Performance OpenGL
Platform Independent Techniques

Dave Shreiner
shrei ner @gi . com

Performance Tuning
Assumptions

® You’re trying to tune an interactive OpenGL
application

* There’s an established metric for estimating the
application’s performance

* Consistent frames/second

= Number of pixels or primitives to be rendered per
frame

* You can change the application’s source code

What You’ll See Today ...

* An in-depth look at the OpenGL pipeline from a
performance perspective

* Techniques for determining where OpenGL
application performance bottlenecks are

= A bunch of simple, good habits for OpenGL
applications

Checking for Errors

Check Early and Often in Application
Development
® Only first error* is retained

= Additional errors are discarded until error flag is
cleared by calling gl Get Error ()

* Erroneous OpenGL function skipped

Errors - The Silent Performance
ES

Asynchronous Error Reporting
* OpenGL doesn’t tell you when something goes
wrong
 Calls will silently mark an error and return

*Need to use gl Get Error () to determine if
something went wrong

Checking a single command

Simple Macro

#def i ne CHECK_OPENGL_ERROR(cnd) \
cnd; \
{ GLenum error; \
while ((error gl GetError()) !'= GL_NO ERROR) { \
printf("[9 '%' failed with error %\n", \
FI L. 8 LINE__, #cmd, \

gluErrorString(error)); \
= JSome limitations on where the macro can be used
« can’t use inside of gl Begi n() / gl End() pair

Checking More Thoroughly

Modified gl . h checks almost every situation

#define gl Begi n(node) \
if (__glDebug_InBegin) { \
printf("[%: %] glBegin(%) called between” \
“gl Begi n()/ gl End() pair\n", \
__FILE_, __LINE__, #npde); \
} els€ 3\
__gl Debug_I nBegin = GL_TRUE; \
gl Begi n(node); \
}

= Script for re-writing gl . h available from web site

The OpenGL Pipeline

(The Macroscopic View)

Application
Transformation
Pipeline
Rasterization
Framebuffer

Performance Bottlenecks

Bottlenecks are the performance limiting
part of the application
= Application bottleneck

= Application may not pass data fast enough to the
OpenGL pipeline

* Transform-limited bottleneck

= OpenGL may not be able to process vertex
transformations fast enough

Performance Bottlenecks (cont.)

® Fill-limited bottleneck

*OpenGL may not be able to rasterize primitives fast
enough

There Will Always Be A
Bottleneck

Some portion of the application will always
be the limiting factor to performance
 If the application performs to expectations, then
the bottleneck isn’t a problem
= Otherwise, need to be able to identify which part
of the application is the bottleneck

= We’ll work backwards through the OpenGL pipeline
in resolving bottlenecks

Fill-limited Bottlenecks

System cannot fill all the pixels required in
the allotted time

= Easiest bottleneck to test
= Reduce number of pixels application must fill

* Make the viewport smaller

Reducing Fill-limited
Bottlenecks

The Easy Fixes
= Make the viewport smaller

= This may not be an acceptable solution, but it’s
easy

* Reduce the frame-rate

pixels pixels
BOOM s, 107 s B00M s , 13 31 228

frame frame
6055

Reducing Fill-limited
Bottlenecks (cont_)

Tedure.
Gep.

Maping e
pecular

) Color)

Rasterization Pipeline
* Cull back facing
polygons
= Does require all primitives have same facediness
= Use a simpler texture filter

« Particularly on objects that occupy small screen area
- far from the viewer

« Use per-vertex fog, as compared to per-pixel

A Closer Look at OpenGL’s
Rasterization Pipeline

Point
Rasterization
Line
Rasterization
bl T T
N N apping (Sep. Specular h
Rasterization Engine Color) Engine

Bitmap
Rasterization Y

To

Pixel Fragment Tests

Rectangle
Rasterization

Reducing Fill-limited
Bottlenecks (cont.)

Scissor stencil

pixel
ownership [l
Test et

Fragment Pipeline
* Do less work per pixel SE, » Bonding > oithering > Logcal

Opetations
« Disable dithering
* Depth-sort primitives
to reduce depth testing
= Use alpha test to reject transparent fragments

- saves doing a pixel read-back from the framebuffer in the
blending phase

A Closer Look at OpenGL’s
Rasterization Pipeline (cont.)

\

[l " Scissor "~ Alpha : Stencil

Ounership kg Test Test Test
Test

Framebuffer

el 4]

_ Logical

>WElendingyy > QDitieringy > f5oeryions

A Closer Look at OpenGL’s Pixel
Pipeline

Pixel Pixel - Type
Rectangle Unpacking Conversion
\2
Pixel Scale

Pixel Map >|
Bias

Working with Pixel Rectangles

Texture downloads and Blts
* OpenGL supports many formats for storing pixel
data
= Signed and unsigned types, floating point
= Type conversions from storage type to framebuffer
/ texture memory format occur automatically

Pixel Data Conversions (cont.)

Pixel Data Conversions

NED_BYTE
NED_INT

Texture-mapping Considerations

Use Texture Objects
= Allows OpenGL to do texture memory management

* Loads texture into texture memory when
appropriate
*Only convert data once
* Provides queries for checking if a texture is
resident

*Load all textures, and verify they all fit
simultaneously

Pixel Data Conversions (cont.)

Observations
* Signed data types probably aren’t optimized
* OpenGL clamps colors to [0, 1]
* Match pixel format to window’s pixel format for
blts

* Usually involves using packed pixel formats

= No significant difference for rendering speed for
texture’s internal format

Texture-mapping Considerations
(cont.)

Texture Objects (cont.)
* Assign priorities to textures

* Provides hints to texture-memory manager on which
textures are most important

* Can be shared between OpenGL contexts

= Allows one thread to load textures; other thread to
render using them

® Requires OpenGL 1.1

Texture-mapping Considerations
(cont.)

Sub-loading Textures
* Only update a portion of a texture

= Reduces bandwidth for downloading textures

* Usually requires modifying texture-coordinate
matrix

What If Those Options Aren’t
Viable?

= Use more or faster hardware

« Utilize the “extra time” in other parts of the
application

* Transform pipeline
- tessellate objects for smoother appearance
- use better lighting

* Application
- more accurate simulation
- better physics

Texture-mapping Considerations
(cont.)

Know what sizes your textures need to be
= What sizes of mipmaps will you need?

® OpenGL 1.2 introduces texture level-of-detail

= Ability to have fine grained control over mipmap
stack
- Only load a subset of mipmaps
- Control which mipmaps are used

A Closer Look at OpenGL’s
Transformation Pipeline

Col Texture
Glry > Coordinate
Transform
Texture

Texture > Coordinate
Coordinates| Generation

Lighting
Normals %

ModelView N L 0 Projection K _
vertex g g -

Coordinates

Transform-limited Bottlenecks

System cannot process all the vertices
required in the allotted time
= If application doesn’t speed up in fill-limited test,
it’s most likely transform-limited
= Additional tests include

= Disable lighting
= Disable texture coordinate generation

Reducing Transform-limited
Bottlenecks

Do less work per-vertex
* Tune lighting
* Use “typed” OpenGL matrices
= Use explicit texture coordinates
* Simulate features in texturing
* lighting

Lighting Considerations Lighting Considerations (cont.)

= Use infinite (directional) lights = Use a texture-based lighting scheme

*Less computation compared to local (point) lights * Only helps if you’re not fill-limited
eDon’t use GL_LI GHTMODEL _LOCAL_VI EVER | s

se fewer lights

= Not all lights may be hardware accelerated

Reducing Transform-limited

Bottlenecks (cont.) Application-limited Bottlenecks

Matrix Adjustments When OpenGL does all you ask, and your
0 i application still runs too slow
= System may not be able to transfer data to

gl Rot at e* () OpenGL fast enough
gl Scal e*() gl LoadMat ri x*()

gl Transl at e*() gl Mul t Matri x*() = Test by modifying application so that no rendering
-y is performed, but all data is still transferred to

= Some implementations track matrix type to reduce OpenGL
matrix-vector multiplication operations

Application-limited Bottlenecks Reducing Application-limited
(cont.) Bottlenecks

= Rendering in OpenGL is triggered when vertices = No amount of OpenGL transform or rasterization
are sent to the pipe tuning will help the problem

* Send all data to pipe, just not necessarily in its * Revisit application design decisions
original form Data structures
Replace all gl Vertex() calls with gl Nor mal * () * Traversal methods
calls « Storage formats
— gl Nor mal *() only sets the current vertex’s normal = . - e
values, but transfers the same amount of data < Use an app“catlon profll{ng_ tool (e'g' pIFX1 &
prof, gprof , or other similar tools)

The Novice OpenGL
Programmer’s View of the World

A (Somewhat) More Accurate
Representation

/» Validation \

Y

What Happens When You Set
OpenGL State

= The amount of work varies by operation

urning on or off a d s
eature (gl Enabl e()) et the feature’s enable flag

Jet a “typed” set of

Jata (gl Material fv()) et values in OpenGL’s context

ransfer and convert data
from host format into internal
epresentation

ransfer “untyped” data
(0! Texl mage2DX))

= But all request a validation at next rendering operation

What Happens in a Validation

* Changing state may do more than just set values in
the OpenGL context
= May require reconfiguring the OpenGL pipeline
- selecting a different rasterization routine
- enabling the lighting machine
* Internal caches may be recomputed
- vertex / viewpoint independent data

Validation

OpenGL’s synchronization process
= Validation occurs in the transition from state setting to
rendering
gl Material (GL_FRONT, G._DI FFUSE, blue);
gl Enabl e(GL_LI GHTO);
gl Begi n(GL_TRI ANGLES) ;
= Not all state changes trigger a validation

« Vertex data (e.g. color, normal, texture coordinates)
« Changing rendering primitive

The Way it Really Is
(Conceptually) -

/\ / Validation

"

Why Be Concerned About
Validations?

Validations can rob performance from an
application
* “Redundant” state and primitive changes
* Validation is a two-step process

* Determine what data needs to be updated

« Select appropriate rendering routines based on
enabled features

How Can Validations Be
Minimized? (cont.)

Beware of gl PushAttrib() / gl PopAttrib()
= Very convenient for writing libraries
= Saves lots of state when called
= All elements of an attribute groups are copied for later

« Almost guaranteed to do a validation when calling
gl PopAttrib()

How Can Validations Be
Minimized?

Be Lazy
* Change state as little as possible
= Try to group primitives by type
= Beware of “under the covers” state changes

* GL_COLOR MATERI AL

- may force an update to the lighting cache ever call to
gl Col or*()

State Sorting (cont.)

Texture Download

Modifying Lighting
Parameters

Matrix Operations

Vertex Data

State Sorting

Simple technique ... Big payoff

* Arrange rendering sequence to minimize state
changes

* Group primitives based on their state attributes

= Organize rendering based on the expense of the
operation

A Comment on Encapsulation

An Extremely Handy Design Mechanism,
however ...
= Encapsulation may affect performance
= Tendency to want to complete all operations for an
object before continuing to next object

- limits state sorting potential
- may cause unnecessary validations

A Comment on Encapsulation
(cont.)

* Using a “visitor” type pattern can reduce state
changes and validations

* Usually a two-pass operation
o Traverse objects, building a list of rendering primitives by
state and type
@ Render by processing lists
= Popular method employed by many scene-graph
packages

Case Study: Rendering A Cube

More than one way to render a cube
= Render 100000 cubes

11 AL\
u |

Render two
quads, and one
quad-strip

Render six
separate quads

Case Study: Method 1

Once for each cube ...

gl Col or3fv(color);

for (i =0; i < NUM CUBE_FACES,
gl Begi n(GL_QUADS);
gl Vert ex3f v(cube[cubeFace[i]
gl Vertex3fv(cube[cubeFace[i]
gl Vertex3fv(cube[cubeFace[i]
gl Vert ex3f v(cube[cubeFace[i]
gl End();

Case Study: Method 2

Once for each cube ...

gl Col or3fv(color);
gl Begi n(GL_QUADS);
for (i =0; i < NUMCUBE FACES, ++i) {
gl Vertex3fv(cube[cubeFace[i][0]]);

gl Vert ex3f v(cube[cubeFace[i][1
gl Vert ex3f v(cube[cubeFace[i][2
gl Vertex3fv(cube[cubeFace[i][3

}

gl End();

]
]
]
]

1)
1)
1 28

Case Study: Method 3

gl Begi n(GL_QUADS);
for (i i nunCubes; ++i) {
for (i =0; i < NUMCUBE FACES;, ++i) {
gl Vertex3fv(cube[cubeFace[i][0]]);
gl Vertex3fv(cube[cubeFace[i][1]]);
gl Vertex3fv(cube[cubeFace[i][2]]);
gl Vertex3fv(cube[cubeFace[i][3]]);

Case Study: Method 4

gl Begi n(GL_QUAD_STRIP)

Once for each cube ...

NUM_CUBE_FACES; ++i) {

celi][0]]
ce[i 1]

Case Study: Method 5

< nunCubes; ++) {

Rendering Geometry

OpenGL has four ways to specify vertex-
based geometry
* Immediate mode

= Display lists
® Vertex arrays

® Interleaved vertex arrays

Case Study: Results

H Method 1
W Method 2
B Method 3
B Method 4
OMethod 5

Rendering Geometry (cont.)

Add lighting and color material to the mix

Machine 2 Machine 3

Rendering Geometry (cont.)

Not all ways are created equal

Machine 1 Machine 2 Machine 3

Case Study: Application
Description

* 1.02M Triangles

* 507K Vertices

* Vertex Arrays r
< Colors j —ar 2
* Normals
* Coordinates

* Color Material

10

Case Study: What’s the Problem?

Low frame rate

= On a machine capable of 13M polygons/second
application was getting less than 1 frame/second

13.1 M Pelygons

second » 12 frames

l 02 M triangles second

frame

= Application wasn’t fill limited

Case Study: What To Notice

= Color Material changes two lighting material
components per gl Col or *() call
* Not that many colors used in the model

« 18 unique colors, to be exact

*(3*1020472 - 18) = 3061398 “redundant” color calls
per frame

Case Study: The Rendering Loop

* Vertex Arrays

gl Vert exPoi nter (G._VERTEX_ PO NTER);
gl Nor mal Poi nt er (GL_NORMAL_POI NTER) ;
gl Col or Poi nter(GL_COLOR PO NTER);

* gl DrawEl enent s() - index based rendering

* Color Material

gl Col or Materi al (GL_FRONT,
GL_AMBI ENT_AND_DI FFUSE) ;

Summary

Know the answer before you start
* Understand rendering requirements of your
applications
= Have a performance goal
= Utilize applicable benchmarks
= Estimate what the hardware’s capable of

= Organize rendering to minimize OpenGL validations
and other work

Case Study: Conclusions

A little state sorting goes a long way
= Sort triangles based on color

= Rewriting the rendering loop slightly
for (i =0; i <nunColors; ++) {
gl Col or3fv(color[i]);
gl Drawkl ements(.., trisForColor[i]);
}
* Frame rate increased to six frames/second

*500% performance increase

Summary (cont.)

Pre-process data
* Convert images and textures into formats which
don’t require pixel conversions
® Pre-size textures
* Simultaneously fit into texture memory
= Mipmaps
= Determine what’s the best format for sending data
to the pipe

11

Questions & Answers

Thanks for coming
= Updates to notes and slides will be available at

http://ww. shrei ner. net/ Perfornmance. OpenGL
= Feel free to email if you have questions

Dave Shreiner
shrei ner @gi . com

For More Information

* SIGGRAPH 2001 Course # 12 - Developing Efficient
Graphics Software
* This afternoon @ 1:30 pm
* SIGGRAPH 2000 Course # 32 - Advanced Graphics
Programming Techniques Using OpenGL

References

® OpenGL Programming Guide, 3" Edition
Woo, Mason et. al., Addison Wesley

* OpenGL Reference Manual, 3 Edition
OpenGL Architecture Review Board, Addison
Wesley

* OpenGL Specification, Version 1.2.1
OpenGL Architecture Review Board

Acknowledgements

A Big Thank You to ...
* Peter Shaheen for a number of the benchmark
programs

* David Shirley for Case Study application

12

