Stable Fluids

Jos Stam
Alias|wavefront
Seattle, USA

Fluid Mechanics

 Natural framework for fluid modeling
Full Navier-Stokes Equations
* Has a long history
reuse code/algorithms
» Equations are hard to solve
non-linear

Fluids in Computer Graphics

* Fast.
« Looks good.
» Easy to code.

Main Contribution
Stable Navier-Stokes solver
Any time step can be used

Bigger time steps = faster simulations

NOT accurate

Previous Work (computer graphics)

Two dimensions:
* Yaeger & Upson 86 + Gamito etal. 95 (vortex blobs)
*Chenetal. 97 (explicit in time, finite differences)

Three-dimensions:

« Foster & Metaxas 97 (explicit in time, finite differences)

unstable

Inaccurate schemes can be useful

Application

Use velocity to move densities:

Application

Use velocity to move densities:

While (simulating)
Get force from Ul
Get density source from Ul
Update velocity
Update density
Display density

Equations

Evolution of density (assume velocity known)
dp
: —(u-V)p+£rVZp+S

Over a time step...

Equations
dp
ot
ou
ot

+ velocity should conserve mass

—(u-V)p4rsV2p+S

—(u-V) u-|-1/V2u-|-f

Equations very similar

Equations

Evolution of density (assume velocity known)
dp
o=@ V)t + s

Density diffuses over time

Equations

Evolution of density (assume velocity known)

9
af - RVZp +

Density changes in the direction of the flow

Equations

Evolution of density (assume velocity known)

;; —OIVM+mV%+g]

Increases due to sources from the Ul

Algorithm Algorithm

Subdivide space into voxels

??:—(lI'V)/)+h?v2p+S

Velocity + density defined in the center of each voxel

Diffusing Densities Diffusing Densities

Exchange of density between neighbors

Diffusing Densities Diffusing Densities

Change = density flux in - density flux out
Exchange of density between neighbors = k dt (neighbor - center) / h?

Diffusing Densities

A\
i1 i it

D™ = D"jj + k dt (D"i.yj + DMigj + D"ij1 + DMijea - 4Dij)/h?

Diffusing Densities

Dn+l
Find densities which when diffused backward
in time give the original densities.

Diffusing Densities

Unstable when kdt/hZz>1/2

Diffusing Densities

Linear solvers:

when internal boundaries pressm

Diffusing Densities

Linear system:

Dn+1LJ —kdt (Dnﬂl-l,]*Dmlul,ﬁD"*llJ-l*Dnﬂ |‘|+1'4Dn+l LJ)/hZ = D"‘J
Ax=Db

A can be huge but is sparse

-> requires fast linear solver

Algorithm

add source diffuse

=—(u~V)p-|—nV2p-|-S

Moving Densities

i

Velocity known

Moving Densities

Easy if density defined on particles

Any time step ok

Moving Densities

Finite Differences: transfer only between
neighbors

hl

Unstable when At |u| > h

Movmg Densmes

Moving Densities
Key ldea: combine partjcles and grids

o117
s

I\/Iovmg Densmes

Moving Densities

Interpolate the density at new location

Moving Densities
This scheme is unconditionally stable:
pint = (1 = 8)po + sp1
£0:P1 < Pmax
Pint < (1 - s+ -5')/)'77'1(1‘;1" < Pmax

» density is always bounded

Moving Densities
Set interpolated density at grid location

Requires two grids

Computing Velocities

Velocity is moved by itself

Computing Velocities

Moving Velocity

Trace particle backwards in tigne
0

Moving Velocity Moving Velocity

Interpolate the velocity at new location Set interpolated velocity at grid location

A
Requires two grids

Conservation of Mass Conservation of Mass

Flow into cell = Flow out of the cell
Uir1j- Uirj + Vij+a1- Vij2 =0 not

Conservation of Mass Conservation of Mass

Our field = mass conserving + gradient Mass conserving = our field gradient

Hodge decomposition

Conservation of Mass

Scalar field satisfies a Poisson Equation:

Pis1j+Pi1j+Pij+1+Pij1 - 4 Pij = (Uisrj- Uirj + Vijr1- Vija) h

Linear system

Show 2D demo

Summary

Updat eVel oci ty(U1, U0, F, vi sc, dt)
AddFor ce(U1, WO, F, dt)
Di f fuse(U0, UL, vi sc, dt)
Move(U1, UO, UO, dt)
ConserveMass(UL, dt)

Very easy to code. Only need:
Particle tracer + grid interpolator
Linear solver (FISHPAK or CG)

Liquid Textures

Treat texture coordinates as densities

U-coordinate V-coordinate

Liquid Textures

Animate texture coordinates

1,1)

Liguid Textures

(0.5,0.5)

(0.2,0.52)

Show 2D texture demo

Simple Stable Fluid Solver

Fourier space

"

(0,0) (-N/2,-N/2)

(Ux.y)V(xy) (uk.D.v(k,D)

Simple Stable Fluid Solver

Periodic boundaries

60 lines of (readable) C code

Simple Stable Fluid Solver

diffusion = low pass filter: exp(-(k? +2)nDt)
mass conservation = velocity perpendicular to the fourier directions

Add forces

Simple Stable Fluid Solver

Move velocity

Show 2D simple demo

Simple Stable Fluid Solver

Diffuse + project

Volum

Rendering

3D Demos

Move 3D solid texture coordinates

Interactive Volume Rendering

Volume Rendering

v

Render slices from front to back

10

Show 3D demo

Higher Order Interpolation

Use Hermite interpolation instead of
Linear interpolation.

Defeating Dissipation

Work with
Ronald Fedkiw & Henrik Wann Jensen

Stanford University

Higher Order Interpolation

-

Hermite

Higher Order Interpolation

Force interpolant to be monotonic to
avoid instabilities

11

Vorticity Confinement

Basic idea :Increase vorticity

John Steinhoff 1987 (Flow Analysis)

Vorticity Confinement

Add force perpendicular |

Vorticity Confinement

High Quality Renderings

Show confinement demo

High Quality Renderings

12

PocketPC demo

Show demo

Future Work

« Handle free boundaries (water)

« Parallel implementation (in progress)
« Adaptive grids (in progress)

* “Smarter” texture maps

PocketPC demo

Fixed point math:

#define freal short /1 16 bits

#define X1 (1<<8)

#define 12X(i) ((i)<<8)

#define X2I(x) ((x)>>8)

#define F2X(f) ((f)*X1)

#define X2F(x) ((float)(x)/(float)X1)

#define XM x,y) ((freal)(((long)(x)*(long)(y))>>8))
#define XD(x,y) ((freal)(((long)(x))<<8)/(long)(y)))

x = a*(b/c) X = XM a, XD(b, c))

13

