
11

Performance OpenGL
Platform Independent Techniques

Performance OpenGL
Platform Independent Techniques

Dave ShreinerDave Shreiner
shreiner@sgi.com

2

What You’ll See Today …What You’ll See Today …

• An in-depth look at the OpenGL pipeline from a
performance perspective

• Techniques for determining where OpenGL
application performance bottlenecks are

• A bunch of simple, good habits for OpenGL
applications

3

Performance Tuning
Assumptions
Performance Tuning
Assumptions

• You’re trying to tune an interactive OpenGL
application

• There’s an established metric for estimating the
application’s performance

•Consistent frames/second
•Number of pixels or primitives to be rendered per

frame

• You can change the application’s source code

4

Errors – The Silent Performance
Killers
Errors – The Silent Performance
Killers

Asynchronous Error ReportingAsynchronous Error Reporting
• OpenGL doesn’t tell you when something goes

wrong

•Calls will silently mark an error and return
•Need to use glGetError() to determine if

something went wrong

5

Checking for ErrorsChecking for Errors

Check Early and Often in Application Check Early and Often in Application
DevelopmentDevelopment
• Only first error* is retained

•Additional errors are discarded until error flag is
cleared by calling glGetError()

• Erroneous OpenGL function skipped

6

Checking a single commandChecking a single command

Simple MacroSimple Macro

• Some limitations on where the macro can be used
• can’t use inside of glBegin() / glEnd() pair

#define CHECK_OPENGL_ERROR(cmd) \
cmd; \
{ GLenum error; \
while ((error = glGetError()) != GL_NO_ERROR) { \

printf("[%s:%d] '%s' failed with error %s\n", \
__FILE__, __LINE__, #cmd, \
gluErrorString(error)); \

}

22

7

Checking More ThoroughlyChecking More Thoroughly

Modified Modified gl.hgl.h checks almost every situationchecks almost every situation

• Script for re-writing gl.h available from web site

#define glBegin(mode) \
if (__glDebug_InBegin) { \
printf("[%s:%d] glBegin(%s) called between” \

“glBegin()/glEnd() pair\n", \
__FILE__, __LINE__, #mode); \

} else { \
__glDebug_InBegin = GL_TRUE; \
glBegin(mode); \

}

8

The OpenGL Pipeline
(The Macroscopic View)
The OpenGL Pipeline
(The Macroscopic View)

Ap
pl

ic
at

io
n

Tr
an

sf
or

m
at

io
n

Pi
pe

lin
e

Ra
st

er
iz

at
io

n

Fr
am

eb
uf

fe
r

9

Performance BottlenecksPerformance Bottlenecks

BottlenecksBottlenecks are the performance limiting are the performance limiting
part of the applicationpart of the application
• Application bottleneck

•Application may not pass data fast enough to the
OpenGL pipeline

• Transform-limited bottleneck

•OpenGL may not be able to process vertex
transformations fast enough

10

Performance Bottlenecks (cont.)Performance Bottlenecks (cont.)

• Fill-limited bottleneck

•OpenGL may not be able to rasterize primitives fast
enough

11

There Will Always Be A
Bottleneck
There Will Always Be A
Bottleneck

Some portion of the application will always Some portion of the application will always
be the limiting factor to performancebe the limiting factor to performance
• If the application performs to expectations, then

the bottleneck isn’t a problem

• Otherwise, need to be able to identify which part
of the application is the bottleneck

• We’ll work backwards through the OpenGL pipeline
in resolving bottlenecks

12

Fill-limited BottlenecksFill-limited Bottlenecks

System cannot fill all the pixels required in System cannot fill all the pixels required in
the allotted timethe allotted time
• Easiest bottleneck to test

• Reduce number of pixels application must fill

•Make the viewport smaller

33

13

Reducing Fill-limited
Bottlenecks
Reducing Fill-limited
Bottlenecks

The Easy FixesThe Easy Fixes
• Make the viewport smaller

•This may not be an acceptable solution, but it’s
easy

• Reduce the frame-rate

frame
pixels

second
frames

second
pixels

M3.13
06
M800

≈frame
pixels

second
frames

second
pixels

M7.10
75

M800
≈

14

A Closer Look at OpenGL’s
Rasterization Pipeline
A Closer Look at OpenGL’s
Rasterization Pipeline

Texture
Mapping
Engine

To
Fragment Tests

Point
Rasterization

Line
Rasterization

Triangle
Rasterization

Pixel
Rectangle

Rasterization

Bitmap
Rasterization

Fog
Engine

Color Sum
(Sep. Specular

Color)

15

Reducing Fill-limited
Bottlenecks (cont.)
Reducing Fill-limited
Bottlenecks (cont.)

Rasterization PipelineRasterization Pipeline
• Cull back facing

polygons

• Does require all primitives have same facediness

• Use a simpler texture filter

• Particularly on objects that occupy small screen area
– far from the viewer

• Use per-vertex fog, as compared to per-pixel

Texture
Mapping
Engine

To
Fragment Tests

Point
Rasterization

Line
Rasterization

Triangle
Rasterization

Pixel
Rectangle

Rasterization

Bitmap
Rasterization

Fog
Engine

Color Sum
(Sep.

Specular
Color)

16

A Closer Look at OpenGL’s
Rasterization Pipeline (cont.)
A Closer Look at OpenGL’s
Rasterization Pipeline (cont.)

Pixel
Ownership

Test

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Buffer
Test

Blending Dithering
Logical

Operations

Fr
am

eb
uf

fe
r

Fragments
(from previous

stages)

17

Reducing Fill-limited
Bottlenecks (cont.)
Reducing Fill-limited
Bottlenecks (cont.)

Fragment PipelineFragment Pipeline
• Do less work per pixel

•Disable dithering
•Depth-sort primitives

to reduce depth testing
•Use alpha test to reject transparent fragments

– saves doing a pixel read-back from the framebuffer in the
blending phase

Pixel
Ownership

Test

Scissor
Test

Alpha
Test

Stencil
Test

Depth
Buffer
Test

Blending Dithering Logical
Operations

18

A Closer Look at OpenGL’s Pixel
Pipeline
A Closer Look at OpenGL’s Pixel
Pipeline

Pixel Scale
&

Bias
Clamp

Pixel
Rectangle

Pixel
Unpacking

Type
Conversion

Framebuffer Texture
Memory

Pixel Map

44

19

Working with Pixel RectanglesWorking with Pixel Rectangles

Texture downloads and BltsTexture downloads and Blts
• OpenGL supports many formats for storing pixel

data

•Signed and unsigned types, floating point

• Type conversions from storage type to framebuffer
/ texture memory format occur automatically

20

Pixel Data ConversionsPixel Data Conversions

0

5

10

15

20

25

30

Machine 1 Machine 2 Machine 3

GL_BYTE GL_UNSIGNED_BYTE GL_SHORT GL_UNSIGNED_SHORT

GL_INT GL_UNSIGNED_INT GL_FLOAT

21

Pixel Data Conversions (cont.)Pixel Data Conversions (cont.)

0

0.5

1

1.5

2

2.5

Machine 1 Machine 2 Machine 3

GL_UNSIGNED_SHORT_4_4_4_ GL_UNSIGNED_SHORT_4_4_4_4_REV GL_UNSIGNED_SHORT_5_5_5_1

GL_UNSIGNED_SHORT_1_5_5_5_REV GL_UNSIGNED_INT_8_8_8_8 GL_UNSIGNED_INT_8_8_8_8_REV

GL_UNSIGNED_INT_10_10_10_2 GL_UNSIGNED_INT_2_10_10_10_REV

22

Pixel Data Conversions (cont.)Pixel Data Conversions (cont.)

ObservationsObservations
• Signed data types probably aren’t optimized

•OpenGL clamps colors to [0, 1]

• Match pixel format to window’s pixel format for
blts

•Usually involves using packed pixel formats
•No significant difference for rendering speed for

texture’s internal format

23

Texture-mapping ConsiderationsTexture-mapping Considerations

Use Texture ObjectsUse Texture Objects
• Allows OpenGL to do texture memory management

•Loads texture into texture memory when
appropriate

•Only convert data once
• Provides queries for checking if a texture is

resident
•Load all textures, and verify they all fit

simultaneously

24

Texture-mapping Considerations
(cont.)
Texture-mapping Considerations
(cont.)

Texture Objects (cont.)Texture Objects (cont.)
• Assign priorities to textures

•Provides hints to texture-memory manager on which
textures are most important

• Can be shared between OpenGL contexts

•Allows one thread to load textures; other thread to
render using them

• Requires OpenGL 1.1

55

25

Texture-mapping Considerations
(cont.)
Texture-mapping Considerations
(cont.)

SubSub--loading Texturesloading Textures
• Only update a portion of a texture

•Reduces bandwidth for downloading textures
•Usually requires modifying texture-coordinate

matrix

26

Texture-mapping Considerations
(cont.)
Texture-mapping Considerations
(cont.)

Know what sizes your textures need to beKnow what sizes your textures need to be
• What sizes of mipmaps will you need?

• OpenGL 1.2 introduces texture level-of-detail

•Ability to have fine grained control over mipmap
stack

– Only load a subset of mipmaps
– Control which mipmaps are used

27

What If Those Options Aren’t
Viable?
What If Those Options Aren’t
Viable?

• Use more or faster hardware

• Utilize the “extra time” in other parts of the
application
•Transform pipeline

– tessellate objects for smoother appearance
– use better lighting

•Application
– more accurate simulation
– better physics

28

Transform-limited BottlenecksTransform-limited Bottlenecks

System cannot process all the vertices System cannot process all the vertices
required in the allotted timerequired in the allotted time
• If application doesn’t speed up in fill-limited test,

it’s most likely transform-limited

• Additional tests include

•Disable lighting
•Disable texture coordinate generation

29

A Closer Look at OpenGL’s
Transformation Pipeline
A Closer Look at OpenGL’s
Transformation Pipeline

Texture
Coordinate
Generation

Vertex
Coordinates

Lighting
Normals

Texture
Coordinates

Color

ModelView
Transform

Projection
Transform

Lighting Clipping

Texture
Coordinate
Transform

30

Reducing Transform-limited
Bottlenecks
Reducing Transform-limited
Bottlenecks

Do less work perDo less work per--vertexvertex
• Tune lighting

• Use “typed” OpenGL matrices

• Use explicit texture coordinates

• Simulate features in texturing

• lighting

66

31

Lighting ConsiderationsLighting Considerations

• Use infinite (directional) lights

•Less computation compared to local (point) lights
•Don’t use GL_LIGHTMODEL_LOCAL_VIEWER

• Use fewer lights

•Not all lights may be hardware accelerated

32

Lighting Considerations (cont.)Lighting Considerations (cont.)

• Use a texture-based lighting scheme

•Only helps if you’re not fill-limited

33

Reducing Transform-limited
Bottlenecks (cont.)
Reducing Transform-limited
Bottlenecks (cont.)

Matrix AdjustmentsMatrix Adjustments
• Use “typed” OpenGL matrix calls

•Some implementations track matrix type to reduce
matrix-vector multiplication operations

glLoadMatrix*()
glMultMatrix*()

glRotate*()
glScale*()
glTranslate*()
glLoadIdentity()

“Untyped”“Typed”

34

Application-limited BottlenecksApplication-limited Bottlenecks

When OpenGL does all you ask, and your When OpenGL does all you ask, and your
application still runs too slowapplication still runs too slow
• System may not be able to transfer data to

OpenGL fast enough

• Test by modifying application so that no rendering
is performed, but all data is still transferred to
OpenGL

35

Application-limited Bottlenecks
(cont.)
Application-limited Bottlenecks
(cont.)

• Rendering in OpenGL is triggered when vertices
are sent to the pipe

• Send all data to pipe, just not necessarily in its
original form

•Replace all glVertex*() calls with glNormal*()
calls
– glNormal*() only sets the current vertex’s normal

values, but transfers the same amount of data

36

Reducing Application-limited
Bottlenecks
Reducing Application-limited
Bottlenecks

• No amount of OpenGL transform or rasterization
tuning will help the problem

• Revisit application design decisions

•Data structures
•Traversal methods
•Storage formats

• Use an application profiling tool (e.g. pixie &
prof, gprof, or other similar tools)

77

37

The Novice OpenGL
Programmer’s View of the World
The Novice OpenGL
Programmer’s View of the World

Set
State Render

38

What Happens When You Set
OpenGL State
What Happens When You Set
OpenGL State

• The amount of work varies by operation

• But all request a validation at next rendering operation

Transfer and convert data Transfer and convert data
from host format into internal from host format into internal
representationrepresentation

Transfer “untyped” data Transfer “untyped” data
((glTexImage2D()))

Set values in OpenGL’s contextSet values in OpenGL’s contextSet a “typed” set of Set a “typed” set of
data (data (glMaterialfv()))

Set the feature’s enable flagSet the feature’s enable flagTurning on or off a Turning on or off a
feature (feature (glEnable()))

39

A (Somewhat) More Accurate
Representation
A (Somewhat) More Accurate
Representation

Set
State Render

Validation

40

ValidationValidation

OpenGL’s synchronization processOpenGL’s synchronization process
• Validation occurs in the transition from state setting to

rendering

• Not all state changes trigger a validation

• Vertex data (e.g. color, normal, texture coordinates)
• Changing rendering primitive

glMaterial(GL_FRONT, GL_DIFFUSE, blue);
glEnable(GL_LIGHT0);
glBegin(GL_TRIANGLES);

41

What Happens in a ValidationWhat Happens in a Validation

• Changing state may do more than just set values in
the OpenGL context

•May require reconfiguring the OpenGL pipeline
– selecting a different rasterization routine
– enabling the lighting machine

• Internal caches may be recomputed
– vertex / viewpoint independent data

42

The Way it Really Is
(Conceptually)
The Way it Really Is
(Conceptually)

Set
State Render

Validation

Different
Rendering
Primitive

88

43

Why Be Concerned About
Validations?
Why Be Concerned About
Validations?

Validations can rob performance from an Validations can rob performance from an
applicationapplication
• “Redundant” state and primitive changes

• Validation is a two-step process

•Determine what data needs to be updated
•Select appropriate rendering routines based on

enabled features

44

How Can Validations Be
Minimized?
How Can Validations Be
Minimized?

Be LazyBe Lazy
• Change state as little as possible

• Try to group primitives by type

• Beware of “under the covers” state changes
•GL_COLOR_MATERIAL

– may force an update to the lighting cache ever call to
glColor*()

45

How Can Validations Be
Minimized? (cont.)
How Can Validations Be
Minimized? (cont.)

Beware of Beware of glPushAttrib() / glPopAttrib()
• Very convenient for writing libraries

• Saves lots of state when called
• All elements of an attribute groups are copied for later

• Almost guaranteed to do a validation when calling
glPopAttrib()

46

State SortingState Sorting

Simple technique … Big payoffSimple technique … Big payoff
• Arrange rendering sequence to minimize state

changes

• Group primitives based on their state attributes

• Organize rendering based on the expense of the
operation

47

State Sorting (cont.)State Sorting (cont.)

Texture Download

Modifying Lighting
Parameters

Matrix Operations

Vertex Data Least Expensive

Most Expensive

48

A Comment on EncapsulationA Comment on Encapsulation

An Extremely Handy Design Mechanism, An Extremely Handy Design Mechanism,
however …however …
• Encapsulation may affect performance

•Tendency to want to complete all operations for an
object before continuing to next object

– limits state sorting potential
– may cause unnecessary validations

99

49

A Comment on Encapsulation
(cont.)
A Comment on Encapsulation
(cont.)

• Using a “visitor” type pattern can reduce state
changes and validations

•Usually a two-pass operation
� Traverse objects, building a list of rendering primitives by

state and type
� Render by processing lists

•Popular method employed by many scene-graph
packages

50

Case Study: Rendering A CubeCase Study: Rendering A Cube

More than one way to render a cubeMore than one way to render a cube
• Render 100000 cubes

Render sixRender six
separate quadsseparate quads

Render twoRender two
quads, and onequads, and one

quadquad--stripstrip

51

Case Study: Method 1Case Study: Method 1

Once for each cube …

glColor3fv(color);
for (i = 0; i < NUM_CUBE_FACES; ++i) {

glBegin(GL_QUADS);
glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);
glVertex3fv(cube[cubeFace[i][2]]);
glVertex3fv(cube[cubeFace[i][3]]);
glEnd();

}

52

Case Study: Method 2Case Study: Method 2

Once for each cube …

glColor3fv(color);
glBegin(GL_QUADS);
for (i = 0; i < NUM_CUBE_FACES; ++i) {
glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);
glVertex3fv(cube[cubeFace[i][2]]);
glVertex3fv(cube[cubeFace[i][3]]);

}
glEnd();

53

Case Study: Method 3Case Study: Method 3

glBegin(GL_QUADS);
for (i = 0; i < numCubes; ++i) {

for (i = 0; i < NUM_CUBE_FACES; ++i) {
glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);
glVertex3fv(cube[cubeFace[i][2]]);
glVertex3fv(cube[cubeFace[i][3]]);

}
}
glEnd();

54

Case Study: Method 4Case Study: Method 4

Once for each cube …

glColor3fv(color);

glBegin(GL_QUADS);
glVertex3fv(cube[cubeFace[0][0]]);
glVertex3fv(cube[cubeFace[0][1]]);
glVertex3fv(cube[cubeFace[0][2]]);
glVertex3fv(cube[cubeFace[0][3]]);

glVertex3fv(cube[cubeFace[1][0]]);
glVertex3fv(cube[cubeFace[1][1]]);
glVertex3fv(cube[cubeFace[1][2]]);
glVertex3fv(cube[cubeFace[1][3]]);
glEnd();

glBegin(GL_QUAD_STRIP);
for (i = 2; i < NUM_CUBE_FACES; ++i) {

glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);

}
glVertex3fv(cube[cubeFace[2][0]]);
glVertex3fv(cube[cubeFace[2][1]]);
glEnd();

1010

55

Case Study: Method 5Case Study: Method 5

glBegin(GL_QUADS);
for (i = 0; i < numCubes; ++i) {

Cube& cube = cubes[i];
glColor3fv(color[i]);

glVertex3fv(cube[cubeFace[0][0]]);
glVertex3fv(cube[cubeFace[0][1]]);
glVertex3fv(cube[cubeFace[0][2]]);
glVertex3fv(cube[cubeFace[0][3]]);

glVertex3fv(cube[cubeFace[1][0]]);
glVertex3fv(cube[cubeFace[1][1]]);
glVertex3fv(cube[cubeFace[1][2]]);
glVertex3fv(cube[cubeFace[1][3]]);

}
glEnd();

for (i = 0; i < numCubes; ++i) {
Cube& cube = cubes[i];
glColor3fv(color[i]);

glBegin(GL_QUAD_STRIP);
for (i = 2; i < NUM_CUBE_FACES; ++i) {

glVertex3fv(cube[cubeFace[i][0]]);
glVertex3fv(cube[cubeFace[i][1]]);

}
glVertex3fv(cube[cubeFace[2][0]]);
glVertex3fv(cube[cubeFace[2][1]]);
glEnd();

}

56

Case Study: ResultsCase Study: Results

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Machine 1 Machine 2 Machine 3

Method 1
Method 2
Method 3
Method 4
Method 5

57

Rendering GeometryRendering Geometry

OpenGL has four ways to specify vertexOpenGL has four ways to specify vertex--
based geometrybased geometry
• Immediate mode

• Display lists

• Vertex arrays

• Interleaved vertex arrays

58

Rendering Geometry (cont.)Rendering Geometry (cont.)

Not all ways are created equal

0

0.5

1

1.5

2

2.5

3

3.5

Machine 1 Machine 2 Machine 3

Immediate

Display List

Array Element

Draw Array

Draw Elements

Interleaved Array Element

Interleaved Draw Array

Interleaved Draw Elements

59

Rendering Geometry (cont.)Rendering Geometry (cont.)

Add lighting and color material to the mixAdd lighting and color material to the mix

0

1

2

3

4

5

6

Machine 1 Machine 2 Machine 3

Immediate

Display List

Array Element

Draw Array

Draw Elements

Interleaved Array Element

Interleaved Draw Array

Interleaved Draw Elements

60

Case Study: Application
Description
Case Study: Application
Description

• 1.02M Triangles

• 507K Vertices

• Vertex Arrays

•Colors
•Normals
•Coordinates

• Color Material

1111

61

Case Study: What’s the Problem?Case Study: What’s the Problem?

Low frame rateLow frame rate
• On a machine capable of 13M polygons/second

application was getting less than 1 frame/second

• Application wasn’t fill limited

second
frames

frame
triangles
second

polygons

12
 M1.02
 M1.13

≈

62

Case Study: The Rendering LoopCase Study: The Rendering Loop

• Vertex Arrays

•glDrawElements() – index based rendering

• Color Material
glColorMaterial(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE);

glVertexPointer(GL_VERTEX_POINTER);
glNormalPointer(GL_NORMAL_POINTER);
glColorPointer(GL_COLOR_POINTER);

63

Case Study: What To NoticeCase Study: What To Notice

• Color Material changes two lighting material
components per glColor*() call

• Not that many colors used in the model

•18 unique colors, to be exact
• (3 * 1020472 – 18) = 3061398 “redundant” color calls

per frame

64

Case Study: ConclusionsCase Study: Conclusions

A little state sorting goes a long wayA little state sorting goes a long way
• Sort triangles based on color

• Rewriting the rendering loop slightly

• Frame rate increased to six frames/second
•500% performance increase

for (i = 0; i < numColors; ++i) {
glColor3fv(color[i]);
glDrawElements(…, trisForColor[i]);

}

65

SummarySummary

Know the answer before you startKnow the answer before you start
• Understand rendering requirements of your

applications
•Have a performance goal

• Utilize applicable benchmarks
•Estimate what the hardware’s capable of

• Organize rendering to minimize OpenGL validations
and other work

66

Summary (cont.)Summary (cont.)

PrePre--process dataprocess data
• Convert images and textures into formats which

don’t require pixel conversions

• Pre-size textures
•Simultaneously fit into texture memory
•Mipmaps

• Determine what’s the best format for sending data
to the pipe

1212

67

Questions & AnswersQuestions & Answers

Thanks for comingThanks for coming
• Updates to notes and slides will be available at

http://www.shreiner.net/Performance.OpenGL

• Feel free to email if you have questions

Dave ShreinerDave Shreiner
shreiner@sgi.com

68

ReferencesReferences

• OpenGL Programming Guide, 3rd Edition
Woo, Mason et. al., Addison Wesley

• OpenGL Reference Manual, 3rd Edition
OpenGL Architecture Review Board, Addison
Wesley

• OpenGL Specification, Version 1.2.1
OpenGL Architecture Review Board

69

For More InformationFor More Information

• SIGGRAPH 2001 Course # 12 - Developing Efficient
Graphics Software

•This afternoon @ 1:30 pm

• SIGGRAPH 2000 Course # 32 - Advanced Graphics
Programming Techniques Using OpenGL

70

AcknowledgementsAcknowledgements

A Big Thank You to …A Big Thank You to …
• Peter Shaheen for a number of the benchmark

programs

• David Shirley for Case Study application

