
SIGGRAPH 2001 Course 9
Media-Rich Programming With OpenML

Course Level: Intermediate
Course Length: Two hours

Randi Rost
3Dlabs, Inc.

Summary Statement

OpenML is a standard, cross-platform environment that supports the creation and display of
digital media, including audio, video, and graphics. This course will present an overview of
OpenML, with emphasis on features that are new in OpenML, including the ML digital
media library, the MLdc API, OpenGL extensions, and synchronization primitives.

Expanded Statement

OpenML is a new industry effort whose goal is to develop a standard, cross-platform
environment that supports the creation and display of digital media, including audio, video,
and graphics. The course will provide a brief overview of the OpenML effort including
participants, charter, deliverables, and ongoing efforts. A key part of OpenML is to define
standard synchronization primitives that can be used by applications to ensure efficient,
accurate, and synchronized delivery of independent digital media streams. The ML digital
media library allows applications to query and control digital input and output devices such
as cameras and video tape recorders. It also manages the efficient flow of digital media
information through the use of buffers and queues. This API will be discussed in some
detail. A number of OpenGL extensions have been defined or adopted in order to allow
OpenGL to function as a key part of a media-rich programming environment. Another API,
MLdc, provides the capability to control back-end video display.

Prerequisites

l Programming experience in C or C++ is required
l Basic knowledge of computer graphics/video hardware is assumed
l Working knowledge of OpenGL is helpful
l Familiarity with video standards and terminology is helpful

Topics List

l Overview of the Khronos Group SIG and its activities
l Architectural overview of the OpenML programming environment
l Synchronization primitives and their use: UST, MSC, and SBC
l Video back-end control using Wdc/Xdc
l OpenGL extensions required for OpenML
l Overview of the OpenML API
l Application programming considerations

Names of Speakers

l Randi Rost, 3Dlabs, Inc.
l Bill Clifford, Intel
l Frank Bernard, SGI
l Benoit Belley, Discreet

Course Syllabus

Introduction (Rost - 5 minutes)

l Welcome
l Speaker introduction and background
l Course outline and schedule

Overview of the OpenML Digital Media Environment (Rost - 20 minutes)

l Motivation for the effort
¡ Shortcomings of existing API's for media-rich programming
¡ Requirements for authoring applications
¡ Requirements for playback applications

l Architectural diagram of the OpenML programming environment
l Data flow diagram of the OpenML environment

Khronos Group SIG (Clifford - 10 minutes)

l Introduction
l Overview of Khronos Group

¡ Members
¡ History
¡ Charter
¡ Accomplishments
¡ Ongoing efforts
¡ Invitation to participate

l OpenML effort
¡ Scope
¡ Schedule
¡ Deliverables
¡ Location of pertinent documents

Synchronization (Clifford - 15 minutes)

l Definition of Unadjusted System Time (UST)
l Definition of Media Stream Counter (MSC)
l Using UST/MSC pairs to provide accurate synchronization
l Definition of SBC
l System-level considerations for implementing UST

Video Back-End Control (Clifford - 15 minutes)

l Overview of Wdc (Windows Device Control extension)
¡ Channels
¡ Logical monitors
¡ Controls
¡ Queries
¡ Events/messages
¡ Error handling

l Comparison of Wdc and Xdc (X Device Control extension)

OpenGL Extensions for OpenML (Rost - 20 minutes)

l Minimum OpenGL requirements for OpenML
l Standard pixel formats
l Sync control extension
l Interlace extension
l Pbuffers
l Async extensions
l Subsample/resample extensions
l Memory management extension
l Render to texture
l Extended precision pixels

Break (15 minutes)

OpenML Digital Media Library (Bernard - 40 minutes)

l Architectural overview of OpenML API
¡ Components
¡ Messages and communication
¡ Audio/visual jacks
¡ Audio/visual paths
¡ Pipes and trancoders
¡ Parameters
¡ Capabilities
¡ Video parameters
¡ Image parameters
¡ Audio parameters
¡ Processing
¡ Synchronization

Application Programming Considerations in the OpenML Environment (Belley - 40
minutes)

l Initialization and setup
l Performance considerations
l Synchronization
l Real-time considerations
l Recovering from dropped frames
l Effective use of multiple threads
l Portability of code

Wrap-up and Questions (all - 15 minutes)

Course History

This is a new course. It follows in the tradition of offering SIGGRAPH courses on
significant new programming standards for computer graphics. Courses on OpenGL have
been offered at SIGGRAPH since 1992.

Course Presenters' Information

Randi Rost has managed the Multimedia Graphics Group at 3Dlabs, Inc. (formerly
Dynamic Pictures) since October '97. This group is currently responsible for OpenGL driver
development for the 3Dlabs' Oxygen family of graphics products. Prior to joining 3Dlabs,
Randi was a graphics software architect for Hewlett-Packard's Graphics Software Lab and
was responsible for leading Hewlett-Packard's graphics software efforts in the areas of
imaging and volume rendering. Prior to joining Hewlett-Packard, he was chief architect for
graphics software at Kubota Graphics Corporation. There he was responsible for leading
KGC's efforts to design and implement a rich and flexible software environment for KGC's
line of high-performance graphics and imaging systems. Randi has participated in emerging
graphics standards efforts for almost fifteen years. He was one of the chief architects for
PEX and served as the PEX document editor for the first four years of the effort. He
participated in the design of OpenGL and was an OpenGL Architecture Review Board
member for six years, and was a member of the Graphics Performance Characterization
(GPC) Committee during the development of the Picture-Level Benchmark (PLB). He
received NCGA's 1993 Achievement Award for the Advancement of Graphics Standards.
Randi has previously participated in SIGGRAPH tutorials on PEX and evaluating graphics
workstations, was the course organizer for tutorials on large model visualization at
SIGGRAPH '93, and was the course organizer for tutorials on OpenGL at SIGGRAPH `92,
`93, and `94 and at Eurographics `94. His most recent SIGGRAPH presentation was as the
course organizer for "CPU Extensions for Graphics and Video" presented at SIGGRAPH
'99.

Randi Rost
Manager, Multimedia Graphics
Group
3Dlabs, Inc.
141 South College Ave., Suite
#104
Fort Collins, CO 80524
rost@3dlabs.com

Bill Clifford
Senior Staff Engineer
Desktop Architecture Lab
Intel Corporation
DP2-218
2800 Center Drive N
DuPont, WA 98327

Bill Clifford is a Senior Staff Engineer in the Desktop Architecture Lab in Intel's
Technology & Research Laboratories. Bill is Secretary of the Khronos Group where he is
responsible for the timely completion of the OpenML Specification. Bill has over fifteen
years industry experience in graphics. Prior to joining Intel, Bill worked for Digital
Equipment and Compaq on 3D Graphics API architectures including OpenGL, PEX and
PHIGS.

Frank S. Bernard has been with SGI since September 1993 and is a Staff Technical Lead
in the Digital Media Group. He is currently working on OpenML - an industry standard API
and environment for digital content creation and playback. Frank is a software and systems
architect and has worked on Interactive TV systems, codec architectures and digital media
APIs. Prior to joining SGI, he worked at Sarnoff Research Center on digital signal
processing features for digital TV including pix-in-pix, digital convergence, progressive
scan systems and programming techniques for parallel computing architectures. Frank has a
number of patents granted or pending. He holds a BSEE degree from Rutgers University
and a MSEE degree from Georgia Institute of Technology.

Benoit Belley is a System Architect in product development at Discreet. Benoit is currently
responsible for the development of digital visual effects and editing software. He is also
acting as Discreet's representative to the Khronos Group SIG. Benoit joined Discreet in
1994. Prior to that, he worked at CAE Electronics where he helped develop graphics
algorithms used in image generators for flight simulators. He has a B.Eng. in Electrical
Engineering from the University of Sherbrooke.

william.h.clifford@intel.com

Frank Bernard
Technical Lead
Digital Media Software
SGI
1200 Amphitheatre Parkway
MS 43-2-592
Mountain View, CA 94043
frankb@sgi.com

Benoit Belley
System Architect
Product Development
Discreet, a division of AutoDesk
10 rue Duke
Montréal, Québec, Canada H3C 2L7
belley@discreet.com

Media-Rich Programming With
OpenML

Media-Rich Programming With
OpenML

Randi Rost, 3DlabsRandi Rost, 3Dlabs
Benoit Benoit BelleyBelley, Discreet, Discreet

Frank Bernard, SGIFrank Bernard, SGI
Bill Clifford, IntelBill Clifford, Intel

AgendaAgenda
•The Khronos Group SIG
•Quick overview of OpenML
•The OpenML programming environment

•Synchronizing video, graphics and audio stream
•Controlling the video back end
• Integrating video images with 3D graphics
• Input/Output and processing of digital media

•Application considerations in rich-media
programming

•Khronos Group next steps
•Wrap-up

The Khronos Group SIGThe Khronos Group SIG

Randi RostRandi Rost
Senior Software EngineerSenior Software Engineer

3Dlabs, Inc.3Dlabs, Inc.

Khronos Group MissionKhronos Group Mission
Develop a royaltyDevelop a royalty--free, open, crossfree, open, cross--platform platform
standard programming environment for capturing, standard programming environment for capturing,
processing, synchronizing, and playing digital processing, synchronizing, and playing digital
media in order to:media in order to:

•Help grow Digital Media creation, playback and
server segments by setting enabling standards and
specifications.

•Enable cooperation between platform, hardware,
and application vendors for seamless
interoperability to customers.

•Establish future technology needs in DCC
segment.

The Khronos Group SIGThe Khronos Group SIG

Promoters:Promoters:
• 3dfx, 3Dlabs, ATI, discreet, Evans and Sutherland,

Intel, NVIDIA, SGI, Sun

Initial Focus –Dynamic Media AuthoringInitial Focus –Dynamic Media Authoring

Initial Focus –Dynamic Media AuthoringInitial Focus –Dynamic Media Authoring
• OpenML - dynamic media authoring environment

•Dynamic Media = tightly integrated graphics, video
and audio

• What OpenGL® is to 3D content creation …
… OpenML is to video and audio authoring

Workstation
3D Graphics

Professional video and
audio authoring

Synergistic integration of graphics
and video/audio capabilities

Khronos Group GoalsKhronos Group Goals

•Standardize support for audio, video, 2D graphics,
and 3D graphics at the lowest level that provides
the desired functionality and unification

•Support a range of operating environments, from
embedded systems to high-end workstations

•Utilize existing standards wherever possible

•Work within existing standards bodies wherever
possible

Khronos Group GoalsKhronos Group Goals

• At a minimum, comparable functionality must
exist across operating environments, but best case
is supporting the exact same API across multiple
environments

• Develop conformance tests to certify
implementations

• Develop performance tests to allow comparison of
implementations

Technical Strategy for OpenML 1.0Technical Strategy for OpenML 1.0

• Focus on authoring applications

• Build around OpenGL®

• Base digital media I/O component on SGI
dmSDK

• Extend OpenGL with video primitives

• Extend OpenGL rendering for DCC

• Take OpenGL extensions to the ARB

Why OpenGL as a base?Why OpenGL as a base?
•Industry de facto standard for professional 3D

•Standard component of Windows, Linux/UNIX*,
and MAC OS* systems.

•3D API of choice for Digital Content Creation

•Important for games (40-45% of new titles using
OpenGL)

•Backed by open industry consortium (ARB)

•OS and platform independent

* Other brands and names are the property of their respective owners

Technical Requirements for AuthoringTechnical Requirements for Authoring
• Input/Output video images to/from OpenGL buffers

and system memory

• Input/Output digital audio to/from system memory

• Time stamping and synchronization of all data
streams (graphics, audio, video)

• Compositing of graphics and video performed by
OpenGL

• Improved OpenGL rendering capabilities (scalable
primitives, full scene AA, better texture filtering,…)

• Handle emerging video/graphics combo boards

Khronos TimetableKhronos Timetable

Jan ’00: Ad hoc SIG formed

Apr ’00: Announced SIG at NAB

Jun ’00: Formal SIG formed

Jan ’01: OpenML V1.0 functionality freeze

Jun ’01: OpenML V1.0 Specification published

2H ‘01: First implementations

OpenML™ OverviewOpenML™ Overview

Randi RostRandi Rost
Senior Software EngineerSenior Software Engineer

3Dlabs, Inc.3Dlabs, Inc.

Digital Media EnvironmentDigital Media Environment
ApplicationsApplications

WindowWindow
SystemSystem OpenGLOpenGL

®®

Synchronization

MLdc ML

2D Graphics 3D Graphics Displays Video Audio

OpenML Components

• Synchronization (UST/MSC)

• Display control (MLdc API)

• OpenGL extensions

• Video/Audio I/O (ML API)

Synchronization in OpenML™Synchronization in OpenML™

Bill CliffordBill Clifford
Senior Staff EngineerSenior Staff Engineer

Intel CorporationIntel Corporation

SynchronizationSynchronization

Audio Device A

Video Device A

Audio Device B

Gfx Device B

Gfx Device A

Application
Do all the

streams come
out in sync?

Synchronization IssuesSynchronization Issues
• Need to ensure that all streams start at the same

time

• Need to ensure that all streams stay in synch

• OS scheduling latencies

• Devices from various manufacturers

• Device latencies are unpredictable

The UST/MSC SolutionThe UST/MSC Solution

UST

Graphics
devices

Digital audio/
video devicesMSC

OpenGLOpenGL MLML

MSC
Output
graphics
samples Video/Audio

I/O samples

USTUST

• Unadjusted System Time

• 64-bit monotonic counter

• Nanosecond resolution

• Microsecond accuracy

• System-wide accessibility

• Time reference for application and media devices

MSCMSC

• Media Stream Counter

• One MSC per media channel

• Incremented at the sample rate of the channel

• Video MSC incremented per image “slot”

• Graphics MSC incremented per retrace

• Audio MSC incremented at audio sample rate, e.g.
44.1KHz

SBCSBC

• Swap Buffer Counter

• Specific to graphics channels

• Incremented per buffer swap

• Needed because buffer swaps not necessarily 1:1
with retrace.

The UST/MSC/SBC Solution
Accurate Media Synchronization
The UST/MSC/SBC Solution
Accurate Media Synchronization

• Every media sample is time-stamped
•Timestamp can be accessed through OpenGL and ML

APIs for temporal analysis and control
• Application can synchronize output events to UST

•Enabling precise timing and synchronization in non-
real-time operating systems

• Applications can detect dropped samples

Using MLdc for Display ControlUsing MLdc for Display Control

Bill CliffordBill Clifford
Senior Staff EngineerSenior Staff Engineer

Intel CorporationIntel Corporation

OpenML’s MLdc API
Abstracted Display Control
OpenML’s MLdc API
Abstracted Display Control

• Allows an application to control what is
displayed on monitors
• Sophisticated level of control beyond most

windowing systems

Progressive Scan
Computer Monitor
Progressive Scan
Computer Monitor

Progressive Scan
HDTV Monitor

Progressive Scan
HDTV Monitor

Interlaced
Video Monitor
Interlaced

Video Monitor

Channels

Framebuffers

Monitors

OpenML’s MLdc APIOpenML’s MLdc API

• A window system independent API based on SGI’s
Xdc extension to X11

• MLdc allows an application to control the video
back-end of graphics devices

• MLdc sets up channels to drive each display screen
•Channels that are driven from sections of physical

frame buffers
•Number and type of supported channels depends on

the display device

OpenML’s MLdc APIOpenML’s MLdc API
• Properties that can be controlled include:

•The number of channels and where their display
data is derived

• Interrogating monitor information
•Precise video positioning
•Video format query and settings
•Vertical retrace rate
• Interlaced vs. progressive
•Gamma ramp control
•Video sync sources
•Genlock state notification

OpenGL Extensions for OpenMLOpenGL Extensions for OpenML

Randi RostRandi Rost
Senior EngineerSenior Engineer

3Dlabs, Inc.3Dlabs, Inc.

OpenGL RequirementsOpenGL Requirements

Required to support OpenML:Required to support OpenML:
• OpenGL 1.2.1

• GLX 1.3 (Linux/UNIX environments)

• WGL (Windows environments)

OpenGL extensionsOpenGL extensions
• A set of OpenGL extensions that OpenML compliant

graphics hardware must implement

• Oriented toward handling of video streams in
OpenGL

• Majority are aimed at authoring applications

PbuffersPbuffers
• Required as part of GLX 1.3
• WGL implementations must include

WGL_ARB_pbuffer and
WGL_ARB_make_current_read

• Provides support for buffering and offscreen
processing of video data

• Provides the primary data link between OpenML
and OpenGL

OpenGL Imaging SubsetOpenGL Imaging Subset

•Optional in OpenGL 1.2.1, but required for OpenML
authoring

•Provides processing capability on video stream:
•Filtering
•Color correction
•Blending
• Image enhancement
•Color space conversion

OpenGL Imaging SubsetOpenGL Imaging Subset
Extensions defined by the OpenGL imaging Extensions defined by the OpenGL imaging

subset:subset:
• blend_color

• blend_minmax

• blend_subtract

• color_matrix

• color_subtable

• color_table

• convolution

• convolution_border_modes

• histogram

Sync ControlSync Control
• Provides UST/MSC synchronization primitives to

OpenGL

• Fundamental building block for synchronizing
video, audio, and graphics

• Functions added: WaitForMSC, SwapBuffersMSC,
GetSyncValues

InterlaceInterlace

• Based on two previous extensions
• SGIX_interlace
• INGR_interlace_read

• Allows reading and writing the frame buffer while
skipping every other line

• Allows processing (e.g., convolution) on interlaced
video streams

Texture Color MaskTexture Color Mask

• Recently promoted from an SGI extension to an
ARB extension

• Works for textures like the OpenGL color mask
works for the color buffer

• Allows RGB images to be stored and loaded into
texture memory independently of Alpha (mask)
images

Asynchronous BehaviorAsynchronous Behavior

•SGIX_async and SGIX_async_pixel allow certain
OpenGL commands to operate asynchronously

•The following OpenGL commands are treated as
non-blocking:

• DrawPixels
• ReadPixels
• Tex{Sub}Image{*}

• Markers are used to determine completion

Subsample/ResampleSubsample/Resample
• Allow upsampling and downsampling of chroma

when converting between YUV video data and RGB
images

• Sampling options are:
• Replicate
• Zero fill
• Average

Extended Color RangeExtended Color Range
• Some images require higher image fidelity than is

possible with 8 bits per component (I.e., to avoid
banding)

• Allows for “super-bright” and “super-dark” colors

• Removes clamping to [0,1] at various rendering
stages

• Useful for compositing

Implementing and Using MLImplementing and Using ML

Frank BernardFrank Bernard
MTS MTS –– Technical Lead Technical Lead –– Digital MediaDigital Media

Silicon Graphics, Inc.Silicon Graphics, Inc.

OpenML’s “ML” API OpenML’s “ML” API
Based on SGI’s dmSDK 2.0

• A well-proven heritage

Windows NT
dmSDK 1.0

IRIX
VL, AL, CL, DMIC, DMAC, DMS

IRIX/LINUX (NT)
dmSDK 2.0

Windows, Unix, Linux, Mac
ML

ML
Programming Interface
ML
Programming Interface

• Simple C interface
•Blocking, non-blocking, status & reply
• Includes considerations for layering other languages

• Abstract OS dependencies and make size explicit

• Use DMint32, DMwaitable
•Rather than int, DWORD or HANDLE

ML
Interface Level
ML
Interface Level

• ML is a low-level API

• Provides device independence without imposing
policy

OpenInventorOpenInventor QuickTimeQuickTime

OpenGLOpenGL dmSDK APIdmSDK API

Low levelLow level
((ioctlioctl interface)interface)

ML
Application Memory-centric Design
ML
Application Memory-centric Design

On-
bo

ar
d

Au
di

o

On-
bo

ar
d

Au
di

o

PC
I/1

39
4

Vi
de

o

PC
I/1

39
4

Vi
de

o

Tr
an

sc
od

er
s

Tr
an

sc
od

er
s

OpenGLOpenGL Network/file I/ONetwork/file I/ODM APIDM API

ApplicationApplication

ML
Framework on Linux
ML
Framework on Linux

ApplicationApplication

ML

dmmodules

user
kernel

h/w AudioAudio

ossoss

Oss
audio
Oss

audio

VideoVideo

V4lV4l

V4l
video
V4l

video

1394 camcorder1394 camcorder

13941394
S/W

Xcoders
S/W

Xcoders

Higher-level libraryHigher-level library

ML

ML
Application memory-centric model
ML
Application memory-centric model

Application memoryApplication memory

Video
Input

device

Video
Input

device
GraphicsGraphics

1. send
2. receive

3. drawPixels

ML
Logical Flow of Media Data
ML
Logical Flow of Media Data

Jack Jack

Transcoder

Source
Pipe

Destination
Pipe

Path PathBufferBuffer Buffer

Application

ApplicationApplication

DeviceDevice

ML
Asynchronous communications model
ML
Asynchronous communications model

- Parameters
- Messages
- Capabilities
- Queues

ML
Parameters
ML
Parameters

•Video - sampling, colorspace, ust/msc, etc…

•Image - packing, dominance, skip, interlace, etc…

•Audio - sfreq, chans, gain, ust/msc, etc...

struct DMpv
{

DMint64 param;
DMvalue value; /* union of int32, int64, real32, real64, ptr, … */
DMint32 length;
DMint32 maxLength;

}

ML
Messages
ML
Messages

• All messages are treated as atomic units

DMpv control[3];

control[0].param = DM_IMAGE_WIDTH_INT32;
control[0].value.int32 = 1920;
control[1].param = DM_IMAGE_HEIGHT_INT32;
control[1].value.int32 = 1080;
control[2].param = DM_END;

ML
Capabilities
ML
Capabilities

• dmGetCapabilities()

• dmPVGetCapabilities()
SystemSystem

Physical
Dev

Physical
Dev

PVs
SFreq
PVs

SFreq
PVs

Chans
PVs

Chans

PathsPaths JacksJacks PipesPipes

ML
Opening a logical device
ML
Opening a logical device

• dmOpen()

ApplicationApplication Logical
device

Logical
device

Recv. hdrsRecv. hdrs

Send hdrsSend hdrs

payloadpayload

exceptionexception

Queues

ML
Out-of-band controls
ML
Out-of-band controls

ApplicationApplication Logical
device

Logical
device

Out-of-band communication
DMpv control[3];
control[0].param = DM_IMAGE_WIDTH_INT32;
control[0].value.int32 = 720;
control[1].param = DM_IMAGE_HEIGHT_INT32;
control[1].value.int32 = 486;
control[2].param = DM_END;

dmSetControls(videoPath, controls);

ML
Sending messages
ML
Sending messages

• dmSendControls()

• dmSendBuffers()

• dmQueryControls()

ApplicationApplication Logical
device

Logical
device

ML
Beginning the transfer
ML
Beginning the transfer

• dmBeginTransfer()

ApplicationApplication

ML
Handling exceptional events
ML
Handling exceptional events

ApplicationApplication

!

sync loss, sync gain
vertical retrace,

rate_changed
sequence_loss

ML
Receiving reply messages
ML
Receiving reply messages

• dmReceiveMessage()

• dmGetReceiveWaitHandle()

ApplicationApplication

!

Logical
device

ML
Processing reply messages
ML
Processing reply messages

dmGetReceiveWaitHandle(VideoPath, &handle)
do
{

select(… handle…);
dmReceiveMessage(VideoPath, &msgType, &replyMsg);
switch (msgType)

{
:
:

}
} while (…);

ML
Shutdown
ML
Shutdown

• dmEndTransfer()

• dmClose()

ApplicationApplication Logical
device

Logical
device

ML
Transcoders
ML
Transcoders

ApplicationApplication Compression
Engine

Compression
Engine

Src_pipe

Dst_pipe

DV,DVCPRO50,
JPEG,MPEG,
MUX/DMUX

ML
Summary
ML
Summary

• OpenML enables cross-platform and cross OS
development
• Through integrating Graphics, Video and Audio

• ML enables abstracted query and control of media
processing devices
• E.g. IEEE1394 cameras, video transcoders, OSS audio processors

• ML is used to setup processing pipelines between I/O
and devices
• With optimized buffering and synchronization between devices and

the application

Application Programming
Considerations

Application Programming
Considerations

Benoit Benoit BelleyBelley
System ArchitectSystem Architect

Discreet, a division of Autodesk, Inc.Discreet, a division of Autodesk, Inc.

Application Programming Issues
and Techniques
Application Programming Issues
and Techniques

• Real-world applications

• Scenarios

• Performance considerations

• Multi-threading

• Recovering from dropped frames

• Portability of code

Real-world applicationsReal-world applications
• Discreet shipping products:

•Special effects and compositing
•Off-line and on-line editing
•Broadcast graphics and virtual sets
•3D modeling and animation

• Multi-platform: PC, Mac, SGI*

• Expertise learned from these products was used to
design OpenML

ScenariosScenarios

• Video Preview

• Media Playback

• Video Input

• Real-time video effects

Video Preview: Why?Video Preview: Why?
Graphics output typically: Graphics output typically:

• Progressive

• RGB, Full Color Bandwidth

• Square Pixels

• Arbitrary raster size

Video output typically:Video output typically:
• Interlaced

• YCrCb, Half Color Bandwidth

• Non-square Pixels

• Standard raster size

Video Preview: How?Video Preview: How?

• Use MLdc to setup:
•Video output channel coordinates
•Video blanking
•Video format

• Use OpenGL to render into frame buffer

• View interaction result on final display device: the
video monitor

Media PlaybackMedia Playback
Video output channel configured as for video previewVideo output channel configured as for video preview
Image data sources:Image data sources:

• Disk (optionally through ML Codec)

• Memory

• CPU real-time rendering/processing

• OpenGL real-time rendering

Image data drawn with OpenGL:Image data drawn with OpenGL:
• glDrawPixels()

• glTexSubImage2D()/polygon draw

• Optional imaging, blending operations

• OpenGL interlace, chroma resampling extensions

SynchronizationSynchronization

Audio must be synchronized with video:Audio must be synchronized with video:
• Audio is the sync master

• Video frames can be dropped or repeated to stay in sync

• Repeating interlaced frames can result in visual artifact

UST/MSC is used to measure sync offsets:UST/MSC is used to measure sync offsets:
• EXT_sync_control OpenGL extension for buffer swaps.

• ML_WAIT_FOR_AUDIO_UST ML predicate control

Video captureVideo capture
Memory centric model:Memory centric model:

• Video data DMA from video board to main memory

• Optional memory to memory ML codec

• Memory to disk for storage

• Memory to graphics for monitoring

Synchronization requirements:Synchronization requirements:
• Audio captured in sync with video

• Audio and video delays through capture subsystem may be
different

• UST/MSC is used to measure this

Video capture (cont.)Video capture (cont.)

VTR machine control:VTR machine control:
• RS422 Sony* protocol most widely used

• Commands must be sent in specific time intervals
with respect to external Genlock

• UST/MSC for serial port driver can be used to
achieve this

Real-time video effectsReal-time video effects
Video stream sources:Video stream sources:

• Disk storage

• VTRs/Video servers

• Live video sources / cameras / switchers

RealReal--time graphics integrated with videotime graphics integrated with video
• Anti-aliasing

• Anti-flicker filters

• Alpha channel output for external keying

RealReal--time requirements:time requirements:
• Live to air

• Human in the loop for virtual sets requires low latency

• External data sources

Performance ConsiderationsPerformance Considerations
PrePre--allocate memory buffersallocate memory buffers

• Lock down memory

• Avoid fragmentation

• Malloc() is usually non-deterministic

Shield application from operating system Shield application from operating system
latencies:latencies:
• Use buffering on hardware and in main memory

• Keep ML queues full

• Use multi-threading

Multi-threadingMulti-threading
•Multi-threaded operation:

• Avoid busy waits
• Free CPUs for codec and image processing tasks
• Use all CPUs
• Use producer/consumer model
• Be weary of priority inversions
• Avoid costly device context switch overhead

•Consider using a supervisor thread to monitor
synchronization and real-time operation of other
threads

Code PortabilityCode Portability

Portability in digital media applications has Portability in digital media applications has
typically been very poor:typically been very poor:
• Every new video I/O board requires specific coding

• New systems introduce / replace dedicated
hardware connections, breaking fundamental
assumptions

• Memory centric model, OpenML abstractions shield
against this

Code Portability (cont.)Code Portability (cont.)
•OpenML can report media device capabilities

•OpenGL helps portability, but:
•Test for frame buffer configurations
•Test for extension availability
•Avoid software slow paths

•For real-time applications, specific systems and
components will probably need to be tested and
qualified

API’s for
Embedded Systems

API’s for
Embedded Systems

Randi RostRandi Rost
Senior Software EngineerSenior Software Engineer

3Dlabs, Inc.3Dlabs, Inc.

Standard API’s for embedded marketsStandard API’s for embedded markets

Low-level “Embedded” Graphics APIsLow-level “Embedded” Graphics APIs
An Urgent Industry Need … An Urgent Industry Need …

• … to bring advanced graphics capabilities to an
increasing variety of devices, appliances and
embedded displays

• The graphics hardware industry is delivering
acceleration as tunable, flexible IP cores rather
than monolithic chips

• This enables finely-tuned graphics acceleration
for specific markets

• Open Visual APIs are the only way to avoid
market chaos

Goal of OpenML Embedded Effort

• Create open standard APIs to enable rich media
playback on a wide variety of embedded and
client devices

• Possible APIs include:
• Safety-critical OpenGL subset

• Advanced UI OpenGL subset

• Rich media OpenGL subset

• OpenGL subset for game developers

• New cross-platform API for vector graphics

• OpenML playback-only subset

Development StrategyDevelopment Strategy
• Collect technical requirements

• In progress
• Seeking additional promoters and contributors
• Speak now or forever hold your peace!

• Develop strawman proposal
• There is a stake in the ground, more work is needed

• Establish OpenML Working Groups to refine each API
• Working groups will have members with similar needs and

goals
• Get OpenGL ARB approval when complete

• ARB has already voiced approval for this approach

New Embedded API’sNew Embedded API’s
Enabling playback of rich media on many Enabling playback of rich media on many
devicesdevices
•Creating carefully scaled and profiled versions of
OpenGL and OpenML

Workstation
3D Graphics

Professional video and
audio authoring

“Embedded OpenGL”
Enabling scalable, small

footprint, 2D & 3D graphics

“Embedded OpenML”
Enabling small footprint,
abstracted video & audio

processing

Small footprint APIs bring tightly integrated graphics and video
capabilities to small-footprint devices and embedded displays

Powerful synergy
from consistency

between
authoring and
playback APIs

Advanced I

Enabling progress for different market Enabling progress for different market
segmentssegments
• Need to ground each profile in solid market

requirements

• Distinct interest in 3 possible levels:
•Safety-critical
•Advanced UI
•Rich Media

• First thing for Working Groups to define

“Embedded OpenGL” Profiles“Embedded OpenGL” Profiles

Call to ActionCall to Action

The time to act is now The time to act is now ––fragmentation in the fragmentation in the
embedded space is occurring as we speakembedded space is occurring as we speak
• Become an OpenML contributor

• Participate in a Working Group

• Communicate your requirements to someone in a Working
Group

Participants can have a profound impact on the Participants can have a profound impact on the
direction of this effortdirection of this effort
• Just ask any of the OpenML 1.0 participants

Next Steps for KhronosNext Steps for Khronos

Bill CliffordBill Clifford
Senior Staff EngineerSenior Staff Engineer

Intel CorporationIntel Corporation

Next StepsNext Steps
• Phase 2 will have two thrusts

•OpenML 1.1: continuation of OpenML 1.0 work
•Embedded graphics and media APIs

• Work on organization and goals has started

• Two thrusts but one set of APIs for authoring,
serving, playback

• Schedule is TBD

OpenML 1.1OpenML 1.1
• Continue work on needs of authoring

• Closer integration of ML and OpenGL video
streaming

• Higher quality rendering

• OpenGL resource management

• Define di/dd interfaces

Embedded Graphics and Media APIs Embedded Graphics and Media APIs

•Enable cross-platform, media rich programming in
the embedded space

•Sensitive to gate and power constraints: subset
existing standards for small footprint

•Work with OpenGL ARB to define OpenGL subsets
to address particular requirements

•Identify other subset components to fill out
capability matrix

SummarySummary

• Khronos Group formed to create future media
API

• OpenML integrates Graphics, Video and Audio

• OpenML enables cross-platform and cross OS
development

• OpenML will address the needs of the
embedded market

Call-to-ActionCall-to-Action

• Contact Khronos SIG and participate in
specification creation effort

• Help develop OpenML solution stacks

• Begin OpenML implementations

• Start to develop OpenML based applications

Collateral
Participate in Khronos SIG!Participate in Khronos SIG!

• To become a Promoter, Contributor or an Adopter
• http://www.khronos.org

• Get the Khronos Group White Paper
• http://www.khronos.org

• dmSDK information
• http://oss.sgi.com/projects/dmsdk/

Today’s slidesToday’s slides
• http://www.rosts.com/SIGGRAPH

Learn more about OpenGLLearn more about OpenGL
• http://www.opengl.org

SpeakersSpeakers

rostrost@3dlabs.com@3dlabs.com

belleybelley@discreet.com@discreet.com

frankbfrankb@@sgisgi.com.com
william.h.clifford@intel.comwilliam.h.clifford@intel.com

OpenGL is a registered trademark of SGIOpenGL is a registered trademark of SGI
OpenML is a trademark of Silicon Graphics, Inc., used with permiOpenML is a trademark of Silicon Graphics, Inc., used with permission by the Khronos Special Interest Groupssion by the Khronos Special Interest Group
*Other brands and names are the property of their respective own*Other brands and names are the property of their respective owners.ers.

.

.

An Overview of the
Khronos Group and
OpenML™

This white paper describes the
motivation for the formation of the
Khronos Group and provides an
overview of the OpenML digital
content creation and playback
environment that the Khronos
Group is developing.

WARNING: This document is under
development and is distributed for
information purposes only. Any
material contained herein should
not be considered final and is
subject to change.

Khronos White Paper
DATE
27 April 2001

DOCUMENT NO.
2.0

RESPONSIBLE EMAIL ADDRESS

 2

Special Interest Group (SIG)

The following companies are represented in the Khronos Special Interest Group:

3Dlabs Inc.
ATI Technologies Inc.
Discreet, a division of Autodesk , Inc.
Evans & Sutherland Computer Corporation
Intel Corporation
NVIDIA Corporation
Silicon Graphics, Inc.
Sun Microsystems, Inc.

Contributors

Version 1.0 Roi Agneta Evans & Sutherland Computer Corporation
Matthew Allard Intel Corporation
William Clifford Intel Corporation
Randi Rost 3Dlabs Inc.

Version 2.0 Randi Rost 3Dlabs, Inc.

Disclaimer and copyright notice

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR
ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE. All liability, including liability for infringement of any
proprietary rights, relating to use of information in this document is disclaimed. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

*Third-party brands and names are the property of their respective owners.

 3

Introduction

The development of media authoring systems has evolved from early highly
customized, monolithic approaches. Today's systems are assembled from a diverse
set of standard components. However, while the b urden of hardware development
has been eased, system -level software problems have been compounded,
especially when the system is required to interoperate with other media devices.

The goal of the Khronos Group is to develop and manage OpenML™ , a standard set
of open application programming interfaces (APIs) for media content creation and
playback.

It is the intent of the Khronos Group that OpenML will :

Foster a cross-platform, cross-OS development environment. Drive open standards
between platform, hardware, and application vendors to enable a seamless
interoperability to customers for transparent migration of content creation, and
playback across a variety of platforms and devices.

Enable integration and synchronization of video, audio and 2D/3D graphics to deliver
compelling content through media -rich interactive applications.

Enable hardware and software providers to produce a larger number of
standardized, transport able and compelling media products and bring them to
market in a more timely fashion. This in turn will foster user acceptance and market
growth with customers benefiting from a larger selection of systems, applications,
and peripherals .

Establish synergy to multi -purpose and re -purpose content for a variety of
distribution mediums such as broadcast and the Internet.

Motivation

There are numerous examples of how the establishment of industry standards has
helped to accelerate m arket growth and acceptance of new technology. In the
technology arena, standards exist for things like 3D graphics programming APIs,
web page programming APIs, network protocols, high speed bus interfaces, and on
and on.

Standards are defined in order to establish a common ground for people looking at a
problem from two or more different directions. For instance a standard for 3D
graphics programming benefits both 3D graphics application developers and 3D
graphics hardware developers by defining a common interface to which both sides
can implement . When completed, a 3D graphics application written to this interface
will run on any hardware that supports the interface. Conversely, hardware
developed to support the interface can support any applicati on written to the

 4

standard interface. In a similar way, both computer manufacturers and peripheral
manufacturers benefit from having a common interconnection standard and bus
protocol. End users benefit from standards as the market grows and costs come
down.

The members of the Khronos Group SIG believe that a standard is necessary to
accelerate the development of both digital media hardware and application software.
With the formation of the Khronos Group and the development of the OpenML
specification, the following example may be only a couple of years away, rather than
five or six years away.

Let's say you purchase the 2003 edition of Encyclopedia Geographica. It's
distributed on a DVD -ROM and comes with 1 year's unlimited access to the
multimedia library on Encyclopedia Geographica's website. You fire up the
application and see a spinning globe, which is a 3D texture -mapped sphere. You
click on south central Africa in order to find the major tourist attractions for your
upcoming vacation. From the menu that pops up, you select Victoria Falls and watch
a short video clip on your computer monitor. "Looks like an awesome place to visit,"
you think to yourself, but the low-resolution video clip on your monitor doesn't really
do justice to the grandeur of Victoria Falls.

To get a better feel for what Victoria Falls is really like, you request the high quality
presentation from the Encyclopedia Geographica website. You are asked for your
language preference, and you select "English" from the menu of choices. Three files,
an HDTV video clip, and two CD -quality audio tracks are streamed to your 6 terabyte
hard drive across your 1 Gigabit/second Internet connection. One of the audio files
contains an English narration track, and the other contains a surround -sound
recording made at Victoria Falls. On your computer display, you bring up your
multimedia device control application and select "Home Theater Video" as the
destination for the playback of the HDTV video clip and "Hom e Theater Audio" as
the destination for the two audio tracks. (Incidentally, this device control application
is completely independent of the hardware you have connected into your system
and was purchased at the local computer store for $29.95. It was able to query the
devices connected to your system and develop a command and control panel
unique to your setup without any intervention on your part.)

When you click on the play button on your computer, the room lights are dimmed,
the HDTV video clip is play ed on your home theater HDTV screen, and the two
synchronized audio tracks are played over your THX -equipped surround sound
stereo system. As the camera pans across the panoramic vista of Victoria Falls, you
hear the monkeys squawking behind you a nd the birds chirping overhead. You
decide that Victoria Falls is definitely a place you have to experience in person on
your upcoming vacation.

 5

Figure 1: HDTV presentation of Victoria Falls

Your parents are also planning to acc ompany you on your African vacation. Since
their native language is French, you request the French narration track from the
Encyclopedia Geographica website. You then use your media authoring application
to splice together the audio and video clips of Victoria Falls, Mount Kilimanjaro, the
Maasai Mara National Reserve, and Nairobi National Park . In between the clips, you
decide to put a title page that includes the destination name and the dates that you
propose for visiting each of them. This is done with a handy little title -generation
shareware program that you downloaded from the web.

You then turn on your video camera and record a live video greeting to your parents
and an introduction to the media c lip that follows. This is spliced on to the beginning
of your multimedia masterpiece. The entire editing and recording operation has
taken less than 10 minutes. You email your finished multimedia masterpiece to your
parents, and they are able to view and h ear the multimedia presentation on their
multimedia system, which contains completely different hardware and a different
operating system and costs about 1/10th of yours.

The point of this example is that the standards created by the Khronos Group SIG
will allow companies such as Encyclopedia Geographica to produce their software,
video, and audio without regard to the hardware you have set up at home. You could

 6

have any type of computer, operating system , stereo system, and display device. As
long as all the pieces were OpenML-compliant, this scenario could be repeated in
any household, in any country in the world and the Encyclopedia Geographica
product would work right out of the box. The device control application and the title -
generation s oftware are similarly independent of the hardware that you have
installed on your system. You are also able to choose from a large variety of audio
input, audio output, video input, and video output equipment as you assemble the
system that meets your need s as well as the needs of your pocketbook.

Formation of the Khronos Group

It is typical of advanced technology fields that the integration of groups of
technologies into a coherent, cost -effective environment lags the development of the
individual compone nts. In the drive toward E -commerce and Internet content
delivery, sometimes lost is the need for tools and framework for creating the content
to fulfill the ever -growing demands of a new information age. Looking out at this wild
and woolly world (www), th e founders of the Khronos Group recognized the need for
an open, cross-platform framework for the creation and playback of digital media
content. The Khronos Group SIG was formed to develop a specification that would
address this need.

The rapid expansion of the Open Source model and the Linux operating system has
amplified this need. A major issue in the Linux environment is the lack of cross -
platform standards for multi -media application development. OpenGL is the only
truly open, cross platfo rm standard in this area. For this reason, OpenGL is a key
component of the OpenML specification.

What is really needed is a full multimedia solution that encompasses the integration
and synchronization of 2D and 3D graphics, audio and video processing, I/O and
networking. Whether working on a video production, dev eloping a game, or
constructing an interactive disc, creators are currently forced to use many different
APIs and tools from many different vendors and organizations to simply tie their
multiple applications and hardware peripherals together. OpenML will create a
common specification for interoperability a cross platforms, operating systems,
hardware devices and software applications.

The Khronos Group will complete Version 1 of the OpenML specification in
the first half of 2001 with the first product implementations appearing in
the second half of 2001. Subsequently, t he Khronos Group will enable the creation
of sample implementations , conformance tests, and per formance tests . These items
will be licensed on a royalty free basis. OpenML adopters will be encouraged to
create their own OpenML implementations and to develop applications that utilize
OpenML.

To ensure that the efforts of the Khronos SIG align with other initiatives in the
marketplace, SIG members are also members of organizations such as SMPTE,

 7

ISO/MPEG, OpenGL Architecture Review Board (ARB), and AAF. The SIG will
maintain relationships with these and ot her industry groups where appropriate.

Khronos Group Membership

Creating such a specification requires the input and expertise of a diverse group of
organizations. The group evolved over time from a core of platform, application, and
hardware vendors. For graphics and video hardware technology contributions the
SIG has 3Dlabs, ATI, Evans & Sutherland, NVIDIA, and SGI as members. On the
platform side, the SIG has the involvem ent of Intel and Sun Microsystems. Discreet,
a division of Autodesk, Inc. has provided the perspective of a leading content
creation application provider .

As work on version 1.0 of the specification wraps up and the next phase of
development gets underway, t he Khronos Group is actively seeking contributing
members to help take cross -platform dynamic media standards to the next level .
Areas of prime interest include developing the API standards needed to bring
dynamic media to handheld and embedded devices, adding advanced rendering
capabilities for content creation, and dri ving the acceptance of OpenML V1.0
technology through the development of ABI (application binary interface), DDI
(device dependent interface), and SDK (software development kit) standards;
sample implementation s for popular operating environments; and conf ormance and
performance tests that will allow comparisons between OpenML implementations.
The group will also be looking for organizations that simply wish to be adopters of
the final specification to create their own implementations or applications .

An Overview of OpenML

The primary goal of the Khronos Group is to develop a cross -platform standard
programming environment for capturing, transporting, processing, displaying, and
synchronizing digital media . We call this media -rich programming environment
OpenML. V1.0 of the specification will define standard API’s for dealing with video,
graphics, and audio and it is expected that these API’s will be supported on all major
operating environments.

Some of the sub goals of the group are to:

• Standardize support for audio, video, 2D graphics, and 3D graphics at the lowest
level that provides the desired functionality and unification (i.e., the thinnest
possible layer on top of the hardware)

• Support a range of operating environments, from embedded systems to high -end
workstations

• Utilize existing standards and work within existing standards bodies wherever
possible

• Promote the development of sample implementations of the constituent API’s, as
well as conformance tests, performance tests, and any other tools that will help
speed the development of the standard

 8

During calendar year 2000, the focus of t he Khronos Group was to develop a
thorough specification of this programming environment. Version 1.0 of the OpenML
specification will provide guidance to multimedia hardware developers as to the
types of functionality that are important to dig ital media applications in future
generations of hardware. Conversely, the specification will also define a set of
application programming interfaces (API’s) that are guaranteed to exist in an
OpenML compliant environment.

The existence of such a standard will allow multimedia application developers to
spend more time and energy on application development and much less time on
mundane details such as device control, synchronization, and buffering issues. It will
also free them from the unenviable task of dealing with different API’s for video,
graphics, and audio for each operating environment.

Technical Strategy

The initial focus for OpenML is on digital content authoring. This is primarily due to
the interest and expertise of the initial members of the Khronos Group. It was
generally felt that this area was the most demanding in terms of performance and
functionality , and therefore represented the biggest challenge as far as defining a set
of API’s for digital media applications. However, the group has every intention of
continuing the effort beyond authoring in order to meet the needs of playback
applications, as well as the variety of needs beginning to present themselves in
embedded systems such as handheld devices and vehicle display systems. It is
anticipated that the needs of playback and embedded applications will require a
subset of what is necessary for authoring applications.

OpenGL is the natural choice for a cross -platform standard for 3D graphics. OpenGL
is a mature API that is already supported on every major OS. Furthermore, OpenGL
has been extended in various ways and by various organizations to address some of
the needs of digital content authoring. Some of these OpenGL extensions have been
included with little or no change as required components of the OpenML
programming environment. The Khronos Group has also defined some new OpenGL
extensions th at go even further to bridge the gap between the worlds of video and
graphics. The Khronos Group is actively working with the OpenGL ARB on the
OpenGL-related aspects of OpenML.

The Khronos Group has decided to base the digital media I/O component of
OpenML on SGI’s dmSDK 2.0 library. This API is the result of many man -years of
development effort in the area of digital audio and video input, output, processing,
and device control. The work undertaken by the Khronos Group is aimed at taking
this API to the next level of standardization and cross -platform availability. Factors
that strongly influenced this decision are that this API has its basis on a
commercially available implementation and has shown itself capable of supporting a
variety of real digital me dia applications.

 9

Overview of the OpenML Programming Environment

Figure 2: The current cross-platform API landscape for a media-rich application is confusing at best

Figure 2 shows the API landscape th at confronts an application developer trying to
create a media -rich application that will access video, audio, and graphics devices in
the system. Currently, there exists no cross -platform API or set of API’s that enable
an application to access and manipu late such a variety of hardware devices. The
goal of OpenML is to rectify this situation. An application developer in this situation
currently has to make some very difficult decisions about the API’s to use in order to
access the various pieces of hardwar e in the system. Much of the work is liable to be
hardware- and operating system -specific and require hand -tuning to achieve
acceptable performance.

Figure 2 shows the API landscape that will exist on an OpenML compliant system. It

shows the major components of the OpenML environment from a programmer’s
perspective. Items shown with a dark (blue) background already exist, and the
OpenML programming environment does not change how they are accessed in any
way. Items with a light (yellow) background are new in OpenML.

?

Applications Applications

2D Graphics 3D Graphics Displays Video Audio

?

Applications Applications

2D Graphics 3D Graphics Displays Video Audio

 10

Applications Applications

Window Window

System System

Synchronization

OpenGL OpenGL
® ® MLdc ML

2D Graphics 3D Graphics Displays Video Audio

Applications Applications

Window Window

System System

Synchronization

OpenGL OpenGL
® ® OpenGL OpenGL
® ® ML

2D Graphics 3D Graphics Displays Video Audio

Figure 3: Application programmer's view of the OpenML programming environment

Pre-existing API’s

One thing that differs dramatically from one operating environment to another is the
windowing environme nt. Rather than attempt to achieve cross -platform
standardization in this area, the OpenML environment will simply coexist peacefully
with the native windowing environment. This results in some platform dependencies
for application writers, but many applic ations have already been modified to
modularize the user interface and windowing operations, making them as portable
as possible to different operating environments. While there may be a need for a
cross-platform, vector -based 2D graphics standard, the Khr onos Group has not yet
undertaken this effort

OpenGL is the dominant cross -platform API for doing 3D graphics , and the core of
OpenGL remains unchanged by OpenML. Extensions to OpenGL add capabilities
for synchronization with other parts of the system, for improved rendering
performance and quality, and for improved treatment of video formats.

Display Control

MLdc is an API that allows applications to control the video back end of graphics
devices. It is based on X dc, an extension to the X Window System des igned by SGI.
MLdc is a platform -independent API that can be used to obtain information about the
monitor, set gamma correction tables, provide genlock notification, load video

 11

formats, set video output gain, set pedestal, change H -phase (horizontal genloc k
phase), and the like.

Synchronizing Audio, Video and Graphics

Underneath all of this are system facilities that provide precise timing and
synchronization information. The Unadjusted System Time (or UST) is a high-
resolution 64-bit monoto nically increasing counter that is available throughout the
system. In addition, each media device in the OpenML environment is expected to
maintain a Media Stream Counter (or MSC). The MSC is incremented for each
media event th at occurs for that device. For instance a video input device will
maintain an MSC that is incremented for each video frame or field of the attached
device. A graphics accelerator will maintain an MSC that is incremented for each
vertical retrace that occur s. By using UST/MSC pairs, an application can accurately
control and synchronize media streams between different devices in the system.

ML Features

ML is a new API based on dmSDK 2.0 fr om SGI. It represents the culmination of
several generations of API development aimed at supporting digital media in a
hardware- and OS-independent fashion. ML is a low-level API in the same sense
that OpenGL is considered a low -level API: it exposes t he capabilities of the
underlying hardware in a way that imposes little policy. Policy decisions can be
made by higher-level software such as utility libraries or toolkits, or left up to the
application itself.

The primary functions of ML are to:

• Support asynchronous communication between an application and media
devices such as video input /output, audio input/output, and graphics.

• Provide synchronization primitives that give applications the ability to correlate
multiple digital media strea ms and coordinate their presentation to an end user

• Provide processing capabilities (transcoders) for digital media streams
• Provide device control and device capability queries
• Provide buffering mechanisms that support the smooth delivery of digital media

and obtain the best possible performance on a given system

ML and OpenGL communicate with each other under the direction of the application
to efficiently utilize system resources, to achieve maximum performance and
throughput, and to properly synchronize digital media streams with graphics output.

Physical media devices in the system are exposed by device -dependent modules
that register their existence with ML. A physical device is represented to an
application as one or more logical devices. Logical devic es in ML include jacks,
paths, transcoders and pipes.

ML applications do not manipulate media data as a continuous stream, but instead
as discrete chunks of data. These chunks of data are stored in buffers in host
memory that are allocated and managed by the application.

 12

A jack is the abstraction of an input or an output to the system (e.g., a composite
video connector or a microphone jack). A path is the abstraction of the connections
between buffers and jacks . For example, a video output path transports data
between a buffer and a video output jack. A transcoders performs an operation on a
stream of data, such as compression, decompression, encryption, or decryption.
Pipes are the abstraction for delivering input to or transporting output from a
transcoder. Figure 4 is a simple illustration showing an example of how an
application might use these components to construct a simple data flow.

JackJack JackJack

TranscoderTranscoder

Source
Pipe

Destination
Pipe

Path Path Path Path BufferBuffer BufferBuffer

Application

JackJack JackJack

TranscoderTranscoder

Source
Pipe

Destination
Pipe

Path Path Path Path BufferBuffer BufferBuffer

Application

Figure 4: Logical flow of media data in the ML environment

The application can also direct data to OpenGL, for instance depositing it in to a
pbuffer. The ability to move video data into and out of OpenGL managed buffers is
the basis for the integration of video and graphics in OpenML. Once a video image
has been moved to a pbuffer, it can be efficiently used in a variety of OpenGL
operations. I n particular, it is then possible to use the video image in texturing
operations. This is the basis for the implementation of the compositing operations
common to digital content creation and playback.

OpenGL features

OpenGL is well known as an API with a rich and robust set of features for 3D
graphics programming. What isn’t as well known is that OpenGL also has an
extensive set of capabilities for dealing with pixel data (images), both on their way
into and out of the frame buffer. OpenGL has achieved a level of standardization and
popularity that no other 3D graphics API has ever achieved. All of this makes it a
natural choice as the API that provides graphics and access to the frame buff er.

 13

OpenML compliance requires support of OpenGL 1.2.1 including the Imaging
Subset.

OpenGL has a well -defined extension mechanism that has led to the definition of
more than 200 unique extensions. Some of these exte nsions were developed to
address the needs of multimedia application developers. The existing OpenGL
extensions that address the needs of digital media creation or playback have been
evaluated for their applicability to the OpenML effort. These extensions will become
required parts of an OpenML -compliant environment. In addition, the Khronos Group
has developed new OpenGL extensions to strengthen OpenGL's rendering and
video integration capabilities. The OpenML environme nt includes a list of OpenGL
extensions that are required as part of an OpenML compliant implementation. The
list of such extensions includes:

• Synchronization using UST/MSC information
• Reading and writing of interlaced video images
• Direct support for video pixel formats such as YcrCb
• Control over up/downsampling of chroma in video image formats
• Extended textu ring functionality in support of compositing
• Asynchronous processing of lengthy pixel operations

OpenML Application Profiles

OpenML is intended for use in a range of application scenarios from professional
content authoring through playback on desktops, in set top boxes, and even in such
devices as PDAs. We believe that all these disci plines require similar functionality
but with different performance profiles. For example, professional content authoring
typically requires massive bandwidth, the ability to composite many layers in real
time, antialiasing, and high quality texture mapping , among other requirements.
Playback usually involves only modest bandwidth utilization and simple rendering
primitives , but may require sophisticated full scene antialiasing to make the image
look acceptable on a very small display .

The Khronos Group is also looking at ways to create small -footprint APIs to bring
dynamic media capabilities to a wide variety of app liances and embedded devices.
Efforts will focus on producing API profiles to meet the requirements of a range of
market segments such as safety-critical automotive and avionics displays, handheld
and line -powered appliances and rich -media devices such as advanced digital TVs,
set top boxes and game consoles . Embedded applications typically have strong
requirements for a few key graphics capabilities. For instance, the smaller screens
that will be typical of handheld devices demand high-quality antialiasin g for text and
graphics.

To help users make purchasing decisions, the Khronos Group expects to promote
the develop ment of a suite of performance benchmarks. These benchmarks will be
designed to provide performance information for a variety of application profiles.

 14

Summary

Rich-media content has already found its way into our everyday lives. Rapid
advances in personal appliances, wireless devices, and high bandwidth delivery
vehicles will create even more demand. This, in turn, creates a huge and
unprecedented opportunity for application developers.

The challenges have increased with the opportunities. Developing for a single
platform or a single display format is a risky proposition when the landscape is in
flux. Porting applications to multiple envi ronments minimizes the risk, but is a
daunting task given the number of potential permutations of platform and delivery
formats. Ironically, the very success of media -rich content hinges on this diversity –
everything from wall size display monitors to PD As to cell phones should be
considered as a potential target.

OpenML is the key to enabling the growth of the digital content market for both
hardware and software providers. It provides the abstraction layer that allows
application developers to focus on their value proposition, enables their products to
move easily across the new range of platforms, and lets them move rapidly to reap
the rewards of emerging opportunities.

Figure 5: OpenML is a key technology for handheld devices of the future

