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3D Algebra

• 3D basis consists of 8 elements
• Represent lines, planes and volumes, from a 

common origin

1 e1,e2,e3 e1e2,e2e3,e3e1 I

Grade 0
Scalar

Grade 1
Vector

Grade 2
Bivector

Grade 3
Trivector

Algebraic Relations

• Generators anticommute 
• Geometric product
• Inner product
• Outer product
• Bivector norm
• Trivector
• Trivector norm
• Trivectors commute with all other elements

e1e2 = ?e2e1

ab = a 6b + a Τ b
a 6b = 1

2 ⇑ab + ba⇒
a Τ b = 1

2 ⇑ab ? ba⇒
⇑e1 Τ e2⇒2 = ?1
I = e1e2e3

I2 = ?1

Lines and Planes

• Pseudoscalar gives a map between lines and 
planes

• Allows us to recover the vector (cross) 
product

• But lines and planes are different
• Far better to keep them as distinct entities 

a ⋅ b = ? I a Τ b

B = Ia
a = ? IB

a

B

Quaternions

• For the bivectors set

• These satisfy the quaternion relations

• So quaternions embedded in 3D GA
• Do not lose anything, but

– Vectors and planes now separated
– Note the minus sign!
– GA generalises

i = e2e3, j = ?e3e1, k = e1e2

i2 = j2 = k2 = ijk = ?1

• Build rotations from reflections
• Good example of geometric product – arises 

in operations

• Image of reflection is

Reflections

a

n

b
aΡ = ⇑a 6n⇒n
a⌠ = a ? ⇑a 6n⇒n

b = a⌠ ? aΡ = a ? 2⇑a 6n⇒n

= a ? ⇑an + na⇒n = ?nan
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Rotations
• 2 successive reflections give a rotation

Initial vector in red 
Reflection in green 
Rotated in blue

Rotations

• Direction perpendicular to the two reflection 
vectors is unchanged

• So far, will only talk about rotations in a plane 
with a fixed origin (more general treatment 
later)

• Now look at the algebraic expression for a 
pair of reflections

• Define the rotor

• Rotation encoded algebraically by

• Dagger symbol used for the reverse

Algebraic Formulation

a ÷ ?m⇑?nan⇒m = mnanm

R = mn

a ÷ RaR! R! = nm

Rotors

• Rotor is a geometric product of 2 unit vectors

• Bivector has square

• Used to the negative square by now!

• Introduce unit bivector

• Rotor now written

R = mn = cos⇑Σ⇒+ m Τ n

⇑m Τ n⇒2 = ⇑mn ? cosΣ⇒⇑?nm + cosΣ⇒= ? sin2Σ

B! = m Τ n
sinΣ

R = cos⇑Σ⇒+ sin⇑Σ⇒B!

• Can now write
• But:

– rotation was through twice the 
angle between the vectors

– Rotation went with orientation 
• Correct these, get double-sided, half-

angle formula

• Completely general!

a ⊂ RaR! R = exp⇑?ΣB! /2⇒

Exponential Form

R = exp⇑ΣB! ⇒

n ⊂ m

Rotors in 3D

• Can rewrite in terms of an axis via

• Rotors even grade (scalar + bivector in 3D)

• Normalised:

• Reduces d.o.f. from 4 to 3 – enough for a 
rotation

• In 3D a rotor is a normalised, even element

• The same as a unit quaternion

R = exp⇑?ΣIn/2⇒

RR ! = mnnm = 1
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Group Manifold

• Rotors are elements of a 4D space, 
normalised to 1

• They lie on a 3-sphere

• This is the group manifold

• Tangent space is 3D

• Natural linear structure for rotors

• Rotors R and –R define the same rotation

• Rotation group manifold is more complicated

Comparison

• Euler angles give a standard parameterisation 
of rotations

• Rotor form far easier

• But can do better than this anyway – work 
directly with the rotor element

cosφ cosδ ? cosΣsinδ sinφ ? sinφ cosδ ? cosΣsinδ cosφ sinΣsinδ

cosφ sinδ + cosΣcosδ sinφ ? sinφ sinδ + cosΣcosδ cosφ ? sinΣcosδ

sinΣsinφ sinΣcosφ cosΣ

R = exp⇑?e1e2δ/2⇒exp⇑?e2e3Σ/2⇒exp⇑?e1e2φ /2⇒

Composition

• Form the compound rotation from a pair of 
successive rotations

• Compound rotor given by group combination 
law

• Far more efficient than multiplying matrices
• More robust to numerical error
• In many applications can safely ignore the 

normalisation until the final step

a ⊂ R2⇑R1aR1
! ⇒R2

!

R = R2R1

R = exp⇑?ςe1e2/2⇒

= exp⇑?e1e2⊥/4⇒

Oriented Rotations

• Rotate through 2 different orientations
• Positive Orientation

• Negative Orientation

• So R and –R encode the same absolute 
rotation, but with different orientations  

e1

e2

S = exp⇑ςe1e2/2⇒

= exp⇑e1e23⊥/4⇒= ?R

Lie Groups

• Every rotor can be written as 
• Rotors form a continuous (Lie) group
• Bivectors form a Lie algebra under the 

commutator product
• All finite Lie groups are rotor groups
• All finite Lie algebras are bivector algebras
• (Infinite case not fully clear, yet)
• In conformal case (later) starting point of 

screw theory (Clifford, 1870s)!

exp⇑?B/2⇒

Interpolation

• How do we interpolate between 2 rotations?
• Form path between rotors

• Find B from
• This path is invariant.  If points transformed, 

path transforms the same way
• Midpoint simply
• Works for all Lie groups

R⇑ς⇒= R0 exp⇑ςB⇒R⇑0⇒= R0
R⇑1⇒= R1

exp⇑B⇒= R0
! R1

R⇑1/2⇒= R0 exp⇑?B/2⇒
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Interpolation - SLERP

• For rotors in 3D can do even better!
• View rotors as unit vectors in 4D
• Path is a circle in a plane
• Use simple trig’ to get SLERP

• For midpoint add the rotors and normalise!

R0

R1

Σ

R⇑ς⇒= 1
sin⇑Σ⇒

⇑sin⇑⇑1 ? ς ⇒Σ⇒R0 + sin⇑ςΣ⇒R1⇒

R⇑1/2⇒= sin⇑Σ/2⇒
sin⇑Σ⇒

⇑R0 + R1 ⇒

Applications

• Use SLERP with spline constructions for 
general interpolation

• Interpolate between series of rigid-body 
orientations

• Elasticity
• Framing a curve
• Extend to general

transformations

Linearisation

• Common theme is that rotors can linearise 
the rotation group, without approximating!

• Relax the norm constraint on the rotor and 
write

• ψ belongs to a linear space.  Has a natural 
calculus.

• Very powerful in optimisation problems 
involving rotations

• Employed in computer vision algorithms

RAR ! = φ Aφ ?1

Recovering a Rotor

• Given two sets of vectors related by a 
rotation, how do we recover the rotor?

• Suppose
• In general, assume not orthogonal.  
• Need reciprocal frame

• Satisfies 

b i = RaiR !

a1 = a2 Τ a3I
⇑a1 Τ a2 Τ a3I⇒

a i 6aj = Νj
i a2

a3

a1

Recovering a Rotor II
• Now form even-grade object

• Define un-normalised rotor

• Recover the rotor immediately now as

• Very efficient, but 
– May have to check the sign
– Careful with 180o rotations

b iai = Ra i⇑ϑ + B⇒ai = R⇑3ϑ ? B⇒= ?1 + 4ϑR

φ = biai + 1

R = φ
|φ |

• Suppose we take a path in rotor space 
• Differentiating the constraint tells us that

• Re-arranging, see that

• Arrive at rotor equation

• This is totally general.  Underlies the theory of 
Lie groups

Rotor Equations

R⇑ς⇒

d
dς ⇑RR !⇒= RϖR ! + RR !ϖ = 0

RϖR! = ?⇑RϖR! ⇒! = Bivector

Rϖ = ? 1
2 B R
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Example

• As an example, return to framing a curve.
• Define Frenet frame
• Relate to fixed frame

• Rotor equation

• Rotor equation in terms of curvature and 
torsion

t

n
b

〈 t,n,b= R eiR!

Rϖ = ? 1
2 RΙ Ι = Υ1e2e1 + Υ2e3e2

Linearisation II

• Rotor equations can be awkward (due to 
manifold structure)

• Linearisation idea works again  
• Replace rotor with general element and write

• Standard ODE tools can now be applied 
(Runge-Kutta, etc.)

• Normalisation of ψ gives useful check on 
errors

φ ϖ = ? 1
2 Bφ

Elasticity
• Some basics of elasticity (solid mechanics):

– When an object is placed under a stress
(by stretching or through pressure) it 
responds by changing its shape.

– This creates strains in the body.
– In the linear theory stress and strain are 

related by the elastic constants.
– An example is Hooke’s law F=-kx, where k

is the spring constant.
– Just the beginning!

Bulk Modulus

• Place an object under uniform 
pressure P

• Volume changes by

• B is the bulk modulus
• Definition applies for small

pressures (linear regime)

? P = B ΝV
V

Shear Modulus

• Sheers produced by 
combination of tension 
and compression

• Sheer modulus G is 
Shear stress / angle

θ

β β

β

β

G = β
2Σ

LIH Media

• The simplest elastic systems to consider are 
linear, isotropic and homogeneous media.  

• For these, B and G contain all the relevant 
information.

• There are many ways to extend this:
– Go beyond the linearised theory and treat 

large deflections
– Find simplified models for rods and shells
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Foundations

• Key idea is to relate the spatial configuration 
to a ‘reference’ copy.

• y=f(x) is the displacement field.  In general, 
this will be time-dependent as well.

x y=f(x)

Paths

• From f(x) we want to extract information about 
the strains.  Consider a path

• Tangent vectors map to

• F(a)=F(a;x) is a linear function of a.  Tells us 
about local distortions.

f⇑x + Οa⇒? f⇑x⇒= Οa 64 f⇑x⇒= ΟF⇑a⇒

Path Lengths

• Path length in the reference body is

• This transforms to

• Define the function G(a), acting entirely in the 
reference body, by

Ξ dx
dς 6 dx

dς
1/2

dς

Ξ⇑F⇑xϖ⇒6F⇑xϖ⇒⇒1/2dς

G⇑a⇒= F#F⇑a⇒

The Strain Tensor

• For elasticity, usually best to ‘pull’ everything 
back to the reference copy

• Use same idea for rigid body mechanics

• Define the strain tensor from G(a)

– Most natural is

– An alternative (rarely seen) is 

E⇑a⇒= 1
2 ⇑G⇑a⇒? a⇒

E⇑a⇒= 1
2 lnG⇑a⇒

The Stress Tensor

• Contact force between 2 surfaces is a linear 
function of the normal (Cauchy)

• τ(n)=τ(n;x) returns a vector in the material 
body. ‘Pull back’ to reference copy to define  

n τ(n)

T⇑n⇒= F?1⇑β⇑n⇒⇒

Constitutive Relations

• Relate the stress and the strain tensors in the 
reference configuration

• Considerable freedom in the choice here
• The simplest, LIH media have 

• Can build up into large deflections
• Combined with balance equations, get full set 

of dynamical equations
• Can get equations from an action principle

T⇑a⇒= 2GE⇑a⇒+ ⇑B ? 2
3 G⇒tr⇑E⇒a
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Problems
• Complicated, and difficult numerically
• In need of some powerful advanced 

mathematics for the full nonlinear theory 
(FEM…)

• Geometric algebra helps because it 
– is coordinate free 
– integrates linear algebra and calculus 

smoothly
• But need simpler models
• Look at models for rods and beams Configuration encoded 

in a rotor

Deformable Rod

• Reference configuration is a cylinder

λ

y = x⇑ς , t⇒+ RαR!

σ
x

y

Line of 
centre of 
mass

Technical Part

• Spare details, but:
• Write down an action integral
• Integrate out the coordinates over each disk
• Get (variable) bending moments along the 

centre line
• Carry out variational principle 
• Get set of equations for the rotor field
• Can apply to static or dynamic configurations

Simplest Equations

• Static configuration, and ignore stretching
• Have rotor equation

• Find bivector from applied couple and elastic 
constants.  I(B) is a known linear function of 
these mapping bivectors to bivectors

• Integrate to recover curve

dR
dς = ? 1

2 RΙ B

Ι B = I?1⇑R ! CR⇒

xϖ = Re1R !

Example

• Even this simple set of 
equations can give highly 
complex configurations!

Small, linear 
deflections build 
up to give large 
deformations

Summary

• Rotors are a general purpose tool for 
handling rotations in arbitrary dimensions

• Computationally more efficient than matrices
• Can be associated with a linear space
• Easy to interpolate
• Have a natural associated calculus
• Form basis for algorithms in elasticity and 

computer vision
• All this extends to general groups!
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Further Information

• All papers on Cambridge GA group website: 
www.mrao.cam.ac.uk/~clifford

• Applications of GA to computer science and 
engineering  are discussed in the proceedings 
of the AGACSE 2001 conference. 
www.mrao.cam.ac.uk/agacse2001

• IMA Conference in Cambridge, 9th Sept 2002 
• ‘Geometric Algebra for Physicists’ (Doran + 

Lasenby).  Published by CUP, soon.

Revised Timetable
• 8.30 – 9.15 Rockwood 

Introduction and outline 
of geometric algebra

• 9.15 – 10.00 Mann 
Illustrating the algebra I

• 10.00 -10.15 Break
• 10.15 – 11.15 Doran 

Applications I
• 11.15 – 12.00 Lasenby 

Applications II

• 1.30 – 2.00 Doran 
Beyond Euclidean 
Geometry

• 2.00 – 3.00 Hestenes 
Computational Geometry 

• 3.00 – 3.15 Break
• 3.15 – 4.00 Dorst  

Illustrating the algebra II
• 4.00 – 4.30 Lasenby 

Applications III
• 4.30 Panel


