to see occurrences of event , etc. This
notion of infinite trials (samples) leads to the conventional definition of expected value for
discrete random variables

(2.10)

for possible outcomes and corresponding probabilities . Similarly for
the continuous random variable the expected value is defined as

. (2.11)

Finally, we note that equation (2.10) and equation (2.11) can be applied to functions of the
random variable as follows:

(2.12)

a b,[]

PX a b,[] f X x() xd
a

b

∫=

N X

X
X1 X2 … XN+ + +

N
--=

n x1…xn

X
p1N()x1 p2N()x2 … pnN()xN+ + +

N
---≈

N p1N() x1

Expected value of X E X() pixi
i 1=

n

∑= =

n x1…xn p1… pn

Expected value of X E X() x f X x() xd
∞–

∞
∫= =

X

E g X()() pig xi()
i 1=

n

∑=
25

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
and

. (2.13)

The expected value of a random variable is also known as the first statistical moment. We
can apply the notion of equation (2.12) or (2.13), letting , to obtain the th

statistical moment. The th statistical moment of a continuous random variable is given
by

. (2.14)

Of particular interest in general, and to us in particular, is the second moment of the
random variable. The second moment is given by

. (2.15)

When we let and apply equation (2.15), we get the variance of the
signal about the mean. In other words,

Variance is a very useful statistical property for random signals, because if we knew the
variance of a signal that was otherwise supposed to be “constant” around some value—the
mean, the magnitude of the variance would give us a sense how much jitter or “noise” is in
the signal.

The square root of the variance, known as the standard deviation, is also a useful statistical
unit of measure because while being always positive, it has (as opposed to the variance)
the same units as the original signal. The standard deviation is given by

.

Normal or Gaussian Distribution

A special probability distribution known as the Normal or Gaussian distribution has
historically been popular in modeling random systems for a variety of reasons. As it turns
out, many random processes occurring in nature actually appear to be normally
distributed, or very close. In fact, under some moderate conditions, it can be proven that a
sum of random variables with any distribution tends toward a normal distribution. The
theorem that formally states this property is called the central limit theorem (Brown &
Hwang, 1996; Maybeck, 1979). Finally, the normal distribution has some nice properties
that make it mathematically tractable and even attractive.

E g X()() g x() f X x() xd
∞–

∞
∫=

g X() Xk= k
k X

E Xk() xk f X x() xd
∞–

∞
∫=

E X2() x2 f X x() xd
∞–

∞
∫=

g X() X E X()–=

Variance X E X E X()–()2[]=

E X2() E X()2.–=

Standard deviation of X σX Variance of X= =
26

Course 11—Tracking: Beyond 15 Minutes of Thought
The normal distribution is characterized by the following probability density function:

where the expected value is

and the squared-variance is

.

Graphically, the normal distribution is what is likely to be familiar as the “bell-shaped”
curve shown below in Figure 2.7.

Independence and Conditional Probability for Continuous Variables

As with the discrete case and equations (2.6) and (2.7), independence and conditional
probability are defined for continuous random variables. Two continuous random variables

 and are said to be statistically independent if their joint probability is
equal to the product of their individual probabilities. In other words, they are considered
independent if

.

f X x()
1

2πσ
-------------- 1

2σ2
---------– x mx–()2exp=

mx x f X x() xd
∞–

∞
∫=

σ2 x mx–()2 f X x() xd
∞–

∞
∫=

f X x()

σ

x ∞→x ∞–→ mx0

Figure 2.7: The Normal or Gaussian probability distribution function.

X Y f XY x y,()

f XY x y,() f X x() f Y y()=
27

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
In addition, Bayes’ rule follows from (2.7), offering a way to specify the probability
density of the random variable given (in the presence of) random variable . Bayes’
rule is given as

.

Spatial vs. Spectral Signal Characteristics

In the previous section we looked only at the spatial characteristics of random signals. As
stated earlier, the magnitude of the variance of a signal can give us a sense of how much
jitter or “noise” is in the signal. However a signal’s variance says nothing about the
spacing or the rate of the jitter over time. Here we briefly discuss the temporal and hence
spectral characteristics of a random signal. Such discussion can be focused in the time or
the frequency domain. We will look briefly at both.

A useful time-related characteristic of a random signal is its autocorrelation—its
correlation with itself over time. Formally the autocorrelation of a random signal is
defined as

(2.16)

for sample times and . If the process is stationary (the density is invariant with time)
then equation (2.16) depends only on the difference . In this common case the
autocorrelation can be re-written as

. (2.17)

Two hypothetical autocorrelation functions are shown below in Figure 2.7. Notice how
compared to random signal , random signal is relatively short and wide. As
increases (as you move away from at the center of the curve) the autocorrelation
signal for drops off relatively quickly. This indicates that is less correlated with
itself than .

Clearly the autocorrelation is a function of time, which means that it has a spectral
interpretation in the frequency domain also. Again for a stationary process, there is an
important temporal-spectral relationship known as the Wiener-Khinchine relation:

where indicates the Fourier transform, and indicates the number of () cycles
per second. The function is called the power spectral density of the random
signal. As you can see, this important relationship ties together the time and frequency
spectrum representations of the same signal.

X Y

f X Y x()
f Y X y() f X x()

f Y y()
-----------------------------------=

X t()

RX t1 t2,() E X t1()X t2()[]=

t1 t2
τ t1 t2–=

RX τ() E X t()X t τ+()[]=

X2 X1 τ
τ 0=

X2 X2
X1

SX jω() ℑ RX τ()[] RX τ()e jωτ– τd
∞–

∞
∫= =

ℑ •[] ω 2π
SX jω()
28

Course 11—Tracking: Beyond 15 Minutes of Thought
White Noise

An important case of random signal is the case where the autocorrelation function is a
dirac delta function which has zero value everywhere except when . In other
words, the case where

for some constant magnitude . In this special case where the autocorrelation is a “spike”
the Fourier transform results in a constant frequency spectrum. as shown in Figure 2.9.
This is in fact a description of white noise, which be thought of both as having power at all

frequencies in the spectrum, and being completely uncorrelated with itself at any time

RX τ()

0

Figure 2.8: Two example (hypothetical) autocorrelation functions and .X1 X2

ττ–

X1

X2

δ τ() τ 0=

RX τ()
if τ 0= then A

else 0

=

A

RX τ()

0

Figure 2.9: White noise shown in both the time (left) and frequency domain (right).

ττ– 0 ω

SX jω()
29

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
except the present (). This latter interpretation is what leads white noise signals to
be called independent. Any sample of the signal at one time is completely independent
(uncorrelated) from a sample at any other time.

While impossible to achieve or see in practice (no system can exhibit infinite energy
throughout an infinite spectrum), white noise is an important building block for design and
analysis. Often random signals can be modeled as filtered or shaped white noise. Literally
this means that one could filter the output of a (hypothetical) white noise source to achieve
a non-white or colored noise source that is both band-limited in the frequency domain, and
more correlated in the time domain.

τ 0=
30

3. Classifications of Devices and Systems
There are many dimensions to the design space of tracking and motion capture systems,
and you can consider the design in the context of any one or more of these dimensions. We
like to think about this classification as “many ways to slice the problem.” For example,
there is the dimensionality of the information provided by the sources and sensors; the
geometric arrangement of the sources and sensors; whether they offer absolute or relative
references; passive vs. active; signal to noise ratio; accuracy; resolution; bandwidth;
latency; update rate; reliability/repeatability; required infrastructure, and on and on. Here
we look primarily at two classifications: by physical medium and by geometric
configuration of the devices. We then end this chapter by considering a combination of
mediums in hybrid systems.

3.1 By Physical Medium

Here we describe the most practical (hence common) physical mediums employed in
tracking and motion capture. We thank Leandra Vicci (UNC-Chapel Hill) for her valuable
contributions to this section.

3.1.1 Acoustic Tracking

Acoustic trackers typically use ultrasonic sound waves to sense range. Ultrasonic waves
have a frequency above the audible range of the human ear of approximately 20,000 [Hz].

3.1.1.1 The Geometry

A single transmitter/receiver pair provides a distance measurement of the target from a
fixed point. In the absence of further information, this defines a sphere on whose surface
the target is located. A shown in Figure 3.1 (Oceanographers, 2001), the addition of a
second receiver or transmitter restricts this surface to the circle of intersection between the
two spheres. A third receiver or transmitter restricts this circle to two points, one of which
can normally be rejected, and determines a 3D position. Therefore, either three
transmitters and one receiver or three receivers and one transmitter are required to find 3D
position. To estimate position and orientation, three transmitters and three receivers are
required.1

1. The reader might be familiar with GPS navigation units in which four satellites are used for
position estimation. The fourth satellite is used to constrain timing differences in the other three.
31

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
3.1.1.2 Techniques

Acoustic trackers typically employ one of two techniques to determine position and
orientation:

1. Time of Flight (TOF), and
2. Phase Coherence.

In both methods, the speed of sound is used to convert the time to distance. The drawbacks
to any time-of-flight or phase difference method is the inherent delay in waiting for the
signal to travel from the source to the destination and this is exaggerated by the slow speed
of sound. At 0˚ C the speed of sounds in air is 331 [m/s], approximately 1.1 [ft/ms]. To
complicate matters, the speed of sound varies with temperature and pressure and cannot be
treated as a constant. More generally, the speed of sound in a gas is

where is a thermodynamic constant of air, is the ideal gas constant, is the
molecular weight and is absolute temperature.

Time of Flight (TOF)

The TOF method measures the time it takes for an ultrasonic pulse to travel from a
transmitter to a receiver to provide an absolute distance, . It takes the time required for a
sound wave to travel form the source to the destination and multiplies that by the speed of
sound to get distance.

An absolute position is estimated from this distance.

Figure 3.1: Intersection of two spheres (a circle) and three spheres (two points)

speed
γRT
M

----------=

γ R M
T

t
d

v

d m[] v
m
s
---- t s[]×=
32

Course 11—Tracking: Beyond 15 Minutes of Thought
Phase Coherence

The phase coherence method measures the phase difference between the sound wave at
the receiver and the transmitter to provide a change in distance, . All signals can be
represented as a sum of sinusoidal functions of the form where is the
phase shift of the signal and is its amplitude. From this phase difference between the
emitted and received signals of a known wavelength or frequency, distance can be
computed.

Figure 3.2 below depicts two cosine waves with amplitude of 1 and frequency of 1 Hz.
The solid curve is with no phase shift, and the dashed curve is
where is the phase shift. A phase angle of 360˚ or [radians] is equal to one cycle.

The frequency of an acoustic wave, , where [Hz] is [1/s], is related to its speed,
, and wavelength, , by the equation where c varies with temperature

and pressure as described previously. The fraction of the wavelength corresponding
to the phase shift can be computed by

δ
A ωt φ–()cos φ

A

x()cos x π 4⁄–()cos
π 4⁄ 2π

Figure 3.2: Cosine functions with phases of 0 and /4 [radians] π

f [Hz]
c [m/s] λ [m] c λf=

δ λ

δ m[] λ m[]
φdelay radians[]

2π radians[]
-------------------------------------⋅=

c m s⁄[]
f Hz[]

------------------=
φdelay radians[]

2π radians[]
-------------------------------------⋅
33

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
If the speed of sound is 331 [m/s] and, as in the graph above, the transmitted signal had
zero phase and the received signal had a phase of [radians], we calculate a phase
difference of [radians] and know that the signal traveled

If we assume an ultrasonic frequency commonly used in acoustic tracking of 40 [kHz]
with the same measured phase shift (1/8 of a cycle), we find

Notice that a phase of looks just like a phase of at the receiver, resulting in
an ambiguity in distance. This is usually resolved by assuming phase changes are small
between measurement updates. For example, given an acoustic frequency of 40 [kHz], we
calculate a wavelength of 8.275 [mm] and measure a phase difference of 0.125 as above.
Without previous position information, we cannot determine whether the target is at a
distance of 0.125 wavelengths, 17.125 wavelengths or wavelengths. However,
if we know the current position estimate is at 100 wavelengths, 0.8275 [m], we assume
that the new position is at the closest wavelength count to the current count, 100.125
wavelengths. Therefore the target has moved and the new position
estimate of the target is at

.

or, simply

π 4⁄
+π 4⁄

δ m[]
c m s⁄[]
f Hz[]

φdelay radians[]

2π radians[]
-------------------------------------⋅=

331 m s⁄[]
1 Hz[]

-------------------------=

π
4
--- radians[]

2π radians[]
-----------------------------⋅

331 m[]
1
8
---⋅=

41.375 m[].=

δ m[]
c m s⁄[]
f Hz[]

φdelay radians[]

2π radians[]
-------------------------------------⋅=

331 m s⁄[]
40 kHz[]

-------------------------=
1
8
---⋅

1.034 mm[].=

φ n 2π⋅()+ φ

n 0.125+

δ 1.034 mm[]=

d' d δ+=

0.8275 m[] 1.034 10
3–

× m[]+=

0.82753 m[]=

d' 100.125 wavelengths[] 8.275
mm

wavelength
---------------------------⋅=

828.53 mm[]=

0.82753 m[].=
34

Course 11—Tracking: Beyond 15 Minutes of Thought
Note that acoustic energy diminishes with the square of the distance between the
transmitter and receiver.

3.1.1.3 Commercial and Research Products

Commercial products that employ acoustic sensors include Infusion Systems’ FarReach,
Intersense’s IS-600 Mark 2 and Mark 2 PLUS (inertial hybrid).

Other acoustic trackers include M.I.T.’s Lincoln Wand (1966). See also (Mulder, 1994b)
for more examples.

3.1.2 Inertial Tracking

Inertial trackers use accelerometers to measure the acceleration for object position and
gyros to measure the orientation of object orientation. They are passive, relying on
Newton’s second law of motion, , and its rotational equivalent , which
means there are no physical limits on the working volume and the user is able to move
around unencumbered in the environment. Ideally, both are deployed in orthogonal triples
(for 3D position in x, y and z and 3D orientation in roll, pitch, and yaw) in order to
estimate 6D pose.

3.1.2.1 Accelerometers

Accelerometers actually measure the force exerted on mass since acceleration cannot be
measured directly. This measured force, , for a given mass, , is transformed into a
measure of acceleration, , by the relationship . The primary transducer of an
accelerometer converts acceleration into displacement. Since

,

Figure 3.3: Intersense’s IS-600 Mark 2

F ma= M Iα=

F m
a F ma=

a
t
2

2

d

d r=
35

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
position is calculated as

.

Accelerometers use a known mass (sometimes called the proof-mass) attached to one end
of a damped spring. The other end of the spring is attached to the accelerometer housing.
When there is no acceleration imposed upon the accelerometer, the spring is at rest and
exhibits zero displacement.

If a force is applied to the housing, the housing will accelerate but inertia causes the
suspended mass to lag behind, resulting in a displacement.

The displacement of the mass and extension/compression of the spring is proportional to
the acceleration of the housing or, in the case or head tracking, the acceleration of the
wearer.

A secondary transducer converts this displacement into a usable signal. Two common such
transducer types are potentiometric and piezoelectric. Potentiometric devices attach the
displacement of the mass to the slider of a potentiometer. The output voltage of a
potentiometer is linearly proportional to the slider position. Voltage varies directly with
current and the electrical resistance supplied by the potentiometer by where is

r

r a t
2

d∫∫=

Figure 3.4: Spring at rest with zero displacement.

3 2 1 0 1 2 3

m

Figure 3.5: Spring under acceleration with displacement.

3 2 1 0 1 2 3

m

V IR= V
36

Course 11—Tracking: Beyond 15 Minutes of Thought
voltage, is current and is resistance. Piezoelectric devices attach the displacement to a
piezoelectric element (a piezoelectric crystal that produces an electric charge when a force
is exerted upon it) that generates a voltage proportional to the displacement.

3.1.2.2 Gyroscopes

Gyroscopes employ the principle of conservation of angular momentum. If torque is
exerted on a spinning mass, its axis of rotation will precess at right angles to both itself
and the axis of exerted torque. If the mass spins very fast, it will have a large angular
momentum that will strongly resist changes in direction.

Figure 3.6 illustrates the phenomenon of precession. If we fix the axis of rotation on one
end of the gyroscope allowing it to pivot around this point, the force of gravity simply
causes the gyroscope to fall down in the direction of the gravity vector if it is not spinning.
However if the gyroscope is spinning, gravity exerts a torque on the gyroscope about an
orthogonal axis to the axis of rotation. If the gyroscope is spinning at a sufficient rate, the
gyroscope does not fall in the direction of gravity. Instead it rotates around the axis that is
orthogonal to both the gyroscope’s axis of rotation and gravity’s torque axis.

If the spinning mass is mounted on gimbals, these principles can be used to measure
changes in direction. The angle that the gyroscope makes with it’s housing (gimbal
deflection) is a measure of the angular momentum or angular velocity. If the gimbals are

I R

Figure 3.6: Precession

gravity

axis of
rotation

axis of torque
due to gravity axis of

precession

Non-Spinning Mass Spinning Mass
37

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
constrained with springs, the rate of change of direction can be measured. This
configuration is known as a rate gyro. Examples of mechanical rate gyroscopes are shown
in Figure 3.7 (Britannica, 1994).

For 3D orientation (roll, pitch and yaw), three rate gyroscopes are typically fitted to a
platform with their axes mutually perpendicular. Two of the gyroscopes provide for
horizontal stabilization of the platform--an essential requirement to eliminate the influence
of accelerations due to gravity--while the third is responsible for the north-south
alignment. Pitch, roll, and yaw are detected by the three gyroscope input axes. The gimbal
deflection of each of the gyroscopes is converted into a signal.

The physics supporting inertial measuring devises are most easily illustrated using
mechanical devices. While extremely accurate, these devices are not used for human
tracking because of their size and mass. Instead micromechanical devices are often
employed. An example of is BEI Systron Donner Inertial Division’s GyroChip that uses a
vibrating piezoelectric quartz tuning fork to sense rate.

Figure 3.7: Rate Gyroscopes for measuring rate of turn (left) and rate of roll (right)
38

Course 11—Tracking: Beyond 15 Minutes of Thought
Figure 3.8 illustrates the micromechanical gyro designed as an electronically-driven
resonator. When an angular rate is applied to its drive tines, Coriolis or torsional forces are
exerted on its drive tines which cause its vibrations to couple to the pickup tines. The
pickup fork vibrations are detected and used to measure the angular rate.

Systron Donner (Donner, 2001) offers the following explanation.

The piezoelectric drive tines are driven by an oscillator to vibrate at a precise
amplitude, causing the tines to move toward and away from one another at a high
frequency. This vibration causes the drive fork to become sensitive to angular rate
about an axis parallel to its tines, defining the true input axis of the sensor.

Vibration of the drive tines causes them to act like the arms of a spinning ice skater,
where moving them in causes the skater’s spin rate to increase, and moving them out
causes a decrease in rate. For vibrating tines (“arms”), an applied rotation rate causes a
sine wave of torque to be produced, resulting from “Coriolis Acceleration,” in turn
causing the tines of the Pickup Fork to move up and down (not toward and away from
one another) out of the plane of the fork assembly.

The pickup tines thus respond to the oscillating torque by moving in and out of plane,
causing electrical output signals to be produced by the Pickup Amplifier. Those signals
are amplified and converted into a DC signal proportional to rate by use of a
synchronous switch (demodulator) which responds only to the desired rate signals.

The DC output signal of the GyroChip is directly proportional to input rate, reversing
sign as the input rate reverses, since the oscillating torque produced by Coriolis
reverses phase when the input rate reverses.

Figure 3.8: BEI Systron Donner Inertial Division’s GyroChip technology

Draper Labs’ MEMS
Tuning Fork Gyro
39

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Regardless of the technology, both accelerometers and gyros provide derivative
measurements. Linear accelerations must be integrated twice and angular rates need to be
integrated once to derive position and orientation, respectively. This integration causes
these inertial measurements to be sensitive to drift. Position error diverges with time as
errors accumulate. This drift can be combated with periodic recalibration by the use of
another tracking method that corrects the accumulated error periodically. Conversely
inertial tracking performance is very good at high frequency and over short time intervals.

Models useful in explaining the frequency characteristics of an inertial system are shown
in Figure 3.9. The dashed box marked “User” contains a question mark to indicate that the
user’s acceleration (motion) is unknown. The dashed box marked “Accelerometers” shows
acceleration measurement noise being summed with the ideal user acceleration
signal, and the sum then being integrated twice to obtain a position estimate. The lower
part of the figure shows the corresponding transfer function coefficients for spectral
(frequency) analysis.

The user’s true acceleration is their position twice differentiated, i.e. the user’s
acceleration is weighted by the square of the frequency (s) of their motion. This
acceleration signal is then weighted by the inverse square of the frequency (s) as it is
integrated twice in the inertial system to obtain a position estimate. The end result is a
unity frequency weighting of the position in the final estimate.

εa t()

?
∫ ∫S

X̂
˙̇

INS X̂
˙
INS

X̂
INS

εa t()

Ẋ̇

User Inertial

? 1
s
---S

X̂
˙̇

INS X̂
˙
INS

X̂
INS

εa s()

Ẋ̇

User Inertial

1
s

Figure 3.9: Integration in time domain and division
in frequency domain of inertial measurements.
40

Course 11—Tracking: Beyond 15 Minutes of Thought
From Figure 3.9 we also see that any electrical noise incurred during the
measurement of the accelerometer output is weighted solely by the inverse square of the
frequency (s) as it is integrated twice in the inertial system. The end result is an inverse
square frequency weighting of electrical measurement noise in the final position estimate.

In Figure 3.10, the estimated position signal, noise, and signal-to-noise ratio for an inertial
system using accelerometers are plotted together against frequency. This figure
demonstrates why the practical application of a solely inertial-based tracking system is
impractical. At low frequencies the position estimate noticeably diverges as measurement
noise is erroneously interpreted as acceleration. The most common sources of low
frequency noise are the unavoidable and often time-dependent random “DC” (or very low
frequency) biases. Such bias errors can cause an inertial-based tracker to report that a
subject is moving even when that subject is completely still, or conversely to report that a
subject is still when in fact they are slowly moving. The result is that in general for inertial
devices to be practical they must be combined with some other mediums as described in
Section 3.3.

An additional source of error is misalignment with the gravity vector whose effects must
be subtracted out of inertial measurements. The effect of gravity can be significant. One
degree of tilt error over ten seconds can cause nine meters of position error.

Noise and quantization error in the signals from the inertial sensors is another important
source of error. Figure 3.11 shows how error accumulates in inertial systems. The curves
are contours of time to 0.1 [m] of accumulated error for accelerometer (vertical axis) and
rate gyro (horizontal axis) signals with the indicated number of useful bits. For example,

εa t()

100

10

1

0.1

Frequency

Position Signal
Position Noise
Position S/N

Magnitude
(Log10)

Figure 3.10: Logarithmic plots of typical accelerometer-based
position signal vs. noise (for constant velocity).
41

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
with 15 bits of useful dynamic range on the rate gyro signal and about 12 bits of useful
range on the accelerometer signal, the graph predicts about 20 seconds of operation before
10 [cm] of error accumulates. Increasing the range of the accelerometers will not improve
the system performance because the rate gyros are the limiting factor. The shape of the
curves can be explained by realizing that rate gyro errors will result in misestimation of
the system tilt. As explained earlier, tilt errors cause fractions of the gravity vector to be
integrated as actual acceleration resulting in potentially large position errors. Region 1
includes inertial units readily available today. Region 2 includes today’s peak
performance. Region 3 reflects arguably unachievable performance.

3.1.2.3 Commercial and Research Products

Inertial trackers have become more common over the last few years due to IC technologies
allowing for significant reduction in size. Because they require some form of periodic
calibration to control drift they are typically used in hybrid tracking products. Commercial
products that employ inertial sensors Ascension’s 3D-BIRD, Intersense’s IS-300/600 and
InterTrax 2. See also (Mulder, 1994b) for more examples.

Figure 3.11: Time to 0.1 [m] error

1

2

3

42

Course 11—Tracking: Beyond 15 Minutes of Thought
3.1.3 Magnetic Tracking

Magnetic trackers use magnetic fields to measure range and orientation. These magnetic
fields can be low frequency AC fields or pulsed DC fields and three orthogonal triaxial
coils are used at both the transmitter and receiver to produce position and orientation
measurements.

3.1.3.1 Magnetic Fields

Generating magnetic fields

Current carrying coils are used to generate the source magnetic fields. The magnetic field
produced by a circular coil of wire carrying a current, , at a distance and off-axis angle,

, is described by

Figure 3.12: Some example inertial tracking systems.

Intersense’s InterTrax

Intersense’s IS-300/600

Ascension’s 3D-BIRD

I d
θ

Hr
M

2πd3
------------ θ() (radial component)cos=

Hφ
M

4πd3
------------ θ() (tangential component in θ direction)sin=

Hφ 0 (tangential component in φ direction)=
43

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
where and are the radial and tangential components of the field, is the
magnetic moment of the loop , and are the area enclosed by the current
loop and number of the turns of the loop or winding (Raab, Blood, Steiner, & Jones, 1979)
and is the current. Figure 3.13 illustrates the magnetic field of a single-turn winding.

Detecting magnetic fields

A time varying magnetic field will induce a voltage in a coil that can be measured
electrically. The magnitude of the voltage is proportional to the area circumscribed by the
coil, the rate of change of the field, and varies as where is the angle between the
direction of the field lines and the axis of the coil.

3.1.3.2 System Configuration

A magnetic tracking system consists of a transmitter and a receiver in the form of coils. A
1D sensor for estimating the position in z (i.e. direction of gravity) is made up of a single
coil transmitter oriented in the z-direction. When current is applied to the coil a magnetic
field is generated. At the receiver, this induces a maximum voltage proportional to the
sensed magnetic field strength in a receiving coil oriented in the same direction as the
field.

The induced voltage level provides information about the both distance from the
transmitter to the receiver and the axis-alignment between them. Boundaries of equal
accuracy are found along a hemisphere or sphere around the transmitter. In Figure 3.14

Hr Hθ M
M NIA=() A N

I

Figure 3.13: Magnetic Dipole

I

Hr

Hθ

θcos θ
44

Course 11—Tracking: Beyond 15 Minutes of Thought
(Burdea & Coiffet, 1994) the accuracy and amplitude is less than where the radius
 is greater than . Here the radius (distance form the transmitter) is the determining

factor.

Three separate coils wound orthogonally around a core are used to generate and measure
the magnetic field strength in x, y and z. When three orthogonal coils are used, the three
source coils are activated serially and the induced signal in each of the three receiving
coils is measured. A full measurement cycle contains three measured values for each of
the three source coils and this nine-element measurement is used to calculate the position
and orientation of the receive coils relative to the source coils. The signal strength per
receive coil decreases cubically with distance and with the cosine of the angle between its
axis and the local magnetic field direction. The strength of the induced signals can be
compared to the known strength of the transmitted signals to find distance. The strength of
the induced signals are compared to each other to find orientation.

One disadvantage of AC magnetic sensors is that ferromagnetic and other conducting
objects within the sensor space can distort the magnetic field geometry. An eddy current is
induced in conducting materials by the source magnetic field (and other fields such as the
Earth’s magnetic field) and these currents produce small magnetic fields around the
conducting materials. The fields cause distortions in the source fields shown above
resulting in erroneous pose estimates. This is particularly a problem when using AC
transmitters because of the continuously varying nature of AC signals.

The use of DC transmitters overcomes the eddy current interference problem. Eddy
currents are generated only at the beginning of a measurement cycle and a steady state can
be reached where the effect of interfering magnetic fields is minimized as the eddy current
values approach zero. However, distortions due to ferromagnetism, mainly in steel or iron
objects, are still a problem for DC systems.

A2 A1
R2 R1

Figure 3.14: Accuracy contours around a coil
45

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
3.1.3.3 Research and Commercial Products

Despite some shortcomings, magnetic tracking systems have historically enjoyed
popularity as a result of a small user-worn component and relative ease of use.
Commercial products that employ magnetic sensors include Polheumus’ 3SPACE
FASTRAK and ISOTRAK II (AC electromagnetic) and Ascension’s Flock of Birds and
PcBIRD (Pulsed-DC electromagnetic). See also (Mulder, 1994b) for more examples.

3.1.4 Mechanical Tracking

Mechanical trackers measure joint angles and lengths between joints. Given one known
position, all other absolute positions can be derived from the relative joint measurements.
They are used to measure all parts of the body and have been historically employed in

Figure 3.15: Examples of magnetic tracking systems.

Polheumeus’ Stylus Option

Polheumeus’ Long Ranger Tracker

Polheumeus’ Star*Trak

Ascension’s Flock of Birds and PcBIRD transmitter
46

Course 11—Tracking: Beyond 15 Minutes of Thought
motion capture. In implementation, they range from whole body suits that measure the
position of all the major joints to mechanical arms to gloves that measure the location of
the hands and fingers.

Mechanical tracking systems can be ground-based in which one point of the tracker is
affixed to the floor at a known location. This limits the user’s range of motion. They can
also be body-based in which the system is attached only to the user, typically in the form
of an exoskeleton. This does not limit physical range of motion but can be prohibitive if
the suit is heavy or bulky.

The rotations and lengths can be measured by gears, potentiometers, and bend sensors as
shown in Figure 3.16.

A potentiometer is a device that transduces a rotation or displacement to a voltage. A bend
sensor is typically a thin strip of plastic whose resistance changes as it bends. The more it
bends, the higher the resistance. Alternatively, optical fiber can be treated for a short
distance on one side to lose light proportional to the angle through which it is bent.

An advantage of mechanical trackers is the elegant addition of force feedback as
illustrated in Sensable’s Phantom and the EXOS dexterous hand master pictured in
Figure 3.17.

Figure 3.16: Mechanical tracking sensors

Figure 3.17: Sensable’s Phantom and EXOS dexterous hand
47

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
They typically provide good accuracy and low latency but can be cumbersome for the
user. The user may be constrained by the suit or arm and, therefore, may not have full
freedom of movement.

3.1.4.1 Research and Commercial Products

Commercial products that employ mechanical sensors are Fakespace’s Boom HF, Virtual
Technologies’ CyberGlove and MetaMotion’s Gypsy (motion capture only). See also
(Mulder, 1994b) for more examples.

Figure 3.18: Some example mechanical tracking systems.

Virtual Technologies’ CyberGlove

MetaMotion’s Gypsy

Fakespace’s Boom HF
48

Course 11—Tracking: Beyond 15 Minutes of Thought
3.1.5 Optical Tracking

Optical trackers use light to measure angles. As shown in Figure 3.19, a single point on the
detector, an optical sensor or image plane, provides a ray defined by that pixel and the
center of projection, . As is the case with the acoustic medium, optical energy
diminishes with the square of the distance between the transmitter and receiver.

3.1.6 Targets

Optical tracking systems (also called image-based systems) can use two types of targets:
active targets and passive targets. Active targets are powered such as an light-emitting
diode (ILED). Infrared LEDs (ILEDs) are used to combat noise due to ambient light.
Passive targets are not powered such as reflective materials or high contrast patterns.
Regardless of categorization, a detector is used to record the object being tracked (the
target) and from this angle measurement, position and orientation can be derived. Some
systems use no artificial targets and, instead, use elements of the natural scene.

3.1.7 Detectors

Detectors can be simple video and CCD cameras (typically used with passive targets), or
lateral-effect photodiodes (typically used with active targets) that provide the location of
the centroid of light on the image plane as illustrated in Figure 3.19. Video cameras and
CCDs require imaging techniques to determine position while photodiodes produce
currents that are directly proportional to the light center’s position.

3.1.7.1 Lateral Effect PhotoDiodes (LEPDs)

1D LEPDs place two terminals on either side of a silicon photosensitive region. An
incident light beam produces electrons that flow laterally towards the terminals on either
side of the region. The amount of current measured at each terminal is dependent on the
distance of the centroid of the incident beam from the terminals. If the centroid occurs at

C

C

Figure 3.19: Centroid of light.
49

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
the center of the region, equal current values will be measured at each terminal. A 2D
LEDP sensor is made up of 2 1D sensors rotated 90 degrees from each other. LEPDs can
be used to detect both the intensity and position of an incident light beam.

3.1.7.2 Quad Cells

Quad cells are made up of four photosensitive cells. When a light beam is incident upon a
quad cell, a current is generated in each of the four quadrants proportional to the amount
of light seen by each. A perfectly circular beam illuminating the exact center of the quad
cell will produce equal photocurrents in the four quadrants. As shown in Figure 3.20, if the
beam is too small such that it falls in between quad cell or too large such that is covers all
four cells, there is no information to be gained from the voltage measurements of each
cell.

The x and y displacements of the beam relative to the center of the quad cell can be
calculated using the following formulas:

3.1.7.3 Charge Coupled Devices (CCDs)

A CCD array can be a 1D or 2D collection of light-sensitive cells.

Figure 3.20: A Quad Cell

x

y
14

23

14

23

14

23

x
i1 i2+() i3 i4+()–

i1 i2 i3 i4+ + +
--=

y
i1 i4+() i2 i3+()–

i1 i2 i3 i4+ + +
--.=

Figure 3.21: 1D and 2D CCD Detector Arrays

cell/pixel
50

Course 11—Tracking: Beyond 15 Minutes of Thought
When light is incident upon a CCD cell, electrons are produced and each cell accumulates
electrons proportional to the amount of incident light for the duration of the dwell time.
The electron count per array cell is read out as a voltage to provide a per pixel luminance
value. An “empty” cell corresponds to zero volts (black). This collection of pixel values
produces a digital image that is similar to the analog images captured with film. The array
of luminance values can be analyzed to pinpoint the cell (or pixel) of highest intensity and
sub-pixel accuracy can be achieved by interpolation between discrete pixel values. The
dwell time dictates how long the CCD will accumulate a charge and must be set large
enough so that sufficiently high SNR is achieved for pinpointing the target. However, care
should be taken in fixing the dwell time because it affects the update rate of the CCD.
Long dwell times delay measurements which affect the rate at which position estimates
can be determined.

While optical sensors fundamentally provide angle measurements, they can also be used
to determine range. The amount of defocus (i.e. blur) due to the limited depth of field of
lenses can provide information about distance. Structures which are closer to the plane of
focus for an image will appear sharper. Conversely, structures farther from the plane of
focus will appear more blurred. As shown in Figure 3.22 (from (Goshtasby, 2001; Wood et
al., 2000)) there is ambiguity between two points that lie equidistantly on either side of the
plane of focus. This ambiguity can be eliminated with the addition of a second image
plane.

In general, optical tracking systems exhibit high accuracy and resolution and are well
suited to real-time systems in terms of update rate (light is a fast medium). However, there
is much variety among optical tracking systems due to technical specification difference

Figure 3.22: Two objects produce the same position and blur on the image
51

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
(focal length, FOV, etc.), system configuration (outside-in, inside-out) and target type.
This accuracy depends on a clear line of sight between the sensor and the target. If
something in the environment or the object itself blocks this line-of-sight, optical tracking
systems suffer from obscuration difficulties.

In Section 4.1 we describe some traditional approaches to using optical sensors for pose
estimation. In Appendix C we have also included a copy of (Welch et al., 2001), which
describes the UNC-Chapel Hill HiBall optical tracking system.

3.1.7.4 Commercial and Research Products

Commercial products that employ optical sensors include InMotion’s CODA, 3rdTech’s
HiBall-3000, University of Iowa’s Selspot II, Arcsecond’s Vulcan, Ascension’s laserBIRD,
and Phoenix Technologies’ Visualeyez (motion capture only). Other optical trackers
include Omniplanar’s Virtual Tracker and the Minnesota scanner. See also (Mulder,
1994b) for more examples.

3.2 Sensor Configurations

Choosing the physical medium and sensors for a tracking system determines only a part of
its capability. The geometric configuration of the sources and sensors also has a profound
effect. For example, in an optical tracker we can have fixed sensors observing moving
targets or moving sensors observing fixed targets. This has lead to the descriptions
“outside looking in” and “inside looking out” as described in (Welch et al., 2001), but the
direction of “looking” is not the determining factor. Rather, as we shall see, the
distinguishing factor is the coordinate frame in which the measurements are made.

3.2.1 Measurements in the Laboratory Frame

The CODA system (BL, 2000) is a commercial example of a system that makes its
measurements in the laboratory coordinate frame as illustrated in Figure 3.24. It uses three
or more stationary 1D optical sensors that observe LED beacons that are free to move (a
typical “outside looking in” configuration). Each of the 1D sensors narrows the possible
location of the LED to a plane in three space. The three planes intersect in a mathematical
point which is the system’s estimate of the three-dimensional coordinates of the LED. The
FlashPoint 5000 (IGT, 2000) from Image Guided Technologies uses the same fundamental
measurement strategy though the sensors and optics are quite different. The Selspot and
OPTOTRAK (NDI, 2001) systems are also essentially the same though they use at least
two 2D sensors (each determining a line) rather than at least three 1D sensors.

The Minnesota Scanner (Sorensen, Donath, Yang, & Starr, 1989) uses spinning mirrors at
fixed locations in the laboratory to project planes of light into the working volume. The
tracked target is a photo-detector that detects the time at which it is illuminated by the
swept plane of light. The time is used along with the precisely known rotation rate of the
mirror to determine the equation of a plane that passes through the detector and the center
52

Course 11—Tracking: Beyond 15 Minutes of Thought
of rotation of the mirror. Just as in the CODA system, the multiple planes are then
intersected to produce an estimate of the 3D coordinate of the target. The commercially
available ArcSecond system works in the same way.

Even though the sensors and sources have apparently swapped places in the CODA mxp30
and the Minnesota Scanner, they are both fundamentally making an angle measurement in
the laboratory coordinate system. Thus, while the moving sensor on the Minnesota
Scanner is “looking out”, it shares all the characteristics of a “outside-looking-in” system.
What matters is the coordinate frame in which the measurements are made.

The positional sensitivity of the systems above is determined by the angular resolution of
the optical sensors, the distance between target and sensor, and on the geometric
configuration of the sensors. The angular resolution is determined by the field of view of

Figure 3.23: Some example optical tracking systems.

InMotion Systems’ CODA

3rd Tech’s HiBall-3000

Arcsecond’s Vulcan

Ascension’s LaserBIRD

Phoenix’s Visualeyez
53

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
the sensor and the resolution of measurements on the image plane. The designer of such a
system always has a trade off between positional accuracy and working volume; higher
accuracy requires a smaller working volume while larger working volume implies lower
accuracy.

As shown in Figure 3.25 below, when the geometric configuration of the system is such
that the sensors are physically close together compared to the distance to the target, the
planes (or lines) they determine are nearly parallel. This results in near singularity of the
resulting equations and poor positional accuracy in the direction aligned with the planes.
This problem is aggravated by uncertainty in the sensor estimates. Rather than being
planes or lines, the constraint provided by a single sensor is better modeled by a cone or a
wedge. For maximum positional accuracy the sensors should be far apart and at nearly
right angles to one another. Unfortunately placing the sensors far apart may give rise to
line-of-sight problems because all sensors must have a clear view of each target.

In order to determine orientation, multiple targets must be arranged in a rigid
configuration. Then the relative positions of the targets can be used to derive orientation.
The sensitivity of the resulting system to small rotations is determined both by its
positional sensitivity and the distance between targets. Orientation sensitivity is
maximized by increasing the distance between targets but this can quickly result in a
physically unwieldy device.

3.2.2 Measurements in the User’s Frame

The HiBall Tracker (Welch et al., 1999, 2001) uses a golf-ball sized cluster of six 2D
optical sensors looking out at LED beacons fixed in the environment. In the HiBall,
angular measurements are made in the moving coordinate system of the user as shown in
Figure 3.26, rather than in the fixed coordinate system of the lab.

Figure 3.24: Two sensors are shown fixed in
lab space. They observe a moving target.
Here in ‘Flatland’ the position of the image
on the 1D image - l i ne o f t he s enso r
determines the equation of a line that passes
through the target. The intersection of two of
these lines determines the 2D position.

sensor

sensor

target
54

Course 11—Tracking: Beyond 15 Minutes of Thought
Unlike the systems above for which one sighting determines a mathematically simple
constraint such as a plane or line equation, sighting one target with one of the cameras in
the cluster provides a difficult to visualize constraint on the relationship between the
cluster’s position and its orientation. Given as few as three sightings it is possible to solve
a nonlinear system of equations to determine the position and orientation of the cluster
(Azuma & Ward, 1991). With only three sightings there are up to four solutions that can be
arbitrarily close together (Fischler & Bolles, 1981). Larger numbers of sightings provide a
unique solution and also allow the use of least-squares estimation to reduce the effects of
noise on the measurements.

Figure 3.25: When sensors are close together as on the left, the equations of the lines
they determine are nearly parallel resulting in less positional sensitivity in the direction
parallel to the lines When the sensors are far apart and at nearly right angles the
sensitivity is greatest.

larger
uncertainty

Figure 3.26: A cluster of six sensors
observes targets that are at fixed locations in
‘Flatland’. Each observation determines a
constraint between the position of the moving
cluster and its orientation. A minimum of
three observations are required to determine
the position and orientation but to ensure
uniqueness of the solution and to allow for
measurement errors more are better.

sensor cluster

target
55

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
The HiBall does not solve such nonlinear equations to determine it position. Instead it uses
the SCAAT algorithm described in Section 4.2.5.

The orientation sensitivity of the HiBall is determined by the angular sensitivity of the
optical sensors in the cluster. The HiBall achieves high angular sensitivity using very
narrow fields of view (approximately 6 degrees) and high-resolution analog sensors
(lateral-effect photo diodes (Wallmark, 1957) with approximately 1 part in 2000
resolution). This requires that the room-mounted LEDs are densely packed to ensure that
sufficient numbers are continuously visible.

The positional sensitivity of the HiBall is similar to the systems described above. It varies
with distance to the target and with sensor resolution in the same way.

Comparing systems that measure in the laboratory frame with those that measure in the
user’s frame we see that user-centered measurements can provide higher orientation
accuracy and comparable positional accuracy for systems of practical size. Systems with
moving targets have the advantage that the targets are smaller and lighter and thus easier to
attach to the user. Lab-based sensors are probably preferred when position is the only or
most important measurement required.

3.3 Hybrid Systems

As described in Section 3.1, every type of sensor has fundamental limitations related to
the associated physical medium. In addition there are practical limitations imposed by the
measurement systems, and application-specific limitations related to the motion
characteristics of the target being tracked. These limitations continuously affect the
quantity and quality of the information. The result is that no single medium or sensor type
provides the necessary performance over the wide spectrum of temporal and spatial
characteristics desired for many applications. Happily several mediums exhibit
complementary behavior, and these systems can be combined to leverage the strengths of
each medium as needed. Systems that employ such mixed mediums are called hybrid
systems.

A number of research and commercial groups have recognized that hybrid systems are
necessary for some applications, and have constructed hybrids that combine multiple
sensors including inertial, video, and GPS (Azuma, 1995b; Azuma & Bishop, 1994;
Azuma et al., 1998; Azuma, Hoff, & Neely, 1999; Azuma, Lee et al., 1999; Behringer,
1999; Foxlin, 1996; Foxlin & Durlach, 1994; Foxlin et al., 1998; Golding & Lesh, 1999;
Pasman, van der Schaaf, Lagendijk, & Jansen, 1999; Verplaetse, 1996; Verplaetse, 1997;
You, Neumann, & Azuma, 1999a, 1999b).

Inertial Tracking

One of the most popular technologies (mediums) used to improve or augment the
performance of other mediums is to incorporate accelerometers and gyros in some form of
an inertial navigation system as in (Azuma, 1995b; Azuma & Bishop, 1994; Azuma, Hoff
56

Course 11—Tracking: Beyond 15 Minutes of Thought
et al., 1999; Azuma, Lee et al., 1999; Emura & Tachi, 1994b; List, 1983). The reason is
that inertial navigation systems exhibit relatively low error at high frequencies and
velocities, and are very responsive. This is due in part to the fundamental medium, and in
part to the nature of inertial devices and our ability to sample their signals at a relatively
high rate, typically on the order of thousands of samples per second. (Contrast this with
magnetic, acoustic, and optical system can typically only be sampled hundreds of times
per second.) Unfortunately as described in Section 3.1.2, they also exhibit high error at
lower frequencies and velocities. At low velocities (very slow or no movement) one must
in practice contend with pronounced bias and drift error (noise). As movement slows, such
noise begins to grow with respect to the true signal, resulting in unbounded error growth.

Two examples of inertial hybrids are inertial-acoustic, and inertial-optical. The most well
known example of the former is the commercial system described by (Foxlin et al., 1998)
and marketed by Intersense (Intersense, 2000). This system seeks to overcome the
temporal and spatial shortcomings of purely acoustic systems (Section 3.1.1) by adding a
relatively fast and robust inertial system. Again, the inertial system could not be used
alone, but in combination with the acoustic system one can cover a wider spectrum of
motion and performance. As a side note, the system described in (Foxlin et al., 1998)
actually uses three mediums—it uses pulsed infrared light to aid in the timing (triggering)
of acoustic signals.

A second example is an inertial-optical
hyb r id . As w i th any hyb r id , t he
complementary behavior of each system
is leveraged to obtain more accurate and
stable tracking information than either
system alone. With an inertial system,
bias and drift errors dominate (grow
unbounded) during periods of slow
movement. However, during such periods
the error can be controlled by an optical
system, which would typically exhibit its
best behavior under such conditions.
Conversely an optical typically performs
worst during very rapid movement,

precisely the conditions where the inertial signal-to-noise ratio is high (see Figure 3.10).
In addition, while a typical vision-based optical system using multi-pixel cameras is
affected by unrelated motion in an environment, an inertial system is not and can provide
assistance with static visual feature discrimination. Figure 3.27 offers a qualitative
comparison of the complementary relationship between the performance of inertial and
optical (or acoustic) mediums.

pe
rf

or
m

an
ce

motion fastslow

hi
gh

lo
w

Figure 3.27: A qualitative comparison of
i ne r t i a l v s . op t i c a l o r a cous t i c

in
er

tia
l

optical or

acoustic
57

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
58

4. Approaches

4.1 Traditional Closed-Form Approaches

We get the intuition from linear algebra that we need at least as many equations (or
constraints) as there are unknowns to solve a system of equations. More equations might
be required for a non-linear system. In this section we will examine a few solutions to
particular tracking problems using this traditional approach. In Section 4.2.5 we examine
a new approach that sequentially applies a single constraint at a time.

The key thing to notice is the variety of the mathematical approaches. These are only a few
of the many formulations for these problems.

4.1.1 Range Trackers

For 3D position tracking using range common arrangements are three fixed microphones
and a single moving source or three fixed sources and a single moving microphone.
Mathematically, we must solve three simultaneous sphere equations where we know the
origin (e.g.) and the radius (e.g.) for each sphere.

(4.1)

The solution of these equations is very complicated but we can simplify it greatly by
aligning the three microphones with the axes of the coordinate system as follows:

a. put microphone 0 at the origin of the coordinate system

b. put microphone 1 out the X axis by one unit

c. put microphone 2 out the Y axis by one unit

d. all three microphones are in the Z = 0 plane.

x0 y0 z0, , r0

x x0–()2 y y0–()2 z z0–()2+ + r0
2=

x x1–()2 y y1–()2 z z1–()2+ + r1
2=

x x2–()2 y y2–()2 z z2–()2+ + r2
2=
59

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
This amounts to allowing the microphones to define the coordinate system rather than
attempting to embed them in an existing coordinate system. We can, of course, get from
these microphone coordinates to laboratory coordinates with a separate linear transform.
The simplified equations are now:

(4.2)

And their solution is:

(4.3)

Notice that the sign ambiguity on z prevents us from determining which side of the plane
the target is on. This is a common problem with nonlinear systems of equations. The three
spheres actually intersect in 2 points as shown in Figure 3.1 on page 32. Usually some
design constraint is used to restrict z to the positive or negative subspace.

Another subtle point in this formulation and the others in this section is the assumption
that the multiple measurements correspond to a single position of the target. For an
acoustic tracker with fixed microphones and a moving source, this assumption is likely
valid because the microphones respond to a single acoustic burst from the source. On the
other hand, for a tracker with a moving microphone, this assumption is likely to be
violated if the sources must be operated sequentially to avoid interference. In this case the
microphone may have moved between successive measurements. Violating the assumption
of simultaneous measurements results in measurement errors that vary with the target’s
rate of motion. See “The Simultaneity Assumption” on page 73 for further discussion.

4.1.2 Optical Trackers with Fixed 2D Sensors

Each camera in an optical system with 2D sensors that are fixed in laboratory coordinates
determines a ray in 3D. The ray can be described using the parametric form with
parameter for camera 1 and for camera 2. The parameters vary from 0 at the center
of projection of a camera to infinity. The parametric equations are:

(4.4)

x
2

y
2

z
2

+ + r0
2

=

x 1–()
2

y
2

z
2

+ + r1
2

=

x
2

y 1–()
2

z
2

+ + r2
2

=

x
r0

2
r1

2
– 1+

2
-------------------------=

y
r0

2
r2

2
– 1+

2
-------------------------=

z r0
2

x
2

– y
2

–±=

s1 s2

A1 C1 s1D
1

+=

A2 C2 s2D2+=
60

Course 11—Tracking: Beyond 15 Minutes of Thought
 are the centers of projection of the cameras. is the unit-length direction
vector determined by the image of the target on the image plane of camera 1. Likewise for

. The baseline is the vector between the centers of projection.

These two rays in three space almost certainly do not intersect. Of course the exact two
lines must intersect because they result from images of the same point in space. But errors
in calibration of the cameras and in determining the imaged coordinates in each camera
will result in line equations that likely do not intersect.

We want to determine the point in 3D that is closest to both rays. We do this by finding the
parameter values that minimize the distances between the lines. That is, we want to
minimize

(4.5)

This equation is the length of the line joining the two rays. Since the shortest line joining
the two rays must be perpendicular to each of the rays, it must be true that

(4.6)

This system of two equations in two unknowns has the solution

(4.7)

The point closest to the two rays is the midpoint of this shortest line segment

(4.8)

Examining equation (4.7) we can see the source of the difficulty described in Section 3.1.5
when the sensors are close together relative to the distance to the target. In this case the
direction vectors and will be nearly parallel. Thus their dot product will be nearly
one and the denominator of the equations will grow very small. This will amplify the
effect of small errors.

4.1.3 Optical Trackers with Fixed 1D Sensors

The following approach may also be used with 2D sensors by considering that you are
given four 1D measurements rather than two 2D measurements.

C1and C2 D1

D2 B C2 C1–=

C2 s2D2+() C1 s1D1+()–

C2 s2D2+() C1 s1D1+()–[] D1• 0=

C2 s2D2+() C1 s1D1+()–[] D2• 0=

s1

B D1•() D2 D1•() B D2•()–

1 D1 D2•()
2

–
--=

s2

D1 D2•() B D1•() B D2•()–

1 D1 D2•()
2

–
--=

P̃
C1 s1D1+() C2 s2D2+()+

2
---=

D1 D2
61

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
By a calibration process we determine the coefficients that map the 1D sensor coordinate
to a plane in 3D. The plane for sensor i will produce an equation of the form

(4.9)

Where is the 3D coordinate of the tracked point. With three such linear
equations we can use standard solution techniques to solve for the position.

(4.10)

With more than three sensors we can use least-squares solution methods to determine the
position with the minimum squared error.

(4.11)

Aix Biy Ciz+ + Di=

x y z, ,[]T

M

A1 B1 C1

A2 B2 C2

A3 B3 C3

=

M
x

y

z

⋅

D1

D2

D3

=

x

y

z

M
1–

D1

D2

D3

⋅=

M

A1 B1 C1

… … …
An Bn Cn

=

M
x

y

z

⋅

D1

…
Dn

=

M
T

M
x

y

z

⋅ ⋅ M
T

D1

…
Dn

⋅=

x

y

z

M
T

M⋅()
1–

M
T

D1

…
Dn

⋅ ⋅=
62

Course 11—Tracking: Beyond 15 Minutes of Thought
Analogously to the 2D case described earlier, if the target is far away relative to the
distance between cameras, rows of the matrix will be very similar resulting in near
singularity and amplification of small errors.

4.1.4 Optical Trackers with Moving Sensors

Azuma and Ward (Azuma & Ward, 1991) document the Space-Resection approach to
solving for the position and orientation of the sensor cluster. This method was used in the
first generation “Ceiling Tracker” at UNC. The HiBall tracker uses a much simpler
method that will be described later.

Their method is too complicated to describe here. They set up the system of non-linear
equations that described the relationships among the known 3D coordinates of the LEDs,
the known 2D image-plane coordinates for the sightings of the LEDs, and the unknown
position and orientation of the camera cluster. They solved the non-linear system of
equations using an iterative approach that required a good initial guess. During normal
system operation the previously known pose was usually an excellent guess for the current
pose and the iterative method converged rapidly. Initialization at system startup was
accomplished by sequentially trying a small set of different orientations to see if any will
converge to a likely solution. The convergence region of the algorithm was large enough
that it could acquire the initial position within a few seconds when the tracker was held
upright at about head height.

4.2 Stochastic Approaches

While there are many application-specific approaches to “computing” (estimating) the
position and orientation or pose of an object (see Section 4.1), most of these methods do
not inherently take into consideration the noisy nature of the sensor measurements. While
the requirements for the pose information varies with application, the fundamental source
of information is the same: pose estimates are derived from noisy electrical measurements
of mechanical, inertial, optical, acoustic, or magnetic sensors. This noise is typically
statistical in nature (or can be effectively modeled as such), which leads us to stochastic
methods for addressing the problems. Here we provide a very basic introduction to the
subject, primarily aimed at preparing the reader for the material in the appendices. For a
more extensive discussion of stochastic estimation see for example (Kailath et al., 2000;
Lewis, 1986).

4.2.1 State-Space Models

State-space models are essentially a notational convenience for estimation and control
problems, developed to make what would otherwise be a notationally-intractable analysis
tractable. Consider a dynamic process described by an n-th order difference equation
(similarly a differential equation) of the form

, ,

M

yi 1+ a0 i, yi … an 1– i, yi n– 1+ ui+ + += i 0≥
63

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
where is a zero-mean (statistically) white (spectrally) random “noise” process with
autocorrelation

,

and initial values are zero-mean random variables with a known
 covariance matrix

, .

Also assume that

 for and ,

which ensures (Kailath et al., 2000) that

, .

In other words, that the noise is statistically independent from the process to be estimated.
Under some other basic conditions (Kailath et al., 2000) this difference equation can be re-
written as

which leads to the state-space model

or the more general form

(4.12)

. (4.13)

Equation (4.12) represents the way a new state is modeled as a linear combination
of both the previous state and some process noise . Equation (4.13) describes the
way the process measurements or observations are derived from the internal state .

ui{ }

E ui u j,() Ru Qiδij= =

y0 y 1– … y n– 1+, , ,{ }
n n×

P0 E y j– y k–,()= j k, 0 n 1–,{ }∈

E ui yi,() 0= n– 1 j 0≤ ≤+ i 0≥

E ui yi,() 0= i j 0≥ ≥

xi 1+

yi 1+

yi

yi 1–

yi n– 2+

≡

a0 a1 … an 2– an 1–

1 0 … 0 0

0 1 … 0 0

 …

0 0 … 1 0

yi

yi 1–

yi 2–

yi n– 1+

1

0

0

1

ui+=

… … ……… …

…{ { {

A xi G

xi 1+ Axi Gui+=

yi 1 0 … 0 xi=

xi 1+ Axi Gui+=

yi Hixi=

xi 1+
xi ui

yi xi
64

Course 11—Tracking: Beyond 15 Minutes of Thought
These two equations are often referred to respectively as the process model and the
measurement model, and they serve as the basis for virtually all linear estimation methods,
such as the Kalman filter described below.

4.2.2 The Observer Design Problem

There is a related general problem in the area of linear systems theory generally called the
observer design problem. The basic problem is to determine (estimate) the internal states
of a linear system, given access only to the system’s outputs.1 This is akin to what people
often think of as the “black box” problem where you have access to some signals coming
from the box (the outputs) but you cannot directly observe what’s inside.

The many approaches to this basic problem are typically based on the state-space model
presented in the previous section. There is typically a process model that models the
transformation of the process state. This can usually be represented as a linear stochastic
difference equation similar to equation (4.12):

. (4.14)

In addition there is some form of measurement model that describes the relationship
between the process state and the measurements. This can usually be represented with a
linear expression similar to equation (4.13):

. (4.15)

The terms and are random variables (see Section 2.2.1 on page 23) representing the
process and measurement noise respectively.

Measurement and Process Noise

There are many sources of noise in sensor measurements. For example, each type of
sensor has fundamental limitations related to the associated physical medium, and when
pushing the envelope of these limitations the signals are typically degraded. In addition,
some amount of random electrical noise is added to the signal via the sensor and the
electrical circuits. The time-varying ratio of “pure” signal to the electrical noise
continuously affects the quantity and quality of the information. The result is that
information obtained from any one sensor must be qualified as it is interpreted as part of
an overall sequence of pose estimates, and analytical measurement models typically
incorporate some notion of random measurement noise or uncertainty as shown above
in equation (4.15).

1. Access to the system’s control inputs is also presumed, but less relevant in the case of tracking
and motion capture, so we will omit that aspect. See for example (Kailath et al., 2000) for more
information.

xk Axk 1– Buk wk 1–+ +=

zk H xk vk+=

wk vk

vk
65

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
In the case of tracking or motion capture of humans, there is the additional problem that
the user’s intended motion is essentially completely unknown. While we can make
predictions over relatively short intervals using models based on recent motion as a guide
(see Section 5.3), such predictions assume that the user’s motion is predictable, which is
not always the case. The result is that like sensor information, ongoing estimates of the
user pose must be qualified as they are combined with measurements in an overall
sequence of pose estimates. In addition, analytical motion or process models typically
incorporate some notion of random motion or uncertainty as shown above in
equation (4.14).

4.2.3 Optimal Estimation—The Kalman Filter

Among the substantial number of mathematical tools that can be used for stochastic pose
estimation from noisy sensor measurements, one of the most well-known and often-used
tools is what is known as the Kalman filter. The Kalman filter is named after Rudolph E.
Kalman, who in 1960 published his famous paper describing a recursive solution to the
discrete-data linear filtering problem (Kalman, 1960).

The filter is essentially a set of mathematical equations that implement a predictor-
corrector type estimator that is optimal in the sense that it minimizes the estimated error
covariance—when some presumed conditions are met. Since the time of its introduction,
the Kalman filter has been the subject of extensive research and application, particularly in
the area of autonomous or assisted navigation. This is likely due in large part to advances
in digital computing that made the use of the filter practical, but also to the relative
simplicity and robust nature of the filter itself. Rarely do the conditions necessary for
optimality actually exist, and yet the filter apparently works well for many applications in
spite of this situation.

Of particular note here, the Kalman filter has been used extensively for tracking in
interactive computer graphics. We use a single-constraint-at-a-time Kalman filter (see
page 68) in our HiBall Tracking System (Welch et al., 1999, 2001) which is commercially
available from 3rdTech (3rdTech, 2000). It has also been used for motion prediction
(Azuma, 1995a; Azuma & Bishop, 1994), and it is used for multi-sensor (inertial-acoustic)
fusion in the commercial Constellation™ wide-area tracking system by Intersense (Foxlin
et al., 1998; Intersense, 2000). See also (Azarbayejani & Pentland, 1994; Emura & Tachi,
1994a, 1994b; Fuchs (Foxlin), 1993; Mazuryk & Gervautz, 1995; Van Pabst & Krekel,
1993).

We maintain a popular web site on the topic of the Kalman filter. The web address is

http://www.cs.unc.edu/~welch/kalman/.

On this site you will find references to (and some copies of) introductory and advanced
material on the Kalman filter. New for 2001—we will be bringing on-line a Java-based
Kalman Filter Learning Tool. In addition, we are also teaching an Introduction to the
Kalman Filter two-hour tutorial at SIGGRAPH 2001 (Course 8), for which there are
separate course notes. Finally, in Appendix A of this course pack (page 81) we have

wk
66

Course 11—Tracking: Beyond 15 Minutes of Thought
included a copy of our own introductory technical report. Beyond this Appendix, a very
“friendly” introduction to the general idea of the Kalman filter can be found in Chapter 1
of (Maybeck, 1979)—which is available from the above Kalman filter web site, while a
more complete introductory discussion can be found in (Sorenson, 1970), which also
contains some interesting historical narrative. More extensive references include (Brown
& Hwang, 1996; Gelb, 1974; Grewal & Andrews, 2001; Jacobs, 1993; Lewis, 1986;
Maybeck, 1979).

4.2.4 Hybrid or Multi-Sensor Fusion

Stochastic estimation tools such as the Kalman filter (see Appendix A on page 81) can be
used to combine or fuse information from different mediums or sensors for hybrid systems
(see Section 3.3 on page 56). The basic idea is to use the Kalman filter to weight the
different mediums most heavily in the circumstances where they each perform best, thus
providing more accurate and stable estimates than a system based on any one medium
alone. In particular, the indirect feedback Kalman filter shown in Figure 4.1 (also called a
complementary or error-state Kalman filter) is often used to combine the two mediums
(Maybeck, 1979). In such a configuration, the Kalman filter is used to estimate the
difference between the current inertial and optical (or acoustic) outputs, i.e. it continually
estimates the error in the inertial estimates by using the optical system as a second
(redundant) reference. This error estimate is then used to correct the inertial estimates. The
adjustment or tuning of the Kalman filter parameters then determines the weight of the
correction as a function of frequency. By slightly modifying the Kalman filter, adaptive
velocity response can be incorporated also. This can be accomplished by adjusting (in real
time) the expected optical measurement error as a function of the magnitude of velocity.
The dashed line in Figure 4.1 indicates the additional use of inertial estimates to help a
image-based optical system to prevent tracking of moving scene objects (i.e. unrelated
motion in the environment).

In such a configuration, the Kalman filter uses a common process model, but a distinct
measurement model for each of the inertial and optical subsystems. See Appendix A on
page 81 for more information about these models.

Inertial

Kalman
filter

Corrections

Inertial estimate (corrected)

OpticalOptical estimate
(redundant)to inertial

Figure 4.1: The Kalman filter used in an indirect-feedback
configuration to optimally weight inertial and optical information.
67

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
4.2.5 Single-Constraint-at-a-Time Tracking

A conventional approach to pose estimation is to collect a group of sensor measurements
and then to attempt to simultaneously solve a system of equations that together completely
constrain the solution. For example, the 1991 UNC-Chapel Hill wide-area opto-electronic
tracking system (Wang, 1990; Ward et al., 1992) collected a group of diverse
measurements for a variety of LEDs and sensors, and then used a method of simultaneous
non-linear equations called Collinearity to estimate the pose of the head-worn sensor
fixture (Azuma & Ward, 1991). There was one equation for each measurement, expressing
the constraint that a ray from the front principal point of the sensor lens to the LED, must
be collinear with a ray from the rear principal point to the intersection with the sensor.
Each estimate made use of typically 20 (or more) measurements that together over-
constrained the solution.

This multiple constraint method had several drawbacks. First, it had a significantly lower
estimate rate due to the need to collect multiple measurements per estimate. Second, the
system of non-linear equations did not account for the fact that the sensor fixture
continued to move throughout the collection of the sequence of measurements. Instead the
method effectively assumes that the measurements were taken simultaneously. The
violation of this simultaneity assumption could introduce significant error during even
moderate motion. Finally, the method provided no means to identify or handle unusually
noisy individual measurements. Thus, a single erroneous measurement could cause an
estimate to jump away from an otherwise smooth track.

In contrast, there is typically nothing about solutions to the observer design problem in
general (Section 4.2.2), or the Kalman filter in particular (Section 4.2.3), that dictates the
ordering of measurement information. In 1996 we introduced a new Kalman filter-based
approach to tracking, an approach that exploits this flexibility in measurement processing.
The basic idea is to update the pose estimate as each new measurement is made, rather
than waiting to form a complete collection of measurement. Because single measurements
under-constrain the mathematical solution, we refer to the approach as single-constraint-
at-a-time or SCAAT tracking (Welch, 1996; Welch & Bishop, 1997). The key is that the
single measurements provide some information about the tracker state, and thus can be
used to incrementally improve a previous estimate. We intentionally fuse each individual
“insufficient” measurement immediately as it is obtained. With this approach we are able
to generate estimates more frequently, with less latency, with improved accuracy, and we
are able to estimate the LED positions on-line concurrently while tracking. This approach
is used in our laboratory-based HiBall Tracking System (Welch et al., 1999, 2001), the
commercial version of the same system (3rdTech, 2000), and the commercial systems
manufactured by Intersense (Foxlin et al., 1998; Intersense, 2000).

One of the most interesting things about the SCAAT approach is that it can be almost
universally applied in place of conventional approaches (Section 4.1). Essentially all you
need is to be able to predict a sensor measurement given a current pose estimate. In other
words, if you can formulate a measurement model as in equation (4.15) in Section 4.2.2,
you can use the SCAAT approach. In fact, one of the unusual things about the approach is
68

Course 11—Tracking: Beyond 15 Minutes of Thought
that you never actually compute the pose directly, you only compute the measurement you
think the sensor should “see.” For computer graphics people, the measurement model for
optical sensors in particular is “simple” as it typically resembles the normal graphics
viewing transformations.

Consider for a moment the UNC hybrid landmark-magnetic tracker presented at
SIGGRAPH 96 (State, Hirota, Chen, Garrett, & Livingston, 1996). This system uses an
off-the-shelf Ascension magnetic tracking system along with a vision-based landmark
recognition system to achieve superior synthetic and real image registration for augmented
reality assisted medical procedures. The vision-based component attempts to identify and
locate multiple known landmarks in a single image before applying a correction to the
magnetic readings. A SCAAT implementation would instead predict the location of a
landmark in the image, then identify and locate that single landmark in the actual image. It
would process one landmark per image update in this fashion. Not only would this
approach increase the frequency of landmark-based correction (given the necessary image
processing) but it would offer the added benefit that unlike the implementation presented
in (State et al., 1996), no special processing would be needed for the cases where the
number of visible landmarks falls below the number necessary to determine a complete
position and orientation solution. The SCAAT implementation would simply cycle
through any available landmarks, one at a time. Even with only one visible landmark the
method would continue to operate as usual, using the information provided by the
landmark sighting to refine the estimate.

For more information see (Welch & Bishop, 1997) and (Welch, 1996), the latter of which
is included at the end of this course pack in Appendix C.
69

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
70

5. Problems and Insights
In this chapter we consider some of the primary sources of error in estimates from tracking
and motion capture systems. While we focus specifically on head tracking for interactive
computer graphics, the basic principles are applicable to tracking of hands, and even to
motion capture. We attempt to provide some insight into the source of the error, and even a
means for addressing (not necessarily solving) one of the biggest problems: end-to-end
delay in the entire tracking and graphics pipeline.

5.1 Classification of Error

There are of course many causes of visual error in interactive computer graphics systems.
There are many people (aside from the authors) who would argue that various errors
originating in the tracking system dominate all other sources. In his 1995 Ph.D.
dissertation thoroughly analyzing the sources of error in an Augmented Reality system for
computer-aided surgery, Rich Holloway stated

Clearly, the head tracker is the major cause of registration error in AR systems. The
errors come as a result of errors in aligning the tracker origin with respect to the World
CS (which may be avoidable), measurement errors in both calibrated and
multibranched trackers, and delay in propagating the information reported by the
tracker through the system in a timely fashion.

Rich Holloway’s dissertation offers a very thorough look at the sources of error in the
entire AR pipeline, including the stages associated with tracking. Much of the dissertation
is applicable to VR systems in general, and even motion capture. We highly encourage you
to take a look if you are really interested in a rigorous mathematical analysis. Chapter 8 of
the dissertation discusses some methods for combating the problems introduced by tracker
error, in particular delay. The dissertation is available from http://www.cs.unc.edu/
Publications/Dissertations.html.

Sources of Error

For a person designing, calibrating, or using a tracking or motion capture system, it is
useful to have some insight into where errors come from. As (Deering, 1992) notes, “...the
visual effect of many of the errors is frustratingly similar.” This is especially true for
tracking errors. We have seen people build VR applications with obvious head tracker
71

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
transformation errors, and yet people had great difficulty figuring out what part of the long
sequence of transforms was wrong, if it was a static calibration error, or a simple sign
error.

Yet even when all of the transforms are of the correct form, the units of translation and
orientation match, and all the signs are correct, there are still unavoidable errors in motion
tracking, errors that confound even the most experienced of practitioners of interactive
computer graphics. No matter what the approach (see Chapter 4), the process of pose
estimation can be thought of as a sequence of events and operations. The sequence begins
with the user motion, and typically ends with a pose estimate arriving at the host
computer, ready to be consumed by the application. Clearly by the time a pose estimate
arrives at the host computer it is already “late”—and you still have to render an image and
wait for it to be displayed! Section 5.3 offers some hope for addressing the long delays and
in some sense “catching up” with the user motion, but that doesn’t mean that we don’t
want to minimize the delay, and to understand how all of the various errors affect the
outcome.

The sources of error in tracking and motion capture can generally be divided into two
primary classes. The first includes all errors related to making static measurements, either
off line prior to running an application, or on line during normal operation. We call this
static measurement error. The second includes all errors that arise from the inevitable
sources of delay in the tracking pipeline. We call this delay-induced error.

5.1.1 Static Measurement Error

Static Field Distortion

For an immobile sensor (static motion), we can divide the measurement errors into two
types: repeatable and nonrepeatable. Some trackers (for example, magnetic ones) have
systematic, repeatable distortions of their measurement volume which cause them to give
erroneous data; we will call this effect static field distortion. The fact that these
measurement errors are repeatable means that they can be measured and corrected as long
as they remain unchanged between this calibration procedure and run time.

Random Noise or Jitter

Here we consider the non-repeatable errors made by the tracker for an immobile sensor.
As we discussed in general in Section 2.1.1, some amount of noise in the sensor inputs is
inevitable with any measurement system, and this measurement noise typically leads to
random noise or jitter in the pose estimates. By our definition, this type of error is not
repeatable and therefore not correctable a priori via calibration. Moreover, the amount of
jitter in the tracker’s outputs limits the degree to which the tracker can be calibrated. The
amount of jitter is often proportional to the distance between the sensor(s) and the
source(s), and may become relatively large near the edge of the tracker’s working volume.
72

Course 11—Tracking: Beyond 15 Minutes of Thought
5.1.2 Delay-Induced Error

Any measurement of a non-repeating, time-varying phenomenon is valid (at best) at the
instant the sample occurs—or over the brief interval it occurs, and then becomes “stale”
with the passage of time until the next measurement. The age of the data is thus one factor
in its accuracy. Any delay between the time the measurement is made and the time that
measurement is manifested by the system in a pose estimate contributes to the age and
therefore the inaccuracy of that measurement. The older the tracker data is, the more likely
that the displayed image will be misaligned with the real world.

We feel that concerns related to dynamic error (including dynamic tracker error and
delay-induced error from above) deserve distinct discussion. This class of error is often
less obvious when it occurs (you know something isn’t correct, but you don’t know why),
and when you do recognize it, it is difficult to know where to look to minimize the effects.

First-Order Dynamic Error

Probably the most obvious effect here is the overall dynamic error caused by continued
user motion after a tracker cycle (sample, estimate, produce) has started. If the user’s head
is rotating with an angular velocity of and translating with a linear velocity of then
simple first-order models for the delay-induced orientation and translation error are given
by

(5.1)

(5.2)

where is the sum of the total motion delay for the tracking system as described
below in Section 5.2, as well as , the delay through the remainder of the graphics
pipeline—including rendering and image generation, video synchronization delay, frame
synchronization delay, and internal display delay. The video synchronization delay is the
amount of time spent waiting for a frame buffer to swap—on average the frame time.
(Synchronization delay in general is described more below.) The internal display delay is
any delay added by the display device beyond the normal frame delay. For example, some
LCD and DLP devices buffer images internally in a non-intuitive manner. The delay must
be measured on a per-device basis if it is important.

The Simultaneity Assumption

Many popular tracking systems collect sensor measurements sequentially, and then
assume (mathematically) that they were collected simultaneously. We refer to this as the
simultaneity assumption. If the target remains motionless this assumption introduces no
error. However if the target is moving, the violation of the assumption introduces error.
Consider that typical arm and wrist motion can occur in as little as 1/2 second, with typical
“fast” wrist tangential motion occurring at three meters per second (Atkeson &
Hollerbach, 1985). For the a typical magnetic tracker with 20-80 ms of latency, such “fast”

θ̇ ẋ

εdyn θ, θ̇∆t=

εdyn x, ẋ∆t=

∆t ∆tm
∆tg

1 2⁄
73

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
motion corresponds to approximately one to ten centimeters of translation throughout the
sequence of sensor samples used for a single estimate. For systems that attempt sub-
millimeter accuracies, even slow motion occurring during a sequence of sequential
samples impacts the accuracy of the estimates. For example, in a multiple-sample system
with [ms] of total sample time, motion of only three centimeters per second
corresponds to approximately one millimeter of target translation throughout the sequence
of samples for one estimate. Figure 5.1 presents the results of a simulation from (Welch,
1996) (page 161) which includes a more extensive analysis of this error source. Figure 5.1
shows how estimates can be pulled away from the truth by an error amount of as the
simultaneity assumption is violated.

Sensor Sample Rate

Per Shannon’s sampling theorem (Jacobs, 1993) the measurement or sampling rate
should be at least twice the true target motion bandwidth, or an estimator may track an
alias of the true motion. Given that common arm and head motion bandwidth
specifications range from 2 to 20 Hz (Fischer, Daniel, & Siva, 1990; Foxlin, 1993;
Neilson, 1972), the sampling rate should ideally be greater than 40 Hz. Furthermore, the
estimation rate should be as high as possible so that slight (expected and acceptable)
estimation error can be discriminated from the unusual error that might be observed
during times of significant target dynamics.

∆ts 30=

εsa

10008006004002000

0.4

0.3

0.2

0.1

0
-0.1

-0.2

-0.3

time (ms)

Po
si

tio
n

E
st

im
at

e

Estimate error

Figure 5.1: Simulated error resulting from the simultaneity assumption.
The family of curves shows how simulated position estimates become
skewed by the simultaneity assumption as a target undergoes motion with a
one Hertz sinusoidal velocity. Note the increasing skew of the estimates
with total sensor sample times of ms. Details
appear in (Welch, 1996).

∆ts 0 10 40 70 100, , , ,{ }∈

assumption with 100 ms sample time.

∆ts 0=

εsa caused by the simultaneity

rss

re
74

Course 11—Tracking: Beyond 15 Minutes of Thought
Synchronization Delay

While other latencies (delays) certainly do exist in the typical VE system (Council, 1994;
Mine, 1993; Wloka, 1995) tracker latency is unique in that it determines how much time
elapses before the first possible opportunity to respond to user motion. When the user
moves, we want to know as soon as possible. Within the tracking system pipeline of events
(and throughout the rendering pipeline) there are both fixed latencies associated with well-
defined tasks such as executing functions to compute the pose, and variable latencies
associated with the synchronization between well-defined asynchronous tasks. The latter
is often called synchronization delay, although sometimes also phase delay or rendezvous
delay. See for example Figure 5.2.

In the example of Figure 5.2, measurements and pose estimates occur at regular but
different rates. Inevitably, any measurement will sit for some time before being used in to
compute a pose estimate. At best, the measurement will be read immediately after it is
made. At worst the measurement will be read just before it is replaced with a newer
measurement. On average the delay would be the measurement rate.

5.2 Total Tracker Error

Figure 5.3 presents a more involved example, a sequence of inter-tracker events and the
corresponding delays. Consider an instantaneous step-like user motion as depicted in
Figure 5.3. The sequence of events begins at , the instant the user begins to move. In
this example the sensors are sampled at a regular rate , such as would
typically be the case with video or a high-speed A/D conversion. On average there will be

 seconds of sample synchronization delay before any sample is used for
pose estimation. Because the pose estimate computations are repeated asynchronously at
the regular rate of there will be an average of seconds of
estimation synchronization delay, after which time the estimation will take seconds.

measure

time

estimate

Figure 5.2: Synchronization delay. A measurement is taken at but
not used to estimate the pose until . The intervening time is called
synchronization delay.

a
a'

synchronization
delay

a

a'
processing
fixed-time

1 2⁄

tm
rss 1 τss⁄=

∆tss τss 2⁄=

re 1 τe⁄= ∆te τe 2⁄=
τe
75

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Assuming a client-server architecture such as (VRPN, 2001) the final estimate will be
written to a server communications buffer where it is being read at a rate of

, and will therefore wait an average of seconds before
being read and transmitted over the network to the client. The network transmission itself
will take , and the final client read-buffer synchronization delay will take

 seconds, where (the client read-buffer rate). The total
(average) motion delay in this example is then

(5.3)

where is the sensor sample rate, is the estimate rate, , is the server
read-buffer rate, is the network transmission time, and is the client read-buffer
rate.

Note that this bound does not include any latency inherently added by pose estimate
computations that also implement some form of filtering.

Summing the static measurement error from Section 5.1.1, the error caused by
violation of the simultaneity assumption, and the dynamic error given by equations (5.1)
and (5.2), we get a total error of

(5.4)

where is from equation (5.3), and includes the remainder of the graphics
pipeline delay as described in “First-Order Dynamic Error” above in Section 5.1.2.
Clearly the final rotation and translation error is sensitive to both the user motion velocity,
and the total delay of the tracker and graphics pipeline.

rsrb 1 τsrb⁄= ∆tsrb τsrb 2⁄=

τnet
∆tcrb τcrb 2⁄= τcrb 1 rcrb⁄=

∆tm tm' tm–=

∆tss ∆te τe ∆tsrb τnet ∆tcrb+ + + + +=

1
2rss
---------- 1

2re
-------- τe

1
2rsrb
------------- τnet

1
2rcrb
-------------+ + + + +=

rss re τe 1 re⁄= rsrb
τnet rcrb

εsa

εθ εstat θ, εsa θ, θ̇ ∆tm ∆tg+()+ +≈

εx εstat x, εsa x, ẋ ∆tm ∆tg+()+ +≈

∆tm ∆tg
76

Course 11—Tracking: Beyond 15 Minutes of Thought
5.3 Motion Prediction

When trackers are used to implement VE or AR systems, end-to-end delays the total
system will result in perceived swimming of the virtual world whenever the user’s head
moves. The delay causes the virtual objects to appear to follow the user’s head motion
with a velocity dependent error.

user motion

sample
sensor

time

estimate

write

read
buffer

buffer

network

write

read
buffer

buffer

se
rv

er
cl

ie
nt

τe

∆tss

∆tsrb

τnet

∆tcrb

Figure 5.3: An example sequence of inter-tracker events and delays.

tm

tm'

∆te
77

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
The sequence of events in a head-mounted display system goes something like this:

The interval from to is on the order of 30ms in the fastest systems and upwards to
200ms in the slowest. If the user is moving during this interval the image finally displayed
at will not be appropriate for the user’s new position. We are displaying images
appropriate for where the user was rather than for where he is.

The most important step in combating this swimming is to reduce the end-to-end delay.
This process can be taken only so far though. Each of the steps takes some time and this
time is not likely to be reduced to negligible simply by accelerating the hardware.

After the avoidable delays have been eliminated we can mitigate the effect of the
unavoidable delays by using motion prediction. Our goal is to extrapolate the user’s past
motion to predict where he will be looking at the time the new image is ready. As Azuma
(Azuma, 1995a) points out, this is akin to driving a car by looking only the rear-view
mirror. To keep the car on the road, the driver must predict where the road will go, based
solely on the view of the past and knowledge of roads in general. The difficulty of this task
depends on how fast the car is going and on the shape of the road. If the road is straight
and remains so, then the task is easy. If the road twists and turns unpredictably, the task
will be impossible.

Motion predictors attempt to extract information from past measurements to predict future
measurements. Most methods, at their core, attempt to estimate the local derivatives so
that a Taylor series can be evaluated to estimate the future value. The differences among
methods are mostly in the type and amount of smoothing applied to the data in estimating
the derivatives.

The simplest approach simply extends a line through the previous two measurements to
the time of the prediction. This approach will be very sensitive to noise in the
measurements. More sophisticated approaches will take weighted combinations of several
previous measurements. This will reduce sensitivity to noise but will incur a delay in
responding to rapid changes. All methods based solely on past measurements of position
and orientation will face a trade off between noise and responsiveness.

Time Event

tracker measures user’s pose

tracker reports the pose

application receives the reported pose

updated image is ready in the hidden buffer of a double-buffered display

buffer swap happens at vertical interval

image is scanned out to the display

Table 5.1: Time series of events in a head-mounted display system.

t0

t1

t2

t3

t4

t5

t0 t5

t5
78

Course 11—Tracking: Beyond 15 Minutes of Thought
Performance of the predictor can be improved considerably if direct measurements of the
derivatives of motion are available from inertial sensors. As described earlier, linear
accelerometers and rate gyros provide estimates of the derivatives of motion with high
bandwidth and good accuracy. Direct measurements are superior to differentiating the
position and orientation estimates because they are less noisy and are not delayed.

Azuma (Azuma & Bishop, 1994) demonstrated prediction using inertial sensors that
reduced swimming in an augmented reality system by a factor of 5 to 10 with end-to-end
delay of 80 [ms]. Further in (Azuma & Bishop, 1995) he shows that error in predictions
based on derivatives and simple models of motion are related to the square of the product
of the prediction interval and the bandwidth of the motion sequence. Doubling the
prediction interval for the same sort in input will quadruple the error.
79

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
80

A. An Introduction to the Kalman Filter
This appendix is a copy of UNC technical report TR 95-041, written by
Welch and Bishop in 1995. It is included to provide a ready and accessible
introduction to both the discrete Kalman filter and the extended Kalman fil-
ter. This report and other useful material can be found at the authors’ Kal-
man filter web site, http://www.cs.unc.edu/~welch/kalman/.

A.1 The Discrete Kalman Filter

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the
discrete-data linear filtering problem [Kalman60]. Since that time, due in large part to
advances in digital computing, the Kalman filter has been the subject of extensive research
and application, particularly in the area of autonomous or assisted navigation. A very
“friendly” introduction to the general idea of the Kalman filter can be found in Chapter 1
of [Maybeck79], while a more complete introductory discussion can be found in
[Sorenson70], which also contains some interesting historical narrative. More extensive
references include [Gelb74; Grewal93; Maybeck79; Lewis86; Brown92; Jacobs93].

A.1.1 The Process to be Estimated

The Kalman filter addresses the general problem of trying to estimate the state of
a discrete-time controlled process that is governed by the linear stochastic difference
equation

, (A.1)

with a measurement that is

. (A.2)

The random variables and represent the process and measurement noise
(respectively). They are assumed to be independent (of each other), white, and with
normal probability distributions

, (A.3)

. (A.4)

x ℜ
n

∈

xk Axk 1– Buk wk 1–+ +=

z ℜ
m

∈

zk H xk vk+=

wk vk

p w() N 0 Q,()∼

p v() N 0 R,()∼
81

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
In practice, the process noise covariance and measurement noise covariance
matrices might change with each time step or measurement, however here we assume they
are constant.

The matrix in the difference equation equation (A.1) relates the state at the
previous time step to the state at the current step , in the absence of either a driving
function or process noise. Note that in practice might change with each time step, but
here we assume it is constant. The matrix B relates the optional control input
to the state x. The matrix in the measurement equation equation (A.2) relates the
state to the measurement zk. In practice might change with each time step or
measurement, but here we assume it is constant.

A.1.2 The Computational Origins of the Filter

We define (note the “super minus”) to be our a priori state estimate at step k
given knowledge of the process prior to step k, and to be our a posteriori state
estimate at step k given measurement . We can then define a priori and a posteriori
estimate errors as

The a priori estimate error covariance is then

, (A.5)

and the a posteriori estimate error covariance is

. (A.6)

In deriving the equations for the Kalman filter, we begin with the goal of finding an
equation that computes an a posteriori state estimate as a linear combination of an a
priori estimate and a weighted difference between an actual measurement and a
measurement prediction as shown below in equation (A.7). Some justification for
equation (A.7) is given in “The Probabilistic Origins of the Filter” found below.

(A.7)

The difference in equation (A.7) is called the measurement innovation, or the
residual. The residual reflects the discrepancy between the predicted measurement
and the actual measurement . A residual of zero means that the two are in complete
agreement.

Q R

n n× A
k 1– k

A
n l× u ℜ

l
∈

m n× H
H

x̂k
-

ℜ
n

∈
x̂k ℜ

n
∈

zk

ek
-

xk x̂k
-
, and–≡

ek xk x̂k.–≡

Pk
-

E ek
-
ek

- T
[]=

Pk E ekek
T[]=

x̂k
x̂k

-
zk

H x̂k
-

x̂k x̂k
-

K zk H x̂k
-

–()+=

zk H x̂k
-

–()
H x̂k

-

zk
82

Course 11—Tracking: Beyond 15 Minutes of Thought
The matrix K in equation (A.7) is chosen to be the gain or blending factor that
minimizes the a posteriori error covariance equation (A.6). This minimization can be
accomplished by first substituting equation (A.7) into the above definition for ,
substituting that into equation (A.6), performing the indicated expectations, taking the
derivative of the trace of the result with respect to K, setting that result equal to zero, and
then solving for K. For more details see [Maybeck79; Brown92; Jacobs93]. One form of
the resulting K that minimizes equation (A.6) is given by1

. (A.8)

Looking at equation (A.8) we see that as the measurement error covariance approaches
zero, the gain K weights the residual more heavily. Specifically,

.

On the other hand, as the a priori estimate error covariance approaches zero, the gain
K weights the residual less heavily. Specifically,

.

Another way of thinking about the weighting by K is that as the measurement error
covariance approaches zero, the actual measurement is “trusted” more and more,
while the predicted measurement is trusted less and less. On the other hand, as the a
priori estimate error covariance approaches zero the actual measurement is trusted
less and less, while the predicted measurement is trusted more and more.

A.1.3 The Probabilistic Origins of the Filter

The justification for equation (A.7) is rooted in the probability of the a priori estimate
conditioned on all prior measurements (Bayes’ rule). For now let it suffice to point out
that the Kalman filter maintains the first two moments of the state distribution,

1. All of the Kalman filter equations can be algebraically manipulated into to several forms.
Equation equation (A.8) represents the Kalman gain in one popular form.

n m×

ek

Kk Pk
-
HT HPk

-
HT R+()

1–
=

Pk
-
HT

HPk
-
HT R+

-----------------------------=

R

KkRk 0→
lim H 1–=

Pk
-

Kk
Pk

- 0→
lim 0=

R zk
H x̂k

-

Pk
-

zk
H x̂k

-

x̂k
-

zk

E xk[] x̂k=

E xk x̂k–() xk x̂k–()T[] Pk.=
83

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
The a posteriori state estimate equation (A.7) reflects the mean (the first moment) of the
state distribution— it is normally distributed if the conditions of equation (A.3) and
equation (A.4) are met. The a posteriori estimate error covariance equation (A.6) reflects
the variance of the state distribution (the second non-central moment). In other words,

.

For more details on the probabilistic origins of the Kalman filter, see [Maybeck79;
Brown92; Jacobs93].

A.1.4 The Discrete Kalman Filter Algorithm

We will begin this section with a broad overview, covering the “high-level” operation of
one form of the discrete Kalman filter (see the previous footnote). After presenting this
high-level view, we will narrow the focus to the specific equations and their use in this
version of the filter.

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations for the Kalman filter fall into two groups: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward (in time) the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement update
equations are responsible for the feedback—i.e. for incorporating a new measurement into
the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed the final
estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems as shown below in Figure A.1.

p xk zk() N E xk[] E xk x̂k–() xk x̂k–()T[],()∼

N x̂k Pk,().=
84

Course 11—Tracking: Beyond 15 Minutes of Thought
The specific equations for the time and measurement updates are presented below in
table A.1 and table A.2.

Again notice how the time update equations in table A.1 project the state and covariance
estimates forward from time step to step . and B are from equation (A.1), while

 is from equation (A.3). Initial conditions for the filter are discussed in the earlier
references.

The first task during the measurement update is to compute the Kalman gain, . Notice
that the equation given here as equation (A.11) is the same as equation (A.8). The next
step is to actually measure the process to obtain , and then to generate an a posteriori
state estimate by incorporating the measurement as in equation (A.12). Again
equation (A.12) is simply equation (A.7) repeated here for completeness. The final step is
to obtain an a posteriori error covariance estimate via equation (A.13).

Table A.1: Discrete Kalman filter time update equations.

(A.9)

(A.10)

Table A.2: Discrete Kalman filter measurement update equations.

(A.11)

(A.12)

(A.13)

Time Update
(“Predict”)

Measurement Update
(“Correct”)

Figure A.1: The ongoing discrete Kalman filter cycle. The
time update projects the current state estimate ahead in
time. The measurement update adjusts the projected
estimate by an actual measurement at that time.

x̂k
-

Ax̂k 1– Buk+=

Pk
-

APk 1– AT Q+=

k 1– k A
Q

Kk Pk
-
HT HPk

-
HT R+()

1–
=

x̂k x̂k
-

Kk zk H x̂k
-

–()+=

Pk I KkH–()Pk
-

=

Kk

zk
85

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
After each time and measurement update pair, the process is repeated with the previous a
posteriori estimates used to project or predict the new a priori estimates. This recursive
nature is one of the very appealing features of the Kalman filter—it makes practical
implementations much more feasible than (for example) an implementation of a Wiener
filter [Brown92] which is designed to operate on all of the data directly for each estimate.
The Kalman filter instead recursively conditions the current estimate on all of the past
measurements. Figure A.2 below offers a complete picture of the operation of the filter,
combining the high-level diagram of Figure A.1 with the equations from table A.1 and
table A.2.

A.2 The Extended Kalman Filter (EKF)

A.2.1 The Process to be Estimated

As described above in Section A.1.1, the Kalman filter addresses the general problem of
trying to estimate the state of a discrete-time controlled process that is governed
by a linear stochastic difference equation. But what happens if the process to be estimated
and (or) the measurement relationship to the process is non-linear? Some of the most
interesting and successful applications of Kalman filtering have been such situations. A
Kalman filter that linearizes about the current mean and covariance is referred to as an
extended Kalman filter or EKF.

In something akin to a Taylor series, we can linearize the estimation around the current
estimate using the partial derivatives of the process and measurement functions to
compute estimates even in the face of non-linear relationships. To do so, we must begin by

Kk Pk
-
HT HPk

-
HT R+()

1–
=

(1) Compute the Kalman gain

x̂k 1–Initial estimates for and Pk 1–

x̂k x̂k
-

Kk zk H x̂k
-

–()+=

(2) Update estimate with measurement zk

(3) Update the error covariance

Pk I KkH–()Pk
-

=

Measurement Update (“Correct”)

(1) Project the state ahead

(2) Project the error covariance ahead

Time Update (“Predict”)

x̂k
-

Ax̂k 1– Buk+=

Pk
-

APk 1– AT Q+=

Figure A.2: A complete picture of the operation of the Kalman filter, combining the
high-level diagram of Figure A.1 with the equations from table A.1 and table A.2.

x ℜ
n

∈

86

Course 11—Tracking: Beyond 15 Minutes of Thought
modifying some of the material presented in Section A.1. Let us assume that our process
again has a state vector , but that the process is now governed by the non-linear
stochastic difference equation

, (A.14)

with a measurement that is

, (A.15)

where the random variables and again represent the process and measurement
noise as in equation (A.3) and equation (A.4). In this case the non-linear function in the
difference equation equation (A.14) relates the state at the previous time step to the
state at the current time step . It includes as parameters any driving function uk and the
zero-mean process noise wk. The non-linear function in the measurement equation
equation (A.15) relates the state to the measurement .

In practice of course one does not know the individual values of the noise and at
each time step. However, one can approximate the state and measurement vector without
them as

(A.16)

and

, (A.17)

where is some a posteriori estimate of the state (from a previous time step k).

It is important to note that a fundamental flaw of the EKF is that the distributions (or
densities in the continuous case) of the various random variables are no longer normal
after undergoing their respective nonlinear transformations. The EKF is simply an ad hoc
state estimator that only approximates the optimality of Bayes’ rule by linearization. Some
interesting work has been done by Julier et al. in developing a variation to the EKF, using
methods that preserve the normal distributions throughout the non-linear transformations
[Julier96].

A.2.2 The Computational Origins of the Filter

To estimate a process with non-linear difference and measurement relationships, we begin
by writing new governing equations that linearize an estimate about equation (A.16) and
equation (A.17),

, (A.18)

. (A.19)

x ℜ
n

∈

xk f xk 1– uk wk 1–, ,()=

z ℜ
m

∈

zk h xk vk,()=

wk vk
f

k 1–
k

h
xk zk

wk vk

x̃k f x̂k 1– uk 0, ,()=

z̃k h x̃k 0,()=

x̂k

xk x̃k A xk 1– x̂k 1––() W wk 1–+ +≈

zk z̃k H xk x̃k–() V vk+ +≈
87

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
where

• and are the actual state and measurement vectors,

• and are the approximate state and measurement vectors from

equation (A.16) and equation (A.17),

• is an a posteriori estimate of the state at step k,

• the random variables and represent the process and measurement noise

as in equation (A.3) and equation (A.4).

• A is the Jacobian matrix of partial derivatives of with respect to x, that is

,

• W is the Jacobian matrix of partial derivatives of with respect to w,

,

• H is the Jacobian matrix of partial derivatives of with respect to x,

,

• V is the Jacobian matrix of partial derivatives of with respect to v,

.

Note that for simplicity in the notation we do not use the time step subscript with the
Jacobians , , , and , even though they are in fact different at each time step.

Now we define a new notation for the prediction error,

, (A.20)

and the measurement residual,

. (A.21)

xk zk

x̃k z̃k

x̂k

wk vk

f

A i j,[] x j[]∂

∂ f i[] x̂k uk 0, ,()=

f

W i j,[] w j[]∂

∂ f i[] x̂k uk 0, ,()=

h

H i j,[] x j[]∂

∂h i[] x̃k 0,()=

h

V i j,[] v j[]∂

∂h i[] x̃k 0,()=

k
A W H V

ẽxk
xk x̃k–≡

ẽzk
zk z̃k–≡
88

Course 11—Tracking: Beyond 15 Minutes of Thought
Remember that in practice one does not have access to in equation (A.20), it is the
actual state vector, i.e. the quantity one is trying to estimate. On the other hand, one does
have access to in equation (A.21), it is the actual measurement that one is using to
estimate . Using equation (A.20) and equation (A.21) we can write governing equations
for an error process as

, (A.22)

, (A.23)

where and represent new independent random variables having zero mean and
covariance matrices and , with and as in (A.3) and (A.4)
respectively.

Notice that the equations equation (A.22) and equation (A.23) are linear, and that they
closely resemble the difference and measurement equations equation (A.1) and
equation (A.2) from the discrete Kalman filter. This motivates us to use the actual
measurement residual in equation (A.21) and a second (hypothetical) Kalman filter to
estimate the prediction error given by equation (A.22). This estimate, call it , could
then be used along with equation (A.20) to obtain the a posteriori state estimates for the
original non-linear process as

. (A.24)

The random variables of equation (A.22) and equation (A.23) have approximately the
following probability distributions (see the previous footnote):

Given these approximations and letting the predicted value of be zero, the Kalman
filter equation used to estimate is

. (A.25)

By substituting equation (A.25) back into equation (A.24) and making use of
equation (A.21) we see that we do not actually need the second (hypothetical) Kalman
filter:

(A.26)

xk

zk
xk

ẽxk
A xk 1– x̂k 1––() εk+≈

ẽzk
Hẽxk

ηk+≈

εk ηk
WQW T VRV T Q R

ẽzk
ẽxk

êk

x̂k x̃k êk+=

p ẽxk
() N 0 E ẽxk

ẽxk

T[],()∼

p εk() N 0 W QkW T,()∼

p ηk() N 0 V RkV T,()∼

êk
êk

êk Kkẽzk
=

x̂k x̃k Kkẽzk
+=

x̃k Kk zk z̃k–()+=
89

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Equation equation (A.26) can now be used for the measurement update in the extended
Kalman filter, with and coming from equation (A.16) and equation (A.17), and the
Kalman gain coming from equation (A.11) with the appropriate substitution for the
measurement error covariance.

The complete set of EKF equations is shown below in table A.3 and table A.4. Note that
we have substituted for to remain consistent with the earlier “super minus” a priori
notation, and that we now attach the subscript to the Jacobians , , , and , to
reinforce the notion that they are different at (and therefore must be recomputed at) each
time step.

As with the basic discrete Kalman filter, the time update equations in table A.3 project the
state and covariance estimates from the previous time step to the current time step

. Again in equation (A.27) comes from equation (A.16), and are the process
Jacobians at step k, and is the process noise covariance equation (A.3) at step k.

As with the basic discrete Kalman filter, the measurement update equations in table A.4
correct the state and covariance estimates with the measurement . Again in
equation (A.30) comes from equation (A.17), and V are the measurement Jacobians at
step k, and is the measurement noise covariance equation (A.4) at step k. (Note we
now subscript allowing it to change with each measurement.)

The basic operation of the EKF is the same as the linear discrete Kalman filter as shown in
Figure A.1. Figure A.3 below offers a complete picture of the operation of the EKF,
combining the high-level diagram of Figure A.1 with the equations from table A.3 and
table A.4.

Table A.3: EKF time update equations.

(A.27)

(A.28)

Table A.4: EKF measurement update equations.

(A.29)

(A.30)

(A.31)

x̃k z̃k
Kk

x̂k
-

x̃k
k A W H V

x̂k
-

f x̂k 1– uk 0, ,()=

Pk
-

AkPk 1– Ak
T WkQk 1– Wk

T+=

k 1–
k f Ak Wk

Qk

Kk Pk
-
Hk

T HkPk
-
Hk

T V kRkV k
T+()

1–
=

x̂k x̂k
-

Kk zk h x̂k
-

0,()–()+=

Pk I KkHk–()Pk
-

=

zk h
Hk

Rk
R

90

Course 11—Tracking: Beyond 15 Minutes of Thought
Figure A.3: A complete picture of the operation of the extended
Kalman filter, combining the high-level diagram of Figure A.1 with
the equations from table A.3 and table A.4.

An important feature of the EKF is that the Jacobian in the equation for the Kalman
gain serves to correctly propagate or “magnify” only the relevant component of the
measurement information. For example, if there is not a one-to-one mapping between the
measurement and the state via , the Jacobian affects the Kalman gain so that it
only magnifies the portion of the residual that does affect the state. Of
course if over all measurements there is not a one-to-one mapping between the
measurement and the state via , then as you might expect the filter will quickly
diverge. In this case the process is unobservable.

A.3 An Example: Estimating a Random Constant

In the previous two sections we presented the basic form for the discrete Kalman filter, and
the extended Kalman filter. To help in developing a better feel for the operation and
capability of the filter, we present a very simple example here.

Kk Pk
-
Hk

T HkPk
-
Hk

T V kRkV k
T+()

1–
=

(1) Compute the Kalman gain

x̂k
-

Initial estimates for andPk
-

x̂k x̂k
-

Kk zk h x̂k
-

0,()–()+=

(2) Update estimate with measurement zk

(3) Update the error covariance

Pk I KkHk–()Pk
-

=

Measurement Update (“Correct”)

(1) Project the state ahead

(2) Project the error covariance ahead

Time Update (“Predict”)

x̂k
-

f x̂k 1– uk 0, ,()=

Pk
-

AkPk 1– Ak
T WkQk 1– Wk

T+=

Hk
Kk

zk h Hk
zk h x̂k

-
0,()–

zk h
91

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
A.3.1 The Process Model

In this simple example let us attempt to estimate a scalar random constant, a voltage for
example. Let’s assume that we have the ability to take measurements of the constant, but
that the measurements are corrupted by a 0.1 volt RMS white measurement noise (e.g. our
analog to digital converter is not very accurate). In this example, our process is governed
by the linear difference equation

,

with a measurement that is

.

The state does not change from step to step so . There is no control input so
. Our noisy measurement is of the state directly so . (Notice that we

dropped the subscript k in several places because the respective parameters remain
constant in our simple model.)

A.3.2 The Filter Equations and Parameters

Our time update equations are

,

,

and our measurement update equations are

, (A.32)

,

.

Presuming a very small process variance, we let . (We could certainly let
 but assuming a small but non-zero value gives us more flexibility in “tuning” the

filter as we will demonstrate below.) Let’s assume that from experience we know that the

xk Axk 1– Buk wk+ +=

xk 1– wk+=

z ℜ
1

∈

zk H xk vk+=

xk vk+=

A 1=
u 0= H 1=

x̂k
-

x̂k 1–=

Pk
-

Pk 1– Q+=

Kk Pk
-

Pk
-

R+()
1–

=

Pk
-

Pk
-

R+
----------------=

x̂k x̂k
-

Kk zk x̂k
-

–()+=

Pk 1 Kk–()Pk
-

=

Q 1e 5–=
Q 0=
92

Course 11—Tracking: Beyond 15 Minutes of Thought
true value of the random constant has a standard normal probability distribution, so we
will “seed” our filter with the guess that the constant is 0. In other words, before starting
we let .

Similarly we need to choose an initial value for , call it . If we were absolutely
certain that our initial state estimate was correct, we would let . However
given the uncertainty in our initial estimate , choosing would cause the filter to
initially and always believe . As it turns out, the alternative choice is not critical.
We could choose almost any and the filter would eventually converge. We’ll start
our filter with .

A.3.3 The Simulations

To begin with, we randomly chose a scalar constant (there is no “hat” on
the z because it represents the “truth”). We then simulated 50 distinct measurements
that had error normally distributed around zero with a standard deviation of 0.1 (remember
we presumed that the measurements are corrupted by a 0.1 volt RMS white measurement
noise). We could have generated the individual measurements within the filter loop, but
pre-generating the set of 50 measurements allowed me to run several simulations with the
same exact measurements (i.e. same measurement noise) so that comparisons between
simulations with different parameters would be more meaningful.

In the first simulation we fixed the measurement variance at . Because
this is the “true” measurement error variance, we would expect the “best” performance in
terms of balancing responsiveness and estimate variance. This will become more evident
in the second and third simulation. Figure A.4 depicts the results of this first simulation.
The true value of the random constant is given by the solid line, the noisy
measurements by the cross marks, and the filter estimate by the remaining curve.

x̂k 1– 0=

Pk 1– P0
x̂0 0= P0 0=

x̂0 P0 0=
x̂k 0=
P0 0≠

P0 1=

z 0.37727–=
zk

R 0.1()2 0.01= =

x 0.37727–=
93

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Figure A.4: The first simulation: . The true val-
ue of the random constant is given by the solid line,
the noisy measurements by the cross marks, and the filter estimate
by the remaining curve.

When considering the choice for above, we mentioned that the choice was not critical
as long as because the filter would eventually converge. Below in Figure A.5 we
have plotted the value of versus the iteration. By the 50th iteration, it has settled from
the initial (rough) choice of 1 to approximately 0.0002 (Volts2).

Figure A.5: After 50 iterations, our initial (rough) error covariance
 choice of 1 has settled to about 0.0002 (Volts2).

In Figure A.6 and Figure A.7 below we can see what happens when R is increased or
decreased by a factor of 100 respectively. In Figure A.6 the filter was told that the
measurement variance was 100 times greater (i.e.) so it was “slower” to believe
the measurements.

5040302010

-0.2

-0.3

-0.4

-0.5

Iteration

V
ol

ta
ge

R 0.1()2 0.01= =
x 0.37727–=

P0
P0 0≠

Pk

5040302010

0.01

0.008

0.006

0.004

0.002

Iteration

(V
ol

ta
ge

)2

Pk
-

R 1=
94

Course 11—Tracking: Beyond 15 Minutes of Thought
Figure A.6: Second simulation: . The filter is slower to re-
spond to the measurements, resulting in reduced estimate variance.

In Figure A.7 the filter was told that the measurement variance was 100 times smaller (i.e.
) so it was very “quick” to believe the noisy measurements.

Figure A.7: Third simulation: . The filter responds to
measurements quickly, increasing the estimate variance.

While the estimation of a constant is relatively straight-forward, it clearly demonstrates
the workings of the Kalman filter. In Figure A.6 in particular the Kalman “filtering” is
evident as the estimate appears considerably smoother than the noisy measurements.

5040302010

-0.2

-0.3

-0.4

-0.5

V
ol

ta
ge

R 1=

R 0.0001=

5040302010

-0.2

-0.3

-0.4

-0.5

V
ol

ta
ge

R 0.0001=
95

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
References

Brown92 Brown, R. G. and P. Y. C. Hwang. 1992. Introduction to Random
Signals and Applied Kalman Filtering, Second Edition, John Wiley
& Sons, Inc.

Gelb74 Gelb, A. 1974. Applied Optimal Estimation, MIT Press, Cambridge,
MA.

Grewal93 Grewal, Mohinder S., and Angus P. Andrews (1993). Kalman Filter-
ing Theory and Practice. Upper Saddle River, NJ USA, Prentice
Hall.

Jacobs93 Jacobs, O. L. R. 1993. Introduction to Control Theory, 2nd Edition.
Oxford University Press.

Julier96 Julier, Simon and Jeffrey Uhlman. “A General Method of Approxi-
mating Nonlinear Transformations of Probability Distributions,”
Robotics Research Group, Department of Engineering Science, Uni-
versity of Oxford [cited 14 November 1995]. Available from http://
www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip.

Also see: “A New Approach for Filtering Nonlinear Systems” by S.
J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, Proceedings of
the 1995 American Control Conference, Seattle, Washington, Pag-
es:1628-1632. Available from http://www.robots.ox.ac.uk/~siju/
work/publications/ACC95_pr.zip.

Also see Simon Julier’s home page at http://www.robots.ox.ac.uk/
~siju/.

Kalman60 Kalman, R. E. 1960. “A New Approach to Linear Filtering and Pre-
diction Problems,” Transaction of the ASME—Journal of Basic En-
gineering, pp. 35-45 (March 1960).

Lewis86 Lewis, Richard. 1986. Optimal Estimation with an Introduction to
Stochastic Control Theory, John Wiley & Sons, Inc.

Maybeck79 Maybeck, Peter S. 1979. Stochastic Models, Estimation, and Con-
trol, Volume 1, Academic Press, Inc.

Sorenson70 Sorenson, H. W. 1970. “Least-Squares estimation: from Gauss to
Kalman,” IEEE Spectrum, vol. 7, pp. 63-68, July 1970.
96

B. Tracking Bibliography
This appendix includes a listing of most of the tracking-related publications that we are
aware of and refer to.This list is also available in electronic bibliography format at

http://www.cs.unc.edu/~tracker/ref/s2001/tracker/

3rdTech. (2000, July 15). 3rdTech™, [HTML]. 3rdTech. Available: http://
www.3rdtech.com/ [2000, July 19].

Agar, W. O., & Blythe, J. H. (1968). An optical method of measuring transverse surface
velocity. Journal of Scientific Instruments (Journal of Physics E) 1968 Series 2, 1,
25-28.

Aidala, V. J. (1979). Kalman filter behavior in bearings-only tracking applications. IEEE
Transactions on Aerospace and Electronic Systems, AES-15(1), 29-39.

Aidala, V. J., & Hammel, S. E. (1983). Utilization of modified polar coordinates for bear-
ings-only tracking. IEEE Trans. Automat. Contr., AC-28, 283-294.

Akatsuka, Y., & Bekey, G. A. (1998). Compensation for end to end delays in a VR system,
Proceedings of IEEE VRAIS'98 (pp. 156-159). Atlanta, GA: IEEE.

Antonsson, E. K., & Mann, R. W. (1989). Automatic 6-D.O.F. kinematic trajectory acqui-
sition and analysis. Journal of Dynamic Systems, Measurement, and Control, 111,
31-39.

Ascension. (2000). Ascension Technology Corporation, [HTML]. Ascension Technology
Corporation. Available: http://www.ascension-tech.com/ [2000, September 15].

Atkeson, C. G., & Hollerbach, J. M. (1985). Kinematic features of unrestrained vertical arm
movements. Journal of Neuroscience, 5, 2318-2330.

Ator, J. T. (1963). Image-velocity sensing with parallel-slit recticles. Journal of the Optical
Society of America, 53(12), 1416-1422.

Ator, J. T. (1966). Image velocity sensing by optical correlation. Applied Optics, 5(8),
1325-1331.

Azarbayejani, A., & Pentland, A. (1994). Recursive estimation of motion, structure, and fo-
cal length (Technical report 243). Cambridge, MA: Massachusetts Institute of
Technology (MIT).

Azarbayejani, A., & Pentland, A. (1995a). Camera self-calibration from one point corre-
spondence (Perceptual Computing Technical Report 341): MIT Media Laboratory.
97

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Azarbayejani, A., & Pentland, A. (1995b). Recursive Estimation of Motion, Structure, and
Focal Length. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(6), 562-
575.

Azarbayejani, A., & Pentland, A. (1996). Real-time self-calibrating stereo person tracking
using 3-D shape estimation from blob features (Technical report 363). Cambridge,
MA: Massachusetts Institute of Technology (MIT).

Azuma, R. T. (1993, July). Tracking Requirements for Augmented Reality. Communica-
tions of the ACM, 36, 50-51.

Azuma, R. T. (1995a). Predictive Tracking for Augmented Reality. Unpublished Ph.D. Dis-
sertation, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.

Azuma, R. T. (1995b). Predictive Tracking for Augmented Reality (TR95-007). Chapel
Hill, NC: University of North Carolina at Chapel Hill, Department of Computer
Science.

Azuma, R. T. (1995c). A survey of augmented reality.Unpublished manuscript, Malibu,
CA.

Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Vir-
tual Environments, 6(4), 355-385.

Azuma, R. T. (1999). The Challenge of Making Augmented Reality Work Outdoors. In Y.
Ohta & H. Tamura (Eds.), Mixed Reality: Merging Real and Virtual Worlds (pp.
379-390). Yokohama, Japan: Springer-Verlag.

Azuma, R. T., & Bishop, G. (1994). Improving Static and Dynamic Registration in an Op-
tical See-Through HMD, Computer Graphics (SIGGRAPH 94 Conference Pro-
ceedings ed., pp. 197-204). Orlando, FL USA: ACM Press, Addison-Wesley.

Azuma, R. T., & Bishop, G. (1995). A Frequency-Domain Analysis of Head-Motion Pre-
diction, Computer Graphics (SIGGRAPH 94 Conference Proceedings ed., pp. 401-
408). Los Angeles, CA: ACM Press, Addison-Wesley.

Azuma, R. T., Hoff, B. R., Neely, H. E., III, Sarfaty, R., Daily, M. J., Bishop, G., Chi, V.,
Welch, G., Neumann, U., You, S., Nichols, R., & Cannon, J. (1998). Making Aug-
mented Reality Work Outdoors Requires Hybrid Tracking, First International
Workshop on Augmented Reality (pp. 219-224). San Francisco, CA, USA.

Azuma, R. T., Hoff, B. R., & Neely, H. E. I. (1999). A Motion-Stabilized Outdoor Aug-
mented Reality System, IEEE Virtual Reality (pp. 252-259). Houston, TX USA.

Azuma, R. T., Lee, J. W., Jiang, B., Park, J., You, S., & Neumann, U. (1999). Tracking in
unprepared environments for augmented reality systems. Computers & Graphics,
23(6), 787-793.

Azuma, R. T., & Ward, M. (1991). Space-Resection by Collinearity: Mathematics Behind
the Optical Ceiling Head-Tracker (Technical Report 91-048). Chapel Hill, NC
USA: University of North Carolina at Chapel Hill.

Bachmann, E., Robert. (2000). Inertial and Magnetic Tracking of Limb Segment Orienta-
tion for Inserting Humans into Synthetic Environments. Unpublished Ph.D. Thesis,
The Naval Postgraduate School, Monterey, CA.
98

Course 11—Tracking: Beyond 15 Minutes of Thought
Bachmann, E., Robert, Duman, I., McGhee, R. B., & Zyda, M. J. (1999). Sourceless Sens-
ing of Limb Segment Angles for Inserting Humans Into Networked Virtual Environ-
ment: The Naval Postgraduate School.

Bailey, T., Nebot, E., M., Rosenblatt, J. K., & Durrant-Whyte, H., F. (1999). Robust dis-
tinctive place recognition for topological maps, International Conference on Field
and Service Robotics (FSR 99). Pittsburgh, PA USA.

Bajura, M., & Neumann, U. (1995). Closed-Loop Tracking for Augmented-Reality Sys-
tems. IEEE Computer Graphics & Applications, 15(5), 52-60.

Bajura, M., & Neumann, U. (2001). Dynamic Compensation of Alignment Error in Aug-
mented-Reality Systems, [HTML]. Available: http://www.usc.edu/dept/CGIT/pa-
pers/VRpose_94_022.pdf [2001, March 24, 2001].

Bancroft, S. (1984). An algebraic solution of the GPS equations. IEEE Transactions on
Aerospace and Electronic Systems, AES-21(7), 56-59.

Bar-Shalom, Y., & Li, X.-R. (1993). Estimation and Tracking: Principles, Techniques, and
Software: Artec House, Inc.

Baron, S., Lancraft, R., & Caglayan, A. (1984). An optimal control model approach to the
design of compensators for simulator delay (NASA Contractor Report 3064). Cam-
bridge, MA: Bolt Beranek and Newman Inc.

Behringer, R. (1999). Registration for Outdoor Augmented Reality Applications Using
Computer Vision Techniques and Hybrid Sensors, IEEE Virtual Reality (pp. 244-
251). Houston, TX, USA.

Bell, B. M., & Cathey, F. W. (1993). The iterated Kalman filter update as a Gauss-Newton
method. IEEE Transactions on Automatic Control, 38(2), 294-297.

Best, R. E. (1999). Phase-Locked Loops: Design, Simulation, and Applications.

Bhatnagar, D. K. (1993). Position trackers for Head Mounted Display systems: A survey
(Technical Report TR93-010). Chapel Hill, NC USA: University of North Carolina
at Chapel Hill.

Bible, S. R., Zyda, M., & Brutzman, D. Using spread-spectrum ranging techniques for po-
sition tracking in a virtual environment (pp. 15).

Bishop, G. (1984). The Self-Tracker: A Smart Optical Sensor on Silicon. Unpublished
Ph.D. Dissertation, University of North Carlina at Chapel Hill, Chapel Hill, NC
USA.

Bishop, G., & Fuchs, H. Self-Tracker: a VLSI-based three-dimensional input system (paper
83-002). Chapel Hill, NC: University of North Carolina at Chapel Hill Department
of Computer Science.

Bishop, G., & Fuchs, H. (1984). The Self-Tracker: A Smart Optical Sensor on Silicon, Ad-
vanced Research in VLSI (pp. 65-73). Massachusetts Institute of Technology:
Artech House.

BL. (2000). CODA mpx30 Motion Capture System, [html]. B & L Engineering. Available:
http://www.charndyn.com/ and http://www.bleng.com/coda.htm [2000, April 27].

Bolles, R. C., Kremers, J. H., & Cain, R. A. (1981). A simple sensor to gather three-dimen-
sional data (Technical Note 249
99

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
SRI Project 1538). Menlo Park, CA: SRI International, Industrial Automation Department,
Computer Science and Techology Division.

Bordtad, A. J. (1985). Bearings-only target motion analysis estimation characteristics.
Control and Computers, 13(3), 95-101.

Borghese, N. A., & Ferrigno, G. (1990). An algorithm for 3-D automatic movement detec-
tion by means of standard TV cameras. IEEE Transactions on Biomedical Engi-
neering, 37(12), 1221-1225.

Bouget, J.-Y. (1997). 3D transformations & camera calibration (pp. 7 pp).

Britannica, E. (1994). Encyclopedia Britannica, [HTML]. Encyclopedia Britannica. Avail-
able: http://www.britannica.com/ [2001, April 27].

Broida, T. J., & Chellappa, R. (1986). Estimation of object motion parameters from noisy
images. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(1), 90-99.

Brown, R. G., & Hwang, P. Y. C. (1992). Introduction to Random Signals and Applied Kal-
man Filtering (Second ed.): Wiley & Sons, Inc.

Brown, R. G., & Hwang, P. Y. C. (1996). Introduction to Random Signals and Applied Kal-
man Filtering: with MATLAB Exercises and Solutions (Third ed.): Wiley & Sons,
Inc.

Brown, R. G., & Hwang, P. Y. C. (1997). Introduction to Random Signals and Applied
{K}alman Filtering: with {MATLAB} Exercises and Solutions.

Brugger, W., & Milner, M. (1978). Computer-aided tracking of body motions using a
c.c.d.-image sensor. Medical & Biological Engineering & Computing, 16, 207-210.

Bruss, A. R., & Horn, B. K. P. (1981). Passive navigation (A.I. Memo 662). Cambridge,
MA: Massachusetts Institute of Technology Artificial Intelligence Laboratory.

Bryson, S. (1992). SPIE Proceedings Volume 1669 Stereoscopic Displays and Applica-
tions III. In J. O. Merritt & S. S. Fisher (Eds.), SPIE (Vol. 1669, pp. 244-255). San
Jose, CA.

Bui, H. H., Vankatesh, S., & West, G. (2000). A probabilistic framework for tracking in
wide-area environments, Proceedings of the International Conference on Pattern
Recognition (ICPR'00) (Vol. 4, pp. 702-706). Barcelona, Spain.

Burdea, G., & Coiffet, P. (1994). Virtual Reality Technology (First ed.): John Wiley &
Sons, Inc.

Burton, R. P. (1973). Real-Time Measurement of Multiple Three-Dimensional Positions.
Unpublished Ph.D., University of Utah, Salt Lake City, UT USA.

Burton, R. P., & Sutherland, I. E. (1974). TWINKLEBOX: A Three-Dimensional Comput-
er-Input Device, AFIPS Conference Proceedings, 1974 National Computer Confer-
ence (Vol. 43, pp. 513-520). Chicago, IL USA: AFIPS Press, Montvale, New
Jersey.

Card, S. K., Mackinlay, J. D., & Robertson, G. G. (1991). A Morphological Analysis of the
Design Space of Input Devices. 9(2), 99-122.

Cavallaro, R. (1997). The FoxTrax hockey puck tracking system, IEEE CG&A (pp. 6-12).
100

Course 11—Tracking: Beyond 15 Minutes of Thought
Chi, V. L. (1995). Noise Model and Performance Analysis Of Outward-looking Optical
Trackers Using Lateral Effect Photo Diodes (TR95-012). Chapel Hill, NC USA:
University of North Carlina at Chapel Hill.

Chou, J. C. K. (1992). Quaternion kinematic and dynamic equations. IEEE Transactions
on Robotics and Automation, 8(1), 53-64.

Corporation, A. (2001, 2000). Gypsy Motion Capture System, [HTML]. Analogus Corpo-
ration. Available: http://www.metamotion.com/gypsy-motion-capture-system/
gypsy-motion-capture-system.htm [2001, March 7].

Council, N. R. (1994). Virtual Reality, Scientific and Technological Challenges. Washing-
ton, DC: National Academy Press.

Crane, D. F. (1980). The effects of time delay in man-machine control systems: Implemen-
tations for design of flight simulator-display-delay compensation, IMAGE III (pp.
331-343). Williams AFB, AZ: Air Force Human Resources Laboratory.

Crowley, J. L., & Demazeau, Y. (1993). Principles and Techniques for Sensor Data Fusion.
Signal Processing (EURASIP), 32, 5-27.

Darrell, T., Azarbayejani, A., & Pentland, A. P. (1994). Segmentation of rigidly moving ob-
jects using multiple Kalman filters (Technical report 281). Cambridge, MA: Mas-
sachusetts Institute of Technology (MIT).

David, P., Balakirsky, S., & Hillis, D. (1990). A real-time automatic target acquisition sys-
tem, Symposium of the Association for Unmanned Vehicle Systems (pp. 13 pp).
Dayton, OH.

De Geeter, J., Van Brussel, H., De Schutter, J., & Decreton, M. (1996). Recognising and
locating objects with local sensors, IEEE Conference on Robotics and Automation
(pp. 6 pp (In conf. proceedings: 3478-3483)). Minneapolis, Minnesota.

Deering, M. F. (1992). High resolution virtual reality. In E. E. Catmull (Ed.), Computer
Graphics (Proceedings of SIGGRAPH 92) (Vol. 26, pp. 195-202). Chicago, Illi-
nois.

Deyst, J., J., & Price, C. F. (1968). Conditions for Asymptotic Stability of the Discrete Min-
imum-Variance Linear Estimator. IEEE Transactions on Automatic Control.

Division, S. D. I. (2001). Gyrochip theory of operation, [HTML]. BEI Electronics Compa-
ny, Systron Donner Inertail Division [2001, April 27].

Donner, S. (2001). Systron Donner Home Page, [HTML]. Available: http://
www.systron.com/ [2001, April 27].

Dowski, E., R. (1995). An Information Theory Approach to Incoherent Information Pro-
cessing Systems. Signal Recovery and Synthesis V, OSA Technical Digest Series,
106-108.

Drane, C., R. (1992). Positioning Systems : A Unified Approach (Vol. 181): Springer Ver-
lag.

Durlach, N., & Mavor, A. S. (1994). Position tracking and mapping, Virtual reality: scien-
tific and technological challenges (pp. 188-204). Washington, D.C.: National
Academy Press.
101

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Ellis, S. R., Adelstein, B. D., Baumeler, S., Jense, G. J., & Jacoby, R. H. (1999). Sensor
spatial distortion, visual latency, and update rate effects on 3D tracking in virtual
environments, Proceedings of the IEEE Virtual Reality. Houston, Texas: Institute
of Electrical and Electronics Engineers.

Ellis, S. R., & Menges, B. M. (1997). Judgements of the distance to nearby virtual objects:
interaction of viewing conditions and accommodative demand. Presence: Teleop-
erators and Virtual Environments, 6(4), 452-460.

Emura, S., & Tachi, S. (1994a). Compensation of time lag between actual and virtual spac-
es by multi-sensor integration, 1994 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (pp. 363-469). Las Vegas, NV: In-
stitute of Electrical and Electronics Engineers.

Emura, S., & Tachi, S. (1994b). Sensor Fusion based Measurement of Human Head Mo-
tion. Paper presented at the 3rd IEEE International Workshop on Robot and Human
Communication (RO-MAN 94 NAGOYA), Nagoya University, Nagoya, Japan.

Emura, S., & Tachi, S. (1994). Sensor Fusion based Measurement of Human Head Motion,
3rd IEEE International Workshop on Robot and Human Communication (RO-MAN
94 NAGOYA) (pp. 124-129). Nagoya University, Nagoya, Japan.

Etienne-Cummings, R., Spiegel, V. d., & Mueller, P. (1997). A focal plane visual motion
measurement sensor. IEEE Transactions on Circuits and Systems, 44(1), 55-66.

Falconer, D. G. (1979). Target tracking with the Hough and Fourier-Hough transform
(Technical Note 202). Menlo Park, CA: SRI International.

Faugeras, O. (1999). Three-dimensional computer vision: a geometric viewpoint (3rd ed.
Vol. 1). Cambridge, Massachusetts: The MIT Press.

Feder, H. J. S., Leonard, J. J., & Smith, C. M. (1999). Adaptive mobile robot navigation
and mapping. International Journal of Robotics Research, 18(7), 650-668.

Feiner, S., MacIntyre, B., & Höllerer, T. (1997). A touring machine: prototyping 3D mobile
augmented reality systems for exploring the urban environment, Proceedings of
First International Symposium on Wearable Computers (pp. 74-81). Cambridge,
MA.

Feiner, S., MacIntyre, B., Höllerer, T., & Webster, A. (1997). A Touring Machine: Proto-
typing 3D Mobile Augmented Reality Systems for Exploring Urban Environments.
Personal Technologies, 1(4), 208-217.

Ferrin, F. J. (1991). Survey of Helmet Tracking Technologies, Large-Screen-Projection,
Avionic, and Helmet-Mounted Displays (Vol. 1456, pp. 86--94).

Fischer, P., Daniel, R., & Siva, K. (1990). Specification and Design of Input Devices for
Teleoperation, Proceedings of the IEEE Conference on Robotics and Automation
(pp. 540-545). Cincinnati, OH.

Fischler, M. A., & Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for Mod-
el Fitting with Applications to Image Analysis and Automated Cartography. Com-
munications of the ACM, 24(6), 381-395.

Fleming, R., & Kushner, C. (1995). Lowe-Power, Miniature, Distributed Position Location
and Communication Devices Using Ultra-Wideband, Nonsinusoidal Communica-
tion Technology.
102

Course 11—Tracking: Beyond 15 Minutes of Thought
Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. (1997). Computer Graphics: Prin-
ciples and Practice (2nd ed. Vol. 1). Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc.

Fox, D., Burgard, W., & Thrun, S. (1999). Probabilistic Methods for Mobile Robot Map-
ping, IJCAI-99 Workshop on Adaptive Spatial Representations of Dynamic Envi-
ronments (pp. 10).

Foxlin, E. (1993). Inertial Head-Tracking. Unpublished Master of Science, Massachusetts
Institute of Technology (MIT), Cambridge, MA.

Foxlin, E. (1996). Intertial Head-Tracker Sensor Fusion by a Complementary Separate-
Bias Kalman Filter, VRAIS 96 (pp. 185-194). Los Alamitos, CA USA: IEEE.

Foxlin, E., & Durlach, N. (1994). An Inertial Head-Orientation Tracker with Automatic
Drift Compensation for Use With HMD's. In G. Singh & S. Feiner & D. Thalmann
(Eds.), Proceedings of the ACM Symposium on Virtual Reality Software and Tech-
nology (pp. 159-173). Singapore: ACM SIGGRAPH, Addison-Wesley.

Foxlin, E., Harrington, M., & Altshuler, Y. (1998). Miniature 6-DOF Inertial System for
Tracking HMDs, SPIE Helmet and Head-Mounted Displays III (Vol. 3362). Orlan-
do, FL USA: SPIE.

Foxlin, E., Harrington, M., & Pfeifer, G. (1998). Constellation™: A Wide-Range Wireless
Motion-Tracking System for Augmented Reality and Virtual Set Applications. In
M. F. Cohen (Ed.), Computer Graphics (SIGGRAPH 98 Conference Proceedings
ed., pp. 371-378). Orlando, FL USA: ACM Press, Addison-Wesley.

Frey, W., Zyda, M., McGhee, R., & Cockayne, W. (1996). Off-the-Shelf, Real-Time, Hu-
man Body Motion Capture for Synthetic Environments (Technical Report NPSCS-
96-003). Monterey, CA, USA: The Naval Postgraduate School.

Friedman, M., Starner, T., & Pentland, A. (1992). Synchronization in Virtual Realities.
Presence: Teleoperators and Virtual Environments, 1, 139-144.

Friedmann, M., Starner, T., & Pentland, A. (1992). Device Synchronization Using an Op-
timal Linear Filter, 1992 Symposium on Interactive 3D Graphics. Cambridge, MA
USA.

Frye, W. E. (1957 ?). Fundamentals of inertial guidance and navigation. Journal of the As-
tronautical Sciences, 1-10.

Fuchs (Foxlin), E. (1993). Inertial Head-Tracking. Unpublished M.S. Thesis, Massachu-
setts Institute of Technology, Cambridge, MA USA.

Fuchs, H., Duran, J., & Johnson, B. (1977). A system for automatic acquisition of three-
dimensional data, AFIPS Conf. Proc. (Vol. 46, pp. 49-53).

Fuhrmann, A., Loffelmann, H., & Schmalstieg, D. (1997). Collaborative augmented reali-
ty: exploring dynamical systems, Proceedings of IEEE Visualization '97 (pp. 459-
462). Phoenix, AZ.

Ganapathy, S. Decomposition of transformation matrices for robot vision (pp. 21).

Ganapathy, S. (1984). Real-time motion tracking using a single camera (Technical memo-
randum 11358-841105-21-TM, Charge case 311306-0399, File case 39394):
AT&T Bell Laboratories.
103

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Ganapathy, S. (1994). Camera Location Determination Problem (Technical Memorandum
11358-841102-20-TM): AT&T Bell Laboratories Technical Memorandum.

Gelb, A. (1974). Applied Optimal Estimation. Cambridge, MA: MIT Press.

Gillis, J. T. (1991). Examination of 3-D angular motion using gyroscopes and linear accel-
erometers. IEEE Transactions on Aerospace and Electronic Systems, 27(6), 910-
920.

Golding, A. R., & Lesh, N. (1999). Indoor navigation using a diverse set of cheap, wear-
able sensors (Technical Report TR99-32). Cambridge, MA, USA: Mitsubishi Elec-
tric Information Technology Center America.

Goncalves, L., Di Bernardo, E., Ursella, E., & Perona, P. (1995). Monocular tracking of the
human arm in 3D, ICCV'95 (pp. 7 pp (In conference proceedings: 764-770)).

Goshtasby, A. A. (2001). Active Vision. Available: http://www.cs.wright.edu/people/facul-
ty/agoshtas/3.activevis/ActiveVis.html [2001, April 27].

Gottschalk, S., & Hughes, J. F. (1993). Autocalibration for Virtual Environments Tracking
Hardware. In J. T. Kajiya (Ed.), Computer Graphics (SIGGRAPH 93 Conference
Proceedings ed., pp. 65-72). Anaheim, CA USA: ACM Press, Addison Wesley.

Grewal, M., S., & Andrews, A., P. (1993). Kalman Filtering Theory and Practice. Upper
Saddle River, NJ USA: Prentice Hall.

Grewal, M., S., & Andrews, A., P. (2001). Kalman Filtering Theory and Practice Using
MATLAB (Second ed.). New York, NY USA: John Wiley & Sons, Inc.

Grewal, M. S., Weill, L., R., & Andrews, A. P. (2001). Global Positioning Systems, Inertial
Navigation, and Integration. New York, NY USA: John Wiley & Sons, Inc.

Guivant, J., Nebot, E., M., & Durrant-Whyte, H., F. (2000). Simultaneous localization and
map bulding using natural features in outdoor environments, IAS-6 Intelligent Au-
tonomous Systems. Italy.

Ham, F. M., & Brown, R. G. (1983). Observability, eigenvalues, and Kalman filtering.
IEEE Transactions on Aerospace and Electronic Systems, AES-19(2), 269-273.

Hamilton, W. R. (1853). Lectures on Quaternions. Dublin: Hodges and Smith.

Held, R., & Durlach, N. (1991). Telepresence, time delay, and adaptation. In S. R. Ellis
(Ed.), Pictorial Communication in Virtual and Real Environments (pp. 28-21 - 28-
16): Taylor and Francis.

Herring, T. A. (1996). The global positioning system. Scientific American, 44-50.

Hill, P. D., & Walsh, T. R. (1992). The advanced modular tracker: a real-time video tracker.
Danvers, MA: Datacube, Inc.

Hoff, W. A., & Nguyen, K. (1996). Computer vision-based registration techniques for aug-
mented reality, Proceedings of Intelligent Robots and Computer Vision XV, SPIE
(Vol. 2904, pp. 538-548). Boston, MA.

Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K., & Schwehm, M. (1999a). Next century
challenges: Nexus--an open global infrastructure for spatial-aware applications.
Paper presented at the Fifth Annual ACM/IEEE International Conference on Mo-
bile Computing and Networking.
104

Course 11—Tracking: Beyond 15 Minutes of Thought
Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K., & Schwehm, M. (1999b). Next centu-
ry challenges: Nexus--an open global infrastructure for spatial-aware applications,
Fifth Annual ACM/IEEE International Conference on Mobile Computing and Net-
working (pp. 249–255).

Hohl, F., Kubach, U., Leonhardi, A., Rothermel, K., & Schwehm, M. (1999c). Nexus - An
open global infrastructure for spatial-aware applications (pp. 13 pp).

Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., & Hallaway, D. (1999). Exploring
MARS: developing indoor and outdoor user interfaces to a mobile augmented real-
ity system. Computers & Graphics, 23(6), 779-785.

Holloway, R. (1997). Registration error analysis for augmented reality. Presence: Teleop-
erators and Virtual Environments, 6(4), 413-432.

Holloway, R. L. (1995). Registration Errors in Augmented Reality Systems. Unpublished
Ph.D. Dissertation, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA.

Huang, T. S., & Netravali, A. N. (1994). Motion and structure from feature correspondenc-
es: a review, Proceedings of the IEEE (Vol. 82, pp. 252-267).

Ickes, B. P. (1970). A new method for performing digital control systems attitude compu-
tations using quaternions. AIAA Journal, 5(1), 13-17.

IGT. (2000). FlashPoint 5000, [HTML]. Image Guided Technologies. Available: http://
www.imageguided.com/ [2000, September 15].

Iltanen, M., Kosola, H., Palovuori, K., & Vanhala, J. (1998). Optical Positioning and
Tracking System for a Head Mounted Display Based on Spread Spectrum Tech-
nology, Proceedings of the 2nd International Conference on Machine Automation
(ICMA) (pp. 597--608).

Inigo, R. M., & McVey, E. S. (1981). CCD Implementation of a three-dimensional video-
tracking algorithm. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-3(2), 230-240.

Intersense. (2000). Intersense IS-900, [html]. Intersense. Available: http://
www.isense.com/ [2000, April 27].

Irani, M., Rousso, B., & Peleg, S. (1997). Recovery of ego-motion using region alignment.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3), 6 pp.

Jacobs, M. C., Livingston, M. A., & State, A. (1997). Managing latency in complex aug-
mented reality systems, Proceedings of the 1997 Symposium on Interactive 3D
Graphics (pp. 49-54). Providence, RI.

Jacobs, O. L. R. (1993). Introduction to Control Theory (Second ed.): Oxford University
Press.

Janin, A., Zikan, K., Mizell, D., Banner, M., & Sowizral, H. (1994). A videometric head-
tracker for augmented reality applications, Telemanipulator and Telepresence
Technologies (Vol. 2351, pp. 308-315). Bellingham, WA.

Jebara, T., Eyster, C., Weaver, J., Starner, T., & Pentland, A. (1997). An optical tracker for
augmented reality and wearable computers, Proceedings of the First International
Symposium on Wearable Computers (pp. 146-150). Cambridge, MA.
105

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Julier, S., J., & Uhlmann, J., K. (1996). A General Method for Approximating Nonlinear
Transformations of Probability Distributions (Technical Report). Oxford, UK: Ro-
botics Research Group, Department of Engineering Science, University of Oxford.

Julier, S., J., Uhlmann, J., K., & Durrant-Whyte, H., F. (1995). A New Approach for Fil-
tering Nonlinear Systems, 1995 American Control Conference (pp. 628-1632).

Kadaba, M. P., & Stine, R. (2000). Real-Time Movement Analysis Techniques and Con-
cepts for the New Millennium in Sports Medicine, [HTML]. Motion Analysis Cor-
poration, Santa Rosa, CA USA. Available: http://www.motionanalysis.com/
applications/movement/rtanalysis.html [2000, September 15].

Kailath, T., Sayed, A., H., & Hassibi, B. (2000). Linear Estimation. Upper Saddle River,
NJ USA: Prentice Hall.

Kalawsky, R. S. (1993). The Science of Virtual Reality and Virtual Environments (First
ed.): Addison-Wesley Publishing Company.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.
Transaction of the ASME—Journal of Basic Engineering, 82(Series D), 35-45.

Kanade, T. Very fast 3-D sensing hardware (pp. 15 pp).

Kaplan, E. D. E. (1996). Understanding GPS Principles and Applications: Artech House.

Kim, D., Richardst, S., W., & Caudellt, T., P. (1997). An Optical Tracker for Augmented
Reality and Wearable Computers, 1997 Virtual Reality Annual International Sym-
posium (VRAIS '97) (pp. 146-150). Albuquerque, NM: IEEE.

Kite, D. H., & Magee, M. (1990). Determining the 3D position and orientation of a robot
camera using 2D monocular vision. Pattern Recognition, 23(8), 819-831.

Klinker, G. J., Ahlers, K. H., Breen, D. E., Chevalier, P.-Y., Crampton, C., Greer, D. S.,
Koller, D., Kramer, A., Rose, E., Tuceryan, M., & Whitaker, R. T. (1997). Conflu-
ence of computer vision and interactive graphics for augmented reality. Presence:
Teleoperators and Virtual Environments, 6(4), 433-451.

Kolasinski, E. M. (1995). Simulator sickness in virtual environments (Technical report
1027). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social
Sciences.

Koller, D., Klinker, G., Rose, E., Breen, D., Whitaker, R., & Tuceryan, M. Real-time vi-
sion-based camera tracking for augmented reality applications (pp. 8 pp).

Koller, D., Klinker, G., Rose, E., Breen, D., Whitaker, R., & Tuceryan, M. (1997a). Auto-
mated camera calibration and 3D egomotion estimation for augmented reality ap-
plications, Proceedings of the CAIP '97, 7th International Conference Computer
Analysis of Images and Patterns (pp. 199-206).

Koller, D., Klinker, G., Rose, E., Breen, D., Whitaker, R., & Tuceryan, M. (1997b). Real-
time vision-based camera tracking for augmented reality applications, Proceedings
of the ACM Symposium on Virtual Reality, Software and Technology (VRST-97).

Krause, L. O. (1987). A direct solution to GPS-type navigation equations. IEEE Transac-
tions on Aerospace and Electronic Systems, AES-23(2), 225-232.

Krauss, T. (1997). Beware of shortcomings when applying classical spectral-analysis tech-
niques. Personal Engineering, 36-42.
106

Course 11—Tracking: Beyond 15 Minutes of Thought
Krouglicof, N., McKinnon, G. M., & Svoboda, J. (1987). Optical position and orientation
measurement techniques. United States: CAE Electronics, Ltd., Montreal, Canada.

Krouglicof, N., Svoboda, J. V., & McKinnon, G. M. (1986). Noncontact position and ori-
entation measurement techniques for real-time systems, Proceedings of ASME In-
ternational Computers in Engineering Conference (pp. 177-183).

Kubach, U., Leonhardi, A., Rothermel, K., & Schwehm, M. (1999). Analysis of distribution
schemes for the management of location information. Stuttgart: Institut fur Parallele
und Verteilte, Hochstleistungrechner (IPVR), Universitat Stuttgart.

Kuipers, J. B. (1980). SPASYN - An electromagnetic relative position and orientation
tracking system. IEEE Transactions on Instrumentation and Measurement, IM-
29(4), 462-466.

Kuipers, J. B. (1998). Quaternions and Rotation Sequences. Princeton: Princeton Univer-
sity Press.

Kumar, R., & Hanson, A. R. (1994). Robust methods for estimating pose and a sensitivity
analysis. CVGIP: Image Understanding, 60(3), 313-342.

Kutulakos, K. N., & Vallino, J. R. (1998). Calibration-free augmented reality. IEEE Trans-
actions on Visualization and Computer Graphics, 4(1), 1-20.

Laughlin, D. R., Ardaman, A. A., & Sebesta, H. R. (1992). Inertial angular rate sensors:
theory and applications. Sensors(October), 20-24.

Lee, J. W., & Neuman, U. (2000). Motion Estimation with Incomplete Information using
Omnidirectional Vision, ICIP2000.

Lee, J. W., You, S., & Neuman, U. (2000). Large Motion Estimation for Omnidirectional
Vision, IEEE Workshop on Omnidirectional Vision 2000.

Leonhardi, A., & Kubach, U. (1999). An Architecture for a Distributed Universal Location
Service, Proceedings of the European Wireless '99 Conference (pp. 351-355). Mu-
nich, Germany: ITG Fachbericht, VDE Verlag.

Lewis, F. L. (1986). Optimal Estimation with an Introductory to Stochastic Control Theo-
ry: John Wiley & Sons, Inc.

Lindgren, A. G., & Gong, K. F. (1978). Position and velocity estimation via bearing obser-
vations. IEEE Transactions on Aerospace and Electronic Systems, AES-14(4), 564-
577.

Link, B. (1993). Field-qualified silicon accelerometers: from 1 milli g to 200,000 g. Sen-
sors, 28-33.

List, U. H. (1983). Nonlinear prediction of head movements for helmet-mounted displays
(Final technical paper): Operations Training Division, Williams Air Force Base,
Arizona.

Livingston, M. A., & State, A. (1997). Magnetic tracker calibration for improved augment-
ed reality registration. Presence: Teleoperators and Virtual Environments, 6(5),
532-546.

Lucas, B. D., & Kanade, T. (1985). Optical navigation by the method of differences. In A.
K. Joshi (Ed.), Proceedings of the 9th International Joint Conference on Artificial
Intelligence (pp. 981-984): Morgan Kaufmann.
107

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
MAC. (2000). HiRes 3D Motion Capture System, [html]. Motion Analysis Corporation.
Available: http://www.motionanalysis.com/applications/movement/gait/3d.html
[2000, September 15].

Macellari, V. (1983). CoSTEL: a computer peripheral remote sensing device for 3-dimen-
sional monitoring of human motion. Medical & Biological Engineering & Comput-
ing, 21, 311-318.

Madhavan, R., Dissanayake, M., & Durrant-Whyte, H., F. (1998). Map-building and map-
based localization in an underground-mine by statistical pattern matching. In S. V.
A.K. Jain, B.C. Lovell (Ed.), International Conference on Pattern Recognition
(ICPR) (Vol. 2, pp. 1744-1746). Brisbane, Australia: IEEE Computer Society Press
Piscataway, NJ USA.

Mahmoud, R., Loffeld, O., & Hartmann, K. (1994). Multisensor Data Fusion for Automat-
ed Guided Vehicles, Proceedings of SPIE - The International Society for Optical
Engineering (Vol. 2247, pp. 85-89).

Mann, R. W., Rowell, D., Dalrymple, G., Conati, F., Tetewsky, A., Ottenheimer, D., & An-
tonsson, E. (1983). Precise, rapid, automatic 3-D position and orientation tracking
of multiple moving bodies. In H. Matsui & K. Kobayashi (Eds.), Proceedings of the
VIII international congress of biomechanics (pp. 1104-1112). Champaign, IL: Hu-
man Kinetics.

Mark, W. R., McMillan, L., & Bishop, G. (1997). Post-rendering 3D warping, Proceedings
of the 1997 Symposium on Interactive 3D Graphics (pp. 7-16). Providence, RI.

Matthies, L., & Shafer, S. A. (1987). Error Modeling in Stereo Navigation. IEEE Journal
of Robotics and Automation, RA-3(3), 239-248.

Maybeck, P. S. (1979). Stochastic models, estimation, and control (Vol. 141).

Mazuryk, T., & Gervautz, M. (1995). Two-Step Prediction and Image Deflection for Exact
Head Tracking in Virtual Environments, Proceedings of EUROGRAPHICS 95
(EUROGRAPHICS 95 ed., Vol. 14 (3), pp. 30-41).

McFarland, R. E. (1986). CGI delay compensation (NASA Technical Memorandum
NASA TM 86703): NASA Scientific and Technical Information Branch.

McFarland, R. E. (1988). Transport delay compensation for computer-generated imagery
systems (NASA Technical Memorandum NASA TM 100084). Moffett Field, CA:
NASA Ames Research Center.

Meditch, S. (1969). Stochastic Optimal Linear Estimation and Control. New York:
McGraw-Hill.

Meyer, K., Applewhite, H., & Biocca, F. (1991). A survey of position trackers (pp. 61).

Meyer, K., Applewhite, H. L., & Biocca, F. A. (1992). A Survey of Position Trackers. Pres-
ence, a publication of the Center for Research in Journalism and Mass Communi-
cation, 1(2), 173-200.

Mine, M. R. (1993). Characterization of end-to-end delays in head-mounted display sys-
tems (Technical report TR93-001). Chapel Hill, NC: Department of Computer Sci-
ence, University of North Carolina at Chapel Hill.
108

Course 11—Tracking: Beyond 15 Minutes of Thought
Molineros, J., Raghavan, V., & Sharma, R. (1998). Computer vision based augmented re-
ality for guiding and evaluating assembly sequences (poster), Proceedings of IEEE
VRAIS '98 (pp. 214). Atlanta, GA.

Mulder, A. (1994a). Human Movement Tracking Technology (Technical Report TR 94-1):
School of Kinesiology, Simon Fraser University.

Mulder, A. (1994b, May 8, 1998). Human Movement Tracking Technology: Resources,
[HTML]. School of Kinesiology, Simon Fraser University. Available: http://
www.cs.sfu.ca/people/ResearchStaff/amulder/personal/vmi/HMTT.add.html
[2000, September 15].

Mulder, A. (1998, May 8, 1998). Human Movement Tracking Technology, [HTML].
School of Kinesiology, Simon Fraser University. Available: http://www.cs.sfu.ca/
people/ResearchStaff/amulder/personal/vmi/HMTT.pub.html [2000, September
15].

Nardone, S. C., & Aidala, V. J. (1981). Observability criteria for bearings-only target mo-
tion analysis. IEEE Transactions on Aerospace and Electronic Systems, AES-17(2),
162-166.

Nash, J. (1997, October 1997). Wiring the jet set. Wired, 5, 128-135.

Nayar, S. K., Watanabe, M., & Noguchi, M. (1994). Real-time focus range sensor (paper
CUCS-028-94). New York, NY: Department of Computer Science, Columbia Uni-
versity.

NDI. (2001). OPTOTRAK, [HTML]. Northern Digital Inc. Available: http://www.ndigi-
tal.com/optotrak.html [2001, April].

Nebot, E., M. (1999). Sensors Used for Autonomous Navigation. In S. G. Tzafestas (Ed.),
ADVANCES IN INTELLIGENT AUTONOMOUS SYSTEMS (pp. 135-156): Kluwer
Academic Publisher (Dordrecht / Boston / London).

Nebot, E., M., Durrant-Whyte, H., F, & Scheding, S. (1988). Frequency domain modelling
of aided GPS for vehicle navigation systems. Robotics and Autonomous Systems,
25(1), 73-82.

Neilson, P. D. (1972). Speed of Response or Bandwidth of Voluntary System Controlling
Elbow Position in Intact Man. Medical and Biological Engineering, 10, 450-459.

Nettleton, E. W., Gibbens, P. W., & Durrant-Whyte, H., F. (2000). Closed form solutions
to the multiple platform simultaneous localisation and map building (SLAM) prob-
lem, AeroSense 2000. Orlando, FL USA.

Neumann, U., & Cho, Y. (1996). A self-tracking augmented reality system, ACM Interna-
tional Symposium on Virtual Reality and Applications (pp. 109-115). Hong Kong.

Neumann, U., & Majoros, A. (1998). Cognitive, performance, and system issues for aug-
mented reality applications in manufacturing and maintenance, Proceedings of
IEEE VRAIS '98 (pp. 4-11). Atlanta, GA.

Neumann, U., & Park, J. (1998). Extendible object-centric tracking for augmented reality,
Proceedings of IEEE VRAIS '98 (pp. 148-155). Atlanta, GA.

Neumann, U., & You, S. (1998). Integration of region tracking and optical flow for image
estimation.
109

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Neumann, U., & You, S. (1999). Natural Feature Tracking for Augmented Reality. IEEE
Transactions on Multimedia, 1(1), 53-64.

Newman, J. (1999). An example of the extended Kalman filter (pp. 7 pp).

Oceanographers, W. (2001). Women Exploring the Oceans, [HTML]. Available: http://
www.womenoceanographers.org [2001, April 27].

Ohshima, T., Satoh, K., Yamamoto, H., & Tamura, H. (1998). AR2 hockey: a case study
of collaborative augmented reality, Proceedings of IEEE VRAIS '98 (pp. 268-275).
Atlanta, GA: IEEE.

Pasman, W., van der Schaaf, A., Lagendijk, R., L., & Jansen, F., W. (1999). Accurate over-
laying for mobile augmented reality. Computers & Graphics, 23, 875-881.

Petridis, V. (1981). A method for bearings-only velocity and position estimation. IEEE
Transactions on Automatic Control, AC-26(2), 488-493.

Phillips, D. (2000, April). On the Right Track—A unique optical tracking system gives us-
ers greater freedom to explore virtual worlds. Computer Graphics World, 16-18.

Polhemus. (2000). Polhemus, [HTML]. Polhemus. Available: http://www.polhemus.com/
home.htm [2000, September 15].

Raab, F. H., Blood, E. B., Steiner, T. O., & Jones, H. R. (1979). Magnetic Position and Ori-
entation Tracking System. IEEE Transactions on Aerospace and Electronic Sys-
tems, AES-15, 709-718.

Rae-Dupree, J. (1997, July 26). Experts Look at Where Computing is Headed; Leaving the
Desktop Behind. San Jose Mercury News, pp. 1.

Rauch, H. E. (1963). Solutions to the Linear Smoothing Problem. IEEE Transactions on
Auto. Control, AC-8, 371-372.

Rauch, H. E., Tung, F., & Striebel, C. T. (1965). Maximum Likelihood Estimates of Linear
Dynamic Systems. AIAA Journal, 3, 1445-1450.

Rehg, J. M., & Kanade, T. (1993). DigitEyes: vision-based human hand tracking (CMU-
CS-93-220). Pittsburgh, PA: School of Computer Science, Carnegie Mellon Uni-
versity.

Rehg, J. M., & Kanade, T. (1994). Visual tracking of high dof articulated structures: An
application to human hand tracking. In J.-O. Eklundh (Ed.), Proceedings of Euro-
pean Conference on Computer Vision (Vol. 2, pp. 35-46): Springer-Verlag.

Rekimoto, J. (1997). NaviCam: a magnifying glass approach to augmented reality. Pres-
ence: Teleoperators and Virtual Environments, 6(4), 399-412.

Rekimoto, J., & Nagao, K. (1995). The World through the Computer: Computer Augment-
ed Interaction with Real World Environments, 1995 Symposium on User Interface
Software and Technology (UIST 95). Pittsburgh, PA: Association of Computing
Machinery.

Reunert, M. K. (1993). Fiber-optic gyroscopes: principles and applications. Sensors(Au-
gust), 37-38.

Richards, J. (1998). The Measurement of Human Motion: A Comparison of Commercially
Available Systems, 3D Conference of Human Movement. University of Tennessee,
Chattanooga, TN USA.
110

Course 11—Tracking: Beyond 15 Minutes of Thought
Richards, J. (1999). The Measurement of Human Motion: A Comparison of Commercially
Available Systems. Human Movement Sciences, 18.

Riner, B., & Browder, B. (1992). Design guidelines for a carrier-based training system, IM-
AGE VI Conference (pp. 65-73). Scottsdale, Arizona.

Roberts, K. S., & Ganapathy, S. (1987). Stereo Triangulation Techniques (Technical Mem-
orandum 11352-861121-07TM). Holmdel, NJ: AT&T Bell Laboratories.

Roberts, L. G. (1966). The Lincoln Wand, Proceedings of the 1966 Fall Joint Computer
Conference, AFIPS Conference Proceedings (Vol. 29, pp. 223-227).

Robinett, W., & Holloway, R. (1994). The virtual display transformation for virtual reality.
Chapel Hill, NC, USA: University of North Carolina at Chapel Hill, Department of
Computer Science.

Rose, E. J., Bose, S. C., Kouba, J. T., & Sobek, D. A. (1985). A cost/performance analysis
of hybrid inertial/externally referenced positioning/orientation systems (ETL-R-
086). Fort Belvoir, VA: U.S. Army Engineer Topographic Laboratories.

Salz, J., & Netravali, A. N. (1983). Algorithms for estimation of 3-D motion (Technical
Memorandum TM 11345-831110-17, 1138-831110-01): Bell Laboratories.

Sawhney, H. S. (1994). Simplifying motion and structure analysis using planar parallax and
image warping, International Conference on Pattern Recognition, 1994 (pp. 14 pp).
Jerusalem.

Sawhney, H. S., Ayer, S., & Gorkani, M. (1994). Model-based 2D & 3D dominant motion
estimation for mosaicing and video representation (pp. 31 pp).

Sawhney, H. S., Ayer, S., & Gorkani, M. (1995). Model-based 2D & 3D dominant motion
estimation for mosaicing and video representation, Proceedings of the IEEE Inter-
national Conference on Computer Vision (pp. 583-590). Cambridge, MA.

Scheding, S., Dissanayake, M., Nebot, E., M., & Durrant-Whyte, H., F. (1999). An exper-
iment in autonomous navigation of an underground mining vehicle. IEEE Transac-
tions on Robotics & Automation, 15(1), 85-95.

Schodl, A., Haro, A., & Essa, I. A. (1998). Head tracking using a textured polygonal model
(Technical report GIT-GVU-98-24). Atlanta, GA: Georgia Institute of Technology,
College of Computing, Graphics, Visualization and Usability Center.

Schut, G. B. (1960). On exact linear equations for the computation of the rotational ele-
ments of absolute orientation. Photogrammetria, 16(1), 34-37.

Selspot. (1987). Selspot MULTILab system description (1987-02-05).

Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Tech-
nical Journal, 27, 379–423.

Sharma, R., & Molineros, J. (1997). Computer vision-based augmented reality. Presence:
Teleoperators and Virtual Environments, 6(3), 292-317.

Shaw, C., & Liang, J. (1992). An experiment to characterize head motion in VR and RR
using MR, Proceedings of the 1992 Western Computer Graphics Symposium (pp.
99-101).
111

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Shoemake, K. (1985). Animating Rotation with Quaternion Curves, Computer Graphics
(SIGGRAPH 85 Conference Proceedings ed., pp. 245-254). San Francisco: ACM
Press.

Smith, B. R. (1984). Digital head tracking and position prediction for helmet mounted vi-
sual display systems, AIAA 22nd Aerospace Sciences Meeting. New York, NY:
AIAA.

So, R. H. Y., & Griffin, M. J. (1992a). Compensating lags in head-coupled displays using
head position prediction and image deflection. Journal of Aircraft, 29(6), 1064-
1068.

So, R. H. Y., & Griffin, M. J. (1992b). Selspot Technical Specifications, Selcom Laser
Measurements.

Soatto, S., Perona, P., Frezza, R., & Picci, G. (1996). Motion estimation via dynamic vi-
sion. IEEE Transactions on Automatic Control, 41(3), 393-414.

Sorensen, B. R., Donath, M., Yang, G.-B., & Starr, R. C. (1989). The Minnesota Scanner:
a prototype sensor for three-dimentional tracking of moving body segments. IEEE
Transactions on Robotics and Automation, 5(4), 499-509.

Sorenson, H. W. (1970, July). Least-Squares estimation: from Gauss to Kalman. IEEE
Spectrum, 7, 63-68.

Sowizral, H., & Barnes, D. (1993). Tracking Position and Orientation in a Large Volume,
Proceedings of IEEE VRAIS 93 (pp. 132-139): IEEE Computer Society Press.

SPIRIT. (2000). SPIRIT Project: Making networks location-aware. Available: http://
www.uk.research.att.com/spirit/ [2000, January 4].

Spohrer, J. (1999a). 3. Key subproblem: determining location, [HTML]. Learning Commu-
nities Group, ATG, (c)Apple Computer, Inc. Available: http://worldboard.org/pub/
spohrer/wbconcept/S03.html [1999, December 24, 1999].

Spohrer, J. (1999b). Information in Places. IBM Systems Journal, Pervasive Computing,
38(4).

Spohrer, J. (1999c, June 16). WorldBoard: What Comes After the WWW?, [HTML]. Learn-
ing Communities Group, ATG, (c)Apple Computer, Inc. Available: http://world-
board.org/pub/spohrer/wbconcept/default.html [1999, December 24, 1999].

State, A., Hirota, G., Chen, D. T., Garrett, B., & Livingston, M. A. (1996). Superior Aug-
mented Reality Registration by Integrating Landmark Tracking and Magnetic
Tracking. In H. Rushmeier (Ed.), SIGGRAPH 96 Conference Proceedings (pp.
429-438): Addison Wesley.

Strickland, D., Patel, A., Stovall, C., Palmer, J., & McAllister, D. Self tracking of human
motion for virtual reality systems (pp. 10 pp).

Strickland, D., Patel, A., Stovall, C., Palmer, J., & McAllister, D. (1994). Self tracking of
human motion for virtual reality systems, Proceedings of the Stereoscopic Displays
and Virtual Reality Systems (Vol. 2177, pp. 278-287). Bellingham, WA: SPIE.

Sutherland, I. E. (1968). A head-mounted three dimensional display, Proceedings of the
1968 Fall Joint Computer Conference, AFIPS Conference Proceedings (Vol. 33,
part 1, pp. 757-764). Washington, D.C.: Thompson Books.
112

Course 11—Tracking: Beyond 15 Minutes of Thought
Sutherland, I. E. (1974). Three-dimensional data input by tablet, Proceedings of the IEEE
(Vol. 62 (4), pp. 453-461).

Tarabanis, K. A., Allen, P. K., & Tsai, R. Y. (1995). A survey of sensor planning in com-
puter vision. IEEE Trans. Robotics and Automation, 11, 86-104.

Thompson, E. H. (1959). An exact linear solution of the problem of absolute orientation.
Photogrammetria, 15(4), 163-179.

Thrun, S., Fox, D., & Burgard, W. (1998). A Probabilistic Approach to Concurrent Map-
ping and Localization for Mobile Robots. Machine Learning, 31, 29-53.

Trucco, E., & Verri, A. (1998). Introductory techniques for 3-D computer vision (1st ed.
Vol. 1). Upper Saddle River, New jersey: Prentice Hall.

UNC Tracker Project. (2000, July 10). Wide-Area Tracking; Navigation Technology for
Head-Mounted Displays, [HTML]. Available: http://www.cs.unc.edu/~tracker
[2000, July 18].

Van Pabst, J. V. L., & Krekel, P. F. C. (1993). Multi Sensor Data Fusion of Points, Line
Segments and Surface Segments in 3D Space, 7th International Conference on Im-
age Analysis and Processing— (pp. 174-182). Capitolo, Monopoli, Italy: World
Scientific, Singapore.

Varona, J. G., Roca, F. X., & Villanueva, J. J. (2000). iTrack: Image-based probabilistic
tracking of people, Proceedings of the International Conference on Pattern Recog-
nition (ICPR'00) (Vol. 3, pp. 1122-1125). Barcelona, Spain.

Verplaetse, C., James. (1996). Inertial proprioceptive devices: Self-motion-sensing toys
and tools. IBM Systems Journal, 35(3 & 4).

Verplaetse, C. J. (1997). Inertial-Optical Motion-Estimating Camera for Electronic Cine-
matography. Unpublished Masters of Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA.

Vicci, L. (2001). Quaternions and Rotations in 3-Space: The Algebra and its Geometric In-
terpretation (Technical Report TR01-014). Chapel Hill, NC: University of North
Carolina at Chapel Hill.

Vieville, T., Clergue, E., & Facao, P. E. D. S. (1993). Computation of ego-motion and
structure from visual and inertial sensors using the vertical cue, IEEE Proceedings
of the Third International Conference on Computer Vision (pp. 591-598). Berlin,
Germany.

VRPN. (2001). Virtual Reality Peripheral Network, [HTML]. 3rdTech. Available: http://
www.cs.unc.edu/Research/vrpn/ [2001, April 25].

Wallmark, J. T. (1957). A new semiconductor photocell using lateral photo-effect. Pro-
ceedings IRE, 45, 474-483.

Wang, J.-f. A real-time optical tracker using off-the-shelf components. Unpublished Dis-
sertation proposal, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Wang, J.-F. (1990). A real-time optical 6D tracker for head-mounted display systems. Un-
published Ph.D. Dissertation, University of North Carolina at Chapel Hill, Chapel
Hill, NC USA.
113

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Wang, J.-F., Azuma, R. T., Bishop, G., Chi, V., Eyles, J., & Fuchs, H. (1990). Tracking a
Head-Mounted Display in a Room-Sized Environment with Head-Mounted Cam-
eras, SPIE 1990 Technical Symposium on Optical Engineering and Photonics in
Aerospace Sensing (Vol. 1290, pp. 47-57). Orlando, FL: SPIE.

Wang, J.-f., Chi, V., & Fuchs, H. (1990). A Real-time Optical 3D Tracker for Head-mount-
ed Display Systems, Symposium on Interactive 3D Graphics (I3D 90 Symposium
Proceedings ed., Vol. 24 (2), pp. 205-215). Snowbird, UT: ACM Press, Addison
Wesley.

Ward, M., Azuma, R. T., Bennett, R., Gottschalk, S., & Fuchs, H. (1992). A Demonstrated
Optical Tracker With Scalable Work Area for Head-Mounted Display Systems,
Symposium on Interactive 3D Graphics (I3D 99 Conference Proceedings ed., pp.
43-52). Cambridge, MA USA: ACM Press, Addison-Wesley.

Ware, C., & Balakrishnan, R. (1994). Target acquisition in fish tank VR: the effects of lag
and frame rate, Proceedings of Graphics Interface '94 (pp. 1-7).

Warnekar, C. S., & Schalkoff, R. J. (1982). A predictor-corrector approach to tracking 3-D
objects using perspective-projected images, Proceedings of the IEEE Southeastcon
'82 (pp. 371-384).

Watanabe, K., Kobayashi, K., & Munekata, F. (1994). Multiple sensor fusion for naviga-
tion systems, 1994 Vehicle Navigation & Information Systems Conference Pro-
ceedings (pp. 575-578): IEEE.

Weber, H. (1997, April 9). Predictive Head Tracking Using a Body-centric Coordinate
System. University of North Carolina at Chapel Hill. Available: http://
www.cs.unc.edu/~weberh/research/predtrac.html and
Weber1997_pred_tracking.pdf [2001, January 21].

Wefald, K. M., & McClary, C. (1984). Autocalibration of a laser gyro strapdown inertial
reference/navigation system. IEEE, 66-74.

Welch, G. (1995). Hybrid Self-Tracker: An Inertial/Optical Hybrid Three-Dimensional
Tracking System (TR95-048). Chapel Hill, NC, USA: University of North Carolina
at Chapel Hill, Department of Computer Science.

Welch, G. (1996). SCAAT: Incremental Tracking with Incomplete Information. Unpub-
lished Ph.D. Dissertation, University of North Carolina at Chapel Hill, Chapel Hill,
NC, USA.

Welch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter (TR95-041). Chapel
Hill, NC, USA: University of North Carolina at Chapel Hill, Department of Com-
puter Science.

Welch, G., & Bishop, G. (1997). SCAAT: Incremental Tracking with Incomplete Informa-
tion. In T. Whitted (Ed.), Computer Graphics (SIGGRAPH 97 Conference Pro-
ceedings ed., pp. 333-344). Los Angeles, CA, USA (August 3 - 8): ACM Press,
Addison-Wesley.

Welch, G., & Bishop, G. (2001, December 8, 2000). The Kalman Filter, [HTML]. Univer-
sity fo North Carolina at Chapel Hill. Available: http://www.cs.unc.edu/~welch/
kalman/ [2001, January 1].
114

Course 11—Tracking: Beyond 15 Minutes of Thought
Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K., & Colucci, D. n. (1999). The
HiBall Tracker: High-Performance Wide-Area Tracking for Virtual and Augment-
ed Environments, Proceedings of the ACM Symposium on Virtual Reality Software
and Technology (pp. 1-11). University College London, London, United Kingdom
(December 20 - 23): ACM SIGGRAPH, Addison-Wesley.

Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K., & Colucci, D. n. (2001). High-
Performance Wide-Area Optical Tracking—The HiBall Tracking System. Pres-
ence: Teleoperators and Virtual Environments, 10(1).

White, P. R., & Garrett, R. E. (1976). A generalized interactive three dimensional input sys-
tem, CAD 76, Second International Conference and Exhibition on Computers in
Engineering and Building Design (pp. 275-282): IPC Science and Technology
Press.

Wildes, R. P. (1991). Direct recovery of three-dimensional scene geometry from binocular
stereo disparity. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(4), 761-774.

Williams, S. B., Newman, P., Dissanayake, M., & Durrant-Whyte, H., F. (2000). Autono-
mous underwater simultaneous localisation and map building, 2000 IEEE Interna-
tional Conference on Robotics and Automation. San Francisco, CA USA: Institute
of Electrical and Electronic Engineers, Inc.

Wloka, M. M. (1995). Lag in Multiprocessor Virtual Reality. PRESENCE: Teleoperators
and Virtual Environments, 4(1), 50-63.

Woltring, H. J. (1974). New Possibilities for Human Motion Studies by Real-Time Light
Spot Position Measurement. Biotelemetry, 1, 132-146.

Woltring, H. J. (1976). Calibration and measurement in 3-dimensional monitoring of hu-
man motion by optoelectronic means. II. Experimental results and discussion. Bio-
telemetry, 3, 65-97.

Wood, D. N., Azuma, D. I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D. H., & Stu-
etzle, W. (2000). Surface Light Fields for 3D Photography. In K. Akeley (Ed.), Pro-
ceedings of SIGGRAPH 2000 (Vol. http://www.cs.washington.edu/homes/daniel/
siggraph2000-slf.pdf, pp. 287-296): ACM Press / ACM SIGGRAPH / Addison
Wesley Longman.

You, S., Neumann, U., & Azuma, R. T. (1999a, March 13-17). Hybrid Inertial and Vision
Tracking for Augmented Reality Registration. Paper presented at the IEEE Virtual
Reality, Houston, TX USA.

You, S., Neumann, U., & Azuma, R. T. (1999b). Hybrid Inertial and Vision Tracking for
Augmented Reality Registration, IEEE Virtual Reality (pp. 260-267). Houston, TX
USA.

You, S., Neumann, U., & Azuma, R. T. (1999c, Nov/Dec). Orientation Tracking for Out-
door Augmented Reality Registration. IEEE Computer Graphics and Applications,
19, 36-42.

Youngblut, C., Johnson, R. E., Nash, S. H., Wienclaw, R. A., & Will, C. A. (1996). Full
body motion interfaces, Review of Virtual Environment Interface Technology (pp.
181-208). Alexandria, VA: Institute for Defense Analyses.
115

SIGGRAPH 2001, Los Angeles, CA, August 12-17, 2001
Yun, W., & Howe, R. T. (1992). Recent developments in silicon microaccelerometers. Sen-
sors(October), 31-41.

Zikan, K., Curtis, W., D., Sowrizal, H., A., & Janin, A., L. (1994). A note on dynamics of
human head motions and on predictive filtering of head-set orientations, Telema-
nipulator and Telepresence Technologies.
116

C. Related Papers
This appendix includes a sample of some relevant papers that we have permission to
reproduce. See also the “Tracking Bibliography” on page 97, and the electronic
bibliography version at

http://www.cs.unc.edu/~tracker/ref/s2001/tracker/
117

1

UNC is an Equal Opportunity/Affirmative Action Institution.

U
N
I V

ER
S I TAT CA

R
O L

S
EP
TENTS

I GI

LL
U
M

•

••

LUX

LIBERTAS

The Visual Display Transformation
for Virtual Reality

Warren Robinett
Richard Holloway

TR94-031
September, 1994

Head-Mounted Display Project
Department of Computer Science
CB #3175, Sitterson Hall
UNC-Chapel Hill
Chapel Hill, NC 27599-3175

This research was supported by the following grants: ARPA DABT 63-93-C-0048, NSF
Cooperative Agreement ASC-8920219, and ARPA "Science and Technology Center for Computer
Graphics and Scientific Visualization", ONR N00014-86-K-0680, and NIH 5-R24-RR-02170.

2

The Visual Display Transformation
for Virtual Reality

Warren Robinett*
Richard Holloway†

Abstract

The visual display transformation for virtual reality (VR) systems is typically much more complex
than the standard viewing transformation discussed in the literature for conventional computer
graphics. The process can be represented as a series of transformations, some of which contain
parameters that must match the physical configuration of the system hardware and the user’s body.
Because of the number and complexity of the transformations, a systematic approach and a
thorough understanding of the mathematical models involved is essential.

This paper presents a complete model for the visual display transformation for a VR system; that
is, the series of transformations used to map points from object coordinates to screen coordinates.
Virtual objects are typically defined in an object-centered coordinate system (CS), but must be
displayed using the screen-centered CSs of the two screens of a head-mounted display (HMD).
This particular algorithm for the VR display computation allows multiple users to independently
change position, orientation, and scale within the virtual world, allows users to pick up and move
virtual objects, uses the measurements from a head tracker to immerse the user in the virtual world,
provides an adjustable eye separation for generating two stereoscopic images, uses the off-center
perspective projection required by many HMDs, and compensates for the optical distortion
introduced by the lenses in an HMD. The implementation of this framework as the core of the
UNC VR software is described, and the values of the UNC display parameters are given. We also
introduce the vector-quaternion-scalar (VQS) representation for transformations between 3D
coordinate systems, which is specifically tailored to the needs of a VR system.

The transformations and CSs presented comprise a complete framework for generating the
computer-graphic imagery required in a typical VR system. The model presented here is
deliberately abstract in order to be general-purpose; thus, issues of system design and visual
perception are not addressed. While the mathematical techniques involved are already well known,
there are enough parameters and pitfalls that a detailed description of the entire process should be a
useful tool for someone interested in implementing a VR system.

1 . Introduction

A typical virtual reality (VR) system uses computer-graphic imagery displayed to a user through a
head-mounted display (HMD) to create a perception in the user of a surrounding three-dimensional
virtual world. It does this by tracking the position and orientation of the user's head and rapidly

* Virtual Reality Games, Inc., 719 E. Rosemary St., Chapel Hill NC 27514. E-mail: robinettw@aol.com

† Department of Computer Science, CB 3175, University of North Carolina, Chapel Hill, NC, 27599-3175.
Email: holloway@cs.unc.edu

3

generating stereoscopic images in coordination with the user's voluntary head movements as the
user looks around and moves around in the virtual world.

The hardware for a typical VR system consists of an HMD for visual input, a tracker for
determining position and orientation of the user's head and hand, a graphics computer for
generating the correct images based on the tracker data, and a hand-held input device for initiating
actions in the virtual world. The visual environment surrounding the user is called the virtual
world. The world contains objects, which are collections of graphics primitives such as polygons.
Each object has its own position and orientation within the world, and may also have other
attributes. The human being wearing the HMD is called the user, and also has a location and
orientation within the virtual world.

A good graphics programmer who is given an HMD, a tracker, an input device, and a computer
with a graphics library can usually, after some trial and error, produce code to generate a
stereoscopic image of a virtual object that, as the user moves to observe it from different
viewpoints, appears to hang stably in space. It often takes several months to get to this point.
Quite likely, the display code will contain some “magic numbers” which were tweaked by trial and
error until the graphics seen through the display looked approximately right. Further work by the
programmer will enable the user to use a tracked manual input device to pick up virtual objects and
to fly through the virtual world. It takes more work to write code to let the user scale the virtual
world up and down, and have virtual objects that stay fixed in room or head or hand space.
Making sure that the constants and algorithms in the display code both match the physical geometry
of the HMD and produce correctly sized and oriented graphics is very difficult and slow work.

In short, writing the display code for a VR system and managing all of the transformations (or
transforms, for short) and coordinate systems can be a daunting task. There are many more
coordinate systems and transforms to keep track of than in conventional computer graphics. For
this reason, a systematic approach is essential. Our intent here is to explain all of the coordinate
systems and transformations necessary for the visual display computation of a typical VR system.
We will illustrate the concepts with a complete description of the UNC VR display software,
including the values for the various display parameters. In doing so, we will introduce the vector-
quaternion-scalar (VQS) representation for 3D transformations and will argue that this data
structure is well suited for VR software.

2 . Related Work

Sutherland built the first computer-graphics-driven HMD in 1968 (Sutherland, 1968). One version
of it was stereoscopic, with both a mechanical and a software adjustment for interpupillary
distance. It incorporated a head tracker, and could create the illusion of a surrounding 3D
computer graphic environment. The graphics used were very simple monochrome 3D wire-frame
images.

The VCASS program at Wright-Patterson Air Force Base built many HMD prototypes as
experimental pilot helmets (Buchroeder, Seeley, & Vukobradatovitch, 1981).

The Virtual Environment Workstation project at NASA Ames Research Center put together an
HMD system in the mid-80's (Fisher, McGreevy, Humphries, & Robinett, 1986). Some of the
early work on the display transform presented in this paper was done there.

Several see-through HMDs were built at the University of North Carolina, along with supporting
graphics hardware, starting in 1986 (Holloway, 1987). The development of the display algorithm
reported in this paper was begun at UNC in 1989.

4

CAE Electronics of Quebec developed a fiber-optic head-mounted display intended for flight
simulators (CAE, 1986).

VPL Research of Redwood City, California, began selling a commercial 2-user HMD system,
called "Reality Built for 2," in 1989 (Blanchard, Burgess, Harvill, Lanier, Lasko, Oberman, &
Teitel, 1990).

A prototype see-through HMD targeted for manufacturing applications was built at Boeing in 1992
(Caudell & Mizell, 1992). Its display algorithm and the measurement of the parameters of this
algorithm is discussed in (Janin, Mizell & Caudell, 1993).

Many other labs have set up HMD systems in the last few years. Nearly all of these systems have
a stereoscopic HMD whose position and orientation is measured by a tracker, with the stereoscopic
images generated by a computer of some sort, usually specialized for real-time graphics. Display
software was written to make these HMD systems function, but except for the Boeing HMD, we
are not aware of any detailed, general description of the display transformation for HMD systems.
While geometric transformations have also been treated at length in both the computer graphics and
robotics fields (Foley, van Dam, Feiner, & Hughes, 90), (Craig, 86), (Paul, 81), these treatments
are not geared toward the subtleties of stereoscopic viewing in a head-mounted display. Therefore,
we hope this paper will be useful for those who want to implement the display code for a VR
system.

3 . Definitions

We will use the symbol TA_B to denote a transformation from coordinate system B to coordinate
system A. This notation is similar to the notation TA←B used in (Foley, van Dam, Feiner, &
Hughes, 90). We use the term “A_B transform” interchangeably with the symbol TA_B. Points
will be represented as column vectors. Thus,

pA = TA_B · pB (3.1)

denotes the transformation of the point PB in coordinate system B by TA_B to coordinate system A.
The composition of two transforms is given by:

TA_C = TA_B · TB_C (3.2)

and transforms a point in coordinate system C into coordinate system A. Note that the subscripts
cancel, as in (Pique, 1980), which makes complicated transforms easier to derive. The inverse of
a transform is denoted by reversing its subscripts:

(TA_B)-1 = TB_A (3.3)

Figure 3.1 shows a diagram of a point P and its coordinates in coordinate systems A and B, with
some example values given.

5

P

B

A
TA_B

AP BP

(3,2)

(1,3)(4,5)

(4,5) = (3,2) + (1,3)

The vector runs from A to B.

T measures the position of B's origin in A.A_B

T converts points in B to points in A.A_B

P = T · PA BA_B

Figure 3.1. The meaning of transform TA_B.

For simplicity, the transform in Figure 3.1 is limited to translation in 2D. The transform TA_B
gives the position of the origin of coordinate system B with respect to coordinate system A, and
this matches up with the vector going from A to B in Figure 3.1. However, note that transform
TA_B converts the point P from B coordinates (pB) to A coordinates (pA) – not from A to B as you
might expect from the subscript order.

In general, the transform TA_B converts points from coordinate system B to A, and measures the
position, orientation, and scale of coordinate system B with respect to coordinate system A.

4. The VQS Representation

Although the 4x4 homogeneous matrix is the most common representation for transformations
used in computer graphics, there are other ways to implement common transformation operations.
We introduce here an alternative representation for transforms between 3D coordinate systems
which was first implemented for and tailored specifically to the needs of virtual-reality systems.

The VQS data structure represents the transform between two 3D coordinate systems as a triple
[v, q, s], consisting of a 3D vector v, a unit quaternion q, and a scalar s. The vector specifies a
3D translation, the quaternion specifies a 3D rotation, and the scalar specifies an amount of
uniform scaling (in which each of the three dimensions are scaled by the same factor).

4 . 1 Advantages of the VQS Representation

The VQS representation handles only rotations, translations, and uniform scaling, which is a
subset of the transformations handled by the 4 x 4 homogeneous matrix. It cannot represent shear,
non-uniform scaling, or perspective transformations. This is both a limitation and an advantage.

We have found that for the core work in our VR system, translations, rotations and uniform
scaling are the only transformations we need. Special cases, such as the perspective
transformation, can be handled using 4x4 matrices. For operations such as flying, grabbing,
scaling and changing coordinate systems, we have found the VQS representation to be superior for
the following reasons:

6

• The VQS representation separates the translation, rotation, and scaling components from one
another, which makes it both convenient and intuitive to change these components
independently. With homogeneous matrices, it is somewhat more complex to extract the
scaling and rotation portions since these two components are combined.

• Renormalizing the rotation component of the VQS representation is simpler and faster than
for homogenous matrices, since the rotation and scale components are independent, and
because normalization of quaternions is more efficient than normalization of rotation
matrices.

• Uniform scaling is useful for supporting the operations of shrinking and expanding virtual
objects and the virtual world without changing their shape.

• The VQS representation is tailored specifically for 3D coordinate systems; not for 2D or
higher than 3D. This is because the quaternion component of the VQS data structure
represents 3D rotations. Again, this aspect of the VQS representation was motivated by the
application to VR systems, which deal exclusively with 3D CSs.

• The advantages of the unit quaternion for representing 3D rotation are described in
(Shoemake, 1985), (Funda, Taylor, & Paul, 90) and (Cooke, Zyda, Pratt & McGhee,
1992). Briefly, quaternions have several advantages over rotation matrices and Euler
angles:

- Quaternions are more compact than 3x3 matrices (4 components as opposed to 9) and
therefore have fewer redundant parameters.

- Quaternions are elegant and numerically robust (particularly in contrast to Euler angles,
which suffer from singularities).

- Quaternions represent the angle and axis of rotation explicitly, making them trivial to
extract.

- Quaternions allow simple interpolation to make possible a smooth rotation from one
orientation to another; this is complex and problematic with both matrices and Euler
angles.

- Quaternions can be more efficient in computation time depending on the application (the
tradeoffs are discussed in the references above), especially when operand fetch time
is considered.

Quaternions are an esoteric and obscure bit of mathematics and are generally not familiar to
people from their mathematical schooling, but their appropriateness, simplicity, and power
for dealing with 3D rotations have won over many sophisticated users, in spite of their
unfamiliarity. The ability to use quaternions to interpolate between rotations is sufficient,
by itself, to merit adopting them in the VQS representation.

It may be objected that non-uniform scaling and shear are useful modeling operations, and that the
perspective transform must also be a part of any VR system. This is absolutely correct. The UNC
VR system uses both representations—4x4 homogeneous matrices are used for modeling and for
the last few operations in the viewing transformation, and VQS data structures are used
everywhere else. While this may seem awkward at first, keep in mind that the viewing transform
is hidden from the user code and, in most applications, so are the modeling operations. Thus, the
application code often uses only VQS transformations and is generally simpler, more elegant, and
more efficient as a result. In addition, there are certain nonlinear modeling operations (for

7

example, twist) and viewing-transform steps (for example, optical distortion correction) that cannot
be handled even by 4x4 matrices, so a hybrid system is often necessary in any case.

4 . 2 VQS Definitions

The triple [v, q, s], consisting of a 3D vector v, a unit quaternion q, and a scalar s, represents a
transform between two 3D coordinate systems. We write the subcomponents of the vector and
quaternion as v = (vx, vy, vz) and q = [(qx, qy, qz), qw]. The vector specifies a 3D translation, the
quaternion specifies a 3D rotation, and the scalar specifies an amount of uniform scaling.

In terms of 4x4 homogeneous matrices, the VQS transform is defined by composing a translation
matrix, a rotation matrix, and a scaling matrix:

[v, q, s] = Mtranslate · Mrotate · Mscale

 =

1 0 0 vx

0 1 0 vy
0 0 1 vz
0 0 0 1

1-2qy2-2qz2 2qxqy-2qwqz 2qxqz+2qwqy 0

2qxqy+2qwqz 1-2qx2-2qz2 2qyqz-2qwqx 0
2qxqz-2qwqy 2qyqz+2qwqx 1-2qx2-2qy2 0

0 0 0 1

s 0 0 0

0 s 0 0
0 0 s 0
0 0 0 1

A complete treatment of quaternions for use in computer graphics is given in (Shoemake, 1985).
However, we will briefly describe some aspects of how quaternions can be used to represent 3D
rotations.

A unit quaternion q = [(qx, qy, qz), qw] specifies a 3D rotation as an axis of rotation and an angle
about that axis. The elements qx, qy, and qz specify the axis of rotation. The element qw

indirectly specifies the angle of rotation θ as

θ = 2 cos-1(qw)

The formulas for quaternion addition, multiplication, multiplication by a scalar, taking the norm,
normalization, inverting, and interpolation are given below, in terms of quaternions q and r, and
scalar α:

q + r = qx ,qy ,qz(),qw[] + rx ,ry ,rz(),rw[] = qx + rx ,qy + ry ,qz + rz(),qw + rw[]

q∗ r = qx , qy , qz(), qw[]∗ rx , ry , rz(), rw[] =

qxrw + qyrz − qzry + qwrx ,

−qxrz + qyrw + qzrx + qwry ,

qxry − qyrx + qzrw + qwrz

,

−qxrx − qyry − qzrz + qwrw

q = qx ,qy ,qz(),qw = qx
2 + qy

2 + qz
2 + qw

2

α ⋅q = α ⋅ qx ,qy ,qz(),qw[] = α ⋅qx ,α ⋅qy ,α ⋅qz(),α ⋅qw[]

8

normalize(q) =
1
q

⋅q

q−1 = qx ,qy ,qz(),qw[]−1
=

1

q
2 ⋅ −qx ,−qy ,−qz(),qw[]

nterp(α ,q,r) = normalize(1− α() ⋅q + α ⋅ r)

Composing two 3D rotations represented by quaternions is done by multiplying the quaternions.
The quaternion inverse gives a rotation around the same axis but of opposite angle. Smooth linear
interpolation between two quaternions gives a smooth rotation from one orientation to another.

The rotation of a point or vector p by a rotation specified by a quaternion q is done by

q * p * q-1

where the vector p is treated as a quaternion with a zero scalar component for the multiplication,
and the result turns out to have a zero scalar component and so can be treated as a vector. Using
this notation, the VQS transform can be defined more concisely as

p’ = [v, q, s] · p = s·(q * p * q-1) + v

This is completely equivalent to the earlier definition.

It can be verified that the composition of two VQS transforms can be calculated as

 TA_B · TB_C = [vA_B, qA_B, sA_B] · [vB_C, qB_C, sB_C]

 = [(sA_B·(qA_B * vB_C * qA_B-1)) + vA_B, qA_B * qB_C, sA_B · sB_C]

The inverse of a VQS transform is:

 TA_B-1 = [vA_B, qA_B, sA_B]-1 = [1/sA_B · (qA_B-1 * (-vA_B) * qA_B), qA_B-1, 1/sA_B]

We will now move on to describing the transformations making up the visual display computation
for VR. We believe that the VQS representation of 3D transforms has advantages, but VQS
transforms are not required for VR. In the rest of the paper, it should be understood that,
wherever VQS data structures are used, 4x4 homogeneous matrices could have been used instead.

5 . Coordinate System Graphs

Many coordinate systems coexist within a VR system. All of these CSs exist simultaneously, and
although over time they may be moving with respect to one another, at any given moment, a
transform exists to describe the relationship between any pair of them. Certain transforms,
however, are given a higher status and are designated the independent transforms; all other
transforms are considered the dependent transforms, and may be calculated from the independent
ones. The independent transforms are chosen because they are independent of one another: they
are either measured by the tracker, constant due to the rigid structure of the HMD, or used as
independent variables in the software defining the virtual world.

9

We have found it helpful to use a diagram of the coordinate systems and independent transforms
between them. A CS diagram for an early version of the UNC VR software was presented in
(Brooks, 1989) and a later version in (Robinett & Holloway, 1992). We represent a typical
multiple-user VR system with the following graph:

Right Eye n

Right Screen n

Room n

Head n

Left Eye n

Left Screen n

World

Hand n

Object 1 Object k

Right Eye 1

Right Screen 1

Room 1

Head 1 Hand 1

Left Eye 1

Left Screen 1

. . . .

Figure 5.1. Coordinate systems for a multi-user virtual world

Each node represents a coordinate system, and each edge linking two nodes represents a transform
between those two CSs. Each user is modeled by the subgraph linking the user's eyes, head, and
hand. A transform between any pair of CSs may be calculated by finding a path between
corresponding nodes in the graph and composing all the intervening transforms.

This, in a nutshell, is how the display computation for VR works: For each virtual object, a path
must be found from the object to each of the screens, and then the points defining the object must
be pumped through the series of transforms corresponding to that path. This produces the object's
defining points in screen coordinates. This must be done for each screen in the VR system. An
object is seen stereoscopically (on two screens) by each user, and in a multi-user system an object
may be seen simultaneously from different points of view by different users.

As an example, it may be seen from the diagram that the path to Left Screen 1 from Object 3 is

Left Screen 1, Left Eye 1, Head 1, Room 1, World, Object 3

and thus the corresponding transforms for displaying Object 3 on Left Screen 1 are

TLS1_O3 = TLS1_LE1 · TLE1_H1 · TH1_R1 · TR1_W · TW_O3

As another example, finding a path from Head 1 to Right Screen 2 allows User #2 to see User #1's
head.

Note that the CS graph is connected and acyclic. Disconnected subgraphs are undesirable because
we want to express all CSs in screen space eventually; a disconnected subgraph would therefore
not be viewable. Cycles in the graph are undesirable because they would allow two ways to get
between two nodes, which might be inconsistent.

It is primarily the topology of the CS graph that is significant – it shows which CSs are connected
by independent transforms. However, the World CS is drawn at the top of the diagram to suggest

10

that all the virtual objects and users are contained in the virtual world. Likewise, the diagram is
drawn to suggest that Head and Hand are contained in Room, that Left Eye and Right Eye are
contained in Head, and that each Screen is subordinate to the corresponding Eye.

The independence of each transform in the CS graph can be justified. To have independently
movable objects, each virtual object must have its own transform (World_Object) defined in the
VR software. Likewise, each user must have a dedicated and modifiable transform (Room_World)
to be able to change position, orientation, and scale within the virtual world. (This is subjectively
perceived by the user as flying through the world, tilting the world, and scaling the world.) The
tracker measures the position and orientation of each user's head and hand (Head_Room,
Hand_Room) within the physical room where the tracker is mounted. The user's eyes must have
distinct positions in the virtual world to see stereoscopically (Left Eye_Head, Right Eye_Head).
The optics and geometry of the HMD define the final transform (Screen_Eye).

We can further characterize transforms as dynamic (updated each frame, like the tracker's
measurements) or static (typically characteristic of some physical, fixed relationship, like the
positions of the screens in the HMD relative to the eyes).

There can be many users within the same virtual world, and many virtual objects. The users can
see one another if their heads, hands, or other body parts have been assigned graphical
representations, and if they are positioned in the same part of the virtual world so as to face one
another with no objects intervening. We have represented virtual objects as single nodes in the CS
graph for simplicity, but objects with moving subparts are possible, and such objects would have
more complex subgraphs.

There are other ways this CS diagram could have been drawn. The essential transforms have been
included in the diagram, but it is useful to further subdivide some of the transforms, as we will see
in later sections of this paper.

6 . The Visual Display Computation

The problem we are solving is that of writing the visual display code for a virtual reality system,
with provision that:

• multiple users inhabit the same virtual world simultaneously;
• each user has a stereoscopic display;
• the user's viewpoint is measured by a head tracker;
• the display code matches the geometry of the HMD, tracker, and optics;
• various HMDs and trackers can be supported by changing parameters of the display code;
• the user can fly through the world, tilt the world, and scale the world; and
• the user can grab and move virtual objects.

In this paper, we present a software architecture for the VR display computation which provides
these capabilities. This architecture was implemented as the display software for the VR system in
the Computer Science Department at the University of North Carolina at Chapel Hill. The UNC
VR system is a research system designed to accommodate a variety of models of HMD, tracker,
graphics computer, and manual input device. Dealing with this variety of hardware components
forced us to create a flexible software system that could handle the idiosyncrasies of many different
VR peripherals. We believe, therefore, that the display software that has evolved at UNC is a
good model for VR display software in general, and has the flexibility to handle most current VR
peripherals.

11

We present a set of algorithms and data structures for the visual display computation of VR. We
note that there are many choices that face the designer of VR display software, and therefore the
display code differs substantially among current VR systems designed by different teams. Some
of these differences arise from hardware differences between systems, such as the physical
geometry of different HMDs, different optics, different size or position of display devices,
different geometries for mounting trackers, and different graphics hardware.

However, there are further differences that are due to design choices made by the architects of each
system's software. The software designer must decide what data structure to use in representing
the transforms between coordinate systems, define the origin and orientation for the coordinate
systems used, and define the sequence of transforms that comprise the overall Screen_Object
transform, and decide what parameters to incorporate into the display transform.

The VR display algorithm presented in this paper is a general algorithm which can be tailored to
most current VR systems by supplying appropriate values for the parameters of the algorithm. For
concreteness, we discuss the implementation of this display algorithm on the UNC VR system.
The UNC VR software is based on a software library called Vlib. Vlib was designed by both
authors and implemented by Holloway in early 1991. A brief overview is given in (Holloway,
Fuchs & Robinett, 1991).

Vlib was originally written for use with PPHIGS, the graphics library for Pixel-Planes 5 (Fuchs,
Poulton, Eyles, Greer, Goldfeather, Ellsworth, Molnar, Turk, Tebbs, & Israel, 1989), the
graphics computer in the UNC VR system. However, it was subsequently ported to run on a
Silicon Graphics VGX using calls to the GL graphics library. Since Silicon Graphics machines are
widely used for VR software, we will describe the GL-based version of Vlib.

6 . 1 Components of the Visual Display Transform

The Vlib display software maps a point pO defined in Object coordinates into a point in Screen
coordinates pS using this transform:

pS = TS_E · TE_H · TH_R · TR_W · TW_O · pO (6.1)

This is consistent with the CS diagram of Figure 5.1. However, there are some complications that
make it useful to further decompose two of the transforms above: the Head_Room transform TH_R
and the Screen_Eye transform TS_E.

The primary function of the Head_Room transform is to contain the measurement made by the
tracker of head position and orientation, which is updated each display frame as the user's head
moves around. The tracker hardware measures the position and orientation of a small movable
sensor with respect to a fixed frame of reference located somewhere in the room. Often, as with
the Polhemus magnetic trackers, the fixed frame of reference is a transmitter and the sensor is a
receiver.

The two components of tracker hardware, the tracker's base and the tracker's sensor, have native
coordinate systems associated with them by the tracker's hardware and software. If the tracker
base is bolted onto the ceiling of the room where the VR system is used, this defines a coordinate
system for the room with the origin up on the ceiling and with the X, Y, and Z axes pointing
whichever way it was mechanically convenient to mount the tracker base onto the ceiling.
Likewise, the sensor is mounted somewhere on the rigid structure of the head-mounted display,
and the HMD inherits the native coordinate system of the sensor.

12

In Vlib, we decided to introduce two new coordinate systems and two new static transforms, rather
than use the native CSs of the tracker base and sensor as the Room and Head CSs. This allowed
us to choose a sensible and natural origin and orientation for Room and Head space. We chose to
put the Room origin on the floor of the physical room and orient the Room CS with X as East, Y
as North, and Z as up. We chose to define Head coordinates with the origin midway between the
eyes, oriented to match the usual screen coordinates with X to the right, Y up, and Z towards the
rear of the head.

Thus, the Head_Room transform is decomposed into

TH_R = TH_HS · THS_TB · TTB_R (6.2)

where the tracker directly measures the Head-Sensor_Tracker-Base transform THS_TB. The
mounted position of the tracker base in the room is stored in the Tracker-Base_Room transform
TTB_R, and the mounted position of the tracker sensor on the HMD is stored in the Head_Head-
Sensor transform TH_HS.

When using more than one type of HMD, it is much more convenient to have Head and Room
coordinates be independent of where the sensor and tracker base are mounted. The TH_HS and
TTB_R transforms, which are static, can be stored in calibration files and loaded at run-time to
match the HMD being used, allowing the same display code to be used with all HMDs. If a sensor
or tracker is remounted in a different position, it is easy to change the calibration file. To install a
new tracker, a new entry is created in the tracker calibration file. Without this sort of calibration to
account for the tracker mounting geometry, the default orientation of the virtual world will change
when switching between HMDs with different trackers.

The other transform which it is convenient to further decompose is the Screen_Eye transform TS_E,
which can be broken down into

TS_E = TS_US · TUS_N · TN_E (6.3)

TS_US is the optical distortion correction transformation, TUS_N is the 3D viewport transformation
described in (Foley, van Dam, Feiner, & Hughes, 1990), and TN_E is the normalizing perspective
transformation. The 3D viewport transformation is the standard one normally used in computer
graphics. The perspective transform is slightly unusual in that it must, in general, use an off-center
perspective projection to match the geometry of the HMD being used. The details of this are
discussed in a later section. A transformation to model the optics of the HMD is something not
normally encountered in standard computer graphics, and it causes some problems which are
discussed in more detail later.

Plugging in the decomposed transforms of Equations (6.2) and (6.3) into the overall display
transform of (6.1) gives

TS_O = TS_US · TUS_N · TN_E · TE_H · TH_HS · THS_TB · TTB_R · TR_W · TW_O (6.4)

This is the visual display transform used by the UNC VR software. Note that the leftmost five
transforms are static and can therefore be precomputed once to yield TS_HS.

Table 6.1 below lists each of the transformations involved in the overall display transform. Note
that several instances of each transform in the table must be maintained to allow for multiple
objects, multiple users, and the two eyes of each user. Example values for these transforms are
given in Table 8.1.

13

Symbol Coordinate
Systems

Instances Function Static /
Dynamic

TW_O Object to
World

1 per object position of object in world
(changes when object moves)

dynamic

TR_W World to
Room

1 per user position of room in world
(changes when flying, etc.)

dynamic

TTB_R Room to
Tracker Base

1 per user position of tracker in room static

THS_TB Tracker Base to
Head Sensor

1 per user measurement of head position and
orientation by tracker

dynamic

TH_HS Head Sensor to
Head

1 per user position of sensor on HMD static

TE_H Head to
Eye

2 per user positions of left and right eyes static

TN_E Eye to
Normalized

2 per user off-center perspective projection static

TUS_N Normalized to
Undistorted Screen

2 per user convert to device coordinates static

TS_US Undistorted Screen
to Screen

2 per user optical distortion correction static

Table 6.1. Component transforms of the visual display transform in VR

6 . 2 Coordinate System Definitions

Using transforms between coordinate systems in a VR system requires that the various CSs be
precisely defined. A standard orthogonal coordinate system is completely specified by giving its
origin, its orientation, and its units. Table 6.2 gives the CSs defined by Vlib. Vlib is not a
graphics library and therefore defines only the coordinate systems going from Object space to Eye
space. The remaining low-level coordinate systems are defined in the graphics library being used.

14

symbol name origin orientation units
O Object center of object X = right

Y = front
Z = top

same as World,
unless object was
scaled

W World initially on floor
directly underneath
tracker base

same as Room
unless world is tilted

same as Room
unless world is
scaled

R Room lower southwest
corner of room

X = east
Y = north
Z = up

meters

TB Tracker Base center of base depends on mounting
location

meters

HS Head Sensor center of sensor depends on mounting
location

meters

H Head mid-point between
user’s eyes

X = right
Y = up
Z = backward

meters

E Eye center of pupil of eye X = right
Y = up
Z = backward

meters

Table 6.2. Vlib coordinate systems

The transforms between the CSs listed above are all represented in Vlib by the VQS representation,
since translation, rotation, and uniform scaling are all that are needed.

The transforms going from Eye space to Screen space are handled by the graphics library
supporting the graphics hardware of the VR system. These transforms include off-center
perspective projection, optical distortion correction, and mapping to screen coordinates. The
coordinate systems for SGI’s GL are listed in Table 6.3.

symbol name origin orientation units
E Eye center of pupil of eye X = right

Y = up
Z = backward

meters

C Clip same as above X = right
Y = up
Z = forward

meters

N Normalized same as above X = right
Y = up

normalized

W Window same as above X = right
Y = up

pixels

US Undistorted
Screen

lower left corner of
viewport

X = right
Y = up

pixels

S Screen lower left corner of
viewport

X = right
Y = up

pixels

Table 6.3. GL coordinate systems (Silicon Graphics 91)

The US (Undistorted Screen) coordinate system above requires explanation. It is not officially
supported by GL. It is included in the table to indicate the point at which nonlinear image
predistortion to compensate for optical distortion could be done: namely, in the step from US to S
coordinates.

15

7 . Discussion of Component Transforms

We now discuss each of the component transforms of the full visual display transform for VR, as
implemented in UNC's Vlib software, running on top of GL on a Silicon Graphics VGX. The
complete display transform, again, is

TS_O = TS_US · TUS_N · TN_E · TE_H · TH_HS · THS_TB · TTB_R · TR_W · TW_O (7.1)

In discussing a transformation between two coordinate systems A and B, it is easy to get confused
as to whether the transform should be measured from A to B, or from B to A. In the following
sections, keep in mind that the transform TA_B contains the position, orientation, and scale of
coordinate system B as measured from coordinate system A, as was discussed earlier in Section 3.

7 . 1 World_Object Transform (Position of Object in Virtual World)

The World_Object transform TW_O = [vW_O, qW_O, sW_O] determines the position, orientation,
and size of each object in the virtual world. Each object has its own instance of this transform,
which permits each object to be independently moved, rotated, or scaled. The vector vW_O defines
the object's position, the quaternion qW_O defines its orientation, and the scalar sW_O defines its
size.

7 . 2 Room_World Transform (Position of User in Virtual World)

The Room_World transform TR_W = [vR_W, qR_W, sR_W] determines the position, orientation, and
size of each user in the virtual world. Each user has a dedicated instance of this transform, and this
permits users to have independent locations, orientations, and scales within the virtual world. In a
multi-user virtual world, this means that different users can fly through the world independently of
one another. Similarly, different users can also see the virtual world from different orientations or
different scale factors.

The vector vR_W defines the user's position in the virtual world, and it may be incrementally
modified to cause flying through the world to occur.

The quaternion qR_W defines the user's orientation, and can be modified to tilt the entire virtual
world to a new orientation. Because the force of gravity constantly reminds the user of the
direction of real-world down, the user perceives the virtual world to be turning, rather than that his
or her own body is turning within the virtual world.

The scalar sR_W defines the user's size within the virtual world. This value can be multiplied each
frame by a constant slightly greater or less than 1 to cause the virtual world to shrink or expand.

The precise quantities represented by vR_W, qR_W, and sR_W are the position, orientation, and
scale of World coordinates with respect to Room coordinates. Exactly how these variables must be
modified to implement the operations of flying through a virtual world, tilting the world, scaling
the world, and grabbing virtual objects is discussed in detail in (Robinett & Holloway, 1992).

7 . 3 Tracker-Base_Room Transform (Mounting Position of Tracker Base)

The Tracker-Base_Room transform TTB_R = [vTB_R, qTB_R, 1] describes the position and
orientation of the tracker base (often a transmitter) within the physical room where the VR system

16

is set up. This value is stored in a calibration file for the tracker currently being used. Note that
the scale factor is required to be 1 for this transform.

To be precise, the Tracker-Base_Room transform TTB_R contains the position and orientation of
Room coordinates as measured from Tracker-Base coordinates. When relocating the tracker, it is
usually most convenient to measure the position and orientation of the tracker base with respect to
the fixed coordinate system of the room, and then calculate the inverse transform as the value for
TTB_R.

7 . 4 Head-Sensor_Tracker-Base Transform (Measurement by Tracker)

The Head-Sensor_Tracker-Base transform THS_TB = [vHS_TB, qHS_TB, 1] holds the inverse of the
measurement of head position and orientation most recently read from the tracker. Most trackers
provide the position and orientation of a sensor with respect to the tracker base (TTB_HS).

Not all trackers deliver orientation as a quaternion, so the tracker driver software may have to do a
conversion from a 3x3 matrix or from Euler angles. The driver may also have to perform a scaling
to convert the position measurement to the required units of meters.

Since the tracker only measures position and orientation, the scale factor for this transform is
required to be 1.

The tracker driver outputs a vector and a quaternion. The vector defines the position of the sensor
with respect to the tracker's base and the quaternion defines the sensor's orientation with respect to
the tracker's base. This vector and quaternion read from the tracker comprise a transform which
must be inverted to get the Head-Sensor_Tracker-Base transform THS_TB. Note that, as discussed
in Section 4, inverting a VQS transform is not equivalent to simply inverting its vector, quaternion,
and scalar components.

7 . 5 Head_Head-Sensor Transform (Mounting Position of Sensor on HMD)

The Head_Head-Sensor transform TH_HS = [vH_HS, qH_HS, 1] describes the position and
orientation of where the head sensor is mounted on the HMD. These measurements are with
respect to the Head coordinate system, centered at the midpoint between the eyes. The vector
vH_HS defines the position of the sensor with respect to the Head CS and the quaternion qH_HS
defines the sensor's orientation in the Head CS. The scale factor is required to be 1 for this
transform also.

This value is stored in a calibration file for the HMD currently being used.

7 . 6 Eye_Head Transform (Separation of the Eyes)

For each user, the Eye_Head transform has two instances, one for each eye. These two
transforms position the viewpoints of the user's eyes at slightly separated points within the virtual
world, thus allowing stereoscopic vision through the HMD. Figure 7.1 shows a diagram of this.

17

A1

B1

screen

opical axis

B2

A2

C

opical axis

left eye right eye

IPD

angle Ø between
optical axes

screen

virtual image
of screen

virtual image
 of screen

perceived
 point

Head
coords

X

Z

Figure 7.1. Stereoscopic optics model for an HMD

 The Left-Eye_Head transform TLE_H = [vLE_H, qLE_H, 1] and Right-Eye_Head transform TRE_H =
[vRE_H, qRE_H, 1] describe the positions of the eyes with respect to the Head coordinate system
centered at the midpoint between the user's eyes. (Because we are transforming from Head space
to Eye space, TE_H actually describes the position of the Head CS with respect to the Eye CS, not
vice versa.) Thus, for a given interpupillary distance (IPD), using the Head coordinate system
described in Table 6.2 we have

vLE_H = (+IPD/2, 0, 0)
vRE_H = (–IPD/2, 0, 0)

There are considerable individual differences among the IPDs of adults, with 95% falling in the
range from 49 to 75 mm (Woodson, 1981). Wide-eyed and narrow-eyed people will perceive the
same scene in an HMD to have different absolute sizes and distances (Rolland, Ariely, & Gibson,
1993). To avoid this problem, the IPD for each user needs to be measured (with a device such as
an optician uses) and the user's IPD needs to be entered into a calibration file specific to that user.
Since most people wear eyeglasses or contact lenses customized to their vision and facial
geometry, it should not be surprising that HMDs and their display software need to be customized
for each user.

However, it is often not practical or not worth the trouble to change the IPD setting each time a
new user dons the HMD. In practice, the IPD of the UNC HMDs often remains set at an average
value of 62 mm.

18

It is important to emphasize that the geometrical model used in the graphics software must
recognize that the eye focuses on the virtual image of the screen, not the screen itself. The graphics
software for some HMDs erroneously ignores the optics, and models the eyes as focusing directly
on screens a few centimeters away (VPL, 1989). If this were accurate, small displacements of the
pupil from the assumed center of projection would cause large distortions in the perceived image.
Rotation of the eye to gaze at different points in the image, and also the variation in IPD from one
user to another, both cause the pupil to be displaced from its assumed location. But since the eyes
in fact focus on distant virtual images of the screens, these small displacements of the pupil have a
relatively small effect on the perceived image.

The orientation of eye space should match that of the optical system in the HMD. If the HMD
being used has parallel optical axes for the two eyes, then the orientation of Left-Eye and Right-
Eye space match that of Head space. In this case, the two quaternions will be the identity
quaternion qident = [(0,0,0),1], corresponding to zero rotation.

However, some HMDs use diverged optical axes to obtain a wider field of view. The parameter Ø
describes the angle between the optical axes, giving divergence angles of -Ø/2 and +Ø/2 around
the Y-axis for the two eyes. This translates into quaternions as

qLE_H = [(0, sin(+Ø/4), 0), cos(+Ø/4)]
qRE_H = [(0, sin(–Ø/4), 0), cos(–Ø/4)]

As another example of how the Eye_Head transform can be used, an HMD was built at UNC in
which one display device (an LCD display for the left eye) was upside-down due to mounting
constraints. For correct operation, the left image had to be displayed upside down. This was
accomplished by composing a 180˚ rotation around the Z-axis with the qLE_H quaternion.

This concludes the list of Vlib transforms, all of which use the VQS representation. To get from
Eye space to Screen space, several different representations of the transforms are necessary. The
following transforms are described as they are implemented for the GL-based version of Vlib.

7 . 7 Normalized_Eye Transform (Perspective Transform)

The perspective projection used in an HMD must match the field of view of the HMD, and must
position the eyes correctly relative to the screens' virtual images. This usually requires an off-
center perspective projection, since the user's eye is generally not lined up with the center of the
screen in an HMD.

Figure 7.2 below shows some of the important parameters in eye space pertaining to the
perspective projection and is similar to that used in (Foley, van Dam, Feiner, & Hughes, 1990).

19

CW

VRP

znea
r

zp
zfar

wx

wy

X

Y

- Z

ycw

xcw

screenimage

far
clipping
plane

nearplane

FOVH

FO
Vv

Figure 7.2. Viewing parameters for one eye using an off-center perspective projection

In this diagram, the screen image defines the plane of projection and the eye is at the origin looking
along the -Z axis. We have chosen the eye coordinate system so that the -Z axis is parallel to the
optical axis, and is perpendicular to the screen image and intersects it at the view reference point
(VRP) at z = zp. The center of the screen image or viewing window is denoted by CW and is not
generally at the VRP. The distances xcw and ycw give the offsets to the screen-image center relative
to the VRP. The viewing window size is just the size of the screen image and is denoted by wx
and wy. The near and far clipping plane distances znear and zfar determine when objects are too
close or too distant for display.

Although this is a complete model for a single eye, there is a complication introduced by some
stereoscopic displays. Because the VRP is defined relative to the eye, as the IPD changes for
different users, the VRP’s horizontal placement changes as well. If the display does not have a
physical IPD adjustment, then the VRP moves laterally with respect to CW. In this case xcw
changes with the IPD.

The figure below shows the situation for the left eye.

20

CW VRP

LE

virtual image plane

H

cwx

= -IPD/2xH_LE

H_CW
x

Figure 7.3. Dependence of xcw on IPD (Left eye)

Here, xH_CW is the X coordinate of the left screen’s CW relative to Head space (the value for this
must be derived from the specifications for the HMD) and xH_LE is the X coordinate of the left eye
relative to Head space and for the left eye, which is just:

xH_LE =
-IPD

2

Thus,

xCW = xH_CW - xH_LE = xH_CW +
IPD

2 (Left eye)

The situation for the right eye is similar:

xCW = xH_CW - xH_RE = xH_CW -
IPD

2 (Right eye)

Note that xH_CW is negative for the left eye and positive for the right.

xcw and ycw can also be used to correct for misalignments of the HMD hardware. For example, in
the VPL EyePhone, an accidental displacement of the display device in the object plane by 1 mm
results in an angular error of roughly 1.5˚. Errors in vertical placement on the image plane produce
vertical angular offsets, and can result in corresponding pixels in the left and right displays being
vertically misaligned. This is called dipvergence. Dipvergence can be corrected by adjusting ycw
to reflect this offset in the computer graphics model. Similarly, horizontal placement error can be
fixed by adjusting xcw.

The calculation of the field of view is also more complicated for off-center projections. Figure 7.4
shows the relationship between the horizontal field-of-view angles and the off-center projection
parameters.

21

zp

CW VRP

cwx

w

FOVL
FOVR

x

eye

virtual image plane

Figure 7.4. Relation of horizontal FOV to off-center projection parameters

Because the eye is off-center with respect to the screen, the left and right components, FOVL and
FOVR, of the horizontal field of view FOVH are not equal and must be calculated separately.

FOVL = tan−1

wx

2
− xcw

zp

FOVR = tan−1

wx

2
+ xcw

zp

FOVH = FOVL + FOVR

The calculation is similar for the vertical field of view FOVV, which is divided into top and bottom
angles.

FOVT = tan−1

wy

2
+ ycw

zp

FOVB = tan−1

wy

2
− ycw

zp

FOVV = FOVT + FOVB

It is important to note that although the field-of-view angle is an important parameter for
characterizing a head-mounted display, it is not the best choice of parameter for specifying off-
center projections (for reasons which are beyond the scope of this paper). For example, the GL
library has two different calls for setting up the perspective transformation: the perspective call is
used for on-center projections and takes the field of view as a parameter, whereas the window call
(discussed below) is intended for off-center projections and does not use the field of view as a
parameter.

22

Now that we have discussed the meanings and proper values for the parameters in specifying the
perspective transform, we can move on to a discussion of how these values are used.

The GL coordinate systems listed in Table 6.3 are not usually accessed directly. Normal
applications do not need to compose a transformation between each pair of CSs in the table.
Rather, a few GL calls are used to set up the transforms from Eye space to Screen space.

The window call sets up the normalizing perspective transformation. The syntax is:

window(left, right, bottom, top, near, far)

where near and far are the positive distances from the eyepoint to the near and far clipping planes.
Since our Eye CS is right-handed with the -Z axis away, we will need to negate near and far before
using them in equations for which sign is important.

Note that there is no specification of the projection-plane distance zp in the window call. This is
because GL assumes that the window is inscribed in the near clipping plane. Therefore, the
window specification describing the virtual image of the screen must be projected onto the near
clipping plane (which usually must be closer to the eye than the virtual screen-image distance).
Thus we have:

left =
-near·(xcw–wx/2)

zp
right =

-near·(xcw+wx/2)
zp

bottom =
-near·(ycw–wy/2)

zp
top =

-near·(ycw+wy/2)
zp

(near has been negated to match the sign convention for zp).

The matrix generated is (Silicon Graphics, 91):

TN_E =

2·near
right-left

0 right+left
right-left

0

0 2·near
top-bottom

top+bottom
top-bottom

0

0 0 -far+near
far-near

-2·far·near
far-near

0 0 -1 0

This matrix performs the shear required for off-center projections, as well as scaling and
translating the viewing frustum into the unit cube such that -1 ≤ x,y,z ≤ 1 after the division by w.

7 . 8 Undistorted-Screen_Normalized Transform (Convert to Pixel Coordinates)

The TUS_N transformation converts from the normalized viewing volume just described to device
coordinates. The viewport call of GL implements TUS_N and is straightforward:

viewport(xmin, xmax ymin, ymax)

where all parameters are pixel coordinates.

23

The scaling/translation matrix for X and Y that accomplishes this is:

TUS_N =

xmax-xmin
2 0 xmin+

xmax-xmin
2

0
ymax-ymin

2 ymin+
ymax-ymin

2

0 0 1

This matrix translates the normalized window (after projection) so that the lower left corner is at the
origin, then scales it to fit into the given viewport, and finally translates the scaled window so that
its lower left corner is at xmin, ymin. The left- and right-eye views are typically mapped to
different viewports for single-frame-buffer systems and then scanned out as separate video signals
for display. For systems without distortion correction, this is the final transformation.

7 . 9 Screen_Undistorted-Screen Transform (Optical Distortion Correction)

Most HMDs (particularly those with wide fields of view) have some degree of optical distortion,
which is a non-linear warping of the virtual screen image. This optical aberration can be minimized
through careful optical design, electronic prewarping of the image in the display circuitry, or by
correcting it in the rendering process. Optical correction has the advantage of not reducing the
frame rate, but is not always feasible due to other constraints, such as cost, weight, and
minimization of other optical aberrations1. Electronic correction does not reduce the frame rate
either, but isn’t available or feasible for many systems. Thus, although we would prefer to correct
the distortion either optically or electronically, these are not always options, and we are forced to
either live with it or correct it in the rendering process.

The Virtual Research Flight Helmet (which uses the LEEP optics) is a typical case in point. It has
significant optical distortion and we know of no system for correcting it electronically. Without
correction, lines that fall near the edge of the field of view are noticeably curved. Correcting the
distortion in the rendering process requires predistorting the image by a function which is the
inverse of the optical distortion function. If this is done correctly, the final image will appear
undistorted. The problem with this approach, of course, is that it is computationally expensive,
and tends to reduce the frame rate significantly. For this reason, most current systems that have
significant distortion (including most of the systems in daily use at UNC) simply ignore the
problem. We believe, however, that accurate rendering of scenes in VR will become more
important in the future as precision tasks are undertaken with HMDs. With see-through HMDs in
particular, the need to accurately register virtual objects with the real world will demand accurate
rendering (Janin, Mizell & Caudell, 1993). What follows is a brief description of the distortion
problem and one model for correcting it in software, with pointers to other papers on the subject.

As detailed in (Robinett & Rolland, 1992), in systems with optical distortion, the magnification of
a point in the image is a function of its distance from the optical axis. If we neglect higher-order
terms, this aberration can be modeled to third order as:

rv = m rS + k (m rS)3 (7.9.1)

1 It can be done, however. For example, the sales literature for the CAE FOHMD quotes its distortion as less than
1.5% (CAE, 1986).

24

where rv is the radial distance to the displayed point in image space, m is the paraxial2
magnification of the optical system, rs is the radial distance to the point in screen space, and k is
the third-order coefficient of optical distortion. This assumes that the optical system is radially
symmetric around an optical axis, which is true for the LEEP optics used in the Flight Helmet, but
is not true of all optical systems. Figure 7.9.1 shows a simple model of the optics for a single eye
in an HMD.

A

B
rv

r

pixel

virtual image of pixel

screen

virtual image of screen

optics

eye

optical axis

s

Figure 7.9.1. Single-eye optics model

If k is positive, the magnification increases for off-axis points, and the aberration is called
pincushion distortion (Figure 7.9.2); if k is negative, the magnification decreases, and it is called
barrel distortion. Pincushion distortion is more common in HMD systems and will be assumed in
what follows.

Figure 7.9.2. Pincushion distortion

Note that if k = 0, there is no distortion and the virtual image of the screen seen by the user is just a
linear magnification of the screen itself. This is what the graphics model typically assumes. The

2 This term refers to the first-order model for optics which assumes that rays strike the lens at small angles. This
approximation breaks down in real systems with finite apertures, resulting in optical aberrations, one of which is
distortion.

25

problem with distortion is not only that the image is warped, but also that the scale (i.e.,
magnification) is different as we move out from the center of the image. Thus, if we set our
window parameters wx and wy to match the corners of the distorted image, the scale will be right at
the corners and wrong in the center; i.e., objects in the center will be scaled down relative to their
real sizes, since we used the inflated scale from the image corner (this can also introduce error into
the projection window offsets (xcw and ycw) for systems with screens not centered on the optical
axes). On the other hand, if we use the paraxial magnification to determine the window
parameters, object sizes will be correct in the center but will be stretched out in the periphery. On
the whole, using paraxial or near-paraxial values seems to introduce less error than using the
distorted values. The bottom line, though, is that there is no good way to approximate a cubic
function (the distortion) with a linear function (linear scaling), and if the distortion is not corrected,
objects will appear grow and shrink depending on their location in screen space.

Computing the inverse of the distortion function can be done a number of ways. A very accurate
but time-consuming method would be to use a ray-tracing program (such as Code V) to compute
the distorton and its inverse for a set of rs values, which could then be interpolated to find the
required predistortion for any value of rs. Another approach is to use the exact closed-form
solution to the third-order equation, as is done in (Rolland & Hopkins, 1993). Finally, a third-
order approximation to the inverse gives a reasonable fit for many systems, and is described in
(Robinett & Rolland, 1992). The second method has been implemented at UNC for Pixel-Planes 5
by Anselmo Lastra, Jannick Rolland, and Terry Hopkins. We present the third method because of
its algorithmic simplicity.

Predistortion is a 2D image warp that moves a point on the screen (xs,ys) to a new position (xd,
yd). This warping can either be applied to polygon vertices or to each pixel; the efficiencies and
complexities of each approach are beyond the scope of this paper.

In order to simplify the calculations, we can re-express Equation 7.9.1 in the following way:

rvn = rsn + kn rsn3 (7.9.2)

Here, rvn is the normalized radius in image space, rsn is the normalized radius in screen space, and
kn is the normalized coefficient of optical distortion. The normalized coefficient of distortion gives
the percentage distortion at some image radius rnorm, which is usually chosen to be the distance
from the optical axis to one of the edges of the image. Because kn is defined in terms of rnorm and
because the choice of rnorm is somewhat arbitrary, one can have different values of kn that describe
the same system. The parameter k (from Equation 7.9.1) does not have this dependency, but is
not as intuitive for describing distortion.

The inverse of Equation 7.9.2 can be approximated with a third-order polynomial as shown in the
following algorithm:

(xs, ys) = (x – xaxis, y – yaxis) express the point (x, y) relative to optical axis

rs = √xs2+ys2 calculate radius

rsn =
rs

rnorm
normalize

rpdn = rsn + kpd·rsn3 apply inverse distortion (Note: kpd < 0)
rpd = rnorm · rpdn map back to pixel units

d =
rpd
rs

calculate radial scaling factor for this point

(xsv, ysv) = (d·xs, d·ys) scale vector centered at optical axis
(xd, yd) = (xsv + xaxis, ysv + yaxis) translate back to screen coordinates

26

Thus, the parameters of the image warp algorithm are:

• the position of the optical axis in screen coordinates: xaxis, yaxis

• the normalizing radius in pixels: rnorm

• the normalized distortion coefficient and the normalized predistortion coefficient: kn and kpd

These parameters depend on the specifications of the optics and the positioning of the display
device relative to the optics.

This algorithm shrinks the image in a non-linear fashion so that when it is distorted by the optics, it
will match the paraxial model. In this case, wx,wy and xcw, ycw should be set to their paraxial
values since predistortion will cancel out any change in these values induced by the distortion (both
values for these parameters are given in the table in the next section). Since this scaling of the
image leaves some of the frame buffer unused, an alternative method is to scale the predistorted
image so that it fills the frame buffer as much as possible and to use the distorted window extents
and offsets.

8 . Parameters of the Display Transformation

The numerical values of the parameters of the display code tailor the code to a particular VR
system. We give the display parameters of the UNC VR system as an example.

In particular, Table 8.1 gives the complete specification of all of the transformation parameters for
the Vlib GL version for use with the Virtual Research Flight Helmet. Note that the table includes
only the static parameters which are known at startup time (a complete listing was given in Table
6.1). Also, some of the transforms in listed have been inverted to their more intuitive form for the
sake of clarity.

27

Transform Parameters Value in UNC VR system Description of Parameters
TW_O vW_O

qW_O
sW_O

 (object poses stored in model data)
object’s position in world
object's orientation in world
object's scale in world

TW_R vW_R
qW_R
sW_R

initially (0,0,0)
initially [(0,0,0), 1]
initially 1

room’s position in world
room’s orientation in world
room’s scale in world

TR_TB vR_TB
qR_TB

(2.5, 2.0, 2.0) (meters)
[(0.5, 0.5, -0.5), -0.5]

tracker base's position within room
tracker base's orientation within room

TH_HS vH_HS
qH_HS

(0.0, 0.19, 0.03) (meters)
[(0.5, 0.5, -0.5), 0.5]

head sensor's position on the HMD
head sensor's orientation on the HMD

TH_E vH_E

qH_E

Left: (-IPD/2, 0, 0)
Right: (IPD/2, 0, 0)
 with IPD = 0.062 m

Left: [(0, 0, 0), 1]
Right: [(0, 0, 0), 1]
 since Ø = 0

position of eye CS relative to head CS (in
meters)

rotation of eye CS relative to head CS

TN_E FOVh
FOVv

77˚ w/ distortion (66.2˚ paraxial)
60.8˚ w/ distortion (53.5˚ paraxial)

horizontal monocular field of view
vertical monocular field of view
(assuming an eye relief of 25mm)

zp -1.18 m distance from eye to virtual image of screen
(assuming an eye relief of 25mm)

xcw

ycw

Left: –0.187m (paraxial)
 –0.190m (w/ distortion)
Right:
 0.187m (paraxial)
 0.190m (w/ distortion)
Left: 0 m
Right: 0 m

projection window center offsets
 (assuming IPD = 0.062m)

wx
wy

1.57m paraxial, 2.09m w/ distortion
1.19m paraxial, 1.38m w/ distortion

projection window extents

znear, zfar 0.05m, 1000m near and far clipping planes
TUS_N xmin, xmax

ymin, ymax

Left: 0, 640
Right: 640, 1280

Left: 512, 1024
Right: 512, 1024

screen viewport x & y bounds in pixels†

TS_US kn

kpd

rnorm

xaxis, yaxis

 0.1933
–0.1
 256 (pixels)
Left: (395.9, 256) (pixels)
Right: (244.1, 256) (pixels)

normalized coefficient of optical distortion
normalized coefficient for predistortion
normalizing radius in pixels*

optical axis in screen coordinates (assuming
640 x 512 frame buffer viewport resolution)†

Table 8.1 Parameters of Vlib display transformation

Many of the optical parameters listed were measured by Jannick Rolland of UNC, and some are
derived in (Rolland & Hopkins, 1993). The value for kpd was derived numerically. The paraxial

* The normalizing radius used here is the distance in pixels from the optical axis to the top or bottom of the screen;
the choice was arbitrary.

† For simplicity, these figures neglect the pixel cropping problem detailed in (Rolland & Hopkins, 1993).

28

and distorted figures are given for the window parameters since there is no single correct value for
systems without distortion correction. Also, small variations in the manufacturing process of
HMDs can change the optical parameters substantially, so the numbers given above should be
taken as typical values rather than absolutes. Finally, in our non-see-through systems, we have
found that a wide range of values for the window parameters will yield an acceptable 3D percept,
which suggests that individual, perception-based calibration will still be necessary for certain
applications.

It should be clear at this point that making a usable system involves many parameters with complex
interactions. The above table is an attempt to list the parameters of most interest to a system
designer without geting bogged down in some of the subtler details. More in-depth discussions of
optical issues can be found in the papers already cited in this section.

The parameters given in the above table, together with the series of transforms defined in this
paper, define the visual display transform for the UNC VR software (Vlib) running on a Silicon
Graphics VGX computer. This display transform takes points defined in Object coordinates and
transforms them to Screen coordinates. This display algorithm should work for many current VR
hardware configurations, provided appropriate values are supplied for the display parameters.

9. Conclusion

We have presented the complete visual display transform for virtual reality, as implemented on the
UNC VR system. The considerable number of transforms and coordinate systems in VR requires
a systematic method for dealing with them all, and we have presented our method.

The coordinate system graphs were used because they give an intuitive feel for the relationships
between coordinate systems. The TA_B notation for transforms was used because it is concise and
because it provides a check on correctness by requiring subscripts of adjacent terms to match. The
VQS representation was presented as a concise and useful alternative to 4x4 homogeneous matrices
for many VR operations. Finally, we have supplied a complete specification of the display
transform in the UNC VR system and have also given the numerical parameter values required by
the display transform.

We believe that this software architecture for the visual display computation for virtual reality is
sufficiently flexible that, with different values for the display parameters, it can handle many
different HMDs, trackers, and other hardware devices, and that it can be used in many different
applications of virtual reality. This display algorithm is not tied to any particular display hardware,
and can be implemented on any computer used to generate graphics imagery for virtual reality.

10. Acknowledgments

We thank the HMD and Pixel-Planes teams at UNC for creating the various components, hardware
and software, of our VR system. We thank Fred Brooks for clarifying discussions on
nomenclature. An early version of some parts of this display transform was done at NASA Ames
Research Center, and we thank Scott Fisher, Jim Humphries, Doug Kerr, and Mike McGreevy for
their contributions. We thank Ken Shoemake for help with quaternions. We thank Jannick
Rolland for educating us about optics, for help defining the formulas describing optical distortion,
and for optical measurements. We thank Anselmo Lastra and Terry Hopkins for discussions about
implementation of optical distortion. We thank the Zentrum für Kunst und Medienteknologie in
Karlsruhe, Germany for supporting the port of Vlib to the Silicon Graphics VGX. We thank the

29

Banff Centre for the Arts in Canada, where a draft of this paper was written in a pleasant studio in
the woods. Finally, we thank the reviewers for their helpful comments on improving this paper.

This research was supported by the following grants: ARPA #DABT 63-93-C-0048, NSF
Cooperative Agreement #ASC-8920219, and ARPA: “Science and Technology Center for
Computer Graphics and Scientific Visualization”, ONR #N00014-86-K-0680, and NIH #5-R24-
RR-02170.

11. References

Blanchard, C., S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, M. Teitel. (1990).
Reality Built for Two: A Virtual Reality Tool. Proc. 1990 Workshop on Interactive 3D
Graphics, 35-36.

Brooks, F.P., Jr. (1989). Course #29: Implementing and interacting with real-time virtual
worlds. Course Notes: SIGGRAPH '89.

Buchroeder, R. A., Seeley, G. W., & Vukobradatovich, D. (1981). Design of a Catadioptric
VCASS Helmet-Mounted Display. Optical Sciences Center, University of Arizona, under
contract to the U.S. Air Force Armstrong Aerospace Medical Research Laboratory, Wright-
Patterson Air Force Base, Dayton, Ohio, AFAMRL-TR-81-133.

CAE. (1986). Introducing the visual display system that you wear. CAE Electronics, Ltd., C.P.
1800 Saint-Laurent, Quebec, Canada H4L 4X4.

Caudell, T.P. and D.W. Mizell. (1992). Augmented reality: an application of heads-up display
technology to manual manufacturing processes. Proc. Hawaii International Conference on
System Sciences.

Cooke, J.M., M.J. Zyda, D.R. Pratt, and R.B. McGhee. (1992). NPSNET: Flight simulation
dynamic modeling using quaternions. Presence 1(4).

Craig, John. (1986). Introduction to robotics. Addison-Wesley, Reading, Mass.

Fisher, S.S., McGreevy, M., Humphries, J., & Robinett, W. (1986). Virtual Environment
Display System. Proc. 1986 Workshop on Interactive 3D Graphics, 77-87.

Foley, J., A. van Dam, S. Feiner, J. Hughes. (1990). Computer Graphics: Principles and
Practice (2nd ed.). Addison-Wesley Publishing Co., Reading MA. 222-226.

Fuchs, H., J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S. Molnar, G. Turk, B.
Tebbs and L. Israel. (1989). A heterogeneous multiprocessor graphics system using
processor-enhanced memories. Computer Graphics: Proceedings of SIGGRAPH '89. 23:4:79-
88.

Funda, Janez, R H Taylor, R P Paul. 1990. On homogeneous transforms, quaternions, and
computational efficiency. IEEE Trans. on robotics and automation. v6n3. June.

Janin, A.L., D.W. Mizell and T.P. Caudell. (1993). Calibration of head-mounted displays for
augmented reality applications. IEEE Virtual Reality Annual International Symposium, Seattle
WA.

30

Holloway, R.L. (1987). Head-Mounted Display Technical Report. Technical report #TR87-015,
Dept. of Computer Science, University of North Carolina at Chapel Hill.

Holloway, R., H. Fuchs, W. Robinett. (1991). Virtual-worlds research at the University of
North Carolina at Chapel Hill. Proc. Computer Graphics ‘91. London, England.

Paul, Richard. (1981). Robot manipulators: Mathematics, programming, and control. MIT
Press, Cambridge, Mass.

Pique, M. (1980). Nested Dynamic Rotations for Computer Graphics. M.S. Thesis, University
of North Carolina, Chapel Hill, NC.

Robinett,W., and J.P. Rolland. (1992). A computational model for the stereoscopic optics of a
head-mounted display. Presence, 1(1). Also UNC Technical Report TR91-009.

Robinett, W., and R. Holloway. (1992). Implementation of flying, scaling, and grabbing in
virtual worlds. ACM Symposium on Interactive 3D Graphics, Cambridge MA, March.

Rolland, J. P., D. Ariely & W. Gibson. (1993). Towards quantifying depth and size perception
in 3D virtual environments. To be published in Presence. Also Technical Report #TR93-044,
Dept. of Computer Science, University of North Carolina at Chapel Hill.

Rolland, J. P. & T. Hopkins. (1993). A method of computational correction for optical distortion
in head-mounted displays. Technical Report #TR93-045, Computer Science Department,
University of North Carolina at Chapel Hill. (Available via anonymous ftp from
ftp.cs.unc.edu.)

Shoemake, K. (1985). Animating rotations using quaternion curves. Computer Graphics: Proc.
of SIGGRAPH '85. pp. 245-254.

Silicon Graphics. (1991). GL Reference Manual. Silicon Graphics, Inc., Mountain View CA.

Sutherland, I. E. (1968). A head-mounted three-dimensional display. 1968 Fall Joint Computer
Conference, AFIPS Conference Proceedings, 33, 757-764.

VPL. (1989). VPL EyePhone Operations Manual. VPL Research, 656 Bair Island Rd., Suite
304, Redwood City, California 94063, p. B-4.

Woodson, W. E. (1981). Human factors design handbook. McGraw-Hill.

Quaternions and Rotations in 3-Space:

The Algebra and its Geometric Interpretation

Leandra Vicci
Microelectronic Systems Laboratory
Department of Computer Science

University of North Carolina at Chapel Hill
25 September 1998

(updated 9 August 2000)

Summary

Think of a quaternion Q as a vector augmented by a real number
to make a four element entity. It has a real part Qcre and a vector
part Qcve: If Qcre is zero, Q represents an ordinary vector; if Qcve is
zero, it represents an ordinary real number. In any case, the ratio be-
tween the real part and the magnitude of the vector part jQcvej plays
an important role in rotations, and is conveniently represented by the
parameter � = tan�1(jQcvej=Qcre): A unit magnitude quaternion U has
a Pythagorean sum of 1 over its four elements, and its product with any
vector Sv gives another vector having the same magnitude as Sv but
rotated in space. If Sv ? Ucve; the rotation is by an angle � about the
vector Ucve (or simply about U). If Sv is arbitrary, however, certain
cross-terms of the product spoil this convenient relationship. Even in
this general case however, these cross-terms cancel in the triple product
Rv = USvU

�1; where U�1 � 1=U . The rotations of the two successive
products are in the same direction, so Rv represents a rotation of Sv
about Ucve by an angle 2�; which depends only on U: Thus, the oper-
ation USvU

�1 performs a rotation of Sv which is entirely characterized
by the unit quaternion U: The rotation occurs about an axis parallel
to U by an amount 2 tan�1(jUcvej=Ucre): Quaternion notation conve-
niently handles composition of any number of successive rotations into
one equivalent rotation: U = U1U2 � � �Un where each unit quaternion Ui

represents one of the succession of rotations. Other operations useful in
inertial navigation problems are also presented.

UNC Chapel Hill Department of Computer Science page 1

welch
Technical Report TR01-014

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

1 Historical background

Quaternions were devised by Sir William Hamilton in his extensions of vector algebras
to satisfy the properties of division rings (roughly, quotients exist in the same domain as
the operands). In [1], Art.112, Hamilton notes, \...that for the complete determination,
of what we have called the geometrical QUOTIENT of two Co-initial Vectors, a System of
Four Elements, admitting each separately of numerical expression, is generally required.
... we have already a motive for saying, that `the Quotient of two Vectors is generally a
Quaternion.' "

Quaternions can also be considered to be an extension of classical algebra into the
hypercomplex number domainD, satisfying a property that jpj2 �jqj2 = jp�qj2 for (p; q) 2 D
[2]. This domain consists of symbolic expressions of n terms with real coe�cients where n
may be 1 (real numbers), 2 (complex numbers), 4 (quaternions), 8 (Cayley numbers), but
no other possible values (proved by Hurwitz in 1898). Thus, quaternions also share many
properties with complex numbers.

While Hamilton provides geometrical interpretations of various proved properties
throughout [1], the development itself is fundamentally algebraic, that is, based on the
properties of a particular axiomatic set of symbolic operations. The geometric properties
of quaternions are nevertheless sweeping, the composition of successive rotations through
successive multiplications being just one, albeit an important one.

2 Axiomatic properties of quaternions

Quaternions are de�ned as sums of 4 terms of the form Q = 1 � q1+ i � q2+ j � q3+k � q4
where q1; q2; q3; q4 are reals, 1 is the multiplicative identity element, and i; j; k are symbolic
elements having the properties:

i2 = �1; j2 = �1; k2 = �1;

ij = k; ji = �k;

jk = i; kj = �i;

ki = j; ik = �j:

Customarily, the extension of an algebra should attempt to preserve the properties of the
operators de�ned in the original algebra. Generalizing from the classical algebra of real
and complex numbers to quaternions motivates the following operator rules.

2.1 Addition of quaternions

The addition rule for quaternions is component-wise addition:

P+Q = (p1+ip2+jp3+kp4)+(q1+iq2+jq3+kq4) = (p1+q1)+i(p2+q2)+j(p3+q3)+k(p4+q4):

This rule preserves the associativity and commutativity properties of addition, and provides
a consistent behavior for the subset of quaternions corresponding to real numbers, i.e.,

Pr +Qr = (p + 0i + 0j + 0k) + (q + 0i+ 0j + 0k) = p+ q:

UNC Chapel Hill Department of Computer Science page 2

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

2.2 Multiplication of quaternions

The multiplication rule for quaternions is the same as for polynomials, extended by
the multiplicative properties of the elements i; j; k given above. Written out for close
inspection, we have:

PQ = (p1 + ip2 + jp3 + kp4)(q1 + iq2 + jq3 + kq4)

= (p1q1 � p2q2 � p3q3 � p4q4) + i(p1q2 + p2q1 + p3q4 � p4q3)

+ j(p1q3 + p3q1 + p4q2 � p2q4) + k(p1q4 + p4q1 + p2q3 � p3q2):

A term-wise inspection reveals that commutativity is not preserved. Associativity and
distributivity over addition are preserved, however, the proof being left to the reader. And
as desired for the subset of reals, PrQr = pq.

2.3 Conjugates of quaternions

Consistent with complex numbers, let us de�ne the conjugate operation on a given
quaternion Q to be,

Q = (q1 + iq2 + jq3 + kq4) � (q1 � iq2 � jq3 � kq4):

As with complex numbers, note that both (Q + Q) and (QQ) are real. Moreover, if we
de�ne the absolute value or norm of Q to be,

jQj =
q
q21 + q22 + q23 + q24 ;

then apparently QQ = QQ = jQj2. The conjugate operation is distributive over addition,
that is, P +Q = P + Q: With respect to multiplication however, PQ = Q P; the proof
of which is left as an exercise to the reader.

3 Other properties of quaternions

The axioms in the previous section completely de�ne quaternions in terms of the
desired properties under three basic operations. Many other properties may be proved.

3.1 General properties

Mathematically, the most important property is that the quaternions form a division
ring (i.e., quaternion quotients exist).

3.1.1 Division of quaternions

Since multiplication is not commutative, let us derive both a left quotient Q�1
L and a

right quotient Q�1
R by de�ning the symbolic expression P=Q to be solutions of the following

two identities,
QQ�1

L = P; Q�1
R Q = P:

UNC Chapel Hill Department of Computer Science page 3

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

Multiplying both sides of these identities respectively on the left and right by Q=jQj2 we
have immediately,

Q�1
L =

QP

jQj2
; Q�1

R =
PQ

jQj2
:

Thus in general two distinct quotients will occur, however in the special case where P = 1,
we have by de�nition the multiplicative inverse of a quaternion,

Q�1
L = Q�1

R = Q�1 =
Q

jQj2

3.1.2 Quaternion multiplication is distributive over addition

A term-wise expansion of P (Q+S) = PQ+PS proves this property and is left as an
exercise for the reader.

3.1.3 Unit quaternions

The subspace U of unit quaternions which satisfy the condition jU j = 1 have some
important properties. A trivially apparent one is,

U�1 = U:

A less obvious, but very useful one is,

U = Urcos �+ Uvsin� = cos �+ Uvsin�;

where Ur = (1; 0; 0; 0) is a real unit quaternion, Uv = (0; iu2; ju3; ku4) is a vector unit
quaternion parallel to the vector part of U; and � is a real number. The proof is straight-
forward:

jU j2 = UU = (Urcos �+ Uvsin�)(Urcos �+ Uvsin�)

= UrU rcos
2�+ (UrUv + UvUr)sin� cos� +UvU vsin

2�

= cos2�+ sin2� = 1:

At this time, let's interpret � as simply quantifying the ratio of the real part to the
magnitude of the vector part of a quaternion. Its geometrical representation as specifying
an angle of rotation will be presented later.

3.2 Vector properties of quaternions

The quaternion Q = (q1+ iq2+ jq3+ kq4) can be interpreted as having a real part q1,
and a vector part (iq2+jq3+kq4), where the elements fi; j; kg are given an added geometric
interpretation as unit vectors along the x; y; z axes, respectively. Accordingly, the subspace
Qr = (q1+0i+0j+0k) of real quaternions may be regarded as being equivalent to the real
numbers, Qr = q. Similarly, the subspace Qv = (0+ iq2 + jq3+ kq4) of vector quaternions
may be regarded as being equivalent to the ordinary vectors, Qv = q � (iqx + jqy + kqz).

UNC Chapel Hill Department of Computer Science page 4

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

3.2.1 Products of real quaternions

The product of real quaternions is real, and the operation is commutative:

PrQr = pq = qp = QrPr:

Moreover, the operation is associative:

(PrQr)Sr = (pq)s = p(qs) = Pr(QrSr):

3.2.2 Product of a real quaternion with a vector quaternion

The product of a real and a vector quaternion is a vector, and the operation is com-
mutative:

PrQv = (0 + p1q2i+ p1q3j + p1q4k) = (0 + q2p1i + q3p1j + q4p1k) = QvPr:

3.2.3 Products of vector quaternions

The product of two vector quaternions has the remarkable property,

PvQv = �(p2q2 + p3q3 + p4q4) + (p3q4 � p4q3)i+ (p4q2 � p2q4)j + (p2q3 � p3q2)k

= �p � q+ p� q;

where the \�" and \�" operators are respectively the \dot" and \cross" products of classical
vector algebra. This is clearly a general quaternion except in two special cases: if Pv k Qv

the product is a real quaternion equal to �p � q and if Pv ? Qv the product is a vector
quaternion equal to p� q.

3.2.4 Parallel and perpendicular quaternions

We call quaternions P and Q parallel (P k Q) if their vector parts P cve= (P � P)=2

and Qcve= (Q�Q)=2 are parallel; i.e., if (S�S) = 0; where S = P cveQcve: Similarly, we

call them perpendicular (P ? Q) if P cve and Qcve are perpendicular; i.e. if (S + S) = 0:

3.2.5 Product of a unit quaternion and a perpendicular vector quaternion

Properties of this curiously specialized case are useful in understanding how quater-
nions can be used to rotate vectors in 3-space. Let Sv be a vector quaternion, U be a unit
quaternion, and Sv ? U . Then according to section 3.1.3, we can write,

T = USv = (cos �+ sin�Uv)Sv = cos �Sv + sin�UvSv;

where Uv k U . The �rst term is a vector Tv(1)k Sv. Since Sv ? Uv, the second term must
also be a vector Tv(2); moreover Tv(2)? Sv and Tv(2)? U k Uv: Since the product T is a
sum of vectors it must also be a vector, i.e., T = Tv. Both Tv(1) and Tv(2) lie in a plane

UNC Chapel Hill Department of Computer Science page 5

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

perpendicular to U . Thus Tv = Tv(1)+Tv(2) can be geometrically interpreted as a rotation
of Sv by an angle � in this plane, i.e., about an axis parallel to U .

Now consider the product,

Rv = TvU
�1 = TvU = cos �Tv + sin�TvUv = cos �Tv � sin�TvUv:

The vector identity TvUv = �UvTv can be used to rewrite this as,

Rv = cos �Tv + sin�UvTv;

which is another rotation of angle � about U . The rotation � is in the same sense for these
two products, so the operation

Rv = USvU
�1

performs a rotation of Sv about U by an angle 2�.

3.3 General rotations in 3-space; Reference frames

In section 3.2.5 we saw how the operation USvU
�1 rotated a perpendicular vector

Sv about a unit quaternion U . Now let's consider how this operation behaves with an
arbitrary vector Vv. We can decompose Vv =Wv + Sv where Wv k U and Sv ? U: Then,

UVvU
�1 = U(Wv + Sv)U

�1 = UWvU
�1 + USvU

�1 = UWvU
�1 +Rv;

where Rv is Sv rotated about U by an angle 2�. To evaluate the �rst term, note that since
Wv k U we can write Wv = zUv; where z is a real number and unit vector Uv k U . Thus,

UWvU
�1 = UzUvU

�1 = zUUvU
�1 = zUvUU

�1 = zUv = Wv:

That UUv = UvU is left as an exercise to the reader. Finally then, we have:

UVvU
�1 =Wv +Rv:

Geometrically, we interpret this as a rotation of Vv about U by an angle of 2�.

Figure 1:

Arbitrary vector Vv is rotated by
unit quaternion U about a unit
vector Uv k U , through angle 2�.

Uv

Vv

UVvU
 -1

2o

This operation performs the same rotation on all vectors including the unit vectors of a
coordinate system. Therefore, it can be used to rigidly transform the coordinates of any
reference frame into a new frame of di�erent orientation. This is a very useful property.

UNC Chapel Hill Department of Computer Science page 6

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

3.4 Composition of successive rotations

Let Q1 and Q2 be two unit quaternions representing arbitrary rotations in 3-space as
described in section 3.3. Applying them in succession to a vector Vv,

Q2(Q1VvQ
�1
1)Q�1

2 = (Q2Q1)Vv(Q
�1
1 Q�1

2) = (Q2Q1)Vv(Q2Q1)
�1 = QiVvQ

�1
i ;

where the unit quaternion Qi = Q2Q1 is the successive composition of two rotations.
This property generalizes to the composition of any number of rotations. In this reverse
order composition, each successive rotation is relative to the initial reference frame as is
illustrated in Figure 2a.

z'''
x'''

y'''

x

y

z

z'

x'

y'

z''

x''
y''

Figure 2a: 90� rotations of a reference frame about the initial x; y; z axes, respectively

Composing a rotation in the forward order,Qc = Q1Q2 : : :, has the e�ect of performing
each successive rotation relative to its current reference frame, illustrated in Figure 2b.

z'''

x'''

y'''

x

y

z

z'

x'

y'

z''

x''

y''

Figure 2b: 90� rotations of a reference frame about its current x; y; z axes, respectively.

4 Strapdown inertial navigation system (INS) applications

Usage of quaternions by this branch of engineering is common, but the notation often
di�ers in some respects from the above, and a more detailed annotation is provided to
relate variables to reference frames. Speci�cally in this section, I'll follow the notation
used in Titterton and Weston [3]. I will introduce this notation, then derive expressions
for some of the commonly used operations for INS engineering.

UNC Chapel Hill Department of Computer Science page 7

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

4.1 Frames and coordinates

It is often convenient to represent the same physical situation in a number of di�erent
frames of reference which may di�er by displacement, rotation, and system of coordinates.
Each frame comprises a complete de�nition of these parameters. A privileged, inertial
family of frames are those in which physical objects experience no inertial forces.

Cartesian coordinate systems, while not necessary, are generally used as coordinate
systems of the frames discussed in [3]. The non-scalar data types used are vectors, matrices,
and quaternions. Distinct from the data types, are the kinds of variables treated, i.e.,
positions, linear velocities, and angular rates.

4.2 Superscripts and subscripts

Superscripts and subscripts are used to associate certain attributes of a variable with
coordinate frames. On a gross level, the notation is consistent, but there are �ne nuances,
depending on the kind of the variable but not its type.

Superscripts are used consistently for all kinds of variables. Si indicates that the
variable S is expressed in the coordinates of the ith frame.

4.2.1 The position variable Xi
j

Xi
j represents the position of a point relative to the origin of the jth frame, expressed

in the coordinates of the ith frame. In most cases i = j, and it is common to use implicit
notations. Xj and Xj both represent Xj

j , where the choice of super- or subscript depends
on what is being emphasized.

4.2.2 The velocity variable V i
j

The variable V i
j represents a velocity taken relative to the jth frame, expressed in

coordinates of the ith frame. The velocity in any frame is not dependent on the location
of the origin of the frame; rather it may be taken relative to the velocity of any �xed point
in that frame. Just as for position variables, Vj = V j

j is implied.

4.2.3 The angular rate variable
i
jk

The variable
i
jk represents an angular rate of rotation of the kth entity relative to the

jth frame, expressed in coordinates of the ith frame. Just as for velocities, the location of
origin of reference frame j is not relevant; rather the angular rate is taken relative to the
angular rate of any �xed point in the jth frame. Often, the kth entity is another frame, so
this notation conveniently expresses the angular rate of rotation of the kth frame relative
to the jth.

4.3 A pure vector representation of a rotation

It is also possible to completely represent a 3D rotation with a pure vector. The
geometric properties of algebraic operations on this representation are naturally quite
di�erent than for unit quaternions. For some purposes these properties are particularly
useful.

UNC Chapel Hill Department of Computer Science page 8

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

Let vector a = aâ represent a rotation where its unit vector â speci�es the axis of
rotation and its magnitude a speci�es the angular amount of rotation. From this we can
uniquely construct a unit quaternion, A = cos(a=2)+ sin(a=2)â; such that ASvA performs
a rotation of Sv about â by an angle equal to a.

Let us de�ne a transform Q of the vector representation a to the unit quaternion
representation A of a 3D rotation:

A = Q(a) = Q(aâ) = cos(a=2) + sin(a=2)â:

Likewise, let us de�ne the inverse transform,

a = Q�1(A) = Q�1(Ar +Avâ) = 2tan�1(Av=Ar)â:

4.4 Time derivative of a rotation quaternion

Assume a b-frame that is rotating with respect to a reference n-frame. At any instant,
let the unit quaternion U represent a rotation of an arbitrary constant vector Cb in the b-
frame into a vector Cn = UCbU in the n-frame. Since this rotation progresses continuously
in time, U = U(t) has a time derivative _U which we now derive.

Applying the derivative of products rule to Cn, we have, (since _Cb = 0),

_Cn = _U CbU + U Cb _U = _U CbU + _U C
b
U = _U CbU � _U CbU:

In the vector formulation of classical mechanics [4], a vector p is used to represent
an instantaneous rate of rotation, _c = p � c; where c is an arbitrary vector, and _c is its
variation with time. In the n-frame, a quaternion formulation of this equation is,

_Cn = (PnCn � PnCn)=2:

Since c is arbitrary, this equation can be applied to an entire coordinate system, and we
can represent the rate of rotation of the b-frame in the n-frame as Pn = Pn

nb:

Equating the expressions for _Cn, we have, _UCbU = Pn
nbC

n=2 = Pn
nb(UC

bU)=2; or
_U = Pn

nbU=2: It is often the case that the rotational rate is measured in the rotating

b-frame, so we can substitute the identity Pn
nb = UP b

nbU; to obtain

_U = UP b
nb=2:

4.5 Interpolation between rotations

Given two arbitrary rotations U10; U20 from the 0-frame to the 1 and 2-frames respec-
tively, geometric intuition would suggest an interpolation between them would be along
the single rotation U21 taking the 1-frame into the 2-frame. In fact, this can be visualized
as a great circle on a unit 4-sphere which connects the images of U10 and U20. This great
circle lies in a plane normal to U21cve. The locus of points lying between U10 and U20 on
the great circle corresponds to a rotational angle of between 0 and cos�1(U21cre).

Now U20 = U10U21) U21 = U10U20: Let U21 = cos(�21) + û21sin(�21); whence we
can calculate �21 = cos�1(U21cre) and û21 = U21cve=sin(�21):

Given �x1 3 (0 � �x1 � �21) we construct Ux1 = cos(�x1) + û21sin(�x1); from which
we calculate the interpolated rotation,

Ux0 = U10Ux1:

UNC Chapel Hill Department of Computer Science page 9

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

APPENDIX A { Summary of formal properties

A.1 Notation

r a scalar (real) number

v a vector

û a unit vector, u � u = 1

i; j; k symbolic constants with special properties (section 2)

Q a quaternion [q1; q2; q3; q4] = q1 + iq2 + jq3 + kq4
Q the conjugate [q1;�q2;�q3;�q4] of quaternion Q

jQj the norm, or magnitude
p
q21 + q22 + q23 + q24 of quaternion Q

Q�1 the reciprocal Q=(QQ), or multiplicative inverse of quaternion Q

Qr a (purely) real quaternion [q1; 0; 0; 0]

Qv a (purely) vector quaternion [0; q2; q3; q4]

U a unit quaternion, jQj = 1

Qcre the real part q = q1 of quaternion Q

Qcve the vector part q = [q2; q3; q4] of quaternion Q

QjjP (the vector parts of) P and Q are parallel

Q ? P (the vector parts of) P and Q are perpendicular

A.2 Properties

P + (Q + S) = (P +Q) + S addition is associative

P +Q = Q+ P addition is commutative

P (QS) = (PQ)S multiplication is associative

PQ 6= QP multiplication is not commutative

pQ = Qp scalar multiplication is commutative

P (Q + S) = PQ+ PS left multiplication is distributive over addition

(P +Q)S = PS +QS right multiplication is distributive over addition

jQj =
p
QQ =

p
QQ the norm of Q

Qcre = (Q +Q)=2 the real part of Q

Qcve = (Q �Q)=2 the vector part of Q

Q�1 = Q=jQj2 the reciprocal of Q

U�1 = U the reciprocal of unit U

Q�1P = QP=jQj2 the left quotient

PQ�1 = PQ=jQj2 the right quotient

PQ = Q P conjugate of a product

PvQv = �p � q+ p� q product of vector quaternions

UNC Chapel Hill Department of Computer Science page 10

Leandra Vicci, Quaternions and Rotations in 3-Space 9 August 2000

References

[1] Sir William Rowan Hamilton, \Elements of Quaternions," Third Edition, Chelsea
Publishing Co., New York, 1963.

[2] I. L. Kantor and A. S. Solodovnikov, \Hypercomplex Numbers," English translation,
Springer-Verlag, New York, 1989.

[3] D. H. Titterton and J. L. Weston, \Strapdown inertial navigation technology," Peter
Peregrinus, Ltd., IEE, Stevenage, UK, 1997.

[4] Herbert Goldstein, \Classical Mechanics," Addison-Wesley, Reading MA, 1950, pp.
132{134.

[5] J. P. Ward, \Quaternions and Cayley Numbers," Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 1997.

UNC Chapel Hill Department of Computer Science page 11

SCAAT: Incremental Tracking with Incomplete Information

Greg Welch and Gary Bishop

University of North Carolina at Chapel Hill

†

Abstract

We present a promising new mathematical method for tracking a
user's pose (position and orientation) for interactive computer
graphics. The method, which is applicable to a wide variety of both
commercial and experimental systems, improves accuracy by
properly assimilating sequential observations, filtering sensor
measurements, and by concurrently autocalibrating source and
sensor devices. It facilitates user motion prediction, multisensor
data fusion, and higher report rates with lower latency than
previous methods.

Tracking systems determine the user's pose by measuring
signals from low-level hardware sensors. For reasons of physics
and economics, most systems make mult iple sequential
measurements which are then combined to produce a single tracker
report. For example, commercial magnetic trackers using the
SPASYN (

Space Synchro

) system sequentially measure three
magnetic vectors and then combine them mathematically to
produce a report of the sensor pose.

Our new approach produces tracker reports as each new low-
level sensor measurement is made rather than waiting to form a
complete collection of observations. Because single observations
under-constrain the mathematical solution, we refer to our
approach as single-constraint-at-a-time or SCAAT tracking. The
key is that the single observations provide some information about
the user's state, and thus can be used to incrementally improve a
previous estimate. We recursively apply this principle,
incorporating new sensor data as soon as it is measured. With this
approach we are able to generate estimates more frequently, with
less latency, and with improved accuracy. We present results from
both an actual implementation, and from extensive simulations.

CR Categories and Subject Descriptors

: I.3.7 [Computer
Graphics] Three-Dimensional Graphics and Realism—Virtual
reality; I.4.4 [Image Processing] Restoration—Kalman filtering;
I.4.8 [Image Processing] Scene Analysis—Sensor fusion; G.0
[Mathematics of Computing] General—Numerical Analysis,
Probability and Statistics, Mathematical Software.

Additional Key Words and Phrases

: virtual environments
tracking, feature tracking, calibration, autocalibration, delay,
latency, sensor fusion, Kalman filter.

1 INTRODUCTION

The method we present requires, we believe, a fundamental change
in the way people think about estimating a set of unknowns in
general, and tracking for virtual environments in particular. Most
of us have the preconceived notion that to estimate a set of
unknowns we need as many constraints as there are degrees of
freedom at any particular instant in time. What we present instead
is a method to constrain the unknowns

over time

, continually
refining an estimate for the solution, a

single constraint at a time

.
For applications in which the constraints are provided by real-

time observations of physical devices, e.g. through measurements
of sensors or visual sightings of landmarks, the SCAAT method
isolates the effects of error in individual measurements. This
isolation can provide improved filtering as well as the ability to
individually calibrate the respective devices or landmarks
concurrently and continually while tracking. The method
facilitates user motion prediction, multisensor or multiple modality
data fusion, and in systems where the constraints can only be
determined sequentially, it provides estimates at a higher rate and
with lower latency than multiple-constraint (batch) approaches.

With respect to tracking for virtual environments, we are
currently using the SCAAT method with a new version of the UNC
wide-area optoelectronic tracking system (section 4). The method
could also be used by developers of commercial tracking systems
to improve their existing systems or it could be employed by end-
users to improve custom multiple modality hybrid systems. With
respect to the more general problem of estimating a set of
unknowns that are related by some set of mathematical constraints,
one could use the method to trade estimate quality for computation
time. For example one could incorporate individual constraints,
one at a time, stopping when the uncertainty in the solution
reached an acceptable level.

1.1 Incomplete Information

The idea that one might build a tracking system that generates a
new estimate with each individual sensor measurement or

observation

 is a very interesting one. After all, individual
observations usually provide only partial information about a
user’s complete state (pose), i .e. they are “incomplete”
observations. For example, for a camera observing landmarks in a
scene, only limited information is obtained from observations of
any single landmark. In terms of control theory, a system designed
to operate with only such incomplete measurements is
characterized as

unobservable

 because the user state cannot be
observed (determined) from the measurements.

The notion of observability can also be described in terms of
constraints on the unknown parameters of the system being
estimated, e.g. constraints on the unknown elements of the system
state. Given a particular system, and the corresponding set of
unknowns that are to be estimated, let be defined as the minimal
number of independent simultaneous constraints necessary to
uniquely determine a solution, let be the number actually used
to generate a new estimate, and let be the number of

independent

 constraints that can be formed from the
constraints. For any constraints, if the
problem is

well constrained

, if it is

over constrained

,
and if it is

under-constrained

. (See Figure 1.)

C

N
Nind

N
N Nind≥ Nind C=

Nind C>
Nind C<

† CB 3175, Sitterson Hall, Chapel Hill, NC, 27599-3175
welch@cs.unc.edu, http://www.cs.unc.edu/~welch
gb@cs.unc.edu, http://www.cs.unc.edu/~gb

1.2 Landmark Tracking

Consider for example a system in which a single camera is used to
observe known scene points to determine the camera position and
orientation. In this case, the constraints provided by the
observations are multi-dimensional: 2D image coordinates of 3D
scene points. Given the internal camera parameters, a set of four
known coplanar scene points, and the corresponding image
coordinates, the camera position and orientation can be uniquely
determined in closed-form [16]. In other words if
constraints (2D image points) are used to estimate the camera
position and orientation, the system is completely observable. On
the other hand, if then there are multiple solutions. For
example with only non-collinear points, there are up to 4
solutions. Even worse, with or points, there are
infinite combinations of position and orientation that could result
in the same camera images.

In general, for closed-form tracking approaches, a well or
over-constrained system with is observable, an under-
constrained system with is not. Therefore, if the individual
observat ions provide only part ia l information, i .e. the
measurements provide insufficient constraints, then multiple
devices or landmarks must be excited and (or) sensed prior to
estimating a solution. Sometimes the necessary observations can
be obtained simultaneously, and sometimes they can not. Magnetic
trackers such as those made by Polhemus and Ascension perform
three

sequential

 source excitations, each in conjunction with a
complete sensor unit observation. And while a camera can indeed
observe multiple landmarks simultaneously in a single image, the
image processing to identify and locate the individual landmarks
must be done sequentially for a single CPU system. If the
landmarks can move independently over time, for example if they
are artificial marks placed on the skin of an ultrasound patient for
the purpose of landmark-based tracking [41], batch processing of
the landmarks can reduce the effectiveness of the system. A
SCAAT implementation might grab an image, extract a

single

landmark, update the estimates of both the camera

and

 landmark
positions, and then throw-away the image. In this way estimates
are generated faster and with the most recent landmark
configurations.

1.3 Putting the Pieces Together

Given a tracker that uses multiple constraints that are each
individually incomplete, a

measurement model

 for any one of
incomplete constraints would be characterized as

locally
unobservable

. Such a system must incorporate a sufficient set of
these incomplete constraints so that the resulting overall system is
observable. The corresponding aggregate measurement model can
then be characterized as

globally observable

. Global observability
can be obtained over

space

 or over

time

. The SCAAT method
adopts the latter scheme, even in some cases where the former is
possible.

2 MOTIVATION

2.1 The Simultaneity Assumption

Several well-known virtual environment tracking systems collect
position and orientation constraints (sensor measurements)
sequentially. For example, tracking systems developed by
Polhemus and Ascension depend on sensing a sequence of
variously polarized electromagnetic waves or fields. A system that
facilitated simultaneous polarized excitations would be very
difficult if not impossible to implement. Similarly both the original
UNC optoelectronic tracking system and the newer HiBall version
are designed to observe only one ceiling-mounted LED at a time.
Based on the available literature [25,27,37] these systems currently
assume (mathematically) that their sequential observations were
collected simultaneously. We refer to this as the

simultaneity
assumption

. If the target remains motionless this assumption
introduces no error. However if the target is moving, the violation
of the assumption introduces error.

To put things into perspective, consider that typical arm and
wrist motion can occur in as little as 1/2 second, with typical “fast”
wrist tangential motion occurring at 3 meters/second [1]. For the
current versions of the above systems such motion corresponds to
approximately 2 to 6 centimeters of translation

throughout

 the
sequence of measurements required for a single estimate. For
systems that attempt sub-millimeter accuracies, even slow motion
occurring during a sequence of sequential measurements impacts
the accuracy of the estimates.

N C 4= =

N C<
N 3=

N 2= N 1=

N C≥
N C<

observable

unobservable

well-constrained

under-constrained

over-constrained

SCAATSCAAT

Nind C>

Nind C=

Nind C<

Nind 1=

Figure 1: SCAAT and constraints on a system of simultaneous equations. is the minimal number of independent simultaneous
constraints necessary to uniquely determine a solution, is the number of given constraints, and is the number of independent
constraints that can be formed from the . (For most systems of interest). The conventional approach is to ensure and

, i.e. to use enough measurements to well-constrain or even over-constrain the estimate. The SCAAT approach is to employ the
smallest number of constraints available at any one time, generally constraint. From this viewpoint, each SCAAT
estimate is severely under-constrained.

C
N Nind

N C 1> N Nind≥
Nind C≥

N Nind 1= =

The error introduced by violation of the simultaneity
assumption is of greatest concern perhaps when attempting any
form of system

autocalibration

. Gottschalk and Hughes note that
motion during their autocalibration procedure must be severely
restricted in order to avoid such errors [19]. Consider that for a
multiple-measurement system with 30 mill iseconds total
measurement time, motion would have to be restricted to
approximately 1.5 centimeters/second to confine the translation
(throughout a measurement sequence) to 0.5 millimeters. For
complete autocalibration of a large (wide-area) tracking system,
this restriction results in lengthy specialized sessions.

2.2 Device Isolation & Autocalibration

Knowledge about source and sensor imperfections can be used to
improve the accuracy of tracking systems. While intrinsic sensor
parameters can often be determined off-l ine, e.g. by the
manufacturer, this is generally not the case for extrinsic
parameters. For example it can be difficult to determine the exact
geometric relationship between the various sensors of a hybrid
system. Consider that the coordinate system of a magnetic sensor
is located at some unknown location inside the sensor unit.
Similarly the precise geometric relationship between visible
landmarks used in a vision-based system is often difficult to
determine. Even worse, landmark positions can change over time
as, for example, a patient’s skin deforms with pressure from an
ultrasound probe. In general, goals such as flexibility, ease of use,
and lower cost , make the not ion of sel f -cal ibrat ion or

autocalibration

 attractive.
The general idea for autocalibration is not new. See for

example [19,45]. However, because the SCAAT method

isolates

the measurements provided by each sensor or modality, the
method provides a new and elegant means to autocalibrate
concurrently while tracking. Because the SCAAT method isolates
the individual measurements, or measurement dimensions,
individual source and sensor imperfections are more easily
identified and dealt with. Furthermore, because the simultaneity
assumption is avoided, the motion restrictions discussed in
section 2.1 would be removed, and autocalibration could be
performed

while concurrently tracking a target

.
The isolation enforced by the SCAAT approach can improve

results even if the constraints are obtained simultaneously through
multidimensional measurements. An intuitive explanation is that if
the elements (dimensions) are corrupted by independent noise,
then incorporating the elements independently can offer improved
filtering over a batch or ensemble estimation scheme.

2.3 Temporal Improvements

Per Shannon’s sampling theorem [24] the measurement

or

sampling

 frequency should be at least twice the true target motion
bandwidth, or an estimator may track an alias of the true motion.
Given that common arm and head motion bandwidth specifications
range from 2 to 20 Hz [13,14,36], the

sampling

 rate should ideally
be greater than 40 Hz. Furthermore, the

estimate

rate should be as
high as possible so that normally-distributed white estimate error
can be discriminated from any non-white error that might be
observed during times of significant target dynamics, and so
estimates will always reflect the most recent user motion.

In addition to increasing the estimate rate, we want to reduce
the latency associated with generating an improved estimate, thus
reducing the overall latency between target motion and visual
feedback in virtual environment systems [34]. If too high, such
latency can impair adaptation and the illusion of presence [22], and
can cause motion discomfort or sickness. Increased latency also
contributes to problems with head-mounted display registration
[23] and with motion prediction [4,15,29]. Finally, post-rendering

image deflection techniques are sometimes employed in an attempt
to address latency variability in the rendering pipeline [32,39].
Such methods are most effective when they have access to (or
generate) accurate motion predictions and low-latency tracker
updates. With accurate prediction the best possible position and
orientation information can be used to render a preliminary image.
With fast tracker updates there is higher probability that when the
preliminary image is ready for final deflection, recent user motion
has been detected and incorporated into the deflection.

With these requirements in mind, let us examine the effect of
the measurements on the estimate latency and rate. Let be the
time needed to determine one constraint, e.g. to measure a sensor
or extract a scene landmark, let be the number of (sequential)
constraints used to compute a complete estimate, and let be the
time needed to actually compute that estimate. Then the estimate
latency and rate are

(1)

As the number of constraints increases, equation (1) shows how
the estimate latency and rate increase and decrease respectively.
For example the Polhemus Fastrak, which uses the SPASYN
(

Space Synchro

) method for determining relative position and
orientation, employs sequential electromagnetic
excitations and measurements per estimate [25,27,37], the original
University of North Carolina (UNC) optoelectronic tracking
system sequentially observed beacons per estimate
[3,44], and the current UNC hybrid landmark-magnetic tracking
system extracts (from a camera image) and then incorporates

 landmarks per update. The SCAAT method seeks to
improve the latencies and data rates of such systems by updating
the current estimate with each new (individual) constraint, i.e. by
fixing

at 1. In other words, it increases the estimate rate to
approximately the rate that individual constraints can be obtained
and likewise decreases the estimate latency to approximately the
time required to obtain a single constraint, e.g. to perform a single
measurement of a single sensor, or to extract a single landmark.

Figure 2 illustrates the increased data rate with a timing
diagram that compares the SPASYN (Polhemus Navigation
Systems) magnetic position and orientation tracking system with a
hypothetical SCAAT implementation. In contrast to the SPASYN
system, a SCAAT implementation would generate a new estimate
after sensing each

individual

 excitation vector rather than waiting
for a complete pattern.

tm

N
tc

te re

te Ntm tc+= ,

re
1
te

1
Ntm tc+
-------------------- . = =

N

N 3=

10 N 20≤ ≤

N 4=

N

Source Excitation

SPASYN Estimate

time

Sensor Measurement

x y z

Figure 2: A timing diagram comparing the SPASYN
(Polhemus Navigation Systems) magnetic position and
orientation tracking system with a hypothetical SCAAT
implementation.

SCAAT Estimate

x y z x y z

2.4 Data Fusion & Hybrid Systems

The Kalman filter [26] has been widely used for data fusion. For
example in navigation systems [17,30], virtual environment
tracking systems [5,12,14], and in 3D scene modeling [20,42].
However the SCAAT method represents a new approach to
Kalman filter based

multi-sensor data fusion

. Because constraints
are intentionally

incorporated one at a time, one can pick and
choose which ones to add, and when to add them. This means that
information from different sensors or modalities can be woven
together in a common, flexible, and expeditious fashion.
Furthermore, one can use the approach to ensure that each estimate
is computed from the most recently obtained constraint.

Consider for a moment the UNC hybrid landmark-magnetic
presented at SIGGRAPH 96 [41]. This system uses an off-the-shelf
Ascension magnetic tracking system along with a vision-based
landmark recognition system to achieve superior synthetic and real
image registration for augmented reality assisted medical
procedures. The vision-based component attempts to identify and
locate multiple known landmarks in a single image before
applying a correction to the magnetic readings. A SCAAT
implementation would instead identify and locate only one
landmark per update, using a new image (frame) each time. Not
only would this approach increase the frequency of landmark-
based correction (given the necessary image processing) but it
would offer the added benefit that unlike the implementation
presented in [41], no special processing would be needed for the
cases where the number of visible landmarks falls below the
number necessary to determine a complete position and
orientation solution. The SCAAT implementation would simply
cycle through any available landmarks, one at a time. Even with
only one visible landmark the method would continue to operate as
usual, using the information provided by the landmark sighting to
refine the estimate where possible, while increasing the uncertainty
where not.

3 METHOD

The SCAAT method employs a

Kalman filter

 (KF) in an unusual
fashion. The Kalman filter is a mathematical procedure that
provides an efficient computational (recursive) method for the
least-squares estimation of a linear system. It does so in a

predictor-corrector

 fashion, predicting short-term (since the last
estimate) changes in the state using a

dynamic model

, and then
correcting them with a measurement and a corresponding

measurement model

. The

extended

Kalman filter (EKF) is a
variation of the Kalman filter that supports estimation of

nonlinear

systems, e.g. 3D position and orientation tracking systems. A basic
introduction to the Kalman filter can be found in Chapter 1 of [31],
while a more complete introductory discussion can be found in
[40], which also contains some interesting historical narrative.
More extensive references can be found in [7,18,24,28,31,46].

The Kalman filter has been employed previously for virtual
environment tracking estimation and prediction. For example see
[2,5,12,14,42], and most recently [32]. In each of these cases
however the filter was applied directly and only to the 6D pose
estimates delivered by the off-the-shelf tracker. The SCAAT
approach could be applied to either a hybrid system using off-the-
shelf and/or custom trackers, or it could be employed by tracker
developers to improve the existing systems for the end-user
graphics community.

In this section we describe the method in a manner that does
not imply a specific tracking system. (In section 3.4 we present
experimental results of a specific implementation, a SCAAT wide-
area optoelectronic tracking system.) In section 3.1 we describe
the method for tracking, and in section 3.2 we describe one
possible method for concurrent autocalibration.

Throughout we use the following conventions.

3.1 Tracking

3.1.1 Main Tracker Filter

The use of a Kalman filter requires a mathematical (state-space)
model for the dynamics of the process to be estimated, the target
motion in this case. While several possible dynamic models and
associated state configurations are possible, we have found a
simple

position-velocity

 model to suffice for the dynamics of our
applications. In fact we use this same form of model, with different
parameters, for all six of the position and orientation components

. Discussion of some other potential models and
the associated trade-offs can be found in [7] pp. 415-420. Because
our implementation is discrete with inter sample time we
model the target’s dynamic motion with the following linear
difference equation:

. (2)

In the standard model corresponding to equation (2), the

dimensional Kalman filter

state vector

 would completely
describe the target position and orientation at any time . In
practice we use a method similar to [2,6] and maintain the
complete target orientation externally to the Kalman filter in order
to avoid the nonl ineari t ies associated with or ientat ion
computations. In the internal state vector we maintain the
target position as the Cartesian coordinates , and the

incremental

orientation as small rotations about the
 axis. Externally we maintain the target orientation as the

external quaternion

. (See [9] for
discussion of quaternions.) At each filter update step, the
incremental orientations are factored into the external
quaternion , and then zeroed as shown below. Thus the
incremental orientations are linearized for the EKF, centered about
zero. We maintain the derivatives of the target position and
orientation internally, in the state vector . We maintain the
angular velocities internally because the angular velocities behave
like orthogonal vectors and do not exhibit the nonlinearities of the
angles themselves. The target state is then represented by the

 element internal state vector

(3)

and the four-element external orientation quaternion

, (4)

where the time designations have been omitted for clarity.

C

x scalar (lower case)=

x general vector (lower case, arrow) indexed as x r[]=

x̂ filter estimate vector (lower case, hat)=

A matrix (capital letters) indexed as A r c,[]=

A 1– matrix inverse=

I the identity matrix=

β- matrix/vector prediction (super minus)=

βT matrix/vector transpose (super T) =

α i matrix/vector/scalar identifier (subscript)=

E •{ } mathematical expectation =

x y z φ θ ψ, , , , ,()

δt

x t δt+() A δt()x t() w δt()+=

n
x t()

t

x t()
x y z, ,()

φ θ ψ, ,()
x y z, ,()

α α w αx αy αz, ,(),()=

φ θ ψ, ,()
α

x t()

n 12=

x x y z ẋ ẏ ż φ θ ψ φ̇θ̇ ψ̇
T

=

α α w αx αy αz, ,(),()=

The state transition matrix in (2) projects the
state forward from time to time . For our linear model, the
matrix implements the relationships

(5)

and likewise for the remaining elements of (3).
The process noise vector in (2) is a normally-

distributed zero-mean sequence that represents the uncertainty in
the target state over any time interval . The corresponding
process noise covariance matrix is given by

. (6)

Because our implementation is discrete with inter sample time ,
we can use the transfer function method illustrated by [7] pp. 221-
222 to compute a sampled process noise covariance matrix.
(Because the associated random processes are presumed to be time
stationary, we present the process noise covariance matrix as a
function of the inter-sample duration only.) The non-zero
elements of are given by

(7)

for each pair

.

The in (7) are the correlation kernels of the (assumed
constant) noise sources presumed to be driving the dynamic
model. We determined a set of values using Powell’s method, and
then used these in both simulation and our real implementation.
The values can be “tuned” for different dynamics, though we have
found that the tracker works well over a broad range of values.

The use of a Kalman filter requires not only a dynamic model
as described above, but also a measurement model for each
available type of measurement. The measurement model is used to
predict the ideal noise-free response of each sensor and source
pair, given the filter’s current estimate of the target state as in
equations (3) and (4).

It is the nature of the measurement models and indeed
the actual sensor measurements that distinguishes a
SCAAT Kalman filter from a well-constrained one.

For each sensor type σ we define the measurement
vector and corresponding measurement function such
that

. (8)

Note that in the “purest” SCAAT implementation and the
measurements are incorporated as single scalar values. However if
it is not possible or necessary to isolate the measurements, e.g. to
perform autocalibration, then multi-dimensional measurements
can be incorporated also. Guidelines presented in [47] lead to the
following heuristic for choosing the SCAAT Kalman filter
measurement elements (constraints):

During each SCAAT Kalman filter measurement update
one should observe a single sensor and source pair only.

For example, to incorporate magnetic tracker data as an end-user,
 for the three position and four orientation (quaternion)

elements, while if the manufacturer were to use the SCAAT
implementation, for each 3-axis electromagnetic
response to a single excitation. For an image-based landmark
tracker such as [41] the measurement function would, given
estimates of the camera pose and a single landmark location,
transform the landmark into camera space and then project it onto
the camera image plane. In this case for the 2D image
coordinates of the landmark.

The measurement noise vector in (8) is a
normally-distributed zero-mean sequence that represents any
random error (e.g. electrical noise) in the measurement. This
parameter can be determined f rom component design
specifications, and (or) confirmed by off-line measurement. For
our simulations we did both. The corresponding
measurement noise covariance matrix is given by

. (9)

For each measurement function we determine the
corresponding Jacobian function

, (10)

where and . Finally, we note the use of the
standard (Kalman filter) error covariance matrix
which maintains the covariance of the error in the estimated state.

3.1.2 Tracking Algorithm
Given an initial state estimate and error covariance estimate

, the SCAAT algorithm proceeds similarly to a conventional
EKF, cycling through the following steps whenever a discrete
measurement from some sensor (type σ) and source becomes
available at time :

a. Compute the time since the previous estimate.

b. Predict the state and error covariance.

(11)

c. Predict the measurement and compute the corresponding Jaco-
bian.

(12)

d. Compute the Kalman gain.

(13)

e. Compute the residual between the actual sensor measurement
 and the predicted measurement from (12).

(14)

f. Correct the predicted tracker state estimate and error covariance
from (11).

(15)

n n× A δt()
t t δt+

x t δt+() x t() ẋ t()δt+=

ẋ t δt+() ẋ t()=

n 1× w δt()

δt n n×

E w δt()wT δt ε+(){ }
Q δt(), ε 0=

0, ε 0≠

=

δt

δt
Q δt()

Q δt() i i,[] η i[] δt()3

3
------------=

Q δt() i j,[] Q δt() j i,[] η i[] δt()2

2
------------= =

Q δt() j j,[] η i[] δ t() =

i j,() x ẋ,() y ẏ,() z ż,() φ φ̇,() θ θ̇,() ψ ψ̇,(), , , , ,{ }∈

η i[]

mσ 1×
zσ t() hσ •()

zσ t, hσ x t() bt ct, ,() vσ t()+=

mσ 1=

mσ 7=

mσ 3=

mσ 2=

mσ 1× vσ t()

mσ mσ×

E vσ t()vσ
T t ε+(){ }

Rσ t(), ε 0=

0, ε 0≠

=

hσ •()

Hσ x t() bt ct, ,() i j,[]
x j[]∂
∂

hσ x t() bt ct, ,() i[]≡

1 i mσ≤ ≤ 1 j n≤ ≤
n n× P t()

x̂ 0()
P 0()

zσ t,
t

δt

x̂- A δt() x̂ t δt–()=

P- A δt()P t δt–()AT δt() Q δt()+=

ẑ hσ x̂- bt ct, ,()=

H Hσ x̂- bt ct, ,()=

K P-HT HP-HT Rσ t()+() 1–=

zσ t,

∆z zσ t, ẑ–=

x̂ t() x̂- K∆z+=

P t() I KH–()P-=

g. Update the external orientation of equation (4) per the change
indicated by the elements of the state.*

(16)

h. Zero the orientation elements of the state vector.

(17)

The equations (11)-(17) may seem computationally complex,
however they can be performed quite efficiently. The computations
can be optimized to eliminate operations on matrix and vector
elements that are known to be zero. For example, the elements of
the Jacobian in (12) that correspond to the velocities in the state

 will always be zero. In addition, the matrix inverted in the
computation of in (13) is of rank (for our example in
section 3.4) which is smaller for a SCAAT filter than for a
corresponding conventional EKF implementation. Finally, the
increased data rate a l lows the use of the smal l angle
approximations and in and

. The total per estimate computation time can therefore
actually be less than that of a corresponding conventional
implementation. (We are able to execute the SCAAT filter
computations, with the autocalibration computations discussed in
the next section, in approximately on a 200 MHz PC-
compatible computer.)

3.1.3 Discussion
The key to the SCAAT method is the number of constraints
provided by the measurement vector and measurement function in
equation (8). For the 3D-tracking problem being solved, a unique
solution requires non-degenerate constraints to resolve six
degrees of freedom. Because individual sensor measurements
typically provide less than six constraints, conventional
implementations usually construct a complete measurement vector

from some group of individual sensor measurements over
time , and then proceed to compute an estimate. Or a
particular implementation may operate in a moving-window
fashion, combining the most recent measurement with the
previous measurements, possibly implementing a form of a finite-
impulse-response filter. In any case, for such well-constrained
systems complete observability is obtained at each step of the
filter. Systems that collect measurements sequentially in this way
inherently violate the simultaneity assumption, as well as increase
the time between estimates.

In contrast , the SCAAT method blends indiv idual
measurements that each provide incomplete constraints into a
complete state estimate. The EKF inherently provides the means
for this blending, no matter how complete the information content
of each individual measurement . The EKF accomplishes this
through the Kalman gain which is computed in (13). The
Kalman gain, which is used to adjust the state and the error
covariance in (15), is optimal in the sense that it minimizes the
error covariance if certain conditions are met. Note that the
inversion in (13) forms a ratio that reflects the relative uncertainties
of the state and the measurement. Note too that the ratio is affected
by the use of the measurement function Jacobian . Because the
Jacobian reflects the rate of change of each measurement with
respect to the current state, it indicates a direction in state space
along which a measurement could possibly affect the state.
Because the gain is recomputed at each step with the appropriate

* The operation is used to indicate a quaternion multiply [9].

measurement function and associated Jacobian, it inherently
reflects the amount and direction of information provided by the
individual constraint.

3.2 Autocalibration
The method we use for autocalibration involves augmenting the
main tracker filter presented in section 3.1 to effectively
implement a distinct device filter, a Kalman filter, for each source
or sensor to be calibrated. (We use the word “device” here to
include for example scene landmarks which can be thought of as
passive sources, and cameras which are indeed sensors.) In
general, any constant device-related parameters used by a
measurement function from (8) are candidates for this
autocalibration method. We assume that the parameters to be
estimated are contained in the device parameter vectors and ,
and we also present the case where both the source and sensor are
to be calibrated since omission of one or the other is trivial. We
note the following new convention.

3.2.1 Device Filters
For each device (source, sensor, landmark, etc.) we create a
distinct device filter as follows. Let represent the corresponding
device parameter vector and .

a. Allocate an state vector for the device, initialize
with the best a priori device parameter estimates, e.g. from design.

b. Allocate an noise covariance matrix , initialize
with the expected parameter variances.

c. Allocate an error covariance matrix , initialize to
indicate the level of confidence in the a priori device parameter
estimates from (a) above.

3.2.2 Revised Tracking Algorithm
The algorithm for tracking with concurrent autocalibration is the
same as that presented in section 3.1, with the following
exceptions. After step (a) in the original algorithm, we form
augmented versions of the state vector

, (18)

the error covariance matrix

, (19)

the state transition matrix

, (20)

and the process noise matrix

. (21)

φ θ ψ, ,()

α ∆α⊗

∆α̂ quaternionx̂ φ[] x̂ θ[] x̂ ψ[], ,()=

α̂ α̂ ∆α̂⊗=

x̂ φ[] x̂ θ[] x̂ ψ[] 0= = =

H
x̂ t()

K mσ 2 2×

θ()sin θ= θ()cos 1= hσ •()
Hσ •()

100µs

C 6=

zt zσ1 t1,
T … zσN tN,

T
T

=

N C≥
t1…tN

N 1–

δt

zσ t,
K

H

hσ •()

bt ct

α augmented matrix/vector (wide hat)=)

π
nπ length π()=

nπ 1× x̂π

nπ nπ× Qπ δt()

nπ nπ× Pπ t()

x t δt–() x̂T t δt–() x̂b t,
T t δt–() x̂c t,

T t δt–()
T

=)

P t δt–()
P t δt–() 0 0

0 Pb t, t δt–() 0

0 0 Pc t, t δt–()

=

)

A δt()
A δt() 0 0

0 I 0

0 0 I

=

)

Q δt()
Q δt() 0 0

0 Qb t, δt() 0

0 0 Qc t, δt()

=

)

We then follow steps (b)-(h) from the original algorithm, making
the appropriate substitutions of (18)-(21), and noting that the
measurement and Jacobian functions used in step (c) have become

 and because the estimates of parameters
and (and) are now contained in the augmented state
vector per (18). After step (h) we finish by extracting and
saving the device filter portions of the augmented state vector and
error covariance matrix

(22)

where

and , , and are the dimensions of the state vectors for the
main tracker filter, the source filter, and the sensor filter
(respectively). We leave the main tracker filter state vector and
error covariance matrix in their augmented counterparts, while we
swap the device filter components in and out with each estimate.
The result is that individual device filters are updated less
frequently than the main tracker filter. The more a device is used,
the more it is calibrated. If a device is never used, it is never
calibrated.

With respect to added time complexity, the computations can
again be optimized to eliminate operations on matrix and vector
elements that are known to be zero: those places mentioned in
section 3.1, and see (19)-(21). Also note that the size of and thus
time for the matrix inversion in (13) has not changed. With respect
to added space complexity, the autocalibration method requires
storing a separate state vector and covariance matrix for each
device—a fixed amount of (generally small) space per device. For
example, consider autocalibrating the beacon (LED) positions for
an optical tracking system with 3,000 beacons. For each beacon
one would need 3 words for the beacon state (its 3D position),

 words for the noise covariance matrix, and
words for the error covariance matrix. Assuming 8 bytes per word,
this is only bytes.

3.2.3 Discussion
The ability to simultaneously estimate two dependent sets of
unknowns (the target and device states) is made possible by several
factors. First, the dynamics of the two sets are very different as
would be reflected in the process noise matrices. We assume the
target is undergoing some random (constant) acceleration,
reflected in the noise parameter of in (6). Conversely, we
assume the device parameters are constant, and so the elements of

 for a source or sensor simply reflect any allowed variances
in the corresponding parameters: usually zero or extremely small.
In addition, while the target is expected to be moving, the filter
expects the motion between any two estimations to closely
correspond to the velocity estimates in the state (3). If the tracker
estimate rate is high enough, poorly estimated device parameters
will result in what appears to be almost instantaneous target
motion. The increased rate of the SCAAT method allows such
motion to be recognized as unlikely, and attributed to poorly
estimated device parameters.

3.3 Stability
Because the SCAAT method uses individual measurements with
insufficient information, one might be concerned about the
potential for instability or divergence. A linear system is said to be
stable if its response to any input tends to a finite steady value after
the input is removed [24]. For the Kalman filter in general this is
certainly not a new concern, and there are standard requirements
and corresponding tests that ensure or detect stability (see [18],
p. 132):

a. The filter must be uniformly completely observable,

b. the dynamic and measurement noise matrices in equations (6)
and (9) must be bounded from above and below, and

c. the dynamic behavior represented by in equation (2)
must be bounded from above.

As it turns out, these conditions and their standard tests are equally
applicable to a SCAAT implementation. For the SCAAT method
the conditions mean that the user dynamics between estimates
must be bounded, the measurement noise must be bounded, one
must incorporate a sufficient set of non-degenerate constraints over
time. In particular, the constraints must be incorporated in less than
1/2 the time of the user motion time-constant in order to avoid
tracking an alias of the true motion. In general these conditions are
easily met for systems and circumstances that would otherwise be
stable with a multiple-constraint implementation. A complete
stability analysis is beyond the scope of this paper, and is presented
in [47].

3.4 Measurement Ordering
Beyond a simple round-robin approach, one might envision a
measurement scheduling algorithm that makes better use of the
available resources. In doing so one would like to be able to
monitor and control uncertainty in the state vector. By periodically
observing the eigenvalues and eigenvectors of the error covariance
matrix , one can determine the directions in state-space along
which more or less information is needed [21]. This approach can
be used to monitor the stability of the tracker, and to guide the
source/sensor ordering.

4 EXPERIMENTS
We are using the SCAAT approach in the current version of the
UNC wide-area optoelectronic tracking system known as the
HiBall tracker. The HiBall, shown below in Figure 3, incorporates
six optical sensors and six lenses with infrared filters into one golf
ball sized sensing unit that can be worn on a user’s head or hand.
The principal mechanical component of the HiBall, the senor
housing unit, was fabricated by researchers at the University of
Utah using their modeling environment.

Because the HiBall sensors and lenses share a common
transparent space in the center of the housing, a single sensor can
actually sense light through more than one lens. By making use of
all of these views we end up with effectively 26 “cameras”. These
cameras are then used to observe ceiling-mounted light-emitting
diodes (LEDs) to track the position and orientation of the HiBall.
This inside-looking-out approach was first used with the previous
UNC optoelectronic tracking system [44] which spanned most of
the user’s head and weighed approximately ten pounds, not
including a backpack containing some electronics. In contrast, the
HiBall sensing unit is the size of a golf ball and weighs only five
ounces, including the electronics. The combination of reduced
weight, smaller packaging, and the new SCAAT algorithm results
in a very ergonomic, fast, and accurate system.

In this section we present results from both simulations
performed during the design and development of the HiBall, and

hσ x t()()) Hσ x t()()) bt
ct x̂b t, x̂c t,

x)

x̂b t, t() x t() i…j[]=

Pb t, t() P t() i…j i …j,[]=

x̂c t, t() x t() k…l[]=

Pc t, t() P t() k…l k…l,[]=

)
)

)
)

i n 1+=

j n nb+=

k n nb 1+ +=

l n nb nc+ +=

n nb nc

3 3× 9= 3 3× 9=

3,000 8 3 9 9+ +()×× 504,000=

η Q δt()

Qπ δt()

A δt()

P t()

α1

preliminary results from the actual implementation. The
simulations are useful because we have control over the “truth”
and can perform controlled experiments. The results from the
actual implementation serve to demonstrate actual operation and to
provide some support for our accuracy and stability claims.

With respect to the SCAAT implementation, the tracker
sensors are the HiBall cameras and the tracker sources are the
ceiling-mounted 2D array of approximately 3000 electronic
beacons (LEDs). The cameras provide a single 2D measurement
vector, i.e. a 2D constraint, which is the image coordinates
of the beacon as seen by the camera. So for this example,
and . The measurement function transforms
the beacon into camera coordinates and then projects it onto the
camera’s image plane in order to predict the camera response.

For the simulations we generated individual measurement
events (a single beacon activation followed by a single camera
reading) at a rate of 1000 Hz, and corrupted the measurements
using the noise models detailed in [8]. We tested components of
our real system in a laboratory and found the noise models in [8] to
be reasonably accurate, if not pessimistic. We also perturbed the
3D beacon positions prior to simulations with a normally-
distributed noise source with approximately 1.7 millimeters
standard deviation. We controlled all random number generators to
facilitate method comparisons with common random sequences.

To evaluate the filter performance we needed some reference
data. Our solution was to collect motion data from real-user
sessions with a conventional tracking system, and then to filter the
data to remove high frequency noise. We then defined this data to
be the “truth”. We did this for seven such sessions.

The simulator operated by sampling the truth data, choosing
one beacon and camera (round-robin from within the set of valid
combinations), computing the corresponding camera measurement
vector , and then adding some measurement noise. The (noisy)
measurement vector, the camera parameter vector (position and
orientation in user coordinates), and the beacon parameter vector

 (position in world coordinates) were then sent to the tracker.

For the tracking algorithm, we simulated both the SCAAT
method (section 3.1, modified per section 3.2 for autocalibration)
and several multiple-constraint methods, including the Collinearity
method [3] and several variations of moving window (finite
impulse response) methods. For each of the methods we varied the
measurement noise, the measurement frequency, and the beacon
position error. For the multiple constraint methods we also varied
the number of constraints (beacon observations) per estimate .
In each case the respective estimates were compared with the truth
data set for performance evaluation.

4.1 Tracker Filter
The 12 element state vector for the main tracker filter
contained the elements shown in (3). Each of the 3000 beacon
filters was allocated a 3 element state vector

where represents the beacon’s estimated position in
cartesian (world) coordinates. The state transition matrix
for the main tracker filter was formed as discussed section 3.1, and
for each beacon filter it was the identity matrix. The

 process noise matrix for the main tracker was computed
using (7), using elements of that were determined off-line using
Powell’s method and a variety of real motion data. For each beacon
filter we used an identical noise covariance matrix

for , with beacon position variance also determined
off-line. (See [47] for the complete details.) At each estimate step,
the augmented 15 element state vector, process noise
matrix, state transition matrix, and error
covariance matrix all resembled (18)-(21) (without the camera
parameter components). The measurement noise model was
distance dependent (beacon light falls-off with distance) so
from (9) was computed prior to step (d), by using a beacon
distance estimate (obtained from the user and beacon positions in
the predicted state) to project a distance-dependent electrical
variance onto the camera.

4.2 Initialization
The position and orientation elements of the main tracker state
were initialized with the true user position and orientation, and the
velocities were initialized to zero. The 3000 beacon filter state
vectors were initialized with (potentially erroneous) beacon
position estimates. The main tracker error covariance matrix was
initialized to the null matrix. All beacon filter error covariance
matrices were initialized to

for , to reflect 1 millimeter of uncertainty in the initial
beacon positions.

While for the presented simulations we initialized the filter
state with the true user pose information, we also performed (but
will not show here) simulations in which the state elements were
initialized to arbitrary values, e.g. all zeros. It is a testament to the
stability of the method that in most cases the filter completely
converged in under a tenth of a second, i.e. with fewer than 100
measurements. (In a few cases the camera was facing away from
the beacon, a condition not handled by our simulator.)

Figure 3: The HiBall is shown here with the internal circuitry
exposed and the lenses removed. The sensors, which can be seen
through the lens openings, are mounted on PC boards that fold-
up into the HiBall upon assembly. The mechanical pencil at the
bottom conveys an indication of the relative size of the unit.

u v,()
mσ 2=

zσ u v,[] T= hσ •()

zσ t,
ct

bt

N

x̂ t()

x̂b xb yb zb

T
=

xb yb zb, ,()
12 12×

3 3×
12 12×

η

Qb δt() i j,[]
ηb if i j=

0 otherwise

=

1 i j, 3≤ ≤ ηb

15 15×
15 15× 15 15×

Rσ t()

x -)

Pb 0() i j,[] 0.001()2 if i j=

0 otherwise

=

1 i j, 3≤ ≤

4.3 Simulation Results
We present here only comparisons of the SCAAT method with the
Collinearity method, the “conventional approach” mentioned in
the accompanying video. More extensive simulation results can be
found in [47], including tests for stability under “cold starts” and
periodic loss of data. All error measures reflect the RMS position
error for a set of three imaginary points located approximately at
arms length. This approach combines both position and orientation
error into a metric that is related to the error a user would
encounter in [HMD] screen space.

Figure 4 contains two related plots. The upper plot shows the
entire three minutes (180 seconds) of the x-axis position for the
first of seven data sets, data set ‘a’. The lower plot shows a close-
up of a particular segment of 300 milliseconds near the end. Notice
that the Collinearity estimates appear very jerky. This is partially a
result of the lower estimate rate, it is using beacon
observations to compute an estimate, and partially due to the
method’s inability to deal with the erroneous beacon position data.
In contrast, the SCAAT method hugs the actual motion track,
appearing both smooth and accurate. This is partly a result of the
higher update rate (10 times Collinearity here), and partly the
effects of Kalman filtering, but mostly the accuracy is a result of
the SCAAT autocalibration scheme. With the autocalibration
turned on, the initially erroneous beacon positions are being
refined at the same high rate that user pose estimates are generated.

Figure 5 shows progressively improving estimates as the
number of beacons is reduced from 15 (Collinearity) down to 1
(SCAAT), and a clear improvement in the accuracy when
autocalibration is on. Consider for a moment that the motion
prediction work of Azuma and Bishop [4] was based on jerky
Collinearity estimates similar to those in Figure 4. The smooth and
accurate SCAAT estimation should provide a much better basis for
motion prediction, which could in turn provide a more effective
means for addressing other system latencies such as those in the
rendering pipeline. The improved accuracy should also improve
post-rendering warping or image deflection [32,39].

0

10

20

30

40

50

60

179.3 179.4 179.5 179.6

po
si

ti
on

 (
m

il
li

m
et

er
s)

time (seconds)

Actual

SCAAT

Collinearity

Figure 4: The upper plot depicts the entire 3 minutes of x-axis
position data from user motion data set ‘a’ of sets ‘a’-’f’. The
lower plot shows a close-up of a short portion of the simulation.
Collinearity here used beacons per observation, hence
its lower estimate rate. On the other hand, notice that the SCAAT
estimates and the actual (truth) data are almost indistinguishable.

N 10=

1.5

2

2.5

3

3.5

4

0 60 120 180

po
si

ti
on

 (
m

et
er

s)

time (seconds)

region of the
figure below

N 10=

N

B

B

B

J

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15

R
M

S
er

ro
r

(m
m

)

number of beacons (N)

B Collinearity

J SCAAT

1 Autocalibration

Figure 5: As the number of beacons is reduced from 15 to 5,
the Collinearity results improve slightly. (The Collinearity
algorithm generally becomes unstable with .) The
SCAAT results, with beacons, are better, and
especially good once autocalibration is turned on.

N

N 4≤
N 1=

As further evidence of the smoothing offered by the SCAAT
approach, Figure 6 presents an error spectra comparison between a
Collinearity implementation with , and a SCAAT
implementation with and without autocalibration. Even without
autocalibration the SCAAT output has significantly less noise than
collinearity, and with autocalibration it is better by more than a
factor of 10. These reductions in noise are clearly visible to the
HMD user as a reduction in the amount of jitter in virtual-world
objects.

Figure 7 provides results for all seven of the real-user motion
data sets. Again the Collinearity implementations observe

 beacons per estimate, while the SCAAT implementations
observe only . Because the beacon positions were being
autocalibrated during the SCAAT run, we repeated each run, the
second time using the beacon position estimation results from the
first simulation. The more beacons are sighted during tracking, the
better they are located. The second-pass simulation results are
identified with the dagger (†) in Figure 7.

Figure 8 presents results that support the claim that the
beacon location estimates are actually improving during tracking
with autocalibration, as opposed to simply shifting to reduce
spectral noise. Note that in the case of data set ‘d’, the beacon error
was reduced nearly 60%.

Finally, we simulated using the SCAAT approach with
tracking hardware that allowed truly simultaneous observations of
beacons. For the Collinearity and other multiple-constraint
methods we simply used the methods as usual, except that we
passed them truly simultaneous measurements. For the SCAAT
method we took the simultaneous observations, and simply
processed them one at a time with . (See equation (2).) We
were, at first, surprised to see that even under these ideal
circumstances the SCAAT implementation could perform better,
even significantly better than a multiple-constraint method with
simultaneous constraints. The reason seems to be autocalibration.
Even though the multiple-constraint methods were “helped” by the
truly simultaneous observations, the SCAAT method still had the
advantage in that it could still autocalibrate the beacons more

effectively that any multiple-constraint method. This again arises
from the method’s inherent isolation of individual observations.

4.4 Real Results
We have demonstrated the SCAAT algorithm with the HiBall
tracker, a head-mounted display, and a real application. However,
at the time of the submission of this publication we have yet to
perform extensive optimization and analysis. As such we present
here only limited, albeit compelling results.

The SCAAT code runs on a 200 MHz PC-compatible
computer with a custom interface board. With unoptimized code,
the system generates new estimates at approximately 700 Hz. We
expect the optimized version to operate at over 1000 Hz. Out of the
approximately 1.4 millisecond period, the unoptimized SCAAT
code takes approximately 100 microseconds and sampling of the
sensors takes approximately 200 microseconds. The remaining

N 10=

0.001

0.01

0.1

1

10

0.001

0.01

0.1

1

10

1 10 100

m
ill

im
et

er
s

frequency (Hz)

Collinearity

SCAAT

Autocalibration

Figure 6: Here we show an error spectra comparison for the
Collinearity method with beacons, and the SCAAT
method with and without autocalibration.

N 10=

N 10=
N 1=

N
δt 0=

a b c d e f g

0.1

1

10

100

R
M

S
er

ro
r

(m
ill

im
et

er
s)

data set

Collinearity

SCAAT

SCAAT †

Figure 7: RMS error results for simulations of all seven real
user motion data sets. The † symbol indicates a second pass
through the motion data set, this time using the already
autocalibrated beacons.

a b c d e f g
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
R

M
S

er
ro

r
(m

ill
im

et
er

s)

data set

initial beacon error
1.73 mm RMS (measured)

Figure 8: Autocalibration in action. Here we show the final
beacon position error for runs through each of the seven user
motion data sets.

time is spent on overhead including a significant amount of
unoptimized code to choose an LED and to gather results.

In one experiment we set the HiBall on a flat surface under
the ceiling beacons and collected several minutes worth of data.
Given that the platform was relatively stable, we believe that the
deviation of the estimates provides an indication of the noise in the
system. Also, because the HiBall was not moving, we were able to
observe the progressive effects of the autocalibration. The standard
deviation of the position estimates for the first 15 seconds is shown
in Figure 9. With autocalibration off, the estimates deviate
approximately 6.0 millimeters in translation and 0.25 degrees in
orientation (not shown). With autocalibration on, notice in Figure 9
how the deviation decreases with time, settling at approximately
0.3 millimeters in translation and 0.01 degrees in orientation (again
not shown).

In another experiment we mounted the HiBall on a calibrated
translation rail of length one meter, and slid (by hand) the HiBall
from one end to the other and then back again. The disagreement
between the HiBall and the calibrated position on the rail was less
than 0.5 millimeters. The deviation of the measured track from co-
linearity was 0.9 millimeters. Because the tolerances of our simple
test fixture are of similar magnitude, we are unable to draw
conclusions about how much of this disagreement should be
attributed to error in the tracking system.

5 CONCLUSIONS
Stepping back from the details of the SCAAT method, we see an
interesting relationship: Because the method generates estimates
with individual measurements, it not only avoids the simultaneity
assumption but it operates faster; by operating faster, it decreases
the elapsed time since the previous state estimate; the more recent
the previous estimate, the better the prediction in (12); the better
the prediction, the more l ikely we can discriminate bad
measurements; if we can discriminate bad measurements, we can
autocalibrate the measurement devices; and if we can calibrate the
measurement dev ices, we can improve the ind iv idual
measurements, thus improving predictions, etc. In other words, the
faster, the better.

Looking more closely, it is amazing that such a tracker can
function at all. Consider for example the system presented in
section 4. Any single beacon sighting offers so few constraints—

the user could be theoretically anywhere. Similarly, knowledge
about where the user was a moment ago is only an indicator of
where the user might be now. But used together, these two sources
of information can offer more constraints than either alone. With a
Kalman filter we can extract the information from the previous
state and a new (individual) measurement, and blend them to form
a better estimate than would be possible using either alone.

The SCAAT method is accurate, stable, fast, and flexible, and
we believe it can be used to improve the performance of a wide
variety of commercial and custom tracking systems.

Acknowledgements
We would like to thank the tracker team at UNC, in particular
Vernon Chi, Steve Brumback, Kurtis Keller, Pawan Kumar, and
Phillip Winston. This work was supported by DARPA/ETO
contract no. DABT 63-93-C-0048, “Enabling Technologies and
Application Demonstrations for Synthetic Environments”,
Principle Investigators Frederick P. Brooks Jr. and Henry Fuchs
(University of North Carolina at Chapel Hill), and by the National
Science Foundation Cooperative Agreement no. ASC-8920219:
“Science and Technology Center for Computer Graphics and
Scientific Visualization”, Center Director Andy van Dam (Brown
University). Principle Investigators Andy van Dam, Al Barr
(California Institute of Technology), Don Greenberg (Cornell
University), Henry Fuchs (University of North Carolina at Chapel
Hill), Rich Riesenfeld (University of Utah).

References
[1] C.G. Atkeson and J.M. Hollerbach. 1985. “Kinematic features
of unrestrained vertical arm movements,” Journal of Neuroscience,
5:2318-2330.
[2] Ali Azarbayejani and Alex Pentland. June 1995. “Recursive Es-
timation of Motion, Structure, and Focal Length,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, June 1995, 17(6).
[3] Ronald Azuma and Mark Ward. 1991. “Space-Resection by
Collinearity: Mathematics Behind the Optical Ceiling Head-Track-
er,” UNC Chapel Hill Department of Computer Science technical
report TR 91-048 (November 1991).
[4] Ronald Azuma and Gary Bishop. 1994. “Improving Static and
Dynamic Registration in an Optical See-Through HMD,” SIG-
GRAPH 94 Conference Proceedings, Annual Conference Series,
pp. 197-204, ACM SIGGRAPH, Addison Wesley, July 1994. ISBN
0-201-60795-6
[5] Ronald Azuma. 1995. “Predictive Tracking for Augmented Re-
ality,” Ph.D. dissertation, University of North Carolina at Chapel
Hill, TR95-007.
[6] Ted J. Broida and Rama Chellappa. 1986. “Estimation of object
motion parameters from noisy images,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, January 1986, 8(1), pp. 90-99.
[7] R. G. Brown and P. Y. C. Hwang. 1992. Introduction to Random
Signals and Applied Kalman Filtering, 2nd Edition, John Wiley &
Sons, Inc.
[8] Vernon L. Chi. 1995. “Noise Model and Performance Analysis
of Outward-looking Optical Trackers Using Lateral Effect Photo
Diodes,” University of North Carolina, Department of Computer
Science, TR 95-012 (April 3, 1995)
[9] Jack C.K. Chou. 1992. “Quaternion Kinematic and Dynamic
Differential Equations,” IEEE Transactions on Robotics and Auto-
mation, Vol. 8, No. 1, pp. 53-64.
[10] J. L. Crowley and Y. Demazeau. 1993. “Principles and Tech-
niques for Sensor Data Fusion,” Signal Processing (EURASIP) Vol.
32. pp. 5-27.
[11] J. J. Deyst and C. F. Price. 1968. “Conditions for Asymptotic
Stability of the Discrete Minimum-Variance Linear Estimator,”
IEEE Transactions on Automatic Control, December, 1968.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14

de
vi

at
io

n
(m

ill
im

et
er

s)

time (seconds)

autocalib OFF

autocalib ON

Figure 9: SCAAT position (only) estimate deviation for a Hiball
sitting still on a flat surface, with and without autocalibration.

[12] S. Emura and S. Tachi. 1994. “Sensor Fusion based Measure-
ment of Human Head Motion,” Proceedings 3rd IEEE Internation-
al Workshop on Robot and Human Communication, RO-MAN’94
NAGOYA (Nagoya University, Nagoya, Japan).
[13] P. Fischer, R. Daniel and K. Siva. 1990. “Specification and De-
sign of Input Devices for Teleoperation,” Proceedings of the IEEE
Conference on Robotics and Automation (Cincinnati, OH), pp. 540-
545.
[14] Eric Foxlin. 1993. “Inertial Head Tracking,” Master’s Thesis,
Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology.
[15] M. Friedman, T. Starner, and A. Pentland. 1992. “Synchroni-
zation in Virtual Realities,” Presence: Teleoperators and Virtual
Environments, 1:139-144.
[16] S. Ganapathy. November 1984. “Camera Location Determina-
tion Problem,” AT&T Bell Laboratories Technical Memorandum,
11358-841102-20-TM.
[17] G. J. Geier, P. V. W. Loomis and A. Cabak. 1987. “Guidance
Simulation and Test Support for Differential GPS (Global Position-
ing System) Flight Experiment,” National Aeronautics and Space
Administration (Washington, DC) NAS 1.26:177471.
[18] A. Gelb. 1974. Applied Optimal Estimation, MIT Press, Cam-
bridge, MA.
[19] Stefan Gottschalk and John F. Hughes. 1993. “Autocalibration
for Virtual Environments Tracking Hardware,” Proceedings of
ACM SIGGRAPH 93 (Anaheim, CA, 1993), Computer Graphics,
Annual Conference Series.
[20] A Robert De Saint Vincent Grandjean. 1989. “3-D Modeling of
Indoor Scenes by Fusion of Noisy Range and Stereo Data,” IEEE
International Conference on Robotics and Automation (Scottsdale,
AZ), 2:681-687.
[21] F. C. Ham and R. G. Brown. 1983. “Observability, Eigenval-
ues, and Kalman Filtering,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-19, No. 2, pp. 269-273.
[22] R. Held and N. Durlach. 1987. Telepresence, Time Delay, and
Adaptation. NASA Conference Publication 10023.
[23] Richard L. Holloway. 1995. “Registration Errors in Augment-
ed Reality Systems,” Ph.D. dissertation, The University of North
Carolina at Chapel Hill, TR95-016.
[24] O. L. R. Jacobs. 1993. Introduction to Control Theory, 2nd
Edition. Oxford University Press.
[25] Roy S. Kalawsky. 1993. The Science of Virtual Reality and Vir-
tual Environments, Addison-Wesley Publishers.
[26] R. E. Kalman. 1960. “A New Approach to Linear Filtering and
Prediction Problems,” Transaction of the ASME—Journal of Basic
Engineering, pp. 35-45 (March 1960).
[27] J. B. Kuipers. 1980 “SPASYN—An Electromagnetic Relative
Position and Orientation Tracking System,” IEEE Transactions on
Instrumentation and Measurement, Vol. IM-29, No. 4, pp. 462-466.
[28] Richard Lewis. 1986. Optimal Estimation with an Introduction
to Stochastic Control Theory, John Wiley & Sons, Inc.
[29] J. Liang, C. Shaw and M. Green. 1991. “On Temporal-spatial
Realism in the Virtual Reality Environment,” Fourth Annual Sym-
posium on User Interface Software and Technology, pp. 19-25.
[30] R. Mahmoud, O. Loffeld and K. Hartmann. 1994. “Multisen-
sor Data Fusion for Automated Guided Vehicles,” Proceedings of
SPIE - The International Society for Optical Engineering, Vol.
2247, pp. 85-96.
[31] Peter S. Maybeck. 1979. Stochastic Models, Estimation, and
Control, Volume 1, Academic Press, Inc.
[32] Thomas Mazuryk and Michael Gervautz. 1995. “Two-Step
Prediction and Image Deflection for Exact Head Tracking in Virtual
Environments,” EUROGRAPHICS ‘95, Vol. 14, No. 3, pp. 30-41.
[33] K. Meyer, H. Applewhite and F. Biocca. 1992. A Survey of
Position Trackers. Presence, a publication of the Center for Re-
search in Journalism and Mass Communication, The University of
North Carolina at Chapel Hill.

[34] Mark Mine. 1993. “Characterization of End-to-End Delays in
Head-Mounted Display Systems,” The University of North Caroli-
na at Chapel Hill, TR93-001.
[35] National Research Council. 1994. “Virtual Reality, Scientific
and Technological Challenges,” National Academy Press (Wash-
ington, DC).
[36] P.D. Neilson. 1972. “Speed of Response or Bandwidth of Vol-
untary System Controlling Elbow Position in Intact Man,” Medical
and Biological Engineering, 10:450-459.
[37] F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones. 1979.
“Magnetic Position and Orientation Tracking System,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. AES-15,
709-718.
[38] Selspot Technical Specifications, Selcom Laser Measure-
ments, obtained from Innovision Systems, Inc. (Warren, MI).
[39] Richard H. Y. So and Michael J. Griffin. July-August 1992.
“Compensating Lags in Head-Coupled Displays Using Head Posi-
tion Prediction and Image Deflection,” AIAA Journal of Aircraft,
Vol. 29, No. 6, pp. 1064-1068
[40] H. W. Sorenson. 1970. “Least-Squares estimation: from Gauss
to Kalman,” IEEE Spectrum, Vol. 7, pp. 63-68, July 1970.
[41] Andrei State, Gentaro Hirota, David T. Chen, Bill Garrett,
Mark Livingston. 1996. “Superior Augmented Reality Registration
by Integrating Landmark Tracking and Magnetic Tracking,” SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series,
ACM SIGGRAPH, Addison Wesley, August 1996.
[42] J. V. L. Van Pabst and Paul F. C. Krekel. “Multi Sensor Data
Fusion of Points, Line Segments and Surface Segments in 3D
Space,” TNO Physics and Electronics Laboratory, The Hague, The
Netherlands. [cited 19 November 1995]. Available from http://
www.bart.nl/~lawick/index.html.
[43] J. Wang, R. Azuma, G. Bishop, V. Chi, J. Eyles, and H. Fuchs.
1990. “Tracking a head-mounted display in a room-sized environ-
ment with head-mounted cameras,” Proceeding: SPIE'90 Technical
Symposium on Optical Engineering & Photonics in Aerospace
Sensing (Orlando, FL).
[44] Mark Ward, Ronald Azuma, Robert Bennett, Stefan
Gottschalk, and Henry Fuchs. 1992. “A Demonstrated Optical
Tracker With Scalable Work Area for Head-Mounted Display Sys-
tems,” Proceedings of 1992 Symposium on Interactive 3D Graphics
(Cambridge, MA, 29 March - 1 April 1992), pp. 43-52.
[45] Wefald, K.M., and McClary, C.R. “Autocalibration of a laser
gyro strapdown inertial reference/navigation system,” IEEE PLANS
'84. Position Location and Navigation Symposium Record.
[46] Greg Welch and Gary Bishop. 1995. “An Introduction to the
Kalman Filter,” University of North Carolina, Department of Com-
puter Science, TR 95-041.
[47] Greg Welch, 1996. “SCAAT: Incremental Tracking with In-
complete Information,” University of North Carolina at Chapel
Hill, doctoral dissertation, TR 96-051.
[48] H. J. Woltring. 1974. “New possibilities for human motion
studies by real-time light spot position measurement,” Bioteleme-
try, Vol. 1.

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

Page 1 of 22

High-Performance Wide-Area Optical Tracking

The HiBall Tracking System

Greg Welch, Gary Bishop, Leandra Vicci, Stephen Brumback, and Kurtis Keller:

University of North Carolina at Chapel Hill
Department of Computer Science, CB# 3175
Chapel Hill, NC 27599-3175 USA
01-919-962-1700
{welch, gb, vicci, brumback, keller}@cs.unc.edu

D’nardo Colucci:

Alternate Realities Corporation
27 Maple Place
Minneapolis, MN 55401 USA
01-612-616-9721
colucci@virtual-reality.com

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

Page 2 of 22

High-Performance Wide-Area Optical Tracking

The HiBall Tracking System

ABSTRACT

Since the early 1980’s the Tracker Project at the University of North Carolina at Chapel Hill has
been working on wide-area head tracking for Virtual and Augmented Environments. Our long-
term goal has been to achieve the high performance required for accurate visual simulation
throughout our entire laboratory, beyond into the hallways, and eventually even outdoors.

In this article we present results and a complete description of our most recent electro-optical
system, the

HiBall Tracking System

. In particular we discuss motivation for the geometric
configuration, and describe the novel optical, mechanical, electronic, and algorithmic aspects that
enable unprecedented speed, resolution, accuracy, robustness, and flexibility.

1. INTRODUCTION

Systems for

head tracking

 for interactive computer graphics have been explored for over 30 years
(Sutherland, 1968). As illustrated in Figure 1, the authors have been working on the problem for
over twenty years (Azuma, 1993, 1995; Azuma & Bishop, 1994a, 1994b; Azuma & Ward, 1991;
Bishop, 1984; Gottschalk & Hughes, 1993; UNC Tracker Project, 2000; Wang, 1990; J.-F. Wang
et al., 1990; Ward, Azuma, Bennett, Gottschalk, & Fuchs, 1992; Welch, 1995, 1996; Welch &
Bishop, 1997; Welch et al., 1999). From the beginning our efforts have been targeted at

wide-area

applications in particular. This focus was originally motivated by applications for which we
believed that actually walking around the environment would be superior to virtually “flying.” For
example, we wanted to interact with room-filling virtual molecular models, and to naturally
explore life-sized virtual architectural models. Today we believe that a wide-area system with
high performance everywhere in our laboratory provides increased flexibility for all of our
graphics, vision, and interaction research.

Figure 1

Page 3 of 22

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

1.1 Previous Work

In the early 1960’s Ivan Sutherland implemented both mechanical and ultrasonic (carrier phase)
head tracking systems as part of his pioneering work in virtual environments. He describes these
systems in his seminal paper “A Head-Mounted Three Dimensional Display” (Sutherland, 1968).
In the ensuing years, commercial and research teams have explored mechanical, magnetic,
acoustic, inertial, and optical technologies. Complete surveys include (Bhatnagar, 1993; Burdea &
Coiffet, 1994; Meyer, Applewhite, & Biocca, 1992; Mulder, 1994a, 1994b, 1998). Commercial
magnetic tracking systems for example (Ascension, 2000; Polhemus, 2000) have enjoyed
popularity as a result of a small user-worn component and relative ease of use. Recently inertial
hybrid systems (Foxlin, Harrington, & Pfeifer, 1998; Intersense, 2000) have been gaining
popularity for similar reasons, with the added benefit of reduced high-frequency noise and direct
measurements of derivatives.

An early example of an optical system for tracking or motion capture is the

Twinkle Box

system by Burton (Burton, 1973; Burton & Sutherland, 1974). This system measured the
positions of user-worn flashing lights with optical sensors mounted in the environment behind
rotating slotted disks. The

Selspot

 system (Woltring, 1974) used fixed camera-like photo-diode
sensors and target-mounted infrared light-emitting diodes that could be tracked in a one-meter-
square volume. Beyond the HiBall Tracking System, examples of current optical tracking and
motion capture systems include the

FlashPoint

© and

Pixsys

™ systems by Image Guided
Technologies (IGT, 2000), the

laserBIRD

™ system by Ascension Technology (Ascension, 2000),
and the

CODA Motion Capture System

 by B & L Engineering (BL, 2000). These systems employ
analog optical sensor systems to achieve relatively high sample rates for a moderate number of
targets. Digital cameras (two-dimensional image-forming optical devices) are used in motion
capture systems such as the

HiRes 3D Motion Capture System

 by the Motion Analysis
Corporation (Kadaba & Stine, 2000; MAC, 2000) to track a relatively large number of targets,
albeit at a relatively low rate because of the need for 2D image processing.

1.2 Previous Work at UNC-Chapel Hill

As part of his 1984 dissertation on

Self-Tracker

, Bishop put forward
the idea of outward looking tracking systems based on user-mounted
sensors that estimate user

pose

1

 by observing landmarks in the
environment (Bishop, 1984). He described two kinds of landmarks:
high signal-to-noise-ratio beacons such as LEDs (light emitting
diodes) and low signal-to-noise-ratio landmarks such as naturally
occurring features. Bishop designed and demonstrated custom VLSI
chips (Figure 2) that combined image sensing and processing on a
single chip (Bishop & Fuchs, 1984). The idea was to combine multiple
of these chips into an outward-looking cluster that estimated cluster
motion by observing natural features in the un-modified environment.
Integrating the resulting motion to estimate pose is prone to accumulating error, so further
development required a complementary system based on easily detectable landmarks (LEDs) at
known locations. This LED-based system was the subject of a 1990 dissertation by Jih-Fang
Wang (Wang, 1990).

1

We use the word

pose

 to indicate both position and orientation (six degrees of freedom).

Figure 2

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

Page 4 of 22

In 1991 we demonstrated a working scalable electro-optical head-
tracking system in the

Tomorrow's Realities

 gallery at that year’s ACM
SIGGRAPH conference (J.-F. Wang et al., 1990; Wang, Chi, & Fuchs,
1990; Ward et al., 1992). The system (Figure 3) used four head-worn
lateral effect photo-diodes that looked upward at a regular array of
infrared LEDs installed in precisely machined ceiling panels. A user-
worn backpack contained electronics that digitized and communicated
the photo-coordinates of the sighted LEDs. Photogrammetric techniques
were used to compute a user’s head pose using the known LED positions
and the corresponding measured photo-coordinates from each LEPD
sensor (Azuma & Ward, 1991). The system was ground-breaking in that
it was unaffected by ferromagnetic and conductive materials in the
environment, and the working volume of the system was determined
solely by the number of ceiling panels. (See Figure 3, top.)

1.3 The HiBall Tracking System

In this article we describe a new and vastly improved version of the
1991 system. We call the new system the

HiBall Tracking System

.
Thanks to significant improvements in hardware and software this
HiBall system offers unprecedented speed, resolution, accuracy,

robustness, and flexibility. The bulky and heavy sensors and backpack of the previous system have
been replaced by a small

HiBall

 unit (Figure 4, bottom). In addition, the precisely machined LED
ceiling panels of the previous system have been replaced by lower-tolerance panels that are
relatively inexpensive to make and simple to install (Figure 4, top; Figure 10). Finally, we are
using an unusual Kalman-filter-based algorithm that generates very accurate pose estimates at a
high rate with low latency, and simultaneously self-calibrates the system.

As a result of these improvements
the HiBall Tracking System can
generate over 2000 pose estimates per
second, with less than one millisecond
of latency, better than 0.5 millimeters
and 0.03 degrees of absolute error and
noise, everywhere in a 4.5 by 8.5
meter room (with over two meters of
height variation). The area can be
expanded by adding more panels, or
by using checkerboard configurations
which spread panels over a larger area. The weight of the user-worn HiBall is about 300 grams,
making it lighter than one

optical sensor

in the 1991 system. Multiple HiBall units can be daisy-
chained together for head or hand tracking, pose-aware input devices, or precise 3D point
digitization throughout the entire working volume.

2. DESIGN CONSIDERATIONS

In all of the optical systems we have developed (see Section 1.2) we have chosen what we call an

inside-looking-out

configuration, where the optical sensors are on the (moving) user and the

landmarks

 (e.g., LEDs) are fixed in the laboratory. The corresponding

outside-looking-in

Figure 3

Figure 4

Page 5 of 22

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

alternative would be to place the landmarks on the user, and to fix the optical sensors in the
laboratory. (One can think about similar outside-in and inside-out distinctions for acoustic and
magnetic technologies.) The two configurations are depicted in Figure 5.

There are some disadvantages to the inside-looking-out approach. For small or medium-sized
working volumes, mounting the sensors on the user is more challenging than mounting them in
the environment. It is difficult to make user-worn sensor packaging small, and communication
from the moving sensors to the rest of the system is more complex. In contrast, there are fewer
mechanical considerations when mounting sensors in the environment for an

outside-looking-in

configuration. Because landmarks can be relatively simple, small, and cheap, they can often be
located in numerous places on the user, and communication from the user to the rest of the system
can be relatively simple or even unnecessary. This is particularly attractive for full-body motion
capture (BL, 2000; MAC, 2000).

However there are some significant advantages to the inside-looking-out approach for head
tracking. By operating with sensors on the user rather than in the environment, the system can be
scaled indefinitely. The system can evolve from using dense active landmarks to fewer, lower
signal-to-noise ratio, passive, and some day natural features for a Self-Tracker that operates
entirely without landmark infrastructure (Bishop, 1984; Bishop & Fuchs, 1984; Welch, 1995).

The inside-looking-out configuration is also motivated by a desire to maximize sensitivity to
changes in user pose. In particular, a significant problem with an outside-looking-in configuration
is that only position estimates can be made directly, and so orientation must be inferred from
position estimates of multiple fixed landmarks. The result is that orientation sensitivity is a
function of both the

distance to the landmarks

 from the sensor and the

baseline between the
landmarks

 on the user. In particular, as the distance to the user increases or the baseline between
the landmarks decreases the sensitivity goes down. For sufficient orientation sensitivity one would
likely need a baseline that is considerably larger than the user’s head. This would be undesirable
from an ergonomic standpoint and could actually restrict the user’s motion.

With respect to translation, the change in measured photo-coordinates is the same for an
environment-mounted (fixed) sensor and user-mounted (moving) landmark as it is for a user-
mounted sensor and an environment-mounted landmark. In other words, the translation and
corresponding sensitivity are the same for either case.

Figure 5

head-mounted landmarks
optical sensor
lab-mounted (fixed)

head-mounted sensor(fixed) landmarks
lab-mounted

Outside-Looking-In Inside-Looking-Out

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

Page 6 of 22

3. SYSTEM OVERVIEW

The HiBall Tracking System consists
of three main components (Figure 6).
An outward-looking sensing unit we
call the

HiBall

 is fixed to each user to
be tracked. The HiBall unit observes
a subsystem of fixed-location
infrared LEDs we call the

Ceiling

1

.
Communication and synchronization
between the host computer and these
subsystems is coordinated by the

Ceiling-HiBall Interface Board

(CIB). In Section 4 we describe these
components in more detail.

Each HiBall observes LEDs
through multiple sensor-lens

views

that are distributed over a large solid angle. LEDs are sequentially flashed (one at a time) such that
they are seen via a diverse set of views for each HiBall. Initial

acquisition

 is performed using a
brute force search through LED space, but once initial lock is made, the selection of LEDs to flash
is tailored to the views of the active HiBall units. Pose estimates are maintained using a Kalman-
filter-based prediction-correction algorithm known as

single-constraint-at-a-time

 or SCAAT
tracking. This technique has been extended to provide self-calibration of the Ceiling, concurrent
with HiBall tracking. In Section 5 we describe the methods we employ, including the initial
acquisition process and the SCAAT approach to pose estimation, with the

autocalibration

extension.

4. SYSTEM COMPONENTS

4.1 The HiBall

The original electro-optical tracker
(Figure 3) used independently-housed
lateral effect photo-diode units (LEPDs)
attached to a light-weight tubular
framework. As it turns out, the
mechanical framework would flex
(distort) during use, contributing to
estimation errors. In part to address this
problem the HiBall sensor unit was
designed as a single rigid hollow ball
having dodecahedral symmetry, with lenses in the upper six faces and LEPD on the insides of the
opposing six lower faces (Figure 7). This immediately gives six primary “camera”

views

uniformly spaced by 57 degrees. The views efficiently share the same internal air space, and are
rigid with respect to each other. In addition, light entering any lens sufficiently off axis can be

1

At the present time, the LEDs are in fact entirely located in the ceiling of our laboratory, hence
the sub-system name

Ceiling

, but LEDs could as well be located on walls or other fixed locations.

Figure 6

Figure 7

Page 7 of 22

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

seen by a neighboring LEPD, giving rise to five secondary views through the top or central lens,
and three secondary views through the five other lenses. Overall, this provides 26 fields of view
which are used to sense widely separated groups of LEDs in the environment. While the extra
views complicate the initialization of the Kalman filter as described in Section 5.5, they turn out
to be of great benefit during steady-state tracking by effectively increasing the overall HiBall field
of view without sacrificing optical sensor resolution.

The lenses are simple plano-convex fixed focus lenses. Infrared (IR) filtering is provided by
fabricating the lenses themselves from RG-780 Schott glass filter material which is opaque to
better than 0.001% for all visible wavelengths, and transmissive to better than 99% for IR
wavelengths longer than 830 nm. The longwave filtering limit is provided by the DLS-4 LEPD
silicon photodetector (UDT Sensors, Inc.) with peak responsivity at 950 nm but essentially blind
above 1150 nm.

The LEPDs themselves are not imaging devices;
rather they detect the centroid of the luminous flux
incident on the detector. The x-position of the centroid
determines the ratio of two output currents, while the y-
position determines the ratio of two other output
currents. The total output current of each pair are
commensurate, and proportional to the total incident
flux. Consequently, focus is not an issue, so the simple
fixed-focus lenses work well over a range of LED
distances from about half a meter to infinity. The LEPDs
and associated electronic components are mounted on a
custom rigid-flex printed circuit board (Figure 8). This
arrangement makes efficient use of the internal HiBall
volume while maintaining isolation between analog and
digital circuitry, and increasing reliability by alleviating the need for inter-component mechanical
connectors.

Figure 9 shows the physical arrangement
of the folded electronics in the HiBall. Each
LEPD has four transimpedance amplifiers
(shown together as one “Amp” in Figure 9),
the analog outputs of which are multiplexed
with those of the other LEPDs, then
sampled, held, and converted by four 16-bit
Delta-Sigma analog-to-digital (A/D)
converters. Multiple samples are integrated
via an accumulator. The digitized LEPD data
are organized into packets for
communication back to the CIB. The
packets also contain information to assist in
error-detection. The communication
protocol is simple, and while presently
implemented by wire, the modulation scheme is amenable to a wireless implementation. The
present wired implementation allows multiple HiBall units to be daisy-chained so a single cable
can support a user with multiple HiBall units.

Figure 8

Figure 9

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

Page 8 of 22

4.2 The Ceiling

As presently implemented, the infrared LEDs are
packaged in 61 centimeter square

panels

, to fit a standard false
ceiling grid (Figure 10, top). Each panel uses five printed circuit
boards: a main controller board and four identical transverse-
mounted

strips

 (bottom). Each strip is populated with eight LEDs
for a total of 32 LEDs per panel. We mount the assembly on top
of a metal panel such that the LEDs protrude through 32
corresponding holes. The design results in a Ceiling with a
rectangular LED pattern with periods of 7.6 and 15.2 centimeters.
This spacing is used for the initial estimates of the LED positions
in the lab, then during normal operation the SCAAT algorithm
continually refines the LED position estimates (Section 5.4). The
SCAAT

autocalibration

 not only relaxes design and installation
constraints, but provides greater precision in the face of initial
and ongoing uncertainty in the Ceiling structure.

We currently have enough panels to cover an area
approximately 5.5 by 8.5 meters with a total of approximately
3,000 LEDs.

1

 The panels are daisy-chained to each other, and panel selection encoding is position
(rather than device) dependent. Operational commands are presented to the first panel of the daisy
chain. At each panel, if the panel select code is zero the controller decodes and executes the
operation; else it decrements the panel select code and passes it along to the next panel
(controller). Upon decoding, a particular LED is selected and the LED is energized. The LED
brightness (power) is selectable for

automatic gain control

 as described in Section 5.2.
We currently use Siemens SFH-487P GaAs LEDs which provide both a wide angle radiation

pattern and high peak power, emitting at a center wavelength of 880 nm in the near IR. These
devices can be pulsed up to 2.0 Amps for a maximum duration of 200 with a 1:50 (on:off)
duty cycle. While the current Ceiling architecture allows flashing of only one LED at a time,
LEDs may be flashed in any sequence. As such no single LED can be flashed too long or too
frequently. We include both hardware and software protection to prevent this.

4.3 The Ceiling-HiBall Interface Board

The Ceiling-HiBall Interface Board or CIB
(Figure 11) provides communication and
synchronization between a host personal
computer, the HiBall (Section 4.1), and the
Ceiling (Section 4.2). The CIB has four Ceiling
ports allowing interleaving of ceiling panels for up
to four simultaneous LED flashes and/or higher
Ceiling bandwidth. (The Ceiling bandwidth is
inherently limited by LED power restrictions as
described in Section 4.2, but this can be increased by spatially multiplexing the Ceiling panels.)
The CIB has two tether interfaces that can communicate with up to four daisy-chained HiBall
units. The full-duplex communication with the HiBall units uses a modulation scheme (BPSK)

1

The area is actually L-shaped; a small storage room occupies one corner.

Figure 10

µs

Figure 11

Page 9 of 22

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

allowing future wireless operation. The interface from the CIB to the host PC is the stable
IEEE1284C extended parallel port (EPP) standard.

The CIB comprises analog drive and receive components as well as digital logic components.
The digital components implement store and forward in both directions and synchronize the
timing of the LED “on” interval within the HiBall dark-light-dark intervals. The protocol supports
full-duplex flow control. The data are arranged into packets that incorporate error detection.

5. METHODS

5.1 Bench-Top (Off-Line) HiBall Calibration

After each HiBall is assembled we perform an off-line calibration procedure to determine
the correspondence between image-plane coordinates and rays in space. This involves more than
just determining the view transform for each of the 26 views. Non-linearities in the silicon sensor
and distortions in the lens (e.g., spherical aberration) cause significant deviations from a simple
pin-hole camera model. We dealt with all of these issues through the use of a two-part camera
model. The first part is a standard pin-hole camera represented by a 3x4 matrix. The second part is
a table mapping real image-plane coordinates to ideal image-plane coordinates.

Both parts of the camera model are determined using a calibration procedure that relies on a
goniometer (an angular positioning system) of our own design. This device consists of two servo
motors mounted together such that one motor provides rotation about the vertical axis while the
second motor provides rotation about an axis orthogonal to vertical. An important characteristic of
the goniometer is that the rotational axes of the two motors intersect at a point at the center of the
HiBall optical sphere; this point is defined as the origin of the HiBall. (It is this origin that
provides the reference for the HiBall state during run time as described in Section 5.3.) The
rotational positioning motors were rated to provide 20 arc-second precision; we further calibrated
them to 6 arc seconds using a surveying grade theodolite—an angle measuring system.

In order to determine the mapping between sensor image-plane coordinates and three-space
rays, we use a single LED mounted at a fixed location in the laboratory such that it is centered in
the view directly out of the top lens of the HiBall. This ray defines the Z or up axis for the HiBall
coordinate system. We sample other rays by rotating the goniometer motors under computer
control. We sample each view with rays spaced about every 6 minutes of arc throughout the field
of view. We repeat each measurement 100 times in order to reduce the effects of noise on the
individual measurements and to estimate the standard deviation of the measurements.

Given the tables of approximately 2500 measurements for each of the 26 views, we first
determine a 3 by 4 view matrix using standard linear least-squares techniques. Then we determine
the deviation of each measured point from that predicted by the ideal linear model. These
deviations are re-sampled into a 25 by 25 grid indexed by sensor-plane coordinates using a simple
scan conversion procedure and averaging. Given a measurement from a sensor at run time
(Section 5.2) we convert it to an “ideal” measurement by subtracting a deviation bilinearly
interpolated from the nearest 4 entries in the table.

5.2 On-Line HiBall Measurements

Upon receiving a command from the CIB (Section 4.3), which is synchronized with a CIB
command to the ceiling, the HiBall selects the specified LEPD and performs three measurements,
one before the LED flashes, one during the LED flash, and one after the LED flash. Known as
“dark-light-dark”, this technique is used to subtract out DC bias, low frequency noise, and

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

Page 10 of 22

background light from the LED signal. We then convert the measured sensor coordinates to
“ideal” coordinates using the calibration tables described in Section 5.1.

In addition, during run time we attempt to maximize the signal-to-noise ratio of the
measurement with an automatic gain control scheme. For each LED we store a target signal
strength constant. We compute the LED current and number of integrations (of successive
accumulated A/D samples) by dividing this strength constant by the square of the distance to the
LED, estimated from the current position estimate. After a reading we look at the strength of the
actual measurement. If it is larger than expected we reduce the gain, if it is less than expected we
increase the gain. The increase and decrease are implemented as on-line averages with scaling
such that the gain constant decreases rapidly (to avoid overflow) and increases slowly. Finally we
use the measured signal strength to estimate the noise on the signal using (Chi, 1995), and then
use this as the measurement noise estimate for the Kalman filter (Section 5.3).

5.3 Recursive Pose Estimation (SCAAT)

The on-line measurements (Section 5.2) are used to estimate the pose of the HiBall during
operation. The 1991 system collected a group of diverse measurements for a variety of LEDs and
sensors, and then used a method of simultaneous non-linear equations called

Collinearity

 (Azuma
& Ward, 1991) to estimate the pose of the sensor fixture shown in Figure 3 (bottom). There was
one equation for each measurement, expressing the constraint that a ray from the front principal
point of the sensor lens to the LED, must be collinear with a ray from the rear principal point to
the intersection with the sensor. Each estimate made use of a group of measurements (typically 20
or more) that together over-constrained the solution.

This

multiple constraint

 method had several drawbacks. First, it had a significantly lower
estimate rate due to the need to collect multiple measurements per estimate. Second, the system of
non-linear equations did not account for the fact that the sensor fixture continued to move
throughout the collection of the sequence of measurements. Instead the method effectively
assumes that the measurements were taken simultaneously. The violation of this

simultaneity
assumption

 could introduce significant error during even moderate motion. Finally, the method
provided no means to identify or handle unusually noisy individual measurements. Thus, a single
erroneous measurement could cause an estimate to jump away from an otherwise smooth track.

In contrast, the approach we use with the new HiBall system produces tracker reports as each
new measurement is made, rather than waiting to form a complete collection of observations.
Because single measurements under-constrain the mathematical solution, we refer to the approach
as

single-constraint-at-a-time

 or SCAAT tracking (Welch, 1996; Welch & Bishop, 1997). The key
is that the single measurements provide

some

 information about the user's state, and thus can be
used to incrementally improve a previous estimate. We intentionally

fuse each individual
“insufficient” measurement immediately as it is obtained. With this approach we are able to
generate estimates more frequently, with less latency, with improved accuracy, and we are able to
estimate the LED positions on-line concurrently while tracking the HiBall (Section 5.4).

We use a Kalman filter (Kalman, 1960) to fuse the measurements into an estimate of the
HiBall

state

 (the pose of the HiBall). We use a Kalman filter—a minimum variance stochastic
estimator—both because the sensor measurement noise and the typical user motion dynamics can
be modeled as normally-distributed random processes, and because we want an efficient on-line
method of estimation. A basic introduction to the Kalman filter can be found in Chapter 1 of
(Maybeck, 1979), while a more complete introductory discussion can be found in (Sorenson,
1970), which also contains some interesting historical narrative. More extensive references can be

x

Page 11 of 22

The HiBall Tracking System To appear in

Presence: Teleoperators and Virtual Environments,

 February, 2001

found in (Brown & Hwang, 1992; Gelb, 1974; Jacobs, 1993; Lewis, 1986; Maybeck, 1979; Welch
& Bishop, 1995). Finally, we maintain a Kalman filter web page (Welch & Bishop, 2000) with
introductory, reference, and research material.

The Kalman filter has been used previously to address similar or related problems. See for
example (Azarbayejani & Pentland, 1995; Azuma, 1995; Emura & Tachi, 1994; Fuchs (Foxlin),
1993; Mazuryk & Gervautz, 1995; Van Pabst & Krekel, 1993). A relevant example of a Kalman
filter used for sensor fusion in wide-area tracking system is given by (Foxlin et al., 1998) which
describes a hybrid inertial-acoustic system that is commercially-available today (Intersense,
2000).

The SCAAT approach is described in detail in (Welch, 1996;
Welch & Bishop, 1997). Included there is discussion of the benefits
of using the approach, as opposed to a

multiple-constraint

 approach
such as (Azuma & Ward, 1991). However one key benefit warrants
discussion here. There is a direct relationship between the

complexity of the estimation algorithm, the corresponding speed
(execution time per estimation cycle), and the change in HiBall
pose between estimation cycles (Figure 12). As the algorithmic
complexity increases, the execution time increases, which allows
for significant non-linear HiBall motion between estimation cycles,
which in turn implies the need for a more complex estimation
algorithm.

The SCAAT approach on the other hand is an attempt to reverse
this cycle. Because we intentionally use a single constraint per estimate, the algorithmic
complexity is drastically reduced, which reduces the execution time, and hence the amount of
motion between estimation cycles. Because the amount of motion is limited we are able to use a
simple dynamic (process) model in the Kalman filter, which further simplifies the computations.
In short, the simplicity of the approach means it can run very fast, which means it can produce
estimates very rapidly, with low noise.

The Kalman filter requires both a model of the process dynamics, and a model of the
relationship between the process state and the available measurements. In part due to the
simplicity of the SCAAT approach we are able to use a simple PV (position-velocity) process
model (Brown & Hwang, 1992). Consider the simple example state vector

, where the first element is the pose (position or orientation) and the
second element is the corresponding velocity, i.e. . We model the
continuous change in the HiBall state with the simple differential equation

, (1)

where is a normally-distributed white (in the frequency spectrum) scalar noise process, and
the scalar represents the magnitude or spectral density of the noise. We use a similar model
with a distinct noise process for each of the six pose elements. We determine the individual noise
magnitudes using an off-line simulation of the system and a non-linear optimization strategy that
seeks to minimize the variance between the estimated pose and a known motion path. (See
Section 6.2.2.) The differential equation (1) represents a continuous integrated random walk, or an
integrated Wiener or Brownian-motion process. Specifically, we model each component of the

Figure 12

x t() xp t() xv t(),[] T
= xp t()

xv t() xv t()
td

d
xp t()=

td
d

x t() 0 1

0 0

xp t()

xv t()
0

µ
u t()+=

u t()
µ

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

Page 12 of 22

linear and angular HiBall velocities as a random walk, and then use these (assuming constant
inter-measurement velocity) to estimate the HiBall pose at time as follows:

(2)

for each of the six pose elements. In addition to a relatively simple process model, the HiBall
measurement model is relatively simple. For any Ceiling LED (Section 4.2) and HiBall view
(Section 4.1), the 2D sensor measurement can be modeled as

(3)

where

, (4)

 is the camera viewing matrix from Section 5.1, is the position of the LED in the world,
 is the position of the HiBall in the world, and is a rotation matrix corresponding to the

orientation of the HiBall in the world. In practice we maintain the orientation of the HiBall as a
combination of a global (external to the state) quaternion and a set of incremental angles as
described in (Welch, 1996; Welch & Bishop, 1997).

Because the measurement model (3)-(4) is non-linear we use an extended Kalman filter,
making use of the Jacobian of the non-linear HiBall measurement model to transform the
covariance of the Kalman filter. While this approach does not preserve the presumed Gaussian
nature of the process, it has been used successfully in countless applications since the introduction
of the (linear) Kalman filter. Based on observations of the statistics of the HiBall filter residuals,
the approach also appears to work well for the HiBall. In fact it is reasonable to expect that it
would, as the speed of the SCAAT approach minimizes the distance (in state space) over which
we use the Jacobian-based linear approximation. This is another example of the importance of the
relationship shown in Figure 12.

At each estimation cycle, the next of the 26 possible views is chosen randomly. Four points
corresponding to the corners of the LEPD sensor associated with that view are projected into the
world using the 3 by 4 viewing matrix for that view, along with the current estimates of the HiBall
pose. This projection, which is the inverse of the measurement relationship described above,
results in four rays extending from the sensor into the world. The intersection of these rays and the
approximate plane of the Ceiling determines a 2D bounding box on the Ceiling, within which are
the candidate LEDs for the current view. One of the candidate LEDs is then chosen in a least-
recently-used fashion to ensure a diversity of constraints.

Once a particular view and LED have been chosen in this fashion, the
CIB (Section 4.3) is instructed to flash the LED and take a measurement
as described in Section 5.2. This single measurement is compared with a
prediction obtained using (3), and the difference or residual is used to
update the filter state and covariance matrices using the Kalman gain
matrix. The Kalman gain is computed as a combination of the current

t δt+

x t δt+() 1 δt

0 1
x t()=

u

v

cx cz⁄

cy cz⁄
=

cx

cy

cz

VRT lxyz xxyz–()=

V lxyz
xxyz R

Page 13 of 22

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

filter covariance, the measurement noise variance (Section 6.2.1), and the Jacobian of the
measurement model. This recursive prediction-correction cycle continues in an ongoing fashion, a
single constraint at a time.

A more detailed discussion of the HiBall Kalman filter and the SCAAT approach is beyond
the scope of this paper. For additional information see (Welch, 1996; Welch & Bishop, 1997).

5.4 On-line LED Autocalibration
Along with the benefit of simplicity and speed, the SCAAT approach offers the additional

capability of being able to estimate the 3D positions of the LEDs in the world concurrently with
the pose of the HiBall, on line, in real time. This capability is a tremendous benefit in terms of the
accuracy and noise characteristics of the estimates. Accurate LED position estimates are so
important that prior to the introduction of the SCAAT approach a specialized off-line approach
was developed to address the problem (Gottschalk & Hughes, 1993).

The method we now use for autocalibration involves defining a distinct SCAAT Kalman filter
for each LED. Specifically, for each LED we maintain a state (estimate of the 3D position) and
a 3x3 Kalman filter covariance. At the beginning of each estimation cycle we form an augmented
state vector using the appropriate LED state and the current HiBall state: .
Similarly we augment the Kalman filter error covariance matrix with that of the LED filter. We
then follow the normal steps outlined in Section 5.3, with the result being that the LED portion of
the filter state and covariance is updated in accordance with the measurement residual. At the end
of the cycle we extract the LED portions of the state and covariance from the augmented filter,
and save them externally. The effect is that as the system is being used, it continually refines its
estimates of the LED positions, thereby continually improving its estimates of the HiBall pose.
Again, for additional information see (Welch, 1996; Welch & Bishop, 1997).

5.5 Initialization and Re-Acquisition
The recursive nature of the Kalman filter (Section 5.3) requires that the filter be initialized

with a known state and corresponding covariance before steady-state operation can begin. Such an
initialization or acquisition must take place prior to any tracking session, but also upon the (rare)
occasion when the filter diverges and “loses lock” as a result of blocked sensor views for example.

The acquisition process is complicated by the fact that each LEPD sees a number of different
widely separated views (Section 4.1). Therefore detecting an LED provides at best an ambiguous
set of potential LED directions in HiBall coordinates. Moreover, before acquisition no
assumptions can be made to limit the search space of visible LEDs. As such, a relatively slow
brute-force algorithm is used to acquire lock.

We begin with an exhaustive LED scan of sufficiently fine granularity to ensure that the
central primary field of view is not missed. For the present Ceiling, we flash every 13th LED in
sequence, and look for it with the central LEPD until we get a hit. Then a sufficiently large patch
of LEDs, centered on the hit, is sampled to ensure that several of the views of the central LEPD
will be hit. The fields of view are disambiguated by using the initial hits to estimate the yaw of the
HiBall (rotation about vertical), and finally more selective measurements are used to refine the
acquisition estimate sufficiently to switch into tracking mode.

l

x) x xT lT,[] T=)

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

Page 14 of 22

6. RESULTS
Three days after the individual pieces of hardware were shown to be functioning properly

we demonstrated a complete working system. After months of subsequent tuning and
optimization, the system continues to perform both qualitatively and quantitatively as well, or in
some respects better, than we had anticipated (Section 6.1). The articulation of this success is not
meant to be self-congratulatory, but to give credit to the extensive and careful modeling and
simulation performed prior to assembly (Section 6.2). In fact, the Kalman filter parameters found
by the optimization procedure described in Section 6.2.2 were, and continue to be, used directly in
the working system. Likewise much of the software written for the original simulations continues
to be used in the working system.

6.1 On-Line Operation
The HiBall system is in daily use as a tool for

education and research. For example, it was used by
Martin Usoh et al. to perform Virtual Reality
experiments comparing virtual “flying”, walking in
place, and real walking (Usoh et al., 1999). The
researchers used the HiBall system to demonstrate
that as a mode of locomotion, real walking is simpler,
more straightforward, and more natural, than both
virtual flying and walking in place. The unprecedented combination of large working volume and
high performance of the HiBall system led the researchers to claim that there was nowhere else
that they could have meaningfully performed the experiments.

6.1.1 Robustness. As a result of a mechanical design trade-off, each sensor field of view
is less than six degrees. The focal length is set by the size of the sensor housing, which is set by
the diameter of the sensors themselves. Energetics is also a factor, limiting how small the lenses
can be while maintaining sufficient light collecting area. As a result of these design trade-offs,
even a momentary small error in the HiBall pose estimate can cause the recursive estimates to
diverge and the system to lose lock after only a few LED sightings. And yet the system is quite
robust. In practice users can jump around, crawl on the floor, lean over, even wave their hands in
front of the sensors, and the system does not lose lock. During one session we were using the
HiBall as a 3D digitization probe, a HiBall on the end of a pencil-shaped fiberglass wand
(Figure 14, left). We laid the probe down on a table at one point, and were amazed to later notice
that it was still tracking, even though it was only observing 3 or 4 LEDs near the edge of the
Ceiling. We picked up the probe and continued using it, without it ever losing lock.

6.1.2 Estimate Noise. The simplest quantitative measurement of estimate noise is the
standard deviation of the estimates when a HiBall is held stationary. With a tracker as sensitive as
the HiBall it is important to be certain that it really is stationary. The raised floor in our laboratory
allows motion, for example when a person walks by, that is larger than the expected error in the
HiBall. We made careful measurements by resting the support for the HiBall on the concrete sub-
floor in our laboratory. The standard deviation of the HiBall estimates while stationary was about
0.2 millimeters and 0.03 degrees. The distribution of the noise fit a normal distribution quite well.

To make measurements of the noise when the HiBall is in motion we rely on the assumption
that almost all of the signal resulting from normal human motion is at frequencies below 2 Hz. We
use a high-pass filter (Welch, 1967) on the pose estimates, and assume the output is noise. The
resulting statistics are comparable to those made with the HiBall stationary, except at poses for

Figure 13

Page 15 of 22

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

which there are very few LEDs visible in only one or two views. In these poses, near the edge of
the ceiling, the geometry of the constraints results in amplification of errors. For nearly all of the
working volume of the tracker the standard-deviation of the noise on measurements while the
HiBall is still or moving is about 0.2 millimeters and 0.03 degrees.

6.1.3 Absolute Accuracy. We have
performed several experiments to measure the
accuracy of the HiBall system, however the
most objective experiment took place in July
of 1999. Boeing Phantom Works scientists
David Himmel and David Princehouse
(Associate Technical Fellows) visited our
laboratory for two days to assess the accuracy
of the HiBall system, and its potential use in
providing assembly workers with real-time
feedback on the pose of hand-held pneumatic drills during the aircraft manufacturing process.
(The right image in Figure 14 shows the HiBall attached to a pneumatic drill.)

The scientists designed some controlled
experiments to asses the accuracy of the HiBall
system. They brought with them an aluminum
“coupon” (see Figure 14 and Figure 15) with 27
shallow holes pre-drilled on 1.5 inch centers
using a numerically-controlled milling machine
with a stated accuracy of inch. The
holes (except one) were not actually drilled
through the coupon, but instead formed conical dimples with a fine point at the center. The center-
most hole (hole 14) was actually drilled completely through to provide a mounting point. Using
that hole we attached the coupon to a military-grade tripod situated on the (false) floor of our
laboratory, under the HiBall Ceiling. As shown in the left image of Figure 14 we mounted the
HiBall on our standard probe, a rigid plastic pencil-like object with a pointed steel tip. We used
one of the pre-drilled coupon holes to perform our normal HiBall probe calibration procedure,
which involves placing the tip of the probe in the hole, pivoting the probe about the point while
collecting several seconds of pose data, and then estimating the transformation from the HiBall to
the probe tip. (We have a standard application that assists us with this procedure.) Together with
Himmel and Princehouse we performed several experiments where we placed the tip of the HiBall
probe in each hole in succession, sampling the HiBall pose estimates only when we pressed the
probe button. We performed several such sessions over the course of one afternoon and the next
morning (we re-calibrated the probe in the morning).

For the data from each session we used a least-squares optimization method to find an
estimate of the full 6D transformation (translation and rotation) that minimized the Euclidian
distance from the probe data to a 2D plane with 27 holes on 1.5 inch spacing. The resulting fit
consistently corresponded to an average positioning error of inch (millimeter) at
the metal tip of the HiBall probe, which is within the target Boeing specifications. The system
might actually be more accurate than our experiments indicated. For one, the diameter of the
(rounded) tip of the HiBall probe is millimeter. In addition, at the time of the experiments we
unfortunately did not heed our own advice to position the experimental platform on the rigid

Figure 14

Figure 15

1

27

1 1000⁄

20 1000⁄ 1 2⁄

1 2⁄

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

Page 16 of 22

concrete sub-floor. In any case we are encouraged by the results, and are excited about the
possibility that the HiBall system has uses beyond tracking for Virtual Reality.

6.2 Off-Line Simulation and Modeling
During the design of the HiBall system we made substantial use of simulation, in some

domains to a very detailed level. For example, Zemax (Focus Software, 1995) was used
extensively in the design and optimization of the optical design, including the design of the filter
glass lenses, and geometry of the optical component layout. AutoCAD™ was used to design,
specify, and fit-check the HiBall body mechanicals, to visualize the physical design, and to
transmit the design to our collaborators at the University of Utah for fabrication by the Alpha 1
System (Thomas, 1984; University of Utah Computer Science, 1999). A custom ray-tracing
system was built by Stefan Gottschalk (UNC) for the purpose of evaluating the optical behavior
and energetics of the primary, secondary, and tertiary fields of view; the results were used by the
noise model developed in (Chi, 1995) as described in the next section.

In addition, a complete simulator of the system was written in C++. This simulator, discussed
further in Section 6.2.2, was used to evaluate the speed, accuracy, and robustness of the system. In
addition it was used to “tune” the Kalman filter for realistic motion dynamics. This simulator
continues to be used to evaluate mechanical, optical, and algorithmic alternatives.

6.2.1 HiBall Measurement Noise Model. Signal-to-noise performance is a prime
determiner of both accuracy and speed of the system, so an in-depth study (Chi, 1995) was
performed to develop a detailed noise model accounting for properties of the LED, the LEPD
(sensor), the optical system, the physical distance and pose, the electronics, and the dark-light-
dark integrations described in Section 5.2. The predominant noise source is shot noise, with
Johnson noise in the sheet resistivity of the LEPD surfaces being the next most significant.
Careful measurements made in the laboratory with the actual devices yielded results that were
almost identical to those predicted by the sophisticated model in (Chi, 1995). A simplified version
of this model is used in the real system with the automatic gain control (Section 5.2) to predict the
measurement noise for the Kalman filter (Section 5.3).

6.2.2 Complete System Simulations. To produce realistic data for developing and tuning
our algorithms we collected several motion paths (sequences of pose estimates) from our first
generation electro-optical tracker (Figure 3) at its 70 Hz maximum report rate. These paths were
recorded from both naive users visiting our monthly “demo days” and from experienced users in
our labs. In the same fashion as we had done for (Azuma & Bishop, 1994a) we filtered the raw
path data with a non-causal zero-phase-shift low-pass filter to eliminate energy above 2 Hz. The
output of the low-pass filtering was then re-sampled at whatever rate we wanted to run the
simulated tracker, usually 1000 Hz. For the purposes of our simulations we considered these re-
sampled paths to be the “truth”—a perfect representation of a user’s motion. Tracking error was
determined by comparing the “true” path to the estimated path produced by the tracker.

The simulator reads camera models describing the 26 views, the sensor noise parameters, the
LED positions and their expected error, and the motion path described above. Before beginning
the simulation, the LED positions are perturbed from their ideal positions by adding normally
distributed error to each axis. Then, for each simulated cycle of operation, the “true” pose are
updated using the input motion path. Next, a view is chosen and a visible LED within that view is
selected, and the image-plane coordinates of the LED on the chosen sensor are computed using
the camera model for the view and the LED as described in Section 5.3. These sensor coordinates
are then perturbed based on the sensor noise model (Section 6.2.1) using the distance and angle to

Page 17 of 22

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

the LED. Now these noise corrupted sensor readings are fed to the SCAAT filter to produce an
updated position estimate. The position estimate is compared to the true position to produce a
scalar error metric described next.

The error metric we used combines the error in pose in a way that relates to the effects of
tracker error on a head-worn display user. We define a set of points arrayed around the user in a
fixed configuration. We compute two sets of coordinates for these points; the true position using
the true pose, and their estimated position using the estimated pose. The error metric is then the
sum of the distances between the true and estimated positions of these points. By adjusting the
distance of the points from the user we can control the relative importance of the orientation and
the position error in the combined error metric. If the distance is small, then the position error is
weighted most heavily; if the distance is large then the orientation error is weighted most heavily.
Our two error metrics for the entire run are the square-root of the sum of the squares of all the
distances, and the peak distance.

6.2.3 Tuning. Determining the magnitudes of the SCAAT Kalman filter noise parameters
(Section 5.3) is called system identification or tuning. We use Powell’s method (Press, Teukolsky,
Vetterling, & Flannery, 1990) to minimize the error metric described above. Starting with a set of
parameters we run the simulator over a full motion run to determine the total error for the run. The
optimizer makes a small adjustment to the parameters and the process is repeated. These runs
required hours of computer time and some skill (and luck) in choosing the initial parameters and
step sizes. Of course, it is important to choose motion paths that are representative of expected
target motion. For example, a run in which the target is very still would result in very different
tuning from a run in which the target moves very vigorously.

7. FUTURE WORK

7.1 Improving the HiBall
The current SCAAT filter form (Section 5.3) and tuning values (Section 6.2.3) are a

compromise between the responsiveness desired for high dynamics, and the heavy filtering
desired for smooth estimates during very slow or no motion. As such we are investigating the use
of a multi-modal or multiple-model Kalman filter framework (Bar-Shalom & Li, 1993; Brown &
Hwang, 1992). A multiple-model implementation of the HiBall should be able automatically,
continuously, and smoothly choose between one Kalman filter tuned for high dynamics, and
another tuned for little or no motion. We have this working in simulation, but not yet implemented
in the real system.

As mentioned in Section 4.3, the system was designed to support wireless communication
between the HiBall and the CIB, without significant modification or added information overhead.
Despite the fact that commercial head-worn displays are themselves tethered at this time, we are
beginning work on a completely wireless HiBall and head-worn display system. We also intend to
use the wireless HiBall with projector-based displays where the user is otherwise wearing only
polarized glasses. Furthermore the HiBall was designed with extra built-in digital input-output
capabilities. We are considering possibilities for providing access to these signals for (wireless)
user-centered input devices and even body-centric limb tracking.

Finally we note that a private startup company called 3rdTech (3rdTech, 2000) has negotiated
a technology license with UNC for the existing HiBall Tracking System. 3rdTech is now
marketing an updated system with simpler LED “strips” instead of ceiling panels.

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

Page 18 of 22

7.2 Wide-Field-of-View HiBall
Beyond improving the existing system, we continue to head down a path of research and

development that will lead to systems with reduced dependency on the laboratory infrastructure.
For example, our current Ceiling panel design with 32 LEDs per panel, provides far more dense
coverage than we believe is necessary. The density of Ceiling LEDs is a result of design based on
the original sensor fixture show in Figure 3. Given a more sparse field of LEDs we believe that we
could achieve similar performance with a version of the HiBall that has a small number of wide
field of view optical sensor units. This would further reduce the packaging size of the user-worn
sensor component.

7.3 To the Hallway and Beyond
By leveraging the knowledge gained from successful work in the laboratory, our long term

goal is to achieve similar performance with little or no explicit infrastructure, for example
throughout a building or even (some day) outdoors. While high-performance 6D tracking
outdoors is a tremendous challenge that is unlikely to be solved any time soon, we believe that the
eventual solution will involve a clever and careful combination of multiple complementary
technologies. In particular we are pursuing the hybrid approach initially presented in (Welch,
1995). We look forward to a day when high-performance 6D tracking outdoors enables pose-
aware devices for work such as Feiner’s outdoor augmented reality (Feiner, MacIntyre, Höllerer,
& Webster, 1997; Höllerer, Feiner, Terauchi, Rashid, & Hallaway, 1999), the “WorldBoard”
initiative (Spohrer, 1999a, 1999b), and other wonderful applications.

8. ACKNOWLEDGEMENTS
We acknowledge former Tracker Project members and contributors (alphabetically):

Ronald Azuma, Matthew Cutts, Henry Fuchs, Stefan Gottschalk, Jeffrey Juliano, Pawan Kumar,
Benjamin Lok, John Thomas, Greg Turk, Jih-Fang Wang, Scott Williams, Hans Weber, Mary
Whitton, and Philip Winston. We thank Al Barr (California Institute of Technology) and John
“Spike” Hughes (Brown University) for their contributions to the original off-line LED
calibration work that led to the simpler Ceiling panels (Figure 1 and Figure 10). Finally we want
to acknowledge our many collaborators in the NSF Science and Technology Center for Computer
Graphics and Scientific Visualization (below), and in particular our collaborators in mechanical
design and fabrication at the University of Utah: Rich Riesenfeld, Sam Drake, and Russ Fish.

This work was supported in part by DARPA/ETO contract number DABT 63-93-C-0048,
“Enabling Technologies and Application Demonstrations for Synthetic Environments”, Principal
Investigators Frederick P. Brooks Jr. and Henry Fuchs (UNC); and by the National Science
Foundation Cooperative Agreement no. ASC-8920219: “Science and Technology Center for
Computer Graphics and Scientific Visualization,” Center Director Rich Riesenfeld (University of
Utah). Principal Investigators Al Barr (Caltech), Don Greenberg (Cornell University), Henry
Fuchs (UNC), Rich Riesenfeld, and Andy van Dam (Brown University).

Page 19 of 22

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

REFERENCES

3rdTech. (2000, July 15). 3rdTech™, [HTML]. 3rdTech. Available: http://www.3rdtech.com/
[2000, July 19].

Ascension. (2000). Ascension Technology Corporation, [HTML]. Ascension Technology
Corporation. Available: http://www.ascension-tech.com/ [2000, September 15].

Azarbayejani, A., & Pentland, A. (1995). Recursive Estimation of Motion, Structure, and Focal
Length. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(6).

Azuma, R. T. (1993, July). Tracking Requirements for Augmented Reality. Communications of
the ACM, 36, 50-51.

Azuma, R. T. (1995). Predictive Tracking for Augmented Reality. Unpublished Ph.D. Dissertation,
University of North Carolina at Chapel Hill, Chapel Hill, NC USA.

Azuma, R. T., & Bishop, G. (1994a). A Frequency-Domain Analysis of Head-Motion Prediction,
Computer Graphics (SIGGRAPH 94 Conference Proceedings ed., pp. 401-408). Los Angeles,
CA: ACM Press, Addison-Wesley.

Azuma, R. T., & Bishop, G. (1994b). Improving Static and Dynamic Registration in an Optical
See-Through HMD, Computer Graphics (SIGGRAPH 94 Conference Proceedings ed., pp.
197-204). Orlando, FL USA: ACM Press, Addison-Wesley.

Azuma, R. T., & Ward, M. (1991). Space-Resection by Collinearity: Mathematics Behind the
Optical Ceiling Head-Tracker (Technical Report 91-048). Chapel Hill, NC USA: University
of North Carolina at Chapel Hill.

Bar-Shalom, Y., & Li, X.-R. (1993). Estimation and Tracking: Principles, Techniques, and
Software.: Artec House, Inc.

Bhatnagar, D. K. (1993). Position trackers for Head Mounted Display systems: A survey
(Technical Report TR93-010). Chapel Hill, NC USA: University of North Carolina at Chapel
Hill.

Bishop, G. (1984). The Self-Tracker: A Smart Optical Sensor on Silicon. Unpublished Ph.D.
Dissertation, University of North Carlina at Chapel Hill, Chapel Hill, NC USA.

Bishop, G., & Fuchs, H. (1984, January 23-25). The Self-Tracker: A Smart Optical Sensor on
Silicon. Paper presented at the Advanced Research in VLSI, Massachusetts Institute of
Technology.

BL. (2000). CODA mpx30 Motion Capture System, [html]. B & L Engineering. Available: http://
www.bleng.com/animation/coda/codamain.htm [2000, April 27].

Brown, R. G., & Hwang, P. Y. C. (1992). Introduction to Random Signals and Applied Kalman
Filtering (Second ed.): Wiley & Sons, Inc.

Burdea, G., & Coiffet, P. (1994). Virtual Reality Technology (First ed.): John Wiley & Sons, Inc.
Burton, R. P. (1973). Real-Time Measurement of Multiple Three-Dimensional Positions.,

University of Utah, Salt Lake City, UT USA.
Burton, R. P., & Sutherland, I. E. (1974). Twinkle Box: Three-Dimensional Computer-Input

Devices, Proceedings of the National Computer Conference. Chicago, IL USA.
Chi, V. L. (1995). Noise Model and Performance Analysis Of Outward-looking Optical Trackers

Using Lateral Effect Photo Diodes (TR95-012). Chapel Hill, NC USA: University of North
Carlina at Chapel Hill.

Emura, S., & Tachi, S. (1994). Sensor Fusion based Measurement of Human Head Motion. Paper
presented at the 3rd IEEE International Workshop on Robot and Human Communication (RO-
MAN 94 NAGOYA), Nagoya University, Nagoya, Japan.

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

Page 20 of 22

Feiner, S., MacIntyre, B., Höllerer, T., & Webster, A. (1997). A Touring Machine: Prototyping 3D
Mobile Augmented Reality Systems for Exploring Urban Environments. Personal
Technologies, 1(4), 208-217.

Focus Software. (1995). ZEMAX Optical Design Program User's Guide, , Version 4.5. Tucson,
AZ USA.

Foxlin, E., Harrington, M., & Pfeifer, G. (1998). Constellation™: A Wide-Range Wireless
Motion-Tracking System for Augmented Reality and Virtual Set Applications. In M. F. Cohen
(Ed.), Computer Graphics (SIGGRAPH 98 Conference Proceedings ed., pp. 371-378).
Orlando, FL USA: ACM Press, Addison-Wesley.

Fuchs (Foxlin), E. (1993). Inertial Head-Tracking (manual). Unpublished M.S. Thesis,
Massachusetts Institute of Technology, Cambridge, MA USA.

Gelb, A. (1974). Applied Optimal Estimation. Cambridge, MA: MIT Press.
Gottschalk, S., & Hughes, J. F. (1993). Autocalibration for Virtual Environments Tracking

Hardware, Computer Graphics (SIGGRAPH 93 Conference Proceedings ed.). Anaheim, CA
USA: ACM Press, Addison Wesley.

Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., & Hallaway, D. (1999). Exploring MARS:
developing indoor and outdoor user interfaces to a mobile augmented reality system.
Computers & Graphics, 23, 779-785.

IGT. (2000). Image Guided Technologies, [HTML]. Image Guided Technologies,. Available: http:/
/www.imageguided.com/ [2000, September 15].

Intersense. (2000). Intersense IS-900, [html]. Intersense. Available: http://www.isense.com/
[2000, April 27].

Jacobs, O. L. R. (1993). Introduction to Control Theory (Second ed.): Oxford University Press.
Kadaba, M. P., & Stine, R. (2000). Real-Time Movement Analysis Techniques and Concepts for

the New Millennium in Sports Medicine, [HTML]. Motion Analysis Corporation, Santa Rosa,
CA USA. Available: http://www.motionanalysis.com/applications/movement/rtanalysis.html
[2000, September 15].

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Transaction
of the ASME—Journal of Basic Engineering, 35-45.

Lewis, F. L. (1986). Optimal Estimation with an Introductory to Stochastic Control Theory.: John
Wiley & Sons, Inc.

MAC. (2000). HiRes 3D Motion Capture System, [html]. Motion Analysis Corporation. Available:
http://www.motionanalysis.com/applications/movement/gait/3d.html [2000, September 15].

Maybeck, P. S. (1979). Stochastic models, estimation, and control (Vol. 141).
Mazuryk, T., & Gervautz, M. (1995). Two-Step Prediction and Image Deflection for Exact Head

Tracking in Virtual Environments, Proceedings of EUROGRAPHICS 95 (EUROGRAPHICS
95 ed., Vol. 14 (3), pp. 30-41).

Meyer, K., Applewhite, H., & Biocca, F. (1992). A Survey of Position Trackers. Presence, a
publication of the Center for Research in Journalism and Mass Communication.

Mulder, A. (1994a). Human Movement Tracking Technology (Technical Report TR 94-1): School
of Kinesiology, Simon Fraser University.

Mulder, A. (1994b, May 8, 1998). Human Movement Tracking Technology: Resources, [HTML].
School of Kinesiology, Simon Fraser University. Available: http://www.cs.sfu.ca/people/
ResearchStaff/amulder/personal/vmi/HMTT.add.html [2000, September 15].

Page 21 of 22

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

Mulder, A. (1998, May 8, 1998). Human Movement Tracking Technology, [HTML]. School of
Kinesiology, Simon Fraser University. Available: http://www.cs.sfu.ca/people/ResearchStaff/
amulder/personal/vmi/HMTT.pub.html [2000, September 15].

Polhemus. (2000). Polhemus, [HTML]. Polhemus. Available: http://www.polhemus.com/
home.htm [2000, September 15].

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1990). Numerical Recipes in
C; The Art of Scientific Computing (Second ed.): Cambridge University Press.

Sorenson, H. W. (1970, July). Least-Squares estimation: from Gauss to Kalman. IEEE Spectrum,
7, 63-68.

Spohrer, J. (1999a). Information in Places. IBM Systems Journal, Pervasive Computing, 38(4).
Spohrer, J. (1999b, June 16). WorldBoard; What Comes After the WWW?, [HTML]. Learning

Communities Group, ATG, (c)Apple Computer, Inc. Available: http://worldboard.org/pub/
spohrer/wbconcept/default.html [1999, December 24, 1999].

Sutherland, I. E. (1968). A head-mounted three dimensional display, Proceedings of the 1968 Fall
Joint Computer Conference, AFIPS Conference Proceedings (Vol. 33, part 1, pp. 757-764).
Washington, D.C.: Thompson Books.

Thomas, S. W. (1984, December). The Alpha_1 Computer-Aided Geometric Design System in the
Unix Environment. Paper presented at the Computer Graphics and Unix Workshop.

UNC Tracker Project. (2000, July 10). Wide-Area Tracking; Navigation Technology for Head-
Mounted Displays, [HTML]. Available: http://www.cs.unc.edu/~tracker [2000, July 18].

University of Utah Computer Science. (1999). Alpha 1 Publications, [HTML]. University of
Utah, Department of Computer Science. Available: http://www.cs.utah.edu/projects/alpha1/
a1_publications.html [1999, May 28].

Usoh, M., Arthur, K., Whitton, M. C., Bastos, R., Steed, A., Slater, M., & Brooks, F. P., Jr. (1999).
Walking > Walking-in-Place > Flying, in Virtual Environments. In A. Rockwood (Ed.),
Computer Graphics (SIGGRAPH 99 Conference Proceedings ed., pp. 359-364). Los Angeles,
CA USA: ACM Press, Addison Wesley.

Van Pabst, J. V. L., & Krekel, P. F. C. (1993, September 20 - 22). Multi Sensor Data Fusion of
Points, Line Segments and Surface Segments in 3D Space. Paper presented at the 7th
International Conference on Image Analysis and Processing—, Capitolo, Monopoli, Italy.

Wang, J.-F. (1990). A real-time optical 6D tracker for head-mounted display systems.
Unpublished Ph.D. Dissertation, University of North Carolina at Chapel Hill, Chapel Hill, NC
USA.

Wang, J.-F., Azuma, R. T., Bishop, G., Chi, V., Eyles, J., & Fuchs, H. (1990, April 16-20).
Tracking a Head-Mounted Display in a Room-Sized Environment with Head-Mounted
Cameras. Paper presented at the SPIE 1990 Technical Symposium on Optical Engineering
and Photonics in Aerospace Sensing, Orlando, FL.

Wang, J.-f., Chi, V., & Fuchs, H. (1990, March 25-28). A Real-time Optical 3D Tracker for Head-
mounted Display Systems. Paper presented at the Symposium on Interactive 3D Graphics,
Snowbird, UT.

Ward, M., Azuma, R. T., Bennett, R., Gottschalk, S., & Fuchs, H. (1992, March 29 - April 1). A
Demonstrated Optical Tracker With Scalable Work Area for Head-Mounted Display Systems.
Paper presented at the Symposium on Interactive 3D Graphics, Cambridge, MA USA.

Welch, G. (1995). Hybrid Self-Tracker: An Inertial/Optical Hybrid Three-Dimensional Tracking
System (TR95-048). Chapel Hill, NC, USA: University of North Carolina at Chapel Hill,
Department of Computer Science.

The HiBall Tracking System To appear in Presence: Teleoperators and Virtual Environments, February, 2001

Page 22 of 22

Welch, G. (1996). SCAAT: Incremental Tracking with Incomplete Information. Unpublished Ph.D.
Dissertation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Welch, G., & Bishop, G. (1995). An Introduction to the Kalman Filter (TR95-041). Chapel Hill,
NC, USA: University of North Carolina at Chapel Hill, Department of Computer Science.

Welch, G., & Bishop, G. (1997). SCAAT: Incremental Tracking with Incomplete Information. In
T. Whitted (Ed.), Computer Graphics (SIGGRAPH 97 Conference Proceedings ed., pp. 333-
344). Los Angeles, CA, USA (August 3 - 8): ACM Press, Addison-Wesley.

Welch, G., & Bishop, G. (2000, January 23, 2000). The Kalman Filter, [html]. University of North
Carlina at Chapel Hill. Available: http://www.cs.unc.edu/~welch/kalman/index.html [2000,
April 29].

Welch, G., Bishop, G., Vicci, L., Brumback, S., Keller, K., & Colucci, D. n. (1999). The HiBall
Tracker: High-Performance Wide-Area Tracking for Virtual and Augmented Environments,
Proceedings of the ACM Symposium on Virtual Reality Software and Technology (pp. 1-11).
University College London, London, United Kingdom (December 20 - 23): ACM
SIGGRAPH, Addison-Wesley.

Welch, P. D. (1967). The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Transactions on
Audio Electroacoust, AU(15), 70-73.

Woltring, H. J. (1974). New Possibilities for Human Motion Studies by Real-Time Light Spot
Position Measurement. Biotelemetry, 1, 132-146.

	TABLE OF CONTENTS
	LIST OF ABBREVIATIONS
	Preface
	Course Syllabus
	1. Introduction
	1.1 Course Description
	1.2 Speaker/Author Biographies
	1.3 Acknowledgements
	2. Background
	2.1 Basic Coordinate Transforms
	2.2 Probability and Random Variables
	3. Classifications of Devices and Systems
	3.1 By Physical Medium
	3.2 Sensor Configurations
	3.3 Hybrid Systems
	4. Approaches
	4.1 Traditional Closed-Form Approaches
	4.2 Stochastic Approaches
	5. Problems and Insights
	5.1 Classification of Error
	5.2 Total Tracker Error
	5.3 Motion Prediction
	A. An Introduction to the Kalman Filter
	A.1 The Discrete Kalman Filter
	A.2 The Extended Kalman Filter (EKF)
	A.3 An Example: Estimating a Random Constant
	B. Tracking Bibliography
	C. Related Papers
	C.1 Transforms
	C.2 Quaternions
	C.3 SCAAT
	C.4 HiBall

