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Need to be mentally flexible!Need to be mentally flexible!Need to be mentally flexible!

Inability to update skills and education 
makes you an economic and social loss

• Economic loss because you cost more to employ than 
you are putting into the business

• Social loss because disgruntled employees foster an 
unhealthy work environment

You will have to learn a new subject many 
times during your career
• Who Moved My Cheese, http://www.whomovedmycheese.com
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Digital Filters overviewDigital Filters overviewDigital Filters overview

Linear Processing implies digital filters

Theory dominated by Fourier Series

• Any complete set of functions (e.g. sinusoids) can do 
as well as any other set of arbitrary functions

• But why the almost-exclusive use of Fourier Series in 
field of digital signal processing?

– recent-year interest:  wavelets

What is really going on?
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Typically time-invariant representation of 
signals, given no natural origin of time.

Led to trigonometric functions, together 
with eigenfunctions of translation, in the 
form of Fourier series and Fourier integrals.

Linear systems use same eigenfunctions.

• Complex exponentials are equivalent to the real 
trigonometric functions
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Given a band-limited signal, sampled at 
equal spaces at a rate of at least two in the 
highest frequency, then the original signal 
can be reconstructed from the samples.

Sampling process loses no information 
when replacing continuous signal with 
equally spaced samples, provided that the 
samples can cover entire real number line.
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Straight line to consecutive points of dataStraight line to consecutive points of dataStraight line to consecutive points of data
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Smooth fitting quadratic equationSmooth fitting quadratic equationSmooth fitting quadratic equation
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Figure 3Figure 3Figure 3 Nonrecursive FiltersNonrecursiveNonrecursive FiltersFilters
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Pure EigenfunctionPure EigenfunctionPure Eigenfunction
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Figure 5Figure 5Figure 5 Nonrecursive FiltersNonrecursiveNonrecursive FiltersFilters

Smoothing formulas have central 
symmetry in their coefficients, 
while differentiating formulas have 
odd symmetry.
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Orthogonality ConditionsOrthogonalityOrthogonality ConditionsConditions
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