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Description 
 
Shape representations employed for design should enable easy shape specification and 
modification, while those used for recovery should readily accommodate unstructured 
data. This course discusses curve and surface representations that are effective for shape 
design and shape recovery—including Bezier, B-spline, rational Bezier, non-uniform 
rational B-spline (NURBS), dynamic NURBS, thin-plate spline, and rational Gaussian 
representations—as well as methods for grouping and parametrizing scattered points. The 
tutorial will convey technical concepts through imagery rather than formal mathematics; 
students will be directed to the relevant literature for further study. 
 
 
Table of Contents/Schedule             
 
1. Introduction – Rockwood (10:00)             
2. Curves and Surfaces for Shape Design              

2.1. Bezier – Rockwood (10:05)             
2.2. B-spline – Rockwood (10:15)            
2.3. NURBS – Rockwood (10:25)            
2.4. D-NURBS – Terzopoulos (10:45)             
2.5. Triangular D-NURBS – Terzopoulos (10:55)          

3. Curves and Surfaces for Shape Recovery            
3.1. Thin-Plate Splines – Terzopoulos (11:10)             
3.2. Rational Gaussian Representation – Goshtasby (11:25) 

4. Grouping and Parametrizing Scattered Points – Goshtasby (11:40)         
5. Summary – Goshtasby (11:55)           
 
 
 



 

 

Speaker Biographies 
 
Ardeshir Goshtasby is a professor (9/1/01) in the Department of Computer Science and 
Engineering at Wright State University. For nearly a decade he has been working on 
curves and surfaces for design of geometric models as well as curves and surfaces for 
recovery of free-form shapes from scattered points. The RaG formulation developed by 
Goshtasby unifies shape design and shape recovery. With the RaG formulation, not only 
well-known shapes such as circles, spheres, cylinders, and cones can be defined, but 
complex free-form shapes from scattered points can be represented.  
 
Alyn Rockwood received a Ph.D. from the Department of Applied Mathematics and 
Theoretical Physics, Cambridge University. He has spent 25 years in industrial and 
academic research, including positions at SGI, where he developed the NURBS rendering 
methods for GL/OpenGL; at Evans and Sutherland, where he worked on the first 
hardware textured graphics system (used in flight simulation); at Shape Data Ltd., where 
he developed the first commercial automatic blending methods in CAD/CAM; and more 
recently at Arizona State University, where he was a faculty member and project co-
director for a major research project in brain imaging. He has authored several books and 
50 articles on computer graphics and also served recently as the 1999 SIGGRAPH 
paper’s chair.  
 
Demetri Terzopoulos holds the Lucy and Henry Moses Professorship in the Sciences at 
New York University and is Professor of Computer Science and Mathematics at NYU's 
Courant Institute. He is currently on leave from the University of Toronto where he is 
Professor of Computer Science and Professor of Electrical and Computer Engineering. 
He graduated from McGill and received the PhD degree from MIT. He was elected a 
Fellow of the IEEE, a Killam Research Fellow of the Canada Council for the Arts, an 
EWR Steacie Memorial Fellow of the Natural Sciences and Engineering Research 
Council of Canada, and an AI and Robotics Fellow of the Canadian Institute for 
Advanced Research. Among his many awards are computer graphics honors from Ars 
Electronica and the International Digital Media Foundation for his work on artificial 
animals and from NICOGRAPH for his work on facial modeling and animation. 
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Visual VocabularyVisual VocabularyVisual VocabularyVisual VocabularyVisual VocabularyVisual VocabularyVisual VocabularyVisual Vocabulary

Turbo Charged
Engine

Turbo Charged
Engine

UsageTerms
For Example:For Example:For Example:For Example:For Example:For Example:For Example:For Example:
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ObstacleObstacleObstacleObstacleObstacleObstacleObstacleObstacle

DesignersDesigners

CurvesCurves

B(t) =B(t) =
MM

i = 0i = 0
diNi

n(t)diNi
n(t)

MathMath
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DesignDesignDesignDesignDesignDesignDesignDesign

IdeaIdea Simple inputsSimple inputs

Easy Modification
(no Math)

Easy Modification
(no Math)
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DesignDesignDesignDesignDesignDesignDesignDesign

IdeaIdea Designed ObjectDesigned Object

Easy Modification
(no Math)

Easy Modification
(no Math)
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Curve TypesCurve TypesCurve TypesCurve TypesCurve TypesCurve TypesCurve TypesCurve Types
� Parametric� Parametric

Where is the fly at time t?
(t is a parameter)

Where is the fly at time t?
(t is a parameter) t = 1 t = 1 t = 2 t = 2 t = end t = end
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� Implicit� Implicit
Curve TypesCurve TypesCurve TypesCurve TypesCurve TypesCurve TypesCurve TypesCurve Types

How Far?How Far?
= 0= 0 d = x2 + y2 + z2 - 1 d = x2 + y2 + z2 - 1
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 f(t) = at2 + bt + c f(t) = at2 + bt + c

 c = (1,0)

 a = (1,1)

 b = (-2,0)
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 f(t) = at2 + bt + c f(t) = at2 + bt + c

 c = (1,0)What are a, b, and c now?What are a, b, and c now?
 b = (-2,-2)

 a = (2,1)
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Only Math

Only Math
      1 - 2t + t2

                   t2(        )=

      1 - t2

                   t2(        )=

f(t) =           t2 +            t +( ) -2
0(  ) ( )10

      =          1 - t2 +         2t(1 - t) +        t20
0( ) ( )01( )
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0(  )

0
0(  ) 0

1(  )
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“Bernstein” Polynomials“Bernstein” Polynomials

{(1 - t2), 2t(1 -t), t2}{(1 - t2), 2t(1 -t), t2}
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Great with ProGreat with ProGreat with ProGreat with PropertiespertiespertiespertiesGreat with Great with Great with Great with PropertiesPropertiesPropertiesProperties

Coefficients ≡ “Control Points”Coefficients ≡ “Control Points”

Polygon ≡ “Control Polygon”Polygon ≡ “Control Polygon”
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Where is the fly at time t ?Where is the fly at time t ?

Also called “parametrization”!Also called “parametrization”!
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Monsieur de Casteljau’s
Algorithum

Monsieur de Casteljau’s
Algorithum

Control PolygonControl Polygon

1/3 {

1/3

} 1/3

{

Pick t, say t = 1/3Pick t, say t = 1/3

1/3 {

{

Final point is on the curveFinal point is on the curve

1/3
{

1/3����
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Monsieur de Casteljau’s
Algorithum

Monsieur de Casteljau’s
Algorithum

Control PolygonControl Polygon

1/3 {

1/3

} 1/3

{

1/3 {

{ Repeat t againRepeat t again

Final point is on the curveFinal point is on the curve

1/3
{

1/3
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{1/2

{
1/2

 t = 1/2 t = 1/2

1/2 Point on curve

���
�����

����	

��
�
����


�����
�



���
�����

���

�	
�
�
���

����
�


����
����

���


��

����
�����

�����
���

����
����

�
��
��

�����
�����

����



Why?Why?

Clip Bezier curveClip Bezier curve
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Why?Why?

Divide at window boundaryDivide at window boundary
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Continuity - TraditionalContinuity - Traditional

“C0” = no breaks like this“C0” = no breaks like this

“C1” = no jumps in speed like this“C1” = no jumps in speed like this
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C1 (?)C1 (?)

Not C1 (?)Not C1 (?)
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G1 = geometric continuityG1 = geometric continuity

(Continuous direction)(Continuous direction)

Not G1Not G1

G1G1
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C1

G1

C1

G1

C1

G1

C1

G1

(?)

(?)
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(no)

(yes)

(yes)

(yes)

(no)

(no)

(yes)

(no)
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??

C1 ?
G1 ?

C1 ?
G1 ?

Same directionSame direction
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Designing with BezierDesigning with Bezier

(a la Postscript)(a la Postscript)
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Question: How to find
intersect of raster with“S”

Question: How to find
intersect of raster with“S”

??
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Convex Hull testConvex Hull test

SubdivideSubdivide
And RepeatAnd Repeat
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Bezier curves: coefficients with
meaning - end point, end
tangents, etc.

Bernstein polynomials: what
Bezier uses

Affine invariance: Rotate, scale
translate control points same as
curve

Control points: coefficients of
Bezier, because they control

Control polygon: connected
control points
Variation diminishing: no
more wiggles in curve than in
control polygon
Convex hull: smallest
polygon containing control
points.  Curve is contained in
this
de Casteljau: algorithm for
evaluating Bezier curve
Subdivision: Dividing Bezier
curve into two matching
Bezier curves



Parametrization: Where the fly
is at time t
C1: Smoothly changing velocity
G1: Smoothly changing
direction



Which curve looks best ?Which curve looks best ?

Why ?Why ?

A B C
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Changes evenlyChanges evenly

Curvature of
a Ball

Curvature of
a Ball
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Wooden “spline”Wooden “spline” ������
���	
�

��

���
��
������


��

�	����
������

�	
��



Minimize accelerationsMinimize accelerations

Many others ...Many others ...
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Recall:Recall:

� Polynomial � rearrange terms so
     coefficients have
     meaning

� Polynomial � rearrange terms so
     coefficients have
     meaning

� Are there other rearrangements with
meaning?

� Are there other rearrangements with
meaning?

� Bezier curve� Bezier curve

���
����

�	
�
�


��
	
�

��	

����
�	��

����
��

����
��	�

��


��
��
�

��	

��
�
�����

����
��



Here is one:Here is one:
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What attributesWhat attributes
Endpoint Interpolation
Tangency at Endpoints
Convex Hull
Variation Diminishing
Linear Precision
Affine Invariance

Endpoint Interpolation
Tangency at Endpoints
Convex Hull
Variation Diminishing
Linear Precision
Affine Invariance

Weak Bezier ?Weak Bezier ?
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Another ImportantAnother Important
Property:Property:

Add another control pointAdd another control point
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Organizes Organizes Bezier Bezier withwith
Continuity!Continuity!
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NURBS - very brieflyNURBS - very briefly
Basis polynomialsBasis polynomials

RepeatRepeat Reshape - Non-uniformReshape - Non-uniform
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RationalRational
Projection (like Perspective)Projection (like Perspective)

Imagine curve as projectionImagine curve as projection
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Pull points in higherPull points in higher
dimensionsdimensions

NURBS - Non-Uniform Rational B-SplinesNURBS - Non-Uniform Rational B-Splines
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Why Why Rationals Rationals ??

Polynomials can’t do perfect circles
so rationals are needed

Polynomials can’t do perfect circles
so rationals are needed
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Surfaces

… are just a bundle of curves.… are just a bundle of curves.
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Control points in Space

What if control points are moved in space
along a curve?
What if control points are moved in space
along a curve?

They sweep out a surfaceThey sweep out a surface
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Control points in Space

What if control points are moved in space
along a curve?
What if control points are moved in space
along a curve?

They sweep out a surfaceThey sweep out a surface



Control points in Space

What if control points are moved in space
along a curve?
What if control points are moved in space
along a curve?

They sweep out a surfaceThey sweep out a surface



Bezier curves along
Bezier “Sweeps”

Bezier
“sweeps”
Bezier

“sweeps”
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Bezier curves along
Bezier “Sweeps”

Control
Mesh

Control
Mesh



Bezier curves along
Bezier “Sweeps”

Bezier
Surface
Bezier
Surface



Properties

Endpoints?Endpoints? At cornersAt corners
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Properties

At cornersAt cornersEnd tangencies?End tangencies?



Properties

Convex Hull ?
Affine Invariance ?
Planar Precision ?
Variation Diminishing ?

Convex Hull ?
Affine Invariance ?
Planar Precision ?
Variation Diminishing ?

( Yes )( Yes )
( Yes )( Yes )

( Yes )( Yes )

(   ?   )(   ?   )
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Subdivision

( Yes )( Yes ) Pyramids instead of trianglesPyramids instead of triangles
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Subdivision

( Yes )( Yes ) Pyramids instead of trianglesPyramids instead of triangles



B-Spline Patch

Advantage ?Advantage ?
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B-Spline organizes
Bezier

Common wisdom � Design B-spline; operate
  Bezier

Common wisdom � Design B-spline; operate
  Bezier



Design Issues

G0 G1

G2



Hedgehog G0 Hedgehog G1

Hedgehog G2



Alyn Rockwood



Peter Chambers

Alyn Rockwood



Alyn Rockwood



Courtesy of Parametric Technology Corp. © 1995
Data generated by Lan Zaback, Pro/CDRS,
rendered in Pro/PHOTORENDER
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Dynamic NURBS
(D-NURBS)
Demetri TerzopoulosDemetri Terzopoulos

New York UniversityNew York University

Courant Institute of Mathematical SciencesCourant Institute of Mathematical Sciences

Physics-Based CAGD

Geometric models + physical laws =
Dynamic models

• Generalization of geometric design process

• Standard geometric toolkits remain usable

• Additional physics-based toolkits

– sculpting forces

– linear & nonlinear constraints

Geometric models + physical laws =Geometric models + physical laws =
Dynamic modelsDynamic models

•• Generalization of geometric design processGeneralization of geometric design process

•• Standard geometric toolkits remain usableStandard geometric toolkits remain usable

•• Additional physicsAdditional physics--based toolkitsbased toolkits

–– sculpting forcessculpting forces

–– linear & nonlinear constraintslinear & nonlinear constraints



Advantages of Physics-Based
Design

• Energies express global “fairness” criteria

• Forces support direct, interactive sculpting

• Constraints permit functional design

• Shape optimization via evolution to equilibrium

• Dynamics allow time-varying conceptual design

• Automatic selection of DOFs

•• Energies express global “fairness” criteriaEnergies express global “fairness” criteria

•• Forces support direct, interactive sculptingForces support direct, interactive sculpting

•• Constraints permit functional designConstraints permit functional design

•• Shape optimization via evolution to equilibriumShape optimization via evolution to equilibrium

•• Dynamics allow timeDynamics allow time--varying conceptual designvarying conceptual design

•• Automatic selection ofAutomatic selection of DOFsDOFs

Dynamic NURBS (D-NURBS)

Physics-based generalization of NURBS
(Developed with Hong Qin)

• Lagrangian mechanics formulation

• NURBS DOFs are D-NURBS generalized coordinates

• Mass and damping distribution

• Deformation energy

• Applied forces

• Geometric constraints

PhysicsPhysics--based generalization of NURBSbased generalization of NURBS
(Developed with Hong(Developed with Hong QinQin))

•• LagrangianLagrangian mechanics formulationmechanics formulation

•• NURBSNURBS DOFsDOFs are Dare D--NURBS generalized coordinatesNURBS generalized coordinates

•• Mass and damping distributionMass and damping distribution

•• Deformation energyDeformation energy

•• Applied forcesApplied forces

•• Geometric constraintsGeometric constraints



D-NURBS Curve
Geometry & Kinematics

• Curve:

• DOF vector:

• Kinematics:

•• Curve:Curve:

•• DOF vector:DOF vector:

•• Kinematics:Kinematics:
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Tensor Product D-NURBS Surface
Geometry & Kinematics

• Surface:

• DOF vector:

• Kinematics:

•• Surface:Surface:

•• DOF vector:DOF vector:

•• Kinematics:Kinematics:
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Lagrangian Mechanics

Equations of motionEquations of motionEquations of motion

∂
∂

∂
∂

∂
∂

∂
∂t

T

p

F

p

U

p
f

i i i
i& &







 + + =

pi

generalized coordinate

external generalized force on

kinetic energy damping energy potential energy

Kinetic and Damping Energies

• Kinetic energy

• Damping energy

•• Kinetic energyKinetic energy

•• Damping energyDamping energy

T du dvT T= =∫∫
1

2

1

2
µ & & & &s s p Mp

F du dvT T= =∫∫
1

2

1

2
γ & & & &s s p Dp

mass density

mass matrix

damping density

damping matrix



Potential Energy

Energy of deformation

• Example: Thin-plate under tension model

Energy of deformationEnergy of deformation

•• Example: ThinExample: Thin--plate under tension modelplate under tension model

U du dvu v uu uv vv= + + + +∫∫
1

2 1 1
2

2 2
2

1 1
2

1 2
2

2 2
2( ), , , , ,α α β β βs s s s s

tension control functions

rigidity control functions

tension and rigidity are functions of (u,v)

D-NURBS Matrices

• Mass matrix:

• Damping matrix:

• Stiffness matrix:

•• Mass matrix:Mass matrix:

•• Damping matrix:Damping matrix:

•• Stiffness matrix:Stiffness matrix:

M p J J( ) = ∫∫
1
2

µ T du dv

D p J J( ) = ∫∫
1
2

γ T du dv

K p J J J J

J J J J J J

( ) (
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, , ,

= + +

+ +
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1
2 1 1 2 2

1 1 1 2 2 2

α α

β β β
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T

u v
T
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T

uu uv
T

uv vv
T

vv du dv



D-NURBS Dynamics

Equations of motion

• Second-order ODEs

Equations of motionEquations of motion

•• SecondSecond--orderorder ODEsODEs

Mp Dp Kp f Ip&& & &+ + = −p

generalized forces inertia matrix

I J J= ∫∫ µ T du dvf J fp
T du dv= ∫∫

applied force distribution f ( , , )u v t

Numerical Implementation

Finite element method approach

• D-NURBS patch is a finite element

• Gaussian quadrature to assemble element matrices
M, D, K

– use sparse matrix techniques

• Numerical time integration of motion equation

– conjugate gradient iteration during timestep

• Efficient parallel implementation

Finite element method approachFinite element method approach

•• DD--NURBS patch is a finite elementNURBS patch is a finite element

•• Gaussian quadratureGaussian quadrature to assemble element matricesto assemble element matrices
M, D, KM, D, K

–– use sparse matrix techniquesuse sparse matrix techniques

•• Numerical time integration of motion equationNumerical time integration of motion equation

–– conjugate gradient iteration duringconjugate gradient iteration during timesteptimestep

•• Efficient parallel implementationEfficient parallel implementation



Trimming D-NURBS

NURBS trimming curvesNURBS trimming curvesNURBS trimming curves

Solid Rounding

Deformation energy
rounds an edge

Deformation energyDeformation energy
rounds an edgerounds an edge



Solid Rounding

Deformation energy
rounds a corner

Deformation energyDeformation energy
rounds a cornerrounds a corner

Fitting D-NURBS Surfaces

Scattered data apply constraint forcesScattered data apply constraint forcesScattered data apply constraint forces



Fitting D-NURBS Surfaces

Scattered data apply constraint forcesScattered data apply constraint forcesScattered data apply constraint forces

D-NURBS with Hard Geometric
Constraints

Nonlinear constraint

• Equations of motion

• Dynamics

Nonlinear constraintNonlinear constraint

•• Equations of motionEquations of motion

•• DynamicsDynamics

C p 0( ) =
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generalized constraint forces{
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constraint Jacobian matrix
Lagrange multiplier vector



Constrained Skinning

NURBS Swung Surfaces

Geometric NURBS surfaces for cross-
sectional design

• Two NURBS generator curves

– profile curve on x-z plane

– trajectory curve on x-y plane

• Symmetries and topological variability

• Broad geometric coverage with O(m+n) DOFs

Geometric NURBS surfaces for crossGeometric NURBS surfaces for cross--
sectional designsectional design

•• Two NURBS generator curvesTwo NURBS generator curves

–– profile curve on xprofile curve on x--z planez plane

–– trajectory curve on xtrajectory curve on x--y planey plane

•• Symmetries and topological variabilitySymmetries and topological variability

•• Broad geometric coverage with O(m+n)Broad geometric coverage with O(m+n) DOFsDOFs



NURBS Swung Surfaces

Geometric NURBS surfaces for cross-
sectional design

• Two NURBS generator curves

– a profile curve on x-z plane

– a trajectory curve on x-y plane

• Symmetries and topological variability

• Broad geometric coverage with O(m+n) DOFs

Geometric NURBS surfaces for crossGeometric NURBS surfaces for cross--
sectional designsectional design

•• Two NURBS generator curvesTwo NURBS generator curves

–– a profile curve on xa profile curve on x--z planez plane

–– a trajectory curve on xa trajectory curve on x--y planey plane

•• Symmetries and topological variabilitySymmetries and topological variability

•• Broad geometric coverage with O(m+n)Broad geometric coverage with O(m+n) DOFsDOFs

Swinging Operation

Generating a cubeGenerating a cubeGenerating a cube



Solid Rounding

Swung D-NURBS solidSwung DSwung D--NURBS solidNURBS solid



Fitting Swung D-NURBS
to Scattered Data

NRC potNRC potNRC pot



D-NURBS Family

D-NURBS curves

Tensor-product D-NURBS surfaces

Swung D-NURBS surfaces

Triangular D-NURBS surfaces

DD--NURBS curvesNURBS curves

TensorTensor--product Dproduct D--NURBS surfacesNURBS surfaces

Swung DSwung D--NURBS surfacesNURBS surfaces

Triangular DTriangular D--NURBS surfacesNURBS surfaces



Rational Rational Rational Rational Gaussian Gaussian Gaussian Gaussian ((((RaGRaGRaGRaG) Curves ) Curves ) Curves ) Curves 
and Surfacesand Surfacesand Surfacesand Surfaces

Ardy GoshtasbyArdy Goshtasby
Computer Science and EngineeringComputer Science and Engineering

Wright State UniversityWright State University



Overview

!! RaG RaG formulationformulation

"" Curves for designCurves for design

## Curves for data fittingCurves for data fitting

$$ Surfaces for designSurfaces for design

%% Surfaces for data fittingSurfaces for data fitting

&& SurfaceSurface--fitting to severely irregular pointsfitting to severely irregular points



RaG Formulation

∑
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Curves for Design

'' A circle is obtained by A circle is obtained by 
fitting a fitting a RaG RaG curve to curve to 
vertices of an vertices of an 
equilateral triangle.equilateral triangle.

'' An ellipse is obtained An ellipse is obtained 
by fitting a by fitting a RaG RaG curve curve 
to vertices of any to vertices of any 
triangle.triangle.



'' A composite curve:A composite curve: PPPPPPPP(w)(w) = P= P= P= P= P= P= P= P(u) (u) + P+ P+ P+ P+ P+ P+ P+ P(v) (v) 

'' A blending curve: A blending curve: PPPPPPPP(w)(w) = P= P= P= P= P= P= P= P(u) (u) + P+ P+ P+ P+ P+ P+ P+ P(v) (v) 

++ ==

++ ==



'' Smoothness parameters:  Smoothness parameters:  σσii’s’s

'' Weights: Weights: WWii’s’s



Curves for Data Fitting

'' Points can be dense and irregularly spaced.Points can be dense and irregularly spaced.
'' Points can be noisy.Points can be noisy.



Surfaces for Design

'' A sphere is A sphere is 
obtained by obtained by 
fitting a fitting a RaG RaG 
surface to 6 surface to 6 
points.points.



'' An ellipsoid is obtained by fitting a An ellipsoid is obtained by fitting a RaG RaG 
surface to 6 points.surface to 6 points.



'' A A torus torus is obtained by fitting a is obtained by fitting a RaG RaG surface surface 
to 9 point.to 9 point.



'' A cylinder is obtained by fitting aA cylinder is obtained by fitting a RaGRaG surface to surface to 
6 points.6 points.

'' A cone is obtained by fitting aA cone is obtained by fitting a RaGRaG surface to 4 surface to 4 
points.points.



'' A freeA free--form shape is obtained by fitting a form shape is obtained by fitting a 
RaGRaG surface to an arbitrary number of surface to an arbitrary number of 
points in an arbitrary arrangement.points in an arbitrary arrangement.



Surfaces for Data Fitting

RaGRaG surfaces fitting to 100 irregularly spaced points with surfaces fitting to 100 irregularly spaced points with 
different smoothness levels.different smoothness levels.



Laser range dataLaser range data

RaGRaG surfaces with differentsurfaces with different
σσ’s’s fitting the same data set.fitting the same data set.



Surface-Fitting to 
Severely Irregular Points

The basic idea:The basic idea:
Instead of using Instead of using 
fixed control points, fixed control points, 
use functions thatuse functions that
can reproducecan reproduce
desired derivativesdesired derivatives
at the points.at the points.



Four severely irregular point setsFour severely irregular point sets



Examples

OriginalOriginal

Estimated from the 4 data setsEstimated from the 4 data sets



More Examples





Conclusions

'' RaG RaG curves and surfaces provide capabilities curves and surfaces provide capabilities 
similar to those of NURBS curves and surfaces.similar to those of NURBS curves and surfaces.

'' Unlike NURBS, Unlike NURBS, RaGsRaGs do not require a regular do not require a regular 
grid of control points. So they are ideal for grid of control points. So they are ideal for 
approximating/interpolating irregularly spaced approximating/interpolating irregularly spaced 
points.points.

'' In addition, In addition, RaGs RaGs provide an effective means to provide an effective means to 
produce shapes at varying levels of resolution produce shapes at varying levels of resolution 
from the same data set.from the same data set.



Grouping and Parametrizing Points 
for Curve and Surface Fitting

Ardy GoshtasbyArdy Goshtasby
Computer Science and EngineeringComputer Science and Engineering

Wright State UniversityWright State University



Overview

!! Parametrization Parametrization for curve fittingfor curve fitting
(( GroupingGrouping
(( ParametrizationParametrization
(( The resolution problemThe resolution problem

"" Parametrization Parametrization for surface fittingfor surface fitting
(( GroupingGrouping
(( Parametrization Parametrization 
(( SubdivisionSubdivision



Grouping for Curve Fitting

How many shapes 
are hidden among 
these points?



The Grouping Algorithm

1.1. Center a  2Center a  2--D monotonically decreasing D monotonically decreasing 
radial basis function at each point.radial basis function at each point.

2.2. Find points with locally maximum values.Find points with locally maximum values.



3.3. Associate a point to the structure that is closest Associate a point to the structure that is closest 
to it.to it.

4.4. Parametrize Parametrize points points 
in each subset.in each subset.

3.3. Fit a curve to each Fit a curve to each 
subset.subset.



The Resolution Problem

Coarser

Finer



The Choice of the Basis Function

Using Gaussian bases:

Using multiquadric bases:



Multiquadric:

Gaussian:



Effect of Basis Functions and 
Resolution

Point set Multiquadric Gaussian



Complex Point Sets

Subdivide overlapping subsets according to Subdivide overlapping subsets according to 
a predefined criterion.a predefined criterion.

Point set  Overlapping subsets   Obtained curves



Grouping for Surface Fitting

1.1. Center a 3Center a 3--D monotonically decreasing D monotonically decreasing 
radial basis function at each point.radial basis function at each point.

2.2. Find regions with values above a Find regions with values above a 
threshold value.threshold value.

3.3. Associate a point to the region closest to Associate a point to the region closest to 
it.it.

4.4. ParametrizeParametrize the points in each subset.the points in each subset.
5.5. Fit a surface to the points in each subset.Fit a surface to the points in each subset.



Parametrization: Spherical 
1.1. Start by approximating the points with an Start by approximating the points with an 

octahedron. octahedron. 
Similarly Similarly 
approximate the approximate the 
sphere with an sphere with an 
octahedron.octahedron.



2.2. If error between a triangle and the shape is above If error between a triangle and the shape is above 
a tolerance, subdivide the triangle. Similarly a tolerance, subdivide the triangle. Similarly 
subdivide the corresponding triangle in sphere.subdivide the corresponding triangle in sphere.



3.3. Repeat the subdivision until approximation Repeat the subdivision until approximation 
error between all triangles and the shape error between all triangles and the shape 
reaches the required tolerance.reaches the required tolerance.



Subdivision Examples

1.1. Liver tumor:Liver tumor:



2.2. Liver:Liver:



3.3. Left ventricular blood pool:Left ventricular blood pool:



4.4. Femoral stem:Femoral stem:



5.5. Brain:Brain:



Conclusions

'' Recovering freeRecovering free--form shapes from irregularly form shapes from irregularly 
spaced points requires spaced points requires parametrizationparametrization of the of the 
points.points.

'' In curve fitting, 1) find the spine of the points, and In curve fitting, 1) find the spine of the points, and 
2) using the projections of the points to the spine, 2) using the projections of the points to the spine, 
compute parameters of the points.compute parameters of the points.

'' In surface fitting, 1) subdivide a sphere in parallel In surface fitting, 1) subdivide a sphere in parallel 
to the shape subdivision, and 2) from the to the shape subdivision, and 2) from the 
correspondence between the shape and the sphere correspondence between the shape and the sphere 
find parameters of the points.find parameters of the points.



Summary
!! For shape design, we discussedFor shape design, we discussed

"" BezierBezier,,

"" BB--splinespline,,

"" Rational Rational BezierBezier,,

"" NURBS, NURBS, 

"" DD--NURBS, andNURBS, and

"" RaGRaG..



Summary
!! For shape recovery, we discussedFor shape recovery, we discussed

"" ThinThin--plate plate splines splines andand
"" RaG RaG curves and surfaces.curves and surfaces.

!! Parametrizing Parametrizing irregularly spaced points for curve irregularly spaced points for curve 
and surface fitting was also discussed.and surface fitting was also discussed.

!! Programs for Programs for RaG RaG curves and surfaces are curves and surfaces are 
included in your CD. included in your CD. 

!! Use of the programs will be demonstrated in the Use of the programs will be demonstrated in the 
Computer Applications Lab (CAL).Computer Applications Lab (CAL).





Notes on
Dynamic Non-Uniform Rational B-Splines (D-NURBS)

Demetri Terzopoulos

Courant Institute of Mathematical Sciences
New York University
New York, NY 10003

Abstract

Dynamic NURBS, or D-NURBS, are a physics-based generalization of non-uniform rational B-splines.
NURBS have become ade factostandard in commercial modeling systems because of their power to rep-
resent both free-form and common analytic shapes. Traditionally, however, NURBS have been viewed as
purely geometric primitives, which require the designer to interactively adjust many degrees of freedom
(DOFs)—control points and associated weights—to achieve desired shapes. The conventional shape
modification process can often be clumsy and laborious. D-NURBS are physics-based models that in-
corporate mass distributions, internal deformation energies, forces, and other physical quantities into
the NURBS geometric substrate. Their dynamic behavior, resulting from the numerical integration of a
set of nonlinear differential equations, produces physically meaningful, hence intuitive shape variation.
Consequently, a modeler can interactively sculpt complex shapes to required specifications not only in
the traditional indirect fashion, by adjusting control points, but also through direct physical manipula-
tion, by applying simulated forces and local and global shape constraints. We use Lagrangian mechanics
to formulate the equations of motion for D-NURBS curves, tensor-product surfaces, swung surfaces,
and triangulated surfaces. We apply finite element analysis to reduce these equations to efficient algo-
rithms that can be simulated at interactive rates using standard numerical techniques. We describe a
prototype modeling environment based on D-NURBS, and demonstrate that D-NURBS can be effective
tools in a wide range of CAGD applications such as shape blending, scattered data fitting, and interactive
sculpting.

1 Introduction

In 1975 Versprille [33] proposed the Non-Uniform Rational B-Splines or NURBS. This shape representation
for computer-aided geometric design (CAGD) generalized Riesenfeld’s B-splines. NURBS quickly gained
popularity and were incorporated into several commercial modeling systems [20]. The NURBS representa-
tion has several attractive properties. It offers a unified mathematical formulation for representing not only
free-form curves and surfaces, but also standard analytic shapes such as conics, quadrics, and surfaces of
revolution. The most frequently used NURBS design techniques are the specification of a control polygon,
and interpolation or approximation of data points to generate the initial shape. For surfaces or solids, cross-
sectional design including skinning, sweeping, and swinging operations is also popular. By adjusting the
positions of control points, associated weights, and knots of the initial shape, one can design a large variety
of shapes using NURBS [7, 18, 19, 20, 32].

1.1 Motivation of Physics-Based CAGD

NURBS have offered designers extraordinary flexibility for CAGD. However, traditional design methodol-
ogy does not exploit the full potential of the underlying geometric formulations whose extraordinary flexi-
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bility has some drawbacks:

� The designer is faced with the tedium of indirect shape manipulation through a bewildering variety
of geometric parameters; i.e., by repositioning control points, adjusting weights, and modifying knot
vectors. Despite the recent prevalence of sophisticated 3D interaction devices, the indirect geometric
design process remains clumsy and time consuming in general.

� Shape design to required specifications by manual adjustment of available geometric degrees of free-
dom is often elusive, because relevant design tolerances are typically shape-oriented and not control
point/weight oriented. The geometric “redundancy” of NURBS tends to make geometric shape re-
finementad hocand ambiguous; for instance, to adjust a shape should the designer move a control
point, or change a weight, or move two control points,...?

� Typical design requirements may be stated in both quantitative and qualitative terms, such as “a fair
and pleasing surface which approximates scattered data and interpolates a cross-section curve.” Such
requirements impose both local and global constraints on shape. The incremental manipulation of
local shape parameters to satisfy complex local and global shape constraints is at best cumbersome
and often unproductive.

Physics-based modeling provides a means to overcome these drawbacks. Free-form deformable models,
which were introduced to computer graphics in 1987 [30] and were further developed in recent years [29,
2, 3, 4, 34] are particularly relevant in the context of modeling with NURBS. Important advantages accrue
from the deformable model approach [29]:

� The behavior of the deformable model is governed by physical laws. Through a computational physics
simulation, the model responds dynamically to applied simulated forces in a natural and predictable
way. Shapes can be sculpted interactively using a variety of force-based “tools.”

� The equilibrium state of the dynamic model is characterized by a minimum of the potential energy of
the model subject to imposed constraints [28]. It is possible to formulate potential energy functionals
that satisfy local and global design criteria, such as curve or surface (piecewise) smoothness, and to
impose geometric constraints relevant to shape design.

� The physical model may be built upon a standard geometric foundation, such as free-form parametric
curve and surface representations. This means that while shape design may proceed interactively
or automatically at the physical level, existing geometric toolkits are concurrently applicable at the
geometric level.

Thus, while traditional CAGD is based on geometric primitives and operations that often require the
designer to painstakingly adjust geometric parameters in order to achieve desired shapes, physics-based
CAGD treats these parameters as generalized coordinates which evolve automatically in response to sim-
ulated forces and geometric constraints according to the principles of Lagrangian mechanics. In this way,
physics-based CAGD puts the laws of physics on the side of the designer. Physics-based CAGD can free de-
signers from making nonintuitive decisions such as assigning weights to NURBS. In addition, with physics-
based direct manipulation, non-expert users are able to concentrate on visual shape variation without neces-
sarily comprehending the underlying mathematical formulation.

1.2 Dynamic NURBS: A Physics-Based Generalization of NURBS

DynamicNURBS, or D-NURBS, are a dynamic generalization of conventional, geometric NURBS. They
are physics-based models that incorporate mass distributions, internal deformation energies, and other phys-
ical quantities with the NURBS geometric substrate. Time is fundamental to the dynamic formulation. The
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models are governed by dynamic differential equations which, when integrated numerically through time,
continuously evolve the NURBS control points and weights in response to applied forces. The D-NURBS
formulation supports interactive direct manipulation of NURBS objects, which results in physically mean-
ingful hence intuitively predictable motion and shape variation.

Using D-NURBS, a modeler can interactively sculpt complex shapes not merely by kinematic adjust-
ment of control points and weights, but dynamically as well—by applying simulated forces. Additional
control over dynamic sculpting stems from the modification of physical parameters such as mass, damp-
ing, and elastic properties. Elastic functionals allow the imposition of qualitative “fairness” criteria through
quantitative means. Linear or nonlinear constraints may be imposed either as hard constraints that must not
to be violated, or as soft constraints to be satisfied approximately. The latter may be interpreted intuitively
as simple forces. Optimal shape design results when D-NURBS are allowed to achieve static equilibrium
subject to shape constraints. All of these capabilities are subsumed under an elegant formulation grounded
in physics.

D-NURBS are derived through the systematic use of Lagrangian mechanics and finite element analysis.
D-NURBS control points and associated weights are generalized coordinates in the Lagrangian equations
of motion. From a physics-based modeling point of view, the existence of weights makes the NURBS
geometry substantially more challenging than B-spline geometry. Since the NURBS rational basis functions
are functionally dependent on the weights, D-NURBS dynamics are generally nonlinear, and the mass,
damping, and stiffness matrices must be recomputed at each simulation time step.1 Fortunately, this does not
preclude interactive performance on current graphics workstations, at least for the size of surface models that
appear in our demonstrations. Because D-NURBS allow fully continuous mass and damping distributions,
we obtain banded mass and damping matrices. To compute the integral expressions for the matrix entries in
an efficient manner, we apply numerical quadrature to the underlying NURBS basis functions.

Detailed information about D-NURBS is available in the following publications: [31, 23, 25, 24].

2 Formulation of D-NURBS

The shape parameters of geometric NURBS play the role of generalized (physical) coordinates in dynamic
NURBS. We introduce time, mass, and deformation energy into the standard NURBS formulation and
employ Lagrangian dynamics to arrive at the system of nonlinear ordinary differential equations that govern
the shape and motion of D-NURBS. In particular, we formulate four different varieties: D-NURBS curves,
tensor-product D-NURBS surfaces, swung D-NURBS surfaces, and triangular D-NURBS surfaces.

2.1 D-NURBS Curves

NURBS generalize the non-rational parametric form. They inherit many of the properties of non-rational B-
splines, such as the strong convex hull property, variation diminishing property, local support, and invariance
under standard geometric transformations. Moreover, they have some additional properties. NURBS can be
used to satisfy different smoothness requirements. They include weights as extra degrees of freedom which
influence local shape. Most importantly, NURBS offer a common mathematical framework for implicit and
parametric polynomial forms. In principle, they can represent analytic functions such as conics and quadrics
precisely, as well as free-form shapes.

A kinematic NURBS curve extends the geometric NURBS definition by explicitly incorporating time.
The kinematic curve is a function of both the parametric variableu and timet:

c(u; t) =

Pn
i=0 pi(t)wi(t)Bi;k(u)Pn

i=0wi(t)Bi;k(u)
: (1)

1Note, however, that for static weights, the matrices become time invariant and the computational cost is reduced significantly.
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where theBi;k(u) are the usual recursively defined piecewise basis functions [8],pi(t) are then+1 control
points, andwi(t) are associated non-negative weights. Assuming basis functions of degreek � 1, the curve
hasn + k + 1 knotsti in non-decreasing sequence:t0 � t1 � : : : � tn+k. In many applications, the end
knots are repeated with multiplicityk in order to interpolate the initial and final control pointsp0 andpn.

To simplify notation, we define the vector of generalized coordinatespi(t) and weightswi(t) as

p(t) =
h
p>0 w0 � � � p>n wn

i>
;

where> denotes transposition. We then express the curve (1) asc(u;p) in order to emphasize its dependence
onp whose components are functions of time.

The velocity of the kinematic spline is

_c(u;p) = J _p; (2)

where the overstruck dot denotes a time derivative andJ(u;p) is the Jacobian matrix. Becausec is a
3-component vector-valued function andp is a4(n+ 1) dimensional vector,J is the3� 4(n+ 1) matrix

J =

2
664 � � �

2
664

@cx
@pi;x

0 0

0
@cy
@pi;y

0

0 0 @cz
@pi;z

3
775 @c

@wi
� � �

3
775 ; (3)

where
@cx
@pi;x

=
@cy
@pi;y

=
@cz
@pi;z

=
wiBi;kPn
j=0wjBj;k

;

@c

@wi
=

Pn
j=0(pi � pj)wjBi;kBj;k

(
Pn

j=0wjBj;k)2
:

The subscriptsx, y, andz denote the components of a3-vector. Furthermore, we can express the curve as
the product of the Jacobian matrix and the generalized coordinate vector:

c(u;p) = Jp: (4)

The proof of (4) can be found elsewhere [31].

2.2 Tensor-Product D-NURBS Surfaces

In analogy to the kinematic curve of (1), a tensor-product D-NURBS surface

s(u; v; t) =

Pm
i=0

Pn
j=0 pi;j(t)wi;j(t)Bi;k(u)Bj;l(v)Pm

i=0

Pn
j=0wi;j(t)Bi;k(u)Bj;l(v)

(5)

generalizes the geometric NURBS surface. The(m+ 1)(n+ 1) control pointspi;j(t) and weightswi;j(t),
which are functions of time, comprise the D-NURBS generalized coordinates. Assuming basis functions
along the two parametric axes of degreek�1 andl�1, respectively, the number of knots is(m+k+1)(n+l+
1). The non-decreasing knot sequence ist0 � t1 � : : : � tm+k along theu-axis ands0 � s1 � : : : � sn+l
along thev-axis. The parametric domain istk�1 � u � tm+1 andsl�1 � v � sn+1. If the end knots have
multiplicity k andl in theu andv axis respectively, the surface patch will interpolate the four corners of the
boundary control points.

We concatenate theseN = 4(m+ 1)(n+ 1) coordinates into the vector:

p(t) =
h
p>0;0 w0;0 � � � p>i;j wi;j � � � p>m;n wm;n

i>
:
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Figure 1: Construction of a cubical NURBS swung surface. (a) NURBS profile curve on x-z plane, NURBS
trajectory curve on x-y plane. (b) Cube surface wireframe.

Two subscripts are now associated with the generalized coordinates, reflecting the surface parametersu and
v. For concreteness, we order the components in these vectors such that the second subscript varies faster
than the first, although this convention does not affect the derived results.

Similar to (2) and (4), we have

_s(u; v;p) = J _p; s(u; v;p) = Jp: (6)

whereJ(u; v;p) is the3 � N Jacobian matrix of the D-NURBS surface with respect top. However, the
contents of the JacobianJ differ from those in the curve case. To arrive at an explicit expression forJ, let
Bi;j(u; v;p), for i = 0; : : : ;m, andj = 0; : : : ; n, be a3� 3 diagonal matrix whose entries are

Ni;j(u; v;p) =
@s

@pi;j
=

wi;jBi;k(u)Bj;l(v)Pm
c=0

Pn
d=0 wc;dBc;k(u)Bd;l(v)

and let the 3-vector

wi;j(u; v;p) =
@s

@wi;j

=

Pm
c=0

Pn
d=0(pi;j � pc;d)wc;dBc;k(u)Bd;l(v)Bi;k(u)Bj;l(v)

(
Pm

c=0

Pn
d=0wc;dBc;k(u)Bd;l(v))2

:

Hence,
J(u; v;p) =

h
B0;0 w0;0 � � � Bm;n wm;n

i
:

Note thatJ is now a3� 4(m+ 1)(n+ 1) matrix.

2.3 Swung D-NURBS Surfaces

Many objects of interest, especially manufactured objects, exhibit symmetries. Often it is convenient to
model symmetric objects through cross-sectional design by specifying profile curves [9]. Woodward [35]
introduced the swinging operator by extending the spherical cross-product with a scaling factor, and applied
it to generate surfaces with B-spline profile curves. Piegl [20] carried the swinging idea over to NURBS
curves. He proposed NURBS swung surfaces, a special type of NURBS surfaces formed by swinging one
planar NURBS profile curve along a second NURBS trajectory curve. For example, Fig. 1 illustrates the
design of a cubical NURBS swung surface from two NURBS profile curves.
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The NURBS swung surface retains a considerable breadth of geometric coverage. It can represent
common geometric primitives such as spheres, tori, cubes, quadrics, surfaces of revolution, etc. The NURBS
swung surface is efficient compared to a general NURBS surface, inasmuch as it can represent a broad class
of shapes with essentially as few degrees of freedom as it takes to specify the two generator curves. Several
geometric shape design systems include some form of swinging (or sweeping) among their repertoire of
techniques [27].

Geometrically, a dynamic swung surface is generated from two planar kinematic NURBS profile curves
through the swinging operation [20] (Fig 1). Let the two generator curvesc1(u;a) andc2(v;b) be of the
form (1). The swung surface is then defined as

s(u; v; t) =
h
�(t)c1;xc2;x �(t)c1;xc2;y c1;z

i>
(7)

where� is an arbitrary scalar. The second subscript denotes the component of a3-vector.
Assume thatc1 has basis functions of degreek�1 and that it hasm+1 control pointsai(t) and weights

wa
i (t). Similarly,c2 has basis functions of degreel�1 and that it hasn+1 control pointsbj(t) and weights

wb
j(t). Therefore,

a(t) = [a>0 ; w
a
0 ; : : : ;a

>
m; w

a
m]>

and
b(t) = [b>0 ; w

b
0; : : : ;b

>
n ; w

b
n]
>

are the generalized coordinate vectors of the profile curves. We collect these into the generalized coordinate
vector

p =
h
� a> b>

i>
:

This vector has dimensionalityM = 1 + 4(m + 1) + 4(n+ 1). Thus the model hasO(n+m) degrees of
freedom, compared toO(nm) for general NURBS surfaces.

The velocity of the swung surface is
_s(u; v;p) = L _p (8)

whereL(u; v;p) is the Jacobian matrix with respect to the generalized coordinate vectorp. Hence,L
comprises the vectors@s=@�, @s=@a, and@s=@b. The expression of the3 �M matrixL can be explicitly
formulated [23]. UnlikeJ in (4),L cannot serve as the basis function matrix of the swung surface. Instead,
we have

s(u; v;p) = Hp; (9)

whereH is the3�M basis function matrix [23].

2.4 Triangular D-NURBS Surfaces

The main drawback of tensor-product NURBS is that the surface patches are rectangular. Consequently,
the designer is forced to model multisided irregular shapes using degenerate patches with deteriorated inter-
patch continuity. Thus, the associated smoothness constraints increase the complexity of the design task in
general. In contrast, triangular B-splines [5] and NURBS can represent complex non-rectangular shapes over
arbitrary triangulated domains with low degree piecewise polynomials that nonetheless maintain relatively
high-order continuity. They can express smooth non-rectangular shapes without degeneracy. They can also
model discontinuities by varying the knot distribution.

Let T = f�(i) = [r; s; t]ji = (i0; i1; i2) 2 Z3
+g be an arbitrary triangulation of the planar parametric

domain, wherei0, i1, andi2 denote indices ofr, s, andt in the vertex array of the triangulation, respectively.
For each vertexv in the triangulated domain, we associate a knot sequence (also called a cloud of knots)
[v = v0;v1; : : : ;vn] (which are inside the shaded circles in Fig. 2). Next, we define a convex hull

Vi;� = fr0; : : : ; r�0 ; s0; : : : ; s�1 ; t0; : : : ; t�2g;
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Knot Sequences
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Figure 2: Knot vectors associated with each triangle in the domain triangulation.

where subscripti is a triangle index, and� = (�0; �1; �2) is a triplet such thatj�j = �0+�1+�2 = n. The
bivariate simplex splineM(ujVi;�) with degreen overVi;� can be defined recursively (the details are found
elsewhere [5]), whereu = (u; v) defines the triangulated parametric domain of the surface. We then define
a bivariate B-spline basis function as

Ni;�(u) = d(r�0 ; s�1 ; t�2)M(ujVi;�); (10)

whered(r�0 ; s�1 ; t�2) is twice the area of�(r�0 ; s�1 ; t�2). Like the ordinary tensor-product D-NURBS,
we define triangular D-NURBS as the combination of a set of piecewise rational functions by explicitly
incorporating time and physical behavior. The surface is a function of both the parametric variableu and
time t:

s(u; t) =

P
i

P
j�j=n pi;�(t)wi;�(t)Ni;�(u)P
i

P
j�j=nwi;�(t)Ni;�(u)

: (11)

We define the vector of generalized coordinates (control points)pi;� and (weights)wi;� as

p = [: : : ;p>i;�; wi;�; : : :]
>:

We then express (11) ass(u;p) in order to emphasize its dependence onp whose components are functions
of time.

Thus, the velocity of the triangular D-NURBS is

_s(u;p) = J _p; (12)

where the overstruck dot denotes a time derivative and the Jacobian matrixJ(u;p) is the concatenation
of the vectors@s=@pi;� and@s=@wi;� . Assumingm triangles in the parametric domain,� traversesk =
(n+2)!=(n!2!) possible triplets whose components sum ton. Becauses is a 3-vector andp is anM = 4mk
dimensional vector,J is a3�M matrix, which may be written as

J =

2
64: : : ;

2
64
Ri;� 0 0
0 Ri;� 0
0 0 Ri;�

3
75 ;wi;�; : : :

3
75 (13)
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where

Ri;�(u;p) =
@sx

@pi;�;x

=
@sy

@pi;�;y

=
@sz

@pi;�;z

=
wi;�Ni;�(u)P

j

P
j�j=nwj;�Nj;�(u)

and

wi;�(u;p) =
@s

@wi;�

=
(pi;� � s)Ni;�(u)P
j

P
j�j=nwj;�Nj;�(u)

The subscriptsx, y, andz denote derivatives of the components of a 3-vector. Moreover, we can express the
surface as the product of the Jacobian matrix and the generalized coordinate vector:

s(u;p) = Jp: (14)

The proof of (14) is the same as that for the tensor-product D-NURBS [31].

2.5 D-NURBS Equations of Motion

The equations of motion of our D-NURBS are derived from the work-energy version of Lagrangian dy-
namics [11]. Applying the Lagrangian formulation to D-NURBS curves, tensor-product surfaces, swung
surfaces, and triangulated surfaces, we obtain the second-order nonlinear equations of motion

M�p+D _p+Kp = fp + gp; (15)

where the mass matrixM(p), the damping matrixD(p), and the stiffness matrixK(p) can all be formulated
explicitly [31, 23, 25]. TheN �N mass and damping matrices are are

M(p) =

Z Z
�J>J du dv; D(p) =

Z Z

J>J du dv (16)

where�(u; v) is the prescribed mass density function over the parametric domain of the surface and
(u; v)
is the prescribed damping density function. To define an elastic potential energy for the surface, we adopt
the thin-plate under tensionenergy model [28, 3, 34, 12, 31].2 This yields theN �N stiffness matrix

K(p) =

Z Z �
�1;1J

>
u Ju + �2;2J

>
v Jv + �1;1J

>
uuJuu + �1;2J

>
uvJuv + �2;2J

>
vvJvv

�
du dv; (17)

where the subscripts onJ denote parametric partial derivatives. The�i;j(u; v) and�i;j(u; v) are elasticity
functions which control tension and rigidity, respectively, in the two parametric coordinate directions. Other
energies are applicable, including the nonquadratic, curvature-based energies [30, 17]. The generalized
force fp(p) =

RR
J>f(u; v; t) du dv is obtained through the principle of virtual work [11] done by the

applied force distributionf(u; v; t). Because of the geometric nonlinearity, generalized inertial forcesgp(p)
are also associated with the models (see our journal articles for the details [31, 23]).

3 Finite Element Implementation

The evolution ofp, determined by (15) with time-varying matrices, cannot be solved analytically in general.
Instead, we pursue an efficient numerical implementation using finite-element techniques [13].

Standard finite element codes explicitly assemble the global matrices that appear in the discrete equa-
tions of motion [13]. We use an iterative matrix solver to avoid the cost of assembling the globalM,D, and
K. In this way, we work with the individual element matrices and construct finite element data structures
that permit the parallel computation of element matrices.

2See the second part of the course notes by the author on Generalized Splines.
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3.1 Element Data Structures

We define an element data structure which contains the geometric specification of the surface patch element
along with its physical properties. A complete D-NURBS surface is then implemented as a data structure
which consists of an ordered array of elements with additional information. The element structure includes
pointers to appropriate components of the global vectorp (control points and weights). Neighboring ele-
ments will share some generalized coordinates. The shared variables will have multiple pointers impinging
on them. We also allocate in each element an elemental mass, damping, and stiffness matrix, and include in
the element data structure the quantities needed to compute these matrices. These quantities include the mass
�(u; v), damping
(u; v), and elasticity�i;j(u; v), �i;j(u; v) density functions, which may be represented
as analytic functions or as parametric arrays of sample values.

3.2 Calculation of Element Matrices

The integral expressions for the mass, damping, and stiffness matrices associated with each element are
evaluated numerically using Gaussian quadrature [22]. We shall explain the computation of the element
mass matrix; the computation of the damping and stiffness matrices follow suit. Assuming the parametric
domain of the element is
, the expression for entrymij of the mass matrix takes the integral form

mij =

Z


�(u; v)fij(u; v) du dv;

wherefij are entries of the mass matrix. Given integersNg, we can find Gauss weightsag, and abscissas
ug, vg in the two parametric directions of
 such thatmij can be approximated by [22]

mij �

NgX
g=1

ag�(ug; vg)fij(ug; vg):

We apply the de Boor algorithm [6] or the recursive algorithm of multivariate simplex B-splines [15] to
evaluatefij(ug; vg). In general, Gaussian quadrature evaluates the integral exactly withN weights and
abscissas for polynomials of degree2N � 1 or less. In our system we chooseNg to be integers between
4 and7. Our experiments indicate that matrices computed in this way lead to stable, convergent solutions.
Note that because of the irregular knot distribution for the case of triangular D-NURBS, manyfij ’s are zero
over the triangular subdomains of
. We can further subdivide the subdomains in order to decrease the
numerical quadrature error [25].

3.3 Discrete Dynamics Equations

To integrate (15) in an interactive modeling environment, it is important to provide the modeler with visual
feedback about the evolving state of the dynamic model. Rather than using costly time integration methods
that take the largest possible time steps, it is more crucial to provide a smooth animation by maintaining the
continuity of the dynamics from one step to the next. Hence, less costly yet stable time integration methods
that take modest time steps are desirable.

The state of the dynamic NURBS at timet+�t is integrated using prior states at timet andt��t. To
maintain the stability of the integration scheme, we use an implicit time integration method, which employs
the time integration formula

�
2M+�tD+ 2�t2K

�
p(t+�t) = 2�t2(fp + gp) + 4Mp(t) � (2M��tD)p(t��t) (18)

where the superscripts denote evaluation of the quantities at the indicated times. The matrices and forces
are evaluated at timet.
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We employ the conjugate gradient method to obtain an iterative solution [22]. To achieve interactive
simulation rates, we limit the number of conjugate gradient iterations per time step to 10. We have observed
that 2 iterations typically suffice to converge to a residual of less than10�3. More than 2 iterations tend to
be necessary when the physical parameters (mass, damping, tension, stiffness, applied forces) are changed
significantly during dynamic simulation. Hence, our implementation permits the real-time simulation of
dynamic NURBS surfaces on common graphics workstations.

The equations of motion allow realistic dynamics such as would be desirable for physics-based computer
graphics animation. It is possible, however, to make simplifications that further reduce the computational
cost of (18) to interactively sculpt larger surfaces. For example, in CAGD applications such as data fitting
where the modeler is interested only in the final equilibrium configuration of the model, it makes sense to
simplify (15) by setting the mass density function�(u; v) to zero, so that the inertial terms vanish.

4 Physics-Based Shape Design

In the physics-based shape design approach, design requirements may be satisfied through the use of ener-
gies, forces, and constraints. The designer may apply time-varying forces to sculpt shapes interactively or
to optimally approximate data. Certain aesthetic constraints such as “fairness” are expressible in terms of
elastic energies that give rise to specific stiffness matricesK. Other constraints include position or normal
specification at surface points, and continuity requirements between adjacent surface patches. By build-
ing D-NURBS upon the standard NURBS geometry, we allow the modeler to continue to use the whole
spectrum of advanced geometric design tools that have become prevalent, among them, the imposition of
geometric constraints that the final shape must satisfy.

4.1 Applied Forces

Sculpting tools may be implemented as applied forces. The forcef(u; v; t) represents the net effect of all
applied forces. Typical force functions are spring forces, repulsion forces, gravitational forces, inflation
forces, etc. [30].

For example, consider connecting a material point(u0; v0) of a D-NURBS surface to a pointd0 in space
with an ideal Hookean spring of stiffnessk. The net applied spring force is

f(u; v; t) =

Z Z
k(d0 � s(u; v; t))Æ(u � u0; v � v0) du dv; (19)

where theÆ is the unit delta function. Equation (19) implies thatf(u0; v0; t) = k(d0 � s(u0; v0; t)) and
vanishes elsewhere on the surface, but we can generalize it by replacing theÆ function with a smooth kernel
(e.g., a unit Gaussian) to spread the applied force over a greater portion of the surface. Furthermore, the
points (u0; v0) andd0 need not be constant, in general. We can control either or both using a mouse to
obtain an interactive spring force.

4.2 Constraints

In practical applications, design requirements may be posed as a set of physical parameters or as geometric
constraints. Nonlinear constraints can be enforced through Lagrange multiplier techniques [16]. This ap-
proach increases the number of degrees of freedom, hence the computational cost, by adding unknowns�i,
known as Lagrange multipliers, which determine the magnitudes of the constraint forces. The augmented
Lagrangian method [16] combines the Lagrange multipliers with the simpler penalty method [21]. The
Baumgarte stabilization method [1] solves constrained equations of motion through linear feedback control
[14, 31]. These techniques are appropriate for D-NURBS with nonlinear constraints.
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Linear geometric constraints such as point, curve, and surface normal constraints can be easily incorpo-
rated into dynamic swung surface by reducing the matrices and vectors in (15) to a minimal unconstrained
set of generalized coordinates. They can then be implemented by applying the same numerical solver on an
unconstrained subset ofp [31].

D-NURBS have an interesting idiosyncrasy due to the weights. While the control point components
of p may take arbitrary finite values in<, negative weights may cause the denominator to vanish at some
evaluation points, causing the matrices to diverge. Although not forbidden, negative weights are not useful.
We enforce positivity of weights at each simulation time step by simply projecting any weight value that has
drifted below a small positive threshold back to this lower bound. Alternatively, we can give the designer the
option of constraining the weights near certain desired target valuesw0i by including in the surface energy
the penalty termc

P
(wi � w0

i ), wherec controls the tightness of the constraint.

5 Modeling Applications

This section describes our D-NURBS modeling environment and presents several applications relating to
solid rounding, optimal surface fitting, and interactive sculpting.

5.1 Interactive Modeling Environment

We have developed a prototype modeling environment based on the tensor-product and swung D-NURBS
model. The system is written in C and it currently runs under Iris Explorer on Silicon Graphics workstations.
It may be combined with existing Explorer modules for data input and surface visualization. Our parallelized
iterative numerical algorithm takes advantage of an SGI Iris 4D/380VGX multiprocessor. To date, our D-
NURBS modules implement 3D curve and surface objects with basis function orders of 2, 3, or 4 (i.e., from
linear to cubic D-NURBS) with linear geometric constraints.

We have also developed prototype modeling software based on dynamic triangular B-splines which is
a special case of triangular D-NURBS by fixing all weights to be unity (an advanced system based upon
dynamic triangular NURBS is under construction). We have adopted the data structure, file, and rendering
formats of existing geometric triangular B-spline software [10]. To implement the Lagrangian dynamics
model on top of this software, we have had to implement a new algorithm for simultaneously evaluating
non-zero basis functions and their derivatives up to second order at arbitrary domain points for finite element
assembly and dynamic simulation.

Users can sculpt surface shapes in conventional geometric ways, such as by sketching control polygons
of arbitrary profile curves, repositioning control points, and adjusting associated weights, or according to
the physics-based paradigm through the use of forces. They can satisfy design requirements by adjusting the
internal physical parameters such as the mass, damping, and stiffness densities, along with force gain factors.
Linear constraints such as the freezing of control points have been associated with physics-based toolkits in
our prototype system. Local geometric constraints can be used to achieve real-time local manipulation for
interactive sculpting of complex objects.

5.2 Optimal Surface Fitting

D-NURBS are applicable to the optimal fitting of regular or scattered data [26]. The most general and often
most useful case occurs with scattered data, when there are fewer or more data points than unknowns—i.e.,
when the solution is underdetermined or overdetermined by the data. In this case, D-NURBS can yield
“optimal” solutions by minimizing the thin-plate under tension deformation energy [28]. The surfaces are
optimal in the sense that they provide the smoothest curve or surface (as measured by the deformation
energy) which interpolates or approximates the data.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 3: Optimal surface fitting: D-NURBS surfaces fit to sampled data from (a) a hemisphere, (b) a
convex/concave surface, (c) a sinusoidal surface. (a–c1) D-NURBS patch outline with control points (white)
and data points (red) shown. (a–c2) D-NURBS surface at equilibrium fitted to scattered data points. Red
line segments in (c2) represent springs with fixed attachment points on surface.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 4: Solid rounding with triangular D-NURBS: Rounding of (a) an edge, (b) a trihedral corner, (c) a
bevel joint. (a1-c1) Initial wireframe surfaces. (a2-c2) Final rounded, shaded surfaces.

The data point interpolation problem amounts to a linear constraint problem when the weights are fixed,
and it is amenable to the constraint techniques presented in Section 4.2. The optimal approximation problem
can be approached in physical terms, by coupling the D-NURBS to the data through Hookean spring forces
(19). We interpretd0 in (19) as the data point (generally in<3) and(u0; v0) as the D-NURBS parametric
coordinates associated with the data point (which may be the nearest material point to the data point). The
spring constantc determines the closeness of fit to the data point.

We present three examples of surface fitting using tensor-product D-NURBS coupled to data points
through spring forces. Fig. 3(a) shows 19 data points sampled from a hemisphere and their interpolation with
a quadratic D-NURBS surface with 49 control points. Fig. 3(b) shows 19 data points and the reconstruction
of the implied convex/concave surface by a quadratic D-NURBS with 49 control points. The spring forces
associated with the data points are applied to the nearest points on the surface. In Fig. 3(c) we reconstruct
a wave shape from 25 sample points using springs with fixed attachments to a quadratic tensor-product
D-NURBS surface with 25 control points.

5.3 Rounding

The rounding operation is usually attempted geometrically by enforcing continuity requirements on the fillet
which interpolates between two or more surfaces. By contrast, the D-NURBS can produce a smooth fillet
by minimizing its internal deformation energy subject to position and normal constraints. The dynamic
simulation automatically produces the desired final shape as it achieves static equilibrium.

Fig. 4(a) demonstrates the rounding of a sharp edge represented by a quadratic triangular D-NURBS
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surface with36 control points. The sharp edge can be represented exactly with multiple control points. By
restricting the control polygon to be a continuous net, we reduced the number of control points to21. The
initial wireframe surface is shown in Fig. 4(a1). After initiating the physical simulation, the sharp edges
are rounded as the final shape equilibrates into the minimal energy state shown by the shaded surface in
Fig. 4(a2).

Fig. 4(b) illustrates the rounding of a trihedral corner of a cube. The corner is represented using a
quadratic triangular D-NURBS with78 control points. The initial wireframe is shown in Fig. 4(b1). The
rounding operation is applied in the vicinity of three sharp edges. The sharp edges and corner are rounded
with position and normal constraints along the far boundaries of the faces of the shaded surface shown in
Fig. 4(b2).

Fig. 4(c) shows a rounding example involving a bevel joint. The bevel joint is a quadratic triangular
D-NURBS with108 control points. The initial right-angle joint and the final rounded surface are shown in
Fig. 4(c1–2).

5.4 Interactive Sculpting

In the physics-based modeling approach, not only can designers manipulate the individual degrees of free-
dom with conventional geometric methods, but they can also move the object or refine its shape with inter-
active sculpting forces.

The physics-based modeling approach is ideal for interactive sculpting of surfaces. It provides direct
manipulation of the dynamic surface to refine the shape of the surface through the application of interactive
sculpting tools in the form of forces. Fig. 5(a) illustrates the results of four interactive sculpting sessions
using swung D-NURBS surfaces and simple spring forces. A sphere was generated using two quadratic
curves with4 and7 control points and was sculpted into the ovoid shown in Fig. 5(a). A torus whose two
profile curves are quadratic with7 and7 control points, respectively, has been deformed into the shape in
Fig. 5(b). A hat shape was created from two curves with9 and6 control points and was then deformed by
spring forces into the shape in Fig 5(d). Finally, we generated a wine glass shape using two curves with7
and5 control points and sculpted it into the more pleasing shape shown in Fig 5(c).

6 Conclusion

We have described D-NURBS, a dynamic generalization of geometric NURBS. D-NURBS were derived
systematically through the application of Lagrangian mechanics and implemented using concepts from fi-
nite element analysis and efficient numerical methods. The mathematical development comprised four va-
rieties: D-NURBS curves, tensor-product D-NURBS surfaces, swung D-NURBS surfaces, and triangular
D-NURBS surfaces.

We also presented a new physics-based design paradigm based on D-NURBS which generalizes well es-
tablished geometric design. This paradigm was the basis of a D-NURBS interactive modeling environment.
The physics-based framework furnishes designers not only the standard geometric toolkits but powerful
force-based sculpting tools as well. It provides mechanisms for automatically adjusting unknown parame-
ters to support user manipulation and satisfy design requirements.

Since D-NURBS are built on the industry-standard NURBS geometric substrate, designers working
with them can continue to make use of the existing array of geometric design toolkits. With the advent
of high-performance graphics systems, however, the physics-based framework is poised for incorporation
into commercial design systems to interactively model and sculpt complex shapes in real-time. Thus, D-
NURBS can unify the features of the industry-standard geometry with the many demonstrated conveniences
of interaction through physical dynamics.
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(a) (b)

(c) (d)

Figure 5: Interactive Sculpting of D-NURBS Swung Surfaces. Open and closed surfaces shown were
sculpted interactively from prototype shapes noted in parentheses (a) Egg shape (sphere). (b) Deformed
toroid (torus). (c) Hat (open surface). (d) Wine glass (cylinder).
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Abstract

Generalized splines have proven useful in the reconstruction of surfaces from scattered data. the surface
reconstruction problem is of concern in diverse fields, such as computer-aided design, computer vision,
digital terrain mapping, geophysics, meteorology, etc. [12, 6]. These notes cover some of the mathe-
matics of generalized splines, with emphasis on a relatively recent extension—discontinuity-preserving
generalized splines [15].

1 Classical Smoothing Splines

Consider a set of N data points f(xi; ci)gNi=1. Each data point i comprises a position xi on the infinite
domain x 2 < and a value ci. The approximation problem associated with classical smoothing splines
[11, 10] involves the minimization of the functional

Em(v) = Sm(v) + P(v) =
1

2

Z
<

@mv(x)

@xm
dx+

1

2

NX
i=1

�i(v(xi)� ci)
2; (1)

for non-negative weights �i, where the order m of the partial derivative in the smoothness functional Sm(v)
determines the continuity that any admissible functions v(x) must possess.1 The function u(x) which min-
imizes Em is a piecewise polynomial of degree 2m� 1.

2 Generalized Splines

For data f(xi; ci)gNi=1 in a p-dimensional domain x = (x1; : : : ; xp) 2 <
p, the natural generalization of the

smoothness functional in (1) is

Sm(v) =
1

2

pX
i1;:::;im=1

Z
<p

�
@mv(x)

@xi1 : : : @xim

�2
dx

=
1

2

Z
<p

X
jjj=m

m!

j1! : : : jp!

 
@mv(x)

@xj11 : : : @xjmp

!2

dx:

(2)

Here, j = (j1; : : : ; jp) is a multi-index with jjj = j1+: : :+jp. These (scalar) generalized splinefunctionals,
which were studied by Duchon [4, 5] and Meinguet [8], have several important properties.2

1In the context of regularization theory [17] Em is known as a regularization functional and Sm is known as a stabilization
functional.

2The functionals define the natural semi-norms of a certain class of Sobolev spaces H. These semi-norms are invariant under
translation, rotation, and similarity transformation. The null-spaces N of the semi-norms are simply the M =

�
p+m�1

p

�
dimen-

1
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3 Surface Splines

In the case p = 2, where we define x = (x1; x2) = (x; y) for notational convenience, the generalized spline
functionals can be written as

Sm(v) =
1

2

Z Z
<2

mX
i=0

 
m

i

!�
@mv

@xi@ym�i

�2
dx dy: (3)

These functionals pertain to the problem of fitting surfaces to scattered data. This mathematical problem is
of considerable concern in numerous application areas, notably to visible-surface reconstruction in computer
vision [16].

Surface splines have interesting physical interpretations involving equilibria of elastic bodies with Cm�1

intrinsic continuity [15]. The two lowest order cases are of particular interest. For m = 1 the functional
reduces to

S1(v) =
1

2

Z Z
<2

�
v2x + v2y

�
dx dy; (4)

where the subscripts denote a partial derivative with respect to x or y, is proportional to the small deflection
strain energy of an area-minimizing membrane (e.g., rubber sheet) [3].3 Physically, the membrane spline
characterizes a surface of C0 continuity, a continuous surface which, however, need not have continuous
first (and higher) order partial derivatives. For m = 2,

S2(v) =
1

2

Z Z
<2

�
v2xx + 2v2xy + v2yy

�
dx dy: (5)

This is known as the thin plate splinefunctional because it is proportional to the small deflection bending
energy of a thin, flexible plate (with zero Poisson ratio) [3]. The thin plate spline is aC1 surface, a continuous
surface with continuous first partial derivatives, which need not have continuous derivatives of degree greater
than one. As the natural extension to the common one-dimensional cubic spline, the thin plate spline is a
popular surface interpolant [12, 6].

4 Thin-Plate Splines Under Tension

Schweikert [13] introduced splines under tension which can be made to imitate the behavior of cubic in-
terpolating splines, while suppressing the extraneous inflection points that sometimes afflict cubic splines
(see, also, [2]). They may be characterized as interpolatory functions u(x) that minimize the functionalR
<

�
v2xx + �v2x

�
dx; where � is a prespecified positive constant, called the tension parameter. The first term

influences the “length” of the spline while the second term influences its “curvature.” Increasing the tension
tends to eliminate extraneous loops and ripples by reducing the length of the spline.

The natural generalization of splines under tension to surfaces is a weighted convex combination of the
thin-plate (5) and membrane (4) splines as follows [15]:

S�� (v) =
�

2

Z Z
<2

�
(1� �)(v2xx + 2v2xy + v2yy) + �(v2x + v2y)

�
dx dy; (6)

where 0 � � � 1 is the tension parameter and 0 � � � 1 is a stiffness parameter. The thin-plate kernel
affects surface “curvature” while the membrane kernel affects surface “area.”

sional spaces of all polynomials over <p of degree less than or equal to m� 1. Under certain conditions E(v) becomes a norm in
H, which guarantees existence, uniqueness, and stability of the minimizing function u(x). A possible set of conditions is that the
data points be N -unisolvent, meaning that they define a unique polynomial inN .

3Minimization of the true surface area leads to the famous Plateau’s problem.
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5 Discontinuity-Preserving Generalized Splines

As introduced in [15], a simple but very consequential generalization is to allow � and � in (6) to be functions
�(x; y) and �(x; y):

S�� (v) =
1

2

Z Z
<2

�(x; y)
�
(1� �(x; y))(v2xx + 2v2xy + v2yy) + �(x; y)(v2x + v2y)

�
dx dy: (7)

This enables us to control the continuity of the resulting spline u(x; y). In particular, we can explicitly
introduce both zeroth and first order discontinuities at will over the bivariate domain. The smoothness of
the spline u(x; y) is controlled as follows: In continuous regions �(x; y) = 1 and �(x; y) = 0, so that
the functional reduces to a thin-plate spline and generates a C1 surface. Along orientation discontinuities
�(x; y) = 1 and �(x; y) = 1; i.e. maximum tension is applied so that the stabilizer reduces locally to a
membrane functional, thus maintaining only C0 continuity and allowing the surface to crease freely. Along
depth discontinuities �(x; y) = 0, thus inhibiting all continuity and thereby allowing the surface to fracture
freely.

By analogy, a convenient way to control the continuity properties of the generalized spline of order n in
(2) is to blend it with generalized splines of orders less than n as follows:

Sn(v) =
1

2

nX
m=1

X
jjj=m

m!

j1! : : : jp!

Z
<p

wj(x)

 
@mv(x)

@xj11 : : : @x
jp
p

!2

dx: (8)

The smoothness of this discontinuity-preserving generalized spline is controlled by the vector w(x) of
continuity control functions wj(x). For instance, a discontinuity of order k < n is permitted to occur at x0
in the limit as wj(x0)! 0 for jjj > k. Note that (8) reduces to (7) for n = 2, p = 2 and the obvious choice
of functions w(x).

6 Parametric, Discontinuity-Preserving Generalized Splines

All of the aforementioned spline functionals are scalar-valued or univariate. To create parametric splines, we
simply extend (8) to the vector-valued case, generalized spline functionals defined on a vector of coordinate
functions v(x) = [v1(x); : : : ; vq(x)]:

Sn(v) =
1

2

nX
m=1

X
jjj=m

m!

j1! : : : jp!

Z
<p

wj(x)

����� @mv(x)

@xj11 : : : @x
jp
p

�����
2

dx: (9)

7 Euler-Lagrange Equations

Consider the classical smoothing splines defined by minimizing Em(v) in (1), but this time for a continuous
data function c(x); i.e., for P(v) = 1=2

R
< �(x)(v(x)� c(x))2 dx, where �(x) is a non-negative weighting

function. It is well known that the necessary condition for the minimum of satisfies the Euler-Lagrange
equation, (�1)m(@2mv(x)=@x2m) + �(x)(v(x) � c(x)) = 0, which expresses the vanishing of the first
variation of Em(v); i.e., ÆuEm(v) = 0. For surface splines, the Euler–Lagrange equation for the membrane
spline (4) involves the Laplacian operator �u = uxx+uyy. For the thin-plate spline (5), the Euler–Lagrange
equation involves the biharmonic operator �2u = uxxxx + 2uxxyy + uyyyy .

For the generalized splines (2), the Euler–Lagrange equation is

(�1)m�mu(x) + �(x) (u(x)� c(x)) = 0; (10)
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where

�m =
X
jjj=m

m!

j1! : : : jp!

 
@2m

@x2j11 : : : @x
2jp
p

!
(11)

denotes the mth-order iterated Laplacian operator. For the discontinuity-preserving generalized splines (8),
assuming that the control functions w(x) are differentiable to order p, the Euler–Lagrange equation is:

nX
m=0

(�1)m�m
wu(x) + �(x) (u(x) � c(x)) = 0; (12)

where

�m
w =

X
jjj=m

m!

j1! : : : jp!

@m

@xj11 : : : @x
jp
p

 
wj(x)

@m

@xj11 : : : @x
jp
p

!
(13)

is a spatially weighted mth-order iterated Laplacian operator.
As a particular example of the discontinuity-preserving splines, the Euler–Lagrange equation for the

thin-plate under tension spline (7) is

@2

@x2
(�uxx) + 2

@2

@x@y
(�uxy) +

@2

@y2
(�uyy)�

@

@x
(�ux)�

@

@y
(�uy) + �(u� c) = 0; (14)

where �(x; y) = �(x; y)(1 � �(x; y)) and �(x; y) = �(x; y)�(x; y).

8 Global Basis Function Solution

A global method for computing generalized splines pursued by Duchon [4] and developed further in [8] and
[18], involves a representation of the solution as a linear combination of N rotationally symmetric, global
support basis functions, one centered at each data point. The Radial Basis Functions (RBFs) of choice are
the fundamental solutions of the iterated Laplacian appearing in the Euler–Lagrange equations associated
with the generalized splines. They are no more complicated than logarithms. Computing the solution
requires first solving a system of linear equations for the unknown coefficients of the linear combination,
then constructing the superposition of basis functions, restricted to a compact region of interest 
 in which
the solution is continuous. The matrix of the linear system, whose size depends on the number of data
points N , is positive definite, symmetric, and full. It can be solved by Cholesky factorization with back
substitution.

Consider the generalized spline with

E(v(x)) = Sv(x)2m +
NX
i=1

1

��2i
(Li(v)� ci)

2 (15)

where fLig
N
i=1 are N linearly independent evaluation functionals. If fpj(x)gMj=1 are a basis for the M =�p+m�1

p

�
dimensional space of polynomials of total degree less than m, a unique (bounded) solution u(x)

will exist provided N �M , and Li
�PM

j=1 ajpj
�
= 0; for i = 1; 2; : : : ; N , implies that all the aj are 0 [8].

The solution has a representation

u(x) =
NX
i=1

ai�i(x) +
MX
j=1

bjpj(x); (16)

where
�i(x) = Li(s)Em(r(x� s)); i = 1; 2; : : : ; N; (17)
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where r(x) = jxj = (
Pd

i=1 x
2
i )
1=2 denotes the Euclidean norm of x, and the subscript (s) indicates that the

functional is applied to what follows considered as a function of s [18]. Em(x) is the fundamental solution
of the iterated Laplacian �m in <p; i.e., it satisfies the equation �mEm(x) = Æ(x), where Æ is the Dirac
delta distribution. It turns out to be the rotation invariant function defined on <d � f0g given by

Em(x) =

8>>><
>>>:

(�1)d=2+1

22m�1�d=2(m� 1)!(m� d=2)!
r2m�d ln r; if 2m � d and d even;

(�1)m�(d=2 �m)

22m�d=2(m� 1)!
r2m�d; otherwise,

: (18)

The coefficients a = [a1; : : : ; aN ]
> and b = [b1; : : : ; bM ]> are determined by the linear systems

�
K+ ��2

�
a+Tb = c;

T
>
a = 0;

(19)

where c = [c1; : : : ; cN ]
>, the N �N symmetric matrix K = [Li(x)Lj(s)Em(r(x� s))], the N �M matrix

T = [Lipj], and the N �N diagonal matrix � = [�i] [18].
To construct the global solution, the Cholesky algorithm recursively computes a sequence of optimal

approximations, as each data point is accessed in sequence. This has the advantage that the addition or
removal of a single data point requires relatively little computation to determine the new global solution,
given the current approximation. Although the global method may be attractive for problems involving a
modest number of constraints, it becomes expensive to store and solve an N � N linear system with full
matrix, if N exceeds order 102 � �103, or so. In addition, the system tends to become ill-conditioned for
large N .

9 Local Basis Function Solutions

An alternative approach to solving generalized spline problems is to apply the finite element or finite dif-
ference methods which make use of local basis functions. While the size of the resulting linear system is
usually greater than N , its matrix is sparse, due to the local support of the basis functions [9].

As a concrete example, we discretize the thin-plate spline under tension spline (7). Uniformly discretiz-
ing a rectangular subdomain of 
 2 <2 using a uniform grid with spacing h, whose nodes fih; jhg \
 are
indexed by (i; j). We define the nodal variables ui;j = u(ih; jh) as the unknown depths of the surface at
the N nodes (i; j). Taken together, these nodal variables form the vector v, to be determined by solving the
discrete problem. Similarly, nodal parameters �i;j = �(ih; jh) and �i;j = �(ih; jh) represent the parameter
functions of the surface. Letting �i;j = �i;j(1� �i;j)=h

2 and �i;j = �i;j�i;j , and applying finite differences
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to (14), the nodal equation for the solution ui;j at an arbitrary node (i; j) is given by

f (ui;j � 2ui�1;j + ui�2;j)�i�1;j
+(�2ui+1;j + 4ui;j � 2ui�1;j)�i;j
+(ui+2;j � 2ui+1;j + ui;j)�i+1;j
+(2ui;j � 2ui�1;j � 2ui;j�1 + 2ui�1;j�1)�i�1;j�1
+(�2ui+1;j + 2ui;j + 2ui+1;j�1 � 2ui;j�1)�i;j�1
+(�2ui;j+1 + 2ui�1;j+1 + 2ui;j � 2ui�1;j)�i�1;j
+(2ui+1;j+1 � 2ui;j+1 � 2ui+1;j + 2ui;j)�i;j
+(ui;j � 2ui;j�1 + ui;j�2)�i;j�1
+(�2ui;j+1 + 4ui;j � 2ui;j�1)�i;j
+(ui;j+2 � 2ui;j+1 + ui;j)�i;j+1g

+f (ui;j � ui�1;j) �i�1;j + (ui;j � ui+1;j) �i;j
+(ui;j � ui;j�1) �i;j�1 + (ui;j � ui;j+1) �i;jg

+ �i;j(ui;j � ci;j) = 0:

(20)

From the above equation, it is clear that Au = c is a sparse system of dimensionality equal to the number
of nodes in the grid.

In the closely related finite element solution, the approximation is a linear combination of the local
support basis functions (typically low-order piecewise polynomials) of finite element spaces. The number of
basis functions depends on the number of finite elements employed to tessellate the continuous domain. The
choice of tessellation is very flexible. As in the finite difference approach, the finite element representation
of generalized splines leads to a positive definite, symmetric system of linear equations that must be solved
for the unknown coefficients. This suggests the use of either direct or iterative sparse matrix techniques
to compute the solution. Iterative sparse matrix techniques need store only the nonzero matrix entries and
relaxation methods operate on these entries in place. With this approach we can tractably handle millions of
data points. Efficient multigrid relaxation methods have been applied successfully to the finite element and
finite difference solution of generalized spline problems [16].
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Fitting Parametric Curves to Dense and Noisy Points�

A. Ardeshir Goshtasby

Abstract–Given a large set of irregularly spaced points in the plane, an algorithm for partition-
ing the points into subsets and fitting a parametric curve to each subset is described. The points
could be measurements from a physical phenomenon, and the objective in this process could be
to find patterns among the points and describe the phenomenon analytically. The points could be
measurements from a geometric model, and the objective could be to reconstruct the model by a
combination of parametric curves. The algorithm proposed here can be used in various applica-
tions, especially where given points are dense and noisy.

1 Introduction

In many science and engineering problems there is a need to fit a curve or curves to an irregu-
larly spaced set of points. Curve fitting has been studied extensively in Approximation Theory
and Geometric Modeling, and there are numerous books on the subject [1,5,6,12,23]. Existing
techniques typically find a single curve segment that approximates or interpolates the given points.
Many techniques assume that the points are ordered and fit a curve to them by minimizing an error
criterion [3,7,8,14,16,22,27,29,31,34]. If the points are ordered, piecewise polynomial curves can
also be fitted to them [19,30]. Difficulties arise when the points are not ordered.

To fit curves to an irregularly spaced set of points: 1) the set should be partitioned into subsets,
2) the points in each subset should be ordered, and 3) a curve should be fitted to points in each
subset. This paper will provide solutions to the first two problems; that is, partitioning a point set
into subsets and ordering the points in each subset. Once the points in each subset are ordered,
existing techniques can be used to find the curves.

Given a large set of irregularly spaced points in the plane,fpi = (xi; yi) : i = 1; : : : ; Ng,
we would like to fit one or more parametric curves to the points, with the number of the curves
to depend on the organization of the points and the resolution of the representation. When fitting
a parametric curve to an irregularly spaced set of points, the main problem is to find the nodes of
the curve. The nodes of a parametric curve determine the adjacency relation between the points
and order the points. The curve will then approximate the points in the order specified. Methods
to order sparse points [11,17,24] as well as dense points [25,26,32] have been developed. Existing
methods, however, fit a single curve segment to an entire data set. Sometimes it is not desirable
to fit a single curve segment to a large and complex point set, and it is necessary to represent the
geometric structure present in the point set by many curve segments. In this paper it will be shown
how to partition a point set into subsets and how to fit a parametric curve to each subset. A new
method to order a set of dense and noisy points for curve fitting will also be presented.

�Presented at4th Int’l Conf. Curves and Surfaces, St. Malo, France, July 1–7, 1999.
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In the proposed model, a radial field is centered at each point such that the strength of the
field monotonically decreases as one moves away from the point. The sum of the fields has the
averaging effect and reduces the effect of noise, and local maxima of the sum of the fields has the
effect of tracing the spine of the points. Therefore, we will use the local maxima of the sum of the
fields (the ridges of the obtained field surface) as an approximation to the curves to be determined.
Based on the organization of the points, disjoint ridges may be obtained, each suggesting a curve.
The ridges will be used to partition the points into subsets and fit a curve to each subset. In the
following, the steps of this process are described in detail.

2 Approach

A desirable property of an approximating curve is for it to pass as close as possible to the given
points while providing a certain smoothness appearance. For a dense point set, the curve cannot
pass close to all the points, so it is desired that the curve trace the spine of the points. In the model
proposed here, an initial estimation to a curve is obtained by taking points in thexy plane whose
sum of inverse distances to the given points is locally maximum. That is, if the sum of inverse
distances of point(x; y) to given pointsf(xi; yi) : i = 1; : : : ; Ng is larger than the sum of inverse
distances of points in the neighborhood of(x; y) to the given points, then point(x; y) is considered
an initial estimation to a point on the curve. Therefore, by tracing points in thexy plane that locally
maximize

f(x; y) =
NX

i=1

[(x� xi)
2 + (y � yi)

2 + 1]�
1

2 ; (1)

we find an approximation to the curves we want to find.
The functionf can also be interpreted as follows: Suppose a radial field of strength 1 is centered

at point(xi; yi), i = 1; : : : ; N , such that the strength of the field decreases with inverse distance as
one moves away from the point. Then, the strength of the field at point(x; y) will be [(x� xi)

2 +

(y � yi)
2 + 1]�

1

2 , and the curves to be found can be considered points in thexy plane whose sum
of field values are locally maximum.

Once a set of points is given, the functionf becomes fixed, and the obtained ridges will have a
fixed shape. In order to provide control over the shape or smoothness of obtained ridges, we revise
formula (1) as follows: If instead of inverse distances defined by[(x� xi)

2+(y� yi)
2+1]�

1

2 , we
use

[(x� xi)
2 + (y � yi)

2 + r2]�
1

2 (2)

in equation (1), we obtain

g(x; y) =
NX

i=1

[(x� xi)
2 + (y � yi)

2 + r2]�
1

2 : (3)

The basis functions defined by (2) are known as inverse multiquadrics [13]. The parameterr of the
basis functions can be varied to generate different surfaces [21]. Figure 1b shows the field surface
obtained when using the points of Fig. 1a and inverse multiquadric basis functions withr = 5.

Instead of inverse multiquadric basis functions, other radial basis functions [2,4,10,28,33,35]
also can be used to define functiong. The choice of the basis functions influences the shape of

2



the obtained field surface, the shape of the obtained ridges, and, consequently, the shape of the
obtained curves.

By tracing the local maxima of field surfaceg in thexy plane, we will obtain an approximation
to the curves. Parameterr changes the shape of the basis functions and affects the shape of the
field surface.

Local maxima of surfaceg can result in structures that contain branches and loops. The pro-
posed model, therefore, can recover very complex patterns in dense and noisy point sets. Note also
that the proposed method does not require any knowledge about the adjacency relation between
the points. This method, in fact, provides the means to determine the adjacency relation between
the points.

3 Implementation

Derivation of an analytic formula that represents the local maxima of surfaceg may not be possible.
Digital approximation to the local maxima, however, is possible. This approximation is found in
the form of digital contours and is used to partition the points into subsets. To digitally trace surface
ridges, the surface is digitized into a digital image. The digitization process involves starting from
x = xmin andy = ymin and incrementingx andy by some small incrementÆ until reaching
x = xmax andy = ymax. For each discrete(x; y), the value forg(x; y) is then found from formula
(3). xmin andxmax could be the smallest and largestx coordinates, andymin andymax could be
the smallest and largesty coordinates of the given points. ParameterÆ is used as the increment
for bothx andy because radially symmetric basis functions are used to defineg. This parameter
determines the resolution of the obtained image. For a finer resolution, this parameter should be
reduced, while for a coarser resolution this parameter should be increased. If this parameter is to
be chosen automatically, it should be selected such that most given points map to unique pixels in
the obtained image.

Digitizing surfaceg in this manner will result in a digital image whose pixel values show
uniform samples from surfaceg. Figure 1b shows digitization of a field surface into an image of
256 � 256 pixels. To find the image ridges, pixels with locally maximum intensities are located.
To find locally maximum image intensities, the gradient magnitude and the gradient direction
[20] of the image at each pixel are determined. Gradient direction at a pixel is the direction at
which change in intensity at the pixel is maximum, and gradient magnitude is the magnitude of the
intensity change in the gradient direction at the pixel.

To find the ridges, we find each pixelA in the image where two pixelsB andC that are adjacent
to it and are at its opposite sides have intensities that are smaller than that atA. Assuming that the
image obtained after digitizing surfaceg is represented byI, we mark the pixel at(i; j) asA if one
of the following is true:

I(i� 1; j) < I(i; j) & I(i + 1; j) < I(i; j); (4)

I(i; j � 1) < I(i; j) & I(i; j + 1) < I(i; j); (5)

I(i� 1; j � 1) < I(i; j) & I(i + 1; j + 1) < I(i; j); (6)

I(i� 1; j + 1) < I(i; j) & I(i + 1; j � 1) < I(i; j): (7)

Using the image of Fig. 1b, we find that pixels in the contours shown in Fig. 1c are marked
asA. We will call the contours obtained in this manner theminor ridges of the image. Next, we
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find each pixelD whose value is not only larger than those ofB andC adjacent to it and at its
opposite sides, but which also has a gradient direction that is the same as the direction obtained by
connecting pixelsB andC. The gradient direction at a pixel is quantized with 45-degree steps to
ensure that only directions that are possible to obtain when connecting pixelsB andC in an image
are obtained. The pixels marked asD are shown in Fig. 1d. We will call these contours themajor
ridges of the image. As can be observed, major ridges are a subset of minor ridges. We also see
that major ridge points do not fall on small and noisy branches of the minor ridges but rather fall
on contours that represent the spines of the points. If the minor ridges are cut at the branch points,
and branches that do not contain a major ridge point are removed, and if the remaining contours
are thinned, we obtain Fig. 1e. The obtained contours will be called thelocal-maxima contours, or
simply thecontours. These contours will be taken as approximations to the curves to be found. We
will use them not only to partition the points into subsets but also to order the points in the subsets.

4 Node Estimation

The method outlined in the preceding section determines contours that are approximations to the
curves to be found. These contours will be used to partition a point set into subsets and order the
points in each subset.

Suppose a point set has producedm contours; then, a point is assigned to contourj (1 � j �
m) if it is closest to a pixel in contourj than to a pixel in any other contour. In this manner, a point
is assigned to one ofm contours. This process, when completed, will partition a point set intom

subsets by assigning the points into one ofm contours. Figures 2a and 2b show the point subsets
obtained in this manner from the point set of Fig. 1a.

To order pointsfqi : i = 1; : : : ; ng in subsetj, for each pointqi a point in contourj that is
closest to it is determined. We call the obtained contour point theprojection of point q i. After
determining projections of all points in the subset to the contour, the contour is traced from one
end to the other, and in the order the projections are visited, the associated points are ordered.

Since the contours are approximations to the curves to be found, the contour length from a
projection to the start of the contour is divided by the length of the contour to obtain an arc-length
estimation to the node of the point. If the contour is closed, an arbitrary point on the contour is
taken as the start point. If the contour is open, one of the end points is taken as the start point.

The size of the image obtained by digitizing surfaceg determines the accuracy of the obtained
nodes. If the surfaceg is very coarsely digitized, the obtained contours will be very short, and
numerous points may produce the same node, especially when given points are dense. To provide
a more accurate node estimation, the surfaceg should be digitized into an image large enough to
produce unique nodes.

Once the coordinates of given points and the associated nodes are known, a parametric curve
can be fitted to the points by one of the existing methods [9,11,16,18,30]. Fitting rational Gaussian
(RaG) curves [9] to the points shown in Fig. 1a with nodes as determined above, we obtain the
curves shown in Fig. 1f. The curves are overlaid with the original points to show the quality of the
curve fitting. Note that these curves were obtained using the points in Fig. 1a and not the contour
points in Fig. 1e. The contour points were used only to partition a point set into subsets and to
determine the nodes of the points.
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5 Observations

To observe the behavior of the proposed curve-fitting method, results on three additional point sets
are shown in Fig. 3. Figure 3a shows noisy points along an open contour, Fig. 3c shows a dense and
noisy point set along the silhouette of a coffee mug, Fig. 3e shows irregularly spaced points along
the silhouette of a model plane and one of its wings. We can see the geometric structures in these
point sets and, if asked, can trace the structures manually without any difficulty. The algorithm
proposed here is intended to do the same. The curves obtained are shown in Figs. 3b, 3d, and 3f.

The point sets shown in Fig. 3 did not contain geometric structures with branches and loops. If
a point set contains branches and loops, the local-maxima contours will also contain branches and
loops. A single curve segment, however, cannot represent branching structures. The solution we
propose is to segment a complex contour into simple ones by cutting it at the branch points and
fitting a curve to each branch.

6 Summary and Conclusions

A large number of techniques for fitting parametric curves to irregularly spaced points have been
developed. These techniques fit a single curve to the given points and often require that the points
be ordered. In science and engineering problems that deal with measurement data, the given points
may not be ordered and they may contain noise. Moreover, it may not be appropriate to fit a single
curve segment to all of the points. In this paper, a method to partition a point set into subsets and
fit a parametric curve to each subset was described. The proposed method has the ability to take
into consideration the noisiness and denseness of a point set when obtaining the curves.

Also introduced was a method to determine the nodes of a parametric curve that approximates a
set of dense and noisy points. The proposed method provides the means to fit any parametric curve,
including B-Splines and Non-Uniform Rational B-Splines, to irregularly spaced points. Although
in this paper only inverse multiquadrics were used as basis functions to obtain a field surface from
which the curve segments were determined, other radial basis functions [33] can be used in the
same manner. Depending on the parametric curve formulation and the radial basis functions used,
the number and the shapes of the curves fitting to a set of points may vary.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. (a) An irregularly spaced set of points. (b) A digitized field surface. (c) Contours

representing the minor ridges. (d) Contours representing the major ridges. (e) Local-

maxima contours. (f) RaG curve with standard deviation = 0.04 fitting  points in (a).
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(a) (b)

Fig. 2. (a), (b) Two point subsets obtained from the point set of Fig. 1a.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. A few curve-fitting examples.
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Approximating Digital Shapes by Parametric Surfaces�

A. Ardeshir Goshtasby

Abstract–A method for parametrizing discrete points sampled from a smooth shape and fitting a
rational Gaussian surface to the points with a required accuracy is presented. With the proposed
method, a very complex shape can be represented by a single surface, and the surface can be
rendered at a desired level of detail by adjusting a smoothness parameter.

1 Introduction

Given a set of scattered points in 3-D,fpi = (xi; yi; zi) : i = 1; : : : ; ng, we would like to determine
a parametric surfaceP(u; v) that approximates the points with a required error tolerance:

max
i
jjP(ui; vi)� pijj < ": (1)

" is the error tolerance and(ui; vi) are the parameters atpi.
We will consider a special case where the given points are voxels covering an object in a

discretized 3-D space. We will call such a data set adigital shape. Digital shapes are typically ob-
tained by segmenting tomographic images obtained by industrial or medical scanners. We assume
that the given shape is closed and contains no holes.

The objective in this approximation is threefold. First, we want to approximate the points with
a parametric surface where the number of control points in the surface is much smaller than the
number of points in the shape, and the maximum distance between the shape points and the surface
is within a required tolerance. Second, we want to have the ability to revise the obtained surface so
that a reconstructed shape can be edited. Therefore, the surface formulation used should lend itself
to easy editing. Third, the obtained surface should smooth noise among the given points, with the
degree of smoothing adjustable by the user.

In the following sections, first, an algorithm to parametrize a set of points by mapping them to
a sphere is described. Then, surface fitting using rational Gaussian (RaG) surfaces is discussed.
Finally, examples of the proposed surface-fitting method using medical data are presented.

2 Definitions

In this section, terminologies used in the paper are defined.
Digital shape: A set of points covering a smooth shape in a discretized 3-D space.
Point: A voxel in a digital shape. Shape points will be denoted byp’s.
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Adjacent points: Two points,pi andpj, are considered adjacent if1 � jjpi � pjjj �
p
3. Two

adjacent points are also calledneighbors.
Connected points: Two points are said to be connected if a path can be formed between them by
connecting adjacent points.
Path: A path between pointspi andpj is a connected set of points starting frompi and ending
atpj where no point is repeated and every point has exactly two neighbors except forpi andpj,
which may have only one neighbor. A path is also called acontour.
Triangular mesh approximation of a shape: A triangular mesh that interpolates some points and
approximates the rest in a shape. The mesh vertices will be denoted byP’s. Note thatP’s are a
subset of thep’s.
Edge contour: A contour in a digital shape that is delimited by the end points of a mesh edge and
lies in the plane passing through the edge and bisecting the angle between the two triangular faces
that share the edge. Note that due to the digital nature of shape points, some points in an edge
contour may not fall exactly in the bisecting plane; however, they will be closer to the plane than
points in any other path connecting the edge end points.
Distance of point pi to edge PjPk: Assuming the plane passing through the point and normal to
the edge intersects the edge atPl, if Pl is betweenPj andPk, the distance will bejjpi � Pljj.
Otherwise, ifPl is closer toPj than toPk, the distance will bejjpi � Pjjj, and ifPl is closer to
Pk than toPj, the distance will bejjpi �Pkjj.
Distance of an edge to an edge contour: Assumingpi is a contour point with distancedi to the
associating edge, we will take the maximum distance from points on the contour to the edge as the
distance of the contour to the edge. That is,De = maxifdig.
Distance of point pi to triangular face PjPkPl: Assuming the line passing throughpi and
normal to the triangle intersects the triangle atPm, if Pm is inside the triangle, the distance will be
jjpi � Pmjj. If Pm is outside the triangle and assumingPn is the point on a triangle edge closest
toPm, the distance will bejjpi �Pnjj.
Triangular patch: A connected set of points in a digital shape delimited by three contours whose
end points are the vertices of a triangle.
Distance of a triangular patch to the associating triangle: Assuming pointpi belongs to the
triangular patch and the distance betweenpi and the triangle isdi, the distance to be determined is
the maximum of such distances when all points in the patch are tested. That is,Dt = maxifdig.
Major axis of a digital shape: This is the axis defined by the largest eigenvector of the inertia
matrix [2] of points defining the shape.
Subdividing edge PjPk: Replacing the edge with edgesPjPi andPiPk, wherePi is the farthest
point on the associating edge contour to the edge and distance ofPi to the edge is larger than the
given tolerance".
Subdividing a triangle: A triangle may be subdivided in four different ways:

1. If distances between all three edges of the triangle and the corresponding contours are larger
than the specified tolerance, then by subdividing each edge into two and connecting the
obtained points to each other and to the vertices of the triangle, four smaller triangles are
obtained.

2. If distances between two of the edges and corresponding contours are larger then the speci-
fied tolerance, then two of the edges are subdivided. By connecting the newly obtained points
to each other and to the vertices of the triangle, three new smaller triangles are obtained.
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3. If the distance between only one of the edges and the corresponding contour is larger than
the required tolerance, then only one of the edges is subdivided into two. By connecting the
newly obtained point to the opposing triangle vertex, two smaller triangles are obtained.

4. If distances between all three edges and the corresponding contours do not reach the required
tolerance, then the distance between the patch and the triangle is determined, and if it is larger
than the required tolerance, the point in the patch farthest from the triangle is connected to
the vertices of the triangle to produce three smaller triangles.

In this way, a triangle is subdivided into 2, 3, or 4 smaller triangles. Subdivision will take place
in the order specified above. That is, only if subdivision by case 1 is not possible will subdivision
by case 2 be considered, and subdivision by case 3 will be considered only when subdivision by
case 2 is not possible, and so on.
Parametrizing points in an edge contour: By knowing the parameters at the end points of an
edge, parameters along the edge are determined by linear interpolation. Parameters at a contour
point are then set equal to the parameters at the edge point closest to it. At a coarse resolution,
multiple contour points may map to the same edge point, thus producing the same parameters.
However, as the subdivision proceeds, contour points will be more likely to map to unique edge
points, producing unique parameters.
Parametrizing points in a triangular patch: By knowing parameters at the vertices of a triangle,
parameters of points in the triangle and along its edges can be determined from the barycentric
coordinates [5, pp. 289–291]. Parameters of a point in a triangular patch are set equal to the pa-
rameters of the point closest to it in the associating triangle. Initially, depending on the complexity
of a shape, some points in a patch may receive the same parameters. However, as the subdivi-
sion proceeds the probability of such cases decreases, producing unique parameters for points in a
patch.

3 The Subdivision Algorithm

Using the above definitions, we now describe an algorithm that approximates a digital shape by a
triangular mesh with a required accuracy. We start by approximating the shape with an octahedron.
Then, we subdivide the triangular faces into smaller triangles until error in the approximation
reaches a required tolerance.
Algorithm 1: Subdivision of a digital shape to a triangular mesh

1. Initialization: Determine the major axis of the shape and approximate the shape with an
octahedron whose major axis lies on the shape’s major axis and whose vertices lie on the
shape. Then, enter the triangular faces of the obtained octahedron into a list.

2. Main Step: Remove a triangle from the list. If the distance between the triangle and the
corresponding patch is larger than the required tolerance, subdivide it and enter the newly
obtained triangles into the list.

3. Stopping Criterion: If the list is empty, stop. Otherwise, go to the Main Step.
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The reason for orienting the octahedron so that its major axis lies on the major axis of the shape
is to maximize overlap between the shape and the octahedron and, thereby, minimize the distance
between the approximating mesh and the shape. When subdivision is complete, the maximum dis-
tance between the shape and its approximating mesh is guaranteed to be smaller than the required
tolerance.

Some of the properties of this approximation are:

1. A unique subdivision is obtained independent of the orientation or position of a shape. This
is achieved by aligning the major axis of the octahedron with the major axis of the shape.

2. The process avoids subdivision into triangles with acute angles or long edges. This is
achieved by subdividing the edges of the mesh first.

3. Compression rate depends on the complexity of the shape. During subdivision, large tri-
angles are generated at smooth areas and small triangles are created at detailed areas. The
process automatically adjusts triangle sizes to reproduce local details in a shape.

4 Parametrizing the Shape Points

To parametrize the mesh vertices, first, parameters at the octahedral vertices approximating the
shape are determined. This is achieved by fitting an octahedron to a sphere, establishing cor-
respondence between vertices in the shape approximation and in the sphere approximation, and
assigning parameters of mesh vertices in the sphere approximation to parameters of mesh vertices
in the shape approximation. As a triangle in the shape approximation is subdivided, the corre-
sponding triangle in the sphere approximation is subdivided also and, again, parameters at newly
obtained mesh vertices in the sphere are assigned to corresponding mesh vertices in the shape.

When an edge contour in the shape approximation is divided into two, in the sphere approxi-
mation, the corresponding arc is divided into two in such a way that the proportion of the lengths of
newly obtained arcs are the same as the proportion of the lengths of contour segments in the shape.
At any stage of the process, by knowing parameters of mesh vertices in the sphere, parameters of
corresponding mesh vertices in the shape are known. Therefore, when the subdivision ends, spher-
ical parameters of all mesh vertices approximating a shape will be known. Algorithm 1, therefore,
provides the means to determine the parameters at vertices of the triangular mesh approximating
a shape. By knowing parameters at three vertices of a triangle, parameters at points in the trian-
gle can be determined using the barycentric coordinates, and by knowing the parameters of points
in a triangle, parameters of points in the associating triangular patch can be determined from the
correspondence between the two. In this manner, the spherical parameters of all points in a digital
shape can be determined.

5 Approximating a Digital Shape by a Rational Gaussian
Surface

Knowing the coordinates and the parameters of points in a digital shape, we can find a smooth
parametric surface that approximates the shape. We will use the mesh vertices as the control
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points of the parametric surface. Since the vertices are irregularly spaced, we will need a surface
formulation that does not require a regular grid of control points. A RaG surface [3, 4] can have
irregularly spaced control points and, therefore, will be used in this approximation. Assuming
vertices of the triangular mesh obtained by Algorithm 1 arefPi : i = 1; : : : ; Ng and the parameters
associated with them aref(ui; vi) : i = 1; : : : ; Ng, a RaG surface that approximates the vertices
can be written as [3, 4]

P(u; v) =
NX

i=1

Pigi(u; v); (2)

wheregi(u; v) is theith basis function of the surface defined by

gi(u; v) =
G�i

(u� ui; v � vi)
PN

j=1G�j
(u� uj; v � vj)

; (3)

andG�i
(u� ui; v � vi) = expf[(u� ui)

2 + (v � vi)
2]=2�2i g.

The standard deviations of Gaussians will be set in such a way to reproduce local shape details.
The sizes of triangles obtained in Algorithm 1 contain information about local details in a shape.
We will set the standard deviations of Gaussians proportional to the perimeters of the triangles.

If the surface is required to interpolate the vertices, we letP(ui; vi) = Pi and compute the
control points of the surface,fVi : i = 1; : : : ; Ng, from three systems ofN linear equations:

Pi =
NX

i=1

Vigi(u; v); i = 1; : : : ; N: (4)

Because of the nature of the rational Gaussian bases, the obtained matrix of coefficients will be
diagonally dominant. For very large standard deviations, however, the system will become unstable
because it may not be possible to fit a surface with a desired smoothness to fit to points in a very
detailed area.

In Algorithm 1, the decision to subdivide a triangle was based initially on distances between
edges of the triangle and the associating edge contours, and then on the distance between the
triangle and the associating patch. In order to fit a RaG surface to a shape, we redefine the error
criteria in Algorithm 1 as follows:

1. Instead of determining the distance between an edge and its corresponding edge contour, we
will determine the distance between an edge contour and the approximating/interpolating
surface. Since parameters of all points in an edge contour are known, for each pointpi
in an edge contour, we can determine the corresponding pointP(ui; vi) in the approximat-
ing/interpolating RaG surface. We then let the maximum distance between corresponding
points in the contour and the surface be the distance between an edge contour and the RaG
surface:DE = maxi jjP(ui; vi)� pijj.

2. Instead of determining the distance between a triangle and its associating patch, we will
determine the distance between the patch and the approximating/interpolating RaG surface.
This is possible because, by knowing parameters(ui; vi) at each pointpi in the patch, we
can determine the corresponding pointP(ui; vi) in the surface. We will then define the
distance between a triangular patch and its approximating/interpolating RaG surface to be
the maximum distance between corresponding points in the patch and the surface:DT =
maxi jjP(ui; vi)� pijj:
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Replacing error measuresDe andDt in Algorithm 1 with error measuresDE andDT , respec-
tively, we will obtain an algorithm that fits a RaG surface to a digital shape, ensuring that distance
between the given shape and the approximating/interpolating surface is within the required toler-
ance. We will call this new algorithm,Algorithm 2.

Note that�’s in the RaG formulation are in the same units asu’s andv’s. As the subdivision
progresses, the sizes of triangles in the sphere subdivision become smaller. Roughly, the perimeter
of a triangle reduces to half its size in each subdivision. Therefore, the� to be assigned at a
particular subdivision level will depend on the depth of the subdivision.

Suppose at level 0 an octahedron is fitted to the shape and another octahedron is fitted to a
sphere. If we were to stop the approximation at level 0, we would set all�’s to 1 to obtain a
smooth approximation to the shape. As the�’s are reduced, the obtained surface will resemble the
approximating triangular mesh, and as the�’s are increased the surface approaches a sphere. In
the case of interpolation, for very large values of�’s it may not be possible to obtain a surface that
would pass through the points. Typically, proper values for the�’s at level 0 are between 0.2 and
2.

At level 1, perimeters of triangles in the sphere are roughly half the perimeters of triangles at
level 0. Therefore,�’s at level 1 should be half the�’s at level 0. Analogously,�’s at leveln should
be 2�n of �’s at level 0. Denoting the� assigned to vertices at theith level bysi, we will have
si = 2�is0. In this manner,� at all vertices will depend on a single parameters0. By adjusting this
single parameter, the overall smoothness of the reconstructed surface can be controlled. At one
extreme whens0 is close to zero, the surface approaches the approximating triangular mesh. At
the other extreme, whens0 is very large, the shape will approach a sphere, and if an interpolating
surface is required, beyond a certain point it may not be possible to obtain a surface that would fit
the mesh vertices.

Note that since�’s are associated with the control points of a RaG surface, and the control
points are the vertices of the approximating triangular mesh, whenever an edge is divided into two,
�’s associated with the mesh vertices corresponding to the end points of the edge are also divided
by two. A vertex may be shared by many triangles obtained at different levels. Assigning a� to
the vertex that is proportional to the triangle at the highest level will enable reproduction of details
differently at different sides of a point. This can be explained by examining the spatial frequency
characteristics of Gaussians.

From the signal processing point of view, as the standard deviation of Gaussians in the spatial
domain increases (decreases), the Fourier transform of the Gaussians, which are also Gaussians,
will become narrower (wider) in the frequency domain. This means, in areas where smaller�’s
are used, the obtained surface can reproduce high and low spatial frequencies in the surface, and
in areas where only large�’s are used, high spatial frequencies are not reproduced, thus creating a
smooth surface. Narrower Gaussians enable reproduction of both low and high spatial frequencies.
For any value ofs0, relative details obtained in different areas in a reconstructed surface will depend
on relative details of local areas in the original shape.

Also note that although some triangles at leveln could have the same size as some triangles
at levelsm < n in thexyz space, in theuv space the sizes of triangles at leveln are smaller than
those at levelm. By appropriately reducing the�’s at higher levels, we are in effect preserving
information about the sizes of triangles at different levels. When a small portion of a sphere is
mapped to a large portion of a shape, the�’s assigned to different subdivision levels enable proper
reproduction of details in the shape.
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6 Examples

The digital shape depicted in Fig. 1a shows a femoral stem obtained by segmenting a volumetric
X-ray Computer Tomography (CT) image. There were holes at the top and bottom of the original
bone. The holes were covered with planar patches to obtain a closed shape. The process of subdi-
viding the closed shape into triangles using Algorithm 1 with error tolerance of 0.5 units is shown
in Figs. 1b–1e. It is assumed that the length of each side of elements (voxels) in the shape is 1 unit.
Figure 1f shows the rendered femoral stem using the obtained triangular mesh. The triangulation
process has placed larger triangles in smoother areas and smaller triangles in more detailed areas.

Since subdivision in the shape and in the sphere are performed in parallel, at any stage of
the process, parameters at the vertices of the triangular mesh are known from the parameters of
corresponding points in the sphere. Using Algorithm 2 with the same number of control points as
the number of vertices obtained in the mesh approximation, we obtain Figs. 2a–2c whens0 is set
to 0.2, 0.5, and 1, respectively.

A second set of examples is shown in Figs. 3a–3c. The data set used in this experiment was
obtained by segmenting a Magnetic Resonance (MR) image of a person’s head. The segmentation
has extracted the skin of the head. Using Algorithm 2 with error tolerance equal to 0.5, we obtain
the surface shown in Fig. 3a withs0 = 0:2. Increasings0 to 0.5 we obtain the surface shown in
Fig. 3b. Increasings0 further to 1, we obtain the surface shown in Fig. 3c.

Figures 2 and 3 show two examples of the proposed surface-fitting method. The number of
control points obtained in an approximation is not a mere function of the error tolerance; it is also
a function of the smoothness of the required surface. Preliminary results show that to achieve a
high compression rate, when a large error tolerance is given a larges0 should be used, and when a
small error tolerance is given a smalls0 should be used.

7 Concluding Remarks

An algorithm to subdivide a digital shape into a triangular mesh, parametrize the mesh vertices as
well as the shape points, and fit a rational Gaussian surface to the points was presented. Attempts to
parametrize mesh vertices have been made before. Leeet al. [6] simplified a mesh to a base mesh,
assigned parameters to the vertices of the base mesh, and determined parameters at the original
mesh vertices through conformal mapping of the base mesh to the original mesh. Rogers and Fog
[7] developed a nonlinear optimization method for determining the parameters of a mesh to be
approximated by B-spline patches. Brechb¨uhler et al. [1] developed an optimization method for
mapping vertices of a simple polyhedron into a sphere and thereby parametrizing the polyhedral
vertices.

Once the shape points or the mesh vertices are parametrized, a single RaG surface can be fitted
to the points to reconstruct the shape. A RaG surface enables editing of a shape by moving its
control points just like a NURBS surface. This representation is especially useful when a noisy
data set is given and there is a need to smooth noise in the data. The RaG formulation has a
smoothness parameter that can be varied to obtain surfaces at different levels of detail.
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(a) (b) (c)                                    

(d) (e) (f)
Fig. 1. Approximation of a digital shape by a triangular mesh
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(a) (b) (c)

Fig. 2. Approximating a digital femoral stem by RaG surfaces

                                    

(a) (b) (c)

Fig. 3. Approximating a digital head by RaG surfaces
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