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- over 50 years of existing technology for numerical  
simulation
- large community of scientists pushing the frontier to solve 
new and challenging problems
- they need accurate predictive results that aid in both 
understanding natural phenomena and controlling it

Computational Fluid Dynamics

- draw upon both traditional and new methods in order to 
simulate natural phenomena for computer graphics (special 
effects for television and film)

Technology Transfer

level set methods - model the location of an interface even 
in the presence of extreme topological changes (merging 
and pinching) - low computational cost

Some Core Technology

ghost fluid method - models the physical boundary 
conditions  at an interface - low computational cost

vorticity confinement - models small scale turbulence 
details in important “interfacial” regions of the flow - low 
computational cost

Why interfaces? that’s what we see

Why low computational cost? we don’t have 10^5 CPU’s

Level Set Method (implicit surface)
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move the interface

maintain signed distance

extrapolation across interface
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Level Set Method – “dynamic” implicit surface

fast marching method

fast extension method

Image Segmentation - snakesImage Segmentation - snakes

Interpolation of Unorganized Data Points
“shrink wrap”

Coupled Particle - Level Set Method

- level sets can have mass (volume) loss or gain, but give an 
aesthetically pleasing smooth surface representation

- particles maintain their mass, but do not generally form a 
smooth surface, especially when using a practical number of 
particles 

- combining the two (in a clever way – based on the method 
of characteristics) gives very smooth surfaces without mass 
loss

Level Set Method
area loss due to regularization 

simple rigid body rotation

“New” Particle Level Set Method
without area loss

simple rigid body rotation
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Level Set Method
area loss due to regularization

more complicated  - “fluid” stretching and tearing more complicated  - “fluid” stretching and tearing

“New” Particle Level Set Method
without area loss
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Differencing discontinuous quantities leads to O(1/      ) 
terms that can produce large dissipation and dispersion 
errors.
One sided differencing ignores coupling mechanisms across
the discontinuity. 

How to Finite Difference at Discontinuities?

x∆

Ghost Fluid Method

Define a set of “ghost” variables that are continuous across 
the interface. Then apply standard finite differencing both 
near and across the interface in a seamless fashion.

Real Fluid

Ghost FluidReal Fluid

The continuous ghost fluid gives 
smaller numerical truncation errors
than the discontinuous real fluid.

Ghost Fluid Method

Pressure and Velocity 
are continuous

Density is 
discontinuous

Air (RED) – Water (GREEN) Interface

rarefaction initial interface location shockinterface

Helium-Air Interface
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Multidimensions ( )p fβ∇ • ∇ =
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same as in 1D

dimension by dimension
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arrows not valid in the reverse direction
smearing of the tangential derivative

Two-Phase Incompressible Flow
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Two-Phase Incompressible Flow
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Free Surface Flows
- incompressible Navier-Stokes equations on one side of the 
interface only (e.g. the water side)
- the fluid on the other side of the interface (e.g. the air side) 
has no dynamics – e.g. set       

- stress free boundary conditions are applied on the velocity 
field at the interface, i.e. the un-modeled fluid exerts no 
drag or resistance 

- Dirichlet pressure boundary conditions are applied at the 
interface, i.e. 1p = atmosphere

- a 2nd order accurate symmetric method can be used to 
solve the Poisson equation with Dirichlet boundary 
conditions

1p = atmosphere

Free Surface Flow
with object interaction

Control Particles for Spray Modeling

- in regions of high curvature, the particles are used to 
augment the level set function in order to alleviate mass loss

- in truly under-resolved regions (not enough grid points) 
the level set solution cannot be represented by the grid –
even with the help of particles 

- particles that “escape” the level set representation in 
under-resolved regions can be used as control particles for a 
spray modeling

Free Surface Flow
with object interaction

control particles are rendered here

Free Surface Flow
with object interaction

control particles are rendered here

One Way Wave Equation 0v vt x+ =
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Higher Order Approximation

upwindcentral
2 4( )
6
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2
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- add a new rh G term to cancel out the leading order error terms

Key Points
- in traditional CFD, the results of numerical calculations are only 
meaningful when the computed solution is well-resolved    

- well-resolved computations are within the convergent asymptotic 
regime where the numerical errors are proportional to the mesh
spacing   

- the only sensical    rh G terms are those that accelerate convergence
in the asymptotic regime, i.e. high order methods that cancel error

What happens in very complex flow fields where one cannot possibly
use enough grid points to resolve all the important features of the 
flow field?

In general, one can claim very little about under resolved calculations
on relatively coarse grids!

x∆

true solution

high order method

new method?

asymptotic regime

x∆

- scale the force so that it vanishes for consistency, but still gives a 
good answer on a coarse grid

- calculate the magnitude and direction of the force that the vorticity
should exert

Vorticity Confinement – coarse grid fix
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- vorticity needs help to overcome coarse grid dissipation

- locate the vorticity with
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Smoke
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Smoke


